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We present an algorithm for fully automatic hp-adaptivity for finite element approx-

imations of elliptic and Maxwell boundary value problems in three dimensions. The

algorithm automatically generates a sequence of coarse grids, and a corresponding

sequence of fine grids, such that the energy norm of the error decreases exponen-

tially with respect to the number of degrees of freedom in either sequence. At each

step, we employ a discrete optimization algorithm to determine the refinements for

the current coarse grid such that the projection-based interpolation error for the

current fine grid solution decreases with an optimal rate with respect to the number

of degrees of freedom added by the refinement. The refinements are restricted only

by the requirement that the resulting mesh is at most 1-irregular, but they may be
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anisotropic in both element size h and order of approximation p.

While we cannot prove that our method converges at all, we present numer-

ical evidence of exponential convergence for a diverse suite of model problems from

acoustic and electromagnetic scattering. In particular we show that our method

is well suited to the automatic resolution of exterior problems truncated by the

introduction of a perfectly matched layer. To enable and accelerate the solution

of these problems on commodity hardware, we include a detailed account of three

critical aspects of our implementation, namely an efficient implementation of sum

factorization, several efficient interfaces to the direct multi-frontal solver MUMPS,

and some fast direct solvers for the computation of a sequence of nested projections.
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Chapter 1

Introduction

1.1 Motivation

Since the late 60’s and early 70’s, the development of low-observable aircraft has

been a major focus for defense organizations the world over. The idea is to design

aircraft which can evade detection by a variety of systems, including infrared, optical,

acoustic and electromagnetic sensors. It is a common misconception that these

efforts were successful and that the resulting aircraft are entirely invisible to radar

and other methods of detection. In fact, radar technology has developed apace with

stealth technology and there is a constant battle between attempting to detect, and

attempting to evade detection.

If we focus in particular on low observability to radar then the goal is to

design aircraft with small radar cross section (RCS). The RCS of a target is a range

independent quantity that measures the ratio of the energy reflected from a target

(toward a receiving radar platform) to the energy incident on the target (from a

transmitting radar platform, modeled as a plane wave). If the transmitter and

receiver are far apart, it is known as bi-static RCS; if they are close together or

even one and the same, it is known as mono-static RCS. Apart from the obvious
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dependence on direction, it is well-known [35] that RCS depends on the frequency

and polarization of the incident wave and on the geometry and composition of the

target.

For example, it is well-known that a corner reflector (a re-entrant, 90 degree

angle) produces a large, focused response in the direction of the transmitter, and

that flat surfaces or edges produce focused responses in the direction of reflection

governed by Snell’s law. When such geometry cannot be avoided, say for aerody-

namic reasons, a common practice is to use a thin coating of an absorbing material

to mask the response.

To accelerate the design cycle for low-observable aircraft, the need for com-

putational simulation of RCS is obvious. The ultimate goal is the simulation of

scattering from an entire aircraft. However, much can be learned from the scat-

tering characteristics of much simpler (and electrically smaller) objects. Moreover,

a very high degree of accuracy is required from these simulations in an age where

radar platforms are able to detect such insignificant scatterers as a swarm of insects

[35].

1.2 Review of hp and other high-order methods

The finite element method can be seen most simply as a method for discretizing and

obtaining an approximate solution to a partial differential equation on a bounded

domain. The domain is subdivided into elements and the approximate solution

defined as a piecewise polynomial with respect to the elements. As soon as one

wants to have some quantitative measure of, and control over, the discretization

error, refinement strategies enter the picture.

The most classical strategy is the h-version of the finite element method,

where convergence is achieved by decreasing, either uniformly or in an adaptive

way, the size h of the elements used in the discretization. The polynomial order of
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approximation p, is fixed and usually quite low. When the refinements are uniform,

the h-version converges algebraically with a rate limited by the order of approxi-

mation and by the regularity of the solution. When the solution is singular, the

refinements can be performed adaptively to restore the optimal convergence rate

dictated by the order of approximation alone [6].

By the late 70’s a new refinement strategy, dubbed the p-version, was un-

der investigation ([8], and later [7]). Here, the finite element mesh is fixed and

convergence is achieved by increasing p, either uniformly or in an adaptive way.

It was demonstrated that in the presence of singularities, uniform p-enrichment

achieved twice the (algebraic) rate of convergence for (uniform or quasi-uniform) h-

refinement. Moreover, for a smooth solution, the p-version converges exponentially.

The hp-version of the finite element method combines these two refinement

strategies. First proposed by Babuška and Dorr in 1981 [5], hp methods have been a

hot topic for research ever since. The pioneering contributions of Gui and Babuška

[32] and Guo and Babuška [33] set the stage. In particular it was shown that with

a proper combination of local h and p refinement, exponential convergence could be

achieved even in the presence of singularities. In the following years there was an

explosion of theoretical developments related to hp-methods (see e.g. [54] and the

references therein).

Apart from difficulties related to analysis, hp methods present many chal-

lenges in terms of their practical implementation. Devloo, Oden and Pattani [30]

were the first to successfully implement a limited hp code in the context of 2D com-

pressible flow. A pioneering effort by Demkowicz, Oden and Rachowicz [24, 40, 49]

soon produced the first 3D hp code. This early code was limited to hexahedral

elements and supported only isotropic hp-refinements. On the commercial side, this

code provided the starting point for the general hp kernel PHLEX1, which extended
1PHLEX is a trademark of Altair Engineering
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the functionality to general unstructured meshes and anisotropic hp-refinements.

On the academic side, this was the starting point for over 15 years of research in

hp-methods and code development by Demkowicz and collaborators. In an iterative

process the code was successively rewritten adding anisotropic hp-refinements [21]

and a nodal data structure [26] making these refinements more manageable. Inde-

pendent hp code development efforts include those of Schöberl (Netgen/NGSolve

[53, 52]) and Frauenfelder (Concepts [31]).

While hp-methods were initially applied mainly to problems in mechanics,

theoretical and practical advances have brought them to bear on electromagnetics.

Demkowicz and Vardapetyan introduced a class of high-order H(curl)-conforming

finite elements [29] that could be extended by infinite elements [25] to solve scattering

problems. The first 3D implementation was completed by Rachowicz, Cecot and

Demkowicz [47, 48, 15]. This code has been extended by Rachowicz and Zdunek to

solve some non-trivial scattering problems with hp-adaptivity [51].

The availability of general (i.e. fully anisotropic) hp-codes has motivated a

parallel line of research on fully-automatic hp-adaptivity. The goal here is the de-

velopment of a problem-independent algorithm to determine (from a given initial

grid) a sequence of optimal hp-grids such that the corresponding FE solutions ac-

tually exhibit the exponential convergence indicated by the theory. Such methods

are classified as energy driven when the measure of convergence is the energy norm,

and as goal driven when the error is measured only in some quantity of interest.

Energy driven methods have been developed for both elliptic problems [27, 50] and

Maxwell’s equations [19, 51]. For the generalization of these algorithms to goal

driven adaptivity, see e.g. [42, 51] and the references therein.
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1.3 Scope of this work

In the sequel we will describe a general approach for fully-automatic (energy-driven)

hp-adaptive finite element methods. The underlying principles are relevant for prob-

lems posed in one or two spatial dimensions, but our focus is to demonstrate their

relevance for full three dimensional computations. In an abstract form, our algo-

rithm can be applied to variational problems posed in any of the spaces H1, H(curl),

H(div) and L2, related by the standard three dimensional exact sequence but our

present discussion and implementation are limited to H1 and H(curl) only. In this

context, our focus is limited to methods that are H1 or H(curl)-conforming (tech-

nically, non-conformity is limited to approximate geometry or Dirichlet data) but

our implementation is such that future application to non-conforming methods is

feasible. Finally, for simplicity, our implementation is limited to hexahedral meshes

only.

Within this limited context, our method is quite general. Most notably,

our refinement strategy is in general anisotropic in both element size h and order

of approximation p. That is, an element may be broken in any of seven ways,

and the order of approximation may be set independently for each of the three

coordinate directions, in each of the resulting son elements. This freedom enables

the generation of optimal meshes for problems with diverse features such as corner

and edge singularities and boundary or interior layers.

In Chapter 2 we derive standard variational formulations for the problems to

be considered in the sequel, namely, elliptic boundary value problems, and the exte-

rior problems associated with acoustic and electromagnetic scattering. In Chapter 3

we recall the main ideas behind the construction of finite dimensional subspaces of

H1 and H(curl) (and modified versions encountered in Chapter 2) that allow for

local variation of the element size h and order of approximation p. In Chapter 4

we introduce our algorithm in the H1 setting and discuss some of the critical fea-
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tures behind our implementation. Chapter 5 contains a thorough computational

assessment of the algorithm for both regular and singular solutions to the Laplace

equation, and for rigid acoustic scattering from both smooth and geometrically sin-

gular obstacles. In Chapter 6 we extend our algorithm to the H(curl) setting and

present preliminary evidence of exponential convergence for electromagnetic scat-

tering from a hexahedral obstacle imbedded in a waveguide. Chapter 7 discusses

several technologies critical to our present implementation and certainly relevant for

any high-order finite element method in three dimensions. Finally, we conclude in

Chapter 8 with some final remarks and a look to the future.
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Chapter 2

Formulation of the Problems of

Interest

In this chapter we present variational formulations for the three main classes of prob-

lems targeted by this work. The problems represent an increasing level of difficulty

for the development and application of automatic hp-adaptivity. The first class is

a system of linear elliptic PDEs in a bounded domain, from which we will focus on

the representative Laplace equation. The second is the scattering of time-harmonic

acoustic waves from a bounded obstacle into an unbounded exterior region. Here,

we will either model the exterior region with infinite elements (IE) or truncate it by

introducing a perfectly matched layer (PML). Finally, we turn to the time-harmonic

Maxwell equations and formulate the scattering problem either in an infinite rect-

angular waveguide truncated by an impedance boundary condition, or a general

exterior domain truncated by infinite elements or PML.
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2.1 Elliptic PDE in a bounded domain

Let Ω ⊂ IR3 be a bounded domain with Lipschitz boundary Γ. For simplicity we

restrict our attention to Poisson’s equation,

−∆u = f in Ω, (2.1)

u = g on ΓD, (2.2)
∂u

∂n
= h on ΓN , (2.3)

where Γ = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅. We assume g ∈ H1/2(ΓD) so that it can be

extended to uD ∈ H1(Ω). Then our test space is

V =
{
v ∈ H1(Ω) : γv|ΓD

= 0
}
,

where γ : H1(Ω)→ H1/2(Γ) is the trace operator. The standard variational formu-

lation reads:


Find u ∈ uD + V such that

b(u, v) ≡
∫
Ω

∇u ·∇v dx =
∫
Ω
fv dx+

∫
ΓN

gv dΓ ≡ l(v) for all v ∈ V.
(2.4)

For a given finite element space V hp ⊂ H1(Ω), we compute approximate Dirichlet

data uhpD ∈ V hp and solve the discrete problem:

 Find uhp ∈ uhpD + V hp
0 such that

b(uhp, v) = l(v) for all v ∈ V hp
0 ,

where V hp
0 =

{
v ∈ V hp : v|ΓD

= 0
}
.
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2.2 Acoustic scattering

For our second application we consider the problem of time-harmonic acoustic scat-

tering from a bounded obstacle. Here, an obstacle is excited by an incident pressure

wave and we seek the far-field pattern of the response. In principal, the incident

wave could be generated by modeling an actual source, but under the assumption

that the source is far from the obstacle, we approximate the incident wave by a

plane wave,

pinc(x) = pinc0 eikê·x.

Here, k = ω/c is the wave number, depending on the angular frequency ω and speed

of sound c, and ê is the direction of the source. The incident wave pinc and the

scattered wave p are complex-valued, with the associated time-dependent quantities

given by,

P inc(x, t) = <(pinc(x)eiωt), P (x, t) = <(p(x)eiωt).

The obstacle is assumed to occupy a bounded region Ωint ⊂ IR3 with Lipschitz

boundary Γ. The scattered pressure p satisfies the (homogeneous) Helmholtz equa-

tion outside the obstacle,

−∆p− k2p = 0 in Ω = IR3 \ Ωint, (2.5)

along with the Neumann boundary condition (for the case of a rigid scatterer),

∂p

∂n
= g = −∂p

inc

∂n
on Γ, (2.6)

and the Sommerfeld radiation condition,

∂p

∂r
+ ikp = w = o(r−1) as r →∞. (2.7)
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2.2.1 Truncation by infinite elements

Infinite elements, first introduced by P. Bettess [11], are a popular technique for

truncating exterior problems like (2.5)–(2.7). A wide variety of formulations have

since been developed that can be characterized as conjugated vs unconjugated, based

on whether or not (2.5) is multiplied by the complex conjugate of a test function,

and Bubnov–Galerkin vs Petrov–Galerkin, based on whether the same or different

test and trial spaces are used. Here we recall the conjugated Bubnov–Galerkin

formulation introduced in [28].

In the region exterior to a sphere large enough to enclose the obstacle, the

solution to (2.5)–(2.7) can be represented by the Atkinson-Wilcox expansion,

p(r) =
e−ikr

r

∞∑
n=0

un(ψ, θ)
rn

=
e−ikr

r
P (r),

where r, ψ, θ are the standard spherical coordinates (Figure 2.3). The main idea

behind infinite elements is to remove the exponential phase factor e−ikr/r and focus

on the approximation of the remainder P .

We surround the obstacle with a truncating sphere Sa of radius a, and an

additional sphere SR of radius R, with the intent of allowing R → ∞. In the end,

we will discretize the problem with a finite element mesh in the bounded domain

Ωa = {x : |x| < a} \ Ωint, coupled with a compatible infinite element mesh in the

unbounded domain Ω∞a = {x : |x| > a}. The geometry for finite R is illustrated in

Figure 2.1.

We multiply equation (2.5) by the complex conjugate of a test function q,

integrate over the truncated exterior domain Ωa∪ΩR
a , and integrate by parts (making

use of the boundary condition (2.6) and radiation condition (2.7)) to obtain,

∫
Ωa∪ΩR

a

{∇p ·∇q − k2pq} dx+ ik

∫
SR

pq dSR =
∫
Γ
gq dΓ +

∫
SR

wq dSR. (2.8)
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Figure 2.1: Geometry for rigid acoustic scattering

We assume q = O(R−1) (the same rate as p) so that the right-most integral vanishes

as R→∞. The limiting behavior of the remaining terms as R→∞ requires much

more care. First, we split the sesquilinear form on the left hand side of (2.8) into

the two contributions,

b(p, q) = ba(p, q) + b∞(p, q), (2.9)

where

ba(p, q) =
∫
Ωa
{∇p ·∇q − k2pq} dx, (2.10)

and

b∞(p, q) = lim
R→∞

∫
ΩR

a

{∇p ·∇q − k2pq} dx+ ik

∫
SR

pq dSR. (2.11)

To proceed with the interpretation of (2.11) we must first rewrite it in a coor-

dinate system that illuminates the dependence on R. We begin with a parametriza-

tion of the truncating sphere Sa,

x = xa(ξ1, ξ2), |xa| = a

11



e1

e2

e3

Sa

Figure 2.2: Infinite element coordinates

and extend it to define a parametrization of the exterior domain ΩR
a ,

x = ξ−1
3 xa(ξ1, ξ2), a/R < ξ3 < 1. (2.12)

This parametrization, involving the scaled and inverted radial coordinate ξ3, is ad-

mittedly non-intuitive, but we use it from the beginning in order to be consistent

with the actual implementation, where ξ represents the reference coordinates for

an infinite element. This parametrization introduces a (not necessarily orthogonal)

system of curvilinear coordinates with basis {ai}3i=1 (and unit basis {ei}3i=1) given

by,

a1 =
∂x

∂ξ1
=

1
ξ3

∂xa
∂ξ1

=
1
ξ3

∣∣∣∣∂xa
∂ξ1

∣∣∣∣ e1 ⇒ e1 =
∣∣∣∣∂xa
∂ξ1

∣∣∣∣−1 ∂xa
∂ξ1

a2 =
∂x

∂ξ2
=

1
ξ3

∂xa
∂ξ2

=
1
ξ3

∣∣∣∣∂xa
∂ξ2

∣∣∣∣ e2 ⇒ e2 =
∣∣∣∣∂xa
∂ξ2

∣∣∣∣−1 ∂xa
∂ξ2

a3 =
∂x

∂ξ3
= − 1

ξ23
xa =

a

ξ23
e3 ⇒ e3 = −1

a
xa

(2.13)

(possibly renumbered to form a right-handed triple as shown in Figure 2.2). The

12



corresponding cobasis is then given by,

a1 = ξ3J
−1
a

∂xa
∂ξ2
× e3, a2 = ξ3J

−1
a e3 ×

∂xa
∂ξ1

, a3 =
ξ23
a

e3,

where,

Ja = e3 ·
∂xa
∂ξ1
× ∂xa
∂ξ2

=
∣∣∣∣∂xa
∂ξ1
× ∂xa
∂ξ2

∣∣∣∣ ,
is the surface measure associated with Sa. In this system of coordinates, the gradient

operator becomes,

∇p = (∇p · ai)ai =
ξ23
a

∂p

∂ξ3
e3 + ξ3J

−1
a

(
∂p

∂ξ1

∂xa
∂ξ2
× e3 +

∂p

∂ξ2
e3 ×

∂xa
∂ξ1

)
=

ξ23
a

∂p

∂ξ3
e3 + ξ3∇Sap, (2.14)

and (2.11) can be rewritten as,

lim
R→∞

∫
Sa

{∫ 1

a/R

(
1
a

∂p

∂ξ3

∂q

∂ξ3
+

a

ξ23
∇Sap ·∇Saq −

k2a

ξ43
pq

)
dξ3

+
ik

ξ23
pq|ξ3=a/R

}
dSa.

(2.15)

We now remove the known asymptotic form for the solution (written in terms of the

exterior coordinates (2.12) and scaled so that p and P are identical on the truncating

sphere ξ3 = 1),

p = ξ3e
−ika(ξ−1

3 −1)P,

and to obtain a Bubnov-Galerkin formulation we make the same substitution for

the test function,

q = ξ3e
+ika(ξ−1

3 −1)Q.
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With these substitutions (2.15) becomes

lim
R→∞

∫
Sa

{∫ 1

a/R

(
1
a

[
(1 + ikaξ−1

3 )P + ξ3
∂P

∂ξ3

] [
(1− ikaξ−1

3 )Q+ ξ3
∂Q

∂ξ3

]

+a∇SaP ·∇SaQ−
k2a

ξ23
PQ

)
dξ3 + ikPQ|ξ3=a/R

}
dSa.

(2.16)

By interpreting the limit in the Cauchy principal value sense, we allow the cancel-

lation of the non-integrable terms ±k2aPQ/ξ23 , and after some additional cosmetic

simplifications (2.16) takes the final form,

b∞(p, q) =
1
a

∫
Sa

{∫ 1

0

∂P

∂ξ3

(
ξ23
∂Q

∂ξ3
− i2kaQ

)
dξ3 + (1 + ika)PQ

∣∣∣
ξ3=1

}
dSa

+ a

∫
Sa

∫ 1

0
∇SaP · ∇SaQdξ3dSa

2.2.2 Truncation by a perfectly matched layer

An alternative method for truncating exterior problems, known as perfectly matched

layers (PML), was first introduced by Berenger [9, 10] in the context of finite differ-

ence time domain (FDTD) computations for Maxwell equations. The main idea is

to surround the obstacle with a layer of absorbing material such that an outgoing

wave enters the layer without reflection and decays exponentially. Here, we simply

recall the derivation in spherical coordinates from [39], based on the notion of com-

plex coordinate stretching due to Chew and Weedon [16]. For more on the analysis

of PML approximations please see [13, 12] and the references therein.

The derivation is motivated by the one dimensional problem,

−d
2p

dx2
− k2p = 0 for x > 0

p(0) = p0

dp

dx
+ ikp = o(1/x) as x→∞
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where we seek the solution p in the interior domain (0, a). Here, we can observe

that the exact solution p = p0e
−ikx is analytic, and therefore its unique analytic

extension p(z) = p0e
−ikz satisfies the same equation,

−d
2p

dz2
− k2p = 0

with x traded for the complex variable z. Now, if we trace p along a path z(x) =

x − iβ(x) with β → ∞ as x → ∞ we observe the exponential decay p(z(x)) =

p0e
−ikxe−kβ(x). For example, given b > a we can take

z(x) = x− iβ(x), β(x) =

 0, 0 < x < a

L
(
x−a
b−a

)n
, x > a

(2.17)

with L chosen so that p(z(b)) is as small as we wish, and n chosen so that the path

z ∈ Cn−1 is as smooth as we wish. Along this path p satisfies the modified equation

− d

dx

(
1
z′
dp

dx

)
− k2z′p = 0.

Multiplying by the complex conjugate of a test function q and integrating by parts

we arrive at the variational problem: find p ∈ p̃0 + V0 such that

∫ ∞

0

{
1
z′
dp

dx

dq

dx
− k2z′pq

}
dx = 0

for all q ∈ V0. Here, p̃0 is any finite energy extension of the Dirichlet data p0 into

the energy space

V =
{
q : |z′|−1/2 dq

dx
, |z′|1/2q ∈ L2(0,∞)

}

In the 3D setting the derivation is conceptually the same, but more alge-
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Figure 2.3: Spherical coordinates and unit basis vectors

braically complicated. We will work in spherical coordinates,

x =


r sin(ψ) cos(θ)

r sin(ψ) sin(θ)

r cos(ψ)

 .

(see Figure 2.3) Derivations in rectangular and cylindrical coordinates are similar.

To facilitate the algebra we rewrite (2.5) as the first order system,

∇ · u + ikp = 0,

∇p+ iku = 0,
(2.18)

or in spherical coordinates,

1
r2

∂

∂r
(r2ur) +

1
r sinψ

(
∂

∂ψ
(sinψuψ) +

∂uθ
∂θ

)
+ ikp = 0

∂p

∂r
+ ikur = 0

16



1
r

∂p

∂ψ
+ ikuψ = 0

1
r sinψ

∂p

∂θ
+ ikuθ = 0

Here, u = urer+uψeψ+uθeθ is the velocity vector. We apply the complex coordinate

stretching in the radial direction only (r ← z = z(r)) to obtain

1
z′z2

∂

∂r
(z2ur) +

1
z sinψ

(
∂

∂ψ
(sinψuψ) +

∂uθ
∂θ

)
+ ikp = 0 (2.19)

1
z′
∂p

∂r
+ ikur = 0 (2.20)

1
z

∂p

∂ψ
+ ikuψ = 0 (2.21)

1
z sinψ

∂p

∂θ
+ ikuθ = 0 (2.22)

Then, multiplying (2.19) by ikz′z2/r2, and using (2.20)-(2.22) to eliminate the ve-

locity vector, we obtain

− 1
r2

∂

∂r

(
z2

z′
∂p

∂r

)
− z′

r2 sinψ
∂

∂ψ

(
sinψ

∂p

∂ψ

)
− z′

r2 sin2 ψ

∂2p

∂θ2
− k2z′

z2

r2
p = 0 (2.23)

We observe that (2.23) reduces to (2.5) in the interior region where z(r) = r. To

obtain the variational formulation, we multiply (2.23) by the complex conjugate of

a test function q and integrate over the exterior domain Ωa ∪ Ω∞a . For clarity, we

separate the process into interior and exterior contributions. After integration by

parts, the interior contribution is the expected,

∫
Ωa

{
∇p ·∇q − k2pq

}
dx−

∫
Sa

∂u

∂r
q dSa =

∫
Γ
gq dΓ,

and under the assumption that p decays exponentially in r, the exterior contribution

17



becomes,

∫
Ω∞a

z′
{

∇p ·∇q +

((
z

z′r

)2

− 1

)
∂p

∂r

∂q

∂r
− k2 z

2

r2
pq

}
dx+

1
z′(a+)

∫
Sa

∂u

∂r
q dSa = 0

Here, z′(a+) refers to the limit of z′(r) as r → a from above. For simplicity, we

assume z ∈ C1 so that z′(a+) = z′(a) = 1 and the interface terms cancel out.

Then with

b∞(p, q) =
∫
Ω∞a

z′
{

∇p ·∇q +

((
z

z′r

)2

− 1

)
∂p

∂r

∂q

∂r
− k2 z

2

r2
pq

}
dx (2.24)

and ba given once again by (2.10), the variational problem reads:

 Find p ∈ V such that

b(p, q) = ba(p, q) + b∞(p, q) = l(q) for all q ∈ V.
(2.25)

The energy space depends on the complex coordinate stretching z, as we must have,

V =
{
q : |z′|1/2A(r)∇q, |z′|1/2

∣∣∣∣zr
∣∣∣∣ q ∈ L2(Ω)

}
, (2.26)

where

A(r)v =
z

z′r
vrer + vψeψ + vθeθ.

The main advantage of the PML formulation is the simplicity of its dis-

cretization. We simply observe that the exponential decay of the solution in the

exterior region Ω∞a implies that after some sufficiently large radius b the remaining

contribution to (2.24) is negligible. Thus our discrete trial (and test) space can be

taken as a standard finite element space V hp
0 ⊂ H1(Ωb), where the subscript “0”

indicates zero restriction to the outer sphere of radius b (implemented as a homo-

geneous Dirichlet boundary condition). Then clearly, V hp
0 ⊂ V , and our discrete
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problem reads:  Find php ∈ V hp
0 such that

b(php, q) = l(q) for all q ∈ V hp
0 .

2.3 Electromagnetic scattering

For our final application we consider the time-harmonic Maxwell equations,

∇×E = −iωB (2.27)

∇×H = J imp + σE + iωD (2.28)

∇ ·D = ρ (2.29)

∇ ·B = 0 (2.30)

Here, E and H are the electric and magnetic fields, D and B are the electric

and magnetic flux, and J imp and ρ are the impressed (electric) current and charge

density, respectively, and ω is the angular frequency. In the present work, we will

assume that the background medium is linear (D = εE and B = µH, where

ε, µ are the electric permittivity and magnetic permeability, respectively), isotropic

(ε, µ ∈ IR) and non-conductive (σ = 0).

Assuming that no charge is being added to the system from an external

source, we require that the existing charge is conserved so that

∇ · J imp = −iωρ. (2.31)

Then the two Gauss laws (2.29) and (2.30) can be derived, respectively, by taking

the divergence of Ampere’s law (2.28) and Faraday’s law (2.27), and the full Maxwell

system (2.27)-(2.30) reduces to,

∇×E = −iωµH (2.32)
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∇×H = J imp + iωεE (2.33)

Finally, we can eliminate the magnetic field to obtain the reduced wave equation

(for the electric field)

∇×
(

1
µ

∇×E

)
− ω2εE = −iωJ imp (2.34)

For radiation problems, (2.34) is supplemented by appropriate boundary or radia-

tion conditions and solved to determine the electric field E generated by a known

current J imp. For scattering problems, we wish to determine the perturbation of a

background electric field Einc due to the presence of an obstacle.

2.3.1 Truncation by an impedance boundary condition

We consider the problem of scattering from a perfectly conducting obstacle placed

inside an infinite rectangular waveguide. The motivation is that for a particular

range of frequencies ω the waveguide geometry will only propagate a single pair

(two pairs for a square waveguide) of transverse electric modes, moving in opposite

directions. Any other mode introduced by a source within the waveguide decays

exponentially and the infinite geometry can be truncated by a simple impedance

boundary condition.

The geometry of the waveguide and a representative obstacle is shown in

Figure 2.4. The interior of the waveguide is the unbounded domain Ωw = (0, a) ×

(0, b) × (−∞,∞), and we will assume that a ≥ b. We will denote the boundary of

the waveguide by Γw. We will place a bounded, perfectly conducting obstacle Ωint

with Lipschitz boundary Γ, inside the waveguide, and denote by Ω the unbounded

exterior domain Ωw \ Ωint.

We first consider the waveguide without the obstacle. The walls of the waveg-

uide Γw are assumed to be perfectly conducting so that the tangential component
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Figure 2.4: An obstacle Ωint inside an infinite rectangular waveguide

of the electric field is zero, and we consider the eigenvalue problem,

∇×∇×E − ω2µεE = 0 in Ωw (2.35)

n̂×E = 0 on Γw (2.36)

For each pair of indices m,n ≥ 0 (except m = n = 0) there exists a pair of transverse

electric modes,

E±
mn =


−nπ

b cos(mπx/a) sin(nπy/b)
mπ
a sin(mπx/a) cos(nπy/b)

0

 e∓iβmnz, (2.37)

where βmn =
√
ω2µε− (mπ/a)2 − (nπ/b)2. When ω2µε > (mπ/a)2 + (nπ/b)2,

βmn is a positive real number, and E±
mn is a pair of traveling waves with E+

mn

traveling in the +z direction, and E−
mn traveling in the −z direction. When ω2µε <

(mπ/a)2 +(nπ/b)2, the modes are evanescent. Hence we define the cutoff frequency,

ωcmn =
1
√
µε

√
(mπ/a)2 + (nπ/b)2, (2.38)
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below which a mode decays exponentially, and above which a mode travels without

attenuation.

By observing that the cutoff frequency increases with both m and n we can

select a range of operating frequencies ω such that the waveguide supports only the

lowest order mode(s) and all higher order modes are attenuated. In case 1, a > b,

we see that the smallest cutoff frequency is ωc10 = π
a
√
µε and that the second smallest

is ωc01 = π
b
√
µε . Hence, in the range ωc10 < ω < ωc01, the only traveling mode is

E±
10 =


0

sin(πx/a)

0

 e∓iβ10z, (2.39)

(where we have dropped the constant π/a) and all others are attenuated. In case

2, a = b, the two lowest order modes, 1, 0 and 0, 1, have the same cutoff frequency,

and the second smallest is ωc11 = π
a

√
2
µε . Hence, in the range ωc10 = ωc01 < ω < ωc11,

there are only two pairs of traveling modes:

E±
10 =


0

sin(πx/a)

0

 e∓iβ10z, E±
01 =


− sin(πy/b)

0

0

 e∓iβ01z. (2.40)

The existence of such a range of operating frequencies allows us to derive

a simple truncation of the waveguide for scattering computations. Consider case

1 and take the incident field Einc = E+
10, produced by a source far away in the

negative z-direction. This field satisfies the reduced wave equation (2.35) in the

entire waveguide Ωw, and the PEC boundary condition (2.36) on the waveguide

boundary Γw. In the presence of the obstacle Ωint, the total electric field Etot

satisfies the same equation (2.35) but only in the exterior domain Ω, while inside

the obstacle, Etot = 0. Moreover, Etot satisfies the same PEC boundary condition
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(2.36) but on both the waveguide boundary Γw and the boundary of the obstacle Γ.

Now, because the waveguide supports only modes E±
10, the total field has

the following asymptotic form,

Etot = E+
10 +RE−

10 as z → −∞, Etot = TE+
10 as z →∞, (2.41)

where the unknown constants R and T are reflection and transmission coefficients,

respectively, for the scatterer. If we define the scattered field as E = Etot − Einc,

then the resulting asymptotic form for E is given by,

E = RE−
10 as z → −∞, E = (T − 1)E+

10 as z →∞. (2.42)

Since the constants R and T are not known a-priori, these relations cannot be used

directly to truncate the computational domain. However, we can eliminate R and

T by observing that, as z → −∞,

n̂×∇×E = n̂×∇×RE−
10 = iβ10RE−

10 = iβ10E, (2.43)

where n̂ = −êz, and likewise as z →∞,

n̂×∇×E = n̂×∇× (T − 1)E+
10 = iβ10(T − 1)E+

10 = iβ10E, (2.44)

where n̂ = êz. For finite z relations (2.43) and (2.44) are off by a term that decays

exponentially in z. Hence, we introduce a sufficiently large truncating distance l

and impose (2.43) and (2.44) as an impedance boundary condition on the finite

boundary z = −l and z = l (denoted by Γl). In case 2, the general incident field

is a linear combination of the modes E+
10 and E+

01, and similar considerations yield

the same impedance boundary condition.
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In summary, after truncation the scattered field E satisfies the problem,

∇×
(

1
µ

∇×E

)
− ω2εE = 0 in Ωl

n̂×E = −n̂×Einc on Γ

n̂×E = 0 on Γw

n̂×∇×E = iβ10E on Γl

So, let ED ∈H(curl,Ωl) be such that n̂×ED = −n̂×Einc on Γ and n̂×ED = 0

on Γw and let V = {F ∈H(curl,Ωl) : n̂×F = 0 on Γ∪ Γw}. Then the standard

variational formulation reads:


Find E ∈ ED + V such that∫
Ω

{
1
µ

∇×E ·∇× F − ω2εE · F
}
dx+

iβ0

µ

∫
Γl

E · F dΓ = 0 for all F ∈ V

(2.45)

2.3.2 Truncation by infinite elements

In the previous section we considered the scattering from an obstacle in a waveguide

because of the simple geometry and method of truncation. Presently we turn to the

problem of scattering from a bounded obstacle into the entire exterior domain. In

this case, the excitation comes from an incident electromagnetic wave generated by

the transmitting antenna in a radar system. The transmitting antenna is assumed

to be far away from the obstacle so that the asymptotically spherical wave produced

can be approximated by an incident, plane, linearly polarized TEM wave. Thus,

the incident wave has the form,

Einc = E0e
ikê·r. (2.46)
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As before, the obstacle occupies a bounded domain Ωint with Lipschitz boundary

Γ. The scattered electric field E satisfies the reduced wave equation in the entire

exterior domain,

∇×∇×E − k2E = 0 in Ω = IR3 \ Ωint,

along with the Dirichlet boundary condition (for a perfect electric conductor),

n̂×E = −n̂×Einc on Γ,

and the Silver-Müller radiation condition,

er ×∇×E − ikEt = W = o(1/r) as r →∞,

which expresses the fact that the scattered electric field should move outward. As

for the acoustic case we will again consider truncation by infinite elements and by

the introduction of a PML.

We again split the exterior domain into a bounded part Ωa between the

scatterer and the sphere Sa of radius a, and the unbounded part Ω∞a . Multiplying

by a test function F such that n × F = 0 on Γ and integrating first over Ωa we

obtain, after integration by parts,

0 =
∫
Ωa
{∇×∇×E − k2E} · F dx

=
∫
Ωa
{∇×E ·∇× F − k2E · F } dx+

∫
Sa

er ×∇×E · F dSa

The integration over Ω∞a will again be interpreted in the Cauchy principal value

sense.

0 =
∫
ΩR

a

{∇×∇×E − k2E} · F dx
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=
∫
ΩR

a

{∇×E ·∇× F − k2E · F } dx−
∫
Sa

er ×∇×E · F dSa

+ ik

∫
SR

Et · F t dSR +
∫
SR

W · F dSR

As before, the term involving the unknown field W vanishes in the limit, and we

employ the interface condition

er × [∇×E] = iω[µH]× er = 0,

to cancel the integrals over Sa. Adding these contributions we obtain the standard

variational formulation



Find E such that n×E = −n×Einc on Γ, and∫
Ωa
{∇×E ·∇× F − k2E · F } dx

+ lim
R→∞

(∫
ΩR

a

{∇×E ·∇× F − k2E · F } dx+ ik

∫
SR

Et · F t dSR

)
= 0

for all F such that n× F = 0 on Γ
(2.47)

We have omitted the details about the energy space, apart from the obvious require-

ment that E,F ∈H loc(curl,Ω). The additional assumptions on E,F to follow, are

required to guarantee the existence of the above limit.

We will work with the same system of coordinates as for the acoustic case,

but the far-field ansatz is slightly different. Here, we will make the substitution

(“overloading” the symbols E and F ),

E ← e−ika(ξ
−1
3 −1)E, F ← e+ika(ξ

−1
3 −1)F

Then, using the elementary formula ∇× (ψE) = ∇ψ×E +ψ∇×E, and recalling
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the formula for the gradient of a scalar function (2.14), we get

∇×E ← e−ika(ξ
−1
3 −1)[ike3 ×E + ∇×E],

∇× F ← e+ika(ξ
−1
3 −1)[−ike3 × F + ∇× F ]

Making these substitutions, and utilizing the identity,

(e3 ×E) · (e3 × F ) = E · F − (e3 ·E)(e3 · F ),

the limit in (2.47) becomes,

lim
R→∞

∫
Sa

(∫ 1

a/R

{
(∇×E) · (∇× F )

−ik[(∇×E) · (e3 × F )− (e3 ×E) · (∇× F )]

−k2(e3 ·E)(e3 · F )
} a

ξ43
dξ3 + ik

R2

a2
Et · F t|ξ3= a

R

)
dSa

(2.48)

Finally, we assume that E (and F ) is obtained by a transformation consistent with

the standard exact sequence property, namely that E transforms like the gradient

of a scalar function (2.14),

E = ξ3J
−1
a

(
E1
∂xa
∂ξ2
× e3 + E2e3 ×

∂xa
∂ξ1

)
+
ξ23
a
E3e3,

and therefore the curl transforms in the standard way

∇×E =
∣∣∣∣dxdξ

∣∣∣∣−1 ∂x

∂ξi
(∇̂× Ê)i

=
ξ33
aJa

{
(∇̂× Ê)1

∂xa
∂ξ1

+ (∇̂× Ê)2
∂xa
∂ξ2

+
a

ξ3
(∇̂× Ê)3e3

}
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=
ξ33
aJa

{(
∂E3

∂ξ2
− ∂E2

∂ξ3

)
∂xa
∂ξ1

+
(
∂E1

∂ξ3
− ∂E3

∂ξ1

)
∂xa
∂ξ2

+
(
∂E2

∂ξ1
− ∂E1

∂ξ2

)
a

ξ3
e3

}

The remaining terms in (2.48) take the following forms (paying particular attention

to the dependence on ξ3)

e3 ×E = ξ3J
−1
a

(
E1
∂xa
∂ξ2
− E2

∂xa
∂ξ1

)
e3 ·E =

ξ23
a
E3

Et = ξ3J
−1
a

(
E1
∂xa
∂ξ2
× e3 + E2e3 ×

∂xa
∂ξ1

)

We see that the limit converges as R→∞ provided that Ê, ∇̂×Ê, F̂ , ∇̂×F̂ = O(1)

as ξ3 → 0. The final form of (2.48) becomes

∫
Sa

(∫ 1

0

{
(∇×E) · (∇× F )

−ik[(∇×E) · (e3 × F )− (e3 ×E) · (∇× F )] −k
2

a2
ξ43E3F 3

}
a

ξ43
dξ3

+
ik

J2
a

(
E1
∂xa
∂ξ2
− E2

∂xa
∂ξ1

)
·
(
F1
∂xa
∂ξ2
− F2

∂xa
∂ξ1

)∣∣∣∣
ξ3=0

)
dSa

(2.49)

2.3.3 Truncation by a perfectly matched layer

Once again we subdivide the exterior domain Ω = IR3 \ Ωint into an interior region

Ωa = {|x| < a}\Ωint, and an exterior region ΩR
a = {a < |x| < R}, with the intent to

allow R→∞. For the interior region Ωa we proceed as usual to multiply Ampere’s

law (2.33) by a test function F , integrate over Ωa and integrate by parts to obtain,

0 =
∫
Ωa

(−iω∇×H − ω2εE) · F dx
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=
∫
Ωa

(−iωH ·∇× F − ω2εE · F )dx− iω
∫
Sa

(er ×H) · F dSa

=
∫
Ωa

(
µ−1∇×E ·∇× F − ω2εE · F

)
dx+

∫
Sa

er × (µ−1∇×E) · F dSa

Here, we have assumed that the scatterer is a perfect conductor (n̂×E is prescribed

so we choose a test function F such that n̂× F = 0 on Γ), and used Faraday’s law

(2.32) to eliminate the magnetic field.

We follow the same steps to introduce a spherical PML in ΩR
a . First we write

Ampere’s law (2.33) in spherical coordinates,

1
r sinψ

[
∂

∂ψ
(sinψHθ)−

∂Hψ

∂θ

]
= iωεEr

1
r

[
1

sinψ
∂Hr

∂θ
− ∂

∂r
(rHθ)

]
= iωεEψ

1
r

[
∂

∂r
(rHψ)− ∂Hr

∂ψ

]
= iωεEθ

and then apply the complex coordinate stretching r ← z = z(r) to obtain,

1
z sinψ

[
∂

∂ψ
(sinψHθ)−

∂Hψ

∂θ

]
= iωεEr (2.50)

1
z

[
1

sinψ
∂Hr

∂θ
− 1
z′
∂

∂r
(zHθ)

]
= iωεEψ (2.51)

1
z

[
1
z′
∂

∂r
(zHψ)− ∂Hr

∂ψ

]
= iωεEθ (2.52)

Here, we have used the physical components,

E = Erer + Eψeψ + Eθeθ, H = Hrer +Hψeψ +Hθeθ.

Multiplying (2.50)-(2.52) by iωz′ z
2

r2
F , integrating over ΩR

a and integrating by parts

we obtain,

−ω2
∫
ΩR

a

εz′
z2

r2
E · F dx = iω

∫
ΩR

a

z

r2

[
∂

∂r
(zHψ)Fθ −

∂

∂r
(zHθ)Fψ

]
dx

29



+ iω

∫
ΩR

a

zz′

r2 sinψ

[
∂

∂ψ
(sinψHθ)Fr −

∂Hr

∂ψ
sinψFθ

]
dx

+ iω

∫
ΩR

a

zz′

r2 sinψ

[
∂Hr

∂θ
Fψ −

∂Hψ

∂θ
Fr

]
dx

= iω

∫
ΩR

a

z′z

r2 sinψ
Hr

[
∂

∂ψ
(sinψFθ)−

∂Fψ
∂θ

]
dx

+ iω

∫
ΩR

a

z′z

r2
Hψ

[
∂

∂ψ
(sinψHθ)Fr −

∂Hr

∂ψ
sinψFθ

]
dx

+ iω

∫
ΩR

a

z′z

r2
Hθ

[
1
z′
∂

∂r
(zFψ)− ∂Fr

∂ψ

]
dx

+ iω

∫
Sa

(HθFψ −HψFθ)dSa

Assuming the complex coordinate stretching does indeed cause an exponential decay

in H we have omitted the contribution from the outer boundary SR. We will

subsequently omit the contribution from Sa by observing that it cancels with the

contribution from the interior domain. Finally using Faraday’s law (modified with

the same complex coordinate stretching),

iωzHr = − 1
µ sinψ

[
∂

∂ψ
(sinψEθ)−

∂Eψ
∂θ

]
iωzHψ = − 1

µ

[
1

sinψ
∂Er
∂θ
− 1
z′
∂

∂r
(zEθ)

]
iωzHθ = − 1

µ

[
1
z′
∂

∂r
(zEψ)− ∂Er

∂ψ

]

to eliminate the magnetic field we obtain,

∫
ΩR

a

{
z′

µ

[
1

r2 sin2 ψ

(
∂

∂ψ
(sinψEθ)−

∂Eψ
∂θ

)(
∂

∂ψ
(sinψFθ)−

∂Fψ
∂θ

)
+

1
r2

(
1

sinψ
∂Er
∂θ
− 1
z′
∂

∂r
(zEθ)

)(
1

sinψ
∂Fr
∂θ
− 1
z′
∂

∂r
(zFθ)

)
+

1
r2

(
1
z′
∂

∂r
(zEψ)− ∂Er

∂ψ

)(
1
z′
∂

∂r
(zFψ)− ∂Fr

∂ψ

)]
−ω2εz′

z2

r2
E · F

}
dx = 0

(2.53)
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We see that the first three terms form a modified (“stretched”) version of the usual

∇×E ·∇× F term. To recover a more familiar form we make the substitution

Er =
1
z′
Ẽr, Eψ =

r

z
Ẽψ, Eθ =

r

z
Ẽθ. (2.54)

With this ansatz (2.53) becomes

∫
Ω

{
1
z′µ

[
∇× Ẽ ·∇× F̃ + ((rz′/z)2 − 1)(er ·∇× Ẽ)(er ·∇× F̃ )

]
−ω2εz′

[
Ẽ · F̃ + ((rz′/z)−2 − 1)(er · Ẽ)(er · F̃ )

]}
dx

(2.55)
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Chapter 3

Compatible hp-FEM

The preceding chapter contains a variety of variational problems set in the Sobolev

spaces H1 and H(curl), possibly modified by certain weights for problems posed in

exterior domains. We presently take up a discussion of the construction of conform-

ing, finite dimensional subspaces suitable for the discretization of these problems by

hp-FEM.

3.1 The exact sequence property and de Rham diagram

It is well known that on a simply connected, Lipschitz domain Ω the following

function spaces and differential operators form an exact sequence,

IR
id−→ H1(Ω) ∇−→H(curl,Ω) ∇×−→H(div,Ω) ∇·−→ L2(Ω) −→ {0}, (3.1)

that is, the range of each operator corresponds to the null space of the operator on

the right. Moreover, it is possible to reproduce this sequence on a discrete level, that

is by defining finite dimensional subspaces Whp(Ω) ⊂ H1(Ω), Qhp(Ω) ⊂H(curl,Ω),
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V hp(Ω) ⊂H(div,Ω) and Yhp(Ω) ⊂ L2(Ω) such that the sequence,

IR
id−→Whp(Ω) ∇−→ Qhp(Ω) ∇×−→ V hp(Ω) ∇·−→ Yhp(Ω) −→ {0}, (3.2)

is also exact. By assuming some additional regularity, it is possible to relate these

two sequences by defining projection-based interpolation operators Πgrad, Πcurl, Πdiv

and P such that the resulting de Rham diagram,

Hr(Ω) ∇−→ Hr−1(curl,Ω) ∇×−→ Hr−1(div,Ω) ∇·−→ Hr−1(Ω)yΠgrad
yΠcurl

yΠdiv
yP

Whp(Ω) ∇−→ Qhp(Ω) ∇×−→ V hp(Ω) ∇·−→ Yhp(Ω)

(3.3)

(with r > 3/2) commutes. That is,

∇(Πgradu) = Πcurl(∇u) ∀u ∈ Hr(Ω),

∇× (ΠcurlE) = Πdiv(∇×E) ∀E ∈Hr−1(curl,Ω),

∇ · (Πdivv) = P (∇ · v) ∀v ∈Hr−1(div,Ω).

This commutativity is critical for establishing a discrete compactness result which

in turn is used to prove convergence results for the Maxwell eigenvalue problem and

the mixed formulation for Maxwell equations. Here we wish only to motivate the

construction of the spaces Whp(Ω) and Qhp(Ω) that form the basis of our present

work.

3.2 H1-conforming hp elements

Let K̂ = (0, 1)3 be the master hexahedron. The master element of uniform (but

possibly anisotropic) order p = (p, q, r) is defined as the tensor product space,

Q(p,q,r)(K̂) = Pp ⊗ Pq ⊗ Pr, (3.4)
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where Pp denotes 1D polynomials of order p. The master element of variable order

is a subspace of Q(p,q,r)(K̂) where restrictions to faces and edges are of possibly

lower order. We will use the (admittedly incomplete) notation,

Wp(K̂) = Q(p,q,r)
(pf ,qf ),(pf ,rf ),(qf ,rf ),pe,qe,re

(K̂). (3.5)

Here, the letters p, q and r denote orders of approximation corresponding to the

master element coordinate directions 1, 2 and 3, respectively. Then the first subscript

(pf , qf ) indicates the possibility of a lower order restriction to either of the two faces

orthogonal to the third axis. These orders may be different for the two such faces,

but they have been combined into a single symbol to arrive at a more convenient

notation. Likewise the fourth subscript pe indicates the possibility of a lower order

restriction to any of the four edges parallel to the first axis.

The physical element K is then defined in terms of a smooth invertible

parametrization xK : K̂ → K, with the corresponding space (of possibly non-

polynomials),

Wp(K) = {v = v̂ ◦ x−1
K : v̂ ∈Wp(K̂)}. (3.6)

The physical domain Ω is then subdivided into a regular mesh M consisting of a

finite number of elements K,

Ω =
⋃

K∈M
K,

and we define the global space,

Wp(Ω) = {v ∈ H1(Ω) : v|K ∈Wp(K) ∀K ∈M}.

The requirement that v ∈ H1(Ω) reduces to the requirement that v is continuous

at element interfaces (since clearly v ∈ H1(K)). To see this, consider the generic

interface Γ between two subdomains Ω1 and Ω2 as shown in Figure 3.1. Let v|Ωi = vi,
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Ω1
Ω2

Γ

n

Figure 3.1: An interface Γ between subdomains

where vi ∈ H1(Ωi), and let φ be an arbitrary test function (C∞ with compact

support) in Ω = int(Ω1 ∪ Ω2). Then,

〈∇v,φ〉Ω ≡ −〈v,∇ · φ〉Ω

= −
∫
Ω1

v1∇ · φ dx−
∫
Ω2

v2∇ · φ dx

=
∫
Ω1

∇v1 · φ dx+
∫
Ω2

∇v2 · φ dx+
∫
Γ
(v2 − v1)(φ · n) dS,

so that ∇v ∈ L2(Ω) if and only if v1 = v2 on Γ.

Though the restriction of orders for faces and edges is in principle arbitrary,

our implementation assumes the convention, known as the minimum rule, that or-

ders for faces and edges are set to the minimum of the parallel orders for adjacent

elements. Finally, observe that the definition of the global space Wp(Ω) is also suit-

able for the case of an irregular mesh M. In this case, the corresponding global

space will be denoted by Whp(Ω).

3.3 H(curl)-conforming hp elements

Motivated by the desired exact sequence property, the master element of uniform

order is obtained as the image of the space (3.4) under the gradient, i.e.

Qp(K̂) = Q(p−1,q,r)(K̂)×Q(p,q−1,r)(K̂)×Q(p,q,r−1)(K̂). (3.7)
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Once again, the master element of variable order is introduced to enable a non-

uniform order of approximation.

Qp(K̂) = Q(p−1,q,r)
(pf−1,qf ),(pf−1,rf ),(q,r),pe−1,qf ,rf

(K̂)

× Q(p,q−1,r)
(pf ,qf−1),(p,r),(qf−1,rf ),pf ,qe−1,rf

(K̂)

× Q(p,q,r−1)
(p,q),(pf ,rf−1),(qf ,rf−1),pf ,qf ,re−1(K̂) (3.8)

The choice of orders for restrictions to faces and edges is quite complex and is

motivated by the final goal of constructing a discrete space of vector-valued functions

such that only the tangential component is continuous between elements. Hence,

considering the first component of (3.8), there is no restriction on the order of the

faces orthogonal to direction 1 since the normal component of the function on these

faces is identified with the interior of the element rather than the face. Likewise,

the order for edges parallel to direction 2 corresponds to the order for the adjacent

face in the 1-2 plane.

The definition of the transformation to the physical element K, such that

the exact sequence property is preserved, is motivated by the action of the gradient

on Wp(K). If v = v̂ ◦ x−1
K then

∇v =
(
∂ξ

∂x

)T
∇̂v̂,

where ξ denotes the master element coordinates and ∇̂ is the gradient with respect

to ξ. This leads to the definition,

Qp(K) =

{
F =

(
∂ξ

∂x

)T
(F̂ ◦ x−1

K ) : F̂ ∈ Qp(K̂)

}
. (3.9)
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Then the curl satisfies the transformation rule [17],

∇× F =
∣∣∣∣∂x

∂ξ

∣∣∣∣−1 ∂x

∂ξ
∇̂× F̂ .

Once again, the computational domain Ω is partitioned into a regular mesh

M of curvilinear hexahedra and the global space is defined by,

Qp(Ω) = {F ∈H(curl,Ω) : F |K ∈ Qp(K) ∀K ∈M}.

To obtain the continuity requirement for F ∈H(curl,Ω), we reconsider the situation

depicted in Figure 3.1. Now F i ∈H(curl,Ωi), and

〈∇× F ,φ〉Ω ≡ 〈F ,∇× φ〉Ω

=
∫
Ω1

F 1 ·∇× φ dx+
∫
Ω2

F 2 ·∇× φ dx

=
∫
Ω1

∇× F 1 · φ dx+
∫
Ω2

∇× F 2 · φ dx

+
∫
Γ
(n× F 2 − n× F 1) · φ dS,

so that ∇ × F ∈ L2(Ω) if and only if n × F 1 = n × F 2 on Γ. This continuity

requirement sheds some additional light on the practical importance of the exact

sequence property and the transformation in (3.9). Indeed, if f̂ is a face of the

master element with image f then the transformation in (3.9) maps the component

of F̂ tangential to f̂ onto the component of F tangential to f . Hence, the continuity

of the tangential component can be enforced directly in terms of the master element

with no reference to the parametrization xK .
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Chapter 4

Fully-Automatic hp-Adaptivity

for Elliptic Equations

In this chapter we describe the mathematics behind, and implementation of, an

algorithm for fully-automatic hp-adaptivity for elliptic problems in three dimensions.

In the presented version, the adaptivity is driven by the minimization of the error

in the H1 norm. However, with relatively minor modifications [42], the algorithm

extends to a more general goal-oriented adaptivity, driven by the minimization of

an upper bound for the error in a quantity of interest.

The algorithm is quite general in that the search for optimal refinements

allows for full anisotropy both in the element size h and the order of approximation

p. It is also problem independent in the sense that it requires no explicit information

about material data or the geometry of the computational domain. Rather, the

algorithm automatically detects singularities (and smooth regions) in the solution

and devises an appropriate refinement strategy to resolve them.

The central mathematical tool behind our automatic hp algorithm is the

projection-based interpolation operator. We begin this section by recalling its def-

inition and fundamental properties. We then turn to an overview of the algorithm
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for hp-adaptivity. Finally we discuss some of the details and computational issues

behind its implementation.

4.1 Projection-based interpolation in H1

The projection-based interpolation operator has been the subject of much research

in recent years (see e.g. [23], [18], [22], [14], [20] and the references therein). Here,

we only wish to recall its definition and basic properties. We first need to introduce

a few underlying polynomial spaces.

For each hexahedral element K we denote by Qppf ,pe
(K) the usual element

space of shape functions. In this notation, p = (p1, p2, p3) is the possibly anisotropic

order of approximation for the middle node, and pf , pe represent the possibly lower

orders of approximation for restrictions to element faces and edges, respectively.

For each of the six faces f of K we denote by Qpf

−1(f) the space of polynomials of

possibly anisotropic order pf = (pf,1, pf,2) whose restrictions to the boundary ∂f

are zero. Finally, for each of the twelve edges e of K we denote by Ppe
−1(e) the space

of polynomials of order pe whose values at the endpoints of e are zero.

Now, for a given function u ∈ H3/2+ε(K), where ε > 0 is arbitrary, the

projection-based interpolant up = ΠKu ∈ Qppf ,pe
(K) is defined by a four stage

process:

• First we define u0 to be the trilinear vertex interpolant of u, i.e. u0 ∈ Q1(K)

such that u0(v) = u(v) for all eight vertices v of K. We note that by the

Sobolev imbedding theorem, u is ε-Hölder continuous, and pointwise evalua-

tion of u is a well-defined operation.

• Next for each edge e of K we solve the minimization problem:

 Find u1,e ∈ Ppe
−1(e) :

‖(u− u0)− u1,e‖0,e → min.
(4.1)
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These twelve single-edge projections are then combined by extending each one

with a bilinear blending factor in the plane orthogonal to the edge and adding

them to obtain u1.

• Next for each face f of K we solve the minimization problem:

 Find u2,f ∈ Q
pf

−1(f) :

|(u− u0 − u1)− u2,f |1/2,f → min.
(4.2)

These six single-face projections are then combined by extending each one with

a linear blending factor in the direction orthogonal to the face and adding them

to obtain u2.

• Finally we solve the interior minimization problem:

 Find u3 ∈ Qp−1(K) :

|(u− u0 − u1 − u2)− u3|1,K → min.
(4.3)

The minimization problems (4.1), (4.2) and (4.3) can also be expressed in the equiv-

alent variational forms,

 Find u1,e ∈ Ppe
−1(e) :

be(u1,e, v) = be(u− u0, v) ∀v ∈ Ppe
−1(e)

(4.4)

 Find u2,f ∈ Q
pf

−1(f) :

bf (u2,f , v) = bf (u− u0 − u1, v) ∀v ∈ Q
pf

−1(f)
(4.5)

 Find u3 ∈ Qp−1(K) :

bK(u3, v) = bK(u− u0 − u1 − u2, v) ∀v ∈ Qp−1(K)
(4.6)

40



where

be(u, v) =
∫
e
u(x)v(x) dx

bf (u, v) =
∫
f

∫
f

(u(x)− u(y))(v(x)− v(y))
|x− y|3

dxdy

bK(u, v) =
∫
K

∇u(x) ·∇v(x) dx

Then the projection-based interpolant up of u is given by the sum of these

four contributions,

up = u0 + u1 + u2 + u3.

The use of bilinear extensions for edges, and linear extensions for faces, in the above

algorithm is arbitrary since the final up is independent of the chosen extension. For

a function u defined on the entire computational domain, discretized by a regular

FE grid, its projection-based interpolant is the union of the element interpolants

defined above.

The definition of the projection-based interpolant, and its application in

automatic hp-adaptivity, is motivated by four main properties:

• It is optimal in the sense that it delivers the same convergence rate in both

element size h and order of approximation p as the best approximation error.

• The definition is local in the sense that it only requires information about the

function u restricted to a single element.

• The global projection is H1 conforming.

• In conjunction with the H(curl)-conforming projection-based interpolation

operator, the de Rham diagram [23] commutes.

For general hp-grids the last three properties are in conflict with each other and

require further comment.
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Figure 4.1: A typical situation involving constrained nodes in a 1-irregular mesh

For a general hp-grid we need to modify the definition of the projection-

based interpolant to account for the presence of constrained (or hanging) nodes in

the mesh in order to maintain H1-conformity. Consider the situation depicted in

Figure 4.1. Here, the highlighted vertex, edge and face nodes for element B are

actually constrained by edge and face nodes for element A. If we apply the local

definition of projection-based interpolation given above, separately on elements A

and B, then we cannot guarantee that their union is in H1.

To guarantee that the interpolant is in H1 we have to slightly weaken our

notion of locality. For the constrained nodes in element B, we can replace the local

procedure by the following:

• Compute the usual projection for the constraining node from element A.

• Restrict the result to the constrained node for element B.

• Extend the result by the usual procedure into element B.

With this modification the interpolant thus obtained is globally in H1, but its re-

striction to element B requires information about u, not only on element B, but also

on the constraining face and edges of element A. Moreover, this definition violates

the commutativity of the de Rham diagram. (An alternative definition recovers the
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commutativity of the de Rham diagram by further weakening locality. The pro-

jection can be defined over “partially refined” element patches. In Figure 4.1, the

patch would include elements B, C, D and E. However, the resulting projection is

impractical in the context of driving hp-refinements, since we wish to test the effects

of further refinements to the elements)

The consequences of this slight non-locality, in terms of the practical im-

plementation of projection-based interpolation (i.e. for automatic hp-adaptivity),

are quite far-reaching. First, it is clear that the implementation will have to make

frequent and explicit reference to the underlying data structures supporting the

hp-mesh (node connectivities, constraints, etc.). Thus the code implementing auto-

matic hp-adaptivity will be strongly tied to the underlying finite element code on

which it is built. Secondly, the complexity of the code alone rules out the possibility

for its implementation in a parallel, distributed memory, environment.

These main factors (code simplicity, portability, and potential for paralleliza-

tion) have motivated a slightly different approach in the present work. The alterna-

tive is to trade H1-conformity for true locality. The ramifications for each of these

three issues will be made clear in the sequel.

4.2 Algorithm for fully-automatic hp-adaptivity

The main idea is that we search for optimal h and p refinements for a given coarse

grid ignoring the fact that it may contain hanging or constrained nodes. This

freedom allows all of the mesh optimization code to be essentially separated from

the code used to maintain the mesh data structure. Once an optimal refinement

strategy has been determined for every element, a mesh reconciliation algorithm

is applied to ensure that the refinements can be performed while maintaining the

1-irregularity of the mesh. In this section we describe some of the details of the

algorithm.

43



4.2.1 Overview

A single step of hp-adaptivity takes the following form.

1. Solve the problem on the current coarse grid and dump the coarse grid to disk.

2. Perform a global hp-refinement, breaking each element isotropically into eight

sons and enriching the polynomial order of approximation by one.

3. Solve the problem on the resulting fine grid.

4. Compute the norm of the difference between the coarse and fine grid solutions

as a global error estimate. Stop if the error is small enough.

5. Determine an optimal refinement strategy for edges.

6. Using edge refinements as the starting point, determine an optimal refinement

strategy for faces.

7. Using face refinements as the starting point, determine an optimal refinement

strategy for element interiors.

8. Possibly enrich the optimal refinements in order to preserve the 1-irregularity

of the resulting mesh.

9. Load the coarse grid from disk and perform first h and then p-refinements to

produce the new coarse grid.

(The stopping criterion, item 4, based on the coarse grid error estimate, will in the

future be replaced by a-posteriori error estimation for the fine-grid solution.)

To achieve the aforementioned separation of the mesh optimization code,

the fine grid solution is stored in an interface data structure in the refined-element

fashion. For each coarse grid element, the solution is stored for all eight of its fine

grid sons. This is the central data structure for mesh optimization. During mesh
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p pl pr

Figure 4.2: An unrefined edge of order p, and an h-refined edge with order pl on the
left and order pr on the right

optimization (steps 5-7), the fine grid solution is projected onto the coarse grid and

onto a sequence of intermediate grids to investigate the relative benefits of h and p

refinement. To compute the projection-based interpolant of the fine grid solution u,

the first step (not listed above) is the removal of the coarse grid vertex interpolant

u0. With that completed, we are ready to proceed with edges.

4.2.2 The edge refinement algorithm

Each coarse grid edge is visited by looping through coarse grid elements, and then

looping through the twelve edges of the element. The restriction of the modified

fine grid solution u− u0 to the coarse grid edge is retrieved from the interface data

structure (observe that it is zero at the endpoints of the edge).

Our goal is to determine whether h or p-refinement, or no refinement, is ap-

propriate for each edge. We accomplish this by projecting the modified fine grid

solution onto a p-refined edge, and onto a sequence of h-refined edges (to be de-

fined more precisely below). A schematic of the potential types of edges is shown in

Figure 4.2. In order to discuss the h-refined edge in Figure 4.2, we denote the corre-

sponding piecewise polynomial space by Ppl,pr
−1 (e), with the subscript −1 indicating

as usual zero values at the endpoints.

We begin by investigating the effect of p-enrichment. If the coarse grid edge

e has order p, we project the fine grid solution onto the coarse grid space P p−1(e)

and onto the p-refined space P p+1
−1 (e). For each projection we record the associated

projection error, building a database for the edge.

To investigate the effect of h-refinement, we begin by projecting onto the
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piecewise linear space P 1,1
−1 (e). The projection error is computed separately for each

edge son. If the error in the first son is largest, then we virtually increase the order

of approximation for only the first son, and the next step is to project onto the

space P 2,1
−1 (e). Otherwise, the second son’s order is increased and we project onto

P 1,2
−1 (e). Proceeding in the same way, a nested sequence of potential edge refinements

is generated, from piecewise linears all the way up to the fine grid space P p+1,p+1
−1 (e),

and the associated projection errors are recorded (of course, the last one is always

zero). We refer to this sequence as the largest son error refinement path since at

each step the order is increased in the son with largest error.

An example maximum son error refinement path for a coarse edge of order

five is represented schematically by the black dots in Figure 4.3, where the horizontal

axis records the order for the left son, and the vertical axis is the order for the right

son. For clarity, the solid diagonal line spans all potential h-refinements that are

competitive (in terms of the number of local degrees of freedom, i.e. four) with the

coarse edge, the dashed line spans those that are competitive with the p-refined

edge (five degrees of freedom), and the dotted bounding box encloses all potential

h-refinements imbedded in the fine grid. In principle, we could simply compute

projection errors for all combinations with 1 ≤ pl, pr ≤ p + 1, however the present

approach is designed to discover the optimal combinations of (pl, pr) while computing

as few projections as possible (a strategy that becomes critical in higher dimensions).

It is useful to visualize the database thus collected. In Figure 4.4 we plot

the edge projection errors with respect to the number of local degrees of freedom

for the same example edge. The vertical solid and dashed lines indicate the number

of degrees of freedom in the coarse, and in the p-refined edge, respectively. The

projection errors for the coarse and p-refined edge are marked with squares, and

projection errors along the maximum son error refinement path (from Figure 4.3)

are marked with circles.
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Figure 4.3: An example maximum son error refinement path for a coarse edge of
order 5.
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Figure 4.4: An example database of projection errors for a coarse edge of order 5.
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We have to be ready to answer three questions:

1. Is this edge worthy of investment?

2. If not, should it remain unchanged?

3. If so, which of the h or p-refinements is best?

To answer question 2 we search the database to find the mesh with the fewest degrees

of freedom among all meshes with projection error less than or equal to the coarse

edge projection error. This is identified as the local reference mesh. Defined in this

way, the reference mesh may simply be the coarse mesh, but includes the possibility

of finding an h-refinement that achieves a lower error level than the coarse mesh

with fewer degrees of freedom. For the example in Figure 4.4, the reference mesh

is the coarse mesh, since h-refinement requires one additional dof to reproduce the

coarse mesh error level.

To answer question 3 we identify the so-called best competitive refinement.

For every mesh with more degrees of freedom than the reference mesh (nrdofref)

but not more than the p-refinement (p) we compute the associated projection error

decrease rate with respect to the number of local degrees of freedom added,

rate =
errorref − error
nrdof − nrdofref

.

The one delivering the largest error decrease rate is identified as the best competitive

refinement. This is where (and how) the decision between h and p refinement is

made. Clearly, in Figure 4.4, the best competitive refinement is p-refinement.

Finally we compute the maximum of this rate over all meshes in the database

(even those with more degrees of freedom than the p-refinement). This rate rep-

resents a lower bound on the benefit of investing multiple degrees of freedom into

this edge, and is therefore called the guaranteed rate for the edge. It quite often

coincides with the best competitive refinement (clearly the case in Figure 4.4).
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With this data collected for each edge, we are ready to answer question 1.

The edges are entered into a global competition for investment. We compute the

global maximum of the guaranteed-rate observed for each edge, and those that

deliver rates above 70% of the max rate are deemed worthy of investment. In this

case we will add degrees of freedom in the competitive direction (h or p) until the

associated rate falls below 70% of the global max rate (if p-refinement wins the local

competition only one degree of freedom can be added). All edges that lose in the

global competition select their local reference mesh to ensure that the coarse grid

error level is not exceeded.

There are three main features to note. First, we decide which direction (h

or p) is best by comparing only refinements which add 1 degree of freedom (i.e.

h-refinements adding more than one degree of freedom are not considered). This is

because we are limited (for reasons to be discussed in § 4.3) to computing projections

onto edges which are locally imbedded in the fine grid. To make this decision on

a competitive basis h-refinements adding more than one degree of freedom would

have to be compared with an unrefined edge of order p + 2 (or more), which is

not imbedded in the fine grid. Second, the decision to invest in an edge is made

based on the guaranteed rate for the edge, and not on the rate associated with the

competitive refinement. This strategy addresses the so-called “case of a missing

scale” [19]: It may happen that adding only one dof fails to resolve a dominant

scale of the fine grid solution. Then the competitive refinement will deliver only a

small error decrease rate. However, the error is still large, and convergence of the

algorithm will “stall” through several steps until the global maximum rate is brought

down to this level. By comparing guaranteed rates we can detect this situation and

force the addition of one dof in the hope that a future iteration will then perform a

more appropriate refinement. Finally, while we do not globally control the number

of degrees of freedom that can be added in a single step, we can increase the cutoff
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Figure 4.5: An unrefined face of (possibly anisotropic) order p, and the possible
h-refinements.

(70%) to make more careful investments at the expense of requiring more iterations.

In a final step, the chosen edge projections are lifted into the element by a

bilinear blending function in the plane orthogonal to the edge and subtracted from

the fine grid solution in the interface data structure.

4.2.3 The face refinement algorithm

In a previous implementation of automatic hp-adaptivity [50], the determination

of h-refinements was left entirely to edges and the so-called isotropy flags. At this

point, the algorithm interfaces back to the mesh data structure and performs h-

refinements, breaking elements according to whether or not their edges requested

h-refinement. In the present work, we continue, independent of the mesh data

structure, and stage a similar competition for faces.

The starting point for the face refinement algorithm is the ending point

for the edge refinement algorithm. If none of the four edges of a given face have

selected h-refinement, then we will presently consider all four possibilities shown in

Figure 4.5. If however, some edges have selected h-refinement, then we will restrict

our search to include only face refinements that also break the corresponding edges.

For example, in Figure 4.6, the bottom edge selected h-refinement, so we restrict

our search to the two h-refinement types shown on the right. Moreover, the optimal

orders chosen for edges determine minimal orders for faces. We simply apply the

familiar minimum rule in reverse (the maximum rule). In Figure 4.6, the face on the

50



2

2

2

2

2

2

3

3

3

3

3

3

3

4

4

4

4

Figure 4.6: Using edges to restrict the search for optimal face refinements.

left indicates optimal orders of approximation chosen in the edge refinement step.

The two faces on the right show the corresponding minimal orders of approximation

for the face interiors, dictated by the edge refinements.

There are two main reasons for this coupling of edges to faces. First, since

face projections are more expensive to compute than edge projections we want to

use all of the information available to restrict the search as we go. Second, as will be

seen below, the ultimate end of the algorithm is an optimal refinement strategy for

element interiors, with the final edge and face orders determined by the minimum

rule. Using the above strategy, we can guarantee that refinements chosen by edges

alone are only potentially enriched by the algorithm using the additional information

gained from faces and element interiors.

In our actual computations we replace theH1/2-seminorm from §4.1 (dictated

by the trace theorem) by a weighted H1-seminorm. This choice is motivated mainly

by the locality of the H1-seminorm, i.e. it can be restricted to a single sub-element

independent of others. Moreover, the H1-seminorm splits nicely into separate con-

tributions that can be examined to detect anisotropy in the error. Finally, we are

not completely discarding the convergence theory since, in the presence of additional

regularity, the H1-projection still yields an optimal convergence rate (with respect

to p) in the H1/2-seminorm [22].

Optimal convergence with respect to h is recovered by selecting an ap-
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propriate weight function to interpolate between the scaling of the L2 norm and

H1 seminorm. Suppose the (possibly curved) face f is parametrized by the map

x : f̂ 3 ξ → x(ξ) ∈ f , where f̂ = (0, 1)2 is the reference square. Then introducing

tangent vectors ai (and unit tangent ei),

ai =
∂x

∂ξi
= hiei (i = 1, 2)

(no summation) we obtain the cobasis vectors,

a1 = h−1
1

e1 − (e1 · e2)e2

1− (e1 · e2)2
, a2 = h−1

2

e2 − (e1 · e2)e1

1− (e1 · e2)2
,

and the face gradient,

∇fu = (∇u · a1)a1 + (∇u · a2)a2 =
∂u

∂ξ1
a1 +

∂u

∂ξ2
a2,

where hi = |∂x/∂ξi|. Then we obtain the scaling of the L2 norm and H1 seminorm

as

‖u‖20,f =
∫
f
|u|2dx

=
∫
f̂
|u|2h1h2|e1 × e2| dξ

|u|21,f =
∫
f
|∇fu|2dx

=
∫
f̂

{
h2

h1

(
∂u

∂ξ1

)2

− 2(e1 · e2)
∂u

∂ξ1

∂u

∂ξ2
+
h1

h2

(
∂u

∂ξ2

)2
}

dξ

|e1 × e2|
.

To obtain a scaling like the H1/2 seminorm, we interpolate half-way between the

two (for each term) and define the face seminorm,

|u|2f =
∫
f̂

{
h2

(
∂û

∂ξ1

)2

− 2(e1 · e2)
√
h1h2

∂u

∂ξ1

∂u

∂ξ2
+ h1

(
∂û

∂ξ2

)2
}

dξ

|e1 × e2|
, (4.7)
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which reduces for a rectangular face to,

|u|2f =
∫
f̂

{
h2

(
∂û

∂ξ1

)2

+ h1

(
∂û

∂ξ2

)2
}
dξ. (4.8)

In fact, for a curvilinear face f , we compute average values for the anisotropic

element size as,

h1 =
∫
f̂

∣∣∣∣ ∂x∂ξ1
∣∣∣∣ dξ, h2 =

∫
f̂

∣∣∣∣ ∂x∂ξ2
∣∣∣∣ dξ,

and use (4.8) to define the bilinear form for the projection,

b(u, v) =
∫
f̂

{
h2
∂û

∂ξ1

∂v̂

∂ξ1
+ h1

∂û

∂ξ2

∂v̂

∂ξ2

}
dξ. (4.9)

The “correct” seminorm (4.7) for the curved face is only used to compute the asso-

ciated projection error, but not to define the projection operator. This is because

the simplified form (4.9) can be assembled from pre-computed stiffness matrices.

For faces, we cannot illustrate the algorithm graphically (as in Figure 4.3

for edges) because the maximum son error refinement path now involves up to

eight different orders of approximation (anisotropic orders for up to four sons).

However, we proceed in an analogous fashion to generate a local database of potential

refinements and corresponding projection errors. For each admissible h-refinement

type the fine grid solution (now with the coarse grid vertex interpolant and optimal

edge projections removed) is projected onto a nested sequence of face interiors. The

first projection corresponds to the minimal orders of approximation dictated by

the edges. The next grid in the sequence is determined by carefully examining the

projection error.

Consider first the case of a coarse face with order (p1, p2). We can observe

that the norm (4.7) has three contributions: the first measures variation in ξ1, the

second is isotropic, and the third measures variation in ξ2. If the first contribution

to the error is large relative to the others, then we postulate that the best way to
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decrease the error is by increasing the order of approximation in the first direction

(i.e. to (p1 + 1, p2)). If the three terms are relatively balanced we will increase

the order isotropically (i.e. directly to the fine grid order (p1 + 1, p2 + 1)). For

potential h-refinements, the local sequence is generated by enriching the son with

the largest contribution to the error, using a similar strategy to detect anisotropy.

By this process, we generate a sequence of potential refinements spanning the gap

from the minimal order (dictated by edges) to the fine grid order for each admissible

h-refinement type, recording the resulting projection errors in a local database.

This database is processed, much like it was for edges, and we identify a

reference mesh, the best competitive refinement and the guaranteed rate for each

face. The guaranteed rates are entered into a global competition, and those faces

that deliver rates within 70% of the global max are selected for investment. The

rest select the local reference mesh.

In a final step, the chosen projections are lifted into the element by a linear

blending function in the direction normal to the face and subtracted from the fine

grid solution in the interface data structure.

4.2.4 The brick refinement algorithm

With the above details on choosing face refinements, the algorithm for choosing re-

finements for element interiors is clear. However, the implementation is significantly

more complex. We must be prepared to compute projections corresponding to up to

eight different h-refinement types, as shown in Figure 4.7. To keep the discussion as

simple as possible, we describe our approach in an abstract setting in § 4.3, which

encompasses the computation of projections for edges, faces and element interiors.
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Figure 4.7: All potential h-refinement types for an element interior.

4.2.5 Mesh reconciliation

The output of the above algorithm is an h-refinement flag for each coarse grid

element, and new orders of approximation for the corresponding element sons. The

final step is to implement these refinements by modifying the underlying mesh data

structure. In our case, the underlying data structure is managed by the code 3Dhp

[26]. We must first perform the requested h-refinements, followed by p-enrichment.

Before performing the h-refinements, we must ensure that they can, in fact,

be performed while maintaining the 1-irregularity of the mesh. To accomplish this,

it may be necessary to upgrade some of the requested h-refinements by adding so-

called “unwanted refinements”. Our approach is to first perform the refinements

“virtually” by setting refinement flags in the data structure. These flags are then

iteratively upgraded (if necessary) by repeated calls to a new subroutine: prerefine.

This subroutine implements the logic of the old refinement routine, refine (see [26]

for a complete discussion), but operates only with the flags and performs no actual

refinements.

In addition to the previous logic from refine, prerefine eliminates incon-

sistent refinements for equal-sized neighbors. An example is shown in Figure 4.8.
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Figure 4.8: Inconsistent refinements for equal-sized neighbors (dashed lines), and
how to upgrade them (dotted lines)

Here, the requested h-refinements (dashed lines) for two neighboring elements are

inconsistent at the common face. The inconsistency is eliminated by upgrading both

refinements (dotted lines). The procedure is repeated until no flags are modified by

a given iteration. The process is guaranteed to terminate (in the worst case, the

final refinements will be uniform and isotropic).

Now, the elements can be broken using the upgraded h-refinement flags,

and we are ready to perform p-refinements. For the case of an element whose h-

refinement flag was upgraded by the mesh reconciliation step, we have to determine

new orders of approximation for the element sons. This is done by examining the

database of projection errors for the element. First we identify a refinement that

duplicates the reference error level for that element, and then see if there is a

competitive refinement with the same h-refinement type. If not, the reference orders

are used: if so, the competitive orders are used. Once orders have been chosen for

all element middle nodes, orders are set for mid-face and mid-edge nodes according

to the minimum rule.

The mesh reconciliation step is essentially the only portion of the code that

must be treated differently in a distributed memory, parallel implementation (see

[46, 45] for details of the parallel implementation). In the present algorithm, the
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search for optimal refinements can be carried out almost completely in parallel. The

only need for communication between subdomains (prior to mesh reconciliation) is

in the computation of global max error decrease rates.

4.3 Abstract framework for computing projections

The central computational problem behind our algorithm for fully-automatic hp-

adaptivity is that of computing a sequence of projections. We need to compute

projections onto edges, faces and element interiors, for a variety of admissible h-

refinement types, and for orders of approximation varying between given minimal

and maximal orders. For example, in 3D, we must be prepared to compute projec-

tions onto element interiors with up to eight different h-refinement types (one for no

h-refinement, three for h2-refinement, three for h4-refinement and one for isotropic

h8-refinement).

We pose the problem in terms of four different piecewise polynomial spaces,

each one containing the next, but with imbeddings of different type. We denote the

spaces as U ⊂ V ⊂W ⊂ X. The space X is the fine grid piecewise polynomial space

restricted to a single coarse grid edge, face or element. We represent elements of X

by their expansion in terms of a basis of hierarchical, piecewise polynomial shape

functions {xi}NX
i=1. We also require that this basis can be separated as usual into

so-called interior or bubble modes, which are zero on the boundary of the coarse

grid element, and exterior or boundary modes, which are nonzero on the boundary.

The subspace W ⊂ X is spanned by only the interior degrees of freedom

from X. That is W = span{wi}NW
i=1 , and there is an extraction vector (injection),

extw : {1, . . . , NW } → {1, . . . , NX}, such that wi = xextw(i). The new symbol wi for

shape functions is introduced only to indicate this renumbering.

The subspace V ⊂W is introduced to compute projections onto elements of

different h-refinement types. For the simplest example, consider the imbedding of a
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Figure 4.9: On the left, the single shape function spanning V ; on the right, the three
shape functions spanning W .

second order edge interior V into its h-refined counterpart W . The basis functions

for V and W are shown in Figure 4.9. We can represent the imbedding V ⊂ W

by introducing an extension matrix E with one column for each shape function

for V = span{vi}NV
i=1, listing the coefficients for its expansion in terms of shape

functions forW . In this example we have only a single column and the corresponding

expansion,

v1(x) =
1
4
w1(x) +

1
4
w2(x) + w3(x).

In general we have an expansion of the form,

vi =
NW∑
j=1

Ej,iwj , i = 1, . . . , NV .

Finally, the subspace U ⊂ V is introduced to compute projections onto

elements having a lower order of approximation. Consequently the imbedding

span{ui}NU
i=1 = U ⊂ V is represented by an additional extraction vector extu :

{1, . . . , NU} → {1, . . . , NV }, such that, ui = vextu(i).

We are now ready to express the problem of interest: projecting an element of

X onto U . Let x ∈ X be represented by the expansion x(ξ) =
∑NX
j=1 x

jxj(ξ), and its
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projection onto U by the expansion u(ξ) =
∑NU
j=1 u

juj(ξ). If we take b : X×X → R

to be the appropriate bilinear form for edge, face or element interior projection, then

we can state the problem as: find coefficients {uj}NU
j=1 such that,

NU∑
j=1

BU
i,ju

j =
NU∑
j=1

b(uj , ui)uj =
NX∑
j=1

b(xj , ui)xj = lUi ,

for each i = 1, . . . , NU .

Using the extraction vector extu, the stiffness matrix BU and load vector lU

can be extracted from the corresponding stiffness matrix BV and load vector lV for

computing a projection onto V , i.e.

BU
i,j = b(uj , ui) = b(vextu(j), vextu(i)) = BV

extu(i),extu(j),

and

lUi =
NX∑
j=1

b(xj , ui)xj =
NX∑
j=1

b(xj , vextu(i))x
j = lVextu(i).

Now, using the extension matrix E, BV and lV can be computed from BW and lW ,

the stiffness matrix and load vector for projection onto W , i.e.

BV
i,j = b(vj , vi) = b

NW∑
l=1

El,jwl,
NW∑
k=1

Ek,iwk


=

NW∑
l,k=1

Ek,ib(wl, wk)El,j

=
NW∑
l,k=1

Ek,iB
W
k,lEl,j ,

lVi =
NX∑
j=1

b(xj , vi)xj =
NX∑
j=1

b

xj ,NW∑
k=1

Ek,iwk

xj
=

NW∑
k=1

Ek,i

NX∑
j=1

b(xj , wk)xj
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=
NW∑
k=1

Ek,il
W
k .

In short, BV = ETBWE and lV = ET lW .

Finally, the stiffness matrix BW and load vector lW are assembled using

precomputed stiffness matrices for a single element (face or edge) and the fine grid

solution x ∈ X.

One drawback to this approach is the need for extension matrices. In 3D, it

would seem that extension matrices must be precomputed for imbedding seven types

of unrefined or partially-refined elements into the isotropically refined element with

a maximal order of approximation. The relevant extension matrix E above, can

then be extracted on the fly (even this is only possible with a hierarchical basis).

However, for a maximal order of 9, the resulting extension matrices (in double

precision) for element interiors require over 400MB of memory! To overcome this

significant obstacle, the seven maximal extension matrices were replaced by seven

subroutines (each with two integer arguments that represent array indices) that use

the tensor product structure of 3D shape functions and the extension matrix for

an edge (which requires less than 1KB of memory) to compute entries for the 3D

extension matrices without explicitly storing them.
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Chapter 5

Numerical Results

This chapter presents numerical evidence of the exponential convergence of the hp-

algorithm for elliptic problems in three dimensions. We begin with the classical

model problems for the Laplace equation, namely the Fichera corner domain, where

singularities are induced by a re-entrant corner and edges, and the so-called shock

problem where the manufactured exact solution has an interior layer with arbitrarily

steep gradients. The algorithm is then applied to the exterior acoustic scattering

problem for a sphere, a cone-sphere and a thin rectangular plate. To demonstrate the

practicality of the implementation, all computations were performed on a Compaq

Presario laptop with 2GB RAM.

5.1 Fichera’s corner

Our first model problem is Laplace’s equation ((2.1) with f = 0). The domain

Ω = (−1, 1)3\[0, 1)3, known as Fichera’s corner (see Figure 5.1), has three re-entrant

edges and one re-entrant corner. As in [50] we use homogeneous Dirichlet data, and

the problem is driven by an inhomogeneous Neumann boundary condition. The

Neumann data is derived by superposing three singular solutions for the analogous
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Figure 5.1: Fichera’s corner domain with Dirichlet (shaded) and Neumann portions
of the boundary

problem for the L-shaped domain in 2D. This choice of Neumann data is to focus

our study on the edge and vertex singularities due to the re-entrant corner, and

not on additional singularities due to incompatible Dirichlet and Neumann data at

the interface between ΓD and ΓN . The initial mesh consists of seven hexahedral

elements of second order.

While the exact solution for this problem is unknown, an “overkill” solution

u can be used to approximate the energy norm of the error for a given hp-grid. In

fact, if the hp-grid is imbedded in the “overkill”-grid, then the energy norm of the

difference is given by,

‖u− uhp‖2E = b(u− uhp, u− uhp) = ‖u‖2E − ‖uhp‖2E .

By storing the energy norm for each coarse and fine grid obtained by successive

hp-adaptive iterations, we can use the energy of the final fine grid to plot the error

with respect to the number of degrees of freedom. Figure 5.2, shows the estimated

percent relative error (in a logarithmic scale) with respect to the number of degrees

of freedom (in the algebraic scale N1/5), for both the hp coarse and fine grids. For
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Figure 5.2: Estimated convergence curves for the hp coarse and fine grids, and the
p method with 56 elements, for the Fichera problem
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reference, we have included the error for the p-method on a uniform grid of 56

elements. The nearly linear plots indicate exponential convergence of the form,

‖u− uhp‖E ∼ αe−βN
1/5
.

The convergence of the p-method is clearly algebraic, and in fact we observe that,

‖u− up‖E ≈ 24p−19/16

The final hp coarse grid plotted in Figure 5.2 has an estimated error of 0.9% with

17K degrees of freedom (which requires at least p = 15 or around 200K degrees of

freedom for the p-method). The final hp fine grid has an estimated error of 0.5%

with 220K degrees of freedom (which requires at least p = 26 or around 1 million

degrees of freedom for the p-method). The “overkill” solution used to estimate the

energy of the exact solution had over 325K degrees of freedom.

The final coarse grid solution is shown in Figure 5.3, and the final coarse grid

with colors indicating the order of approximation is shown in Figure 5.4. The color

scheme in Figure 5.4 (and all meshes to follow) requires further comment. Because

the order of approximation is in general anisotropic, a single color cannot be used

to represent the order for any given face. Moreover, because of the minimum rule,

the orders of approximation for edges adjacent to a given face may be lower than

the order for the face. Hence, the color scheme in general subdivides each face into

6 regions, shown in Figure 5.5. In this case the face has horizontal order phf = 2

and vertical order pvf = 3, while the order for horizontal edges has been restricted

to p1
e = p3

e = 1 and for vertical edges to p2
e = p4

e = 2.
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Figure 5.3: Solution to the Fichera problem

5.2 An exact solution with a “shock”

The second model problem is Poisson’s equation in the unit cube (0, 1)3 with mixed

Dirichlet and Neumann boundary conditions (equations (2.1)-(2.3)). The data f, g, h

are manufactured from an exact solution chosen to have an arbitrarily sharp internal

layer on the surface of a sphere. Figure 5.6 displays the generating function f(x) =

tan−1(αx) with the parameter α = 20, 40 and 60. Clearly, increasing α leads to

steeper gradients in a more focused region. The corresponding 3D exact solution

is u(r) = tan−1(α(r − r0)), where r = |x − (1/4, 1/4, 1/4)| is a recentered radial

coordinate, and r0 =
√

3 is the radius of the spherical layer. To drive the problem

with this exact solution we take f = −∆u, g = u and h = ∂u
∂n . The Dirichlet data

g is prescribed on the planes x = 0, y = 0 and z = 0, while the Neumann data h is

prescribed on the remainder of the boundary. Because the data f and h in (2.4) are
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Figure 5.4: The final coarse grid for the Fichera problem divided into four slabs
along the y-axis in order to expose the refinements in the interior of the domain.
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Figure 5.5: Color scheme for displaying the (in general anisotropic) orders of ap-
proximation for a single quadrilateral face. In this case the face has horizontal order
phf = 2 and vertical order pvf = 3, while the order for horizontal edges has been
restricted to p1

e = p3
e = 1 and for vertical edges to p2

e = p4
e = 2

nearly singular, the corresponding volume and surface contributions to the element

load vector are computed using adaptive quadrature schemes.

In Figures 5.7–5.9 we plot the exact percent relative error in theH1 seminorm

(in a logarithmic scale) with respect to the number of degrees of freedom (in the

algebraic scale N1/3) for both the sequence of coarse and fine grids and for increasing

parameter values α = 20, 40 and 60. In each case, the initial coarse grid is just a

single trilinear element. The scale N1/3 is used since the exact solution is analytic

(though it may appear to be singular in the pre-asymptotic regime). For reference,

the figures include the convergence of the p-method (p = 1, . . . , 9) on a uniform grid

of 64 elements. Indeed, we do observe an exponential convergence for the p-method

of the form,

error = C10−γN
1/3
,

with roughly,
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Figure 5.6: A plot of the 1D generating function tan−1(αx)
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Figure 5.7: Convergence history for the hp coarse and fine grids compared with the
p-method on a uniform grid of 64 elements, for the “shock” problem (α = 20)
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Figure 5.8: Convergence history for the hp coarse and fine grids compared with the
p-method on a uniform grid of 64 elements, for the “shock” problem (α = 40)
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Figure 5.9: Convergence history for the hp coarse and fine grids compared with the
p-method on a uniform grid of 64 elements, for the “shock” problem (α = 60)
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α Fine grid Fine grid p-method
% error nrdof nrdof

20 0.0355 58435 140000
40 0.3265 140469 370000
60 0.9787 208029 520000

Figure 5.10: Summary of final fine grid results for the “shock” problem and projected
problem size to match the same error level with the p-method

α C γ

20 100 1
15

40 80 1
30

60 100 1
40

The hp coarse and fine grids appear to asymptotically approach the same rate, but

they do much better in the pre-asymptotic regime. Figure 5.10 contains a summary

of the results for the final hp fine grids, and projects the number of degrees of

freedom required by the p-method to achieve the same error level.

Figure 5.11 compares the exact solution along with the final hp coarse grid

for α = 20, 40 and 60. For the smoothest case α = 20, the algorithm selects only

two levels of adaptive h-refinement followed by only adaptive p-enrichment. As α is

increased, the algorithm selects h-refinements more readily in order to resolve and

isolate the layer.

5.3 Acoustic scattering from a sphere

We consider the problem of rigid acoustic scattering of an incident plane wave by a

sphere of radius a centered at the origin. For simplicity, the incident wave is assumed

to travel toward the origin from the positive z direction. With the assumption of

70



α = 20

α = 40

α = 60

Figure 5.11: Exact solution (left) and sixth coarse grid (right) for the “shock”
problem with parameter α = 20, 40 and 60
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an e+iωt time-dependence, the incident wave is given by

pinc = pinc0 eikz = pinc0 eikr cos θ (5.1)

where k = ω/c is the wave number, c is the speed of sound in the surrounding ho-

mogeneous medium and ω the angular frequency. The scattered pressure p satisfies

(2.5)–(2.7).

Using separation of variables one finds that the scattered pressure has the

general form (see, e.g. [34])

p =
∞∑
n=0

n∑
m=0

h(2)
n (kr)Pmn (cos(θ)) {anm cos(mφ) + bnm sin(mφ)} ,

where h(2)
n is the (n-th) spherical Hankel function of the second kind, and Pmn is the

Legendre function of the first kind of degree n and order m (see [1]). Because of the

symmetry of (5.1) about the z-axis, this expansion simplifies to

p =
∞∑
n=0

cnh
(2)
n (kr)Pn(cos θ), (5.2)

where Pn is the Legendre polynomial of degree n. The coefficients cn are determined

by the Neumann boundary condition (2.6). Here we make use of the identity [1,

10.1.47],

eikr cos θ =
∞∑
n=0

(2n+ 1)injn(kr)Pn(cos θ),

(jn being the n-th spherical Bessel function of the first kind) to obtain,

cn = −uinc
0 (2n+ 1)in

j′n(ka)

h
(2)′
n (ka)

. (5.3)
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IE mesh A IE mesh B

Figure 5.12: Cutaway view of two initial meshes for infinite element discretization
(only finite elements are shown)

For an incident wave from an arbitrary direction ê,

pinc = pinc0 eikê·x

we simply evaluate (5.2) at r = |x| and cos(θ) = ê · x/|x|. Of course, only the

truncated sum,

p ≈
N∑
n=0

cnh
(2)
n (kr)Pn(cos θ), (5.4)

is evaluated, and we use the usual guideline [34] N ≈ 2k. In the following compu-

tational results, we will consider a scatterer of radius 1 wavelength.

Since the exact solution is analytic in the exterior domain we will begin

with a comparison of the infinite element and PML truncations. In both cases, we

surround the scatterer with a layer of finite elements of thickness λ (i.e. extending

from r = λ to r = 2λ), and initial order p = 2. This mesh is then either extended

by infinite elements (see Figure 5.12(a)) or by another layer of finite elements of

thickness λ (i.e. extending from r = 2λ to r = 3λ) where we employ the complex
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PML mesh A PML mesh B

Figure 5.13: Cutaway view of two initial meshes for PML discretization (the PML
is the outer layer of elements in mesh (A) and outer two layers in mesh (B))

coordinate stretching (2.17) and truncate with a homogeneous Dirichlet boundary

condition (see Figure 5.13(a)). In Figure 5.14 we plot the percent relative error in

H1-seminorm evaluated over the interior domain (λ < r < 2λ) vs the total number

of degrees of freedom. With the error in a logarithmic scale, and the number of

degrees of freedom in the algebraic scale N1/3, we observe exponential convergence

for the infinite element method with respect to p, as expected.

For the PML truncation, we plot results for different profiles n = 2, . . . , 8

with higher n indicating a smoother transition into the PML (compare (2.17)). We

see that the results are not as clean as they are for infinite elements. First, the error

within the interior region is unstable with respect to p, and may actually increase.

Second, none of the tested profiles emerges as a clear winner over the others. The

difficulty stems from the fact that the complex coordinate stretching introduces

(by design) a layer within the PML where the solution switches from oscillation

to exponential decay. These tests indicate that the p-method alone inadequately

resolves this layer (at least pre-asymptotically), and the solution is adversely effected
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in the interior region as well.

In an attempt to capture this interior layer, we begin with a single radial h-

refinement to obtain the initial meshes shown in Figure 5.12(b) and Figure 5.13(b),

and again apply the p-method. The improved convergence curves are shown in

Figure 5.15. We can observe that the radial h-refinement successfully captures the

interior layer, and that the convergence generally improves for smoother profiles.

Figure 5.16 shows the real and imaginary parts of the solution for the infinite element

truncation with p = 9, and we can observe that the scattered pressure waves pass

cleanly through the truncating sphere. Figure 5.17 shows the real and imaginary

parts of the solution for the PML truncation with profile n = 7 and order p = 9, and

we can observe that the scattered pressure waves cleanly decay into the absorbing

layer.

The preceding observations motivate the use of our fully-automatic hp al-

gorithm for the resolution of irregularities introduced by PML truncation. Our

algorithm should automatically detect the need for radial h-refinements within the

PML, and select an optimal distribution of anisotropic order p. We have applied

the algorithm using the initial coarse grid from Figure 5.13(a) (where the uniform

p-method has significant difficulty) and the first four PML profiles n = 2, . . . , 5. The

results are shown in Figures 5.18–5.21. In each case we plot the exact error for both

sequences of hp-coarse and fine grids. For comparison, we have also included the

convergence of the p-method for infinite elements on mesh (a) and for PML on both

meshes (a) and (b).

First, the hp-adaptivity successfully delivers exponential convergence for the

coarse grid, and in fact delivers results comparable to the infinite elements despite

the irregularity introduced by the PML. Moreover, the exponential convergence is

achieved, not only asymptotically but throughout the range of N . This is actually

somewhat surprising because the refinements in the coarse grid can only be as good
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Figure 5.14: Convergence of percent relative error evaluated over the interior region
for mesh (a)
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Figure 5.15: Convergence of percent relative error evaluated over the interior region
for mesh (b)
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(a)

(b)

Figure 5.16: Real (a) and imaginary (b) parts of infinite element solution on mesh
(b) with p = 9, scaled to range [−1, 1]
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(a)

(b)

Figure 5.17: Real (a) and imaginary (b) parts of PML solution on mesh (b) with
p = 9, scaled to range [−1, 1]
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p−method (mesh A)
p−method (mesh B)
hp coarse
hp fine
IE (mesh A)

Figure 5.18: Convergence for hp coarse and fine grids with profile n = 2

as the fine grid solution used to generate them, but here the initial fine grid has as

much as 30% error! Second, we generally observe exponential convergence for the

fine grid as well, though the line is shifted to the right and it may “stall” in the

pre-asymptotic range (as in Figure 5.18). This is not too surprising since isotropic

h-refinement is far from optimal for this problem.

5.4 Acoustic scattering from a cone-sphere

We now consider acoustic scattering from the so-called cone-sphere obstacle. The

geometry of the cone-sphere (shown in Figure 5.22) is parametrized by the interior

angle α of the cone, and the radius c of the sphere, and fixed by requiring that the

cone and sphere meet tangentially. The origin of the system of coordinates is then

placed mid-way between the vertex of the cone and the south pole of the sphere. The

obstacle is then surrounded with a PML of inner radius a and outer radius b > a.
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Figure 5.19: Convergence for hp coarse and fine grids with profile n = 3
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p−method (mesh A)
p−method (mesh B)
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IE (mesh A)

Figure 5.20: Convergence for hp coarse and fine grids with profile n = 4
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Figure 5.21: Convergence for hp coarse and fine grids with profile n = 5

z
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α

Figure 5.22: Geometry for acoustic scattering from a cone-sphere
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Figure 5.23: Estimated percent relative error for the sequence of hp coarse grids for
the cone-sphere with incident wave from above

Presently we consider this problem with parameters α = π/4, c = λ/2, a = 3λ/2

and b = 2λ, where λ = 2π/k is the wavelength. The PML profile is determined by

the complex coordinate stretching (2.17) with n = 3.

In Figure 5.23 we plot error estimates for the first eight coarse grids (shown

in Figures 5.24 and 5.25) when the incident wave hits the cone from above. The

error estimates are obtained as theH1-seminorm of the difference between the coarse

and corresponding fine grid solutions, evaluated over only the interior region r < a

(excluding the obstacle). The reported number of dof includes those in the PML

region. The observed convergence is clearly exponential and a reference line is

included to indicate the observed rate (obtained as a least-squares best fit of the

final four points). Contour plots of the real and imaginary parts of the final fine-grid

solution are shown in Figure 5.26, with the color scale applied to the range [−1, 1].
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Figure 5.24: First four hp coarse grids for the cone-sphere with incident wave from
above
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Figure 5.25: Fifth through eighth hp coarse grids for the cone-sphere with incident
wave from above
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(a)

(b)

Figure 5.26: Real (a) and imaginary (b) parts of solution on the final fine grid scaled
to the range [−1, 1]
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Figure 5.27: Geometry for acoustic scattering from a thin square plate

5.5 Acoustic scattering from a thin square plate

Finally we consider the rigid acoustic scattering from a hexagonal obstacle with

dimensions λ×λ×t, as shown in Figure 5.27. For the present example, the thickness

of the obstacle is set to t = λ/5, and we surround the obstacle with a spherical PML

with inner radius a = 3λ/2 and outer radius b = 2λ. For the PML, we used the

complex coordinate stretching (2.17), this time with n = 6.

Figure 5.28 shows the estimated percent relative error for the sequence of hp

coarse grids evaluated over the interior region r < a (excluding the obstacle). The

reported number of degrees on freedom however, includes those used in the PML.

It is clear that the algorithm delivers exponential convergence only asymptotically

for this problem. Singularities at all twelve edges and eight vertices of the obstacle,

combined with exponential decay in the PML, make this problem particularly dif-

ficult. With this in mind, the results are quite encouraging since the error decays

with a faster rate in the pre-asymptotic range. The lower, asymptotic rate of con-

vergence is also shown in Figure 5.28 for comparison. The first ten coarse grids are

87



490 737 98911491375 2275 2823 4431 5849 8820
100

101

102

Number of dof in algebraic scale N1/5

E
st

im
at

ed
 p

er
ce

nt
 r

el
at

iv
e 

er
ro

r 
in

 H
1  s

em
in

or
m

 

 
hp coarse grid

150e−(2/3)N
1/5

Figure 5.28: Estimated percent relative error for the sequence of hp coarse grids for
the thin box

shown in Figures 5.29 and 5.30, and the real and imaginary parts of the solution in

the final fine grid are shown in Figure 5.31.
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Figure 5.29: First six hp coarse grids for the thin box with incident wave from 45◦
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Figure 5.30: Seventh through tenth hp coarse grids for the thin box with incident
wave from 45◦
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(a)

(b)

Figure 5.31: Real (a) and imaginary (b) parts of solution on the final fine grid scaled
to the range [−1, 1]
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Chapter 6

Fully-Automatic hp-Adaptivity

for Maxwell’s Equations

This chapter summarizes the key concepts behind the extension of the hp algorithm

and its implementation to Maxwell’s equations. Superficially the only difference

is that the H1 version of the projection-based interpolation operator is replaced

with the slightly more complicated H(curl) version. However, there are several

fundamental differences that require additional comment. We will begin by recalling

the definition of the H(curl) version of the projection-based interpolation operator.

Once again, the definition will be modified for computations.

6.1 Projection-based Interpolation in H(curl)

We begin by recalling the definition of Nédélec’s spaces of vector-valued polynomials

for a quadrilateral face f and a hexahedral element K. In the absence of any

restrictions on the order for faces and edges, the Nédélecspaces are just the gradient
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of the corresponding space of scalar-valued polynomials, i.e.

Qp(f) = ∇Qp1,p2(f) = Qp1−1,p2(f)×Qp1,p2−1(f)

Qp
pe

(f) = {F ∈ Qp(f) : Ft ∈ Ppe−1(e) ∀ edges e}

Qp(K) = ∇Qp1,p2,p3(K) = Qp1−1,p2,p3(K)×Qp1,p2−1,p3(K)×Qp1,p2,p3−1(K)

Qp
pf ,pe

(K) = {F ∈ Qp(K) : F t ∈ Qpf (f) ∀ faces f, Ft ∈ Ppe−1(e) ∀ edges e}

Given a function E ∈ Hε(curl,K) ∩H1/2+ε(K) the projection-based inter-

polant Ep = ΠcurlE ∈ Qp
pf ,pe

(K) is defined in four stages.

• The lowest order Whitney interpolant E0 ∈ Q1,1,1(K) is defined to match the

average value of the tangential component of E over each edge, i.e.

∫
e
E0,t ds =

∫
e
Et ds ∀ edges e.

Observe that if Et = du/ds for some function u, then E0,t is the derivative of

the linear vertex interpolant of u, i.e. the de Rham diagram commutes.

• The edge contributions E1,e ∈ Ppe−1(e) are defined by observing that the

remainder Et − E0,t ∈ H−1/2+ε(e), and there exists a unique potential ψ ∈

H
1/2+ε
0 (e) such that

dψ

ds
= Et −E0,t.

We project this potential onto the edge interior space,

 ψpe ∈ Ppe
−1(e),

‖ψ − ψpe‖0,e → min

and differentiate to get the individual edge contribution,

E1,e =
dψpe

ds
.
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The edge contributions are extended into the element with a blending factor

that is bilinear in the plane orthogonal to the edge, and summed to define the

edge projection E1.

• The face contributions E2,f are defined by solving the constrained minimiza-

tion problem,


E2,f ∈ Q

pf

−1(f),

‖curlf ((E −E0 −E1)t −E2,f )‖−1/2,f → min,

((E −E0 −E1)t −E2,f ,∇fφ)−1/2,f = 0 ∀φ ∈ Qpf

−1(f)

The face contributions are extended into the element with a blending factor

that is linear in the direction orthogonal to the face, and summed to define

the face projection E2.

• Finally, the interior contribution is defined by solving the constrained mini-

mization problem,


E3 ∈ Qp

−1,−1(K),

‖∇× ((E −E0 −E1 −E2)−E3)‖0,K → min,

((E −E0 −E1 −E2)−E3,∇φ)0,K = 0 ∀φ ∈ Qp−1,−1(K)

The definition of the face contribution is equivalent to the mixed variational

formulation,


E2,f ∈ Qp

−1(f), p ∈ Qp−1(f),

af (E2,f ,F ) + cf (p,F ) = af ((E −E0 −E1)t,F ) ∀F ∈ Qp
−1(f)

cf (q,E2,f ) = cf (q, (E −E0 −E1)t) ∀q ∈ Qp−1(f)

(6.1)
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where

af (E,F ) = (curlfE, curlfF )−1/2,f

cf (p,F ) = (∇fp,F )−1/2,f

Likewise, the interior contribution satisfies the mixed problem,


E3 ∈ Qp

−1,−1(K), p ∈ Qp−1,−1(K),

aK(E3,F ) + cK(p,F ) = aK(E −E0 −E1 −E2,F ) ∀F ∈ Qp
−1,−1(K)

cK(q,E3) = cK(q,E −E0 −E1 −E2) ∀q ∈ Qp−1,−1(K)
(6.2)

where

aK(E,F ) = (∇×E,∇× F )0,K

cK(p,F ) = (∇p,F )0,K

6.2 Computational issues

For computations, these projection operators are once again modified by replacing

curvilinear geometry with rectilinear geometry and replacing the fractional semi-

norm for faces by a stronger seminorm modified by the appropriate weight. The

lowest order interpolant is treated as a pre-processing step and subtracted from the

fine grid solution in the interface data structure.

At least for edges, the code developed for computing H1 projections (which

reduces to L2 for edges) can be directly re-used for the H(curl) case. This is achieved

by working directly with the potential ψ. Let E be the tangential component of the

fine grid solution (with the lowest order interpolant removed) restricted to a coarse

grid edge e of order p. Then E is a discontinuous, piecewise polynomial of order p

on each son, with zero average over the whole edge, and ψ is a continuous, piecewise
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polynomial of order p+ 1 on each son, with zero values at the endpoints. Hence, E

can be represented in terms of Legendre polynomials,

E =

 E1 =
∑p+1
i=1 E

1
i Pi−1 on e1

E2 =
∑p+1
i=1 E

2
i Pi−1 on e2

where E1
1 = −E2

1 since the average value of E is zero. Likewise, ψ can be represented

in terms of integrated Legendre polynomials,

ψ =

 ψ1 =
∑p+2
i=1 ψ

1
i φi on e1

ψ2 =
∑p+2
i=1 ψ

2
i φi on e2

where ψ1
1 = ψ2

2 = 0 since ψ vanishes at the endpoints. Then since φ′1 = −P0 and

φ′i = Pi−2 for i ≥ 2, the condition ψ′ = E yields the coefficients of ψ as,

ψ1
1 = 0, ψ1

2 = E1
1 , ψ1

i = E1
i−1 (i ≥ 3),

ψ2
1 = −E2

1 , ψ2
2 = 0, ψ2

i = E2
i−1 (i ≥ 3).

(6.3)

This representation for ψ can be fed directly to the edge optimization code for the

H1 case. Once the optimal L2 projection ψp is returned, the relations (6.3) are

used once again to get the coefficients for Ep. The bilinear extension of each edge

contribution is then subtracted from the fine grid solution in the interface data

structure.

Unfortunately, there are no similar tricks for face and element interiors. The

details will be omitted in favor of some general observations. First, the same logical

structure described in Section 4.3 for the H1 case, extends to the H(curl) case as

well. That is, the stiffness matrix and load vector for problems (6.1) and (6.2), with

the trial and test spaces of piecewise polynomials, are constructed by an assembly

procedure, followed by the application of extension matrices. We first assemble the

system corresponding to the projection of the fine grid solution onto the fine-grid
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space, but with zero tangential component on the boundary of the coarse grid face or

element. Once again, we replace the curvilinear geometry with a rectilinear geometry

using the average values of h1, h2 (for faces, and h3 for elements), so that the stiffness

matrix and right hand side can be assembled from precomputed matrices. As before,

systems for other h-refinement types are generated using extension operators, and

systems of lower order are generated by extraction (based on the use of a hierarchical

basis).

6.3 Numerical Results II

The implementation of the H(curl) version of projection-based interpolation is the

most recent contribution to this work, and to date it has only been applied to one

model electromagnetic scattering problem. Here we present results for the waveguide

problem introduced in section §2.3.1. This problem was selected because of the

simplicity of the geometry and method of truncation, and the very nontrivial nature

of the solution. We have selected parameters a = b = l = 1 so that the truncated

waveguide occupies the region [0, 1]× [0, 1]× [−1, 1] and has a square cross-section.

For this geometry, the smallest cutoff frequency is the pair ωc10 = ωc01 = π and the

second smallest is ωc11 =
√

2π. We have selected the midpoint ω = (1 +
√

2)π/2 so

that both modes in (2.40) are propagated and all higher modes decay exponentially.

The incident wave Einc is set to E+
10, which travels in the +z direction and has

nonzero y component. The obstacle is a square plate in the center of the waveguide,

[1/3, 2/3]× [1/3, 2/3]× [−t/2, t/2], and we will consider two values for the thickness,

t = 1/3 and 1/10. We expect better accuracy for the thicker obstacle since in the

limit t → 0 we arrive at the severe case of diffraction from a screen. Still for finite

thickness we expect strong singularities at each of the 12 edges and 8 vertices of the

obstacle.

In Figures 6.1 and 6.2 we plot the estimated convergence curves for the
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Figure 6.1: Estimated convergence of the hp coarse grid for the waveguide problem
with thickness t = 1/3
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Figure 6.2: Estimated convergence of the hp coarse grid for the waveguide problem
with thickness t = 1/10
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hp coarse grid when the obstacle has thickness t = 1/3 and 1/10, respectively.

Indeed, the final coarse grids are roughly the same size and the one for the thick

obstacle delivers roughly 1% lower error than for the thin obstacle. As was the

case for acoustic scattering from a square plate, the exponential convergence is only

observed asymptotically. In the first steps, the algorithm is essentially h-adaptive,

as it attempts to resolve the singularities near the obstacle. We are once again

encouraged by the fact that the pre-asymptotic convergence is faster than the rate

observed asymptotically.

If we exclude the initial mesh for the thick obstacle, and the first two for the

thin obstacle, then we do observe a roughly linear trend to Figures 6.1 and 6.2, and

we offer this as preliminary evidence of exponential convergence. Unfortunately,

we are presently unable to push our algorithm further as the final fine grid for

either problem has stretched the limits of our direct solver and computer resources

(memory in particular). The problems were solved on a 64 bit workstation with

16 GB physical memory, and Figure 6.3 shows the memory and time used for the

sequence of fine grids. For the final fine grids we have

t Nrdof Memory Time

1/3 685214 23.3 GB 74 min

1/10 653960 17.6 GB 43 min

Investigating this problem further will require either the development of a parallel

direct solver ([45], extended for electromagnetic problems) or the development of a

suitable iterative solver ([41] and [44], extended for 3D problems).

Based on the available data, we estimate that the coarse grid solution con-

verges with the approximate rate,

Ec ≈ 30e−0.265N1/5
,
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Figure 6.3: Memory and time used by the direct solver for the sequence of fine grids
for the waveguide problem.
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for t = 1/3, and

Ec ≈ 33e−0.248N1/5
,

for t = 1/10. Then assuming that the fine grid converges with the same rate, and

that the error in the second-to-last fine grid is comparable to the last coarse grid

(in fact it should be much lower) we can extrapolate the conservative upper-bound

of 2.5% for the error in the final fine grids.

Figures 6.4–6.9 display the sequence of hp coarse grids for t = 1/3 and

Figures 6.10–6.14 display the same for t = 1/10. We have divided each mesh into

three slabs along the y-axis to expose the refinements in the interior of the waveguide

and particularly near the obstacle. We observe the expected trend of h2-refinements

toward the faces of the obstacle, h4-refinements toward the edges, and isotropic h8-

refinements toward the corners. Anisotropic orders of approximation are generally

selected with higher orders along the length of the waveguide.

Figures 6.15–6.17 display the real and imaginary parts of each component

of the final fine grid solution for t = 1/3, and Figures 6.18–6.20 display the same

for t = 1/10. Though the maximum amplitude is larger, the colors only vary in

the range −1 to 1 in order to see the field more clearly away from the obstacle.

The singularities in the field clearly mark the edges of the obstacle. The x and

z components of E decay away from the obstacle, and only the y component is

propagated as a wave.
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0 < y < 1/3 1/3 < y < 2/3 2/3 < y < 1

Figure 6.4: Slabs along the y-axis of the initial coarse grid for the waveguide problem
(t = 1/3) having 876 dof, 16.9% error (the corresponding fine grid has 19044 dof).
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0 < y < 1/3 1/3 < y < 2/3 2/3 < y < 1

Figure 6.5: Slabs along the y-axis of the first hp coarse grid for the waveguide
problem (t = 1/3) having 2861 dof, 8.4% error (the corresponding fine grid has
66738 dof).
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0 < y < 1/3 1/3 < y < 2/3 2/3 < y < 1

Figure 6.6: Slabs along the y-axis of the second hp coarse grid for the waveguide
problem (t = 1/3) having 6689 dof, 6.1% error (the corresponding fine grid has
166650 dof).
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0 < y < 1/3 1/3 < y < 2/3 2/3 < y < 1

Figure 6.7: Slabs along the y-axis of the third hp coarse grid for the waveguide
problem (t = 1/3) having 12003 dof, 5.6% error (the corresponding fine grid has
300932 dof).
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0 < y < 1/3 1/3 < y < 2/3 2/3 < y < 1

Figure 6.8: Slabs along the y-axis of the fourth hp coarse grid for the waveguide
problem (t = 1/3) having 19063 dof, 4.5% error (the corresponding fine grid has
476822 dof).
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0 < y < 1/3 1/3 < y < 2/3 2/3 < y < 1

Figure 6.9: Slabs along the y-axis of the fifth hp coarse grid for the waveguide
problem (t = 1/3) having 28804 dof, 3.8% error (the corresponding fine grid has
685214 dof).
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0 < y < 1/3 1/3 < y < 2/3 2/3 < y < 1

Figure 6.10: Slabs along the y-axis of the initial coarse grid for the waveguide
problem (t = 1/10) having 876 dof, 33.7% error (the corresponding fine grid has
19044 dof).
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0 < y < 1/3 1/3 < y < 2/3 2/3 < y < 1

Figure 6.11: Slabs along the y-axis of the first hp coarse grid for the waveguide
problem (t = 1/10) having 2104 dof, 15.6% error (the corresponding fine grid has
49948 dof).
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0 < y < 1/3 1/3 < y < 2/3 2/3 < y < 1

Figure 6.12: Slabs along the y-axis of the second hp coarse grid for the waveguide
problem (t = 1/10) having 4576 dof, 8.7% error (the corresponding fine grid has
110800 dof).
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0 < y < 1/3 1/3 < y < 2/3 2/3 < y < 1

Figure 6.13: Slabs along the y-axis of the third hp coarse grid for the waveguide
problem (t = 1/10) having 10136 dof, 6.9% error (the corresponding fine grid has
248960 dof).
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0 < y < 1/3 1/3 < y < 2/3 2/3 < y < 1

Figure 6.14: Slabs along the y-axis of the fourth hp coarse grid for the waveguide
problem (t = 1/10) having 29596 dof, 4.7% error (the corresponding fine grid has
653960 dof).

113



<(Ex) =(Ex)

+1

−1

x

z

Figure 6.15: Real and imaginary parts of the x-component of the scattered electric
field for t = 1/3 in the plane y = 1/3 (‖Ex‖∞ ≈ 7.8).
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Figure 6.16: Real and imaginary parts of the y-component of the scattered electric
field for t = 1/3 in the plane y = 1/2 (‖Ey‖∞ ≈ 6.3).
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Figure 6.17: Real and imaginary parts of the z-component of the scattered electric
field for t = 1/3 in the plane y = 1/3 (‖Ez‖∞ ≈ 6.8).
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Figure 6.18: Real and imaginary parts of the x-component of the scattered electric
field for t = 1/10 in the plane y = 1/3 (‖Ex‖∞ ≈ 10.3).

117



<(Ey) =(Ey)

+1

−1

x

z

Figure 6.19: Real and imaginary parts of the y-component of the scattered electric
field for t = 1/10 in the plane y = 1/2 (‖Ey‖∞ ≈ 9.2).
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Figure 6.20: Real and imaginary parts of the z-component of the scattered electric
field for t = 1/10 in the plane y = 1/3 (‖Ez‖∞ ≈ 9.5).
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Chapter 7

High Performance Computation

Probably the most challenging aspect of hp-adaptive finite element computations is

controlling the complexity of the implementation. For practical applications how-

ever, the efficiency of the implementation is a very close second. In this chapter

we identify three areas where a straight-forward implementation proves inadequate

and must be replaced by a slightly more complex, but dramatically more efficient

alternative. The first area is the computation of element stiffness matrices, where we

present an implementation of the classical sum-factorization algorithm that achieves

an optimal speedup through the efficient use of fast cache memory. In the second

section we discuss our interface with the direct multifrontal solver MUMPS and

several tricks we have employed to accelerate the factorization of the global stiffness

matrix. Finally we conclude with a discussion of fast algorithms for the fundamen-

tal operation behind our hp-refinement strategy, namely the problem of projecting

a given function onto a nested sequence of (piecewise) polynomial spaces.
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7.1 Sum factorization

For the Helmholtz equation (or Laplace’s equation if k = 0), the finite element

stiffness matrix has entries of the form,

BJI =
∫
K
{[∇xφI(x)]T∇xφJ(x)− k2φI(x)φJ(x)}dx.

We make the typical change of variables,

BJI =
∫
K̂

{
[∇ξφI(ξ)]TD∇ξφJ(ξ)− k2φI(ξ)φJ(ξ)

∣∣∣∣dxdξ
∣∣∣∣} dξ, (7.1)

where D is the symmetric matrix,

D =
∣∣∣∣dxdξ

∣∣∣∣ dξdx dξdx
T

.

If the element has polynomial order of approximation p = [p1, p2, p3] then a Gauss-

Legendre quadrature rule of order p+1 = [p1 +1, p2 +1, p3 +1] is used to guarantee

exact integration in the case of an affine element. Then

BJI =
p1+1∑
l1=1

p2+1∑
l2=1

p3+1∑
l3=1

{
[∇ξφI(ξ(l))]TD∇ξφJ(ξ(l))− k2φI(ξ(l))φJ(ξ(l))

∣∣∣∣dxdξ
∣∣∣∣}w(l)

(7.2)

where ξ(l) = [ξ(l1)
1 , ξ

(l2)
2 , ξ

(l3)
3 ] and w(l) = w

(l1)
1 w

(l2)
2 w

(l3)
3 are the 1D Gauss-Legendre

points and weights, respectively. A straight-forward algorithm for computing the

entries in (7.2) is shown in Figure 7.1. Clearly the runtime complexity of this

algorithm is O(p9).

Sum factorization is a well-known algorithm (e.g. see [37] and [38]) for ac-

celerating the integration of element stiffness matrices. Here, we take a different

approach from [38] by computing an auxiliary stiffness matrix for a promoted ele-

ment, i.e. the element obtained by possibly increasing the orders for all edge and
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initialize B = 0
for l3 = 1, . . . , p3 + 1
for l2 = 1, . . . , p2 + 1
for l1 = 1, . . . , p1 + 1

Evaluate shape functions φ and gradients ∇ξφ at point ξ(l)

Evaluate Jacobian |dx/dξ| and metric D
for J, I = 1, . . . , (p1 + 1)(p2 + 1)(p3 + 1)

BJI = BJI +
{
[∇ξφI ]TD∇ξφJ − k2φIφJ

∣∣∣dxdξ ∣∣∣}w(l)

Figure 7.1: Classical algorithm for element stiffness matrix computation

face nodes to the parallel order for the element interior. As a final step, the relevant

entries are then extracted to the actual stiffness matrix. This approach leads to a

relatively clean implementation, free of logical gates, which attains the theoretical

speedup.

The basic assumption is that 3D shape functions are obtained as tensor

products of 1D shape functions, i.e.

φI(ξ1, ξ2, ξ3) = χi1(ξ1)χi2(ξ2)χi3(ξ3),

φJ(ξ1, ξ2, ξ3) = χj1(ξ1)χj2(ξ2)χj3(ξ3).

Now since the matrix D is symmetric, we enumerate its entries as,

D =


D11 D12 D13

D21 D22 D23

D31 D32 D33

 =


D1 D2 D3

D2 D4 D5

D3 D5 D6

 ,

and introduce the symbol,

E = k2

∣∣∣∣dxdξ
∣∣∣∣ .
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Then the integrand in (7.1) has the expansion,

∂φI
∂ξ1

(
∂φJ
∂ξ1

D1 +
∂φJ
∂ξ2

D2 +
∂φJ
∂ξ3

D3

)
+

∂φI
∂ξ2

(
∂φJ
∂ξ1

D2 +
∂φJ
∂ξ2

D4 +
∂φJ
∂ξ3

D5

)
+

∂φI
∂ξ3

(
∂φJ
∂ξ1

D3 +
∂φJ
∂ξ2

D5 +
∂φJ
∂ξ3

D6

)
− φIφJE,

which can be written in terms of the 1D shape functions as,

χ′i1χ
′
j1χi2χj2χi3χj3D1 + χ′i1χj1χi2χ

′
j2χi3χj3D2 + χ′i1χj1χi2χj2χi3χ

′
j3D3

+ χi1χ
′
j1χ

′
i2χj2χi3χj3D2 + χi1χj1χ

′
i2χ

′
j2χi3χj3D4 + χi1χj1χ

′
i2χj2χi3χ

′
j3D5

+ χi1χ
′
j1χi2χj2χ

′
i3χj3D3 + χi1χj1χi2χ

′
j2χ

′
i3χj3D5 + χi1χj1χi2χj2χ

′
i3χ

′
j3D6

− χi1χj1χi2χj2χi3χj3E),

where ′ indicates differentiation with respect to function argument. Finally we

collect like terms in ξ1 to get

χ′i1χ
′
j1 χi2χj2 χi3χj3D1 +

χ′i1χj1(χi2χ
′
j2 χi3χj3D2 +

χi2χj2 χi3χ
′
j3D3) +

χi1χ
′
j1(χ

′
i2χj2 χi3χj3D2 +

χi2χj2 χ
′
i3χj3D3) +

χi1χj1(χ
′
i2χ

′
j2 χi3χj3D4 +

χ′i2χj2 χi3χ
′
j3D5 +

χi2χ
′
j2 χ

′
i3χj3D5 +

χi2χj2(χ
′
i3χ

′
j3D6 − χi3χj3E)).
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Now we are ready to express (7.1) as an iterated integral. The entries BJI

will be extracted from the auxiliary stiffness matrix Baux = Baux(j1, j2, j3, i1, i2, i3),

where Baux is computed as follows,

Baux(j1, j2, j3, i1, i2, i3) =
∫ 1

0
{χ′i1χ

′
j1B

aux1
1 (j2, i2; j3, i3, ξ1) +

χ′i1χj1B
aux1
2 (j2, i2; j3, i3, ξ1) +

χi1χ
′
j1B

aux1
3 (j2, i2; j3, i3, ξ1) +

χi1χj1B
aux1
4 (j2, i2; j3, i3, ξ1)}dξ1

The new auxiliary matrix Baux1 has the form,

Baux1
1 (j2, i2; j3, i3, ξ1) =

∫ 1

0
{χi2χj2Baux2

1 (; ξ2, j3, i3, ξ1)}dξ2,

Baux1
2 (j2, i2; j3, i3, ξ1) =

∫ 1

0
{χi2χ′j2B

aux2
2 (; ξ2, j3, i3, ξ1) +

χi2χj2B
aux2
3 (; ξ2, j3, i3, ξ1)}dξ2,

Baux1
3 (j2, i2; j3, i3, ξ1) =

∫ 1

0
{χ′i2χj2B

aux2
2 (; ξ2, j3, i3, ξ1) +

χi2χj2B
aux2
4 (; ξ2, j3, i3, ξ1)}dξ2,

Baux1
4 (j2, i2; j3, i3, ξ1) =

∫ 1

0
{χ′i2χ

′
j2B

aux2
5 (; ξ2, j3, i3, ξ1) +

χ′i2χj2B
aux2
6 (; ξ2, j3, i3, ξ1) +

χi2χ
′
j2B

aux2
7 (; ξ2, j3, i3, ξ1) +

χi2χj2B
aux2
8 (; ξ2, j3, i3, ξ1)}dξ2,

where,

Baux2
1 (; ξ2, j3, i3, ξ1) =

∫ 1

0
{χi3χj3D1(ξ1, ξ2, ξ3)}dξ3,

Baux2
2 (; ξ2, j3, i3, ξ1) =

∫ 1

0
{χi3χj3D2(ξ1, ξ2, ξ3)}dξ3,

Baux2
3 (; ξ2, j3, i3, ξ1) =

∫ 1

0
{χi3χ′j3D3(ξ1, ξ2, ξ3)}dξ3,
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Baux2
4 (; ξ2, j3, i3, ξ1) =

∫ 1

0
{χ′i3χj3D3(ξ1, ξ2, ξ3)}dξ3,

Baux2
5 (; ξ2, j3, i3, ξ1) =

∫ 1

0
{χi3χj3D4(ξ1, ξ2, ξ3)}dξ3,

Baux2
6 (; ξ2, j3, i3, ξ1) =

∫ 1

0
{χi3χ′j3D5(ξ1, ξ2, ξ3)}dξ3,

Baux2
7 (; ξ2, j3, i3, ξ1) =

∫ 1

0
{χ′i3χj3D5(ξ1, ξ2, ξ3)}dξ3,

Baux2
8 (; ξ2, j3, i3, ξ1) =

∫ 1

0
{χ′i3χ

′
j3D6(ξ1, ξ2, ξ3)− χi3χj3E(ξ1, ξ2, ξ3)}dξ3.

The integrals above are approximated using Gauss-Legendre quadrature of order

p+1 (exact for affine elements), and the notation using ξj as an index is replaced by

the index of a quadrature point in the ξj-direction (the significance of the “;” will be

explained below). Clearly, this formulation can be evaluated in O(p7) = O(p2d+1)-

time, using O(p6) +O(p5) +O(p4) auxiliary storage. The auxiliary storage, though

essentially of O(p6) for the storage of Baux, can be reduced (without any extra

computation) by an appropriate choice of order for the necessary nested loops. We

implement the following loops,

for each ξ1, i3, j3

set Baux1 = 0

for each ξ2

set Baux2 = 0

for each ξ3

accumulate for Baux2 = Baux2(; ξ2, j3, i3, ξ1)

for each i2, j2

accumulate for Baux1 = Baux1(j2, i2; j3, i3, ξ1)

for each i2, j2

for each i1, j1

accumulate for Baux = Baux(j1, j2, j3, i1, i2, i3)
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Figure 7.2: Runtime for element stiffness matrix integration

Now we can observe that all of the indices appearing to right of a “;” do not require

explicit storage because of the order in which the arrays appear within the loops.

This loop structure allows us to reduce the auxiliary storage to O(p6)+O(p2)+O(1).

This algorithm is implemented in the subroutine elem_sumfact, with much

attention given to the elimination of unnecessary computations. The runtimes for

the classical algorithm and for sum factorization are shown in Figure 7.2. For

comparison, curves are also plotted for O(p9) and O(p7). While there are some

outliers, the expected trends are clear. For the maximum order of approximation

p = 9, the runtime is reduced from 9.9 seconds to 0.18 seconds! This improvement is

dramatic enough that stiffness matrix integration becomes negligible in comparison

to the time for the direct solution of the global system of equations.

In [38], an alternative implementation is presented, based explicitly on the

decomposition of element shape functions into vertex, edge, face and interior de-

grees of freedom. The stiffness matrix is accordingly decomposed into blocks with
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sum factorization applied to each block using lower order quadrature where possible

(e.g. vertex-vertex interaction can be calculated with 2 Gauss points in each direc-

tion, rather than p + 1). The implementation is more logically complex than that

reported above (though the algorithmic complexity is still O(p7)), and results in a

speedup ratio of less than 5 for p = 9. Even the accelerated spectral-Galerkin algo-

rithm (based on a non-hierarchical Lagrange basis, and resulting in an algorithmic

complexity of O(p5)) achieves a speedup ratio of less than 12 (for p = 9).

Apart from the elem_sumfact routine, sum factorization has been applied

to other parts of the code. Fast routines were developed for adaptive integration of

the element load vector including the volume contribution associated with an inho-

mogeneous right hand side and the boundary integral associated with a Neumann

boundary condition.

7.2 Optimized interface to the MUltifrontal Massively

Parallel Solver (MUMPS)

The limiting factor behind any finite element code is the solution of the global system

of equations. In our algorithm, the coarse grid is negligible and only the performance

of a given solver for the fine grid is relevant. For an overview of iterative and

multigrid techniques adapted to hp methods we refer to [41], [43] and [44]. Here, we

describe a variety of interfaces that we have developed for the direct solver MUMPS.

MUMPS is a general purpose solver for sparse linear systems. There are

separate versions for single and double precision, and real or complex arithmetic,

each of which can be compiled for serial execution on a single processor worksta-

tion, or for parallel execution on a distributed-memory parallel machine (using the

message passing interface (MPI)). Each version implements the three factorizations,

A = LLT for symmetric positive-definite problems, A = LDLT for symmetric in-
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definite problems, and A = LU for unsymmetric problems. The matrix A can be

specified in either a sparse assembled format, or as a collection of unassembled el-

ement matrices. Recently added features include support for multiple right-hand

sides and the ability to compute only a partial factorization and the associated

Schur complement, both of which are particularly useful for scattering problems.

For more information on MUMPS please see [3], [2] and [4].

We will begin with a description of our interface for symmetric positive-

definite problems, where we observe a significant gain from the explicit implemen-

tation of static condensation. We then present an interface that uses both the real

and complex versions of MUMPS to build an efficient solver for scattering problems.

7.2.1 The symmetric positive-definite case

The interface with MUMPS is based mainly on specifying four arrays.

ELTPTR Specifies the locations in the ELTVAR array where data is stored for

each element.

ELTVAR Stores the map from local element shape function numbers to corre-

sponding global basis function numbers.

A ELT Stores the unassembled element contributions to the global stiffness matrix.

RHS Stores the assembled right hand side and is overwritten with the solution.

The solution process is then separated into three stages.

analysis Automatically selects from up to six available algorithms (including the

graph partitioner METIS) and determines an optimal or nearly optimal or-

dering for the assembly and factorization of the global stiffness matrix.

factorization Carries out the factorization determined in the analysis phase.
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solve Performs back-substitution, overwriting the right hand side with the solution.

The efficiency of the solver hinges on both the optimality of the re-ordering deter-

mined in the analysis phase and the implementation of the factorization in terms of

level III BLAS operations.

To test the optimality we have implemented a second interface that explicitly

performs the static condensation of interior degrees of freedom. Let A and a be the

stiffness matrix and right hand side for a given element, and let B and b be the

assembled contributions from all other elements. Then if the interface degrees of

freedom for the element are listed first, the global linear system has the form,


A11 +B11 AT12 BT

31

A21 A22 0

B31 0 B33



x1

x2

x3

 =


a1 + b1

a2

b3

 . (7.3)

Static condensation consists of eliminating the interior degrees of freedom by,

x2 = A−1
22 (a2 −A21x1), (7.4)

so that the remaining global system becomes,

 A11 −AT21A−1
22 A21 +B11 BT

31

B31 B33


 x1

x3

 =

 a1 −AT21A−1
22 a2 + b1

b3

 . (7.5)

Since the modifications (compared with (7.3)) are local to each element, static con-

densation can be implemented in a pre-processing step, where we form the modified

element stiffness matrix,

Ã = A11 −AT21A−1
22 A21,

and right hand side,

ã = a1 −AT21A−1
22 a2,
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Figure 7.3: Impact of static condensation on total solve time for the sequence of fine
grids for the Fichera problem

combined with a post-processing step where we solve for the middle node using

(7.4). Some auxiliary memory is used to store,

Ã21 = A−1
22 A21, ã2 = A−1

22 a2,

rather than recomputing them in the post-processing step.

In Figures 7.3 and 7.4 we present the total solve time and memory usage

for the sequence of fine grids for the Fichera problem from section 5.1 using the

two approaches described above (MUMPS alone and MUMPS with explicit static

condensation). The reported memory for the case with static condensation includes

both the internal memory used by MUMPS and the auxiliary memory used in the

post-processing step (7.4). We observe that, for this example, static condensation

delivers nearly 50% reduction in runtime and uses up to 30% less memory.

130



103 104 105
100

101

102

103

Number of degrees of freedom (N)

M
em

or
y 

(M
B

)

 

 
MUMPS with static condensation
MUMPS

Figure 7.4: Impact of static condensation on total memory used for the sequence of
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7.2.2 A domain decomposition solver for acoustics and electromag-

netics

We observe that for each of the scattering problems (2.9), (2.25), (2.45), (2.47)

and (2.55), the associated sesquilinear form can be split into an interior and an

exterior contribution. In each case, the interior contribution is real-valued, sym-

metric and indefinite. For the infinite element methods, the exterior contribution is

complex-valued and unsymmetric, while for PML, the exterior contribution is com-

plex symmetric (not Hermitian) and indefinite. Our approach is to enumerate the

global degrees of freedom such that interior dof are listed first, the interface dof are

listed second and exterior dof are listed last (for the waveguide truncated with an

impedance boundary condition (2.45) there are no exterior dof).
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For the case of a PML truncation, the global linear system has the form,


A11 AT21 0

A21 A22 + Z22 ZT32

0 Z32 Z33



x1

x2

x3

 =


b1

0

0

 . (7.6)

Here, the matrix A is real-valued, symmetric indefinite, and Z is complex-valued,

symmetric indefinite. Then using the first row of (7.6) to eliminate x1,

x1 = A−1
11 (b1 −AT21x2), (7.7)

the remaining system is,

 A22 −A21A
−1
11 A

T
21 + Z22 ZT32

Z32 Z33


 x2

x3

 =

 −A21A
−1
11 b1

0

 . (7.8)

Hence we can limit the complex arithmetic to the solution of the interface-exterior

problem (7.8), and use the faster real arithmetic to form the (dense) Schur comple-

ment matrix A22 − A21A
−1
11 A

T
21, and solve for the interior degrees of freedom (7.7).

Our algorithm reads as follows:

• Input the system,  A11 AT21

A21 A22


 x1

x2

 =

 b1

0

 ,
to the real symmetric indefinite solver (dmumps) listing x2 as interface degrees

of freedom, factor A11 and form the Schur complement matrix,

Ã22 = A22 −A21A
−1
11 A

T
21
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and modified right-hand side,

b2 = −A−1
11 b1.

• Compute the unassembled-matrix vector product b̃2 = A21b2.

• Input the system (7.8) to the complex symmetric solver (zmumps), by adding

the Schur complement Ã22 as if it were a single (large) element stiffness matrix,

and solve for the interface and exterior degrees of freedom x2 and x3.

• Modify the right hand side for the real solver by computing the unassembled-

matrix vector product b̃1 = b1 − AT21x2, and use the existing factorization of

A11 to solve for x1.

The algorithm for infinite elements, where the exterior matrix Z is unsymmetric, is

very similar.

We remark that the original system (7.6) may either be the full system in-

cluding middle nodes, or the reduced system resulting from static condensation of

middle nodes. The latter case requires additional comment. Consider a single ele-

ment K with the symmetric indefinite stiffness matrix,

AK =

 AK11 AK12

AK21 AK22

 ,
where AK12 = [AK21]

T , and AK22 is the middle node contribution. The natural choice

is to form the modified stiffness matrix ÃK11 = AK11 − AK12[AK22]−1AK21, by computing

the symmetric factorization AK22 = LDLT . However, the LAPACK implementation

DSYTRF, appears to suffer from poor cache performance, and is easily outperformed

by the general LU decomposition with partial pivoting, AK22 = PLU . That is, it is

faster to treat the element as if it were unsymmetric, rather than trying to exploit
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symmetry, when eliminating middle nodes.

7.3 Fast solvers for projection-based interpolation

Computing the projection-based interpolant requires the solution of a linear system

of equations. The matrix is real, symmetric and either positive definite (for all

projections in H1 and the edge contributions in H(curl)) or indefinite (for face and

interior projections in H(curl)). The right-hand side (and hence the solution) may

be real or complex-valued. In either case, our hp algorithm (applied to each edge,

face and element interior, and for each admissible h-refinement type) requires the

computation of not a single projection, but a dynamically-determined sequence of

nested projections. The sequence is dynamically determined in the sense that we

compute the projection for a given mesh and then examine the projection error to

determine the next mesh. It is nested both because the meshes are nested and (since

our shape functions are hierarchical) because the matrices are nested.

The straight-forward algorithm is to assemble the matrix A and right-hand

side b for the maximal mesh V and then for each sub-mesh Vk ⊂ V :

• Build an extraction vector nk such that degree of freedom i of mesh Vk corre-

sponds to degree of freedom nki of mesh V .

• Extract the matrix Aki,j = Ank
i ,n

k
j

and right-hand side bki = bnk
i

for projection

onto Vk.

• Factor Ak → LkL
T
k or PkLkUk and solve for xk = [Ak]−1bk.

This is prohibitively expensive since there may be many terms in the sequence (10-

20 is typical) and the problem size is as large as (2p − 1)3 = 3375 for H1 and

(8p−1)(2p−1)2 = 14175 for H(curl) projection onto an h8-refined element interior

of uniform order p = 8.
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We wish to accelerate this process by using the previously computed factor-

ization and solution in the current step. The first modification is that rather than

rebuilding the extraction vector at each step we will only append the new degrees

of freedom to be added. In what follows, purely to simplify the notation, we will

assume that the entire sequence is known apriori and that the maximal matrix and

right-hand side have been reordered accordingly. That is, the linear system for mesh

k (1 <= k <= M) has the block structure,


A11 · · · A1k

...
. . .

Ak1 Akk



x1

...

xk

 =


b1
...

bk

 . (7.9)

7.3.1 The symmetric positive-definite case

As the matrix is symmetric, we will only refer to the lower triangle of (7.9). In what

follows, the function POTRF(B) returns the lower triangular matrix L such that

B = LLT . Then step k of our algorithm can be expressed as follows:

• Repartition:

A =


B11

B21 B22

B31 B32 B33

 , b =


c1

c2

c3

 ,
where,

B21 = [Ak,1, · · · , Ak,k−1], B22 = Akk, c2 = bk.

• Pre-condition: B11 is lower-triangular, and

B11B
T
11 =


A11 · · · ATk−1,1

...
. . .

Ak−1,1 Ak−1,k−1

 , and B11B
T
11c1 =


b1
...

bk−1

 .
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• Perform in-place updates:

B̃21 = B21B
−T
11

B̃22 = POTRF(B22 − B̃21B̃
T
21)

c̃2 = B̃−T22 B̃
−1
22 (c2 − B̃21B

T
11c1)

c̃1 = c1 −B−T11 B̃
T
21c̃2

• Observe (post-condition):

 B11

B̃21 B̃22


 BT

11 B̃T
21

B̃T
22

 =

 B11B
T
11 B11B̃

T
21

B̃21B
T
11 B̃21B̃

T
21 + B̃22B̃

T
22



=



A1,1 · · · ATk−1,1 ATk,1
...

. . .
...

Ak−1,1 Ak−1,k−1 ATk,k−1

Ak,1 · · · Ak,k−1 Ak,k



 B11

B̃21 B̃22


 BT

11 B̃T
21

B̃T
22


 c̃1

c̃2



=

 B11B
T
11c̃1 +B11B̃

T
21c̃2

B̃21B
T
11c̃1 + (B̃21B̃

T
21 + B̃22B̃

T
22)c̃2

 =



b1
...

bk−1

bk



Here, the pre-condition simply asserts that B11 is the Cholesky factorization and

c1 the solution associated with mesh k − 1 (observe that at step k = 1, blocks B11

and c1 are empty). The updates are performed in-place, i.e. the results overwrite
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Figure 7.5: Runtime for mesh optimization as a function of coarse grid order p
(symmetric positive definite case)

the corresponding locations in matrix A and right-hand side b. Finally, the post-

condition (easily verified) asserts that A and b now satisfy the pre-condition for step

k + 1. Notice that the algorithm makes no reference to blocks B31, B32, B33 or c3,

and is therefore ideal for our application (since these blocks are not yet known at

step k).

In Figure 7.5 we show the impact of this algorithm on the runtime of the

whole mesh optimization process. The timing data was obtained by repeatedly

running one step of hp refinement for the Fichera corner problem with an initial

mesh of 7 elements of uniform order p = 3, . . . , 8. We plot the runtime (per element)

when two different solvers are used for projection-based interpolation: the slow

one re-factors the entire matrix at each step, and the fast one re-uses the factors

from the previous step. We can observe that these results are pre-asymptotic since

both algorithms appear to scale faster than the expected rate of p9. Still, the fast

algorithm takes around half the time of the slow one, and by looking at the speedup

ratio (Figure 7.6) we can observe that the pre-asymptotic rate is improved by around
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3/4.

7.3.2 The symmetric indefinite case

Our approach is to disregard the symmetry of A and build our algorithm around the

general LU -factorization with partial pivoting, A = PLU , where P is a permutation

matrix, L is unit lower triangular and U is upper triangular. This is motivated by

our experience that the symmetric factorization A = LDLT (where L is a permuted

lower-triangular matrix and D is block 1-by-1 and 2-by-2 diagonal) suffers from

poor utilization of cache memory. In what follows, we will use the notation [Ã, P ] =

GETRF(A) to indicate that A is overwritten by is factors L and U , i.e. Ã = [L\U ]

and PLU = A. In order to build an algorithm in the spirit of the previous section,

we will restrict the permutation matrix P to be block diagonal. Then step k of our

algorithm can be expressed as follows:
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• Repartition:

A =


B11 B12 B13

B21 B22 B23

B31 B32 B33

 , b =


c1

c2

c3

 , P =


P1

P2

P3


where,

B21 = [Ak,1, · · · , Ak,k−1], B22 = Akk, B12 =


A1,k

...

Ak−1,k

 , c2 = bk.

• Pre-condition: B11 = [L11\U11], where L11 is unit lower-triangular, U11 is

upper-triangular, such that

L11U11 = P T1


A11 · · · A1,k−1

...
. . .

Ak−1,1 Ak−1,k−1

 , and L11U11c1 = P T1


b1
...

bk−1

 .

Block P2 is uninitialized.

• Perform in-place updates:

B̃12 = L−1
11 P

T
1 B12[

B̃22, P2

]
= GETRF(B22 −B21U

−1
11 B̃12)

B̃21 = P T2 B21U
−1
11

c̃2 = U−1
22 L

−1
22 (P T2 c2 − B̃21U11c1)

c̃1 = c1 − U−1
11 B̃12c̃2
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• Observe (post-condition):

 B11 B̃12

B̃21 B̃22

 =

 L11\U11 B̃12

B̃21 L22\U22



 L11

B̃21 L22


 U11 B̃12

U22

 =

 L11U11 P T1 B12

P T2 B21 P T2 B22



=

 P T1

P T2




A1,1 · · · ATk−1,1 ATk,1
...

. . .
...

Ak−1,1 Ak−1,k−1 ATk,k−1

Ak,1 · · · Ak,k−1 Ak,k



 L11

B̃21 L22


 U11 B̃12

U22


 c̃1

c̃2


=

 L11U11c̃1 + L11B̃12c̃2

B̃21U11c̃1 + (B̃21B̃12 + L22U22)c̃2



=

 P T1

P T2




b1
...

bk−1

bk



Once again, the pre-condition asserts that [B11, P1] is the LU decomposition, and c1

the solution, associated with mesh k−1. The updates are again performed in-place,

and the post-condition (easily verified) asserts that A and b now satisfy the pre-

condition for step k+ 1. We see that this is just a blocked algorithm for computing

the LU -factorization with partial pivoting, where we have restricted the pivoting
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Figure 7.7: Runtime for mesh optimization as a function of coarse grid order p
(symmetric indefinite case)

strategy so that only pivoting within blocks is allowed.

In Figure 7.7 we show the impact of this algorithm on the runtime of the

whole mesh optimization process. The timing data was obtained by repeatedly

running one step of hp refinement for the waveguide problem with an initial mesh

of 26 elements of uniform order p = 1, . . . , 4. We plot the runtime (per element)

when two different solvers are used for projection-based interpolation: the slow one

re-factors the entire matrix at each step, and the fast one re-uses the factors from

the previous step. Once again the results are pre-asymptotic since both algorithms

appear to scale faster than the expected rate of p9, and by looking at the speedup

ratio (Figure 7.8) we can observe that the pre-asymptotic rate is improved by around

4/5.

We remark that the numerical stability of this algorithm is certainly ques-

tionable. At present, since we have only applied the algorithm to matrices arising

from H(curl) projection based interpolation, we simply check that the solution com-

ponents corresponding to the Lagrange multiplier are close to zero at each step (and
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of course that the diagonal block B22 − B21U
−1
11 B̃12 is nonsingular). Should either

of these tests fail, the algorithm can be restarted by combining blocks 1, . . . , k into

a single block. Should these restarts occur with any frequency (so that the perfor-

mance degrades to that of the slow algorithm in Figure 7.7) we will investigate more

robust alternatives like the incremental pivoting strategy described in [36].
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Chapter 8

Concluding Remarks

We have presented an algorithm for fully automatic hp-adaptivity for finite element

approximations of elliptic and Maxwell boundary value problems in three dimen-

sions. The algorithm automatically generates a sequence of coarse grids, and a

corresponding sequence of fine grids, such that the energy norm of the error de-

creases exponentially with respect to the number of degrees of freedom in either

sequence. At each step, a discrete optimization algorithm is employed to determine

the refinements for the current coarse grid such that the projection-based interpo-

lation error for the current fine grid solution decreases with an optimal rate with

respect to the number of degrees of freedom added by the refinement. The refine-

ments are restricted only by the requirement that the resulting mesh is at most

1-irregular, but they may be anisotropic in both element size h and order of ap-

proximation p. Exponential convergence was demonstrated numerically for a wide

variety of model problems from acoustic and electromagnetic scattering and it was

found that the method is particularly suited to the automatic resolution of problems

truncated by a perfectly matched layer. We presented three critical aspects of the

implementation, namely an efficient implementation of sum factorization, several

efficient interfaces to the direct multi-frontal solver MUMPS, and some fast direct
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solvers for the computation of a sequence of nested projections.

We believe this work provides an ample foundation for future research on

hp-adaptivity and would like to conclude with a short discussion of some of the pos-

sibilities. The first of these is to build directly on the presented work by completing

the implementation of the presented infinite elements and perfectly matched layers

for electromagnetics. This would enable a much broader range of scattering compu-

tations and (hopefully) would strengthen our claim of exponential convergence.

A more ambitious project is the extension of the implementation to handle all

types of elements, including tetrahedra, prisms and pyramids. Removing the restric-

tion to hexahedra would greatly ease the generation of initial meshes for complicated

geometries. Moreover, we hope to complete the implementation for the entire ex-

act sequence, creating a single code for hp-adaptivity in H1, H(curl), H(div) and

L2. Such a code would enable a consistent hp-adaptivity for coupled problems, and

extend the applicability of the method to include the multi-physics applications of

ever increasing interest to scientists and engineers. We believe that for the most

challenging applications, it will be critical to incorporate the material data into the

routines that compute the projection-based interpolant and evaluate the projection

error. Moreover, a consistent implementation of goal-oriented hp-adaptivity will be

essential for such problems.

The meshes generated by our algorithm have a natural hierarchical structure

that is currently discarded in the process of interfacing with available direct solvers.

A concurrent project with R. van de Geijn and V. Eijkhout will develop a library

of solvers that avoid this “flattening” of the matrix. These solvers will have full

knowledge of the hierarchical structure of the mesh behind the matrix, and will

respect this hierarchy during the factorization process. This should greatly reduce

the cost of local refinement since the factorization will only need to be updated

locally as well.
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[5] I. Babuška and M. R. Dorr. Error estimates for the combined h and p version

of the finite element method. Numer. Math., 37:252–277, 1981.
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