
i

Using Machine Learning to Improve Neutron Tagging Efficiency in

Water Cherenkov Detectors

by

Matthew Stubbs

A Dissertation Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the Department of Applied Computer Science

© Matthew Stubbs, 2021
University of Winnipeg

ii

Using Machine Learning to Improve Neutron Tagging Efficiency in

Water Cherenkov Detectors

by

Matthew Stubbs

Supervisory Committee

Dr. B. Jamieson, Co-Supervisor
Chair of Physics Department

Dr. S. Ramanna, Co-Supervisor
Department of Applied Computer Science

Dr. C. Henry, Member
Department of Applied Computer Science

Dr. C. Bidinosti, Member
Department of Physics

Abstract

When an anti-neutrino collides with a proton in the atomic nucleus, it yields an
anti-lepton and a free neutron. In a water Cherenkov neutrino detector like Super-
K or the next generation Hyper-K, the free neutron is captured by a hydrogen or
gadolinium nucleus about one hundred microseconds after the collision. The low-
energy signal from the neutron capture (ranging from 2-8 MeV of gamma rays)
is recorded by only tens of photomultiplier tubes (PMTs), making neutron cap-
tures difficult to distinguish from radioactive decay, muon spallation and other
background sources. Improved methodologies for neutron tagging can advance un-
derstanding and enable new research over a survey of topics in particle physics.
In this research, machine learning techniques are employed to optimize the neu-
tron capture detection capability in the new intermediate water Cherenkov detector
(IWCD) for Hyper-K. In particular, boosting decision tree (XGBoost) and graph
neural network (GCN, DGCNN) models are developed and benchmarked against
a statistical likelihood-based approach, achieving up to a 10% increase in classifi-
cation accuracy. Characteristic features are also engineered from the datasets and
analyzed using SHAP (SHapley Additive exPlanations) to provide insight into the
pivotal factors influencing event type outcomes. Three main datasets were used for
evaluative purposes in this research, each consisting of roughly 1.6 million events
in total, divided nearly evenly between neutron capture and a distinct background
electron source.

iii

Contents

Abstract iii

Acknowledgements x

Dedication xi

1 Introduction 1
1.1 Neutrinos . 1
1.2 Cherenkov Radiation . 6
1.3 Water Cherenkov Detectors . 7
1.4 Neutron Tagging . 10
1.5 Thesis Outline . 12

2 Related Works 13
2.1 Machine Learning in Particle Physics 13
2.2 Boosting Decision Trees . 14
2.3 Deep Learning and Graph Neural Networks 15

3 Machine Learning Theory 17
3.1 Introduction . 17
3.2 XGBoost . 18
3.3 Shapley values . 22
3.4 Graph Neural Network (GNN) . 24

4 Datasets and Likelihood 35
4.1 Data Simulation . 35
4.2 Likelihood Baseline Analysis . 41

iv

CONTENTS v

5 Feature Engineering 46
5.1 Beta Parameters . 47
5.2 Time of Flight . 50
5.3 Distance to Wall . 53
5.4 Mean Opening Angle . 55
5.5 Consecutive Hit Angular RMS . 56
5.6 Consecutive Hit Distance . 58

6 XGBoost Results Analysis 61

7 GNN Application 74
7.1 GCN . 74
7.2 DGCNN . 79

8 Conclusions 83

Appendix 96
8.1 highE Dataset Supplementary . 97
8.2 lowE Dataset Supplementary . 102
8.3 Other . 107

List of Figures

1.1 Beta radioactivity puzzle, observed energies less than predicted. . . 2
1.2 Cherenkov radiation diagram. 7
1.3 Diagram of Cherenkov effect for neutrino detection in water. 8
1.4 Schematic of the intermediate water Cherenkov detector. 10
1.5 Inverse beta decay diagram, showing neutron capture by proton or

gadolinium nucleus. 11

3.1 Toy XGBoost example for ensemble of decision trees. 20
3.2 Example of the SHAP additive feature attribution method. 24
3.3 Example of an artificial neural network (ANN) architecture. 26
3.4 Basic graph neural network architecture, alternating filtering and

activation layers. 29
3.5 Diagram of the edge convolutional operation from the DGCNN graph

network model. 32
3.6 Diagram of an edge convolutional block (EdgeConv) from the DGCNN

graph network model. 33

4.1 Representation of the simulated IWCD and its geometry. 37
4.2 Distribution of hit counts for neutron capture and background events,

showing higher hits at higher energies. 38
4.3 Distribution of charge sums for the simulated neutron capture and

electron background events, showing higher charge sums for higher
energies. 38

4.4 Sources of background noise in the Super-Kamiokande detector. . . 40
4.5 Energy distributions of unstable isotopes produced in muon spallation. 41
4.6 Likelihood ratio for neutron and electron particle events as a function

of event hits. 43
4.7 Bivariate KDE plots of event hits and charge sums. 44

vi

LIST OF FIGURES vii

5.1 Beta parameter calculation diagram. 48
5.2 Distributions of the beta parameters for the neutron capture and

spallation background electron dataset. 50
5.3 Distributions of event timing for the spallation and neutron capture

dataset. 51
5.4 Distributions of the RMS event times for the neutron capture and

spallation dataset. 53
5.5 Distribution of vertex to wall distances for the neutron capture and

spallation dataset. 54
5.6 Distributions of mean open angles for the neutron capture and spal-

lation dataset. 56
5.7 Distributions of RMS consecutive hit angles for the neutron capture

and spallation dataset. 58
5.8 Event display comparing a sample neutron to background event. . . 59
5.9 Distributions of consecutive hit PMT distances for the neutron cap-

ture and spallation dataset. 60

6.1 XGBoost confusion matrix for model trained on the neutron capture
and spallation background dataset. 65

6.2 Local SHAP force plots are shown for two sample events, showing
individual feature contributions. 66

6.3 Local SHAP decision plots are shown for two sample events, showing
the individual feature contributions. 67

6.4 Combined SHAP decision plot for 500 randomly sampled events,
showing more global feature impact trends. 68

6.5 SHAP beeswarm plot for the neutron capture and spallation back-
ground dataset. 70

6.6 Comparison of engineered features separated by event type for the
neutron capture and spallation background dataset. 71

6.7 Feature importance by average absolute SHAP value for the neutron
capture and spallation dataset. 73

7.1 DGCNN model training times for varying number of nearest neigh-
bours k in the edge convolution block. 81

8.1 Distributions of beta parameters for the neutron capture and high
energy electron background dataset. 97

LIST OF FIGURES viii

8.2 Engineered feature distributions for the neutron capture and high
energy electron background dataset. 98

8.3 XGBoost confusion matrix for the model trained on neutron capture
and high energy electron background dataset. 99

8.4 SHAP beeswarm plot for the neutron capture and high energy elec-
tron background dataset. 100

8.5 Feature importance plot for the neutron capture and high energy
electron background dataset. 101

8.6 Distributions of beta parameters for the neutron capture and low
energy electron background dataset. 102

8.7 Distributions of engineered features for the neutron capture and low
energy electron background dataset. 103

8.8 XGBoost confusion matrix for model trained on the neutron capture
and low energy electron background dataset. 104

8.9 SHAP beeswarm plot for the neutron capture and low energy elec-
tron background dataset. 105

8.10 Feature importance plot for the neutron capture and low energy
electron background dataset. 106

8.11 Feature importance plot for the XGBoost model trained on the neu-
tron capture and low energy electron background dataset, sorted by
the weight, gain and cover metrics. 107

List of Tables

4.1 Baseline classification accuracies using highest likelihood for the three
neutron capture and electron background datasets. 45

6.1 Classification accuracies using XGBoost on the three neutron cap-
ture and background datasets. 64

7.1 GCN model applied to fixed input, fully connected and uniformly
edge weighted graphs. 76

7.2 Accuracies for GCN model with dynamic, fully connected and uni-
formly edge weighted graphs. 76

7.3 Accuracies for GCN model applied to fixed input, fully connected
graphs with inverse positional edge weighting. 78

7.4 Accuracies for GCN model applied to k-nearest neighbour connected
graphs, varying k. 78

7.5 Applied DGCNN model architecture. 80
7.6 DGCNN model classification accuracies for varying number of near-

est neighbours k in the edge convolution block. 80
7.7 DGCNN model classification accuracies with k = 25 nearest neigh-

bours for the three neutron capture and electron background datasets. 82
7.8 Classification accuracy summary for all methods over all datasets. . 82

ix

Acknowledgements

First, I would like to warmly thank Dr. Jamieson and Dr. Ramanna for their
invaluable help and funding over the course of this research. From the time invested
into hearing my updates and providing suggestions, helping guide the direction of
my inquiry while allowing me freedom to steer in different directions, digging into
the technical weeds together when necessary, responsiveness to my varied questions,
patience and tireless editing, this writing would absolutely not be possible without
their support. I also owe a debt of gratitude to Dr. John Walker for providing the
foundation for this research topic and helping me find my feet over the first few
months.

I would also like to extend my sincere thanks to the entire WatchMal collabora-
tion, and particularly N. Prouse, W. Fedorko and P. de Perio. I am very grateful
for their funding that allowed me the time to pursue my Masters degree, for pro-
viding the initial neutron capture dataset and the many tools to produce my own
data simulations, for hearing my progress and offering invaluable feedback and for
providing amazing opportunities to share my research and connect with others in
the particle physics and machine learning world.

I am also very grateful to the University of Winnipeg and the department of
Applied Computer Science in general. I had no idea before I began my studies at
the UW what a warm, welcoming and supportive environment it would provide, the
quality of CS courses it offered for graduate study, or the way in which it genuinely
cares about its students and wants them to succeed. I will always recommend the
UW for graduate CS study and look back fondly on my experience.

Finally, I would like to thank my fiancée Naomi for her unconditional support
and love, my parents for always being there, my cat Freddy for always catching the
mice and my dog Mabel for protecting me from the dangerous squirrels and various
passers-by out the window during the course of my remote research work at home.

x

Dedication

To my family of origin
and my family of creation

xi

Chapter 1

Introduction

1.1 Neutrinos

This research is focused on developing methods to better detect and understand
the neutrino, through the improved detection of neutrons produced in neutrino
interactions. The neutrino is a spin 1/2, neutrally charged elementary particle. At
any given second, more than a trillion neutrinos are passing through our bodies.
However, the chances of neutrinos interacting with matter is incredibly low. The
neutrino, elusive and difficult to detect, is the keeper of many secrets of and beyond
the Standard Model. For this reason, many large, sophisticated and expensive
particle detectors have been constructed to identify them. The story of the neutrino
begins in 1897, with the discovery of radioactivity by Henri Becquerel [1].

Radioactivity is the emission of particles from an unstable nucleus. Beta decay is
one form of radioactivity in which an electron is emitted from the nucleus. Initially,
this electron emission was thought to be the entire story of beta decay, as

A
ZX→ A

Z+1X
′ + e−. (1.1)

However, experimental observations of beta decay did not satisfy conservation of
energy (and angular momentum), which created a longstanding puzzle. Energy
conservation states that the total energy of any isolated system should remain
constant over time, neither increasing nor decreasing. According to this, in beta
decay, the energy carried away by the electron would equal the difference of energies
between the parent nucleus X and daughter nucleus X’ (this difference between
nucleus energies may be called Q). Multiple experiments found that the the energy
of the electrons produced in beta decay was not, in fact, equal to Q. Instead, the
observed electron energies were on a spectrum left of Q to lower energies, as shown

1

CHAPTER 1. INTRODUCTION 2

in Fig. 1.1.

Number of
Electrons

Electron Energy

expected

observed

Q
Figure 1.1: Diagram representing the beta radioactivity puzzle, in which the observed energies of
electrons generated in beta decay were found to be less than the expected value of Q (as predicted
by energy conservation).

Some believed that the beta decay energy spectrum demonstrated an exception
to the rule of energy conservation [2]. However, others thought there must be some
unknown particle carrying away some of the missing energy. In particular, in a
famous letter in 1930, Wolfgang Pauli proposed the existence of a neutrally charged,
light particle, which he believed to also be produced in beta decay [3]. He referred
to this hypothesis as a ‘desperate remedy’ to preserve the energy conservation
law. Pauli named this hypothetical particle the ‘neutron.’ Later, in 1932, James
Chadwick announced the discovery of a neutral particle in the nucleus of the atom,
but this particle was too massive to be the same as Pauli’s ‘neutron’. Therefore,
Enrico Fermi renamed Pauli’s ‘neutron’ to ‘neutrino’ (little neutron). By 1934,
Fermi postulated the production of the neutrino along with the electron to resolve
the lack of energy (and angular momentum) conservation in beta decay,

A
ZX→ A

Z+1X
′ + e− + νe. (1.2)

Fermi held the neutrino, νe, to be massless and neutrally charged. Equation 1.2
may also be rewritten to demonstrate the atomic nuclear decay of the neutron to

CHAPTER 1. INTRODUCTION 3

a proton, electron and neutrino, as

n→ p+ + e− + νe. (1.3)

Fermi’s theory also allowed for a neutrino to pick up charge and reveal itself by
colliding with matter. For example, an electron neutrino could collide with a proton
to produce a positron (electron antiparticle) and a neutron. This is the inverse beta
decay (IBD) process, hypothesized by Bruno Pontecorvo in 1945 [4],

νe + p+ → e+ + n. (1.4)

Armed with Fermi’s theory and abundant data from beta decay experiments,
two leading theorists of the time, Hans Bethe and Rudolf Peierls, calculated the
probability of a neutrino interacting with matter [5]. They estimated the neutrino
interaction cross-section in 1934 as roughly 10−44cm2. This number is so small that
they concluded “there is no practically possible way of observing the neutrino.”
They described how a neutrino can pass throughout Earth without interruption
“like a bullet through a bank of fog.” However, the 1930s and 1940s saw a rapid
development of nuclear fission reactors and fission bombs. These enormous neutrino
sources transitioned the prospect of neutrino detection to the realm of possibility.

In 1951, Frederick Reines and Clyde Cowan commenced the ‘Poltergeist project,’
using fission reactors to try to detect the ‘ghostly’ neutrinos [6]. The experiment
selected inverse beta decay (Eq. 1.4) to look for neutrinos through the delayed sig-
nal of positron annihilation (the e+ antiparticle will annihilate with the e− particle)
followed by neutron capture. The spirit of the design was similar to many modern
setups. Large tanks were filled with water to provide the proton targets for the
neutrinos. Cadmium chloride was added to the water, yielding cadmium nuclei to
capture any free neutrons. The tanks were also surrounded by three detectors lined
with 110 light-detecting photomultiplier tubes (PMTs) each to record the signals
from the beta decay. In 1956, Reines and Cowan were successful in detecting neu-
trinos for the first time, an accomplishment which yielded them the Nobel Prize in
1995.

Reines and Cowan knew they had detected neutrinos, but they did not know that
neutrinos exist in three possible ‘flavour’ states. In fact, they had detected electron
neutrinos νe, so-named because they often show up with electrons in interactions. In
1962, Leon Lederman, Melvin Schwartz and Jack Steinberger discovered the muon
neutrino at Columbia (νµ, often shows up with muons). They used a synchrotron
to produce a beam of pi mesons and directed the beam at a 5,000 ton steel wall

CHAPTER 1. INTRODUCTION 4

made of old battleship plates. On the way, the pi mesons decayed to muons and
muon neutrinos, but only the muon neutrinos could pass through the steel wall
where they could be detected by a spark chamber. This discovery led to the 1998
Nobel Prize in physics [7]. The tau neutrino (ντ) was later discovered by Martin
Perl and colleagues at SLAC in Stanford.

Aside from neutrino flavours, the production and quantity of solar neutrinos
is integral to the story of our understanding of the neutrino. The standard solar
model (SSM) posits that nuclear fusion is responsible for powering the sun and
heating our planet, following

4p→ 4He+ 2e+ + 2νe, (1.5)

where (following intermediate interactions) the net effect is the fusion of four pro-
tons into a helium atom, releasing two positrons, two electron neutrinos and leftover
energy. At the Brookhaven National Laboratory in New York, Raymond Davis Jr.,
after previous experiments on neutrinos from fission reactors, turned his attention
to the detection of solar neutrinos. Nearly a mile underground in the Homestake
Gold Mine in South Dakota, he oversaw the construction of a 100,000-gallon tank
filled with cleaning fluid. The fluid provided chlorine atoms, which were known to
interact with solar neutrinos to produce a countable number of radioactive argon
atoms. Meanwhile, the tank was underground to avoid background neutrinos from
cosmic rays. After years of refinement to the experimental method, Davis Jr was
successful in detecting solar neutrinos [8]. However, the flux detected was only
about one-third of the prediction from the SSM! This dilemma become known as
the famous ‘solar neutrino problem.’

Some believed the astrophysical model of the Sun was wrong. Others questioned
the experimentation methodology. A third camp correctly believed the problem was
due to a lack of understanding of neutrino physics 1. Later radiochemical experi-
ments also found a solar neutrino flux lower than expected, from 30% to 50%. One
major advance was made in Japan in 1998, when the Super-Kamiokande collab-
oration, from the study of cosmic ray neutrinos, provided the first experimental
evidence of neutrino oscillation [10]. This oscillatory “personality disorder” indi-
cated that neutrinos can actually change from one flavour to another along their
paths (for example from a muon neutrino to an electron neutrino)!

The final piece to the solar neutrino puzzle involved a second neutrino interaction
mode called the ‘neutral current’ (NC) interaction. Previously, the only known (and

1Sociologist Trevor Pinch made a case study of scientists’ responses to the solar neutrino problem [9]

CHAPTER 1. INTRODUCTION 5

experimentally studied) mode was the charged current (CC) interaction mode, in
which the neutrino changes into its lepton counterpart. For example, the change
of an electron neutrino into the charged electron,

νe + (Z,N)→ (Z + 1, N − 1) + e−, (1.6)

is a CC interaction. However, in 1973 the NC mode was discovered, in which
the neutrino (of any flavour) scatters off a nucleus, causing the nucleus to reach
an excited state or disintegrate, but in which the neutrino leaves the interaction
unchanged,

νl + (Z,N)→ (Z,N)∗ + νl, (1.7)

where νl = {νe, νµ, ντ}. Therefore, the possibility existed of a solar electron neu-
trino changing into a muon or tau neutrino on its path to Earth. After this flavour
oscillation, the muon or tau neutrino would need a sufficiently high energy to con-
vert into a muon or tauon through a CC interaction. This is due to the relatively
higher masses of muons and taus (respectively 105 MeV and 1777 MeV) and Ein-
stein’s famous mass-energy equivalency equation E = mc2. However, the solar
neutrino energies were limited to about 14 MeV, too low for this to occur. Thus,
it was possible that many solar neutrinos were going undetected because detectors
were unable to detect the muon or tau neutrinos they had converted to on their way
to Earth. The Sudbury Neutrino Observatory (SNO) in Ontario, Canada was the
first to directly measure the solar neutrino flux from NC neutrinos. The measured
NC flux was approximately three times higher than the CC solar neutrino flux [11].
This finding in 2001, together with the results from Super-Kamiokande, not only
corroborated the phenomenon of neutrino oscillation, but also measured a neutrino
flux in agreement with the SSM, thus confirming the nuclear fusion model of solar
energy production.

Although great advances have been made in the field of neutrino physics, there
are still many unknowns. For example, the Standard Model predicts a zero neu-
trino mass, in direct opposition to the non-zero mass indicated by experimentally
observed neutrino oscillations. Moreover, although the relative neutrino masses
are well-known, the absolute masses themselves are unknown. Another outstand-
ing question is whether neutrinos are Dirac particles (the particle (e.g. e−) differs
from its antiparticle (e.g. e+)) or Majorana particles (the particle is the same as
its antiparticle) [12]. The search to resolve this outstanding question is underway

CHAPTER 1. INTRODUCTION 6

through various ‘neutrinoless double beta decay’ experiments, but results are in-
conclusive to date. These and other questions in neutrino physics may lay the
framework to a deeper understanding of the physics of our Universe.

1.2 Cherenkov Radiation

As mentioned in Section 1.1, neutrinos are notoriously difficult to detect. However,
one proven method utilizes the effect of Cherenkov radiation to make an indirect
observation by detection of the charged leptons the neutrinos produce in interac-
tions. This concept is the foundation of several modern neutrino detectors.

Cherenkov radiation, the faint bluish glow common to nuclear reactors, is named
after the Soviet physicist Pavel Cherenkov. Although others before him had no-
ticed this effect, he was the first to systematically study it, beginning in 1934. He
spent hours in dark rooms, gradually adjusting his vision to detect faint lumines-
cence with the naked eye. This luminescence emanated from certain salt solutions
when exposed to radiation from a radium source. The phenomenon was also in-
duced in ordinarily non-luminescent solvents like sulfuric acid and water [13]. Pavel
Cherenkov, along with Ilya Frank and Igor Tamm, was jointly awarded the 1958
Nobel Prize in physics “for the discovery and the interpretation of the Cherenkov
effect.”

In general, although light travels at a constant speed c in vacuum, its wave
velocity may be slower in a dielectric medium, due to the polarizability of the
medium. Cherenkov radiation is produced when a charged particle (e.g. an electron
or muon) moves through such a medium (e.g. water) faster than the wave velocity
of light in the medium. This effect is similar to when a jet moves through air faster
than the speed of sound, creating a sonic boom. On a quantum mechanical level,
when the charged particle moves through the medium, it excites molecules within
the medium to more energetic states. When the molecules return to ground level,
they emit photons themselves. This electromagnetic radiation travels outwards as
spherical waves. If the incoming charged particle moves quickly enough, these waves
may add constructively with each other, leading to outward coherent radiation at
the Cherenkov angle θC . The cosine of θC is given by

cos θC =
vlight

vparticle
=
c

n
∗ 1

vparticle
, (1.8)

where vlight is the wave velocity of light in the medium, vparticle is the velocity of the

CHAPTER 1. INTRODUCTION 7

charged particle, c is the velocity of light in vacuum and n is the refraction index
of the medium (1.333 for water). Cherenkov radiation yields a cone of bluish light
in the direction of the charged particle. This process is represented in Fig. 1.2.

charged
particle

θc

Cherenkov
radiation

Figure 1.2: Cherenkov radiation is produced when a charged particle moves faster than the wave
velocity of light in a medium. If the particle moves quickly enough, molecules in the medium
produce spherical electromagnetic waves which may add constructively and radiate outwards at
the Cherenkov angle θC . Cherenkov radiation is generally a blue hue and is often seen in nuclear
reactors.

1.3 Water Cherenkov Detectors

Water Cherenkov (WC) detectors make use of the Cherenkov effect to indirectly
identify neutrinos. They generally contain many rows of light-detecting PMT sen-
sors which are capable of recording light flash signals in the detector. When photons
from Cherenkov radiation strike the photocathode surface of a PMT, electrons are
produced in accordance with the the photoelectric effect [14]. These electrons are
accelerated by the high voltage electric field in the PMT and the output charge is
then recorded. This charge is in proportion to the energy of the incident radiation.

A water Cherenkov detector is immersed in water to facilitate the Cherenkov
effect, described in Section 1.2. When a neutrino interaction occurs and a charged

CHAPTER 1. INTRODUCTION 8

particle is produced in the water, the subsequent Cherenkov radiation cone is emit-
ted outwards and is recorded by the PMTs lining the walls of the tank. The light
cone forms a ring in two dimensions. After the data from the Cherenkov event is
recorded from the PMTs, properties of the neutrino interaction, such as the energy,
momentum and direction, may be reconstructed. Figure 1.3 shows how PMTs in
WC detectors capture the Cherenkov radiation from relativistic charged leptons
produced in neutrino interactions.

Figure 1.3: In water, a neutrino interac-
tion produces a fast-moving charged parti-
cle which generates Cherenkov radiation as
a cone of blue light in the direction of the
charged particle. This radiation is recorded
by rows of photosensors and can be traced
back to information about the original neu-
trino. Retrieved from: http://physicsope
nlab.org/2016/04/24/diy-cherenkov-

detector/

The Irvine–Michigan–Brookhaven (IMB)
detector, which began construction in 1979,
was the pioneering WC detector. Built
in a salt mine in Ohio, U.S.A, IMB be-
gan taking data in 1982, primarily with the
goal of detecting proton decay. After this,
Kamiokande, located in the Kamioka Town-
ship, Gifu Prefecture, Japan, was the sec-
ond kton-scale WC detector to be deployed.
Kamiokande began taking data in 1983. To-
gether, IMB-3 (upgraded version of IMB)
and Kamiokande achieved renown for suc-
cessfully detecting neutrinos from the su-
pernova SN1987a [15][16], the first discov-
ery of its kind in neutrino astronomy. The
Kamiokande experiment also achieved the
first real-time detection of solar neutrinos
in 1991 [17], winning Masatoshi Koshiba a
share of the 2002 Nobel Prize in physics.

Building on the success of the Kamiokande WC detector, the Super-Kamiokande
(SK) detector was built and began taking data in April, 1996. A major goal of
SK was to look for evidence of neutrino oscillations. SK is also located in Gifu
Prefecture in Japan, underground underneath over 3000 feet of rock to minimize
background from cosmic rays. The cylindrical detector has a water capacity around
50,000 tons and is 39m in diameter and 42m tall. The walls of SK are lined with
Hamamatsu PMTs to detect the Cherenkov radiation from neutrino interactions.
SK contains an inner detector (ID) consisting of 11,146 inward-facing PMTs and
an outer detector (OD) of 1885 outward-facing PMTs. Overall, the SK experiment
boasts a number of impressive accomplishments in neutrino physics, including the

http://physicsopenlab.org/2016/04/24/diy-cherenkov-detector/
http://physicsopenlab.org/2016/04/24/diy-cherenkov-detector/
http://physicsopenlab.org/2016/04/24/diy-cherenkov-detector/

CHAPTER 1. INTRODUCTION 9

following: confirmation of the deficit of solar neutrinos [18], proof that solar neu-
trinos really do come from the Sun [18] and the first clear evidence of neutrino
oscillation in atmospheric neutrinos [19].

Looking ahead, it has become apparent that greater statistics are necessary
to confirm existing hypostheses and enable the experimental study of new physics.
For this purpose, the Hyper-Kamiokande detector has begun construction in Japan,
just 8 km south of SK. Based on the design of SK but larger and more sensitive
to neutrino interactions, this next generation WC detector is planned to begin
recording data by 2026 [20]. Amongst its collection of ambitious targets, HK aims
to refine and accelerate the search for proton decay, further the study of neutrino
mixing parameters and improve the detection of solar and other low energy neutri-
nos. HK will function as the new far detector to the beam of neutrinos produced
at J-PARC, the Japanese Particle Accelerator in Tokai, Japan. However, despite
its increased statistical capabilities, the HK project is constrained by the extent to
which it can reduce its systematic uncertainties.

The technology in neutrino long baseline experiments has become sophisticated
enough that “systematic uncertainties will dominate over statistical uncertainties
when measuring neutrino disappearance” [21]. SK itself has an approximate 7%
systematic uncertainty event rate prediction for neutrinos launched from the J-
PARC particle accelerator. Given its increased size, HK requires lower systematic
uncertainty to progress in the new physics it seeks to study. For example, HK
requires a 3% systematic uncertainty rate to acheive sufficient certainty on CP
(charge parity symmetry) violation measurements [21]. Abe et al. [22] have shown
that the addition of a near detector close to (1km or 2km nearby) the neutrino
beam source can dramatically lower the event uncertainty on the far detector.
For this reason, in preparation to the data-taking launch of HK, an intermediate
water Cherenkov detector (IWCD) has been proposed to reduce the systematic
uncertainties of HK by making a near measurement to the neutrino beam.

The Canadian collaboration of the international SK/HK neutrino group is spear-
heading development of the IWCD project. IWCD was proposed as a “10 m diam-
eter by 8 m tall water Cherenkov detector deployed in a 50 m deep pit about 1 km
from the J-PARC neutrino source” [23] (latest proposed dimensions are 8 m diam-
eter and 6 m height [24]). The IWCD is designed such that its elevation within the
pit can be adjusted. This allows for the detector measurements to be taken over a
range of angles relative to the beam source, helping to reconstruct the kinematics of
the final state particles at the far detector relative to the incident beam neutrinos.

CHAPTER 1. INTRODUCTION 10

The IWCD will also include gadolinium doping, described in Section 1.4, making
it more sensitive to the detection of neutron capture events. Figure 1.4 shows a
diagram of the IWCD [23].

Figure 1.4: Schematic of the proposed intermediate water Cherenkov detector [23]. At 6 m tall and
8 m in diameter, the IWCD would be deployed underground in a 50 m pit. The IWCD would span a
range of off-axis angles relative to the incident beam direction, helping constrain the far detector and
original neutrino kinematics. The IWCD would include highly sensitive PMTs to record electrical
particle signals and includes gadolinium doping to increase the sensitivity to neutron capture events.
Figure courtesy of IWCD collaboration.

1.4 Neutron Tagging

One exciting frontier within experimental neutrino physics is the improved identifi-
cation of neutrons from inverse beta decay reactions (Eq. 1.4). This task, referred
to as ‘neutron tagging,’ is particularly challenging due to the low energy scale and
faint signals involved. Progress in this field could lead to a host of advancements in
particle physics, including a first detection of diffuse supernova background neutri-
nos [25], improved precision of neutrino mixing measurements, and even additional
insight into black hole formation [26]. However, water Cherenkov detectors have
historically been limited in their detection capability of these low energy neutron
capture events.

Neutrons are commonly liberated in water due to the inverse beta decay (IBD)
process, in which an electron antineutrino collides with a proton to yield a positron
and a free neutron (Eq. 1.4). From there, the free neutron undergoes thermal-
ization, colliding with neighbouring molecules and gradually losing energy until it
reaches room temperature. Approximately 200 µs after thermalization, the free

CHAPTER 1. INTRODUCTION 11

neutron is captured by a proton or oxygen nucleus, releasing a gamma particle γ
at 2.2 MeV, as per the following [27]:

n+ p→ d+ γ (1.9)

where d is deuterium (or ‘heavy hydrogen’), the isotope of hydrogen with a proton
and neutron in the nucleus. The capture cross section of this neutron capture on
a hydrogen nucleus (proton) is only 0.33 barns, and the resulting 2.2 MeV gamma
produces such a faint light that it is very difficult to identify by a PMT in a WC
detector. Many traditional WC detectors actually have thresholds of 5 MeV, high
enough that none of these signals would be recorded at all [27].

Figure 1.5: Inverse beta decay diagram representing two modes of neutron capture in a water
Cherenkov detector. After the electron antineutrino collides with a proton in the water, a prompt
positron ring is generated and a free neutron is produced. After thermalization, the neutron may
be captured by a proton, yielding a gamma at 2.2 MeV. However, if gadolinium doping is included
in the detector, the neutron may be captured by the gadolinium nucleus, leading to a higher 8 MeV
gamma cascade. Image retrieved from Ref. [28].

To address this problem, Beacom and Vagins proposed the addition of gadolin-
ium chloride (GdCl3), a light, water soluble-compound, to the SK detector water
in 2003 [28]. Gadolinium is known for having the “largest capture cross-section for
thermal neutrons among all stable elements” [29]. At approximately 49700 barns,
the gadolinium capture cross section is over six orders of magnitude larger than for
free protons, leading to faster captures. Neutron capture on gadolinium also leads
to an 8 MeV cascade of gammas (7.9 MeV cascade 80.5% of the time and a 8.5
MeV cascade 19.3% of the time [27]), a signal which is far easier to detect due to
its relatively higher energy. Beacom and Vagins showed that only a 0.1% addition

CHAPTER 1. INTRODUCTION 12

of gadolinium by mass leads to at least a 90% probability of neutron capture on
gadolinium (the other 10% or less of neutron captures still by hydrogen nuclei). In
addition, the neutron capture by gadolinium after thermalization occurs in roughly
20 µs, nearly 10 times more quickly than capture on protons. Figure 1.5 represents
the neutron capture following inverse beta decay with gadolinium included [28].

1.5 Thesis Outline

This research seeks to implement and test machine learning methods to improve
the efficiency of neutron tagging for simulations of neutrino events within the
gadolinium-doped IWCD. Chapter 2 introduces related works in the fields and
intersections of particle physics, neutron tagging and machine learning. Chapter
3 provides a brief grounding in machine learning and introduces the relevant ma-
chine learning theories and algorithms for this research, including boosting decision
trees (XGBoost), SHAP (SHapley Additive exPlanations) and graph neural net-
works (GCN and DGCNN). Chapter 4 discusses the data simulation process and
the datasets used throughout the project. It also shows the implementation of a
likelihood analysis based on the event charge and hit numbers to determine an
analytic baseline of neutron tagging classification accuracy.

Chapter 5 discusses the process of engineering characteristic and discriminating
features from the datasets. The implementation, tuning and results of XGBoost,
as well as an analysis of relative feature importances is contained in Chapter 6.
Chapter 7 presents the results of the application of the GCN and DGCNN graph
network models on the original datasets, and compares various methods of graph
construction and hyperparameter tuning. Finally, Chapter 8 concludes on the
findings of the previous chapters.

Chapter 2

Related Works

2.1 Machine Learning in Particle Physics

The motivation for machine learning and its historical development in the field
of particle physics is discussed in Ref. [30]. Reference [31] also describes how,
although the Standard Model (SM) has established the modern foundations of par-
ticle physics, the SM is not complete and cannot fully explain such things as dark
matter or why neutrinos have mass. In the coming decades, large detectors like
Hyper-Kamiokande and the Large Hadron Collider (LHC) at CERN will accumu-
late an unprecedented volume of data and statistics. In the LHC, for example,
Ref. [32] considers that proton beams collide at a frequency of ∼40 MHz and each
collision may produce a shower of many new particles. With around 108 sensors in
the detector to detect these particles, the sheer volume of data is beyond the grasp
of traditional statistical methods. To unlock the underlying physical insights from
these masses of data, new and improved analytical methods must be developed.
Unlocking the potential of machine learning in this context will accelerate the pace
of discovery and enable innovations in the field of particle physics.

Traditional means of event selection in particle physics are discussed in both
Refs. [30] and [32]. These methods generally involve a series of Boolean cuts,
or decisions, followed by statistical analyses on the remaining data. For example,
only those events may be selected above a certain energy threshold or below a
given charge limit. In these cases, the decision cuts and the subsequent analysis
were focused on single variables. However, over the past several decades physi-
cists have developed algorithms that employ machine learning to study multiple
variables simultaneously. In physics, this is called multivariate analysis (MVA).
Reference [32] describes the use of an assortment of machine learning techniques
for MVA in the physics context, include support vector machines, kernel density

13

CHAPTER 2. RELATED WORKS 14

estimation, random forests, boosting decision trees, etc. Reference [33] provides an
overview of applications of machine learning within the physical sciences, including
applications to quantum computing, chemistry and cosmology. Reference [33] also
discusses applications to particle physics, including jet physics and neutrino signal
classification. Machine learning experiments are discussed for a variety of neu-
trino experiments, including the MicroBooNE collaboration, Deep Underground
Neutrino Experiment (DUNE) and the IceCube Observatory at the south pole.

2.2 Boosting Decision Trees

Of the classic machine learning algorithms in particle physics, boosting decision
trees (BDTs) are among the most widely employed. There is a substantial body
of research discussing the use of boosting decision trees. The theory of boosting
decision trees is presented in Section 3.2 for event classification and particle iden-
tification. For example, Ref. [34] details the improved performance of particle
classification in the MiniBooNE experiment, which searches for neutrino oscilla-
tions, using BDTs compared to artificial neural networks. Reference [35] modifies
the standard boosting decision tree algorithm to improve high-level triggering in
detector data acquisition systems. A general BDT tree usage guidebook is pre-
sented in Ref. [36] for the hypothetical identification of the smuon particle and
performance is compared to the classic ‘cut-and-count’ approach.

An example of the widespread usage of BDTs in particle physics is the CMS
(Compact Muon Solenoid) experiment at the LHC. Reference [31] describes two
use cases of BDTs in the CMS. First, BDTs are used to improve the resolution of
the CMS calorimeter. As a proton or electron loses energy in the detector, its energy
signal is recorded by multiple sensors. Compared to clustering the recorded energies
of the sensors, passing their signals into a multivariate BDT leads to a significantly
improved energy reconstruction (mass resolution). The second case, which is a
particular highlight, is the contribution of BDTs to the discovery of the Higgs boson
in 2012. The Higgs boson is produced only once for every few billion proton-proton
collisions, and the products of its decay modes can be difficult to distinguish from
background processes. Reference [31] describes how BDTs were used to improve
the sensitivity of the detector to various Higgs decay modes, including diphoton
decay (H → γγ) and antitau-tau pair decay (H → τ+τ−), by an amount equivalent
to adding 50% and 85% more data to the detector respectively.

CHAPTER 2. RELATED WORKS 15

2.3 Deep Learning and Graph Neural Networks

Beyond statistical cuts and classic machine learning algorithms like BDTs, deep
learning has also been an increasingly applied method in particle physics tasks.
Deep learning methods utilize neural network architectures with many hidden lay-
ers and large numbers of network parameters. Compared with traditional MVA
machine learning approaches, deep learning can operate on the raw, low-level fea-
tures from detector sensor data itself instead of relying on features extracted by a
domain expert. The integration of deep learning into particle physics is discussed
in Refs. [30], [31], [32] and [37]. In particular, Ref. [31] describes how information
may be lost when human-engineered features are used which do not capture the
full complexity of the given dataset.

Within the purview of deep learning techniques in particle physics, convolutional
neural networks (CNNs), sequence models and graph neural networks (GNNs) com-
prise the current most frequently applied architectures. The computer vision ap-
proach consists of reconstructing the particle events as images and applying CNNs
for deep learning. This method has been applied with success in various detector
experiments [38, 39, 40]. However, the condensing of particle data into a 2 di-
mensional grid image format causes an inherent loss of information resulting from
irregular detector geometries or the sparsity of the resulting image. For the case
of sequence models, methods from natural language processing (RNNs, LSTMs,
GRUs, etc.) have been adopted to the particle physics domain by modeling par-
ticles and measurement objects in a sequential order. The ordering is determined
using insights from physics theory or empirical understanding from the data. In-
stances of this sequencing approach include tagging of jets containing b-hadrons in
the ATLAS experiment [41] and classifying energetic hadronic decays in the CMS
experiment [42]. However, the imposed, and somewhat artificial, ordering of objects
in the sequence constrains the learning of the model. Indeed, for a given classifi-
cation task, Ref. [43] shows that a permutation invariant network outperforms the
sequence-based RNN benchmark.

The aforementioned limitations to sequence and computer vision models in par-
ticle physics are discussed in Ref. [44]. In addition, this thorough review paper
provides an excellent survey of the theory and applications of graph neural net-
works to particle physics data. Graph neural networks (GNNs) encapsulate an
emerging class of deep learning architecture which is rapidly gaining traction and
momentum in the machine learning community. Reference [44] delineates GNN

CHAPTER 2. RELATED WORKS 16

particle physics applications into several categories, including graph classification,
node classification and regression and edge classification. The graph classification
task is most relevant to this research.

The category of graph classification may be further partitioned into jet classi-
fication and event classification. In particle physics, ‘jets’ are collimated sprays,
or cascades, of particles which may be initiated by a variety of elementary parti-
cles, including gluons, quarks and bosons like the W, Z and Higgs boson [45]. Jet
tagging, the task of identifying the the elementary particle initiating the jet, has
long been a topic of research. Improved tagging efficiency is necessary to deepen
understanding of physical jet interactions and standard model processes. In Ref.
[45], the jet is viewed as an unordered structure of particles, analogous to the point
cloud representation of shapes in 3D space. The authors propose the ‘ParticleNet’
method, which adapts the DGCNN architecture (see Section 3.4) for jets. Using
this method, which employs the ‘EdgeConv’ block as an analogue for CNN convo-
lution on 3D point clouds and updates the graph representation dynamically, the
authors report state of the art performance on jet tagging tasks. Another approach
views the jet particles as nodes on a graph and generalizes the GNN to include a
learnable adjacency matrix, applying a variant of a message-passing neural network
(MPNN) [46].

While jets represent a part of a particle collision occurrence, an ‘event’ refers to
the full history of the particular physics process. Reference [44] gives an example
of an event from astrophysics consisting of the collection of signals from a high
energy particle interacting in the atmosphere. The event refers to the physical
process at the origin of the ensemble of recorded data. While there are several
research articles on the application of GNNs to jet classification, fewer papers have
been published on similar approaches for event classification at this time. One
excellent example is the application of GNNs for event signal classification in the
IceCube neutrino observatory [47]. In this case, the irregular hexagonal geometry
of the detector is itself modeled as a graph, where the sensors are the graph nodes
and the edges represent their connections. Given the sparsity of activated sensors
in an event, every event is considered as a different graph comprised only of the
active sensors in the event. Although learning occurs over relatively small sample
sizes, the authors report an approximate 3x improvement in signal to noise ratio
compared to the physics baseline and the CNN approach.

Chapter 3

Machine Learning Theory

3.1 Introduction

In general, the notion of ‘learning’ indicates a process of receiving information,
recognizing the patterns, then generalizing this newfound knowledge to unseen
situations. To use a math analogy, consider a high school student learning about
the logarithm function. This student might first study several solved examples, then
attempt some questions on their own. After, they might compare their attempts
with the solution set and try to learn from their mistakes. In machine learning,
there is a remarkably similar process. The machine learning model is given some
training examples to learn from (the training set), makes predictions, compares
the predictions to the actual solutions (labels) and adjusts the model parameters
to minimize the mistakes made (loss). This process repeats iteratively until the
parameters have been sufficiently tuned that the model can successively generalize
to unseen examples from the testing set.

The subject of machine learning has emerged as a subset of the broader domain
of artificial intelligence, in which machines are programmed to try to replicate hu-
man intelligence. Machine learning attempts to differentiate itself from traditional
computer computational systems by improving its performance, i.e. ‘learning’, au-
tonomously over time, instead of having its parameters manually adjusted again
and again by humans.

There are a few main tasks which machine learning systems attempt to solve:
classification, regression and clustering. Classification, which is the main focus of
this work, is the categorization of a given data example into a specific class. If
there are two classes, this task is called binary classification. If there are more
than two classes, this becomes multiclass classification. Another machine learning
task is regression, which outputs a real number for every instance. For example,

17

CHAPTER 3. MACHINE LEARNING THEORY 18

a regression model may predict house prices based on their features (location,
number of rooms, etc.). Classification and regression are both supervised learning
tasks, which means that there is a known label (output) for every instance. In
unsupervised learning, the label is not known. Clustering, the process of grouping
similar data examples together, is an example of an unsupervised learning task,
because there is no known target label or predetermined exact clusters.

3.2 XGBoost

Over the last several years, the machine learning model called ‘XGBoost’ has gained
popularity for its performance in classification or regression tasks involving tabular
data. For example, XGBoost model was used in the winning solutions of 17 out
of 29 challenges issued by Kaggle, a data science website, in 2015 [48]. XGBoost
has been successfully employed over a variety of domains and for diverse objec-
tives, including vehicle accident detection [49], cancer diagnostics [50] and network
intrusion detection [51]. This model has also been used in the context of physics
event classification. After the discovery of the Higgs boson in 2012, attention
shifted toward better understanding the physical properties of this new particle.
An enormous amount of data was released from the Large Hadron Collider and a
competition was held to find the best methodologies to distinguish the extremely
rare Higgs boson signal from the abundant background processes in the LHC. Many
of the top participants employed the XGBoost algorithm, and Chen and He discuss
the advantages of XGBoost in this context [52].

The name XGBoost stands for ‘eXtreme Gradient Boosting’. Gradient boost-
ing employs an ensemble, or group, of individual learners to make predictions or
produce output scores. For XGBoost, the individual learners are decision trees (dis-
cussed later). The gradient boosting concept traces back to the notion of “numerical
optimization in function space,” introduced by Jerome Friedman in his 2001 paper,
“Greedy Function Approximation: A Gradient Boosting Machine” [53]. Given K
data inputs x = {x1, x2, . . . , xK} with corresponding labels y = {y1, y2, . . . , yK},
Friedman considered the task of approximating a mapping function F(x) from x
to y which minimizes a given loss function over the input dataset. A classic opti-
mization approach views F as a parametrized function (F ∗(x)|P) and adjusts the
parameters P to minimize the loss. However, Friedman considered F as a set of
tunable individual functions,

CHAPTER 3. MACHINE LEARNING THEORY 19

F = F ∗(x) =
K∑
k=0

fk, (3.1)

where there are K iterations, f0 represents an initial guess and all subsequent
functions {fk(x)}K1 are ‘boosts’ or incremental steps from the previous function
which are greedily added to minimize the overall loss. A given boosted function fk
is computed by calculating the gradient of the loss of the previous function fk−1

and adjusting fk in the opposite direction, i.e. the path of steepest descent.
Following Friedman’s work on gradient boosting, XGBoost was introduced by

Chen and Guestrin in their 2016 paper, which considered the case of decision trees
as the individual, or weak, learners in the function set [54]. In general, a decision
tree applies classification or regression to an example by partitioning the example
through a series of splits (decisions) from the root node to a leaf of the tree. The
given tree splits are themselves computed by calculating which partition leads to
maximum information gain. For XGBoost, the overall mapping function F is an
ensemble of individual decision trees [54]:

F = {f(x) : wq(x)}(q : Rm → T,w ∈ RT), (3.2)

where F represents the set of decision trees, m is the number of features and, per
individual tree, q defines the structure, T is the number of leaves and w denotes the
weight of each leaf. Thus, for any specific training example, the overall output is
the additive sum of the outputs from every individual tree. A simplified example of
this process, in the context of neutron versus electron particle event classification,
is shown in Fig. 3.1.

To apply gradient boosting in the context of decision trees, an appropriate objec-
tive function (loss) must be defined. Chen and Guestrin define the overall objective
function as the sum of a regular loss and a regularization term as

Obj =
∑
i

L(yi, ŷi) +
∑
k

Ω(fk), (3.3)

where L represents any convex differentiable loss function between the given true
output yi and predicted output ŷi, and the Ω(fk) term applies regularization to
each of the weak learners to prevent overfitting. To reduce model complexity,
the regularization function adds a penalty corresponding to the size of the tree
T and the magnitude of the weights w2. The extent of the tree size and weight

CHAPTER 3. MACHINE LEARNING THEORY 20

tree1

nhits > 35

beta1 < 0.3

n y

n y

nhits > 70

n y

tree2

-0.4

-0.2 +0.3

+0.3

N E

f(ev|nhits=80, beta1=0.6) = -0.2 + 0.3 = 0.1 (E)
f(ev|nhits=20, beta1=0.4) = -0.4 -0.1 = -0.5 (N)

-0.1

0

Figure 3.1: Simplified example of an ensemble of individual decision trees for neutron (N) versus
electron (E) background event classification. The features are ‘nhits’ and ‘beta1’ while ‘ev’ is the
event. The overall output prediction for a specific example is the sum of the regression outputs
from each decision tree. For this example, a score above 0 indicates an electron-type event, while
a score below 0 indicates a neutron-like event. Every successive tree is built by applying gradient
boosting to minimize the objective function (loss). The regression outputs for the two simple event
inputs shown here are 0.1 and -0.5 respectively.

penalties may be adjusted manually by the magnitudes of the γ and λ parameters
respectively. The regularization term is represented as

Ω(fk) = γT +
1

2
λw2. (3.4)

In the spirit of Freedman’s gradient boosting algorithm, after the initial deci-
sion tree guess f0, the next trees fk are greedily and iteratively added to the tree
ensemble to minimize the objective function. Thus, for a learning iteration m and
training example i, the objective function may be written in terms of the newly
added function fk and the prediction at the previous iteration ŷ(m−1) as

Objm =
∑
i

L(yi, ŷ
(m−1)
i + fk(xi)) +

∑
k

Ω(fk). (3.5)

Next, the Taylor expansion to second order may be applied to Eq. 3.5 to enable
the use of various loss functions L in the overall objective function. Taking this
expansion and removing the constant terms yields

CHAPTER 3. MACHINE LEARNING THEORY 21

Objm =
∑
i

[gifk(x) +
1

2
hifk(x)2] +

∑
k

Ω(fk), (3.6)

where gi and hi are the first and second order derivatives (gradients) of the loss

function L respectively for the instance i, with gi =
dL(yi,ŷ

(m−1)
i)

dŷ
(m−1)
i

and hi =
d2L(yi,ŷ

(m−1)
i)

d(ŷ
(m−1)
i)2

[55]. From here, it is necessary to sum up the gradients gi and hi for every individual
leaf per tree. Allowing Ij to denote the training example set for leaf j, we can also
define Gj =

∑
i∈Ij gi and Hj =

∑
i∈Ij hi. Then the objective function may be

rewritten in terms of the summation over tree leaves,

Objm =
T∑
j=1

[Gjwj +
1

2
(Hj + λ)w2

j] + γT, (3.7)

where the regularization term has been expanded and wj denotes the weight of each
tree leaf. Now the tree weights may be adjusted, every m-th iteration, to minimize
the objective function. The optimization problem is

∂Objm

∂wj
= Gj + (Hj + λ)w2

j = 0, (3.8)

and the corresponding leaf weight which minimizes the objective function is wj =

− Gj

Hj+λ
. Plugging this weight back into Eq. 3.7, the resulting objective function

may be used to determine the best tree structure for the individual decision tree
weak learner at iteration m:

Objm = −1

2

T∑
j=1

G2
j

Hj + λ
+ γT. (3.9)

Practically, when constructing a given decision tree in the XGBoost ensemble, it
is too computationally expensive to iterate through all possible tree structures and
compute the objective function for each possibility. Instead, a greedy approach
is applied where, starting at the tree node, branches are successively added by
finding the particular split which leads to maximum gain. At a given tree leaf, the
information gain is computed by subtracting the objective function of the leaf by
the objective function of a possible split. The objective function for a single leaf is

Objm = −1

2

G2
j

Hj + λ
+ γT. (3.10)

CHAPTER 3. MACHINE LEARNING THEORY 22

The objective function value resulting from splitting this leaf into a left and right
child may also be calculated as

Objm = −1

2
(

G2
jL

HjL + λ
+

G2
jR

HjR + λ
) + 2γ, (3.11)

where L and R represent the left and right child leaves of this potential leaf split,
respectively. Finally, the information gain may be computed as Gain = Objleaf -
Objsplit, yielding

Gain =
1

2
[
G2
L

HL + λ
+

G2
R

HR + λ
− (GL +GR)2

HL +HR + λ
]− γ. (3.12)

Over every training iteration of the XGBoost model, the gain formula (Eq. 3.12)
is applied over all possible split points and the split is chosen with maximum gain.
Note that the tree grows only while the maximum gain is positive, as negative gain
values will not cause a leaf to generate splits. To optimize performance runtime,
running tallies of GL and GH are stored in memory for each leaf and the split
calculation occurs by “scanning left to right through all feature values in a leaf in
sorted order” [55]. For n training examples with m features each, the split point
computation over all decision trees has a runtime of O(nm).

3.3 Shapley values

When a machine learning model trains on specific input features, an understand-
ing of the relative importances of the features can help interpret the results. Given
that several feature importance metrics exist already (gain, cover, etc.), deriving a
measure of goodness for a given metric can help with comparison. In particular,
a good feature importance metric should satisfy the properties of consistency, ac-
curacy and missingness [56]. Consistency states that if the model is changed to
rely more heavily on a particular feature, the importance attributed to that feature
should not decrease (only increase or stay the same). Accuracy requires that the
sum of the feature importances should equal the total importance of the model. Fi-
nally, missingness states that features with no impact on the model output should
have no attributed impact. In the Lundberg and Lee paper on SHAP values [56],
Theorem 1 posits that there is only one unique solution which satisfies the above
properties. This solution is based on the Shapley value.

CHAPTER 3. MACHINE LEARNING THEORY 23

The Shapley value traces back to Lloyd Shapley’s paper “stochastic games,”
published in Princeton in 1953 [57]. At the time, Shapley was studying the field
of cooperative game theory. Cooperative game theory differs from non-cooperative
game theory by focusing on collective actions and coalitions rather than individual
player actions and payoffs. Shapley was searching for a mapping from a coalitional
single game to a numeric payoff vector. At that time the notion of reaching a single
point solution seemed implausible due to the lack of information in the coalitional
form game. However, Shapley found an intuitive solution by searching for a set of
“reasonable axioms” (efficiency, symmetry, dummy and additivity) [57]. His result,
the Shapley value, can be viewed as an “index for measuring the power of players
in a game” [58]. In the context of particle physics machine learning classification,
the player is analogous to the event feature, the game is analogous to the event
and the label is the analogue of the numeric payoff output.

Winter’s paper [58] reviews the theoretical framework for the derivation of the
Shapley values. In this setting, the value operator φi(v) represents the measure of
player i’s importance in the coalitional form game v, defined over a finite set of
players {1, 2, 3, ..., n}. Given a permutation π over the player set, piπ = {j : π(i) >
π(j)} represents the set of players before player i in π. The marginal contribution
φi(v) of the player i in π is v(piπ ∪ i)− v(piπ). The average marginal contribution of
player i in the game v may be calculated from the sum of marginal contributions
over the set of all permutations Π,

φi(v) = 1/n!
∑
πεΠ

v(piπ ∪ i)− v(piπ). (3.13)

Lundberg and Lee [56] extend this definition (Eq. 3.13), introducing the “SHAP”
values as equal to the Shapley values of a “conditional expectation function of the
original model.” They also introduce the concept of the “explanation model” in
which the output prediction of a machine learning model may be viewed as a
model itself. Their definition of an ‘Additive Feature Attribution Method ’ is one
in which the explanation model may be represented as a linear function of binary
variables,

g(z′) = φ0 +
M∑
i=1

φiz
′
i, (3.14)

where g is the explanation model, z′ε{0, 1}M is a binary basis, M is the number
of simplified input features and φi ε R is the marginal contribution of each feature

CHAPTER 3. MACHINE LEARNING THEORY 24

to the output g(z′). Lundberg and Lee review six existing feature attribution
methods and derive the result that only methods which utilize the Shapley values
can satisfy the aforementioned properties of consistency, accuracy and missingness.
They introduce the “SHAP” values as the classic Shapley values (Eq. 3.13) where
the difference v(piπ∪ i)−v(piπ) represents the difference in expectation values of the
model over the permutation of features π with and without inclusion of feature i.
As with the regular Shapley values, the SHAP value is computed over the set of
all permutations Π.

Upon computation of the SHAP values, each feature is attributed a SHAP value
which represents the “change in expected model prediction when conditioning on
that feature.” For a trained model f and features (x1, x2, . . . , xn), the overall model
output may then be written in terms of Eq. 3.15, where φi is the SHAP value of the
i-th feature, E is the expectation function of the model, φ0 = E[f(z)] is the base
value of the model when no features are known and M is the number of features.
The sample force plot in Fig. 3.2 from [56] gives a representative example of Eq.
3.15.

g(z) = φ0 + φ1 + ...+ φM

= E[f(z)] + E[f(z)|z1 = x1] + ...+ E[f(z)|z1,2,...,M = x1,2,...,M]
(3.15)

Figure 3.2: Example of the additive feature attribution method applied by SHAP. The overall
model prediction is decomposed into the sum of feature attributions (SHAP values) increasing
(blue, φ0, . . . , φ3) or decreasing the output from the base expectation (red, φ4). The SHAP value
of feature φxi

is the expectation function of the model when conditioning on features x1, . . . , xi.
Example retrieved from Ref. [56].

3.4 Graph Neural Network (GNN)

Deep Learning

Traditional machine learning algorithms, such as regression or decision trees, have
proven to be particularly effective at learning from tabular data. Examples of tabu-

CHAPTER 3. MACHINE LEARNING THEORY 25

lar data, which format neatly into rows and columns, include financial spreadsheets,
weather data and sport statistics. However, these traditional learning algorithms
have historically struggled to learn well from natural data. Natural data, including
images, natural language, audio recordings and some particle physics data, does
not translate easily into a tabular format. Before the advent of ‘deep learning,’
it was necessary to preprocess the data first into a tabular format before machine
learning could be applied. This manual step requires expertise and domain knowl-
edge of the problem environment to choose relevant, informative features. Even
so, it is difficult to impossible to fully extract all the relevant information using
manually engineered features. Researchers over the past few decades have actively
searched for methods of learning from raw natural data in different contexts.

The solution that has emerged is now known as ‘deep learning’. Deep learning
arose from the study of artificial neural networks (ANN) in the 20th century. ANNs,
largely inspired by the biology of the human brain, consist of an input layer, hidden
layers and a final output layer. Each layer consists of a specified number of compute
nodes, or perceptrons. Information is propagated from the input nodes, through
the hidden layers and finally output at the final (output) layer. This kind of ar-
rangement, where data propagates from input to output, is known as a feedforward
neural network. A feedforward neural network with multiple layers of perceptrons
is sometimes called a ‘multi-layer perceptron’ (MLP) network. The final layer can
relay class probabilities for a classification problem. In a fully connected network,
every node in each layer (except the input layer) is connected to every node in the
previous layer by a vector of weights. Each compute node generates an output ac-
tivation value by calculating the weighted sum of the weights and activations from
the connections of the previous layer. These new activations are then propagated
forward in the network to the next layer.

In practice, the stochastic gradient descent algorithm (SGD) is commonly used
to train the ANN. For supervised learning with SGD, the error is calculated by
comparing the output prediction to the true value for every training example. A
gradient vector is then computed using a technique called backpropagation for all
the node weight parameters. The chain rule is used to calculate vector derivatives
propagating backward from output to input layer. For a given weight, this gradient
determines how much the overall error would change if the weight were increased.
Every weight is then adjusted in the opposite direction to decrease the overall error.
This process is then repeated until the model has been fully trained over the full
training dataset. A physical analogy might be the process of slowly and repeatedly

CHAPTER 3. MACHINE LEARNING THEORY 26

tuning knobs on an old television to try to get a clear signal.

Input Layer

Hidden Layers

Output Layer

Figure 3.3: Example of an artificial neural network (ANN) architecture. Compute nodes are con-
nected via learnable weight parameters. Information travels from the input layer, through the
hidden layers, to the output layer. The loss is computed by comparing the output predictions to
the real outputs, then backpropagation updates the weights to train the network. Figure retrieved
using tool from Ref. [59].

The ability to train feedforward artificial neural networks using stochastic gra-
dient descent and backpropagation was discovered in the 1970s [60]. While ANNs
were shown to be effective with learning on tabular datasets, they were severely
limited when presented with the task of learning from natural data like images and
natural language. For images, computation time and permutation generalizibility
were significant impediments. Mapping pixel values to input neurons in an ANN
quickly introduced billions of weighted connections, causing shallow and compu-
tationally intractable networks with poor ability to generalize common patterns.
With natural language, aside from computational cost, the fixed number of input
and output neuron units in the ANN did not translate well to the variable input and
output dimensions required for different tasks like translation or name recognition.

Eventually, new network architectures were developed which were better suited
to handle natural data. In addition, they proved capable of learning over many
hidden layers, which led to the term ‘deep learning.’ The most revolutionary model
was, arguably, the convolution neural network (ConvNet or CNN), used for learning
on images. The ConvNet introduced the concept of convolutional and pooling
layers, which were added to the classic ANN architecture [61]. These new layers
were used alternatingly before the usual fully-connected output layer was applied
to yield the output scores. The convolutional layers applied convolutional filters

CHAPTER 3. MACHINE LEARNING THEORY 27

over the input pixels with learnable filter parameters, reducing the total number
of parameters and enabling the learning of repeatable features like edges, contours
and specific shapes in the image. The pooling layers functioned to merge and
assemble semantically similar features learned from the convolutional filters. By
repeatedly stacking the convolution and pooling layers, increasingly more complex
shapes became learnable throughout successive layers of the the ConvNet. For
example, given an image of a face, earlier layers might learn the generic outline,
while later layers could recognize the nose, eyes, chin and eventually the face as a
whole. In 2012, researchers from the University of Toronto applied a deep ConvNet
to the popular ‘ImageNet’ dataset of over 14 million images and achieved higher
than a 10% accuracy improvement compared to the previous state of the art model
[62].

Deep learning network architectures like the CNN and recurrent neural network
(RNN) [63] quickly raised the performance bar on learning on images and sequential
data. However, geometric deep learning, the umbrella term for the task of deep
learning on graph data, has taken longer to successfully apply and generalize to
different contexts of graph learning. Over the past decade especially, a plethora
of research has gone into the development of network architectures for data input
in the form of graphs [64]. A given graph G is denoted by its set of vertices and
edges G = {V, E}, where the nodes represent objects or concepts and the edges
represent their relationships. A variety of situations may be modeled by graphs,
including social networks, molecules, transportation routes, Internet traffic, etc.

Learning on Graphs

In particular, particle physics IWCD data may be naturally represented by a graph.
For a given physics event, a particular subset of PMTs within the detector may
record a signal. For the datasets used in this study, every signal records the time
and deposited charge of that particular hit, as well as the 3-dimensional position
and orientation of that particular PMT. A graph can model a particular event with
the hit PMTs represented by the nodes and the edges as the connections between
the hit PMTs.

Without graphs, one way of learning from this data is to preprocess it into a
2D image using an event display and then apply a ConvNet. Indeed, research has
already been conducted in this manner [65, 66]. However, this manual step relies
on the event display preprocessing and discards geometric topology information.
Unlike this process, a graph neural network (GNN) is designed to operate directly on

CHAPTER 3. MACHINE LEARNING THEORY 28

data input as a graph. One of the main purposes of this research is to determine the
applicability, performance and feasibility of GNNs on the IWCD particle physics
data. In particular, CNNs tend to struggle in the low energy regime where the
number of event hits is small and the image is sparsely filled. Therefore, GNNs are
studied in the low energy, low hit context of neutron capture events.

The origin of deep learning on graphs traces back to the late 1990s, when RNNs
were applied to directed, acyclic graphs (directional edges, no edge with self loops)
[64]. With this approach, node feature states are updated in successive layers
until equilibrium is reached. This technique was later generalized to cyclic graphs
as well in 2008 [67]. Soon after, following the widespread success of ConvNets,
significant interest grew in generalizing some of the concepts from ConvNets to
learning on graphs. The first successful adaption of the convolution operation to
graphs was developed by Bruna et al. in 2013 using Laplacian eigenvectors [68]. The
computational complexity of this procedure was later greatly reduced by applying
polynomial spectral filters instead of Laplacian eigenvectors [69, 70]. Approaches
have also been developed which apply spatial, and not spectral, filters for the
convolutional operation [71].

The general formulation of a graph neural network is as follows. To start, ev-
ery node begins with its unique feature representation from the dataset input.
Throughout the layers of the network, every node will update its representation
vector repeatedly. The node feature vectors are updated by message passing. Every
node both sends messages to and receives messages from its neighbouring connec-
tions. The message passing mechanics are specified through the filtering operation.
In some GNN models, after the message passing step, every node passes the aver-
age of its own values and those of its neighbours through a fully connected layer to
update their representation vector.

This alternating sequence of filtering and activation layers is inspired by the
alternating convolutional and pooling layers from ConvNets. This process is shown
in Fig. 3.4, where h1, ..., hk are the filtering layers and a1, ..., ak represent the
activation updates for layers 1 to k [72]. Once all hidden layers have finished
their computations, the output node labels may be used directly in node-focused
tasks, or the node outputs may be pooled together to obtain an overall coarsened
representation for graph classification. In Fig. 3.4, the pooling layer p at the end
shows the aggregation of the node outputs for graph classification.

The output node states are a function of the input features and the structure of
the graph, which may be represented by its corresponding adjacency matrix. Thus

CHAPTER 3. MACHINE LEARNING THEORY 29

Figure 3.4: Basic structure of a generic graph neural network architecture. Alternating layers of
filtering (h1, ..., hk) and activation computations (a1, ..., ak) are stacked for a network of k hidden
layers. After this, the node labels can be computed directly, or a pooling layer p can be applied for
graph classification. Retrieved from [72].

the generic mathematic description for a graph neural network may be summarized
as

Fof = h(A,Fif), (3.16)

where Fof represents the output feature vectors, h denotes the graph filter, A is the
adjacency matrix of the graph and Fif represents the input feature vectors for all
the nodes [72]. The node filtering mechanics and other intermediate processes are
changeable based on the specific GNN architecture. Two of these architectures are
applied and discussed in this research, and their mechanisms are described below.

GCN (Graph Convolution Network)

Kipf and Welling demonstrated the successful approach of using a convolutional
architecture to learn on graphs in their paper “Semi-supervised classification with
graph convolutional networks” in 2017 [70]. This approach is based on a first-order
approximation of spectral graph convolution.

For signal or image processing, the ‘spectral’ decomposition of a function relates
to its decomposition into sine and cosine frequency components. However, the
spectral decomposition of a graph denotes the breakdown of the graph’s Laplacian

CHAPTER 3. MACHINE LEARNING THEORY 30

matrix L into its elementary orthogonal components, i.e. the eigen-decomposition
of L. The Laplacian L represents a normalization of the adjacency matrix A of the
graph and can be represented as L = UΛUT where U are the eigenvectors and Λ are
the eigenvalues of L [70]. Convolution in the spatial domain implies multiplication
in the frequency domain. Therefore the spectral convolution of a graph can be
written as the multiplication of a signal x (a scalar for every node) with a filter gΘ

(a function of eigenvalues Λ which is parametrized by Θ in the frequency domain):

gΘ ? x = UgΘ UTx [72]. (3.17)

The computation (Eq. 3.17) is expensive and simply computing the eigende-
composition of the Laplacian L might be a computational bottleneck. To simplify
the calculation, Hammond et al. [73] proposed a truncation of the function gΘ(Λ)
in terms of the first K Chebyshev polynomials:

gθ(Λ) =
K∑
k=0

θ′kTk(Λ̃), (3.18)

where Λ̃ is a rescaled version of Λ [70] and Λ̃ = 2
λmax

Λ− IN where λmax denotes the
largest eigenvalue of L and IN is the identity matrix. The convolution of the signal
x can then be rewritten as

g′θ ? x ≈
K∑
k=0

θ′k Tk(L̃) x, (3.19)

where L̃ is a rescaled version of the Laplacian. A graph convolutional model can
be constructed by stacking multiple layers in the form of Eq. 3.19 with each
layer followed by a non-linearity calculation. By taking the first-order Chebyshev
approximation K=1 and further constraining other parameters, we arrive at the
spectral convolution form

gθ ? x ≈ θ(D̃−
1
2 ÃD̃−

1
2), (3.20)

with Ã = A + IN and D̃ii =
∑

j Ãij. Generalizing to a signal X with C input
channels, Θ a matrix of filter parameters and Z the convolved signal matrix, we
can express

Z = D̃−
1
2 ÃD̃−

1
2 Θ X. (3.21)

CHAPTER 3. MACHINE LEARNING THEORY 31

This filtering operation greatly reduces the time complexity of the computation.
Finally the multi-layer propagation rule for the GCN model is presented as

H l+1 = σ(D̃−
1
2 ÃD̃−

1
2 H l W l), (3.22)

where H l is the node feature matrix at layer l, H l+1 represents the feature matrix
at the next layer l + 1, W l denotes the matrix of weights at layer l and σ is an
activation function such as the rectified linear activation unit (ReLU).

Although the GCN model is presented for node classification tasks, it can be
converted to graph-focused classification by the use of a pooling operation at the
end of the network model. For illustrative purposes, there is the example of a
simple 2-layer GCN model from Kipf and Welling’s paper,

Z = f(X,A) = softmax(Â ReLU(ÂXW 0)W 1) (3.23)

where Â = D̃−
1
2 ÃD̃−

1
2 is computed as a preprocessing step [70]. The first layer

multiplies Â by the initial node features H0 = X and weights W 0. The ReLU
non-linearity is applied to this product (ÂXW 0) to compute the output of the first
layer and input to the second layer. Â then multiplies by the second layer input
and weights W 1. Finally a softmax function is applied to this product to compute
the normalized output probabilities for the node labels. For graph classification, a
pooling operation would then be applied over the nodes to calculate the predicted
graph label. Afterward, the network weights are updated by computing the loss
[70].

DGCNN (Dynamic Graph Convolutional Neural Network)

The dynamic graph convolution neural network (DGCNN), introduced by Wang et
al. [74], was designed specifically to learn from point cloud graphs for segmentation
or classification tasks. Point clouds are collections of three-dimensional coordinates
(points) in Euclidean space. However, the DGCNN model also allows the graph
nodes to include other features in addition to the spatial coordinates. The main
feature of the DGCNN model is the introduction of the ‘EdgeConv’ convolutional
operator. EdgeConv is designed to learn edge features between node pairs, i.e. a
node and its neighbouring connections. The DGCNN model is dynamic because,
for every EdgeConv block, the graph representation is updated. This departs from
the action of operating on a fixed graph like most other GNN architectures.

CHAPTER 3. MACHINE LEARNING THEORY 32

Figure 3.5: The EdgeConv operation is shown for a pair of nodes xi and xj. The node feature
vectors are passed through a fully connected layer hΘ() with learnable weights Θ to calculate a
set of edge features eij between the node pair. All nodes then update their vector representations
by aggregating these learned edge features. In this example, the new representation of xi, x

′
i is

calculated by aggregating the set of learned edge features eiji1 , ..., eiji5 . Figure retrieved from Ref.
[74].

In the DGCNN model, EdgeConv is applied for every node and its k nearest
neighbours in semantic space, where k is a tunable hyperparameter. For any two
nodes xi and xj, a fully connected layer hΘ() with learnable weights Θ and an
adjustable number of compute units is applied to learn the pairwise edge features
eij. The node representations are then updated by aggregating these edge features.
For example, as shown in Fig. 3.5, the node representation for xi is updated by
aggregating the learned edge features eiji1, ..., eiji5 (self loop excluded).

The matrix mechanics of the edge convolution are as follows. For n nodes
containing f features each, the EdgeConv block takes as input the corresponding
n ∗ f -dimensional tensor and computes the k nearest neighbour (k-nn) graph for
every node. The activations a1, ..., an are computed for every node by passing its
k-nn graph representation through a shared multi-layer perceptron. This generates
an n ∗ k ∗ an -dimensional tensor overall. Pooling is then applied over the learned
features to aggregate and update the node representations, yielding an output
n ∗ an tensor. This process is demonstrated in Fig. 3.6. Given the updated node
representations, future EdgeConv iterations will yield different k-nn, making the
model architecture dynamic [74].

The pairwise edge features in an EdgeConv block are defined as eij = hΘ(xi,xj),
where hΘ is a nonlinear function with learnable parameters Θ. The node represen-
tations are updated by applying an aggregation operation � along the set of edges
j connected to i:

x
′

i = �
j:(i,j) ε E

hΘ(xi,xj), (3.24)

CHAPTER 3. MACHINE LEARNING THEORY 33

k-nn graph pooling

mlp(a1, a2, ..., an)
nxkxan

nxannxf

EdgeConv Block

Figure 3.6: Given n f-dimensional input nodes, activations a1, ..., an are computed by applying a
shared MLP on the k-nn graph representation of every node, generating an n ∗ k ∗ an-dimensional
tensor. The node representations are updated by pooling the neighbouring learned edge features,
generating an output n ∗ an-dimensional tensor. Figure based on corresponding diagram from Ref.
[74].

where E is the set of edges in the graph G: {E, V} [74]. Equation 3.24 is a generic
framework which reduces to standard convolution for images when the pixels are
defined on a standard grid. In this case, the aggregation scheme is a summation
and the filter operation is a convolution over a pixel patch hΘ = θm · xj. The
choice of aggregation and filter operations vary for different network models. The
filter mechanism in particular determines which kind of information is captured
from the graph. For example, the Pointnet model applies an identical operation
hΘ = h(xi) on every node irrespective of its neighbourhood, thus learning global
patterns but losing local geometric information [74, 75]. Another choice of filter is
hΘ = h(xj − xi), in this case learning local geometric patterns but losing global
structural data.

The EdgeConv filter operates over individual nodes and over local node neigh-
bourhoods, as follows:

hΘ(xi,xj) = h(xi,xj − xi). (3.25)

A single edge feature is then computed according to Eq. 3.26, which introduces
two sets of parameters which may be learned using a shared MLP:

e
′

ijm = RELU(θm · xi, φm · xj − xi). (3.26)

Finally, the edge features may be aggregated together to update the given node
representation given an aggregate scheme � as follows:

CHAPTER 3. MACHINE LEARNING THEORY 34

x
′

im = �
j:(i,j) ε E

e
′

ijm. (3.27)

A common aggregation choice is the maximum value. By applying the filter on
both xi and xj − xi, the DGCNN model is able to learn patterns of both the local
neighbourhood structure and overall global shape of the graph. In addition, the
dynamic recomputation of the graph for every EdgeConv layer allows for groupings
of nodes in semantic space compared to the fixed spatial input space. This allows
for a diffusion of information throughout the entire graph.

Chapter 4

Datasets and Likelihood

4.1 Data Simulation

The data used in this research was simulated using WCSim (water Cherenkov
Simulation) software to generate neutron and background events for the IWCD
detector geometry. WCSim was programmed to accurately recreate physics events
within large WC detectors [76]. WCSim is based on Geant4 [77] and also depends
on ROOT [78]. Geant4 is a robust program for “simulating the passage of parti-
cles through matter.” Written using object-oriented programming (OOP) in C++,
Geant4 has been developed over the past 23 years by an international collaboration
of programmers and physicists and is used not only for particle physics but also
in medicine, space engineering and other applications. ROOT, also written with
OOP in C++, is a toolkit for large scale data analysis and visualization.

Data simulation for this project was performed remotely using the computing
resources on Cedar, Simon Fraser University’s supercomputer. Cedar is part of
WestGrid, a network of advanced computing resources (ARC) throughout western
Canada. WestGrid itself is part of the larger computing organization, Compute
Canada [79]. The software versions used for simulation included Python 3.6.3,
Geant4.10.01.p03, root v5.34.38 and the nuprism-v2.0.2 branch of WCSim [80]. To
set up the simulations, local versions of ROOT, Geant4 and WCSim were installed
locally on Cedar and WCSim was compiled into an executable file. To run a
WCSim job, various flags were gathered from the command line, including the
number of events, particle type, energy and geometry specifications, etc. These
runtime flags were used to create a corresponding macro file that was passed to the
WCSim executable to run the simulation. After this, the output files, in .ROOT
format, were converted to .npz format. These .npz files were then converted into
a single HDF5 file (Hierarchical Data Format 5). HDF5 files are compressed and

35

CHAPTER 4. DATASETS AND LIKELIHOOD 36

heterogeneous (can store different types of data), making it a good choice for storing
the large and complex simulation output data. Afterward, a script was run to
randomly choose indices for the datasets to be divided into training, validation and
testing sets. This was done according to an 80%, 10%, 10% distribution.

Within the simulation specifications, WCSim requires the selection of a partic-
ular physics list to specify the particles involved and their physical processes. In
this case, the FTFP BERT HP physics list was used, which includes the FRITIOF
string model, Bertini cascade model and the high precision neutron model (ener-
gies below 20MeV) [81]. The simulation also included dark noise current in the
PMTs at a rate of 1kHz, recreating the current that is often randomly generated
by PMTs without incident photons. The minimum hit threshold was set to eight
hits to minimize background events with few hits of exclusively random noise. The
water was also doped with gadolinium in the simulation at a rate of 0.1% by mass
to generate an approximate 90% thermal neutron capture on gadolinium nuclei (see
Section 1.4).

The simulation geometry was set to recreate the IWCD, specifying a cylindrical
tank with a height of 6 m and a diameter of 8 m. Included to line the walls of
the simulated detector were 525 multi-PMT (mPMT) modules of 19 Hamamatsu
PMTs each, for a total of 9,975 PMTs in the detector. The particle direction type
was also set to cover a 4π solid angle without the tank. Figure 4.1 plots the 3-
dimensional positions of all hits over approximately 1.6 million events to illustrate
the geometry of the tank and the positions of the mPMT modules. Within each
mPMT, the individual PMTs are also somewhat visible by zooming in to the figure.

Three main datasets were used for evaluative purposes in this research. For each,
the dataset consisted of roughly 1.6 million events in total divided nearly evenly
between neutron capture and background electron events. While the neutron cap-
ture simulation parameters were identical for each dataset, the electron background
energy distributions were different each time. With the ‘highE’ dataset, the back-
ground electron radiation energy was set according to a uniform energy distribution
from 0-20 MeV. For the ‘lowE’ dataset, this energy followed a 0-8 MeV uniform dis-
tribution and for the ‘spallation’ dataset, the background electron energies followed
a right-skewed distribution from approximately 0 to 16 MeV.

The rationale for varying the background radiation energy scale owes to the
outsize effect that total energy has on the event observables. Most notably, this
shows up through the number of hits and total charge registered by the PMTs.
Higher energy events consistently have greater numbers of hits and charges than

CHAPTER 4. DATASETS AND LIKELIHOOD 37

Figure 4.1: IWCD simulation geometry for cylindrical tank of radius 400 cm and height 600 cm,
as shown by a scatterplot of the positions of all the individual hit PMTs in an entire dataset of 1.6
million neutron capture and background events. The points are plotted according to Matplotlib’s
‘inferno’ colormap to more clearly outline the geometry. Simulation includes 525 mPMT modules
of 19 PMTs each (zoom in to see individual PMTs more clearly).

lower energy events for a given particle interaction type. This can be seen by Figs.
4.2 and 4.3, which show the differences between the highE and lowE datasets for
electron background hit totals and charge sums respectively. Since the number of
hits and the charge sum of an event is highly correlated, the distribution patterns
are quite similar between the two figures. The discrimination extent between hits

CHAPTER 4. DATASETS AND LIKELIHOOD 38

and charge sums for the spallation dataset lies somewhere between the lowE and
highE datasets (closer to the lowE discrimination) and can be seen in Fig. 6.6 in
Section 5.

0 25 50 75 100 125 150 175 200
Number of Hits

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Co
un

ts
/b

in
 (n

or
m

al
ize

d)

neutron
background

(a) ‘highE’ dataset, electron background fol-
lows uniform 0-20 MeV energy distribution.

0 25 50 75 100 125 150 175 200
Number of Hits

0.000

0.005

0.010

0.015

0.020

0.025

Co
un

ts
/b

in
 (n

or
m

al
ize

d)

neutron
background

(b) ‘lowE’ dataset, electron background fol-
lows uniform 0-8 MeV energy distribution.

Figure 4.2: The distribution of the number of hits per event (normalized, counts per bin) is shown for
the simulated neutron capture (neutron) and electron background (background) radiation events.
Higher energies are correlated with higher hit numbers, as can be seen for the electron background
generated at higher (a) compared to lower (b) energies.

0 50 100 150 200 250 300
Charge Sum

0.000

0.005

0.010

0.015

0.020

0.025

Co
un

ts
/b

in
 (n

or
m

al
ize

d)

neutron
background

(a) ‘highE’ dataset, electron background fol-
lows uniform 0-20 MeV energy distribution.

0 25 50 75 100 125 150 175 200
Charge Sum

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

Co
un

ts
/b

in
 (n

or
m

al
ize

d)

neutron
background

(b) ‘lowE’ dataset, electron background fol-
lows uniform 0-8 MeV energy distribution.

Figure 4.3: The distribution of charge sum per event (normalized, counts per bin) is shown for
the simulated neutron capture (neutron) and electron background (background) radiation events.
Higher energies are correlated with higher charge sums, as can be seen for the electron background
generated at higher (a) compared to lower (b) energies.

The highE dataset, consisting of neutron captures (0-8 MeV) and electron back-
ground (0-20 MeV), was the first neutron capture and background dataset avail-
able at the start of the research. However, it became clear that good classification
performance was already possible for this dataset due to the strong amount of dis-

CHAPTER 4. DATASETS AND LIKELIHOOD 39

crimination present between the number of hits and charge sums alone. Section 4.2
evaluates a classification baseline based on hits and charge sums for all datasets.
This caused a couple barriers for the development of any machine learning model
on the highE dataset. Firstly, it would be difficult to know if the model was mostly
learning from the superficial features (number of hits and charge sums), which are
not difficult to classify using classic analytic methods, rather than more significant
event discriminators like radiation topology and characteristic paths. Secondly,
given the strong discrimination already present from hits and charges, it might be
difficult to extract significant performance improvements from the baseline analytic
approach.

To address these concerns, the ‘lowE’ background dataset was generated, with
the intention of providing a data testbed for which machine learning development
can be less influenced by energy differences between particle types, The simulation
of background electron events on the same approximate energy range as the neutron
captures, 0-8 MeV, led to much more similar distributions in number of hits and
charge sums. This may be seen in Figs. 4.2b and 4.3b.

Finally, it was noted that electron background events in real particle detec-
tors do not follow uniform energy distributions, either from 0-8 MeV (like in the
lowE dataset) or from 0-20 MeV (as in the highE dataset). Therefore, an effort
was made to generate a more realistic approximation of a true background source
for the IWCD. In her presentation on muon spallation background in the Super-
Kamiokande experiment, Laura Bernard notes that at lower energy scales (tens of
MeVs), muon spallation is the dominant source of background [82]. Figure 4.4,
retrieved from her talk, demonstrates how the spallation flux (right) is at least an
order of magnitude larger than the nuclear radioactive beta decay flux at low en-
ergies (left). Figure 4.4 also includes an estimation of counts for diffuse supernova
background neutrinos (DSNB). The low relative counts of the DSNB neutrinos,
especially compared to the spallation background, helps underscore the necessity
of background reduction in WC detectors.

Muon spallation background arises from the production of unstable isotopes
through muon interactions. Muons are generated when high energy cosmic rays
interact with molecules in Earth’s upper atmosphere. Through the breakup, or
‘spallation,’ of stable nuclei, or through daughter particles produced from sec-
ondary muon energy loss processes, muons frequently produce radioactive, unstable
isotopes [83]. These unstable isotopes then produce decay products, like electrons,
which are a dominant source of background radiation at low energies. Due to the

CHAPTER 4. DATASETS AND LIKELIHOOD 40

Figure 4.4: Background source flux in the Super-Kamiokande detector compared to the predicted
diffuse supernova neutrino background flux (DSNB or SRN, Section 1.4). Reactor and antineutrino
background flux (left). Muon spallation background flux (right). Figure retrieved from Ref. [82].

high muon flux at sea level of 6.0 ∗ 105 m−2 hr−1 [83], the Super-Kamiokande de-
tector was built under 1000 metres of rock. The muons lose energy as they travel
through the rock, leading to a far reduced flux rate of 9.6 m−2 hr−1 at the detector.
The IWCD, however, is to be deployed in only a 50 m deep pit (Section 1.3). There-
fore, the spallation flux will be greater for IWCD and it is even more important to
reduce this background for identifying neutron captures at low energies.

There is a range of radioactive decay patterns from unstable isotopes produced
by muon spallation. Every isotope has associated distributions of decay times and
energies. Figure 4.5, retrieved from Ref. [82], displays the individual energy spectra
for the decay products from muon spallation isotopes like 16N, 8B and 8Li as well
as the total energy (blue) for all the decay energies combined. To generate a more
realistic background source for the neutron captures, the combined muon spallation
energy spectra from Fig. 4.5 (blue) was extracted using the ‘WebPlotDigitizer’
tool [84] and input to WCSim, replicating the spallation energy distribution for
the simulation of electron background radiation events in the IWCD detector. This
background, along with the regular neutron capture events generated by WCSim,
constituted the third, ‘spallation’ dataset used in this research. As a final note,
although the spallation dataset accounts for more realistic background processes,
a true, operational detector background would also include other sources such as
“radioactive decays from the surrounding rock, radon contamination in the water,

CHAPTER 4. DATASETS AND LIKELIHOOD 41

Figure 4.5: Energy distributions for the decay products of unstable isotopes produced in muon
spallation processes. The combined energy spectra is shown in blue. Figure retrieved from Ref.
[82].

and radioactive contaminants in the tank structure”[85].
Note that in all the simulated datasets, the data is saved in the same 3-dimensional

format of (event, hit, features). For every hit in every event, the eight feature val-
ues available are the charge, time, 3D position (x, y, z) and 3D orientation (dx,
dy, dz) of the hit PMT. Other features may be engineered from these base eight, a
topic which is explored in Section 5.

4.2 Likelihood Baseline Analysis

As discussed in the previous section and shown most clearly in Figs. 4.2b and 4.3b,
the difference in the total number of hits and charge sums between neutron and
background electron events is the most obvious source of separability between these
event types. A statistical likelihood analysis based on these features was therefore
chosen as a starting point for this project. This likelihood approach aims to set
a baseline classification accuracy without using any machine learning tools. The

CHAPTER 4. DATASETS AND LIKELIHOOD 42

resulting metrics are then used for later comparison against other machine learning
models, providing important insight on the true usefulness of the model.

The likelihood baseline classification accuracies for the three datasets were de-
termined by estimating the probability density function (PDF) of the neutron and
electron events based on their hit and/or charge sum distributions and then classi-
fying the events based on highest likelihood. Using the ‘statsmodels.nonparametric’
library in Python, the kernel density estimate (KDE) was calculated using either
the ‘KDEUnivariate’ or ‘KDEMultivariate’ classes as an estimate of the underlying
PDF for the corresponding distribution. The density of the KDE instance, once
fit over a distribution of data, was then used to evaluate the event likelihood at a
given point.

A univariate and multivariate approach were both applied and the likelihood
analysis was carried out depending on the evaluation type. For the ‘hits’ evalua-
tion type, the univariate KDE was calculated for neutron and electron events over
the training set. Then the events in the test set were classified based on highest
probability between the neutron hits KDE and the electron hits KDE. For the
‘q sum’ (charge sum) evaluation type, an identical process was undertaken, except
the univariate KDEs were calculated for the neutron and electron events based on
their charge sums over the training events. The final evaluation type, ‘q sum &
hits’, involved calculation of multivariate KDEs for neutron and electron events on
the training set for the combined 2-dimensional distribution of charge sums and
number of hits combined. All events in the test set were then classified based on
the highest density of the neutron and electron multivariate KDEs for every tuple
of event hits and charge sums for that event type.

The above classification process is equivalent to taking the quotient, or ratio, of
electron KDE to neutron KDE at a given point, for a given evaluation type, and
classifying the event as an electron for any ratio value above one. A ratio below
one indicates a neutron event. Figure 4.6 shows the likelihood ratio distributions
for univariate classification of events in the ‘highE’ test dataset (clearest separation
of the three datasets) based on event hits (Fig. 4.6a) and charge sums (Fig. 4.6b).
The turning point threshold, i.e. the point at which the likelihood ratio passes
one and events start to be classified as electron rather than neutron events, occurs
around 52 hits for the hits comparison (Fig. 4.6a) and a charge sum of 64 for the
charges comparison (Fig. 4.6b). Referencing the corresponding hits and charge sum
distributions for the highE dataset in Figs. 4.2a and 4.3a, these threshold values
correspond closely to the point at which the electron hit and charge distributions

CHAPTER 4. DATASETS AND LIKELIHOOD 43

gain a higher number of event counts. This basic check confirms the likelihood
analysis is functioning as expected.

(a) hit likelihood (b) charge likelihood

Figure 4.6: Likelihood ratio for neutron and electron particle events as a function of event hits
(left) and charge sum (right) using highE dataset. Likelihood is computed as the quotient of the
electron to neutron KDE probability estimate. Any event with likelihood ratio above one is classified
as an electron event, while an event with a ratio value below one is deemed a neutron event. The
threshold line y=1 is drawn, indicating the point at which events switch between neutron to electron
classification. This occurs at about 52 hits (left) and a charge sum of 64 (right).

Figure 4.7 is presented to help visualize the multivariate likelihood approach.
The plots in this figure represent the bivariate hit and charge sum distributions for
the electron (Fig. 4.7a) and neutron (Fig. 4.7b) events in the highE dataset. These
plots were prepared using the ‘kdeplot’ function in the Seaborn Python plotting
library. Jointly plotted with a large, random subset of the charge and hits data
itself (at high transparency), the continuous overlaid lines represent the KDE prob-
ability density curves at different density thresholds. In both plots the six foremost
density levels, or contours, are plotted. These levels correspond to probability iso-
proportions of the data density. For example, the innermost contours outline the
areas of greatest probability mass of the data, where data points are likeliest to
reside, while the least likely regions of fewest points reside between the outermost
contours. Given the significant difference in hit and charge distributions in the
highE dataset, it is not surprising that the bivariate plots in Fig. 4.7 are largely
dissimilar. The more tightly elliptical shape and linear relationship of the neutron
contours show that the neutron events tend to have more similar numbers of hits
and charge sums per event, while the electron events have more boxlike contours
which indicate many events with few hits and large charge sums and vice versa.

CHAPTER 4. DATASETS AND LIKELIHOOD 44

The axis scales also indicate the larger number of hits and charge sums for the
electron events in general.

(a) Electron bivariate KDE plot, highE dataset.

0 20 40 60 80 100
neutron hits

0

20

40

60

80

100

120

ne
ut

ro
n

ch
ar

ge
 su

m
s

(b) Neutron bivariate KDE plot, highE dataset.

Figure 4.7: Bivariate KDE plots of event hits and charge sums for electron and neutron events in
the highE dataset. Six density level contours are drawn for each plot. Neutron events tend to have
a more linear relationship between hits and charge sums than the electron events, as shown by the
more boxlike contours of the electron distribution. The electron events have higher numbers of hits
and charge sums in general.

Table 4.1 shows the results of the likelihood classification approach using uni-
variate and multivariate KDEs. Overall, lowest to greatest accuracy was obtained
on the low energy, spallation and high energy datasets respectively. This was ex-
pected as these datasets had increasing levels of separation between number of
hits and charge sums. Evaluation based on the univariate q sum KDE yielded the
top accuracies for each dataset. From here, the goal of the research was to see
if machine learning approaches could yield better classification performance than
this analytic approach. Of note, the runtime cost of classifying events from highest
KDE likelihood was approximately one hour and twenty minutes on average for the
approximately 160,000 events of the 10% testing set for either of the three afore-
mentioned neutron capture and electron background datasets. Conversely, fitting
the univariate or bivariate KDEs to either of the three training datasets only took
a couple minutes.

CHAPTER 4. DATASETS AND LIKELIHOOD 45

Background Source hits (1D) q sum (1D) q sum & hits (2D)
Spallation 62.4 62.5 62.5

Low Energy 57.4 57.4 54.9
High Energy 78.4 79.8 79.3

Table 4.1: Classification accuracy of neutron capture and background electron events by comparison
of highest likelihood for the spallation, low energy and high energy datasets. Evaluation types
included highest likelihood of univariate hits KDE (hits), univariate charge sum KDE (q sum), and
multivariate KDE on charge sums and hits combined (q sum & hits). KDE distributions were fit
on the training sets and applied on the test sets.

Chapter 5

Feature Engineering

In machine learning, feature engineering is the process of applying domain knowl-
edge to extract useful features from the original dataset. These features are often
more useful than the raw data itself for predictive or analytic tasks. For all three
datasets (low energy, high energy and spallation background), application of the
XGBoost model on the raw time, charge, hit PMT position and orientation data
did not yield significant improvement over the likelihood baseline method.

The application of XGBoost on the original dataset structure requires learning
on nhits ∗ 8 features (8 features for the time, charge, position (3D) and orientation
(3D) of each hit in the event). This many input features (up to 4000) overcompli-
cated training and did not yield any improvements in performance outcome. This
is because the position, orientation and timing information of an individual hit
PMT (one of up to 500 hit PMTs in an event) are not by themselves informative in
determining the outcome of the event. Rather, it is the relationship of hits within
an event, or the aggregation of individual features which is helpful in differentiating
between neutron capture and background. For example, given an event with 120
hits, rather than creating 120 features for the charge of each hit, a feature may be
constructed representing the aggregate charge of the event.

With this philosophy, a search was conducted for useful features in the domain
of neutron capture and subatomic physics. Relevant features were selected to ag-
gregate information from each event, reducing the complexity of the dataset and
extracting it into a more useful format. It was found that the classification per-
formance of the XGBoost models significantly improved upon application to the
aggregated features compared to the original dataset. The engineered feature plots
will be shown for the spallation background dataset, as this is the most realistic
of the three datasets, while later plots (this section and appendix) will show the
feature differences for all of the datasets.

46

CHAPTER 5. FEATURE ENGINEERING 47

5.1 Beta Parameters

Useful features in the context of particle classification are those whose numeric
distributions vary demonstrably between different types of events. One discrimi-
nating physical quantity is the event topology, i.e. the positional distribution of hits
throughout the detector for a given event. The event topology varies depending on
the particles involved, the incident kinematics and the amount of scattering and
reflection through the detector. One way the topology can be numerically quan-
tified is by the amount of anisotropy within the event with respect to the event
vertex. For a completely isotropic Cherenkov event, the radiant emission is uni-
formly distributed over all angles from the position of the vertex. However, for an
anisotropic event the direction of radiation is not uniform and there is an inherent
directionality. In reality, no single Cherenkov event is perfectly isotropic and the
amount of isotropy exists over a range of possible values.

In the case of neutron capture signal to background events, isotropy is a dis-
criminating factor because there is typically more scattering and reflections in
background noise compared to neutron capture events. The amount of isotropy
difference between signal and background of course depends on the background
source. The calculations were performed on the three datasets consisting of neutron
captures and electron backgrounds. As described in Section 4.1, the background
sources consisted of a low energy source (uniform electron distribution 0-8 MeV),
high energy source (uniform electron distribution 0-20 MeV) and a spallation energy
distribution (∼0-14 MeV). In all cases, the background source is not entirely typi-
cal of realistic background sources in a Cherenkov detector. More realistic sources
would include multiple sources of background noise and probably a higher rate of
dark noise (random noise hits in the PMTs due to the detectors themselves) than
the 0.1% rate used in the simulations. Therefore, the actual isotropy differences
would likely vary for real datasets in the IWCD. This factor nonwithstanding, the
following results are illustrative of the methodology used for isotropy parameter
event discrimination.

There are several possible parameters measuring isotropy that were considered
for use in this study. In Ref. [86], Wilson presents the following options: Θij, “the
average of the angles between each pair of PMT hits in an event with respect to the
fitted vertex position,” the correlation function ring inner product (CFRIP), which
compares the angular correlation of the event to that of a perfect ring, and the
beta parameters β(l), which are defined similarly to Θij but make use of Legendre

CHAPTER 5. FEATURE ENGINEERING 48

polynomials.
Both Wilson [86] and Dunmore [87] find the beta parameters to yield the most

isotropic discrimination between different types of subatomic particle events. Fol-
lowing this result, the beta parameters were chosen as the measure of isotropy in
this project. The definition for the l -th beta parameter β(l) is

β(l) = 〈P (l)(cos θik)〉i6=k, (5.1)

where β(l) is equal to the average of the l -th Legendre polynomial P (l) of the cosine
of the angle θik between every pair of hit PMTs in the event (i 6= k) with respect
to the event vertex. For any of the beta parameters, a value of 0 indicates perfects
isotropy while higher absolute values indicate directionality and lower isotropy.
Figure 5.1 shows a representative diagram of the geometry involved in calculating
the beta parameters. In practice, this event vertex would need to be calculated
using an existing vertex reconstruction method. For the purpose of this study, the
truth information is used for the exact event vertex position.

Figure 5.1: A given angle θij is presented between the i-th and j-th hit PMTs in an event, relative to
the event vertex. A given beta parameter is calculated by averaging the values of the angles between
all pairs of hit PMTs within the event and applying the corresponding Legendre polynomial.

The calculation of the beta isotropy parameters is computationally very expen-

CHAPTER 5. FEATURE ENGINEERING 49

sive. A simulated neutron capture event may have over 500 hit PMTs, which
adds up to roughly 250,000 pairs of hit PMT combinations. For every combina-
tion there are five beta parameters to calculate. Each beta parameter requires the
computation of the cosine of the angle between hit PMTs, a Legendre polynomial
calculation of that output, and the addition of that value to a running tally. Given
approximately 1.6 million events in a full dataset, this translates to several trillion
basic mathematic operations in total. The time needed to calculate the total beta
parameter set by looping over every event in sequence was estimated to take around
100 days. An effort was made to parallelize a given event using multithreading in
CUDA C++, but the many read/write operations and pairwise conditional cal-
culations proved difficult to implement efficiently. Instead, multiprocessing pools
were created using the Python multiprocessing library to execute multithreading
on the CPU. By utilizing 32 CPU cores on Cedar (see Section 4.1) to calculate
batches of 32 events in parallel, and dividing the full dataset computation into
twelve simultaneous batch jobs, the full dataset isotropy parameter computation
time was reduced to just over ten hours.

The results of the beta parameter computation for the spallation background
dataset are shown in Fig. 5.2. The amount of overlap between neutron and back-
ground distributions was also calculated for every beta parameter by summing over
the minimum of the normalized histogram distribution count between both signal
and background distributions over every bin. This overlap number is included in
the top-right of every subplot. A higher number indicates more overlap, whereas
a lower number indicates greater separability between the distributions. For the
spallation dataset, the overlap is highest for the lower order beta parameters β1,
β2 and β3, with values of 91.8%, 89.7% and 89.4% respectively. β4 and β5 show
the most discrimination with overlaps of only 77.3% and 78.8% respectively. The
isotropy discrimination is also shown for the neutron capture dataset with high en-
ergy and low energy backgrounds in the appendix in Figs. 8.1 and 8.6 respectively.
For the low energy background dataset, a similar pattern is found to the spallation
background dataset, where β4 and β5 have lower overlaps than β1, β2 and β3,
although the magnitude of discrimination is lower due to the nearly identical range
between signal and background. The high energy dataset shows least overlap and
corresponding greatest discrimination of all the datasets, with β4 and β3 showing
the least overlaps of 66.8% and 68.9% respectively. This indicates the dependence
of the isotropy (and topology) of event hits of a given particle type depending on
the energy distribution of the events.

CHAPTER 5. FEATURE ENGINEERING 50

0.2 0.0 0.2 0.4 0.6 0.8 1.0
1

0.0

0.5

1.0

1.5

2.0

2.5

3.0
overlap: 0.918

neutron
background

0.2 0.0 0.2 0.4 0.6 0.8 1.0
2

0

2

4

6

8

10

12

14 overlap: 0.897

neutron
background

0.2 0.0 0.2 0.4 0.6 0.8 1.0
3

0

5

10

15

20

25

30

35 overlap: 0.894

neutron
background

0.2 0.0 0.2 0.4 0.6 0.8 1.0
4

0

5

10

15

20

25

30

35
overlap: 0.773

neutron
background

0.2 0.0 0.2 0.4 0.6 0.8 1.0
5

0

5

10

15

20

25

30

35
overlap: 0.788

neutron
background

Beta Isotropy Parameters

Figure 5.2: Distributions of the beta parameters β1 to β5 are shown for the neutron capture and
spallation background dataset. The amount of overlap between the histograms is shown by the
number in the top-right corner of every subplot. β1 through β3 have the highest overlaps, around
90%, while β4 and β5 have the lowest overlaps of 77.3% and 78.8% respectively.

5.2 Time of Flight

Timing information within an event contains valuable information. Figure 5.3
represents the recorded times of the first PMT hit (left), final PMT hit (middle)
and difference between the first and last hits (right) for the full IWCD dataset of
neutron capture and spallation electron background events. The data is separated
by event type, where the neutron capture events are shown in magenta and the
background is cyan.

Previously in the research, the trained XGBoost model had learned to predict
events with over 99% accuracy. When this was investigated further, it was seen
that the trigger time of the electrons had a consistently earlier trigger time than
the neutron capture events. Therefore, the start time of the electron events had a
clear and consistent leftward shift to the neutron capture start time distributions.
After this was fixed, the start and end time plots in Fig. 5.3 show that the start

CHAPTER 5. FEATURE ENGINEERING 51

550 600 650 700 750 800 850 900 950
Time (ns)

0.000

0.002

0.004

0.006

0.008

0.010

co
un

ts
 (n

or
m

al
ize

d)
Start Time

neutron
background

1000 1200 1400 1600 1800
Time (ns)

0.000

0.002

0.004

0.006

0.008

0.010
End Time

neutron
background

0 200 400 600 800 1000 1200 1400
Time (ns)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040
Time of Flight
neutron
background

Figure 5.3: Distributions of the timing information within an event are shown for the neutron
capture dataset with spallation electron background. The timing is shown for the distributions of
first PMT hits (left), final PMT hits (middle) and overall time of flight (right) per event. The
neutron capture events are shown in magenta while background events are cyan. The overlap is
nearly complete for these distributions, showing these distributions are potentially not useful for
discrimination tasks between event types. Moreover, these metrics are highly susceptible to dark
noise hits misrepresenting the timing of the first and last hits.

or end time is not a clear discriminating feature. These plots show the absence of
a timing simulation artifact.

The raw timing information should not be helpful for event discrimination for
the methodology of improving machine learning neutron tagging methods. Rather,
the models should learn from characteristics of the event types themselves. The
differences between signal and background timing are minute for the distributions
of start time, end time and time of flight. This is also seen for the other two datasets
of low and high energy electron background. Moreover, these timing metrics are
also highly sensitive to dark noise. In reality, false recorded hits before or after the
true event due to dark noise are likely to occur, skewing the statistics.

To account for this, the RMS (root-mean-square) time can be used as an engi-
neered feature to measure the average timing residuals of PMT hits from the mean
time for a given event. In this case, the RMS time is calculated for a given event
as the square root of the sum of the squared differences of every hit time from the
average hit time per event, averaged over the number of hits for that event:

tRMS(x) =

√∑N(x)
i=1 (ti(x)− tµ(x))2

N(x)
, (5.2)

CHAPTER 5. FEATURE ENGINEERING 52

where i is an individual hit within the event x, N(x) is the number of hits in event
x, ti is the recorded time of hit i and tµ(x) is the average hit time for the event.

In addition to having greater resistance to dark noise fluctuations, Fig. 5.4
shows how the RMS event time metric has greater discrimination between signal
and background for the dataset of neutron capture and spallation events. The
distribution of neutron capture events has a smaller kurtosis than the background
distribution, showing a greater frequency of RMS event times skewed toward the
lowest and highest values. This behaviour may be attributed to the differing nature
of the particle interactions. For neutron capture events, the photon that emerges
from the capture vertex produces an electron positron pair at opposite angles (180
degrees of separation). This particle pair will travel in opposite directions, gener-
ating Cherenkov radiation, until hitting the PMTs lining the detector walls and
exiting the detector. Depending on the event vertex location, there is significant
variation between the time required for both particles to strike the wall. In gen-
eral, this variation causes the RMS event time to assume a flatter distribution and
wider range than the single-particle electron background events. For the spallation
dataset, the RMS event time distribution was peaked at approximately 200 ns for
background electron events and 225 ns for neutron events.

For the high energy dataset (feature differences shown in Fig. 8.2) the neutron
capture events also have longer RMS event times on average than the background
events. However, the neutron events themselves still have lower RMS times and a
different RMS timing distribution than both the spallation and low energy back-
ground events. This is due to a small change in the simulation process. For the
spallation and low energy background datasets, the gamma products of the neu-
tron capture are re-simulated at the centre of the detector. This was done to avoid
too many events being thrown out due to gamma byproducts being generated too
close to the detector walls and then exiting the tank. Although the distributions
look different, the similar overlap pattern to the spallation dataset leads to min-
imal difference in training. For the dataset of neutron captures and low energy
background events (Fig. 8.7), the electron background distribution has a more
widespread distribution. It generally shows more overlap with the neutron capture
RMS timing distribution, indicating that the particle RMS timing distributions are
more sharply peaked at higher energies.

CHAPTER 5. FEATURE ENGINEERING 53

0 100 200 300 400 500
RMS Time (ns)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Co
un

ts
 (n

or
m

al
ize

d)
Event RMS Time

neutron
background

Figure 5.4: Distributions of the RMS flight times are shown per event for both neutron captures
(magenta) and electron background (cyan) for the simulated IWCD dataset of neutron capture and
spallation electron background events. The RMS time, calculated per event as the square root of
the sum of the squared differences of every hit time from the average hit time per event, averaged
over the number of hits for that event, shows a greater discrimination between the event types than
the previously shown timing metrics. In addition, the RMS timing is more resistant to timing bias
due to a dark noise hit before or after the event occurs.

5.3 Distance to Wall

The distribution of event vertex distance to the IWCD cylindrical tank wall was
also explored as a potential discriminating feature between neutron capture and
background events. For an underground water Cherenkov detector such as Super-
Kamiokande, which is located approximately one kilometer underground, a greater
number of background events originate at positions nearer the detector walls due
to radiation from the surrounding cave. While this effect would be less pronounced
for the IWCD, which is not nearly so far underground as SK, there are other effects
which may skew the distribution of vertices throughout the detector. For example,
dark noise current in the PMTs may be misconstrued as background events.

Figure 5.5 represents the distributions of distances from event vertex to tank
wall for the IWCD neutron capture and spallation electron simulated dataset of

CHAPTER 5. FEATURE ENGINEERING 54

approximately 1.6 million events. A nearly identical pattern is observable for both
the datasets consisting of low and high energy background (appendix Figs. 8.2 and
8.7). The true vertex position is used for these calculations. Although the distri-
butions overlap greatly from approximately 50 cm to 300 cm, there are noticeably
more background than neutron events in the region of 0 to 50 cm from the detector
wall. Given that the present simulation included a 0.1 kHz frequency of dark noise,
the higher rate of background events generated at lesser distances to the tank wall
could possibly be attributed to the dark noise current in the PMTs generating elec-
trons that travel short distances. Conversely, there is a slightly greater occurrence
of neutron capture events in the region of 50 cm to 300 cm from the tank wall.

0 50 100 150 200 250 300
Distance (cm)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Co
un

ts
 (n

or
m

al
ize

d)

Distance to Wall
neutron
background

Figure 5.5: Distributions are shown for the distances from event vertex to the IWCD tank wall
for the IWCD simulated dataset of neutron capture (magenta) and spallation background events
(cyan). The higher incidence of background events generated more closely to the distance wall is
likely due to the presence of dark noise in the dataset simulation which misconstrues the random
current as true hit PMTs occurring close to the tank wall. This effect causes a slightly greater
frequency of neutron capture events generated 50 cm to 300 cm from the tank wall.

Another possibility involves the conversion length of the neutron captures. Af-
ter the simulated neutron is captured by the hydrogen or gadolinium nucleus, the
resultant gamma particles travel some distance (‘conversion length’) before con-
version into an electron positron pair. If these photons escape the outer detector

CHAPTER 5. FEATURE ENGINEERING 55

before conversion, the event is discarded by the simulation software. This effect
would lead to slightly more electron than neutron events counted with vertices
close to the detector wall. To account for this potential bias in the dataset, the
simulation was re-calibrated such that after the neutron capture occurs, the gamma
byproducts were re-simulated in the center of the tank.

5.4 Mean Opening Angle

The Cherenkov emission from relativistic photons in water is emitted on a cone with
respect to the origin of radiation. The angle of emission is dependent on the kine-
matic properties of the incident charged particles. The mean opening angle from
the event vertex varies on average for different types of particle interactions, making
this metric another possible discriminant to improve neutron tagging performance.
Following the definition in Ref. [88], this mean opening angle is calculated as the
vector sum of the angles between every hit PMT and the true vertex position within
the given event:

Θµ(x) =

∑N(x)
i=1 Θ(~pi, ~p0)

N(x)
=

∑N(x)
i=1 (~pi·~p0

|~pi|·||~p0|)

N(x)
, (5.3)

where Θµ(x) is the mean opening angle for the event x, N(x) is the number of hits,
~pi is the (x, y, z) position of the i-th hit, ~p0 is the (x, y, z) position of the event vertex
and Θ(~pi, ~p0) is the angle between ~pi and ~p0, computed as the quotient of the dot
product by the product of their magnitudes. The mean opening angle distributions
for the neutron capture and spallation electron background events are represented
in Fig. 5.6. Refer to Figs. 8.2 and 8.7 for the mean opening angle distribution for
the datasets including high energy and low energy background, respectively.

The mean opening angle metric is largely influenced by the event energy. For
the dataset with low energy background, the distributions are very similar for the
mean opening angle. However, for the spallation background and high energy elec-
tron background datasets, a greater amount of discrimination is observed between
the distributions. This is due to a combination between the event energy and topo-
logical distribution of the hits throughout the event. For example, although the
electron events in the high energy background dataset have higher energies, they
tend to have more hits closely together, leading to a reduced mean opening angle.
Comparatively, the electron events in the spallation background dataset have lower
energies but the hits are more sparsely distributed, leading to a higher peak mean

CHAPTER 5. FEATURE ENGINEERING 56

Figure 5.6: Mean opening angle distributions are shown for the IWCD simulated dataset of neutron
capture (magenta) and background spallation electron events (cyan). The mean opening angle is
dependent on the energy and the topological distribution of hits throughout the event.

opening angle than the neutron events in the dataset, on average. Another factor
is the extent of random PMT hits due to true background noise. These dark noise
hits tend to cluster in specific regions of the detector tank, causing a lower mean
opening angle for such events.

Overall, the ability of the mean opening angle metric to discriminate somewhat
between similar particle event types makes it a good candidate to pass to machine
learning models as an input feature in neutron tagging tasks.

5.5 Consecutive Hit Angular RMS

Another metric for improving neutron tagging performance in machine learning,
again inspired by Abe et al. [88], is the root-mean-squared consecutive angle of an
event. True background hits, for example from radioactive background sources,
often contain spatially compact clusters of hits. On the other hand, Cherenkov
photons from neutron capture events would be expected to propagate more uni-
formly within the average opening angle of the radiation emission cone. The RMS

CHAPTER 5. FEATURE ENGINEERING 57

difference of angle between temporally consecutive hits with respect to the event
vertex position can extract information on these kinds of angular differences be-
tween event types.

The RMS angle is calculated by first sorting all PMT hits chronologically within
a given event, then computing the sum of the squared differences of the angles
between consecutive events from the mean consecutive angular difference, averaged
over the number of hits for the event and square rooted, as

ΘRMS(x) =

√∑N(x)−1
i=1 (Θ(~pi, ~pi+1)−Θµ)2

N(x)
=

√√√√∑N(x)−1
i=1 (~pi· ~pi+1

|~pi|·|| ~pi+1| −Θµ)2

N(x)
, (5.4)

where ΘRMS(x) is the RMS consecutive angle for the event x, N(x) is the number
of hits, ~pi is the (x, y, z) position of the i-th hit, ~pi+1 is the (x, y, z) position of
next consecutive hit in time order i+1, Θµ is the average angle between consecutive
hits in the event and Θ(~pi, ~pi+1) is the angle between ~pi and ~pi+1, computed as the
quotient of the dot product by the product of their magnitudes. The consecutive
RMS provides a benchmark on the amount of angular variation between consecutive
hits within an event. For events with more scattering, clustering and reflections,
the distributions of RMS consecutive angles will be higher on average, and vice
versa.

The similar angular distribution patterns between the particles involved in the
neutron capture and electron background events lead to a similar distribution of
RMS angles for the spallation (Fig. 5.7), high (Fig. 8.2) and low energy background
(Fig. 8.7) and neutron capture datasets. This is because the WCSim simulation
software treats the kinematics of the electron and position pair from the gamma
produced by the neutron capture similarly to the electron produced on its own.
Moreover, as mentioned previously in Section 5.4, the low dark noise rate of the
simulated background event is not representative of radioactive decays and other
more realistic sources of WC background. These sources would lead to higher
frequencies of dense hit clustering within the detector. For a background source
more inclusive of clustering, the discrimination extent is expected to be greater for
the RMS metric, meriting inclusion into training as a potentially discriminating
feature.

CHAPTER 5. FEATURE ENGINEERING 58

Figure 5.7: Distributions of the RMS angle between consecutive hits within an event are shown
for neutron capture events (magenta) and background electron events (cyan) for the full IWCD
neutron capture and spallation electron background dataset. The high amount of overlap between
distributions is caused by the similar kinematics involved in the WCSim simulation software for the
neutron capture and electron events. Background events with greater rates of dark noise and clus-
tering will increase the RMS angle distribution, leading to greater discrimination between neutron
capture events for this metric.

5.6 Consecutive Hit Distance

In studying the event displays of the neutron capture and background events for
the IWCD dataset of higher energy (0-20MeV), the pattern was observed that the
positional distributions of hits tended to be more widespread in neutron capture
events. Given two events of different type with similar numbers of hits, the neutron
capture event could be reasonably well differentiated by eye by selecting the event
with greater average distance between hits. This effect was most pronounced using
the high energy electron background dataset. An example of two such events is
shown in Fig. 5.8.

Motivated by such examples as shown in Fig. 5.8, the average consecutive hit
distance metric was created to capture this effect in a discriminant feature. The hits
within a given event were first sorted chronologically in time, then the Euclidean

CHAPTER 5. FEATURE ENGINEERING 59

0 5 10 15 20 25 30 35 40

mPMT ID

0

5

10

15

20

25

m
PM

T
ID

background (sample)

0 5 10 15 20 25 30 35 40

mPMT ID

0

5

10

15

20

25

neutron (sample)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0

2

4

6

8

10

Figure 5.8: Two events are shown, sampled from the full IWCD high energy background (0-20MeV)
neutron capture dataset. The background electron event (left) is representative of the closer spacing
of electron background hits compared to the generally more diffuse hit patterns of neutron capture
events (right).

distance between consecutive hits were summed and averaged over the number of
hits within the event as

hdµ(x) =

∑N(x)−1
i=1 dist(~pi, ~pi+1)

N(x)
=∑N(x)−1

i=1 (px(i) − px(i+1))
2 + (py(i) − py(i+1))

2 + (pz(i) − pz(i+1))
2

N(x)
,

(5.5)

where hdµ(x) is the average consecutive hit distance for the event x, N(x) is the
number of hits, ~pi is the (x, y, z) position of the i-th hit, ~pi+1 is the (x, y, z) position
of the next consecutive hit in time order i+1 and dist(~pi, ~pi+1) is the Euclidean
distance between consecutive hits.

The difference of consecutive hit distance was greatest for the spallation back-
ground (Fig. 5.9) and high energy background (Fig. 8.2) neutron capture datasets.
Compared to these, the difference was less for the dataset including low energy
electron background (Fig. 8.7). Therefore it seems that the electron hits are more

CHAPTER 5. FEATURE ENGINEERING 60

clustered at higher energies. However, even with the nearly identical energy range
in the low energy dataset, the average hit distance was still slightly higher for the
neutron captures. This difference in hit diffusion extent is likely due to due to
the differing nature of the particle interactions, in which the pair production of
the electron positron pair from the gamma(s) in the neutron capture events leads
to greater spatial separation of hits throughout the detector, on average, when
compared to the electron background hits.

Figure 5.9: Distributions of the mean consecutive hit PMTs distances are shown for neutron capture
events (magenta) and background electron events (cyan) for the full IWCD dataset of neutron
capture and spallation electron background events. The spacing is more diffuse for the neutron
events than the background electron events on average, leading to a distribution peak shifted about
50 cm higher for the average hit distance between consecutive hits for the neutron events.

Chapter 6

XGBoost Results Analysis

The previous section describes the feature engineering process of the neutron cap-
ture and background datasets. The compute time for feature engineering is con-
strained by the calculation of the beta parameters, which takes approximately 10
hours for 10 simultaneous batch jobs submitted to Cedar. However, adding more
simultaneous batch jobs would reduce this compute time. The other aggregate
features each take from 30 to 45 minutes each to calculate. The resulting features
are then loaded from memory and normalized to range from zero to one so that no
single feature overpowers another in training due to its distribution having a larger
relative numeric scale. After normalization, the features are combined into a single
dataframe using the ‘pandas’ library in python. XGBoost, a gradient boosting de-
cision tree model, was applied to learn from this data. Other models tested include
lightGBM (another gradient-boosted decision tree) and a multi-layer perceptron
model. In all cases, the relevant parameters and hyperparameters were tuned to
reduce bias and variance to try to obtain the most accurate and generalizable
model.

The XGBoost gradient boosting decision tree model was applied to the task
of learning from the features engineered in Section 5 for all three of the neutron
capture and electron background datasets. This model contain a set of parameters
which effect the bias and variance of the models. In general, some parameters tend
to increase training accuracy while decreasing generalizability to new data, and vice
versa. In both cases, the parameters chosen for tuning were heuristically selected
by the greatest impact on the bias and variance of the model.

For the XGBoost model, the training parameters selected for tuning include the
maximum tree depth max depth, the minimum tree node weight min child weight,
the training data subsampling ratio subsample, the tree column subsampling ratio
colsample bytree and the learning rate eta. The max depth parameter limits the

61

CHAPTER 6. XGBOOST RESULTS ANALYSIS 62

maximum depth of a given decision tree, denoting the greatest number of nodes
from the root node to any leaf following a downward path through the tree. In-
creasing the maximum tree depth will lower the model bias, i.e. fit the training data
more accurately, but may cause higher variance, i.e. overfitting to the training set
and losing ability to generalize to unseen datasets. The min child weight parameter
sets the minimum weight needed by a given leaf in a tree instance to further branch
and create new child leaves from that node. A larger value of min child weight will
lead to simpler trees, favouring low variance over high bias.

A strategy for increasing generalizability of the XGBoost model is to randomly
leave out part of the data for the training instances. The value of the subsample
parameter sets the fraction of data subsampling for every instance. A value close
to one (all data included) leads to lower bias while a lower subsampling ratio may
increase model generalizability. Another approach is to randomly exclude certain
features, or columns, from training. This way, the model is not overly dependent
on any given feature. The colsample bytree parameter sets the subsampling ratio
of columns, or features, randomly selected when constructing every tree. A col-
sample bytree value of one will apply all columns to every tree, while the ratio of
features used per tree decreases quadratically as the colsample bytree parameter
value is decreased.

Finally, the parameter eta, also known as the learning rate, controls the rate at
which the model parameters update after every step of gradient descent. The model
will tend to learn quickly with large values of eta but is likely to miss the best set
of parameters associated with the absolute minima of the loss function, whereas a
lower learning rate will lead to slower learning which requires more iterations to
reach the loss minima.

For both models, a grid search was applied by sequentially iterating over several
relating parameters in pairs to find the best combination. This iterative method
must be employed as there is no exact protocol to finding the optimal solution
of hyperparameters in machine learning. For the grid search, while keeping the
learning rate and sampling ratios fixed, the maximum tree depth max depth and
minimum tree child weight min child weight were first adjusted together. Since
both hyperparameters control the tree complexity, they may be tuned as an en-
semble. XGBoost model instances were trained with max depth ranging from five
to fifteen and min child weight ranging from one to ten. For each hyperparame-
ter combination, XGBoost’s native cross-validation function was used to train the
model with four folds over a maximum of 1250 boosting rounds. In this way, each

CHAPTER 6. XGBOOST RESULTS ANALYSIS 63

model was trained on a unique set of three dataset folds and reports the average
result from holding out a different fourth fold for testing. Early stopping was used
to cancel model training if performance did not improve over twenty consecutive
rounds.

Applying this technique on the full IWCD dataset of nearly 1.6 million neutron
captures and spallation background events, the best parameters for tree complexity
were found to have a max depth of 11 and a min child weight of 1, with the best
mean log loss over the four folds of the testing set equal to 0.593 over 443 rounds.
This indicates that at least moderately complicated trees are necessary to classify
the events in this dataset. These hyperparameters were updated and fixed in the
XGBoost model parameter dictionary. Next, the subsample and colsample bytree
ratio parameters were tuned in tandem, with subsample and colsample bytree both
ranging from 0.5 to 1.0. In this case, the optimal combination was found to have
a subsample ratio of 0.7 and a colsample bytree ratio of 1.0, combining to produce
the lowest mean log loss of 0.591 over 499 rounds. The subsample ratio indicates
that holding out 30% of the data for each training instance helps the model to
generalize and avoid overfitting, improving performance. The 1.0 column sample
ratio indicates there is little to no redundancy in the twelve engineered features
and that all twelve are helpful for training the XGBoost model. Finally, a learning
rate of 0.007 was found to lead to highest test accuracies.

The same hyperparameter tuning process was also applied on the other two
datasets including low energy and high energy electron background events. After
training the XGBoost tree model on these corresponding combinations of parame-
ters obtained through the grid search process, the models were tested against their
own 10% test set. The resulting metrics are displayed in the following Table 6.1.
Although the training accuracies are generally slightly higher than the test accu-
racy, the extent of overfitting is not too severe and may be decreased by using a
smaller number for early stopping.

Along with the accuracies on the train, validation and test set, the area under
the curve (AUC) of the receiver operating characteristic (ROC) is also shown. The
ROC curve, in general, is a plot of the true positive rate (the probability that an
actual positive, i.e. neutron, will be correctly identified) against the false positive
rate (the probability that the model incorrectly predicts a positive). It is useful
for evaluating performance at various false positive rate thresholds. The AUC of
the ROC plot is another useful metric of separability between the neutron and
background classes. An ROC AUC of 0 indicates no predictive ability at all, 0.5

CHAPTER 6. XGBOOST RESULTS ANALYSIS 64

represents a half and half guess and 1.0 indicates perfect predictive separability.

Dataset Background Source Train Validation Test ROC AUC
Spallation 73.0 71.5 71.4 0.784

Low Energy Electron 68.7 66.3 66.3 0.734
High Energy Electron 84.3 83.8 83.6 0.915

Table 6.1: Results of application of trained XGBoost model on three neutron capture datasets with
background sources of spallation, low energy electron and high energy electron events, for a total
of nearly 1.6 million events each.

The XGBoost models attained the highest test accuracy of 83.6% on the high
energy background dataset, a middle test accuracy of 71.4% on the spallation back-
ground dataset and the lower accuracy of 66.3% on the low energy background
dataset. The corresponding ROC AUC metrics are 0.915, 0.784 and 0.734. These
results are commensurate with the extent of discrimination of the features repre-
sented in Figs. 6.6, 8.2 and 8.7 respectively. The more the engineered features
vary between event type, the more accuracy the XGBoost model is able to obtain,
and vice versa. At the learning rate of 0.007, the XGBoost model construction for
any of the 90% training sets was found to take approximately 45 to 60 minutes,
depending on the number of trees constructed before early stopping. Evaluation
on any of the 10% testing sets took less than a minute.

Figure 6.1 displays the confusion matrix for the XGBoost model trained on the
spallation background and neutron capture dataset. This matrix shows that for
this model, the true positive rate (neutron recall) is significantly lower than the
true negative rate (neutron specificity). This indicates that for the XGBoost model
on the spallation background dataset, the electron events are easier to classify than
the neutron captures. The same pattern holds for the XGBoost model applied to
the low energy dataset, where the electron recall is 67.5% and the neutron recall
is only 65.1% (Fig. 8.8). This pattern shifts when the XGBoost model is trained
on the high energy dataset. In this last case, it recalls 89.7% of the true neutron
events but only recalls 78.1% of the electron background events.

To further analyse the results of the XGBoost model, it is desirable to get a
sense of the relative importances of the dozen features contributing to the tree
ensemble. The XGBoost python interface provides weight, gain and cover as the
three methods available to visualize the feature importances. Weight indicates how
many times a feature is used to split data across all the trees, gain represents the
information gained (equivalently, the reduction in training loss) by splitting a tree
on the feature and the cover shows the weight combined with how many data points

CHAPTER 6. XGBOOST RESULTS ANALYSIS 65

ne
utr

on

ba
ckg

rou
nd

Predicted label

neutron

background

Tr
ue

 la
be

l

0.684 0.316

0.260 0.740

XGB Confusion Matrix

0.3

0.4

0.5

0.6

0.7

Figure 6.1: Confusion matrix for the XGBoost model trained on the dataset of neutron capture
and spallation background electron events. The electron recall rate exceeds the neutron recall rate,
indicating the neutron capture events are more difficult to identify correctly.

actually travel through those feature splits. Figure 8.11 in the appendix represents
the above feature importance metrics for the trained boosted decision tree model
for the low energy background neutron capture dataset. The figure, as an example,
shows a lack of consistency across the different metrics. For example, the distance
to the wall feature dwall is the most important feature by the weight metric, but
is among the least important under both the cover and gain metrics. Conversely,
while the event number of hits nhits is the most important feature according to
gain, nhits is fourth least important with respect to the weight and cover metrics.

Given the inconsistency of the weight, cover and gain metrics, another met-
ric may be applied more reliably to draw conclusions about the relative feature
importances of the trained XGBoost models. This metric is the SHAP value, as
introduced and discussed in Subsection 3.3. An attractive feature of the SHAP
values is that they are applicable both locally, to a single event, and globally, to a
conglomerate of events. Figure 6.2 displays the SHAP values for two events chosen
at random, demonstrating the local effect (single event) of the various features on
‘pushing’ the model output from the base value. For the low energy dataset, the
base value of 0.504 represents the average output label. It is slightly higher than 0.5

CHAPTER 6. XGBOOST RESULTS ANALYSIS 66

because there are marginally more electron events in the dataset (neutron capture
and spallation background). A label below the 0.5 threshold represents a neutron
event and a label above 0.5 stands for an electron background event. The feature
value is shown to two decimal places below the SHAP value bar.

(a) Local SHAP force plot for a sample predicted electron event.

(b) Local SHAP force plot for a sample predicted neutron event.

Figure 6.2: Local force plots are shown for a randomly chosen predicted electron background event
(top) and neutron capture event (bottom). The red bars represent features with positive SHAP
values driving the local model output toward an electron label and the blue bars represent features
with negative SHAP values driving the model output toward a neutron label. The bar width
corresponds to the absolute magnitude of the SHAP value. The model output is shown in bold
(0.76 for the predicted electron event and 0.41 for the predicted neutron event).

For the sample events in Fig. 6.2, 6.2a (top) shows a predicted electron event
and Fig. 6.2b (bottom) shows a predicted neutron event. The model output is
0.76 for the electron event and 0.41 for the neutron event (shown in bold). For the
electron event in Fig. 6.2a, the large positive SHAP value of the mean hit distance,
as well as other positive SHAP values from β2, rms time, and other values (shown
in red) drive the output up to 0.76 from the base expectation value. Conversely,
the cause of the output value being driven down from expectation toward 0.41 for
the neutron event in Fig. 6.2b may be attributed to features with corresponding
negative SHAP values for this event (shown in blue), such as the β4 value and
number of hits. The width of the SHAP bars correspond to the magnitude of the
Shapley value for the feature in the event.

An alternative way to visualize the SHAP values locally to understand the
marginal feature contributions for a given event is through decision plots. Fig-
ure 6.3 displays local decision plots for two more single events, chosen at random.

CHAPTER 6. XGBOOST RESULTS ANALYSIS 67

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

Model output value

dWall

charges

RMSangle

tRMS

3

nhits

moa

2

4

1

5

hitDist

(a) Decision plot for sample predicted electron event.

0.35

0.35

0.40

0.40

0.45

0.45

0.50

0.50

0.55

0.55

0.60

0.60

0.65

0.65

0.70

0.70

Model output value

moa

charges

dWall

tRMS

4

RMSangle

1

nhits

3

5

2

hitDist

(b) Decision plot for sample predicted neutron event.

Figure 6.3: Local decision plots are shown for a randomly chosen predicted neutron capture event
(left) and background electron event (right). Starting at the bottom from the base expectation
model output of 0.504, the model output changes upward in the line plot according to the SHAP
value of every feature. The marginal contributions of the features adjust the model output until
the final output at the top of the plot.

The decision plot again orders the features by the magnitude of their SHAP value,
and is meant to be read from the bottom up. The horizontal axis represents the
model output value. At the bottom of the plot, the model output is the base ex-
pectation of the model. As the line plot ascends upward, the output adjustment
impact of each feature may be viewed through the horizontal change in the output
value. For example, in Fig. 6.3a, the output value remains relatively close to 0.5
until the hit distance, β5 and β4 combine to change the model output to distinctly
electron-like. In Fig. 6.3b, the charge and β5 value tend to push the model output
toward an electron-like event, but features such as β3, the number of hits and the
β4 value for this event cause the model output to be neutron-like.

Figure 6.3 provides another local visual representation of SHAP values. How-
ever, the SHAP values may also be visualized globally for many events. This helps
give a sense of the overall patterns influencing the feature contributions for large
numbers of particle events. One method of representing the SHAP values for many
events is to superimpose the individual decision plots of several events onto the
same graph. Figure 6.4 shows the decision plots for 500 events chosen at random
(for the combined decision plot, thousands of events tends to clutter the graph and
the marginal contribution patterns are more difficult to discern).

Such global visualization methods help reveal patterns in the feature contribu-

CHAPTER 6. XGBOOST RESULTS ANALYSIS 68

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Model output value

RMSangle

moa

tRMS

dWall

charges

1

3

5

2

hitDist

nhits

4

Figure 6.4: Combined decision plots are shown for 500 events sampled at random from the neutron
capture and spallation background dataset simulated using WCSim for the IWCD tank geometry.
Starting from the bottom base expectation model output of 0.504, the model output changes ac-
cording to the Shapley value marginal contribution of every feature. This continues until the final
output of the model, shown at the top of the plot. Electron events have model outputs above 0.5
and neutron electrons have model outputs below 0.5.

tions. In Fig. 6.4, some global trends may be observed: the number of hits often
is impactful in lowering the model output value, the average hit distance between
successive PMTs is often used to identify an event as electron-like, the isotropy
parameters β1, β2, β3 and β5 tend to have less impact on the model output than
β4, which has the largest SHAP values and often can be affect the model output to
be highly neutron-like. The RMS angle between consecutive events with respect to
the event vertex appears to have the least marginal contribution on model output,
and the mean opening angle, RMS event time and distance to wall also have low
marginal contributions. This plot also gives a sense of the model output distri-
bution for this sample of 500 events. Most event outputs are clustered between

CHAPTER 6. XGBOOST RESULTS ANALYSIS 69

the output values of 0.4 and 0.6. Of the electron-like events, there are a number
of ‘mostly’ electron-like events with probabilities in the range of 0.6 to 0.9, but
no events with softmax probabilities above 0.9. This contrasts to the neutron-like
events, of which there are relatively fewer ‘mostly’ neutron-like events in the range
of 0.1 to 0.4 and more ‘definitely’ neutron-like outputs with softmax probabilities
around 0.0 to 0.1.

While the combined decision plot is useful in understanding trends in feature
contributions and model outputs across many events, it is possible to obtain higher
granularity visualizations across a much larger number of events. Another type
of visualization, the ‘beeswarm’ plot, shows the range and density of SHAP val-
ues for individual features on the colorbar scale of the feature values themselves.
Again, the feature are arranged on the vertical axis by feature importance, with
the most important features (by average SHAP value) on the top and the least
important features on the bottom. This type of visualization is more amenable to
representing a higher magnitude of events. Figure 6.5 shows the beeswarm plot for
all events in the neutron capture and spallation electron background dataset. This
plot allows for the discernment of additional patterns in the dataset. In addition
to the beeswarm plot in Fig. 6.5, Fig. 6.6 shows the feature differences for this
spallation dataset. Referencing between the beeswarm and the feature differences
plot provides insight into what is influencing the decision making patterns of the
XGBoost model.

The most clear patterns from Fig. 6.5 are shown for number of hits and distance
to the wall. For high number of hits, the SHAP value is uniformly negative. Cor-
respondingly, in Fig. 6.6, it is clear that events with more than approximately 100
hits are uniformly neutron events (top-left plot). For the wall distance, it is clear
from Fig. 6.6 that there are is a slight over-representation of background events
at distances close to the wall. The XGBoost model clearly notices this difference,
as events with lower wall distances (Fig. 6.6, blue) mostly have higher SHAP val-
ues, meaning the model output value is pushed higher to 1, for which the event
is classified as an electron event. This pattern holds for the neutron capture and
low energy background dataset (beeswarm plot in Fig. 8.9 and feature difference
plot in Fig. 8.7) and is similar to a reduced extent for the high energy background
dataset (beeswarm plot in Fig. 8.4 and feature difference plot in Fig. 8.2). In
both cases, for the number of hits and wall distance features, the relative number
of events with these extremes (very high number of hits, very low distance to wall)
is low. This is seen by the thin lines in the beeswarm plot. Every dot in the plot

CHAPTER 6. XGBOOST RESULTS ANALYSIS 70

0.4 0.2 0.0 0.2 0.4
SHAP value (impact on model output)

RMSangle
tRMS
moa

3
dWall

charges
1

nhits
5
2

hitDist
4

Low

High

Fe
at

ur
e

va
lu

e

Figure 6.5: Beeswarm plot of SHAP values for the neutron capture and spallation background
dataset simulated using WCSim for the IWCD tank geometry. The SHAP value for each feature in
every event is plotted as a dot in the plot, where the x axis position corresponds to the SHAP value
and the colorbar shows the feature value (blue is low, red is high). High SHAP values influence the
model output towards 1 (electron-like event) and low SHAP values (negative) influence the model
outputs toward 0 (neutron-like event).

represents a single event, and bulges in a feature row represent a greater density of
events at that position. The thinness for number of hits and wall distance indicates
that, while there are relatively fewer events with very high number of hits or very
low distance to wall, these kinds of events are highly influential in determining the
event output, as shown by the correspondingly high SHAP values.

The beeswarm Fig. 6.5 also reveals a notable difference between the lower order
(β1, β2, β3) and higher-order (β4, β5) isotropy parameters. β1, β2 and β3 both
have single mode representations in the beeswarm plot, in which there is a single
bulge. Higher values for these parameters also attribute the output toward a neu-
tron classification, on average. This correspondence may be seen by the feature
difference plot in Fig. 6.6. Alternately, β4 and β5 have two main modes (bulges)
in the SHAP value beeswarm plot, indicating two main regions with SHAP values

CHAPTER 6. XGBOOST RESULTS ANALYSIS 71

0 50 100 150 200 250 300
0.000

0.005

0.010

0.015

0.020

0.025
Number of Hits

background
neutron

0 50 100 150 200 250 300
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200
Charge Sum

background
neutron

0.0 0.2 0.4 0.6 0.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0
1

Bcgd
Neutron

0.1 0.0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

14

2
Bcgd
Neutron

0.1 0.0 0.1 0.2 0.3 0.4
0

5

10

15

20

25

30

35

3
Bcgd
Neutron

0.1 0.0 0.1 0.2 0.3
0

5

10

15

20

25

30

35
4

Bcgd
Neutron

0.10 0.05 0.00 0.05 0.10 0.15 0.20 0.25
0

5

10

15

20

25

30

35
5

Bcgd
Neutron

0 50 100 150 200 250 300
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008
Distance to Wall

Bcgd
Neutron

0 100 200 300 400 500
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

RMS Time
Bcgd
Neutron

20 40 60 80 100 120 140
0.000

0.005

0.010

0.015

0.020

0.025
Mean Opening Angle

Bcgd
Neutron

10 20 30 40 50 60
0.00

0.02

0.04

0.06

0.08

RMS Consecutive Angle
Bcgd
Neutron

100 200 300 400 500 600 700
0.000

0.001

0.002

0.003

0.004

0.005

Consecutive Hit Distance
Bcgd
Neutron

Figure 6.6: Comparison of twelve engineered features separated by neutron capture and spallation
electron background events. The data consists of nearly 1.6 million events, generated by WCSim
for the IWCD detector geometry.

of a similar range. For β5, a clear distinction is seen between lower values of β5,
attributed toward neutron events, and higher values of β5, attributed toward elec-
tron events. While this difference is clear, the SHAP values themselves are lower,
showing a smaller output impact. This small difference is observable in Fig. 6.6 as
well for β5.

This double-moded pattern is visible to a lesser extent for the neutron capture
and low energy dataset, shown in Fig. 8.9. In this case, the lowest order isotropy
parameter β1 has such overlap that the beeswarm plot shows little asymmetry

CHAPTER 6. XGBOOST RESULTS ANALYSIS 72

around the SHAP value of 0. Both β2 and β3 have SHAP values which tend to-
ward an electron output for lower isotropy values, similar to the spallation electron
dataset, and vice versa. Both β4 and β5 show a similar double moded pattern in
the beeswarm plot with β4 in particular tending to have negative SHAP values
for low β4 isotropy values. The beta parameters are generally less important in
the beeswarm plot of the high energy background dataset (appendix, Fig. 8.4), al-
though it can be clearly seen that high β2, high β3 and low β4 values correspond to
neutron outputs (negative SHAP values), which corresponds exactly to the feature
difference plot (Fig. 8.2).

For the spallation dataset, β4 has a similar double-moded pattern in the beeswarm
plot, but the attributed difference is smaller for lower and higher values of the pa-
rameter. However, β4 still has the greatest average absolute SHAP value, and
therefore the greatest average impact on the model output. This is why β4 is
shown as the most important feature. The β4 parameter is also the most impor-
tant feature for the low energy dataset. While the beeswarm plots list the feature
importance rankings of the various features, it does not show the relative impor-
tance quantities. The relative feature importance quantities are represented in the
bar plot in Fig. 6.7 for the spallation dataset, and in the appendix Figs. 8.5 and
8.10 for the high and low energy background datasets, respectively. In this plot, the
features are ranked by the mean absolute SHAP value, with the most important
feature at the top and least important feature at the bottom. The bar widths on
the x axis show the value of the mean absolute SHAP value for that feature. This
plot helps to visualize the relative importance of the features.

For the spallation and low energy background datasets, the relative feature im-
portances decrease gradually from β4 down to the RMS consecutive hit PMT angle.
This is an indicator of more complicated decision making processes in the boosted
decision trees. This is in contrast with the feature importance plot for the high
energy background dataset (Fig. 8.5) for which the charge sum is the clearly most
important feature, followed by a steep dropoff for the number of hits, β1, etc. down
to the RMS event time. This importance barplot indicates a more simplistic de-
cision making process for XGBoost for this dataset, based mainly on the charge
sums and only secondarily on the other features in the event.

CHAPTER 6. XGBOOST RESULTS ANALYSIS 73

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
mean(|SHAP value|)

RMSangle
tRMS
moa

3
dWall

charges
1

nhits
5
2

hitDist
4

Figure 6.7: The relative feature importances are shown for the neutron capture and spallation
electron background dataset, ranked by average absolute SHAP value. These results show that
the beta parameters (mostly β4), the event number of hits, and the average distance between
consecutive PMT hits in a given event are the most importance features for the XGBoost model to
predict event outcomes.

Chapter 7

GNN Application

In this study, the PyTorch Geometric (PyG) library was used to apply graph neural
network models to the IWCD dataset [89]. This particular library was chosen for
its ease of use, breadth of graph network models available, data loading tools and
GPU support. The method developed for graph model training using PyG follows
a common framework. The code reads in the configuration hyperparameters (GNN
model architecture, number of epochs, batch size, etc.), the PyG DataLoader ob-
jects are constructed for the train, test and validation datasets (the DataLoaders
receive instructions on graph construction) and then the model is trained by iter-
ating over the training dataset for the predetermined number of epochs. At regular
intervals, the model is applied to the validation dataset to check for underfitting
or overfitting. After the model has been trained, it is applied on the test dataset
and evaluation metrics are computed. For all models the data was partitioned in a
80%, 10%, 10% split of training, validation and testing data, consisting of approx-
imately 1.2, 0.2 and 0.2 million data examples respectively. During training, the
model parameters were updated using Adam optimization [90] with cross-entropy
loss. Training was carried out on a Quadro P2000 GPU.

7.1 GCN

Before a graph network model can be trained on the simulated IWCD particle
datasets, the graph construction procedure must be specified. Every event in the
IWCD data consists of a given number of hits, with each hit containing the time,
deposited charge and the 3-dimensional position and 3-dimensional orientation of
the hit PMT. This data format translates naturally to a graph structure, for which
each hit may be represented by a node consisting of the eight features mentioned

74

CHAPTER 7. GNN APPLICATION 75

above.
However, several factors complicate the question of graph construction. It is

not immediately obvious which nodes should be connected or, for the connected
nodes, what edge weightings they should have. Additionally, the number of hits
varies for every event. Therefore, the corresponding graphs could either vary in
size (dynamic graph) or zero padding could be added to those events with less
than the maximum number of hits to fix the graph input dimension (fixed graph).
To manually create a new ‘dataloader’ object in PyG, the get() and len()
methods from the default PyG dataloader class must be overridden to determine
how to retrieve an individual graph and its corresponding length. The features
x, labels y and adjacency matrix of the graph must be specified in the get()
method. To accommodate the various graph construction options for this problem
domain, the manual WCH5Dataset class was written. WCH5Datasets inherits
from the PyG base Dataloader class, and tunable runtime parameters were created
that turn on, turn off or adjust the graph construction implementation within
WCH5Dataset.

The graph convolutional network (GCN) model described in Section 3.4 was the
first GNN model applied on the IWCD particle data. Three graph construction
methods were compared within the GCN framework to test performance. This
includes using a static (fixed size) versus dynamic graph, edge weighting (inversely
proportional to distance) versus uniform weights, and a fully connected graph ver-
sus the k nearest neighbour graph. This testing was done in a similar fashion to
the hyperparameter tuning of XGBoost in Section 6. After one graph construc-
tion choice was found to work better (e.g. static graph vs dynamic graph), that
particular method was then employed in the later tests.

To begin, the GCN model was tested on graphs constructed using a static (zero
padding, fixed input size), fully connected (every node connected to every other
node) graph representation, with all edge weightings set to a value of one. Given
450 maximum hits per event, the corresponding fully connected, static network
consisted of 202,500 node connections in total. The parameters of the GCN model
architecture itself, including the number of filtering layers and activation nodes,
were also tested and fixed for these tests. Consistently good performance was
obtained from the configuration of two alternating layers of GCN convolutional
filtering and activation computation, with 24 and 8 compute nodes in the first
and second hidden layers respectively. This was followed by max pooling across all
graph nodes and then the log softmax of a fully connected layer with two activations

CHAPTER 7. GNN APPLICATION 76

at the output layer. All results were obtained by training with a batch size of 32,
learning rate of 0.0003 and learning rate decay of 0.001%. The model was tested
on the validation dataset every 30,000 iterations and the model parameters were
saved if the result improved on the previous best validation score.

The first graph construction comparison tested whether the GCN model learned
better on static, padded graphs or dynamic graphs (no padding) with a variable
number of nodes per event. The results of training the GCN model for the three
neutron capture datasets with spallation, low energy, and high energy electron
backgrounds on static, fully connected event graphs with uniform edge weightings
are shown in Table 7.1. Corresponding results for GCN results on dynamic, fully
connected graphs with uniform edge weightings graphs are shown in Table 7.2.
The performance is higher for the static graph construction method than using a
dynamic graph across all datasets and metrics. The average test accuracy improve-
ment is 9.85% for the static compared to the dynamic graphs. The difference is
most notable on the high energy background dataset for which the static graph
represents a 17.8% improvement.

Background Source Train Accuracy Validation Accuracy Test Accuracy ROC AUC
Spallation 61.3 63.1 63.1 0.667

Low Energy 56.7 57.5 57.4 0.603
High Energy 79.2 79.7 79.6 0.860

Table 7.1: GCN model applied to fixed input (zero padding added), fully connected and uniformly
edge weighted graphs for the simulated IWCD neutron capture datasets with backgrounds of spal-
lation, low energy and high energy electron radiation.

Background Source Train Accuracy Validation Accuracy Test Accuracy ROC AUC
Spallation 58.5 59.8 59.9 0.628

Low Energy 53.3 55.2 55.1 0.572
High Energy 62.6 65.4 65.4 0.704

Table 7.2: GCN model applied to dynamic (number of nodes varies per event), fully connected and
uniformly edge weighted graphs for the simulated IWCD neutron capture datasets with backgrounds
of spallation, low energy and high energy electron radiation.

While accuracy was higher for the static, padded graphs, the runtime was also
considerably longer than for the dynamic graphs. This was due to the signifi-
cantly greater number of connections and message passing operations in the padded
graphs. Runtime over 5 training epochs for the fixed size, fully connected graphs
took an average of 30 hours. This runtime of approximately 6 hours per epoch

CHAPTER 7. GNN APPLICATION 77

contrasts to only 14 minutes per epoch with the dynamic, fully connected graphs,
which is over 25 times faster. Table 7.2 shows the results of dynamic GCN training
over 75 training epochs, which took approximately 17 hours, while the results in
Table 7.1 are from the fixed input GCN model trained over 5 epochs. A higher
number of epochs was not found to improve the performance for either model.

The results in Tables 7.1 and 7.2 indicate the GCN model learns better on
input graphs of a fixed size for this problem domain. The GCN model essentially
implements a low-pass filter, or smoothing operation over the graph nodes, followed
by node activation updates through fully-connected layers. The fixed size graph
representation could have the effect of ‘leveling the playing field’ and enabling the
model to have greater generalizibility and consistency across different events. The
variability of the graph representation is significant especially for events with few
hits, and this difference could trick the model, or cause it to learn more slowly,
compared with a fixed size input representation.

After setting the graph representation to static (fixed input size with zero
padding added), the effect of distance weighting on the node edges was investi-
gated to see if in the fully connected graph, where every node is connected to every
other node, edge weightings related to physical distance could provide a learn-
ing advantage over uniform edge weightings set to a tensor of ones. A function
‘dist pos matrix’ was written to return the edge weights for a given event. This
function extracts the position information for the PMTs in the event, then calls on
the ‘distance matrix’ function from the SciPy spatial Python library to construct
the matrix of distances from every node to every other node in the event. The
reciprocal function is applied to the matrix elements such that closer hit pairs have
larger weights and sparser node pairs lower weights. The matrix is then normalized
and converted to compressed sparse row format, from which it may be converted
into PyTorch Geometric edge indices and edge attributes (weights) using the cor-
responding function in ‘torch geometric.utils.convert.’

The results of training GCN on fully connected, static, inverse distance edge
weighted graphs is shown in Table 7.3. Runtimes are nearly identical to the same
model with fixed edge weights. While all test accuracies and ROC AUC scores
are higher for the static, edge weighted graphs than the dynamic graphs (Table
7.2), the scores are lower than the static, padded, uniform edge weighted graphs in
Table 7.1. Indeed, with weighted edges the test accuracies are 5.05% lower and the
ROC AUCs are 4.76% on average than with the uniform edge weights on the static
graphs. This somewhat unintuitive result is perhaps representative of the fact that,

CHAPTER 7. GNN APPLICATION 78

on the scale of hundred of thousands of node connections for IWCD particle events,
edge weightings might overcomplicate the GCN parameter learning.

Background Source Train Accuracy Validation Accuracy Test Accuracy ROC AUC
Spallation 59.7 61.3 61.4 0.632

Low Energy 53.1 57.0 56.9 0.600
High Energy 75.6 71.7 71.7 0.849

Table 7.3: GCN model applied to fixed input (static), fully connected graphs with edge weights
between nodes corresponding to their positional inverse squared distance for the simulated IWCD
neutron capture datasets with backgrounds of spallation, low energy and high energy electron
radiation.

The GCN model with uniform edge weights was also tested on graphs for which
every node was only connected to its k positional neighbours. Compared to the
fully connected graphs, this lowered the number of node connections to 450 ∗ k. For
k = 20, for example, this reduced the number of edges to 9000, less than the fully
connected graph by a factor of 22.5. On average, this led to a runtime of approxi-
mately 50 minutes per epoch, faster than the fixed size, fully connected graphs by
over 700%, but still considerably slower than dynamic sized graphs. The nearest
neighbour edge index tensor was calculated for every node using the ‘knn graph’
function from the ‘torch cluster’ library given the ‘k neighbours’ parameters k. Re-
sults are shown in Table 7.4 for GCN models trained over 25 epochs on the neutron
capture and high energy background dataset for the nearest neighbour graphs with
k ranging from 10 to 30 in increments of 5. In general, the accuracy and ROC
AUC scores for the k nearest neighbour GCN models are similar for all k values
between 15 and 30, and consistently slightly underperform the static, fully con-
nected, uniform edge weighted graphs. Training was not found to improve beyond
25 epochs.

k neighbours Train Accuracy Validation Accuracy Test Accuracy ROC AUC
10 76.8 78.2 78.1 0.839
15 77.4 79.0 78.8 0.846
20 77.8 78.9 78.7 0.847
25 78.1 79.0 78.9 0.850
30 78.1 79.0 78.8 0.849

Table 7.4: GCN model applied to event graphs with each node connected to its k-nearest positional
neighbours, with uniform edge weights between nodes, for the simulated IWCD neutron capture
datasets with high energy electron background radiation. The k number of nearest neighbours was
varied from 10 to 30 in increments of 5.

CHAPTER 7. GNN APPLICATION 79

Overall, the GCN model was found to perform best on static, fully connected,
uniform edge weighted graphs. The results are shown in Table 7.1. This GCN con-
figuration has comparable metrics to the highest likelihood baseline (see Table 4.1,
q sum), with 0.6% higher accuracy on the spallation set, no difference on the low
energy dataset, on a 0.2% lower accuracy on the high energy dataset. Therefore,
it may be concluded that the GCN model was largely learning to classify events
based on the trivial number of hits, and that it failed to significantly learn from
the geometric differences of neutron capture to electron background hit patterns.
Adding any additional network layers to the GCN models was also found to worsen
performance, presumably as the extra filtering step oversmoothes the node repre-
sentations. Overall, the GCN model is perhaps better suited to contexts with fewer
and more meaningful node connections and edge weightings, such as social networks
and credit found identification, rather than the ‘point cloud’ representation of the
particle events.

7.2 DGCNN

The DGCNN model was the next graph network model applied to the particle
classification task. Described in Section 3.4, the DGCNN model was selected for
its ability to learn from point cloud data specifically. The network architecture
configuration was set to the default from the PyTorch Geometric example docu-
mentation, which consisted of the following: two dynamic edge convolution layers
followed by a fully connected layer, a global max pooling layer and a final MLP
to yield the output class probabilities. The first edge convolution layer applied
an MLP on input node features with three layers of 64 compute units each. The
second edge convolution layer took the output of the first as input and applied
an MLP with a single layer and 128 output units. In both cases, the MLP was
applied to every node pair (n ∗ 2 pairs for n nodes in an event) over the k-nn
(k nearest neighbour) graph representation of each node, and the representations
were updated by pooling the learned edge features (Fig. 3.6). The penultimate
fully connected layer concatenated the 64 and 128 unit features from the first two
dynamic edge convolution layers, passing this input to a 1024 unit output. Global
max pooling was applied over the n nodes to reduce the representation from n∗1024
to only 1024. The final MLP then passed this information into final layers of 512,
256 and 2 activation nodes respectively and the softmax of the output was applied
to calculate the output the binary classification probabilities. Note that for every

CHAPTER 7. GNN APPLICATION 80

fully connected layer throughout the network, the activations were calculated using
the RELU activation function and batch normalization [91] to reduce overfitting.
The model description is represented in Table 7.5.

Layer Input Features Output Features
EdgeConv1 (MLP1) n ∗ 2 ∗ 8 n ∗ 64

n ∗ 64 n ∗ 64
n ∗ 64 n ∗ 64

EdgeConv2 (MLP2) n ∗ 2 ∗ 64 n ∗ 128
FC n ∗ (64 + 128) n ∗ 1024

Global Max Pooling n ∗ 1024 1024
MLP3 1024 512

512 256
256 2

Table 7.5: Applied DGCNN architecture for neutron capture and electron background event dis-
crimination. Two dynamic edge convolutional blocks were applied, followed by a fully connected
layer, global max pooling, and a final multi-layer perceptron layer.

With the fixed architecture as described in Table 7.5, the number of nearest
neighbours k in the DGCNN dynamic edge convolution blocks were adjusted over
multiple runs to compare performance. Table 7.6 shows the results of applying the
DGCNN model on the spallation background dataset with the k hyperparameter
varying from 10 to 30 in increments of 5. The resulting accuracies were largely
the same for k = 15 to k = 30, while k = 10 neighbours led to a markedly lower
accuracy. Among the range of k = 15 to k = 30, k = 25 yielded the highest ROC
AUC score of 0.797, although the 0.001 difference compared to the other k values
in the range was not necessarily statistically significant.

k neighbours Train Accuracy Validation Accuracy Test Accuracy ROC AUC
10 70.9 72.0 71.9 0.792
15 71.8 72.2 72.3 0.796
20 71.7 72.3 72.3 0.796
25 71.8 72.4 72.4 0.797
30 71.4 72.4 72.4 0.796

Table 7.6: DGCNN model classification accuracies for variations of the number of nearest neighbours
k in the DGCNN dynamic edge convolution blocks from 10 to 30 in increments of 5.

While there was minimal performance difference for the range of k = 15 to
k = 30, there was however a large variance in the training times. This was ex-
pected as, for n f -dimensional input nodes, an n ∗ k ∗ an -dimensional tensor is

CHAPTER 7. GNN APPLICATION 81

generated before pooling across the neighbouring edge features (Fig. 3.6) for every
dynamic edge convolution block. Therefore the total number of training parame-
ters increases significantly for every increment of nearest neighbours k. Figure 7.1
shows a barplot of training times for the DGCNN model for k from 10 to 30. This
figure demonstrates a sharp increase in training time after about k = 20 and more
than a doubling in overall training time from k = 10 to k = 30.

Figure 7.1: DGCNN model training times (in hours) for varying number of nearest neighbours k
for the construction of the k-nn graph in the dynamic edge convolutional block.

Given the results in Table 7.6 and Fig. 7.1, k = 20 appears to be a good
compromise between training time and classification accuracy. However, when
training time is not a significant impediment, k = 25 might be used to optimize
results. This k = 20 value was applied with the DGCNN model architecture as
described in Table 7.5 for comparison across the other datasets, including the highE
and lowE background neutron capture datasets. Table 7.7 shows the results for this
configuration.

Compared to the likelihood statistical baseline, the DGCNN model results in
Table 7.7 showed accuracy improvements of 9.9%, 9.6% and 2.4% for the neutron
capture datasets with background of spallation, low energy and high energy respec-
tively. Where the classification accuracy by likelihood was already high (∼ 80% on
highE dataset), the improvement was lowest. The ∼ 10% classification accuracy
improvements on the spallation and lowE datasets strongly indicates the capability
of the DGCNN model to learn from event topology and other, more subtle factors

CHAPTER 7. GNN APPLICATION 82

Background Source Train Accuracy Validation Accuracy Test Accuracy ROC AUC
Spallation 71.8 72.4 72.4 0.797

Low Energy 67.0 67.1 67.0 0.740
High Energy 82.3 82.3 82.2 0.904

Table 7.7: DGCNN model with k = 25 nearest neighbours in the edge convolution block and model
configuration described in Table 7.5 applied to the neutron capture datasets with backgrounds of
spallation, low energy and high energy electron radiation for the simulated IWCD geometry.

than the number of hits and overall sum of charges within the event. The dynamic
method of graph construction with the DGCNN model, which shuffles the group-
ings of every node with its other nearest neighbour nodes in semantic space, allows
the diffusion of nonlocal information throughout the graph. This ostensibly allows
the DGCNN model to learn global event topology in a way which the GCN model,
restricted to operating over fixed input graphs, was not able to.

Overall, the DGCNN also slightly outperformed the best XGBoost model for the
more difficult lowE and highE background datasets, representing improvements in
accuracy of 1% and 0.7% and ROC AUC score of 0.013 and 0.007 respectively.
However, the XGBoost model outperformed DGCNN for the less difficult highE
background classification task, yielding a 1.4% higher classification accuracy and
0.015 higher ROC AUC.

The overall test accuracy results for all approaches undertaken in this study,
including the likelihood baseline analysis, XGBoost with feature engineering and
the GCN and DGCNN models are presented in Table 7.8. The best accuracies for
each of the neutron capture and spallation, lowE and highE electron background
datasets are shown in bold as 72.4% (DGCNN), 67.0% (DGCNN) and 83.6% (XG-
Boost) respectively.

Dataset Background Source Likelihood XGBoost GCN DGCNN
Spallation 62.5 71.4 63.1 72.4

Low Energy Electron 57.4 66.3 57.4 67.0
High Energy Electron 79.8 83.6 79.6 82.2

Table 7.8: Overall accuracies for neutron capture versus electron background classification for the
likelihood analysis (Likelihood), XGBoost, GCN and DGCNN methods over the datasets consisting
of neutron capture and spallation (Spallation), low energy (Low Energy Electron) and high energy
(High Energy Electron) electron background events. The best accuracies were found to be 72.4%
for the spallation dataset (DGCNN), 67.0% for the low energy background dataset (DGCNN) and
83.6% for the high energy background dataset (XGBoost).

Chapter 8

Conclusions

This thesis has presented a search to improve the classification performance of neu-
tron capture identification in water Cherenkov detectors using techniques in ma-
chine learning. Beyond the original dataset of neutron captures and high energy
electron background (‘highE’), two new datasets were synthesized using WCSim
simulation software that vary the electron background energy scale to lower ener-
gies (‘lowE’) and that mimic a muon spallation background source (‘spallation’).
To provide a performance baseline, a statistical model was applied to classify events
using maximum likelihood of kernel density estimates of the main event type dis-
criminants, namely the number of hits and charge sums. The highest baseline accu-
racies were found to be 62.5%, 57.4% and 79.8% for the spallation, lowE and highE
datasets respectively. Of note, an informal procedure of randomizing event displays
and manually classifying by eye was undertaken over several hundred events. The
neutron capture signal and background events overlapped visually to the extent
that no improvement was obtained by this human-level performance estimation
over the likelihood baseline approach.

Next, a series of features were engineered from the datasets. Besides number
of hits and charge sums, the beta parameters β1-β5 were created to capture event
isotropy. The mean opening angle, event vertex distance to wall, RMS consecu-
tive hit angle and mean consecutive hit distance were also computed to summarize
event topology and the RMS event time was added to capture timing discrimina-
tion. Gradient boosting decision trees were applied on these engineered features
using the XGBoost algorithm. The XGBoost model hyperparameters were tuned
for each dataset to optimize performance, yielding test accuracies of 71.4%, 66.3%
and 83.6% for the spallation, lowE and highE datasets, representing improvements
of 8.9%, 8.9% and 3.8% over the baseline approach respectively. SHAP analysis of
these model outputs revealed useful information. For the more challenging lowE

83

CHAPTER 8. CONCLUSIONS 84

and spallation datasets, the β2, β4, β5, number of hits and consecutive hit distance
parameters were consistently rated most important, as measured by the mean ab-
solute SHAP value, while the number of hits and charge sums were the overwhelm-
ingly most important by far for the highE dataset. This emphasized the relevance
of energy distribution comparison. Given particle events over similar energy ranges,
where hit statistics are more closely related, classification improvements were most
accessible from accessing the topological and geometric discrimination information.
The SHAP beeswarm plots also helped to understand at a granular level how XG-
Boost made its decisions by presenting the features and feature values which tended
to influence classification towards neutron capture or background.

Drawbacks to the XGBoost and the feature engineering approach include pre-
processing time to calculate the feature values and the fact that the calculation
of several features relies on the event vertex position. For this research, the true
vertex position was taken from the simulation information, but in reality a vertex
reconstruction algorithm would need to be used, introducing some uncertainties
into the equations. As an alternative approach, deep learning was introduced to
the neutron tagging classification problem via graph neural networks. Graph neural
networks can operate on the original particle data directly, and the representation
of hit PMTs to nodes is natural and fits to the cylindrical IWCD geometry without
loss of information.

The graph convolutional network (GCN) model was the first graph network
implemented, and a variety of graph construction approaches were tested. This
included static, fully connected graphs with zero padding, dynamic graphs with
hit PMTs constituting the only graph nodes, graphs with uniform edge weights,
edge weighting scaled to inverse positional PMT distance, and graphs with each
node connected only to the k nearest neighbour nodes in position space. Of all
these cases, the best test accuracies obtained were 63.1%, 57.4% and 79.6% for
the spallation, lowE and highE datasets respectively, using the fully connected,
zero padded, uniform edge weighted graphs. These accuracies were nearly iden-
tical to the baseline likelihood accuracies, providing a strong indication that the
graph networks were learning mainly from the number of hits in the event, or the
number of non-zero nodes. At the least, there was little evidence that any learning
was accomplished from the characteristic hit pattern geometry differences between
the event types. Besides the GCN, other models like the AGNN, [92], SG [93] and
GAT [94] were applied and all results were similar to, or somewhat poorer than, the
results from the GCN. Notwithstanding significant efforts in hyperparameter opti-

CHAPTER 8. CONCLUSIONS 85

mization and graph construction, performance hit a threshold near the likelihood
baselines. For example, adding additional layers in the GCN was found to decrease
performance as the filtering operations oversmoothed the node representations.

The dynamical graph convolutional neural network (DGCNN) was the only GNN
model found to have significantly improved neutron tagging performance above
baseline metrics in this research. Compared to the other GNN models, which pass
their feature states as messages between nodes, the DGCNN model learns edge
features between node pairs. The 16 input features between node pairs (charge,
time, 3D position and 3D orientation of each node) are passed through an MLP with
learnable parameters. This allows the model to learn both global features, since
the MLP has shared parameters over all node pairs, and local features, since the
weights between input features are learnable. This allows the model to determine
the relevance between, for example, the y-coordinate PMT orientation of one node
and the recorded charge of the other. This imbues the DGCNN model a capacity for
granularity of learning that surpasses the node neighbour feature vector averaging
mechanism of other GNN models.

In addition, although the other GNN models consisted of fully connected net-
works capable of diffusing information throughout the entire graph, the magnitude
of connections could have led to oversmoothing in the network. This is similar to
the effect of a low-pass filter, especially in cases where there are many 0-valued
nodes and relatively few hit PMTs. With the DGCNN model, every node is con-
nected to its k most relevant neighbouring nodes in terms of semantic similarity.
Therefore, nodes are only connected to their key neighbours, while the dynamic
recomputation of graphs in successive model layers also enables the nonlocal diffu-
sion of information throughout the network. This overall computational structure
is hypothesized to be an important factor for the improved neutron tagging per-
formance of the DGCNN model compared to the other GNN models that were
implemented.

With the DGCNN model, the hyperparameter k was tuned and reported accura-
cies were found to be 72.4%, 67.0%, and 82.2% for the spallation, lowE and highE
datasets respectively, representing improvements of 9.9%, 9.6% and 2.4% over the
baseline metrics. Thus, DGCNN slightly outperformed XGBoost on the more chal-
lenging lowE and spallation datasets, while slightly underperforming XGBoost on
the less challenging highE dataset. DGCNN, however, retains the advantage of
not requiring any preprocessing or prior knowledge. On the other hand, XGBoost
provides a much greater level of model interpretability. Furthermore, once the engi-

CHAPTER 8. CONCLUSIONS 86

neered features have been computed, the training time of XGBoost for the datasets
used in this study was within the range of only 45 minutes to one hour, much faster
than the DGCNN model which took from 30 to over 60 hours, depending on the
value of k. However, DGCNN was trained over only a single GPU, and using
multiple GPUs could reduce the runtime significantly. Table 7.8 shows the overall
results of XGBoost, GCN and DGCNN compared to the likelihood baseline for all
datasets.

Of note, the GCN model might work better for a graph setup where the nodes in-
clude all PMTs in the geometry of the WC detector. However, the sheer magnitude
of computation would certainly be a large bottleneck. The fixed input GCN model,
with 500 nodes, had a runtime of approximately 6 hours per epoch. Expanding
this up to tens of thousands of nodes to cover the full range of a WC detector could
easily introduce over 100 times more connections, potentially causing a runtime on
the order of 1000 hours for only a single training epoch.

Overall, both XGBoost with feature engineering and DGCNN show promise in
improving neutron tagging efficiency in water Cherenkov detectors. In particular,
the application of these methods in the IWCD might help reduce systematic un-
certainties for the Hyper-Kamiokande detector, which it turn could advance our
understanding of neutrino physics and the Standard Model itself. In future, the
network architecture of the DGCNN model could be optimized. While the k value
and learning rates were tuned, optimization of hyperparameters like the number of
units in the shared MLP or number of model layers could improve performance.
Also, the models developed in this study could be applied in other contexts besides
neutron tagging. In particular, it would be interesting to see if these models could
be applied to classification of various particles in the high energy regime.

For practical purposes, given that these models were developed for data simula-
tion, another reasonable next step would include the deployment of these models for
neutron tagging in active water Cherenkov detectors. This would test if the models
are transferable for real use cases. Also, these models could be incorporated into
a pipeline which tests for the coincidence of neutron capture and positron rings
within a timescale indicative of neutrino inverse beta decay. While the develop-
ment of improved neutron tagging is desirable, the ultimate goal is to trace back
to the originating neutrino to probe deeper into the unknowns of neutrino physics.
An end-to-end network could thus be deployed using the neutron tagging mod-
els developed in this research to better identify the neutrinos themselves in the
overarching process of the neutrino inverse beta decay.

Bibliography

[1] Hernández, P. (2016). IFIC, Universidad de València and CSIC, E-46071 Va-
lencia, Spain. 2015 CERN–Latin-American School of High-Energy Physics, 85.

[2] Ecker, G. (2020). James Chadwick: ahead of his time. arXiv preprint
arXiv:2007.06926.

[3] Bilenky, S. M. (2013). Neutrino. History of a unique particle. The European
Physical Journal H, 38(3), 345-404.

[4] Pontecorvo, B. (1946). Inverse beta decay. Chalk River Report PD-205, 15.

[5] BETHE, H., PEIERLS, R. The Neutrino. Nature 133, 689–690 (1934). https:
//doi.org/10.1038/133689b0

[6] Anderson, E. C. The Reines-Cowan Experiments.

[7] The hunt for the muon neutrino. NobelPrize.org. Nobel Media AB 2021. Sun.
21 Feb 2021. https://www.nobelprize.org/prizes/physics/1988/9557-
the-hunt-for-the-muon-neutrino/

[8] Davis, R., Jr. (2003). The Nobel Prize in PHYSICS 2002. https://www.nobe
lprize.org/prizes/physics/2002/davis/biographical/

[9] Pinch, T. (1985). Theory testing in science—the case of solar neutrinos: Do
crucial experiments test theories or theorists?. Philosophy of the Social Sci-
ences, 15(2), 167-187.

[10] Fukuda, Y., Hayakawa, T., Ichihara, E., Inoue, K., Ishihara, K., Ishino, H., ...
& Super-Kamiokande Collaboration. (1998). Evidence for oscillation of atmo-
spheric neutrinos. Physical Review Letters, 81(8), 1562.

87

https://doi.org/10.1038/133689b0
https://doi.org/10.1038/133689b0
https://www.nobelprize.org/prizes/physics/1988/9557-the-hunt-for-the-muon-neutrino/
https://www.nobelprize.org/prizes/physics/1988/9557-the-hunt-for-the-muon-neutrino/
https://www.nobelprize.org/prizes/physics/2002/davis/biographical/
https://www.nobelprize.org/prizes/physics/2002/davis/biographical/

BIBLIOGRAPHY 88

[11] Ahmad, Q. R., Allen, R. C., Andersen, T. C., Anglin, J. D., Barton, J. C.,
Beier, E. W., ... & Smith, A. R. (2002). Measurement of day and night neu-
trino energy spectra at SNO and constraints on neutrino mixing parameters.
Physical Review Letters, 89(1), 011302.

[12] Czakon, M., Gluza, J., & Zralek, M. (1999). Are neutrinos Dirac or Majorana
particles?. arXiv preprint hep-ph/9910357.

[13] Frank, I. M. (1971). COHERENT RADIATION OF THE FAST ELECTRON
IN MEDIUM (No. JINR-P4-5954). Joint Inst. for Nuclear Research, Dubna
(USSR). Lab. of Neutron Physics.

[14] Zhou, Y. (2015, June). Analysis on the Design and Application of the Small and
Large Current Photomultiplier Tube. In 2015 2nd International Conference on
Electrical, Computer Engineering and Electronics (pp. 84-87). Atlantis Press.

[15] Bionta, R. M., Blewitt, G., Bratton, C. B., Casper, D., Ciocio, A., Claus, R.,
... & Wuest, C. (1991). Observation of a neutrino burst in coincidence with
supernova 1987A in the Large Magellanic Cloud. In Neutrinos And Other
Matters: Selected Works of Frederick Reines (pp. 340-342).

[16] Hirata, K. S., Kajita, T., Koshiba, M., Nakahata, M., Oyama, Y., Sato, N.,
... & Cortez, B. G. (1988). Observation in the Kamiokande-II detector of the
neutrino burst from supernova SN1987A. Physical Review D, 38(2), 448.

[17] Hirata, K. S., Inoue, K., Ishida, T., Kajita, T., Kihara, K., Nakahata, M., ... &
Zhang, W. (1991). Real-time, directional measurement of B 8 solar neutrinos
in the Kamiokande II detector. Physical Review D, 44(8), 2241.

[18] Fukuda, Y., Hayakawa, T., Ichihara, E., Inoue, K., Ishihara, K., Ishino, H.,
... & Young, K. (1998). Measurements of the solar neutrino flux from Super-
Kamiokande’s first 300 days. Physical Review Letters, 81(6), 1158.

[19] Fukuda, S., Fukuda, Y., Ishitsuka, M., Itow, Y., Kajita, T., Kameda, J., ... &
Super-Kamiokande Collaboration. (2001). Constraints on neutrino oscillations
using 1258 days of Super-Kamiokande solar neutrino data. Physical Review
Letters, 86(25), 5656.

[20] Yokoyama, M. (2017). The hyper-Kamiokande experiment. arXiv preprint
arXiv:1705.00306.

BIBLIOGRAPHY 89

[21] Scott, M. (2016). An intermediate water Cherenkov detector at J-PARC. In
Proceedings of the 10th International Workshop on Neutrino-Nucleus Interac-
tions in Few-GeV Region (NuInt15) (p. 010039).

[22] Collaboration, T., Abe, K., Adam, J., Aihara, H., Akiri, T., Andreopoulos,
C., ... & Koga, T. Measurements of neutrino oscillation in appearance and
disappearance channels by the T2K experiment with 6.6 E20 protons on target.

[23] Barbi, M., Berardi, V. et al. (2019). A Water Cherenkov Test Beam Exper-
iment for Hyper-Kamiokande and Future Large-scale Water-based Detectors.
Scientific Committee Paper, CERN-SPSC-2019-042 [SPSC-I-254].

[24] Akutsu, R. (2021, September 9). The intermediate water Cherenkov detector
for the Hyper-Kamiokande experiment [Conference session]. NuFact 2021: The
22nd International Workshop on Neutrinos from Accelerators, Zurich, Switzer-
land. https://indico.cern.ch/event/855372/contributions/4441604/
attachments/2306169/3923421/NuFact2021 RyosukeAkutsu IWCD v2.pdf

[25] Fernandez, P., & Super-Kamiokande collaboration. (2016). Status of gadzooks!:
Neutron tagging in super-kamiokande. Nuclear and particle physics proceed-
ings, 273, 353-360.

[26] Vagins, M., Ishino, H., & Collaboration, S. K. (2012). GADZOOKS!. Phys.
Rev. Lett, 108, 052505.

[27] Watanabe, H., Zhang, H., Abe, K., Hayato, Y., Iida, T., Ikeda, M., ... &
Super-Kamiokande Collaboration. (2009). First study of neutron tagging with
a water Cherenkov detector. Astroparticle Physics, 31(4), 320-328.

[28] Vagins, M., Ishino, H., & Collaboration, S. K. (2012). GADZOOKS!. Phys.
Rev. Lett, 108, 052505.

[29] Hagiwara, K., Yano, T., Tanaka, T., Reen, M. S., Das, P. K., Lorenz, S., ... &
Collazuol, G. (2019). Gamma-ray spectrum from thermal neutron capture on
gadolinium-157. Progress of Theoretical and Experimental Physics, 2019(2),
023D01.

[30] Bourilkov, D. (2019). Machine and deep learning applications in particle
physics. International Journal of Modern Physics A, 34(35), 1930019.

https://indico.cern.ch/event/855372/contributions/4441604/attachments/2306169/3923421/NuFact2021_RyosukeAkutsu_IWCD_v2.pdf
https://indico.cern.ch/event/855372/contributions/4441604/attachments/2306169/3923421/NuFact2021_RyosukeAkutsu_IWCD_v2.pdf

BIBLIOGRAPHY 90

[31] Radovic, A., Williams, M., Rousseau, D., Kagan, M., Bonacorsi, D., Himmel,
A., ... & Wongjirad, T. (2018). Machine learning at the energy and intensity
frontiers of particle physics. Nature, 560(7716), 41-48.

[32] Guest, D., Cranmer, K., & Whiteson, D. (2018). Deep learning and its appli-
cation to LHC physics. Annual Review of Nuclear and Particle Science, 68,
161-181.

[33] Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., ... &
Zdeborová, L. (2019). Machine learning and the physical sciences. Reviews of
Modern Physics, 91(4), 045002.

[34] Roe, B. P., Yang, H. J., Zhu, J., Liu, Y., Stancu, I., & McGregor, G. (2005).
Boosted decision trees as an alternative to artificial neural networks for particle
identification. Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment, 543(2-
3), 577-584.

[35] Gligorov, V. V., & Williams, M. (2013). Efficient, reliable and fast high-level
triggering using a bonsai boosted decision tree. Journal of Instrumentation,
8(02), P02013.

[36] Cornell, A. S., Doorsamy, W., Fuks, B., Harmsen, G., & Mason, L. (2021).
Boosted decision trees in the era of new physics: a smuon analysis case study.
arXiv preprint arXiv:2109.11815.

[37] Schwartz, M. D. (2021). Modern Machine Learning and Particle Physics. arXiv
preprint arXiv:2103.12226.

[38] Andrews, M., Paulini, M., Gleyzer, S., & Poczos, B. (2020). End-to-end physics
event classification with CMS open data: Applying image-based deep learning
to detector data for the direct classification of collision events at the LHC.
Computing and Software for Big Science, 4(1), 1-14.

[39] Macaluso, S., & Shih, D. (2018). Pulling out all the tops with computer vision
and deep learning. Journal of High Energy Physics, 2018(10), 1-27.

[40] Brickwedde, B., & Nachman, B. P. (2020). Convolutional neural networks with
event images for pileup mitigation (No. ATL-PHYS-SLIDE-2020-030). ATL-
COM-PHYS-2020-001.

BIBLIOGRAPHY 91

[41] ATLAS Collaboration. Identification of Jets Containing b-Hadrons with Re-
current Neural Networks at the ATLAS Experiment. 2017.

[42] CMS Collaboration. (2020). Identification of heavy, energetic, hadronically
decaying particles using machine-learning techniques.

[43] Note, A. P. (2020). Deep Sets based Neural Networks for Impact Parameter
Flavour Tagging in ATLAS.

[44] Shlomi, J., Battaglia, P., & Vlimant, J. R. (2020). Graph neural networks in
particle physics. Machine Learning: Science and Technology, 2(2), 021001.

[45] Qu, H., & Gouskos, L. (2020). Jet tagging via particle clouds. Physical Review
D, 101(5), 056019.

[46] Henrion, I., Brehmer, J., Bruna, J., Cho, K., Cranmer, K., Louppe, G., &
Rochette, G. (2017). Neural message passing for jet physics.

[47] Choma, N., Monti, F., Gerhardt, L., Palczewski, T., Ronaghi, Z., Prabhat, P.,
... & Bruna, J. (2018, December). Graph neural networks for icecube signal
classification. In 2018 17th IEEE International Conference on Machine Learn-
ing and Applications (ICMLA) (pp. 386-391). IEEE.

[48] Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd International Conference on
Knowledge Discovery and Data Mining (pp. 785-794).

[49] Parsa, A. B., Movahedi, A., Taghipour, H., Derrible, S., & Mohammadian, A.
K. (2020). Toward safer highways, application of XGBoost and SHAP for real-
time accident detection and feature analysis. Accident Analysis & Prevention,
136, 105405.

[50] Tahmassebi, A., Wengert, G. J., Helbich, T. H., Bago-Horvath, Z., Alaei, S.,
Bartsch, R., ... & Pinker, K. (2019). Impact of machine learning with multi-
parametric magnetic resonance imaging of the breast for early prediction of
response to neoadjuvant chemotherapy and survival outcomes in breast cancer
patients. Investigative Radiology, 54(2), 110.

[51] Bhattacharya, S., Maddikunta, P. K. R., Kaluri, R., Singh, S., Gadekallu,
T. R., Alazab, M., & Tariq, U. (2020). A novel PCA-firefly based XGBoost

BIBLIOGRAPHY 92

classification model for intrusion detection in networks using GPU. Electronics,
9(2), 219.

[52] Chen, T., & He, T. (2015, August). Higgs boson discovery with boosted trees.
In NIPS 2014 workshop on high-energy physics and machine learning (pp.
69-80). PMLR.

[53] Friedman, J. H. (2001). Greedy function approximation: a gradient boosting
machine. Annals of statistics, 1189-1232.

[54] Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd International Conference on
Knowledge Discovery and Data Mining (pp. 785-794).

[55] Mitchell, R., & Frank, E. (2017). Accelerating the XGBoost algorithm using
GPU computing. PeerJ Computer Science, 3, e127.

[56] Lundberg, S. M., & Lee, S. I. (2017, December). A unified approach to inter-
preting model predictions. In Proceedings of the 31st international conference
on neural information processing systems (pp. 4768-4777).

[57] Shapley, L. S. (1953). Stochastic games. Proceedings of the national academy
of sciences, 39(10), 1095-1100.

[58] Winter, E. (2002). The shapley value. Handbook of game theory with economic
applications, 3, 2025-2054.

[59] LeNail, (2019). NN-SVG: Publication-Ready Neural Network Archi-
tecture Schematics. Journal of Open Source Software, 4(33), 747,
https://doi.org/10.21105/joss.00747

[60] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553),
436-444.

[61] Aloysius, N., & Geetha, M. (2017, April). A review on deep convolutional neu-
ral networks. In 2017 International Conference on Communication and Signal
Processing (ICCSP) (pp. 0588-0592). IEEE.

[62] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classifica-
tion with deep convolutional neural networks. Advances in neural information
processing systems, 25, 1097-1105.

BIBLIOGRAPHY 93

[63] Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., & Khudanpur, S. (2010,
September). Recurrent neural network based language model. In Interspeech
(Vol. 2, No. 3, pp. 1045-1048).

[64] Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., ... & Sun, M. (2020).
Graph neural networks: A review of methods and applications. AI Open, 1,
57-81.

[65] Aurisano, A., Radovic, A., Rocco, D., Himmel, A., Messier, M. D., Niner, E.,
... & Vahle, P. (2016). A convolutional neural network neutrino event classifier.
Journal of Instrumentation, 11(09), P09001.

[66] Abhishek, A., Fedorko, W., de Perio, P., Prouse, N., & Ding, J. Z. (2019). Vari-
ational Autoencoders for Generative Modelling of Water Cherenkov Detectors.
arXiv preprint arXiv:1911.02369.

[67] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G.
(2008). The graph neural network model. IEEE transactions on neural net-
works, 20(1), 61-80.

[68] Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2013). Spectral networks
and locally connected networks on graphs. arXiv preprint arXiv:1312.6203.

[69] Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural
networks on graphs with fast localized spectral filtering. Advances in neural
information processing systems, 29, 3844-3852.

[70] Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907.

[71] Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., & Bronstein, M.
M. (2017). Geometric deep learning on graphs and manifolds using mixture
model cnns. In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 5115-5124).

[72] Ma, Y., & Tang, J. (2021). Deep learning on graphs. Cambridge University
Press.

[73] Hammond, David K., Pierre Vandergheynst, and Rémi Gribonval. ”Wavelets
on graphs via spectral graph theory.” Applied and Computational Harmonic
Analysis 30.2 (2011): 129-150.

BIBLIOGRAPHY 94

[74] Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M., & Solomon, J.
M. (2019). Dynamic graph cnn for learning on point clouds. Acm Transactions
On Graphics (tog), 38(5), 1-12.

[75] Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017). Pointnet: Deep learning on
point sets for 3d classification and segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition (pp. 652-660).

[76] GitHub repository for WCSim: https://github.com/WCSim/WCSim

[77] Agostinelli, S., Allison, J., Amako, K. A., Apostolakis, J., Araujo, H., Arce,
P., ... & Geant4 Collaboration. (2003). GEANT4—a simulation toolkit. Nu-
clear instruments and methods in physics research section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 506(3), 250-303.

[78] Rene Brun & Fons Rademakers, ROOT - An Object Oriented Data Analysis
Framework, Proceedings AIHENP’96 Workshop, Lausanne, Sep. 1996, Nucl.
Inst. & Meth. in Phys. Res. A 389 (1997) 81-86. See also http://root.cern.ch/.

[79] Baldwin, S. (2012, February). Compute Canada: advancing computational
research. In Journal of Physics: Conference Series (Vol. 341, No. 1, p. 012001).
IOP Publishing.

[80] GitHub repository for WCSim: https://github.com/nuPRISM

[81] Wright, D., & Incerti, S. (2012). A short guide to choosing physics lists. Geant4
Tutorial at Jefferson Lab, SLAC.

[82] Bernard, L. (2019). Spallation background in the Super-Kamiokande experi-
ment. Super-Kamiokande Collaboration ICHEP conference, neutrino session.

[83] Li, S. W., & Beacom, J. F. (2014). First calculation of cosmic-ray muon spalla-
tion backgrounds for MeV astrophysical neutrino signals in Super-Kamiokande.
Physical Review C, 89(4), 045801.

[84] Marin, F., Rohatgi, A., & Charlot, S. (2017). WebPlotDigitizer, a polyvalent
and free software to extract spectra from old astronomical publications: ap-
plication to ultraviolet spectropolarimetry. arXiv preprint arXiv:1708.02025.

[85] Abe, K. “Neutron Tagging Following Atmospheric Neutrino Events in a Water
Cherenkov Detector.” Prog. Theor. Exp. Phys., 2013.

BIBLIOGRAPHY 95

[86] Wilson, J. R. (2015). An Experimental Review of Solar Neutrinos. arXiv
preprint 1504.04281.

[87] Dunmore, Jessica A. (2004). The Separation of CC and NC Events in the
Sudbury Neutrino Observatory

[88] Abe, K., Haga, Y., Hayato, Y., Ikeda, et al. (2013). Neutron Tagging following
Atmospheric Neutrino Events in a Water Cherenkov Detector. Prog. Theor.
Exp. Phys. PTEP (and similar studies)

[89] Fey, M., & Lenssen, J. E. (2019). Fast graph representation learning with
PyTorch Geometric. arXiv preprint arXiv:1903.02428.

[90] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

[91] Ioffe, S., & Szegedy, C. (2015, June). Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International confer-
ence on machine learning (pp. 448-456). PMLR.

[92] Thekumparampil, K. K., Wang, C., Oh, S., & Li, L. J. (2018). Attention-
based graph neural network for semi-supervised learning. arXiv preprint
arXiv:1803.03735.

[93] Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., & Weinberger, K. (2019,
May). Simplifying graph convolutional networks. In International conference
on machine learning (pp. 6861-6871). PMLR.

[94] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y.
(2017). Graph attention networks. arXiv preprint arXiv:1710.10903.

Appendix

Sections 5 and 6 present the results of feature engineering and SHAP analysis for the
neutron capture and spallation electron background dataset. The spallation dataset
was included in the main thesis body as was designed to be the most realistic of
the three datasets, and hopefully the most representative of real neutron capture
and background physics events in a water Cherenkov detector. For the sake of
space, the corresponding figures for the other two datasets, lowE and highE, and
presented here in the appendix.

Subsection 8.1 presents the beta parameter histograms, overall engineered fea-
ture histograms, XGB confusion matrix, SHAP beeswarm plot and feature impor-
tance plot for the highE dataset in Figs. 8.1, 8.2, 8.3, 8.4 and 8.5. The correspond-
ing plots for the lowE dataset are then shown in Subsection 8.2 in Figs. 8.6, 8.7, 8.8,
8.9 and 8.10. Subsection 8.3 contains the final supplementary material, including a
plot of the feature importance distributions for the lowE XGBoost model arranged
according to the different metrics of weight, gain and cover in Fig. 8.11.

96

APPENDIX 97

8.1 highE Dataset Supplementary

0.2 0.0 0.2 0.4 0.6 0.8 1.0
1

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

overlap: 0.706

neutron
background

0.2 0.0 0.2 0.4 0.6 0.8 1.0
2

0

2

4

6

8

10

12 overlap: 0.734

neutron
background

0.2 0.0 0.2 0.4 0.6 0.8 1.0
3

0
5

10
15
20
25
30
35
40 overlap: 0.689

neutron
background

0.2 0.0 0.2 0.4 0.6 0.8 1.0
4

0

5

10

15

20 overlap: 0.668

neutron
background

0.2 0.0 0.2 0.4 0.6 0.8 1.0
5

0

5

10

15

20 overlap: 0.721

neutron
background

Beta Isotropy Parameters

Figure 8.1: Distributions of the beta parameters β1 to β5 are shown for the dataset of neutron
captures and high energy electron background (0-20MeV), simulated using WCSim for the IWCD
short tank geometry. The amount of overlap between the histograms is shown by the number in the
top-right corner of every subplot. β4 and β3 have the least overlaps of 66.8% and 68.9% respectively.

APPENDIX 98

0 50 100 150 200 250 300
0.000

0.005

0.010

0.015

0.020

0.025

0.030
Number of Hits

background
neutron

0 50 100 150 200 250 300
0.000

0.005

0.010

0.015

0.020

0.025
Charge Sum

background
neutron

0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
1

Bcgd
Neutron

0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

2
Bcgd
Neutron

0.2 0.0 0.2 0.4 0.6 0.8
0

5

10

15

20

25

30

35

40
3

Bcgd
Neutron

0.2 0.0 0.2 0.4 0.6 0.8
0

5

10

15

20

4
Bcgd
Neutron

0.2 0.0 0.2 0.4 0.6 0.8
0

5

10

15

20

5
Bcgd
Neutron

0 50 100 150 200 250 300
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008
Distance to Wall

Bcgd
Neutron

0 100 200 300 400
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

RMS Time
Bcgd
Neutron

0 20 40 60 80 100 120 140
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200
Mean Opening Angle

Bcgd
Neutron

0 20 40 60 80 100 120 140
0.000

0.005

0.010

0.015

0.020

0.025

RMS Consecutive Angle
Bcgd
Neutron

0 100 200 300 400 500 600 700 800
0.000

0.001

0.002

0.003

0.004

0.005

Consecutive Hit Distance
Bcgd
Neutron

Figure 8.2: Comparison of twelve engineered features separated by neutron capture and high energy
electron background events. The data consists of nearly 1.6 million events, generated by WCSim
for the IWCD detector geometry. Relative to the low energy and spallation background datasets,
there is the most discrimination between signal and background for this dataset.

APPENDIX 99

ne
utr

on

ba
ckg

rou
nd

Predicted label

neutron

background

Tr
ue

 la
be

l

0.897 0.103

0.219 0.781

XGB Confusion Matrix

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 8.3: Confusion matrix for the XGBoost model trained on the dataset of neutron capture and
high energy background electron events. The neutron recall rate exceeds the electron recall rate,
indicating the neutron capture events are simpler to identify for this dataset.

APPENDIX 100

0.4 0.2 0.0 0.2 0.4
SHAP value (impact on model output)

tRMS
5

RMSangle
3

moa
hitDist

2
dWall

4
1

nhits
charges

Low

High

Fe
at

ur
e

va
lu

e
Figure 8.4: Beeswarm plot of SHAP values for the neutron capture and high energy background
dataset simulated using WCSim for the IWCD tank geometry. The SHAP value for each feature in
every event is plotted as a dot in the plot, where the x axis position corresponds to the SHAP value
and the colorbar shows the feature value (blue is low, red is high). High SHAP values influence the
model output towards 1 (electron-like event) and low SHAP values (negative) influence the model
outputs toward 0 (neutron-like event).

APPENDIX 101

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
mean(|SHAP value|)

tRMS
5

RMSangle
3

moa
hitDist

2
dWall

4
1

nhits
charges

Figure 8.5: The relative feature importances are shown for the neutron capture and high energy
electron background dataset, ranked by average absolute SHAP value. The charge sum is clearly
the biggest predictor of the model outcome result, followed by the number of hits in the event. The
relative SHAP importances demonstrate the XGBoost is learning mostly from a couple features and
constructing a relatively simple model.

APPENDIX 102

8.2 lowE Dataset Supplementary

0.2 0.0 0.2 0.4 0.6 0.8 1.0
1

0.0

0.5

1.0

1.5

2.0

2.5

3.0
overlap: 0.971

neutron
background

0.2 0.0 0.2 0.4 0.6 0.8 1.0
2

0

2

4

6

8

10

12

14
overlap: 0.919

neutron
background

0.2 0.0 0.2 0.4 0.6 0.8 1.0
3

0

5

10

15

20

25

30
overlap: 0.937

neutron
background

0.2 0.0 0.2 0.4 0.6 0.8 1.0
4

0

5

10

15

20

25

30

35
overlap: 0.845

neutron
background

0.2 0.0 0.2 0.4 0.6 0.8 1.0
5

0

5

10

15

20

25

30

35
overlap: 0.854

neutron
background

Beta Isotropy Parameters

Figure 8.6: Distributions of the beta parameters β1 to β5 are shown for the dataset of neutron
capture and low energy background electron events (0-8MeV), generated by WCSim for the IWCD
short tank geometry. The amount of overlap between the histograms is shown by the number in
the top-left corner for every subplot. β1 through β3 have overlaps above 90% while β4 and β5 have
the least overlap of 84.5% and 85.4% respectively.

APPENDIX 103

0 50 100 150 200 250 300
0.000

0.005

0.010

0.015

0.020

0.025
Number of Hits

background
neutron

0 50 100 150 200 250 300
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200
Charge Sum

background
neutron

0.0 0.2 0.4 0.6 0.8
0.0

0.5

1.0

1.5

2.0

2.5

1
Bcgd
Neutron

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

2

4

6

8

10

12

14
2

Bcgd
Neutron

0.1 0.0 0.1 0.2 0.3 0.4
0

5

10

15

20

25

30

3
Bcgd
Neutron

0.1 0.0 0.1 0.2 0.3
0

5

10

15

20

25

30

35
4

Bcgd
Neutron

0.10 0.05 0.00 0.05 0.10 0.15 0.20 0.25
0

5

10

15

20

25

30

35
5

Bcgd
Neutron

0 50 100 150 200 250 300
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Distance to Wall
Bcgd
Neutron

0 100 200 300 400 500
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007
RMS Time

Bcgd
Neutron

20 40 60 80 100 120 140
0.000

0.005

0.010

0.015

0.020

0.025
Mean Opening Angle

Bcgd
Neutron

10 20 30 40 50 60
0.00

0.02

0.04

0.06

0.08

RMS Consecutive Angle
Bcgd
Neutron

200 300 400 500 600 700
0.000

0.001

0.002

0.003

0.004

0.005

Consecutive Hit Distance
Bcgd
Neutron

Figure 8.7: Comparison of twelve engineered features separated by neutron capture and low energy
electron background events. The data consists of nearly 1.6 million events, generated by WCSim
for the IWCD detector geometry. Relative to the high energy and spallation background datasets,
there is the least discrimination between signal and background for this dataset.

APPENDIX 104

ne
utr

on

ba
ckg

rou
nd

Predicted label

neutron

background

Tr
ue

 la
be

l

0.650 0.350

0.324 0.676

XGB Confusion Matrix

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Figure 8.8: Confusion matrix for the XGBoost model trained on the dataset of neutron capture and
low energy background electron events. The electron recall rate exceeds the neutron recall rate,
indicating the neutron capture events are more difficult to identify correctly for this dataset.

APPENDIX 105

0.4 0.2 0.0 0.2 0.4
SHAP value (impact on model output)

RMSangle
moa

tRMS
dWall

charges
1
3
5
2

hitDist
nhits

4

Low

High

Fe
at

ur
e

va
lu

e
Figure 8.9: Beeswarm plot of SHAP values for the neutron capture and low energy background
dataset simulated using WCSim for the IWCD tank geometry. The SHAP value for each feature in
every event is plotted as a dot in the plot, where the x axis position corresponds to the SHAP value
and the colorbar shows the feature value (blue is low, red is high). High SHAP values influence the
model output towards 1 (electron-like event) and low SHAP values (negative) influence the model
outputs toward 0 (neutron-like event).

APPENDIX 106

0.00 0.01 0.02 0.03 0.04 0.05 0.06
mean(|SHAP value|)

RMSangle
moa

tRMS
dWall

charges
1
3
5
2

hitDist
nhits

4

Figure 8.10: The relative feature importances are shown for the neutron capture and low energy
electron background dataset, ranked by average absolute SHAP value. These results show that
the beta parameters (mostly β4), the event number of hits, and the average distance between
consecutive PMT hits in a given event are the most importance features for the XGBoost model to
predict event outcomes.

APPENDIX 107

8.3 Other

0 20000 40000 60000 80000 100000 120000
Weight

nhits

RMSangle

moa

5

tRMS

4

hitDist

3

1

2

charges

dWall

(a) Importance by Weight

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Gain

RMSangle

tRMS

moa

1

dWall

charges

3

hitDist

5

2

4

nhits

(b) Importance by Gain

0 2500 5000 7500 10000 12500 15000 17500 20000
Cover

moa

charges

tRMS

5

RMSangle

3

1

2

4

dWall

hitDist

nhits

(c) Importance by Cover

Figure 8.11: Feature importances are shown for the XGBoost model trained on the IWCD simulated
neutron capture and low energy electron background dataset. The feature are shown sorted by
weight, gain and cover. The resulting importances are inconsistent with each other, and do not
satisfy the properties of the SHAP values (accuracy, missingness and consistency), making it difficult
to draw conclusions from the above plots.

	Abstract
	Acknowledgements
	Dedication
	Introduction
	Neutrinos
	Cherenkov Radiation
	Water Cherenkov Detectors
	Neutron Tagging
	Thesis Outline

	Related Works
	Machine Learning in Particle Physics
	Boosting Decision Trees
	Deep Learning and Graph Neural Networks

	Machine Learning Theory
	Introduction
	XGBoost
	Shapley values
	Graph Neural Network (GNN)

	Datasets and Likelihood
	Data Simulation
	Likelihood Baseline Analysis

	Feature Engineering
	Beta Parameters
	Time of Flight
	Distance to Wall
	Mean Opening Angle
	Consecutive Hit Angular RMS
	Consecutive Hit Distance

	XGBoost Results Analysis
	GNN Application
	GCN
	DGCNN

	Conclusions
	Appendix
	highE Dataset Supplementary
	lowE Dataset Supplementary
	Other

