
Copyright

by

Balaji Sampath

2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/5180671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The Dissertation Committee for Balaji Sampath
certifies that this is the approved version of the following dissertation:

Scheduling and Stability Analysis of Cambridge Ring

Committee:

John Hasenbein, Supervisor

Erhan Kutanoglu

David Morton

Elmira Popova

Sanjay Shakottai



Scheduling and Stability Analysis of Cambridge Ring

by

Balaji Sampath, B. E, M.S.E

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2007



Dedicated to my family and friends.



Acknowledgments

My time at The University of Texas at Austin has been the most mem-

orable period of my life. During the course of my Ph.D I have met people it

has been a privilege to know. The foremost among them has been my advisor

Dr. John Hasenbein, who fueled my interest in queueing theory with advice,

suggestions and encouragement. He gave me a free hand to try many new

things and was always there to suggest a new direction to investigate when

something did not work out. One of the things I will miss most when I grad-

uate is his sense of humor. I would like to thank him for his confidence in

me and his contributions without which this work would not have been possi-

ble. The effort he put into correcting my dissertation and helping to make it

rigorous will never be forgotten.

I would like to thank my parents, my sister and my fiancee whose

confidence in me has never wavered as I have progressed towards my degree.

They were there to encourage me and keep me focussed whenever I needed

them.

I have also been blessed with great friends throughout my life. Some

of my best friends are from Austin and I would like to thank every one of

them for helping me negotiate my Ph.D. In particular I would like to thank

Amit Partani for his help. He was always there when I needed to test out my

v



work before I put it to Dr. Hasenbein. He has been a great asset offering me

advice and I will miss his earthy sense of humor and caustic comments when

he felt that I was not being productive when we were working together. Navin

Varadarajan and Krishna Lakshminarasimhan are two people from whom I

learnt the meaning of the word work ethic. They were the people to whom I

poured out my woes most of the time. I would also like to thank my high school

friends Venkatesh Tanuku and Naresh Rao Bhagavatha who currently live in

the Greater Austin area. They were there for me whenever I needed a break,

checked on my progress whenever I had a deadline to meet and were there to

keep me focussed. Sharadha and Hariharan Kalyanaraman also deserve my

thanks in no small measure for all their attention and kindness to me over the

many years I have known them.

Also I owe my gratitude to John Hall for his help in “digitizing” all my

class notes and research notes. John and Suzanne are also personal friends and

I have enjoyed spending many an evening with them. Jagan Rajan, Valli Shan-

mugham, Ramakrishnan Viswanathan, Siva Srinivsan, Vivek Balaji Padman-

abhan, Karthik Ramachandran, Karthik Kalyanaraman, Titash Sridharan:

You guys have been great friends and my dissertation would be incomplete

without gratefully acknowledging your help and advice.

I would like to thank Ruth Schwab, the graduate coordinator of the

Mechanical Engineering Department for her help through my years at UT

Austin. She made the process of working at the university so much smoother.

Rarely have I met a person who enjoyed their work more.

vi



Scheduling and Stability Analysis of Cambridge Ring

Publication No.

Balaji Sampath, Ph.D.

The University of Texas at Austin, 2007

Supervisor: John Hasenbein

Multiclass queueing networks are widely used to model complex man-

ufacturing systems and communication networks. In this dissertation we de-

scribe and analyze a multiclass queueing network model known as the Cam-

bridge Ring. As the name suggests this network has a circular topology with

unidirectional routing. In many cases the analysis of a stochastic model is

a difficult task. For a few special cases of this network we show that all

non-idling policies are throughput optimal for this system. One of the major

differences between this work and previous literature is that we prove through-

put optimality of all non-idling policies, whereas most of the previous work

has been on establishing throughput optimality for a specific policy (usually

First-In-First-Out).

We use a macroscopic technique known as the fluid model to identify

optimal policies with respect to work in process. In one case we consider, the

discrete scheduling policy motivated by the optimal fluid policy is indeed opti-

mal in the discrete network. For the other special case we show by means of a
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deterministic counterexample that the discrete policy most naturally suggested

by the fluid optimal policy may not be optimal for the queueing network. We

also formulate the fluid holding cost optimization problem and present its so-

lution for a simple version of the Cambridge Ring. Further we establish that

the optimal policy under a class of policies known as “non-ejective” policies

may be an idling policy. We use an example of the Cambridge Ring with a

single vehicle to show that the optimal policy for this example has to be an

idling policy.
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Chapter 1

Introduction

Large manufacturing systems are in general hard to model accurately due

to complex interactions between arrival and service activities and difficulties

arising from various sources such as randomness and complex routing schemes.

Some of the techniques available to study the performance of these systems

are:

• Deterministic planning techniques such as job shop scheduling

• Simulation

• Stochastic models such as multiclass queueing networks.

The disadvantage of deterministic planning techniques is that they do not

always adequately represent varying conditions such as arrival rates or machine

breakdowns. In addition, even when there is perfect information on future

arrivals and other nominally stochastic events in the system, deterministic

optimization in most large systems leads to a combinatorial problem which is

NP-Hard.

Simulations provide an inexpensive way of testing the performance of a system.

But again, for most large systems, simulation is computationally intensive. In
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addition simulation may be used to test the performance of the system given

certain parameters, but it cannot for example, provide us with exact conditions

under which a system is stable. The number of options that can be exercised

in the control of such systems is limited.

Multiclass queueing networks (MQNs) have been used to model manufacturing

systems and telecommunication networks. Due to their flexibility, they can be

used to represent a wide variety of systems such as job shop scheduling systems

or local area networks. One of the advantages of modeling a system as a MQN

is that it provides us with a method of analyzing the stability of the system

using fluid models. We can also use the fluid models of these systems to develop

heuristic policies that try to optimize various objectives such as draining time,

holding cost or work in process (WIP). These fluid models treat job flows as

a continuous deterministic process and permit us to optimize the system with

respect to the performance measures mentioned above.

The main drawback of this method is that the optimization problem is still

extremely hard to solve except for a few simple cases. It is to be noted that

the analysis of a MQN suffers from other drawbacks such as the fact that

the transient behavior of these models is often intractable. Furthermore, even

steady state distributions are tractable only under restrictive conditions on

the primitive model distributions. Hence these models have limited use in

optimization of objectives such as holding cost. In this dissertation, we model

a few special cases of a material handling system using multiclass queueing

networks. We then proceed to use fluid models of this system to analyze its

2



stability and to develop policies which optimize work in process.

The queueing network model which we have chosen to analyze is known as

the Cambridge Ring (CR) model. The model derives its name from a circular

local area network (LAN), originally designed at Cambridge University in the

late 1970s. This LAN was designed to link computers to enable data transfer

at rates of up to 10 Mbps.

The CR model can be used to represent a number of systems with reasonable

accuracy. For example, the Automated Material Handling System (AMHS) in

many 300mm semiconductor wafer fabs can be represented using this model.

Vehicular traffic in circular loops can be represented using the CR model.

A third motivation is to analyze the performance of the local area networks

which provided one motivation for the model. A brief description of these

applications and potential benefits to be realized are described in section 1.2.

1.1 Problem Description

In this section we provide a high level description of the CR. In section 2.1, we

give a detailed description of the mathematical model. The network consists

of N stations. The stations are arranged in a ring and numbered 1, . . . , N

clockwise as shown in figure 1.1. In addition to processing stations, the CR

also has N or fewer vehicles which move clockwise around the ring. A part

of our work has been devoted to systems with less than N vehicles. At each

station jobs wait in buffers to be loaded onto an empty vehicle when it ar-

rives at the station. We assume that the travel time between stations for all

3
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Figure 1.1: The Cambridge Ring

vehicles is constant. We normalize this travel time to one. Hence the whole

ring of vehicles moves one unit clockwise every unit of time. At each station

there are N − 1 potential job classes arriving. Each class of jobs requests a

particular destination along the ring to which it must be transported. We

assume that jobs request travel times less than one full rotation around the

ring. Hence there are a total of N · (N −1) potential job classes. It is assumed

that the external arrival processes satisfy a strong law of large numbers type

assumption.

Each vehicle can carry one job at any time. A vehicle arrives in front of a

station at each integer point of time. When a vehicle discharges a job at a

particular station, it may pick up a job waiting for service at that station

or travel to the next station empty depending on the operating policy. An

example of a Cambridge Ring with six stations is shown in Figure 1.1.
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1.2 Applications

1.2.1 AMHS Applications

With the demand for digital devices ever on the increase, worldwide semicon-

ductor revenues have been climbing since the late 90s. The number of fabs

in operation has also gone up correspondingly. The initial investment and

subsequent operating costs of these wafer fabs are very high. If the cycle time

of a fab can be decreased by a small percentage it could mean savings on the

order of millions of dollars per year. An AMHS is almost indispensable in the

newer 300mm fabs for several reasons. The production process could include

hundreds of steps with jobs going through complex routes. Human error in

transporting the wafers could lead to considerable losses in damages. Another

reason is that the lots (usually cassettes of 25 wafers) are too heavy to be

routinely transported by human operators. The use of an AMHS provides the

opportunity for optimizing costs by using improved scheduling rules. It will

be seen that sometimes simple policies, such as FIFO, can be far from optimal

for a system.

Further an important component of costs to be considered in any business is

the inventory cost associated with the WIP. Average WIP is related to the

average cycle time by Little’s Law. Almost all businesses try to minimize the

average level of the work in process. WIP is however necessary because it

provides a buffer against variability and also helps reduce setup costs. Hence

some of the interesting questions that arise when operating the AMHS system

are:

5



• Which is the optimal policy with respect to holding costs?

• Which is the optimal policy with respect to makespan?

• Could an idling policy perform better than a non-idling policy with re-

spect to a performance measure such as work in process?

Simulation studies of a CR system with 6 stations performed by Bauer [4]

show a wide variation in cycle times among different policies. The average

cycle times found are listed in Table 1.1. The arrival processes to each of the

stations were independent Poisson processes and the job destination requests

were from a discrete uniform distribution. The arrival rate was the same across

all stations and the utilization of each station was set at 95%. The results are

averaged over twenty simulation runs of 110,000 units with a warm-up period

of 10,000 units. The scheduling policies tested [15] were:

• First In First Out (FIFO): Jobs are served in the order of arrival to the

station.

• Shortest Requested Travel Time (SRTT): The job with the shortest

travel request receives highest priority.

• Longest Requested Travel Time (LRTT): The job with the longest travel

request receives highest priority.

• MOST-CHOICES: The job whose destination station has the most num-

ber of job types currently waiting is served first. If there are multiple jobs

6



Scheduling Policy Mean Cycle Time

Shortest Requested Travel Time (SRTT) 43.37
Longest Requested Travel Time (LRTT) 26.90

FIFO 24.18
Most Choices 20.27

MaxWIP-SRTT 19.77
MaxWIP-FIFO 19.08
MaxWIP- LRTT 18.91

Table 1.1: Cycle Time Simulation Results

whose destinations have the same number of choices, ties are resolved

using LRTT.

• MAXWIP-*: The job whose destination queue has the largest total num-

ber of jobs currently waiting is served first. Again a tie-breaking rule

such as FIFO or SRTT is required. * represents this rule.

These simulation results indicate that even in a small system, a good choice

of scheduling policy can result in substantial savings in terms of mean cycle

time, and hence by Little’s Law, the average WIP.

Analytical models of actual AMHS systems tend to be fairly complex and hard

to use. The most prevalent technique for analyzing these complex systems is

simulation. As is evident from the problem description provided in section 1.1,

a CR model can be viewed as a simple AMHS and hence the analysis of CR

model could yield valuable insight into optimal scheduling of the AMHS with

respect to various performance measures.
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1.2.2 Network Applications

As mentioned earlier the CR derives its name from a circular LAN. Analyzing

the stability and scheduling aspect of CR type LANs using the newer devel-

opments in queueing systems such as fluid models or diffusion approximations

could lead to substantial improvement in terms of performance measures such

as delay.

1.3 Literature Review

Some of the earliest analysis on this problem dates back to Avi-Itzhak [2].

Under the assumption that no job travels more than one full rotation around

the ring, he analyzes the traffic behavior for a CR under heavy loading. Heavy

loading is assumed to occur when the traffic intensity at each station is equal

to one. This leads to a deterministic mathematical programming problem

for describing the traffic flows. He also describes an algorithm to solve this

problem and hence determine the traffic flows. The system is assumed to be

operating under the FIFO policy at each station.

A substantial amount of research has been done on the LAN applications of

the CR. The properties of CR type LANs and their effect on its uses were

described by Needham [20]. This work focuses on some of the physical imple-

mentation aspects of the LAN such as the probability of damage during trans-

mission and the timing requirements which affect the transmission protocols.

In a subsequent paper, Hopper and Needham [16] discuss the architecture, im-

plementation details and transmission protocols for the Cambridge Fast Ring

8



Networking System. King and Mitrani [17] modeled the CR type LAN, stud-

ied the performance of different protocols, and compared its performance to

an alternate ring configuration known as the token ring network.

Dantzer and Dumas [11] model the CR as a discrete time Markov chain and

derive exact stability conditions. They also develop a fluid model of the system

and, using a Lyapunov function approach, prove that the system is stable

under the usual traffic conditions (UTCs, see section 2.1.2) when the system

operates under the FIFO discipline. They also demonstrate that even in a

simple system the fluid limits exhibit unusual behavior.

Coffman et al. [13] also investigate the stability of the CR under the FIFO pol-

icy at each station. They also assume independent and stochastically identical

arrivals to all the stations. Under these conditions they demonstrate that,

as long as no customer requests a travel length more than a single rotation

around the ring, a sufficient condition for stability is that the total arrival

rate to the system is less than one. They also present simulation studies that

indicate that the system is stable as long as total arrival rate is less than two

if the requested travel distance of jobs is uniform on {1, . . . , N − 1}. They

also study the asymptotics of the system when the number of vehicles tends

to infinity.

Coffman at al. [12] in a subsequent paper develop an approximation to this

system when the CR is stable but very long queues of jobs form at the stations.

They accomplish this by assuming that every time a job is discharged at its

destination station, there is a job waiting to be picked up at that station. In
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that paper the distribution of times between successive deliveries is derived

for a general distribution of job transit times. They also show that for a large

number of vehicles this distribution is approximately exponential when job

destinations are chosen uniformly.

In most of the work discussed above, the fact that system managers might

know the destinations of the jobs waiting in the queue has not been used. In

other words the general approach has been to analyze the problem as if the

vehicle were a taxicab and the cab driver does not know the destination of a

customer until he or she boards the cab. We would like to take a more nuanced

approach in that we know the destinations of jobs waiting in the queues and

use this information in scheduling.

Bauer [4] develops efficient scheduling algorithms for the CR when job des-

tinations are known prior to loading the vehicles. He develops a variety of

heuristics and tests their performance with respect to cycle time. In addition,

he develops a partially discrete fluid model of the system which serves as an

aid to obtaining good scheduling policies.

Dai and Weiss [10] analyze the fluid model of a MQN with ring topology

and unidirectional routing. They use it to demonstrate that the network is

stable under any non-idling policy when the UTCs are satisfied. The main

difference between the network that they analyze and the CR is that in their

model, service can begin on any job at a non-integer point of time, while in the

CR, service can commence only at integer points of time. We provide more

details on this paper in section 2.3.1 as it provides a crucial part of one of our

10



arguments.

In the context of more general fluid networks, there is a wealth of literature on

finding the optimal policy with respect to various objectives such as holding

cost minimization. Chen and Yao [7] define the notion of a globally optimal

policy, which is a policy that minimizes the total fluid level weighted by fluid

holding costs at every time t. They also show by an example that it is so

strong a notion that globally optimal policies might not even exist in many

cases.

Weiss has done extensive work on finding optimal policies for fluid networks.

In [22] he analyzes optimal draining of re-entrant fluid lines with respect to

objectives such as minimizing draining time, infinite horizon holding costs or

holding costs at a target time T . A re-entrant fluid line is one in which fluid

follows a fixed sequence of buffers and may visit one or more stations multiple

times. He also proved that for a single station re-entrant line the last-buffer-

first-served (LBFS) priority policy is globally optimal for equal holding costs.

Further, in a subsequent paper [23] he analyzes the case of re-entrant lines

with multiple stations. In this paper he specifically investigates the problem

of minimizing average WIP over a finite time horizon.

The problem of optimizing holding costs in the fluid model falls into a general

class of problems called separated continuous linear programs (SCLPs). Weiss

[24], presents a new simplex-like algorithm for solving SCLPs with linear data.

He then uses the fluid solution thus obtained to provide a heuristic schedule.

The complete details of the simplex-like algorithm are presented in [25].

11



Avram et al. [3] use Pontryagin’s maximum principle to solve specific hold-

ing cost problems in multiclass fluid networks. They develop a discretization

method to solve the optimization problem. A learning heuristic which is nu-

merically efficient is proposed.

1.4 Goals

In this dissertation we show that all non-idling policies are throughput optimal

for some special cases of the CR. A policy is throughput optimal for a class of

networks, if the associated queue length process is rate stable under the policy,

whenever the UTCs are satisfied. The notion of non-idling in the CR is slightly

different from the usual multiclass sense. Stability is proved by showing that

the fluid model of a CR (for some cases) is identical to the fluid model of a

MQN operating under a non-idling policy in the traditional sense. Definitions

of stability and other requisite information are provided in section 2.3.

We also use the fluid model of these systems to find optimal policies with

respect to WIP. For some simple networks we find the policy which minimizes

the WIP in the queueing network and compare it with the results from the fluid

model. A holding cost optimal policy is also specified for a simple example of

this network. We show by an example that, with respect to WIP, an idling

policy might perform better than a non-idling policy in some cases. In this

context idling is equivalent to not loading a customer upon arrival of an empty

vehicle to a station in which jobs are waiting in line.

12



1.5 Overview

In chapter 2, we describe the multiclass model of the CR and develop the

corresponding queueing network equations for this model. Background on

notions of stability is also provide in this chapter.

In chapter 3, we analyze the stability of a special case of the CR in which

external arrivals occur to only station 1. Since any job requests less than a full

rotation around the ring, this implies that no job requests a destination past

station N . For this case, we show that the queueing model is rate stable (see

section 2.3) under all non-idling CR policies when the UTCs are satisfied. We

also show that when there is no initial population at any station except station

1, all policies have equal long run average WIP. Finally we demonstrate that

the globally optimal policy for the fluid network is the SRTT policy.

Chapter 4 considers a more general case in which external arrivals occur to all

stations and no job requests a destination past station N . Again, we prove

that the system is rate stable under all non-idling policies when the UTCs are

satisfied. We then proceed to show that the globally optimal policy for the

fluid model is the SRTT policy. By means of a deterministic counterexample,

we demonstrate that for the queueing network the SRTT policy is not WIP

optimal. The holding cost minimization problem for the fluid model is formu-

lated as a SCLP. The solution of this holding cost minimization problem for a

simple example is presented. Note that the network analyzed in chapter 3 is

a special case of the network analyzed in this chapter. Stability of the general

case implies the stability of the network considered in 3. We have analyzed the

13



two as separate cases as it aids with the flow of the dissertation. Also some

of the results for the more general case are not applicable for the special case.

For example, there is no situation in which idling will be optimal with respect

to the long run average WIP for the simpler version of this network.

Further in chapter 5, we prove that for a CR with N stations but only a

single vehicle, idling policies are better than non-idling policies with respect

to WIP. We also present simulation studies of this example in which we test

the performance of some idling policies. In these simulation studies, we assume

that the job interarrival times to each station are exponential. In addition,

we show that idling may sometimes be better than non-idling for the CR

with respect to WIP by means of another deterministic example. Finally

conclusions and future research are presented in chapter 6.
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Chapter 2

Modeling Framework

2.1 Detailed Model Description

In section 1.1, we briefly described the operation of the CR system and the

interactions between vehicles and jobs at each station. In this chapter we

begin with a detailed description of the model. Here we describe a general

multiclass unidirectional ring type queueing network and show how the CR

can be modeled with an operational constraint in this setting.

Consider a MQN with the N stations, numbered 1, . . . , N , with a ring type

topology and unidirectional routing as shown in figure 2.1. We call this network

the UMQN. Jobs at each station are classified into different job classes based

on destination. Jobs change classes as they transit through the network. We

designate a job as belonging to class (i, j), if it is at station i and it requires

service at j stations along the ring before it reaches its destination. Each

station may service multiple job classes, but a particular class (i, j) is only

served at a single station i.

Each class can receive two types of arrivals - internal and external. An internal

arrival occurs due to a job completing service from the previous station along

the ring. An external arrival occurs from outside the system from an external
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Figure 2.1: Unidirectional ring type MQN

arrival process. The details on these external arrival processes are provided

later in this section.

A route is an ordered sequence of classes. Suppose a job arriving at a station i

requests service at n stations along the ring as its route. The job then receives

service at stations i, i + 1, . . . , i + n− 1 if i + n ≤ N . Note that the job leaves

the system after service at station i + n − 1. The route followed by this job

would then be the sequence of classes (i, n), (i + 1, n− 1), . . . , (i + n− 1, 1). If

i + n > N , then the job receives service at stations: i, i + 1, . . . , N, 1, . . . , i +

N−n−1. The route followed by this job would then be the sequence of classes
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(i, n), (i + 1, n− 1), . . . , (N, N − i + 1), . . . , (i + n−N − 1, 1).

We also assume that external arrivals to a class (j, k) are identical to internal

arrivals occurring from class (j − 1, k + 1). In proving throughput optimality,

this does not matter as internal arrivals have the same service requirement as

external arrivals.

We assume that each job requests a route that ends before its original station

of arrival. That is, each job exits the system before it re-visits its station of

arrival. Hence each station can potentially have N − 1 job classes. Every job

requests a deterministic service time of one unit from the stations along its

route.

The above MQN represents a more general class of networks than the CR. Note

that in the CR the inter-station travel time can be viewed as a deterministic

service time at each station. Then the CR is equivalent to the UMQN with

the following operational constraints:

1. Service at each station can begin only at integer points of time.

2. At each station the job to commence service at the next integer unit of

time is decided by a head of the line scheduling policy (HL, see below).

Note that in the CR whenever a new arrival occurs at a station, it will have

to wait for an empty vehicle to arrive at the station before service begins.

This necessitates the inclusion of operational constraint (1). At the very least

service cannot occur until the next integer time point. Hence the construction
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of the system “enforces” idling under certain circumstances. Also note that the

only jobs to actually experience a delay due to idling will be those arriving at

a non-integer point of time to an empty station. Hence the CR can be viewed

with a specific operating rule in the UMQN. Note that in addition to this

operation a scheduling policy Π, still has to be chosen to resolve contention

for service when multiple jobs are available at the station for service.

Common scheduling policies are FIFO, LRTT, SRTT, etc. LRTT and SRTT

are both subsets of a class of policies known as Static Buffer Priority (SBP)

policies. All of these policies are non-idling policies in the usual multiclass

sense. For example under FIFO in the general ring type network, the jobs

would be ordered based on arrival time. Among the jobs in the queue at each

station, the job which arrived first at the station would be selected for service

whenever a choice of jobs to be worked on is to be made. Under a CR FIFO

policy, jobs would be ordered based on arrival time and among the jobs in all

the classes at each station, the job which arrived first at the station would be

selected for service at the next integer unit of time. Whenever we refer to a

scheduling policy Π, in the context of the CR we refer to it as a CR-Π policy.

Whenever we refer to a non-idling policy in the CR, we refer to a policy which

at any station i, does not allow an empty vehicle to pass on to the next station

empty when there are jobs waiting to be loaded at i.

A head of the line (HL) policy [14] is one in which a maximum of one job of

each class at a given station can receive service at time t. In addition within a

class (i, j), jobs are served in FIFO order. In this dissertation we only consider
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HL policies. An example of a non-HL policy is Egalitarian Processor Sharing,

where all jobs present receive an equal share of the station’s service.

2.1.1 The Queueing Network Equations

In this section we formally define a class of queueing models with ring topology

and unidirectional routing. If there exists an external arrival process to class

(i, j), then let Ei,j(t) represent the cumulative exogenous arrival process to

class (i, j). This process counts the number of external arrivals up to time t.

We assume that the external arrival process to class (i, j), is a function which

is right continuous with left limits (RCLL) and satisfies a Strong Law of Large

Numbers (SLLN) type assumption. That is, we assume that with probability

1:

lim
t→∞

Ei,j(t)

t
= αi,j.

It is also assumed that the arrival processes are independent of each other and

all other events in the system.

αi,j are the arrival rates to class (i, j). The space of RCLL functions is denoted

by D. Let X ∈ D and Y be defined as:

Y (t) = sup{s ≥ 0 : X(s) ≤ t}.

Y (t) is known as the inverse process of X(t).

Proposition 2.1.1. (Chen and Yao [7]) Consider the (X, Y ) pair. Suppose

X(t)

t
→ m a.s as t →∞
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for a positive constant m, and set µ = 1
m

. Then,

Y (t)

t
→ µ a.s as t →∞.

Furthermore as n →∞,

X̄n(t) ≡ X(nt)

n
→ mt,

Ȳ n(t) ≡ Y (nt)

n
→ µt,

where, convergence is almost sure (a.s) uniformly on compact sets (u.o.c).

The proof of the above proposition can be found in Chen and Yao [7]. For

each class (i, j), we let:

• Ai,j(t) represent the total number of arrivals (internal and external) to

class (i, j) in [0, t]

• Ti,j(t) represent the total amount of time that station i has spent pro-

cessing jobs of class (i, j) in [0, t]

• Di,j(t) represent the number of class (i, j) jobs that station i has pro-

cessed in [0, t]

• Qi,j(t) represent the total number of jobs in class (i, j) at time t

• Ii(t) be the total amount of time station i was idle in [0, t].

Note that the idle time Ii(t) includes the “enforced” idle time mentioned ear-

lier.
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The number of jobs initially in the system is denoted by the vector Q(0) =

[Qi,j(0)]. Let T (·) = [Ti,j(·)], be the vector of allocation processes {Ti,j(t), t ≥

0}. Similarly let E(·) = [Ei,j(·)], be the vector of external arrival processes

{Ei,j(t), t ≥ 0}. The indices i and j run from {1, . . . , N} and {1, . . . , N −

1} respectively. Given these processes, we write down the set of dynamical

equations known as the queueing network equations below:

Ai,j(t) = Ei,j(t) + Di−1,j+1(t) (2.1.1)

Qi,j(t) = Qi,j(0) + Ai,j(t)−Di,j(t), (2.1.2)

Di,j(t) = bTi,j(t)c, (2.1.3)

D0,j(t) = DN,j(t) (2.1.4)

Wi(t) =
N−1∑
j=1

Qi,j(t) (2.1.5)

Ii(t) = t−
N−1∑
j=1

Ti,j(t), (2.1.6)

Ti,j(0) = 0 and Ti,j(·), Ii(·) are non-decreasing, (2.1.7)

Qi,j(t) ≥ 0. (2.1.8)

Note that we set the departure process at the N th station to be equal to D0,j(t).

This is simply a logical construct necessitated by the circular topology of the

network. The equations (2.1.2) represent the balance constraints. In addition

to (2.1.1)-(2.1.8), we need to specify the operating policy as well. This imposes

an additional constraint on the allocation process.

Non-Idling Condition:

21



A non-idling operation of the CR imposes the constraint that the idle time of

any station i, Ii(t) cannot increase unless there are no jobs at the station or

if an arrival occurs to an empty station i at a non-integer point of time. This

condition is:

at each station i, for all t2 > t1 ≥ 0, Ii(t2)− Ii(t1) > 0 only if,

t1 ∈ Z+, t1 < t2 ≤ t1 + 1,∃ s : t1 < t2 ≤ t1 + 1 and Wi(s) = 0 or

Wi(t) = 0, ∀ t ∈ [t1, t2).

For the UMQN without the operational restrictions of the CR, the usual non-

idling condition is simply (2.1.9a).

To complete the specification of the queueing network equations we also need

equations to enforce the scheduling policy Π. Since we intend to show stability

of the CR under all non-idling policies we do not include an equation to specify

the policy.

2.1.2 Throughput and Traffic Intensities

In this section we define the effective arrival rates and traffic intensities for the

UMQN. The traffic intensity is then expressed in terms of the effective arrival

rate of the various classes. The usual traffic conditions for the UMQN are also

defined. The definitions in this section lay the groundwork for the stability

conditions for the UMQN.

Definition 2.1.1. The effective arrival rate for class (i, j) is the total ar-

rival rate to class (i, j) calculated by considering external arrivals and internal
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arrivals. The effective arrival rate for class (i, j) is defined as:

λi,j ≡ αi,j +
i−1∑
k=1

αi−k,j+k +
N−1∑

k=i+1

αN+i+1−k,k. (2.1.10)

The nominal load per unit of time at station i is known as the traffic intensity.

Let ρi represent the traffic intensity at station i. Since the service rate at each

station for each class is one unit of time, the total arrival rate to a station

is equal to the nominal load per unit of time presented to the station. It

was previously widely believed that multiclass networks which satisfied the

condition that the traffic intensity at each station is less than one were stable

under all non-idling policies. This notion has now been disproved by a number

of examples (see [18, 21]). The conditions that the nominal load per unit time is

less than one at each station are known as the usual traffic conditions (UTCs).

The UTCs for the CR are listed below. For each i ∈ {1, . . . , N}:

ρi ≡
N−1∑
j=1

λi,j ≤ 1. (2.1.11)

For the system shown in figure 2.1, the traffic intensity at station 1 is:

ρ1 = α1,1 + α1,2 + α1,3 + α4,2 + α4,3 + α3,3.

Definition 2.1.2. For a class (i, j), if there exists a constant λ̃i,j such that

with probability 1:

lim
t→∞

Di,j(t)

t
= λ̃i,j,

then λ̃i,j is known as the throughput of class (i, j).
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2.2 The Fluid Model

The fluid model is one of the most commonly used and effective techniques to

analyze stability of a queueing network. The stability of a fluid model (section

2.3) is relatively easy to establish. The connection between the stability of the

fluid model and that of the queueing network has been analyzed by Dai [8],

Chen [6] and others. The fluid model is obtained by replacing the stochastic

processes in the queueing model by their continuous deterministic analogs.

The jobs in the system are no longer viewed as discrete entities. We regard

them as flowing continuously through the network and hence the term fluid

model.

Let Q(·) represent the vector of queue lengths for the UMQN. As n goes

to infinity, the scaled process Q(nt)/n converges to a deterministic process

satisfying the fluid model equations (2.2.1) to (2.2.8). This type of scaling in

time and space is referred to as fluid scaling. The scaling factor n may represent

the initial number of jobs in the network or some other system parameter. For

example in Coffman et al. [12], the scaling factor is chosen as the number of

vehicles. A superscript n is used to indicate the dependence of the process on

the scaling factor n. For example, the fluid scaling of the process Q(t) is given

by:

Q̄n(t) =
Qn(nt)

n
.

(Q̄(t), T̄ (t)) is a fluid limit of the joint process (Q(t), T (t)) if for some sample
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path ω and a sequence nk →∞,

(Q̄nk(t, ω), T̄ nk(t, ω)) → (Q̄(t), T̄ (t)) u.o.c.

Chen and Yao [7] show that if the fluid limit exists, it satisfies the fluid model

equations (2.2.1) to (2.2.8). It is to be noted that every fluid limit is a solution

to the fluid model equations but not vice versa [9].

The fluid model is the set of all solutions to the fluid model equations

(2.2.1) to (2.2.8). The fluid quantities are represented with a bar. For all

i ∈ {1, . . . , N} , ∀ j ∈ {1, . . . , N − 1}, and t ≥ 0, the HL fluid model equa-

tions for the UMQN are:

Āi,j(t) = αi,jt + D̄i−1,j+1(t) (2.2.1)

Q̄i,j(t) = Q̄i,j(0) + Āi,j(t)− D̄i,j(t), (2.2.2)

D̄i,j(t) = T̄i,j(t), (2.2.3)

D̄0,j(t) = D̄N,j(t) (2.2.4)

W̄i(t) =
N−1∑
j=1

Q̄i,j(t) (2.2.5)

Īi(t) = t−
N−1∑
j=1

T̄i,j(t), (2.2.6)

T̄i,j(0) = 0 and T̄i,j(·), Īi(·) are non-decreasing, (2.2.7)

Q̄i,j(t) ≥ 0. (2.2.8)

The fluid model equation for the non-idling condition is:

At each station i, Īi(t2)− Īi(t1) > 0 for all t2 > t1 ≥ 0, if and only if:

W̄i(t) = 0, ∀ t ∈ [t1, t2). (2.2.9)
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Definition 2.2.1. The set of all feasible solutions to the fluid model equations

(2.2.1) to (2.2.9) is referred to as the non-idling fluid model of the UMQN.

Note that

lim
n→∞

En
i,j(nt)

n
= αi,jt.

This follows from the assumption about the external arrival process and propo-

sition 2.1.1. The fluid model equations (2.2.1-2.2.9) follow directly from (2.1.1-

2.1.9a). The fluid model equations above are a special case of those developed

by Dai and Weiss ([10]) for the UMQN. In the fluid model Q̄i,j(t) is interpreted

as the total amount of fluid present in buffer (i, j) at time t. D̄i,j(t) represents

the total quantity of type (i, j) fluid that was processed by station i during

[0, t]. T̄i,j(t) is the total amount of time spent by station i working on fluid of

type (i, j) during [0, t]. As mentioned in section 2.1.1, additional constraints

need to be imposed in order to enforce the specific scheduling policy employed.

Equation (2.2.2) is the flow balance constraint. The total amount of fluid in-

put to class (i, j) up to time t consists of the class (i, j) fluid present initially,

the total amount of fluid which arrived externally to class (i, j) and the total

amount of fluid processed at station i − 1 of class (i − 1, j + 1) in [0, t]. The

total quantity of class (i, j) fluid processed in [0, t] is given by D̄i,j(t). Hence

the amount of fluid in class (i, j) at time t is the difference between the input

and the output up to time t. Equations (2.2.6) and (2.2.7) together imply

that a station cannot spend more than 100% of its time processing fluid in

that station.
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2.3 Stability

There are various notions of stability associated with queueing networks and

their fluid models. In this section we define the notion of stability for both

queueing networks and their fluid models and explain the relation between

them. Note that we only define the notions of stability we plan to use in this

dissertation. Finally we discuss the stability of the ring type MQN without

the operational restrictions of the CR.

Definition 2.3.1. The UMQN is rate stable if for every fixed initial data,

with probability 1,

lim
t→∞

Di,j(t)

t
= λi,j ∀ i ∈ {1, . . . , N} and ∀ j ∈ {1, . . . , N − 1},

where λi,j is the effective arrival rate for class (i, j) defined in 2.1.1.

Definition 2.3.2. A scheduling policy is called throughput optimal for the CR

if it is rate stable under the usual traffic conditions, defined by (2.1.11).

Definition 2.3.3. The fluid model is weakly stable if for each fluid solution

such that |Q(0)| = 0, Q(t) is zero for all t ≥ 0.

The only tasks that remain to be done in this chapter are to connect the

stability of the fluid model with that of a corresponding queueing network

and to establish the stability of the fluid model for the ring type MQN. The

following theorem states that the weak stability of the fluid model implies that

the corresponding queueing network is stable. The result holds for networks

operating under HL policies.
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Theorem 2.3.1. (Chen [6]) If the fluid model is weakly stable, then any cor-

responding queueing network is rate stable.

Apart from this, there exist various notions of stability in both fluid and

stochastic networks. There are also different notions of instability defined for

both networks. We refer the reader to Dai [9] for further details.

2.3.1 Stability of the UMQN

Dai and Weiss [10] discuss the stability of the UMQN. In that paper it was

shown that the fluid model of this ring type MQN network is stable under

the UTCs under all non-idling policies. That is, if the traffic intensity, ρi < 1

at each station i, the system is stable under any non-idling policy. Dai and

Weiss accomplish this using a Lyapunov function approach [9]. With a minor

modification in their proof, the following result can be established.

Theorem 2.3.2. The fluid model of the UMQN is weakly stable under all

non-idling policies if ρi ≤ 1.

Hence by theorem 2.3.1, any corresponding queueing network is rate stable.

Note that stability is proved only for the ring type MQN without the opera-

tional constraint of the CR imposed on it.
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Chapter 3

Simple Feed-forward Cambridge Ring

In this chapter we describe and analyze the simplest version of the CR that

we consider. This network is a special case of the UMQN described in section

2.1. We assume that any external arrival to the system occurs only at station

1. Jobs arriving to station 1 request a particular destination station along the

ring. Jobs with different destinations are divided into different job classes.

Since every job requests a destination which is less than one full rotation

around the ring, an empty vehicle reaches station 1 every unit of time. As in

the previous chapter we describe below how this system can be viewed under

the MQN setting with an additional operational constraint. This model is

known as the Simple Feed-forward Cambridge Ring (SFCR).

3.1 Detailed Model Description

Consider the UMQN with N stations. All external arrivals occur at station

1. The assumptions made on the external arrival processes are as described

in subsection 2.1.1. Jobs arriving to station 1 request service at a sequence

of stations along the ring. At each station every job requests a service of one

unit of time. As mentioned in section 2.1, this deterministic service time at
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each station is equivalent to the interstation travel time. Jobs are grouped

into classes based on the number of stations at which service is requested. At

station 1, the arriving jobs are thus grouped into one of potentially N − 1

classes. The job changes classes as it transits through the network. Any class

at a station i (> 1) receives only internal arrivals. A job of class (i, j) is

currently at station i with j steps remaining to reach its destination station.

The CR restrictions force service to begin at every station at only integer

points of time. Since in this problem no job requests a destination beyond

station N , station 1 is free to start service on a new job at every integer

point of time. The ring type MQN with unidirectional routing under these

operational restrictions is equivalent to the SFCR. Note that these restrictions

occasionally “enforce” idling in the system as mentioned in section 2.1.

We also need a policy to resolve contention for service when there are jobs

of different classes present at any station i. We call this scheduling policy Π.

The MQN operating under the CR restrictions and a scheduling policy Π is

referred to as operating under the SFCR-Π policy. We assume that the SFCR-

Π policy is a HL scheduling policy. For example if we were using FIFO for

the SFCR, the jobs in the queue at each station would be sorted according to

arrival times and service would begin on the job with the earliest arrival time

at the next integer point of time. This policy is referred to as the SFCR-FIFO

policy. An SFCR with three stations is shown in figure 3.1.
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Figure 3.1: Simple Feed-forward Cambridge Ring

3.1.1 Queueing Model Equations

In this section we develop the queueing model equations for the MQN operat-

ing under the SFCR-Π policy, where Π is an arbitrary non-idling HL policy.

We use a notation similar to 2.1 to refer to the queueing model quantities.

Since we intend to compare the queueing model quantities along every sam-

ple path between two different policies we introduce a superscript notation.

The superscript C refers to the queueing model quantities when the UMQN

operates under the SFCR-Π policy. For example, we let AC
i,j(t) be the to-

tal number of arrivals (external and internal)to class (i, j) in (0, t] under the

SFCR-Π policy.

The quantities AC
i,j(t), TC

i,j(t), DC
i,j(t) and QC

i,j(t) are compared along an arbi-

trary sample path of external arrivals ω, to the corresponding quantities when

the system operates under an MQN policy described in section 3.2.2. Hence

we require this superscript to differentiate between the two systems. Since the

external arrivals are not affected by the choice of scheduling policy, Ei,j(t) still

represents the exogenous arrival process to class (i, j).

31



The queueing network equations under the SFCR-Π policy are defined by

(2.1.1)-(2.1.8) with a few modifications. The additional restrictions needed

are:

DC
0,j(0) = 0 (3.1.1)

Ei,j(t) = 0 ∀ i > 1. (3.1.2)

Equation (3.1.1) represents the condition that no job requests a destination

past station N , while (3.1.2) enforces the fact that external arrivals occur only

to station 1. The non-idling condition is specified by (2.1.9a) and (2.1.9a)

as before. An operational constraint is that service can only begin at integer

units of time at all stations. Additional equations are necessary to enforce the

scheduling policy Π.

3.2 Stability Analysis

In this section we intend to show that all non-idling policies Π are throughput

optimal for the UMQN operating under the SFCR restrictions. We accomplish

this by showing the rate stability of this system for all non-idling policies when

the UTCs are satisfied.

Theorem 3.2.1. In the SFCR all non-idling scheduling policies are throughput

optimal.

Consider the UMQN with N stations operating under an arbitrary but fixed

SFCR-Π policy as described in section 3.1. Our approach to proving 3.2.1
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involves the use of fluid models. However we do not directly construct a fluid

model for this network. We describe a scheduling policy for the MQN, referred

to as the MQN-Π policy, which closely resembles the SFCR-Π policy except

for the fact that the “enforced” idling is eliminated. It is then shown that

the fluid limit of the MQN under the SFCR-Π policy is identical to that of

the MQN operating under the MQN-Π policy. The remainder of this section

outlines the intermediate steps in proving this theorem.

3.2.1 Usual traffic conditions

Let α1,j (≥ 0) be the arrival rate to class (1, j). The UTCs for this system are:

ρi ≡
N−i∑
j=1

α1,j ≤ 1, ∀ i ∈ {1, . . . , N}.

In this case it is obvious that if the UTC at station 1 is satisfied, the UTCs at

all other stations are also satisfied. Hence station 1 determines the stability

of the system.

The MQN version of a three station SFCR is shown in figure 3.2. Note that the

last station in this problem serves only as a destination and does not transport

jobs forward. There is no service requested by any job at this station.

3.2.2 The MQN-Π Policy

Below we describe a policy which eliminates idling from the SFCR-Π policy

and yet maintains the order of arrival to the next station. We accomplish this
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Figure 3.2: Multiclass Version of SFCR

by letting the choice of job under this non-idling policy be controlled by the

SFCR-Π policy at every integer point of time. We refer to this policy as the

MQN-Π policy. A busy period at station 1 begins when an arrival occurs to an

empty station. Suppose that we have defined a fixed, but arbitrary non-idling

(in the CR sense) policy SFCR-Π. Then the corresponding MQN-Π policy is

defined as follows:

Under this policy at station 1:

1. If a job is to be chosen for service at any non-integer time, the choice

is made based on the scheduling policy Π applied to the jobs waiting in

the queues. Service commences on the chosen job immediately and is

continued until the next integer point of time.

2. At the next integer point of time, one of the following events may occur:

• No other exogenous arrival may have occurred at station 1 until
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this time or other jobs have arrived at station 1 which, under the

SFCR-Π policy have lower priority than job in service. In this case

service continues on the job currently in service. Upon completion

of service repeat step 1.

• Other jobs have arrived at station 1 which, under the SFCR-Π

policy have higher priority. In this case, service on the current job

is pre-empted and the job with highest priority under the SFCR-Π

policy is chosen for service. Service is resumed on the pre-empted

job at some integer point of time before the end of the busy period

in the MQN-Π policy. Upon completion of service on this job repeat

step 1.

Remark 3.2.1. The MQN-Π policy is set up so that under both policies the

system would have the same choice of jobs at all integer points of time. Any

non-idling SFCR-Π policy can be translated to a corresponding MQN-Π policy.

The superscript M is used to represent quantities in the queueing network

equations under the MQN-Π policy. For example, TM
1,k(t) is the total amount

of time spent processing jobs of class (1, k) in [0, t] under the MQN-Π policy.

The queueing network equations under the MQN-Π policy are similar to the

queueing network equations (2.1.1)-(2.1.8) and (3.1.1). All quantities in these

equations have the superscript M . The restriction that service begins upon

the integer unit of time is dropped. Constraints to enforce the arbitrary but

fixed non-idling policy Π would still be needed. Note that since the MQN-Π

35



policy is a non-idling policy, we need a condition to enforce non-idling. This

condition is simply (2.1.9a).

Lemma 3.2.2. For a fixed but arbitrary non-idling policy Π at station 1,

0 ≤ TM
1,j(t, ω)− TC

1,j(t, ω) ≤ 1,∀ j ∈ {1, . . . , N − 1}, t ≥ 0 and any sample path

ω.

Remark 3.2.2. As in subsection 3.1.1 we refer to a sample path of external ar-

rivals. Note that the processes TM
i,j (t) and TC

i,j(t) depend on ω. Every quantity

involved in the queueing network equations depends on the sample path ω.

Henceforth in order to simplify notation, the omega will be suppressed in the

proofs that follow.

Proof. Fix a sample path ω. Let τB be the first non-integer time at which

an arrival occurs to an empty station 1. Note that τB is also sample path

dependent. Until time τB, TM
1,j(t)−TC

1,j(t) is zero for all classes (1, j). Similarly

we define δB as the earliest time after τB, when under the SFCR-Π policy the

station is empty again. We would like to analyze the difference between the

quantities, TM
1,j(t) and TC

1,j(t), for every class over the duration (τB, δB]. The

reason that we choose this period is that this is the first interval in which under

at least one of the policies (MQN-Π policy or the SFCR-Π policy), the system

is busy. Note that there can be multiple busy periods under the MQN-Π policy

within (τB, δB].

Suppose this arrival belongs to class (1, k). We label this arrival nk. For t ∈

[τB, dτBe], TM
1,k(t) increases from 0 to dτBe−τB as under the MQN-Π policy, the
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network commences service on this job immediately. However TC
1,k(t) remains

at zero as under the SFCR-Π policy the network does not start working on

this job until dτBe.

Two cases arise:

1. Between time τB and dτBe, jobs arrive to one or more classes which have

higher priority than class (1, k) under the SFCR-Π policy. Again let us

label the highest priority job under this policy at time dτBe as ml. Under

the SFCR-Π policy, the system starts operating on job ml at time dτBe.

Under the MQN-Π policy, job nk receives dτBe− τB units of service. Job

nk is pre-empted by job ml at time dτBe.

2. In the interval (τB, dτBe], any jobs that arrive to the system belong to

classes that have lower priority than the class (1, k) job nk under the

SFCR-Π policy. Hence under the SFCR-Π policy, the UMQN starts

operating on job nk at the next integer unit of time. Under the MQN-Π

policy job nk, has already been served for dτBe−τB units of time. Service

simply continues on job nk at time dτBe.

Case 1:

Suppose then that nk is preempted at dτBe. At time dτBe, TM
1,k(τB)−TC

1,k(τB) =

dτBe− τB (≤ 1). This difference remains constant until job nk resumes service.

Note that under the MQN-Π policy, job nk will resume service only at an

integer point of time before the current busy period ends.
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At time dτBe, service begins on the job with highest priority: ml. At this point

under both the MQN-Π and the SFCR-Π policies, the UMQN start processing

jobs in the same order. Hence for all other classes, (1, k′), k′ ∈ {1, . . . , N −

1}\{k} that are processed until job nk resumes service, TM
1,k′(t)− TC

1,k′(t) = 0.

Under the MQN-Π policy, before the busy period ends, the preempted job of

class (1, k) will have to be processed. Under the MQN-Π policy the amount

of service remaining on this job is 1 − (dτBe − τB) units of time, while under

the SFCR-Π policy it is 1 unit of time.

Under the MQN-Π policy the system begins processing this job at some integer

point of time in the future. Let this time be tR. This will occur when the

class (1, k) job, nk, becomes the highest priority job under the SFCR-Π policy.

When service on job nk resumes, for t ∈ [tR, tR+1−dτBe+τB], TM
1,k(t)−TC

1,k(t) =

dτBe − τB.

At time tR+1−dτBe+τB, if there are any jobs remaining in any class, under the

MQN-Π policy the system starts processing a job of the class with the highest

priority under the policy Π at this time. Under the SFCR-Π policy the system

continues processing job nk, until tR + 1. At tR + 1 − dτBe + τB, if under

the MQN-Π policy the system starts service on a job of a class (1, k′), (k′ 6=

k), TM
1,k(t) − TC

1,k(t) decreases to zero at time tR + 1. However if at time

tR+1−dτBe−τB, under the MQN-Π policy the system starts processing a new

job of class (1, k), the difference remains constant. If under the MQN-Π policy,

service begins on a job of any other class, say (1, k)′ at time tR +1−dτBe− τB

at time tR + 1, TM
1,k′(tR + 1)− TC

1,k′(tR + 1) is equal to dτBe − τB.
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Thus the differences get transferred from class to class until the end of a busy

period in the MQN-Π policy. However there can only be a maximum of two

classes with a positive difference at the same instant of time. One of the

situations that needs to be examined in this case is what happens when there

are multiple MQN-Π policy busy periods within a single SFCR-Π policy busy

period.

At the end of a busy period under the MQN-Π policy, let class (1, l) be the

last class processed. Let tL be the time at which this job concludes service

under the MQN-Π policy. Under the SFCR-Π policy service concludes on this

job at time dtLe. If there are no arrivals in [tL, dtLe) the differences in times

served reduce to zero at dtLe and δB = dtLe.

If an arrival does occur in the interval [tL, dtLe), then a new busy period under

the MQN-Π policy begins before the ending of a busy period under the SFCR-

Π policy. In this situation the system under the MQN-Π and the SFCR-Π

policies would be working on jobs belonging to different classes at the same

time from the time of this arrival up to time dtLe. The system under the

SFCR-Π policy would be working on class l. Let us assume that the system

under the MQN-Π policy works on a job of class m′. Then TM
1,l (t)−TC

1,l(t) and

TM
1,m′(t)− TC

1,m′(t) will be positive in the interval (tL, dtLe).

Let tS be the time of completion of the class l job under the MQN-Π policy

and tA be the time of arrival of the next job which belongs to class (1, m′). We

assume that tA is less than dtSe. Otherwise the busy period in the SFCR-Π

policy ends before the arrival of this job.
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At time tS:

TM
1,l (tS)− TC

1,l(tS) = dtSe − tS.

At time tA:

TM
1,l (tA)− TC

1,l(tA) = dtSe − tA

and

TM
1,m′(tA)− TC

1,m′(tA) = 0.

For all t ∈ [tA, dtSe):

TM
1,l (t)− TC

1,l(t) = dtSe − t

and,

TM
1,m′(t)− TC

1,m′(t) = t− tA.

The total difference, TM
1,l (tS)−TC

1,l(tS)+TM
1,m′(tS)−TC

1,m′(tS) = dtSe− tA which

is less than or equal to 1. At the next integer unit of time dtAe, TM
1,l (dtAe) −

TC
1,l(dtAe) decreases to 0 and

TM
1,m′(dtAe)− TC

1,m′(dtAe) = dtSe − tA,

which is less than the original difference, dtSe − tS.

Hence under the MQN-Π policy, whenever a busy period ends the total dif-

ference between all the classes decreases. If there is no arrival before the next

integer point of time then under the SFCR-Π policy, the busy period ends.

At this point of time both systems have spent the same time working on all

classes. Thus in this case for all t ∈ [τB, δB], we have TM
i,j (t)− TC

i,j(t) ≤ 1.

Case 2:
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Suppose now that under the MQN-Π policy, job nk does not get preempted at

time τB. At time dτBe, under the SFCR-Π policy service commences on job

nk. By this time under the MQN-Π policy, dτBe−τB units of service have been

completed on this job. Job nk completes service under the MQN-Π policy at

time τB + 1. At that point of time, under the SFCR-Π policy 1− (dτBe − τB)

units of service have been completed on job nk. Thus at time τB +1, we have,

TM
1,k(t)− TC

1,k(t) = dτBe − τB.

If there are no other jobs waiting in the system at time τB + 1, this difference

decreases until time dτBe + 1. If there is no other arrival until time dτBe + 1,

TM
1,k(t)− TC

1,k(t) decreases to zero. If there is an arrival before the next integer

unit of time, it results in a situation similar to the end of busy period situation

explained in case (1).

If there are jobs waiting at time τB + 1, the MQN-Π policy picks the highest

priority job under the SFCR-Π policy from among those waiting and starts

service on that job. Under the SFCR-Π policy the system is currently serving

job nk. Suppose that under the MQN-Π policy the system starts service on job

ml of class (1, l) at time τB + 1. Then TM
1,k(dτBe+ 1)− TC

1,k(dτBe+ 1) = 0 and

TM
1,l (dτBe+1)−TC

1,l(dτBe+1) = dτBe− τB. At this time if there are any higher

priority jobs than ml at station 1, under both the MQN-Π policy and the

SFCR-Π policy the system starts working on that job. Otherwise under the

SFCR-Π policy, service commences on job ml, while under the MQN-Π policy,

service simply continues. Note that under the SFCR-Π policy the system never

commences service on job ml until it becomes the highest priority job. Thus
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the differences get transferred from class to class until the end of a busy period

in the MQN-Π policy.

The end of the busy period scenario is exactly the same as in the previous case.

Since the initial difference is less than one, and the difference can only decrease

until the end of a busy period under the SFCR-Π policy (which occurs at time

δB), when the SFCR-Π policy catches up, the difference is always less than or

equal to 1 over a busy period under the SFCR-Π policy. Hence in this case as

well we have for all t ∈ [τB, δB], TM
i,j (t)− TC

i,j(t) ≤ 1.

Case Summary:

It is to be observed that under the SFCR-Π policy whenever a busy period

ends, under the MQN-Π policy the system is idle. Hence under the SFCR-Π

policy at the end of a busy period, the amount of time that each class has

been served at station 1 is identical to the corresponding quantity under the

MQN-Π policy. We have seen that over (τB, δB], the difference between the

total amount of time spent by each of these policies on any class (1, k) is less

than or equal to 1 unit of time. Whenever under the MQN-Π policy the system

is idle, under the SFCR-Π policy the system is either idle or is catching up

on the MQN-Π policy in terms of total service time to each class at station 1.

Hence ∀ t > 0, 0 ≤ TM
1,k(t)− TC

1,k(t) ≤ 1 for all k ∈ 1, . . . , N − 1.

Consider the following example: an arrival to class (1, 1) occurs at time 0.3

and an arrival to class (1, 2) occurs at time 1.4. Another arrival to class (1, 3)

occurs at time 1.7. Let us assume that under the SFCR-Π policy, class (1, 3)
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takes precedence over class (1, 2). The table 3.1 shows the time differences in

this situation.

Arrival Number Class Time(t) TM
1,1(t)− TC

1,1(t) TM
1,2(t)− TC

1,2(t)

1 (1,1) 0.3 0 0
1.0 0.7 0
1.3 0.7 0

2 (1,2) 1.4 0.6 0
1.5 0.5 0.1

3 (1,3) 1.7 0.3 0.3
2.0 0 0.6
3.0 0 0.6
3.4 0 0.6
4.0 0 0

Table 3.1: Multiple MQN-Π busy periods in a single SFCR busy period at
Station 1

As the example shows there are instances of time in this case when there are

two classes with a positive difference between the two systems. This happens

when there are multiple MQN-Π busy periods within a single SFCR-Π busy

period.

Lemma 3.2.3. For a fixed but arbitrary non-idling policy Π, 0 ≤ TM
i,j (t) −

TC
i,j(t) ≤ 1 for all stations, i ∈ {1, . . . , N − 1}, j ∈ {1, . . . , N − i}, ∀ t ≥ 0 and

any sample path ω.

Proof. This result for station 1 has already been proven in lemma (3.2.2).

Hence it is enough to show this result for all downstream stations i ∈
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{2, . . . , N − 1}. We begin this proof by observing that AM
i,j(t) − AC

i,j(t) ≤ 1,

since,

AM
i,j(t)− AC

i,j(t) = DM
i−1,j+1(t)−DC

i−1,j+1(t)

= bTM
i−1,j+1(t)c − bTC

i−1,j+1(t)c

≤ 1.

Also note that no pre-emption occurs in the downstream stations. At any

downstream station, all arrivals are internal arrivals. Further, any arrival that

occurs at time t at a downstream station i under the MQN-Π policy will occur

under the SFCR-Π policy at time dte. This follows from the way the MQN-Π

policy is setup at the previous station. The MQN-Π policy commences service

as soon as an arrival occurs at a downstream station. This enables the SFCR-

Π policy to commence service on this job at time dte and under the MQN-Π

policy, service on this job is simply continued (since there is no other external

arrival). Since there can only be a maximum of one internal arrival in the time

interval (btc, dte] under either policy, the total time spent serving each class at

any downstream station differs by less than one integer unit of time. That is,

0 ≤ TM
i,j (t)− TC

i,j(t) ≤ 1, ∀ t ≥ 0.

3.2.3 Equivalence of Fluid Limits Under MQN-Π and SFCR-Π Poli-
cies

For the SFCR, the initial station acts as a synchronizing station. The way the

MQN-Π policy is setup ensures that QC
i,j(t) − QM

i,j(t) is always non-negative.
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Further, at station 1, ∀ t ≥ 0:

0 ≤ lim
n→∞

TM
i,j (nt)

n
− lim

n→∞

TC
i,j(nt)

n
≤ lim

n→∞

1

n

= 0.

Hence ∀ t ≥ 0,

T̄C
i,j(t) = T̄M

i,j (t),

where T̄C
i,j(t) and T̄M

i,j (t) are the fluid limits of the allocation processes.

DM
i,j(t)−DC

i,j(t) = bTM
i,j (t)c − bTC

i,j(t)c, ∀ t ≥ 0.

This implies that DM
i,j(t)−DC

i,j(t) is either zero or one, since TM
i,j (t)−TC

i,j(t) ≤ 1.

It follows that ∀ t ≥ 0, D̄C
i,j(t) = D̄M

i,j(t).

Note that ∀ t ≥ 0,

QC
i,j(t)−QM

i,j(t) = QC
i,j(0)−QM

i,j(0) + AC
i,j(t)− AC

i,j(t)−DC
i,j(t) + DM

i,j(t)

= DM
i,j(t)−DC

i,j(t)

≤ 1.

Therefore, QC
i,j(nt) − QM

i,j(nt) ≤ 1, ∀ n, t ≥ 0. This implies that, under fluid

scaling:

0 ≤ lim
n→∞

QC
i,j(nt)

n
− lim

n→∞

QM
i,j(nt)

n
≤ lim

n→∞

1

n

= 0.

Therefore ∀ t ≥ 0,

Q̄M
i,j(t) = Q̄C

i,j(t),
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where Q̄C
i,j(t) and Q̄M

i,j(t) are the fluid limits of the queue length processes.

Similarly,

WC
i,j(t)−WM

i,j (t) ≤ 1.

This implies that ∀ t ≥ 0, W̄C
i,j(t) = W̄M

i,j (t).

Note that:
N−1∑
j=1

T̄C
i,j(t) =

N−1∑
j=1

T̄M
i,j (t).

This implies that:

ĪM
1 (t) = ĪC

1 (t).

Hence at station 1, processes in the fluid limit under the SFCR-Π policy are

identical to those of the MQN-Π policy. In addition since the fluid level pro-

cesses Q̄M
i,j(t) are identical to Q̄C

i,j(t) and the allocation processes for each class,

T̄M
i,j (t) are identical to T̄C

i,j(t), under the SFCR-Π policy the system in the fluid

limit also satisfies the non-idling criterion (2.2.9).

Note that we have established that the fluid limit processes under the SFCR-Π

policy converge pointwise to the fluid limit processes of the MQN-Π policy. We

still need to show that the fluid limits of the queue length under the SFCR-Π

policy converge u.o.c to the fluid limits of the queue length under the MQN-Π

policy.

We know that for the MQN-Π policy:

lim
n→∞

QM
i,j(nt)

n
= Q̄(t) u.o.c a.s.
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We have also shown that ∀ t ≥ 0,

0 ≤ QC
i,j(t)−QM

i,j(t) ≤ 1.

We need to show the following lemma to claim that the fluid model of the

UMQN under the SFCR-Π policy is identical to the fluid model of the UMQN

under the MQN-Π policy. Let Q̄(t) be the fluid limit of the queue length

process for the UMQN under the MQN-Π policy.

Lemma 3.2.4.

lim
n→∞

QC
i,j(nt)

n
= Q̄(t) u.o.c a.s.

Proof. Let QC,n(t) =
QC

i,j(nt)

n
and QM,n(t) =

QM
i,j(nt)

n
.

Consider any compact set T . We need to show that QC,n(t) → Q̄(t) u.o.c a.s.

That is we need to show that:

lim
n→∞

sup
t∈T

‖QC,n(t)− Q̄(t)‖ = 0.

Note that:

lim
n→∞

sup
t∈T

‖QC,n(t)− Q̄(t)‖ = lim
n→∞

sup
t∈T

‖QC,n(t)−QM,n(t) + QM,n(t)− Q̄(t)‖

≤ lim
n→∞

sup
t∈T

{‖QC,n(t)−QM,n(t)‖+ ‖QM,n(t)− Q̄(t)‖}

≤ lim
n→∞

sup
t∈T

{ 1

n
+ ‖QM,n(t)− Q̄(t)‖}

≤ lim
n→∞

1

n
+ lim

n→∞
sup
t∈T

{‖QM,n(t)− Q̄(t)‖}

≤ 0.
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Therefore

lim
n→∞

QC,n(t) = Q̄(t) u.o.c a.s.

That is,

lim
n→∞

QC
i,j(nt)

n
= Q̄(t) u.o.c a.s.

The u.o.c convergence of the scaled versions of the processes DC
i,j(t) and TC

i,j(t)

can be established by an analogous argument.

Lemma (3.2.3) allows us to follow the same reasoning for all other stations,

thus permitting us to claim that the fluid models for the system under the

SFCR-Π policy and the MQN-Π policy are identical.

Note that:

TC
i,j(t) ≤ DC

i,j(t) ≤ TC
i,j(t) + 1.

Hence, in the fluid limit:

lim
n→∞

TC
i,j(nt)

n
≤ lim

n→∞

DC
i,j(nt)

n
≤ lim

n→∞

TC
i,j(nt) + 1

n
.

Therefore

D̄C
i,j(t) = T̄C

i,j(t).
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3.2.4 The Fluid Model

The fluid model equations for the SFCR are listed below: ∀ i ∈ {2 . . . N −

1} and j ∈ {1, . . . , N − i},

Ā1,j(t) = α1,jt (3.2.1)

Āi,j(t) = D̄i−1,j+1(t) (3.2.2)

Q̄i,j(t) = Q̄i,j(0) + Āi,j(t) (3.2.3)

−D̄i,j(t) + D̄i−1,j+1(t)

D̄i,j(t) = T̄i,j(t) (3.2.4)

Īi(t) = t−
N∑

j=1

T̄i,j(t). (3.2.5)

Note that we have dropped the superscript C in referring to the various quan-

tities involved. This is because for the remainder of this section we shall only

be dealing with one fluid model. In addition, since the processes in the SFCR

and the MQN-Π policy, converge to the same fluid limit, the SFCR model

satisfies the following fluid model equation for non-idling:

At each station i, Īi(t2)− Īi(t1) > 0 for all t2 > t1 ≥ 0, if and only if:

W̄i(t) = 0, ∀ t ∈ [t1, t2). (3.2.6)

Note that additional constraints will be needed to enforce the scheduling policy

Π. We are now prepared to prove theorem 3.2.1.

Proof. The fluid model is a special case of the one analyzed by Dai and Weiss

(section 6, [10]). Dai and Weiss show that this fluid model is stable under the
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UTCs. As mentioned in section (2.3.1), it can be shown that this network is

weakly stable when the UTCs are less than or equal to one. This implies the

rate stability of the queueing network as shown by Chen in [6]. This completes

the proof of theorem 3.2.1.

Remark 3.2.3. Dai and Weiss [10] show that the fluid model is stable. This is

a stronger notion of stability than weak stability (for further details see [9]).

According to Dai’s result on fluid models [8], the SFCR queueing network

would be positive Harris recurrent, if it operated under a stationary policy.

However, the MQN-Π policy we have used to eliminate idling is not stationary

and hence the stronger result is not directly applicable.

3.3 Work in Process (WIP) Optimal Policy for SFCR

In this section our objective is to find the policy which minimizes long run

average WIP for the SFCR. The expression for the long run average WIP (L̄)

along a sample path ω is:

L̄(ω) = lim
T→∞

∫ T

0

|Q(t, ω)| · dt

T
.

Theorem 3.3.1. For any sample path ω all non-idling policies have the same

long run average WIP L̄(ω), in the SFCR queueing network when all the down-

stream stations are empty initially.

Proof. In the proof we suppress the ω notation for simplicity. It is to be noted
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that at every integer unit of time, an empty vehicle arrives at station 1. We

also assume that all downstream stations are empty at time 0. We define

the WIP contribution of a job as the time spent in the system by this job.

Note that this is equal to the area under the WIP profile contributed by this

particular job. For example a job which arrives in the system at time ta and

exits the system at time td has a WIP contribution of (td − ta).

At any integer time t, let there be M jobs in the system at station 1. Consider

the kth and the (k + 1)st (k + 1 < M) job in the order in which the jobs

are to be served. Let the destinations of these two jobs be stations l and m

respectively. We first consider the case that l < m.

The remaining amount of time job number k spends in the system is k + l.

Similarly the amount of time job number k+1 spends in the system is k+1+m.

Let the WIP contribution of all jobs that have already finished service at

station 1 at time t be Lp. Let the WIP contribution of jobs waiting at station

1 up to job number k be Lk−1. Similarly let the WIP contribution of all jobs

after k + 1 be Lk+2. Hence the total WIP at time t can be calculated as:

Lp + Lk−1 + (t− ta,k) + (t− ta,k+1) + (k + l) + (k + 1 + m) + Lk+2 units,

where ta,k and ta,k+1 are the arrival times of kth and (k + 1)st jobs.

Now let us switch the order of service for just these two jobs. That is the

destination of the new kth job would be m and the destination of the new

(k + 1)st job would be l. The new total WIP can be calculated as:

Lp + Lk−1 + (t− ta,k) + (t− ta,k+1) + (k + m) + (k + 1 + l) + Lk+2 units.
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This is exactly the same as the total WIP prior to switching. Hence this

switching of jobs did not impact the long run average WIP. But note that

this is a completely new policy. This switch also does not impact the WIP

contributions of jobs prior to these two jobs or jobs after these two. Using

standard interchange arguments, it can be shown that any non-idling policy

can be obtained from any other non-idling policy by a series of finite pairwise

interchanges like these. Hence the WIP contribution of jobs does not change

regardless of the order of service and hence all non-idling policies are identical

with respect to long run average WIP.

Also note that by symmetry the case that l > m is identical. If l = m, it does

not matter which job we choose.

3.4 Optimal Draining Policy for Fluid Network

The fluid model for the SFCR under a scheduling policy Π, as we have shown

earlier, is the same as that of the unidirectional ring type MQN under the

MQN-Π policy. In this section we find the policy which minimizes the in-

stantaneous amount of fluid in the SFCR network at every point of time.

The solution to this problem also minimizes the long run average fluid in the

network [7].

Theorem 3.4.1. The Shortest Requested Travel Time (SRTT) first policy

minimizes the draining time and the average WIP for the fluid model of the

N station SFCR.
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Proof. Let the total amount of fluid in the network at time t be W̄ (t). Also

let Wj(t) be the total amount of fluid at station j at time t. At station 1,

W̄1(t) =
N−1∑
j=1

Q̄1,j(0) +
N−1∑
i=1

α1,i · t−
N−1∑
j=1

D̄1,j(t).

At any other station k,

W̄k(t) =
N−k∑
j=1

Q̄k,j(0) +
N−k∑
j=1

D̄k−1,j+1(t)−
N−k∑
j=1

D̄k,j(t).

Hence,

W̄ (t) =
N−1∑
k=1

Q̄k(t)

=
N−1∑
i=1

N−i∑
j=1

Q̄i,j(0) +
N−1∑
i=1

αi,i · t−
N−1∑
k=1

D̄k,1(t).

It is easier to work in terms of derivatives rather than the actual workload

values. The derivative of W̄ (t) with respect to t:

˙̄W (t) =
N−1∑
k=1

˙̄Qk(t)

=
N−1∑
i=1

α1,i −
N−1∑
k=1

˙̄Dk,1(t)

=
N−1∑
i=1

α1,i −
N−1∑
k=1

˙̄Tk,1(t).

To minimize the value of W̄ (t), the value of ˙̄Tk,1(t) for all values of k should

be set to 1 as long as Q̄k,1(t) is not empty. The total processing rate of fluid
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would be maximized by working on fluid of the non-empty buffer with least

stations left to visit. For further details refer to section 4.3.

Hence the optimal policy is:

• At each station j, process the buffer belonging to the class which imme-

diately exits the station (class (j, 1)) as long as it is non-empty.

• If this buffer empties allocate a fraction of the station’s processing rate

to keep it empty. This fraction is decided by the input rate to this buffer.

• Allocate the remaining fraction of the station’s processing rate to the

class of jobs, which, would exit at the next station.

• If this is station N − 1 allocate all capacity available to keep the buffer

empty.

• As classes empty, work on classes with jobs remaining that have the least

number of steps remaining to exit the system.

In chapter 4 we provide an example of a fluid network with no external input

but with an initial amount of fluid in all buffers, where there are policies which

are not optimal with respect to WIP. However in the absence of initial amounts

of fluid at downstream buffers, all policies optimize WIP for the SFCR.
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Chapter 4

General Feed-forward Cambridge Ring

In this chapter, we extend the previous model discussed by allowing external

arrivals to all stations. We label this network the General Feed-forward Cam-

bridge Ring (GFCR). We establish the throughput optimality of all non-idling

policies in the GFCR using a similar approach to the one used in the previous

chapter. The optimal policy with respect to WIP in the fluid model of the

GFCR is then identified. We proceed to show using examples that the WIP

optimal policy as suggested by the fluid model may not be optimal for the

GFCR with respect to long run average WIP. The general holding cost min-

imization problem for this fluid network is also formulated and the optimal

solution of the holding cost problem for a simple example is presented.

4.1 Detailed Model Description

In this section we describe the GFCR with N stations and show how it fits

into the UMQN framework discussed earlier. In the GFCR, all stations except

station N may receive external arrivals. We assume that none of these arrivals

request a destination past station N . Thus jobs arriving to station i can

request any destination from i+1, . . . , N . As in the previous case this implies
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Figure 4.1: General Feed-forward Cambridge Ring

that an empty vehicle arrives to station 1 at every integer point of time. An

example of this network with three stations is shown in figure 4.1.

As in the SFCR, this problem can be described in the multiclass framework

developed in the previous section. We consider the UMQN described in chapter

3 and in this case we let all stations except station N receive external arrivals.

Station N cannot receive external arrivals and it serves only as a destination

station. At each station every job requests a service of one unit of time. As

in the previous chapter, a job of type (or class) (j, k) is currently at station j

with k steps remaining to reach its destination station. Thus at station i jobs

can be grouped into one of potentially N − i job classes. This leads to a total

of (N−1)·(N−2)
2

potential job classes.

The CR restrictions force service to begin at integer points of time and station

1 is free to begin service on an external arrival at every integer point of time.

These restrictions enforce idling as explained in section 2.1. Again we label

the policy we use to resolve contention for service Π. The UMQN described

above, operating under the CR restrictions under the HL scheduling policy Π

is said to be operating under the GFCR-Π policy.
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4.1.1 The Queueing Network Equations

The queueing network equations for the UMQN operating under the GFCR-Π

policy are almost identical to that of the SFCR except for the fact that external

arrivals occur to all stations but station N . We use the same terminology as

in the previous chapter, including the superscripts C and M . The queueing

network equations under the GFCR-Π policy are the same as (2.1.1)-(2.1.8).

However we impose the restriction that:

DC
0,j(t) = 0. (4.1.1)

This condition is needed to enforce the fact that station N is simply a

destination station. We have relaxed the condition from the SFCR that

Ei,j(t) = 0, ∀ i > 1, and permit external arrivals to all classes. Under the

CR restrictions the non-idling condition is the same as (2.1.9a) and (2.1.9a).

We also need to enforce the the scheduling policy Π and the operational con-

straint that service at any station can only begin at integer points of time.

4.2 Stability Analysis

In this section we show that all non-idling policies Π are throughput optimal

for the UMQN operating under the GFCR restrictions. Consider the GFCR

with N stations described above. The corresponding UMQN is shown in figure

4.2. As in the previous case we state our main result here.

Theorem 4.2.1. In the GFCR all non-idling scheduling policies are through-

put optimal.
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Figure 4.2: Multiclass Version of GFFR

Let αi,j (≥ 0) be the arrival rate to class (i, j). The UTCs for the UMQN are:

For station 1,
N−1∑
j=1

α1,j < 1.

For every station, i ∈ {2, . . . , N − 1},

N−i∑
j=1

(αi,j + αi−1,j+1) < 1.

The scheduling policy we compare the GFCR-Π policy to is identical to the one

described in section 3.2.2. We do not describe the policy again in this section.

For the UMQN operating under the GFCR-Π policy, due to the presence of

external arrivals, an arrival can occur at a non-integer point of time to any

station except N . As earlier we refer to this policy as the MQN-Π policy. This

policy ensures that all stations have the same choice of jobs to work on at all

integer points of time as the GFCR-Π policy.
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Lemma 4.2.2. For all job classes (i, j), such that i ∈ {1, . . . , N − 1}, j ∈

{1, . . . , N − i} and ∀ t ≥ 0:

0 ≤ TM
i,j (t)− TC

i,j(t) ≤ 1.

Remark 4.2.1. Note that in the UMQN operating under the MQN-Π policy,

pre-emption can occur at any station. This does not occur in the SFCR as

downstream stations receive only internal arrivals and only one internal arrival

can occur in the interval between two consecutive integer points of time.

Proof. This claim has already been proven in chapter 3 for all classes belonging

to station 1 of the SFCR. Since station 1 of the GFCR receives only external

arrivals, it is identical to station 1 of the SFCR. Hence by lemma 3.2.2,

0 ≤ TM
1,j(t)− TC

1,j(t) ≤ 1, ∀ j ∈ {1, . . . , N − 1}, ∀ t ≥ 0.

Consider the MQN-Π policy as applied to station i. That is, at station i service

starts on the first job that arrives to an empty station i and is pre-empted if

necessary at the next integer unit of time. Whenever at a non-integer time t

under the MQN-Π policy, a job has to be chosen to start service, it is chosen

according to the scheduling policy Π applied to the jobs present at that time.

At time dte service on this job may be pre-empted if another job with higher

priority under the GFCR-Π policy is waiting for service at station i. We prove

this lemma for station 2 and show that it is true for any station in the UMQN.

Let ω be a fixed but arbitrary sample path of external arrivals. Any arrival

that occurs to an empty station 2, can either be an external arrival or an
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internal arrival. Consider the first non-integer time, when an arrival (internal

or external) occurs to an empty station 2. This time need not be identical

under the MQN-Π and GFCR-Π policies. If it is an internal arrival which

occurs to this empty station under the MQN-Π policy, then under the GFCR-

Π policy this arrival may not occur until the next integer unit of time. However

the event of an arrival facing an empty station 2 at a non-integer time will

occur under the MQN-Π policy earlier than or at the same time as under the

GFCR-Π policy. Let τB2 be the first non-integer time under the MQN-Π policy

that an arrival to some class say (2, k), faces an empty station 2. Let us call

this arrival mk.

If this arrival mk is an internal arrival from class (1, k+1), the way the MQN-Π

policy is setup at station 1 ensures that this arrival will occur under the GFCR-

Π policy at time dτB2e. Under the GFCR-Π policy, service can commence on

this job at station 2 (if it is the highest priority job in queue) at time dτB2e. If

on the other hand, this arrival mk is an external arrival, then it occurs under

both policies at the same time. Hence under both the GFCR-Π policy and the

MQN-Π policy the UMQN can choose to process job mk at time dτB2e. Let

δB2 be the earliest time after τB2, under the GFCR-Π policy when the station

2 is idle again. Hence the order in which the jobs receive service under both

policies is the same at all stations.

We now compare the times spent working on each class under the GFCR-

Π policy and the MQN-Π policy. As at station 1 we analyze the difference

TM
2,k(t) − TC

2,k(t), ∀ k ∈ {2, . . . , N − 2} over (τB2, δB2]. The two cases we need
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to consider are:

1. Arrival mk is an internal arrival which has just completed service from

station 1.

2. Arrival mk is an external arrival to class (2, k).

Case 1:

If under the MQN-Π policy at station 2, service begins on an internal arrival,

mk at time τB2, (before this internal arrival occurs under the GFCR-Π policy)

the time spent serving class (2, k) starts increasing. The difference TM
2,k(τB2)−

TC
2,k(τB2) is dτB2e − τB2. Then at time dτB2e, internal arrival mk occurs under

the GFCR-Π policy. Once this internal arrival occurs under the GFCR-Π

policy, TM
2,k(t)−TC

2,k(t) remains constant until this job starts service under the

GFCR-Π policy.

Once the internal arrival occurs, under the MQN-Π policy station 2 operates

similar to station 1. At time dτB2e, under the GFCR-Π policy the UMQN may

have a choice of jobs on which to commence service. If the internal arrival

mk (currently in service under the MQN-Π policy) gets the highest priority

under the GFCR-Π policy, service continues under the MQN-Π policy. Under

the GFCR-Π policy, the system commences service to this job at time τB2.

Otherwise the job is preempted under the MQN-Π policy by the job of the

class with highest priority under the GFCR-Π policy, say (2, l). The difference

TM
2,k(t)−TC

2,k(t), remains constant until the partially completed job mk resumes
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service. This occurs the next time class (2, k) becomes the highest priority class

under the GFCR-Π policy. This will occur at an integer point of time before

the end of the current busy period in the MQN-Π policy. Note that at time

dτB2e, there is only a single class (class (2, k)) with TM
2,k(t) − TC

2,k(t) > 0 and

this difference is less than or equal to one.

The rest of the proof in this case runs exactly as in station 1. That is, until the

end of a busy period under the MQN-Π policy, the difference gets transferred

between the classes but never increases beyond one. The busy period under

the MQN-Π policy will end before the busy period under the GFCR-Π policy.

When under the GFCR-Π policy the busy period ends, (TM
2,k(t)−TC

2,k(t), ∀k ∈

{1, . . . , N − 2}) decrease until they becomes zero at the next integer unit of

time, unless another arrival occurs before then. In this case the end of the

busy period argument made for station 1 in the proof of lemma 3.2.2 applies.

Then there will be two classes at station 2 with positive differences in time

served but the total differences will still be less than one.

Case 2:

If this job mk, is an external arrival, then it occurs at the same time regardless

of the policy. Under the MQN-Π policy, service for this job commences im-

mediately. As in case 1, TM
2,k(t)− TC

2,k(t), starts increasing until at time dτB2e,

the difference becomes, dτB2e − τB2.

At time dτB2e, if there is a higher priority job class in the queue under the

GFCR-Π policy, the job mk gets preempted under the MQN-Π policy. Under
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the GFCR-Π policy, the job mk, then resumes service when it becomes the

highest priority job.

Hence the sequence of events that occur after the next integer unit of time is

exactly the same regardless of whether the arrival is internal or external. The

rest of the proof is exactly identical to the proof in the previous chapter.

It is to be noted that this proof is similar at all stations because at each station:

• The order in which jobs complete processing is identical under both the

GFCR-Π and the MQN-Π policies.

• Any internal arrival under both policies occurs to the station within the

same integer unit of time. This enables both policies to be able to process

the same job at every integer point of time.

The important feature of the MQN-Π policy is that at any downstream station,

external arrivals can be treated exactly the same way as internal arrivals. This

is because the time of arrival of the internal arrival t does not matter as long

as under the GFCR-Π policy, it arrives before dte.

4.2.1 Illustrative Example

An illustrative example for the GFCR with three stations (figure 4.2) is pro-

vided to compare the operation of the network under a specific GFCR-Π policy

and the corresponding MQN-Π policy. The external arrival process consists of
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only four arrivals as shown in table 4.1. We call these four arrivals, jobs 1, 2,

3 and 4. Job 1 belongs to class (1, 1) and arrives at time 0.3. Job 2 belongs to

class (2, 1) and arrives at time 0.7. Job 3 belongs to class (1, 2) and arrives at

time 0.9. Job 4 belongs to class (1, 1) and arrives at time 1.3. Since we only

use this example to compare the policies over a small time window, the arrival

times for these jobs were chosen to highlight events that were discussed in the

previous section. For example, the first arrival faces an empty station and

hence under the GFCR-Π policy, service cannot begin until time 1 whereas

under the MQN-Π policy, service would commence immediately.

In this example, the GFCR-Π policy is a static buffer priority (SBP) policy at

station 1. At station 1, class (1, 2) has priority over class (1, 1). Since there

is just one class at station 2, we simply follow the FIFO policy. Service under

the GFCR-Π policy at each station begins on the job belonging to the class

with highest priority at every integer unit of time. The corresponding MQN-Π

policy is the same static buffer priority policy described above. However for

an arrival that faces an empty station, service begins on this job immediately

rather than at the next integer unit of time. At the next integer unit of

time if there are any jobs with higher priority, service on the current job is

preempted in favor of the higher priority job. Under the MQN-Π policy, the

system resumes service on this job when service commences on this job under

the GFCR-Π policy.

Note that any preemption referred to occurs only under the MQN-Π policy.

There is no preemption under the GFCR-Π policy. At time 0.3 an external
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arrival (job 1) occurs to class (1, 1). Under the MQN-Π policy, service com-

mences on this job immediately. At time 0.7, an external arrival (job 2) occurs

to class (2, 1). Again under the MQN-Π policy at station 2, service commences

on this job immediately.

At time 0.9, an external arrival (job 3) occurs to class (1, 2). During the

interval (0.3, 1), under the GFCR-Π policy the network remains idle at both

stations while under the MQN-Π policy service on jobs 1 and 2 is in progress.

At the next integer unit of time (1.0), under the GFCR-Π policy service starts

on the highest priority jobs available at stations 1 and 2. Hence service begins

on job 3 at station 1 and job 2 at station 2. Under the MQN-Π policy at time

1.0, job 1 with 0.3 units of service time remaining is preempted by a job of

class (1, 2) (job 3). However at station 2, there is no other higher priority job

waiting and hence service continues on job 2. The differences in processing

times for the classes at stations 1 and 2 are as shown in table 4.1.

At time 1.4, there is an external arrival (job 4) of class (1, 1). In our example

this is the last external arrival. At time 1.7, under the MQN-Π policy service

is completed on job 2. Under the GFCR-Π policy, 0.3 units of service time

remain on this job at this time.

At time 2, under the GFCR-Π policy service is completed on job 3 and job 2.

The next job to commence service under the GFCR-Π policy is of class (1, 1)

(job 1). Under the MQN-Π policy service on job 3 is also completed at station

2. Also service is resumed on job 1 at station 1, while under the GFCR-Π

policy service commences on this job. At this point of time under these two

65



policies the network has spent the same amount of time working on classes

(1, 2) and (2, 1), while on class (1, 1), the MQN-Π policy is ahead by 0.7 time

units. This difference remains the same as at time 1.0.

The job completed at time 2 from class (1, 2) (job 3) becomes an internal arrival

to class (2, 1) at the same time under both policies. Under both policies service

starts on this job immediately at time 2.0. Hence the amount of time spent

processing jobs at station 2 is equal under both policies until time 3.0. At

time 2.3, job 1 completes service under the MQN-Π policy and departs from

the system. This job gets completed under the GFCR-Π policy at time 3.0.

Under the MQN-Π policy service begins on job 4 at time 2.3 and completes

service at time 3.3. Under the GFCR-Π policy service starts on job 4 at time

3.0 and completes it at time 4.0. At this time both systems have spent the

same amount of time working on jobs in all classes.

The purpose of this example is to compare the functioning of the UMQN under

both policies and to demonstrate that the time spent working on the various

classes under each policy differs by less than one at any point of time. Table

4.1 shows the various events which occur and a comparison of the time spent

working on the various classes at different points of time.

4.2.2 The Fluid Model for the Cambridge Ring

Consider again a fixed but arbitrary sample path ω. Along this sample path

TC
i,j(t)−TM

i,j (t) ≤ 1 (Lemma 4.2.2). As in the previous case, DC
i,j(t)−DM

i,j(t) =

bTC
i,j(t)c − bTM

i,j (t)c, which implies that DC
i,j(t)−DM

i,j(t) ≤ 1.
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This implies that AC
i,j(t)− AM

i,j(t) ≤ 1, since for all i > 1,

AC
i,j(t)− AM

i,j(t) = DC
i−1,j+1(t)−DM

i−1,j+1(t).

At station 1, AC
i,j(t)−AM

i,j(t) is zero. The external arrival processes are identical

under both policies and hence do not play a role in the difference. In the

GFCR, the initial station acts as a synchronizing station.

Thus along any sample path ω, AM(t) − AC(t), TM(t) − TC(t) and DM(t) −

DC(t) ∀ i, j are less than or equal to one. Thus as argued in section 3.2.3, the

differences of the corresponding fluid limits are zero.

This shows that in the fluid limit, the various processes for the UMQN un-

der the GFCR-Π policy and MQN-Π policy are identical pointwise. Also as

shown in lemma 3.2.4,this implies that the processes of the UMQN under the

GFCR-Π policy converge to the fluid limit processes under the MQN-Π policy

uniformly on compact sets along any sample path ω.

Since the fluid model processes for the GFCR-Π policy (which occasionally

“enforces” idling) are identical to the fluid model processes of a non-idling

policy, the non-idling condition for the fluid model of the GFCR-Π policy is

the same as that of the MQN-Π policy.

Also as argued in section 3.2.3, D̄C
i,j(t) = T̄C

i,j(t). The fluid model equations for
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the GFCR are listed below: ∀ i ∈ {1 . . . N}, j ∈ {1, . . . , N − i} and t ≥ 0:

Āi,j(t) = αi,jt + D̄i−1,j+1(t) (4.2.1)

Q̄i,j(t) = Q̄i,j(0) + Āi,j(t)− D̄i,j(t) (4.2.2)

W̄i(t) =
N−i∑
j=1

Q̄i,j(t) (4.2.3)

D̄i,j(t) = T̄i,j(t) (4.2.4)

Īi(t) = t−
N∑

j=1

T̄i,j(t) (4.2.5)

D̄0,j(t) = 0. (4.2.6)

The non-idling condition for this fluid model is that at each station i, Īi(t2)−

Īi(t1) > 0 for all t2 > t1 ≥ 0, if and only if:

W̄i(t) = 0, ∀ t ∈ [t1, t2). (4.2.7)

As in the SFCR, additional constraints will be needed to enforce the actual

GFCR-Π policy. The proof of theorem 4.2.1 then follows from an argument

exactly analogous to the proof of theorem 3.2.1.

4.3 WIP Optimal Draining Policy for Fluid Network

Let W̄ (t) be the total amount of fluid in the network at time t and Q̄k(t) be

the total amount of fluid at station k at time t. We find the global optimum

by minimizing the value of W̄ (t) for every t ≥ 0.

At station 1,
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Q̄1(t) =
N−1∑
j=1

Q̄1,j(0) +
N−1∑
j=1

Ā1,j(t)−
N−1∑
j=1

D̄1,j(t)

=
N−1∑
j=1

Q̄1,j(0) +
N−1∑
j=1

α1,j(t)−
N−1∑
j=1

D̄1,j(t).

At any other station i (1 < i < N),

Q̄i(t) =
N−i∑
j=1

Q̄i,j(0) +
N−i∑
j=1

Āi,j(t)−
N−1∑
j=1

D̄i,j(t)

=
N−i∑
j=1

Q̄i,j(0) +
N−i∑
j=1

αi,j(t) +
N−i∑
j=1

D̄i−1,j+1(t)−
N−1∑
j=1

D̄i,j(t).

Hence at time t, the total amount of fluid W̄ (t) is given by:

W̄ (t) =
N∑

i=1

Q̄i(t)

=
N∑

i=1

N−i∑
j=1

Q̄i,j(0) +
N−1∑
i=1

N−i∑
j=1

αi,j · t +
N−1∑
i=1

N−i∑
j=1

D̄i−1,j+1(t)−
N−1∑
j=1

D̄i,j(t)

=
N∑

i=1

N−i∑
j=1

Q̄i,j(0) +
N−1∑
i=1

N−i∑
j=1

αi,j · t−
N−1∑
k=1

D̄k,1(t).

Theorem 4.3.1. An optimal policy with respect to both work in process for the

fluid model of a GFCR is a static buffer priority policy, which can be described

as follows: at any station i, the order of priority is (i, 1) > (i, 2) > · · · >

(i, N − i).
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Proof. The time derivative of W̄ (t) is given by:

˙̄W (t) =
N−1∑
i=1

N−i∑
j=1

αi,j −
N−1∑
k=1

˙̄Dk,1(t)

=
N−1∑
i=1

N−i∑
j=1

αi,j −
N−1∑
k=1

˙̄Tk,1(t).

˙̄W (t) represents the rate of change of WIP in the fluid model. The global opti-

mal policy is the one that minimizes ˙̄W (t) subject to the constraints specified

by the fluid model equations (4.2.1)-(4.2.7).

This problem reduces to maximizing
∑N−1

k=1
˙̄Tk,1(t) subject to the constraints

specified by the fluid model. At any station i, ˙̄Ti,1(t) can attain a maximum

value of 1 as long as the buffer (i, 1) is non-empty. It is immediately clear that

if buffer (i, 1) is non-empty the station should spend all its time working on

that buffer.

Let us define a route in the fluid network of the GFCR as the set of buffers that

fluid arriving to class (1, j) at station 1 has to pass through before it exits the

system. For example (1, 1) is a route. Similarly (1, 2), (2, 1) is a route. Note

that every buffer belongs to exactly one route. Next we define what we refer

to as the exit buffers. Along a route the last non-empty buffer is defined to be

the exit buffer. Fluid belonging to an exit buffer along a route may exit the

system at some downstream station. The set of exit buffers varies with time.

If buffers of type (k, 1) are non-empty at time t, then they are exit buffers.

At any point of time it is the set of non-empty exit buffers that control the rate

at which fluid can be drained from the system. Once an exit buffer becomes
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empty it can be removed from the system and its corresponding route. The

system then simply allocates the capacity necessary to keep it empty. Further

at any station j, it is optimal to work on an exit buffer (j, k) (k > 1) if fluid

at all buffers at station j, (j, 1) . . . , (j, k − 1) are empty. This achieves the

maximum rate at which fluid exits the network at any point of time and hence

such an allocation is optimal with respect to WIP.

Once all the buffers in the fluid model empty, they remain empty as we assume

that the UTCs are satisfied. If the UTCs are strictly violated, all policies have

an infinite objective value.

The above description prescribes exactly what the GFCR needs to be working

on at any state and the resulting policy is the static buffer priority policy

described in theorem 4.3.1. It is interesting to note that this policy is the fluid

version of the SRTT policy.

Of course, theorem 4.3.1 is only interesting if there exists policies which per-

form worse than the SRTT policy. We use the network with three stations

and fluid levels a, b and c as shown in figure 4.3 to demonstrate that not all

policies are globally optimal.

We consider the fluid levels in this network under two policies - the SRTT

policy and the LRTT policy. The draining time of the fluid in this network is

identical under both policies but the average WIP is not. The graphs of the

fluid levels under the two policies plotted against time are shown in figure 4.4.

It is clear that the average WIP of the LRTT policy is higher than that of the
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SRTT policy as the fluid levels in the LRTT policy are greater than or equal

to fluid levels in SRTT policy at all times when there is a positive amount of

fluid in the network.

4.4 SCLP Formulation of Holding Cost Problem for the
Fluid Model

In the previous section we described the fluid optimal solution for the WIP

problem. Note that minimizing WIP corresponds to minimizing fluid holding

costs when the holding cost is equal for every class of fluid. It is also interesting

to examine the problem with more general holding costs. In this problem we

assign different holding costs for the jobs at different stations. For the GFCR

network, the holding cost problem is extremely difficult to solve.

One of the approaches, suggested by Weiss [23] is to use the fluid network to set

up a constrained optimization problem over any specified time horizon T . This

optimization problem falls under the category of infinite dimensional mathe-

matical programs known as separated continuous linear programs (SCLPs).

A large value of T can be used to optimize this problem to obtain a long term

operating policy. If T is picked large enough for the fluid model to empty, then

the resulting policy is optimal over the entire time horizon. This is because

once the fluid model empties it stays empty. The fluid solution can then

be used to control the operation of the GFCR. Instead of applying the fluid

policy directly one may then translate the fluid optimal control policy [19] to

a queueing network policy and use it to control the system.
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In this dissertation we simply model our problem as an SCLP. We present the

solution for a simple example of the GFCR but we do not attempt to solve

the holding cost problem for a general GFCR. The objective in this problem

is to minimize the holding costs incurred over some finite time horizon.

Let ci,j be the holding cost for class (i, j). We set Q̄i,j(t) to be zero for all t, if

class (i, j) does not exist. The fluid control problem is to choose at any point

of time s in the interval [0, T ], optimal rates of flow, ui,j(s)(=
˙̄Di,j(s)), which

optimize the SCLP below:

min

∫ T

0

N∑
i=1

N∑
j=1

ci,jQ̄i,j(t)dt

subject to

˙̄Qi,j(t) = αi,j + ui−1,j+1(t)− ui,j(t) (4.4.1)

Q̄i,j(0) = Q̄ (4.4.2)
N−i∑
j=1

ui,j(t) ≤ 1 (4.4.3)

Q̄i,j(t) ≥ 0 (4.4.4)

ui,j(t) ≥ 0 (4.4.5)

u0,j(t) = 0, (4.4.6)

where index i ∈ {1, . . . , N − 1} and j ∈ {1, . . . , N − i}.

The variables ui,j(s) are known as the control variables and the Qi,j(t) are

known as the state variables. We now present the solution to an example of

the GFCR with three stations (figure 4.2). The three job classes are (1, 1),
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(1, 2) and (2, 1). The optimization problem simplifies to:

min

∫ T

0

(c1,1Q̄1,1(t) + c1,2Q̄1,2(t) + c2,1Q̄2,1(t))dt

subject to

˙̄Q1,1(t) = α1,1 − u1,1(t)

˙̄Q1,2(t) = α1,2 − u1,2(t)

˙̄Q2,1(t) = α2,1 + u1,2(t)− u2,1(t)

Q̄i,j(0) = Q̄

u1,1(t) + u1,2(t) ≤ 1

u2,1(t) ≤ 1

Q̄i,j(t) ≥ 0

ui,j(t) ≥ 0.

As stated earlier this is a problem in optimal control and the goal is to deter-

mine the optimal control at time 0 given by u(0) = (u1,1(0), u1,2(0), u2,1(0)) for

all values of the initial state. Since this control is determined for an arbitrary

initial state, these controls can be used to determine the optimal control at

any time t given the state at time t. Avram et al. [3] solve this problem using

the Pontryagin’s Maximum Principle for a case with unequal service rates for

each class. Our model is a special case of theirs as all service rates are iden-

tical. Here we present their solution modified for our problem. Note that it

is evident that as long as there is fluid present at class (2, 1), u2,1(t) has to

be maintained at 1. Note that once a buffer is emptied it is never optimal to
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let it fill up again. Thus the nature of the optimal control is piecewise linear.

This reduces the choice of flow rates to two vectors (0, 1, 1) and (1, 0, 1).

Case 1: c1,2 < c1,1

In this case it is intuitively obvious that all the fluid from class (1, 1) needs to

be served first as long as it is non-empty. Hence the optimal control at time

0 is (1, 0, 1). Once buffer (1, 1) becomes empty it is never optimal to let it fill

up again.

Case 2: c1,2 > c1,1 and c1,2 − c1,1 > c2,1

In this case the optimal control is (0, 1, 1). Note that under this control, the

instantaneous rate at which holding cost is reduced is maximized. This control

policy is the so called myopically optimal policy [7]. In general this myopically

optimal policy may not be the optimal policy with respect to holding costs.

The other case is that c1,2 > c1,1 and c1,2 − c1,1 < c2,1. In this case we are

indifferent between the two available flow control rate vectors.

4.5 SRTT may not be Optimal for GFCR

In the previous section we have showed that the policy which minimizes both

draining time and WIP in the fluid model is the static buffer priority policy

which corresponds to the SRTT policy. In this section we show that SRTT

may not be optimal for the queueing network, thus indicating the possible

limitations of the use of a fluid model for scheduling purposes even in this

simplified version of a CR network. We accomplish this by using a simple
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example with three stations and deterministic arrival rates.

4.5.1 Counterexample

Consider the GFCR with three stations. There are three classes of jobs: (1, 1),

(1, 2), (2, 1). Let the external arrival rate to all three classes be 0.5 jobs per

unit time. Note that these arrival rates satisfy the UTCs. We assume that

these external arrivals occur to the system at times t = 2, 4, . . . . Further we

also assume that the initial number of jobs in each class is one.

At time 0, the number in the system is 3. All vehicles are empty. Under the

SRTT policy, the job at class (1, 1) is picked up first. Simultaneously the job

at station 2 is picked up by another vehicle. Hence the WIP in the interval

[0, 1) is equal to 3 jobs. At time 1, two jobs have left the system and hence

there is now one job in the system. This job belongs to class (1, 2). At time

1, this job is picked up by an empty vehicle and conveyed to station 2 by time

2. At time 2, the next set of arrivals occurs raising the number in system to 4

jobs. At this time, a job of class (1, 1) begins service at station 1. At station

2, there are two jobs waiting for service essentially indistinguishable from each

other. Service can begin on either job. Hence at time 3, one of these jobs

exits the system from station 2 and another job exits the system from station

1. This leaves two jobs in the system, one of class (2, 1) and another of class

(1, 2). Both of these jobs begin service at their respective stations. At time

4, the job of class (2, 1) exits the system from station 2 and the job of class

(1, 2) moves to class (2, 1). At this point the next set of arrivals occur and the
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system state is identical to the state at time 2. After this point of time the

WIP oscillates between two jobs and four jobs every two units of time. Hence

the long run average WIP for this system is 3 jobs.

Now let us consider the system operating under the LRTT policy. At time 0,

the number in the system is 3. All stations are idle. Under the LRTT policy,

the job of class (1, 2) is served first. Simultaneously the job at station 2 also

begins service. Hence the WIP in the interval [0, 1) is equal to 3 jobs. At time

1, only one job has left the system and hence there are now two jobs in the

system. At this time, the job of class (1, 2) has been transferred to class (2, 1)

and there is only a job of class (1, 1) at station 1. Hence both of these jobs can

begin service at once and therefore at the end of two units of time, all three

jobs leave the system. However at this point three more arrivals occur at the

three classes and we are in exactly the same situation as at time 0. The long

run average WIP in this case is 2.5 jobs. The WIP profile for both policies is

shown in figure 4.5.

This example shows that in this simple deterministic case, the optimal policy

as suggested by the fluid model is not optimal for the queueing network.
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Figure 4.5: WIP Profiles under SRTT and LRTT policies
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Chapter 5

Idling Policies and WIP Optimality

The purpose of this chapter is to show that an idling policy may perform

better than a non-idling policy with respect to WIP for a CR. We accomplish

this by considering a special case of the network described in section 5.1. We

also provide an example of a GFCR in which an idling policy is optimal with

respect to WIP.

Policies for the CR can be classified into two kinds:“ejective” and “non-

ejective” policies. An ejective policy is one in which a job on a vehicle can

be unloaded at an intermediate station prior to its destination to pick up a job

with higher priority waiting at the intermediate station. A non-ejective policy

is one in which a job which has been loaded on a vehicle can only be removed

from the vehicle if its destination has been reached. In this chapter we only

consider non-ejective policies (see section 5.1 for explanation).

5.1 Single Vehicle Case

In this section we discuss the problem of optimizing WIP in a type of CR in

which there are four stations and just one vehicle. We call this problem the

Single Vehicle Cambridge Ring (SVCR). The vehicle moves from station to
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Figure 5.1: Single Vehicle CR

station. The travel time between stations is one unit of time. Since there is

just one vehicle the time between visits to a particular station is four units.

In our example there are just three classes of jobs in the system. Class (1, 3)

jobs which arrive to station 1 and request station 4 as a destination. Class

(2, 1) and class (3, 1) are the other two job classes. It is to be observed that no

job class requests a destination past station N . Hence this is a feed-forward

network. This network is shown in figure 5.1.

For this special case the UTCs are:

ρ1 ≡ α1,3 ≤ 1 (5.1.1)

ρ2 ≡ α1,3 + α2,1 ≤ 1 (5.1.2)

ρ3 ≡ α1,3 + α3,1 ≤ 1. (5.1.3)

Due to the presence of a single vehicle jobs at any station can only start service
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once every our units of time. Hence this problem does not directly fit into the

multiclass view that we have used for the previous cases. It can still be modeled

as a multiclass network with “open” and “closed” customers. Open customers

are those who exit the system in a finite amount of time with probability 1.

Closed customers do not exit the system and remain indefinitely. Bonald and

Down [5] show that FIFO is throughput optimal for a “mixed” generalized

Jackson network with both open and closed customers. However there is no

result on the stability of a general multiclass queueing with open and closed

customers. We have not attempted to find the stability conditions for this

problem. Our main focus in this chapter is the WIP analysis of this model.

The WIP optimal policy for this network is the non-idling “ejective” policy

listed below:

• At station 1 if there are jobs waiting, pick up a job and move it to station

2.

• At station 2 if a job is waiting, eject the job currently in service into

a buffer at station 2. Pick up a job of type (2, 1) and discharge it at

station 3. Resume service on the ejected job whenever the vehicle arrives

to station 2 and there are no jobs of class (2, 1) in the buffer. At station

3 if a job is waiting, select it upon discharge of the job from station 2.

• If no jobs are waiting at station 2, transport the job of class (1, 3) to its

destination.
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Figure 5.2: WIP Profiles under Non-idling and Idling policies

However in many applications, ejection is not permissible. Hence in this chap-

ter we only consider “non-ejective” policies. Under “non-ejective” policies the

following example demonstrates that idling may be optimal with respect to

average WIP.

5.1.1 Example

Consider the SCVR with the following arrival patterns at stations 1, 2 and 3:

each class receives external arrivals at times 0, 8, 16, . . . . Note that the implied

arrival rates satisfy the UTCs. In this case it is optimal with respect to WIP

to idle at station 1 at times 0, 8, . . . . Under a non-idling policy the average

WIP in this system is 2 units, while under the idling policy the average WIP

in this system is 1.5 units. The WIP chart under the two policies is shown in

figure 5.2.

Consider the SVCR operating under a non-ejective policy. Since the vehicle
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arrives empty to station 1 every four units, the only scheduling decision to be

made is whether to load a job waiting at station 1 when the vehicle reaches

station 1 or to let it travel empty to station 2. It can never be optimal with

respect to WIP to idle at any of the downstream stations.

Note that there only exists a single non-ejective non-idling HL policy. We now

consider a policy in which we idle at station 1 whenever there are jobs waiting

at station 2. This policy is referred to as the heuristic idling policy (HIP).

Lemma 5.1.1. The long run average WIP under the HIP is less than or equal

to that under the non-idling policy.

Proof. Consider an arbitrary sample path of external arrivals. Let the vehicle

be at station 1 at time t ∈ Z. We also assume that there are jobs waiting at

station 1. Consider the situation when there are jobs waiting at station 2.

Under the non-idling policy a job from station 1 would be loaded on to the

vehicle at time t and would exit the system at time t + 3. The number of jobs

removed from the system until the next time the vehicle visits station 1 is 1.

Once the job is loaded at station 1 the number in the system can decrease

only at time t + 3 and no jobs at the other stations can be removed.

Under the HIP policy, the vehicle would travel to station 2 empty. Hence

at least one job will be removed from the system before the vehicle re-visits

station 1, which is the same as the number of jobs removed from the system

under the non-idling policy. If there are jobs present at station 3, then the

number of jobs removed from the system will be 2. The job at station 2 will
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be removed at time t + 2. If there are jobs at station 3 by time t + 2, one job

will be removed by time t + 3.

Thus whenever there are jobs present at station 2, the HIP removes at least as

many or more jobs from the system than the non-idling policy. Further, under

the HIP the job removed will be removed from the system with a departure

time not later than a departure time under the non-idling policy. Hence the

area under the WIP profile under HIP will be less than or equal to that under

the WIP profile under the non-idling policy and this will happen every time

there is a job at station 2 and the vehicle is in transit between stations 4 and

1, 3 and 4 or 4 and 1. This is because these are the situations which lead

to idling will at station 1 under the HIP. When there are no jobs present at

station 2, the HIP acts the same as the non-idling policy. Hence the total WIP

and therefore the long run average WIP under the HIP are less than or equal

to that under the non-idling policy.

Of course this result is not interesting unless we can show that there exists

a case in which the HIP actually causes a reduction in average WIP. This is

accomplished by the example in subsection 5.1.1.

Lemma 5.1.1 establishes that the optimal policy with respect to WIP lies in

the class of idling policies. Note that the HIP mentioned above may not be

the WIP optimal policy in all cases. Under the HIP idling occurs only when

the number of jobs removed from the system is guaranteed to be greater than

or equal to the number of jobs removed from the system under the non-idling
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policy. An interesting question that arises is: Are there any conditions under

which idling may be WIP optimal if there are no jobs at station 2? Even under

the assumption that all arrivals are processes are Poisson this is not a simple

question to answer. In an effort to obtain insight into when idling might be

optimal at station 2 we simulated this system under various idling policies

using a C program (code listed in Appendix 1). The details of the simulation

are outlined below in subsection 5.2.

5.2 Simulation

The system tested is the SVCR under various policies listed in table 5.1. The

random number generator used is a combined mixed random number gener-

ator written by L’Ecuyer (see Appendix 7B, [1]). The arrival processes at

each station are Poisson. The arrival rates at stations 1, 2 and 3 were set at

0.125, 0.1225 and 0.1225 respectively. These arrival rates correspond to 50%

utilization at station 1 and 99% at stations 2 and 3 respectively. The vehicle

was initially at station 4 and it was assumed that there were no jobs in the

system at time 0. The simulation was terminated after four million units of

time. This was deemed to be long enough to remove the initialization bias.

Thirty replications were performed. The simulation code for the HIP is shown

in 1. The policies tested in the SVCR are listed in table 5.1.

The simulation was validated with a simple example via Excel and via the

deterministic example mentioned in section 5.1.1. Of all the policies tested

under the rates described here, the policy with the lowest overall average WIP
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Policy Label Policy
Policy 1 The heuristic idling policy.
Policies 2 - 6 Idle at station 1 whenever there are jobs at station 2.

or if the number of jobs at station 1 is below a certain
threshold. The threshold at station 1 was varied
from 1 to 5.

Policy 7 Non-idling policy
Policy 8 Idle at station 1 whenever there are jobs at station 2

or with probability 1− e−α2,1 if there are no jobs at
station 2.

Policy 9 Idle at station 1 whenever there are jobs at station 2
or with probability 1− e−α2,1 if there are jobs at
station 3 but no jobs at station 2.

Policy 10 Idle at station 1 if there are jobs at stations 2 or 3.

Table 5.1: Scheduling policies tested

(mean over thirty replications) was the HIP followed by the non-idling policy

and the threshold idling policies (policies 2 - 6). The policies in which idling

occurred at station 1 whenever there were no jobs at station 2 (Policies 8 and

9) performed very poorly with respect to WIP. The results on the mean values

obtained are summarized in table 5.2.

Looking at just the mean values over thirty replications, the threshold policies

simply increase the WIP in the system by the value of the threshold. A

possible explanation for this is that the value of holding a number of units of

class (1, 3) jobs in the system causes an increase in WIP in the system which

outweighs the reduction in WIP obtained by idling. This could be because

the probability of arrival in one time unit is low due to the low arrival rates
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Scheduling Policy Average WIP (over 30 Replications)
HIP 94.9244

Policy 2 95.9243
Policy 3 96.9241
Policy 4 97.9241
Policy 5 98.9240
Policy 6 99.9240
Policy 7 95.8672
Policy 8 21178.23
Policy 9 18595.59
Policy 10 101233.83

Table 5.2: Simulation Test Results

chosen in order to maintain stability. Large values of the threshold were also

investigated and analogous results were obtained. We have not included the

results from those thresholds here. The probabilistic idling policies (Policies

8 and 9) were found to be extremely far from optimal with respect to WIP.

They cause the average WIP in the system to increase with time. Another

idling policy (Policy 10) was also found to perform very poorly in terms of

average WIP levels. Hence policies 8, 9 and 10 were excluded from the group

means tests performed.

5.2.1 Group Means Tests

The average WIP from the replications for each of the policies 1-6 was analyzed

using JMP at a significance level of 0.1. The tests performed were student’s

t-distribution between each pair and Tukey-Kramer Honestly Significant Dif-
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Figure 5.3: Group Means Test

ference (HSD) tests. The result of these tests are shown in Figure 5.3. The

Tukey-Kramer HSD test classified all the policies as belonging to the same

group. In other words there was no significant difference between the means

at a 0.1 alpha level. However under the each pair student’s t-test, the differ-

ence in means between policies 1 and 6 was significant. The table of t-values

obtained is shown in table 5.3. Positive values show pairs of means that are

significantly different. Hence the only pair which has a significant difference

is the pair (Policy 6, HIP).

Hence under the conditions in which this simulation was conducted we find

that the value of idling, even though it led to a decrease in average WIP, is

very limited and does not make a significant difference. The complete results

from the tests including the confidence intervals are provided in appendix 2.

While this simulation study yielded valuable insight into when idling may be
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optimal, there are still a lot of other policies which can be tested. Furthermore,

the system tested was relatively small. This simulation can be extended to

systems with any number of vehicles (less than or equal to the number of

stations). The performance of more complex systems (described in chapter 6)

can also be studied using simulation.

5.3 Idling Example for GFCR

In this section we provide an example of a situation in which an idling policy is

better than any non-idling policy with respect to WIP for the GFCR system.

Again we limit our consideration to non-ejective policies.

Theorem 5.3.1. Under the class of non-ejective policies there exists a non-

optimal non-idling policy.

Proof. We prove this theorem by means of a deterministic example. Con-

sider a GFCR with four stations to which arrivals occur and a destination

station 5, as shown in figure 5.4. External arrivals occur only to classes

(1, 4), (2, 1), (3, 1), (4, 1). We assume that class (1, 4) has one job in the buffer

at time 0. All the other buffers are assumed to be empty initially. Each of

these classes receives a deterministic external arrival stream with arrival rates

of 0.25 jobs per unit time and arrival times as described below:

• Class (1, 4) receives external arrivals at times 4, 8, 12, . . . .

• Class (2, 1) receives external arrivals at times 1, 5, 9, . . . .
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Station 1 Station 3Station 2 Station 4 Station 5

(Destination)

(1,4) (3,2)(2,3) (4,1)

(2,1) (3,1)

Figure 5.4: Idling Example

• Class (3, 1) receives external arrivals at times 2, 6, 8, . . . .

• Class (4, 1) receives external arrivals at times 3, 7, 11, . . . .

We assume that all the vehicles in the GFCR are empty at time 0. The only

choice between idling and non-idling occurs at station 1. There is nothing to be

gained by idling at any of the other stations as they do not “block” any jobs at

the downstream stations. At every integer unit of time we know that an empty

vehicle arrives at station 1. The only non-idling policy in this case is to load
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a job waiting at station 1 into an empty vehicle at times 0, 4, . . . . The idling

policy that we consider is one in which we idle at time units 0, 4, . . . . That is,

we let the vehicles that arrive at station 1 at time units 0, 4, . . . travel empty

to station 2 even though there are jobs waiting at station 1. We then load a

job waiting at station 1 into the vehicle that arrives at time units 1, 5, . . . .

Under the non-idling policy, at time 0, there is just one job in the GFCR.

This job is at station 1. At time 1, this job is transferred to station 2. But at

station 2, there is an arrival at time 1. This arrival cannot be loaded on the

vehicle as it is occupied. Hence this arrival must wait until the next time unit

to be loaded onto a vehicle. Hence there are two jobs in the GFCR during

the interval [1, 2). At time 2, this job is then transported to station 3, where

an arrival has just occurred. Hence at time 2, there are three jobs waiting

for service (one belonging to class (2, 1), one belonging to class (3, 1) and one

belonging to class (3, 2)). Service on job belonging to class (3, 2) commences

at this time. At time 3, there are three jobs (one belonging to class (3, 1),

and two belonging to class (4, 1) as an external arrival occurs to class (4, 1)).

Note that the job present initially at station 1 belongs to class (4, 1) at time

3. At time 4, the job belonging to class (3, 1) and one job of class (4, 1) exit

the system. Hence there are two jobs in the system at time 4. One at class

(4, 1) and one at class (1, 4). At time 5, the job of class (4, 1) exits the system

and the job of class (1, 4) is at station 2. There are two jobs in the system

as an external arrival occurs to class (2, 1) at this time. Also note that this

state is identical to the state of the system at time 1. Hence from this point
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WIP Profile under Non-idling Policy
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Figure 5.5: WIP Profiles under Idling and Non-Idling policies

of time the WIP oscillates between 2 and 3 units every two units of time and

this leads to an average WIP of 2.5 units.

Under the idling policy at time 0, we let the vehicle travel empty to station 2.

This enables us to pick up a job at station 2 at time 2. Also at time 2, the job

at station 1 is loaded on to an empty vehicle. This idling policy also enables

us to pick up a job at station 3 at time 3 and at station 4 at time 4. The WIP

in this system is maintained at two units for all times after time 1. The WIP

profile for both of these policies is shown in figure 5.5. Thus even in simple

versions of a GFCR there are cases in which it might be optimal to idle for a

better WIP performance.

95



Chapter 6

Conclusions and Future Research

The flexibility available to model complex systems in applications ranging from

manufacturing to communication offers a strong incentive to apply queueing

theory to model a particular system. Although the direct analysis of a complex

stochastic model is extremely difficult, there exist approximation techniques

which provide insight into various aspects of the system such as stability.

In this dissertation we have investigated the throughput optimality of a few

special cases of the CR. In addition we have focused on optimizing WIP for the

fluid model. In this chapter we summarize the work of the previous sections

and also outline some interesting questions about this problem that as of now

remain unanswered.

The CR was modeled as a unidirectional ring type MQN with an additional

operational constraint in this framework. In chapter 3, we described a spe-

cial case of the CR (the SFCR) and showed that all non-idling policies are

throughput optimal in a SFCR. We then proved that for an initial configura-

tion with no jobs at downstream stations all non-idling policies are optimal

with respect to WIP minimization in the queueing network. The SFCR system

was then represented by the fluid model of the UMQN and SRTT was shown
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to be a WIP optimal policy for the fluid network with a general initial config-

uration. For an initial configuration with no fluid at downstream buffers all

policies were optimal which was in accordance with the result for the queueing

network.

We then extended this model in chapter 4 to a more general system referred

to as the GFCR. Again throughput optimality and WIP optimality were es-

tablished. For this version of the CR we showed that the SRTT policy was

optimal with respect to WIP minimization in the fluid model. However it

was shown that a direct application of this policy to the queueing network

was not optimal with respect to the WIP minimization. It is well-known that

there are many queueing network policies which correspond to a given policy

in the fluid network. Maglaras [19] provides an especially illuminating exam-

ple which demonstrates the difficulty of correctly translating a fluid policy to

the queueing network. Thus one avenue to be explored is the mapping of the

SRTT policy using the discrete review framework developed by Maglaras to

identify optimal policies for the queueing network.

An obvious extension to our work is to determine if all non-idling policies are

throughput optimal in the general CR i.e, with the feed-forward restriction

removed. That is, the goal would be to determine the stability region for a

CR in which any job at any station can request a destination along the ring

before its station of arrival. At this point, it is unclear if our proof method

can be directly extended, or if a novel argument is required to establish the

general case.

97



We have also shown that in the CR, idling in some situations is optimal with

respect to WIP minimization. A CR with a single vehicle and four stations was

used as an illustrative example. We showed that for this example a heuristic

idling policy always led to a lower long run average WIP than any non-idling

policy. Thus we established the result that there exists a non-optimal non-

idling non-ejective policy with respect to WIP minimization. We have also

presented an example of a GFCR with four vehicles in which idling may be

optimal with respect to WIP minimization.

Investigating the effect of vehicle breakdowns is another potential extension of

the work of this dissertation. In a way the four station CR with a single vehicle

can be viewed as a CR in which three of the vehicles are down permanently.

However this is an extreme case. A general case of interest might be one

in which vehicle up and down times are sequences of i.i.d. random variables.

During the down times the vehicle would travel around the ring but not take

on any jobs.

An alternate means of obtaining good scheduling rules could be the use of

a diffusion approximation to approximate the queue length process. In this

method we consider a sequence of systems with traffic intensity approaching

one. Since the traffic intensity at each station increases, the (unscaled) queue

length process diverges as the traffic intensity approaches 1. As in the fluid

limit process, the queue length process needs to be rescaled. A heavy traffic

approximation investigates the limit of the queue length process under the

scaling
Qr

i,j(rt)
√

r
as r goes to infinity. Once the diffusion approximation has
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been shown to exist for the system and the limiting process determined, one

can formulate, and often solve a stochastic control problem. The resulting

control policy can then be translated back to the queueing network to obtain

a heuristic scheduling policy.

As mentioned in chapter 1, simulation of these systems could be an effective

way to develop heuristic policies which are near optimal with respect to WIP

minimization or other performance measures. In fact, current work is being

done in this direction in Bauer [4], in which he attempts to approximate a

“value function” for the associated discrete control problem with a fluid model.

Note that the general CR is only an approximation of an AMHS. More com-

plex models of the AMHS arise by adding “crossovers.” In an AMHS with

crossovers, vehicles are allowed to take predefined shortcuts through the cen-

ter of the ring. Synchronizing the vehicles is a difficult task and scheduling

problems take on a more interesting dimension. For example if there is a

shorter path (than the route along the ring) which connects stations i and

(i + k) mod N , then the choice of job which takes this shorter path becomes

extremely interesting. For example an empty vehicle can be made to travel on

this crossover if a higher priority job is waiting at a station just past the point

where the crossover rejoins the ring. Also once a vehicle has been loaded with

a job of a particular destination, it can be made to travel on the crossover if it

offers a shorter route, thus freeing up the vehicle for another job earlier. Hence

even the presence of a single crossover complicates the scheduling problem and

offers a much wider variety of interesting scheduling rules. Simulation might
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be a good way to obtain insight into systems with crossovers.

Thus even though much effort has been put into analyzing some of the aspects

of this problem, many interesting unexplored avenues of research remain.
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Appendix 1

#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <stdio.h>
double mrand();

double drng[6] ={ 832983129.0, 865924509.0, 2541312012.0,
1173493945.0, 1683091697.0, 4294843572.0};

/∗ Main Program ∗/
int main()
{
double x;
double arrtime1=0, arrtime2=0, arrtime3=0;
double rate1, rate2, rate3;
double ∗ wip=NULL;
int ∗ q =NULL;
int i,j,k;
int n1,n2,n3;
int p1,p2,p3,r2,s3;
int rotations,thres;
char c[1];
char cand file1[20];
char cand file2[20];
char cand file3[20];
FILE ∗ fp1=NULL;
FILE ∗ fp2=NULL;
FILE ∗ fp3=NULL;
FILE ∗ fp4=NULL;

wip=(double∗)calloc(3,sizeof(double));
q=(int∗)calloc(3,sizeof(int));
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printf("give the rates\n");
rate1=.125;rate2=.1225;rate3=.1225;
thres=0;
rotations=1000000;

for(k=0;k<=thres;++k){

strcpy(cand file1,"p1 ");
c[0]=(char) (k+48);
strncat(cand file1,c,1);
fp4=fopen(cand file1,"w");

drng[0] =832983129.0; drng[1] =865924509.0; drng[2]
=2541312012.0;

drng[3] =1173493945.0; drng[4] =1683091697.0; drng[5]
=4294843572.0;

for(j=0;j<30;++j){
arrtime1=0; arrtime2=0; arrtime3=0;
wip[0]=0; wip[1]=0; wip[2]=0;
q[0]=0; q[1]=0; q[2]=0;

x=mrand();
arrtime1+=-log(x)/(rate1);
x=mrand();
arrtime2+=-log(x)/(rate2);
x=mrand();
arrtime3+=-log(x)/(rate3);

for(i=0;i<rotations;++i){
n1=0;n2=0;n3=0;
p1=q[0];p2=q[1];p3=q[2];r2=q[1];s3=q[2];
while(arrtime1<=4∗(i+1)){

n1+=1;
wip[0]+=(4∗(i+1)-arrtime1);
if(arrtime1<=4∗i+1) p1+=1;
x=mrand();
arrtime1+=-log(x)/(rate1);

}
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while(arrtime2<=4∗(i+1)){
n2+=1;
wip[1]+=(4∗(i+1)-arrtime2);
if(arrtime2<=4∗i+1) p2+=1;
if(arrtime2<=4∗i+2) r2+=1;
x=mrand();
arrtime2+=-log(x)/(rate2);

}
while(arrtime3<=4∗(i+1)){
n3+=1;
wip[2]+=(4∗(i+1)-arrtime3);
if(arrtime3<=4∗i+1) p3+=1;
if(arrtime3<=4∗i+3) s3+=1;
x=mrand();
arrtime3+=-log(x)/(rate3);

}

wip[0]+=q[0]∗4;
wip[1]+=q[1]∗4;
wip[2]+=q[2]∗4;
q[0]+=n1;
q[1]+=n2;
q[2]+=n3;

x=mrand();

//This is the heuristic idling policy

if(p2>0 || p1<=k){
if(r2>0) {wip[1]-=1;q[1]-=1;}
if(s3>0) q[2]-=1;

}
else if (p1>k)
q[0]-=1;

/∗if (p1>k || p2==0)

q[0]-=1;

else if(p2>0 ){
if(r2>0) {wip[1]-=1;q[1]-=1;}
if(s3>0) q[2]-=1;

}∗/
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}
printf("%lf,\n",(wip[0]+wip[1]+wip[2])/(rotations∗4));
for(i=0;i<3;++i)

fprintf(fp4,"%lf,\t",wip[i]/(rotations∗4));
fprintf(fp4,"\n");
}
fclose(fp4);
}

double mrand()
{

const double m1=4294967087.0, m2=4294944443.0;
const double norm=1.0/(m1+1);
int k;
double p;
double s10=drng[0], s11=drng[1], s12=drng[2];
double s20=drng[3], s21=drng[4], s22=drng[5];

p = 1403580.0 ∗ s11 - 810728.0 ∗ s10;
k = (int)(p/m1);
p -= k∗m1;
if (p < 0.0) p += m1;
s10 = s11; s11 = s12; s12 = p;

p = 527612.0 ∗ s22 - 1370589.0 ∗ s20;
k = (int)(p/m2);
p -= k∗m2;
if (p < 0.0) p += m2;
s20 = s21; s21 = s22; s22 = p;

drng[0] = s10; drng[1] = s11; drng[2] = s12;
drng[3] = s20; drng[4] = s21; drng[5] = s22;

if (s12 <= s22) return ((s12 - s22 + m1) ∗ norm);
else return ((s12 - s22) ∗ norm);

}
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Appendix 2

Confidence Intervals

Confidence intervals from one-way ANOVA

Policy Number Mean Std Error Lower 90% Upper 90%
HIP 30 94.9244 2.1272 91.409 98.44
Non-idling 30 95.8673 2.1272 92.352 99.38
Policy 2 30 95.9244 2.1272 92.409 99.44
Policy 3 30 96.9242 2.1272 93.409 100.44
Policy 4 30 97.9241 2.1272 94.409 101.44
Policy 5 30 98.9241 2.1272 95.409 102.44
Policy 6 30 99.9240 2.1272 96.409 103.44

Table 2.1: Results from One Way ANOVA
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Confidence intervals from each pair Student’s t-test

Level - Level Difference Lower CL Upper CL p-Value
Policy 6 HIP 4.999590 0.02864 9.970540 0.0981
Policy 6 Non-idling 4.056720 -0.91423 9.027671 0.1790
Policy 6 Policy 2 3.999655 -0.97130 8.970606 0.1852
Policy 5 HIP 3.999644 -0.97131 8.970595 0.1852
Policy 5 Non-idling 3.056775 -1.91418 8.027726 0.3108
Policy 6 Policy 3 2.999852 -1.97110 7.970802 0.3199
Policy 5 Policy 2 2.999710 -1.97124 7.970660 0.3199
Policy 4 HIP 2.999699 -1.97125 7.970649 0.3199
Policy 4 Non-idling 2.056829 -2.91412 7.027780 0.4949
Policy 5 Policy 3 1.999907 -2.97104 6.970857 0.5069
Policy 6 Policy 4 1.999891 -2.97106 6.970841 0.5069
Policy 4 Policy 2 1.999764 -2.97119 6.970715 0.5070
Policy 3 HIP 1.999738 -2.97121 6.970688 0.5070
Policy 3 Non-idling 1.056869 -3.91408 6.027819 0.7257
Policy 4 Policy 3 0.999961 -3.97099 5.970911 0.7399
Policy 5 Policy 4 0.999946 -3.97100 5.970896 0.7399
Policy 6 Policy 5 0.999945 -3.97101 5.970896 0.7399
Policy 2 HIP 0.999935 -3.97102 5.970885 0.7399
Policy 3 Policy 2 0.999803 -3.97115 5.970754 0.7400
Non-idling HIP 0.942869 -4.02808 5.913820 0.7543
Policy 2 Non-idling 0.057065 -4.91389 5.028016 0.9849

Table 2.2: Results from each pair student’s t-test
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Confidence intervals from Tukey-Kramer HSD test

Level - Level Difference Lower CL Upper CL
Policy 6 HIP 4.999590 -3.16521 13.16439
Policy 6 Non-idling 4.056720 -4.10808 12.22152
Policy 6 Policy 2 3.999655 -4.16514 12.16445
Policy 5 HIP 3.999644 -4.16515 12.16444
Policy 5 Non-idling 3.056775 -5.10802 11.22157
Policy 6 Policy 3 2.999852 -5.16494 11.16465
Policy 5 Policy 2 2.999710 -5.16509 11.16451
Policy 4 HIP 2.999699 -5.16510 11.16449

Table 2.3: Results from Tukey-Kramer HSD test
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