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Population Balance Equations (PBE) are used for modeling a variety of 

particulate processes as well as various stochastic phenomena in science and engineering. 

However PBEs are difficult to solve because they describe the evolution of a probability 

density function (PDF) in high dimensional spaces. Due to their unique mathematical 

structure and properties, these equations require special solution techniques. Moment 

methods are a class of solution techniques that evolve only a few moments of the PDF. 

While moment methods are simpler, they are known to have closure problems, i.e. a 

finite set of moment equations do not fully describe the PDF or its evolution. The purpose 

of this dissertation is to investigate a closure scheme for the moment equations that is 

based on Gaussian quadrature. This approach, known as the Quadrature Method of 

Moments (QMOM), is very general as it does not require any a priori assumptions on the 

form of the PDF. In this study, I first evaluate the accuracy of the moment closure by 
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applying QMOM to solve some well known problems in aerosol science, such as particle 

nucleation and growth in well stirred reactors and size dependent transport of aerosol 

particles. I find that results obtained using QMOM compare favorably with results 

obtained using more expensive techniques. Moment methods are particularly suited for 

implementation in CFD codes. As an example of a model for smoke detectors, I use 

QMOM to simulate smoke entry and light scattering in a cylindrical cavity above a 

uniform flow. As further examples, I describe the use of QMOM in applications such as 

statistical uncertainty propagation and simulation of turbulent mixing and chemical 

reaction using the PDF transport equation. While moment methods are widely applicable, 

they have some limitations.  I find that the solutions depend on the choice of moments 

and that there may not be a globally optimal set of moments. This becomes more 

problematic for solutions of multivariate PBEs using an extension called the Direct 

Quadrature Method of Moments (DQMOM). The insights from this work can lead to a 

greater appreciation of the benefits and limitations of moment methods for solving PBEs. 
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Chapter 1: Introduction and Scope. 

 

The subject matter of this dissertation involves the simulation of population 

balance equations using moment methods. Before delving into the technical details, I 

shall provide a brief introduction to population balance equations and some of the 

literature on this subject. I shall try to provide a context in which the contributions of the 

research work presented here can be evaluated. I briefly discuss the goals and motivations 

and the organization of the dissertation. In subsequent chapters the issues raised here will 

be dealt with in more detail.  

1.1 OVERVIEW OF POPULATION BALANCE EQUATIONS. 
Population balance modeling is a term used by chemical engineers studying 

particulate phenomena. The earliest example of a population balance equation (PBE) is 

the Boltzmann equation. The classical Boltzmann equation is an equation that describes 

the dynamics of a collection of molecules that move along rectilinear trajectories and 

collide as hard spheres. Furthermore, the Boltzmann equation was the first equation that 

dealt with the evolution of a probability density function (PDF). In the physics and 

mathematics literature this equation is called a kinetic equation. While I shall not discuss 

the many mathematical and physical subtleties of the Boltzmann equation, I remark that 

population balance equations are far more general than the Boltzmann equation. As an 

example, PBEs for aerosols generally deal with a collection of particles that are much 

larger than molecules and that undergo Brownian motion. Further when the particles 

collide, they may stick and they may also break apart if subjected to shear forces. These 
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equations are very useful for studying a variety of particulate processes involving 

aerosols, micro-emulsions, biological cells, bubbles, crystals, mists etc. Due to the 

universal nature of population balance modeling, the discussion of population balance 

equations appears in the textbooks across different disciplines. Randolph and Larson 

(1988) discuss its application to crystallization processes. Hidy and Brock (1970) and 

Friedlander (2000) discuss applications of the PBE to aerosol processes. For aerosols this 

equation is called the general dynamic equation (GDE). The text by Van Kampen (1992) 

explains the deep physical ideas behind these equations. Ramkrishna (2000) discusses 

some of the mathematical issues in the derivation of PBEs and also deals with some 

applications to chemical and biochemical processes. The mathematical literature is 

heavily dominated by the study of the Boltzmann equation (e.g. Cercignani (1990); 

Villani (2002)). While the general theory and numerical analysis of the closely related 

stochastic differential equations is available (Kloeden and Platen (1992), Carmona and 

Rozovskii (1998)), to the best of the author’s knowledge, a systematic mathematical 

study of the population balance equation is not very widely known. In the opinion of this 

author, there is a far greater amount of literature that deals with the physical justification 

and derivations of the PBE than with the mathematical structure and properties of 

solutions. 

Population balance equations essentially keep track of the dynamics and 

interactions of a population of particles. It will be seen in some applications that one can 

also deal with a population of abstract or notional particles whose presence or absence at 

a point in space denotes the occurrence or non-occurrence of an event. Hence the 

presence of a type of particle could indicate a particular event and the fraction of such 
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particles would indicate the probability of occurrence of the event at a particular point in 

space at an instant in time. In this work I shall deal with problems involving both real 

particles (such as aerosols) and notional particles (as used in simulations of turbulent 

combustion using PDF methods or for simulating the propagation of statistical 

uncertainty). The equations for both real and notional particles will be the same, only the 

modeling aspects and interpretation of the results will differ. As the PBE involves the 

solution of the evolution of either a univariate or multivariate PDF, its complexity is 

greater than other partial differential equations. As will be seen later, these equations are 

often defined in a higher dimensional space called a phase space. In the simplest example 

of aerosol particles, the phase space consists of the external coordinates, the physical 

space, and internal coordinates, such as the size (volume) of the particle. If the particle 

requires extra morphological or thermodynamic variables to describe its state, one would 

have to deal with multivariate PDFs. The importance of multivariate PDFs and the 

complexities of simulating Population Balance Equations involving multivariate PDFs 

have been discussed in numerous sources (e.g. Marchisio and Fox (2005)). 

 

1.2 OVERVIEW OF COMPUTATIONAL APPROACHES TO SOLUTIONS OF PBES. 
Due to various applications of PBEs to different branches of science and 

engineering, the development of computationally efficient solutions to PBEs is very a 

important technological goal. Due to the integro-differential nature of PBEs and the high-

dimensional domains, different solution techniques are used. Again due to the universal 

applications, researchers in different disciplines have developed different techniques. 

Different solution techniques enjoy different levels of popularity in different fields. For 
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instance, in aerosol science sectional methods are widely used. In this case the solution 

for the number density function is desired. The number density function defines the 

distribution of particles according to their volume or radius. In the sectional methods the 

volume-space is divided into different sections and equations are solved for the particles 

belonging to each discrete size bin (Gelbard et al. (1980)). MAEROS (Gelbard and 

Seinfeld (1980)) is a widely used code that implements the sectional method for solving 

the aerosol general dynamic equation. There is a widely held belief that sectional 

methods are computationally intractable for many emerging aerosol applications with the 

present computer hardware and software (Rosner et al. (2003)). This is especially true if 

the aerosol population is coupled to the flow field. For instance for large scale industrial 

production of nanoparticles, one needs to scale up of the synthesis techniques that 

chemists have devised in the laboratory. Industrial reactors normally involve complex 

turbulent flow fields and large spatial domains and one requires accurate and efficient 

simulation tools to study these processes. In these cases, it is expected that sectional 

methods will not be computationally feasible. Moment methods are generally regarded to 

be computationally tractable for these applications (McGraw and Wright (2003)). 

Moment methods reduce the complexity of population balance equations by simulating 

only the moments of the density functions. However, since a finite number of moments 

do not contain all the statistical information contained in the number density function, 

there are many applications where moment methods are not readily applicable. The 

method of moments with distribution reconstruction (e.g. Diemer and Olson (2002a; b)) 

is an approach that has been applied to problems where the details of the underlying 

distribution are desired.  Another difficulty is that the moment equations are generally 
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unclosed and some moment closure hypothesis is necessary. The nature of the closure 

problem for chemical engineering applications was first recognized by Hulburt and Katz 

(1964). In recent years, several moment closure schemes have been developed. For 

instance, in the aerosol literature there is the Method of Moments with Interpolative 

Closure (MOMIC) pioneered by Frenklach (Frenklach and Harris (1987), Frenklach 

(2002)). There is the presumed lognormal method (Pratsinis (1988)) in which the form of 

the number density function is presumed to be lognormal. The evolution of the number 

density function is then completely determined by solving the evolution equations for 

three of its moments. The Quadrature Method of Moments (QMOM), (McGraw(1997)) 

and the Direct Quadrature Method of Moments (DQMOM) (Fox (2003)) are moment 

methods that use a computational closure scheme based on Gaussian integration. The 

investigation of the accuracy of these closure approximations is one of the major 

objectives of this dissertation and these methods will be discussed in greater detail in the 

next section. Additional literature on QMOM and DQMOM will also be discussed in the 

next section. 

In turbulent mixing and combustion applications, the PDF transport equation is 

solved. This equation can be considered to be a population balance equation involving 

notional (or conditional) particles. The ideas behind this equation are discussed in 

Chapters 2 and 4. It is interesting to note that while moment methods and sectional 

methods are widely used in the aerosol community, researchers in turbulent combustion 

who use the PDF transport equation mainly use Monte Carlo methods for solution (Pope 

(1985)). It should be mentioned that turbulent combustion problems can be defined in a 

very high dimensional space and that Monte Carlo simulations may be the most natural 
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method for simulation. However, one can investigate the performance of moment 

methods in this high dimensional setting. There is very little work in the literature dealing 

with moment methods for the PDF transport equation. For very simple univariate 

problems, there is a presumed beta PDF method (Branley and Jones (2001)) that is 

analogous to the lognormal method discussed earlier. However the presumed PDF 

approach cannot be easily generalized to multivariate cases and can only be applied to 

limited applications. Various moment methods called conditional moment closure (CMC) 

methods are widely used for engineering calculations (Klimenko and Bilger (1999)). 

These methods normally use physical or empirical moment closure assumptions and have 

several limitations as discussed in Raman and Fox (2004).  

1.3 SCOPE OF THE WORK. 
The preceding discussion is meant to provide a quick overview of population 

balance equations and the literature dealing with its solution without discussing the 

physical and mathematical ideas. I wish to convey the fact that population balance 

modeling appears under different guises in different disciplines and each discipline has 

developed its own terminology and favorite computational solution techniques. The 

objective of this work is to investigate moment methods, in particular the Quadrature 

Method of Moments (QMOM) and the Direct Quadrature Method of Moments 

(DQMOM). The general question that I am interested in is can these methods overcome 

some of the limitations associated with moment methods and provide reasonably accurate 

solutions that can be used for engineering purposes. Some of the difficulties inherent in 

moment methods are inaccurate moment closure, unreasonable presumptions on the PDF 
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etc. Further, by considering applications from different disciplines, I wish to demonstrate 

the feasibility of using moment methods for a wide range of applications. While these are 

my primary goals, I will also consider the mathematical theory and computational 

requirements for implementing these methods. The theory should allow the reader to 

decide whether moment methods are the best suited for any particular application and 

also provide the finer details of implementation. The studies conducted in this work are 

expected to lead to a greater understanding of the potential benefits and limitations of 

moment methods for solving general population balance equations. 

1.3.1 OUTLINE OF THE DISSERTATION 
The remainder of the dissertation is organized as follows. In chapter two I present 

the population balance equations and briefly discuss the physical ideas leading to it. To 

emphasize the universality of the method, I do not confine myself to any particular 

application but instead develop the full population balance equation in all its generality. 

Then I shall examine concrete examples for applications in aerosol science and turbulent 

reacting flows. I develop the equation for the moments and discuss the Quadrature 

Method of Moments (QMOM) and the Direct Quadrature Method of Moments 

(DQMOM). I will present the mathematical theory for the univariate QMOM and I will 

discuss the difficulties in extending this theory to the multivariate case. I will then discuss 

a computational method for simulating general multivariate PBEs using the DQMOM. I 

will present an algorithm for ordering the moments of a multivariate PDF that can be 

used in DQMOM to evolve a set of moments. I raise several important issues in the 

solution of QMOM and DQMOM equations which I will discuss in more detail in 
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chapters 3 and 4. In chapter 3, applications of QMOM and DQMOM to univariate 

population balance equations will be presented. Applications are drawn from problems in 

aerosol science. I consider classic problems such as the simulation of nucleation, surface 

growth and agglomeration in well stirred reactors and nozzles. To investigate the 

coupling of population balance models with CFD codes, I will consider the simulation of 

the smoke entry and light scattering in a smoke detector. I also study problems involving 

size dependent aerosol diffusion and settling. These problems are meant to be a 

computational validation of QMOM and DQMOM for univariate population balance 

equations. Hence I compare solutions obtained using moment methods with other 

solution techniques. Results of these validation studies provide useful guidelines on 

practical application of QMOM/DQMOM. In chapter 4, I discuss problems other than 

aerosols for which population balance concepts can be used. I consider the problem of 

propagation of statistical uncertainty that can be used in design problems involving 

uncertainty in some design parameters. I study an application to fire safety design. I also 

look at the problem of turbulent mixing and combustion in a partially stirred reactor. In 

this example, I test the theory of multivariate DQMOM that is discussed in chapter 2. 

Again I look at the accuracy of the DQMOM solutions by comparing with solutions 

obtained using Monte Carlo simulations. In chapter 5, I summarize the main findings and 

propose directions for future investigations.  

 



Chapter 2: Population Balance Equations and the Quadrature Method 
of Moments. 

2.1 THE GENERAL POPULATION BALANCE EQUATION. 
The population balance equation is essentially the mathematical statement of the 

law of conservation of particles in phase space (Randolph and Larsson (1988)). The D+3 

dimensional phase space consists of external and internal coordinates, namely the three 

dimensions of space  and D generalized coordinates),,( 321 xxx ),....,,( 21 Dξξξ . It is useful 

to distinguish between these two coordinates both from the physical and mathematical 

points of view due to the different boundary conditions used. The population of particles 

is characterized by a number density function, ),,,;,...,,( 32121 txxxn Dξξξ  defined over 

the internal variables at each point in physical space and time. For instance, for the case 

of spherical aerosol particles only one internal coordinate, say its radius, r, is necessary to 

characterize each particle. Then to describe the aerosol population completely, one would 

need a solution for . Applying the law of conservation of particles one 

can show that the number density  evolves in phase space as follows (Ramkrishna 

(2000)): 
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Figure 2.1 shows the schematic.  is the velocity of each particle in the direction 

.  is the generalized convection velocity in the direction of each internal coordinate 

iU

ix iG

iξ . B and D are the birth and death terms. These terms account for the discontinuous 

changes in the state of the particles due to random collision or breakage events. These 
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stochastic processes are usually modeled as Poisson processes (Feller (1967)) and involve 

integrals over the internal coordinates. Hence these terms are responsible for the integro-

differential nature of these equations. Even though the birth and death terms represent 

stochastic processes, the equation for the evolution of the number density function is 

deterministic.  

Birth

Gi

Internal 
Coordinate 

(ξ) 

Death
Ui

Ω 

External 
Coordinate 

(x) 
 

Figure 2.1. Control volume in phase space used to derive the population balance 
equation.  

2.2 EXAMPLES OF POPULATION BALANCE EQUATIONS USED IN THIS STUDY. 
To orient the reader, I now show specific examples of population balance 

equations that I have used in this study. 

2.2.1 Aerosol dynamics. 
In the context of aerosol dynamics, the population balance equation is usually 

referred to as the general dynamic equation (GDE). For most aerosol applications, each 

aerosol particle is uniquely characterized by its volume (v) or radius (r). The population 

 10



balance equation is then written for the number density function . From 

equation 2.1, using 

),,,;( 321 txxxvn

v=1ξ  and ,...4,3,2,0 == iiξ  one gets 
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where  is the resultant particle velocity in the direction . This velocity is the 

resultant of the fluid velocity , gravitational settling velocity , the thermophoretic 

velocity  and other migration velocities. There is also a stochastic component of the 

particle velocity due to Brownian motion. The transport due to the fluctuating velocity is 

modeled using the gradient diffusion model and gives rise to the first term on the right 

hand side. Specific expressions for the particle diffusivity, D, settling velocity  and 

thermophoretic velocity  are provided in Friedlander (2000). These terms usually 

depend on the volume of the particle as will be shown later.  is the convection velocity 

in volume space. It models the surface growth of particles due to condensation of 

supersaturated vapor on its surface. It may also account for the evaporation of particles or 

other processes that cause continuous changes in the volume of the particle. The birth and 

death terms account for the aggregation processes in which particles of two different 

sizes randomly collide and stick to each other giving birth to a new particle: 
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The first term represents the “birth” of a particle of volume v . Such an event can occur 

when particles of volumes v(  and vv (−  collide. ),( vvv (( −β  is the aggregation kernel and 

 11



gives the rate of aggregation of two randomly chosen particles of volumes v(  and vv (− . 

In the mathematical terminology of Poisson-Markov processes, β  is also referred to as a 

transition probability. The second term represents the “death” of a particle of volume v . 

Such an event occurs when the particle of volume v  randomly collides and sticks to any 

other particle in the population. Other birth and death processes are possible in systems 

that allow particle breakage. The complete GDE can then be written as: 
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The left hand side represents the time rate of change of the aerosol population, 

convection by the fluid, transport in phase space (external and internal coordinates) due 

to gravitational settling, thermophoresis and surface growth respectively. The right hand 

side represents the change of the aerosol number density due to diffusion (Brownian 

motion) and the aggregation processes. A schematic of the various aerosol processes that 

cause changes in the number density is shown in figure 2.2. The GDE for aerosols does 

not account for the inertial forces acting on a particle which cause acceleration of the 

particle. In the population balance approach, the particle velocities can be considered to 

be additional internal coordinates and the inertial forces on the particles cause changes in 

the number density in velocity space. In the physics literature, these processes are called 

Rayleigh processes (Van Kampen (1992)). Such effects need to be considered when 

modeling aerosol impaction but are relatively unimportant for small sized particles for 

which inertial effects are negligible. Alternatively, one may interpret the GDE as 



representing aerosol dynamics in which the particle velocity relaxation time is much 

faster than other time scales and therefore the particle velocity is always the velocity of 

the fluid or the steady terminal velocity (in case of settling). In this study, I do not 

consider problems involving inertial effects. 

Advection 

Flow out

Coagulation
Coalescence 

Surface growth

Nucleation

Flow in 

Settling 
Thermophoresis/

Diffusion
 

Figure 2.2. Schematic of various aerosol processes at the micro-scale.  

2.2.2 PDF transport equation. 
The PDF transport equation uses different mathematical ideas in its derivation and 

is more abstract than the GDE. The problem I am generally interested in is to predict the 

time evolution of various chemical species in a turbulent flow field. In this problem, the 

stochasticity arises due to the following reasons. Consider the evolution of a single 
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species concentration in a turbulent flow field. Figure 2.3 shows how the species 

concentration may evolve in velocity-composition state space ),( ψ
rr

V  due to chemical 

reaction and turbulent transport. There are fluctuations in the species concentrations 

down to the Kolmogorov scales because the species are transported in a turbulent flow 

field. Furthermore, due to the chaotic nature of the turbulent flow field, the trajectory in 

the state space can be completely different for different evolutions from the same initial 

conditions. In stochastic theory, the species concentrations are random fields (Adler 

(1981)). The reason for the non-uniqueness of trajectories can also be seen from the 

following equations describing the velocity and species evolution (Fox (2003)): 
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Equation 2.5 describing the evolution of the velocity fields is the familiar Navier-Stokes 

equations for incompressible flow (Panton (2005)). In equation 2.6, iφ  is the mass 

fraction or concentration of the ith species. The terms on the left hand side represent the 

transport due to the turbulent flow field. The first term on the right hand side is due to 

molecular diffusion and the second is due to the chemical reaction. ( )φriS  is called the 

chemical source term. Since iφ ,  and all derivatives of jU iφ  are random fields, the 

dynamics given by equations 2.5 and 2.6 cannot be completely determined from the 

information contained in the state space ),( ψ
rr

V  that provides single-point statistics of iφ  

and . This is due to the presence of the molecular diffusion and pressure gradient jU
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terms which involve derivatives of the velocity and species fields. All derivatives require 

two-point statistics that is not contained in the space ),( ψ
rr

V . One can include the 

derivatives of iφ  in the state space but the equations that define the evolution of these 

terms would contain other derivatives that are not in the state space. The lack of statistical 

closure in these equations is well known (Pope (1985)). Due to these reasons, it is 

customary to define notional particles (Pope (1985)) or conditional particles (Baldyga 

and Bourne (1999)) in the velocity-composition space. These particles have deterministic 

trajectories whose evolution is governed by the conditionally expected values of the other 

random fields. For instance, the population balance equation for notional particles in the 

velocity-composition state space is as follows (Pope (1985)): 
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rr ψφ  is the 1-point joint velocity composition PDF. In the literature it is 

customary to denote the random fields by U
r

 and φ
r

. U
r

 and φ
r

 contain the full multi-

point, multi-time statistics of the velocity and scalar fields while their single point 

realization is denoted by V
r

 and ψr . Also the conditional expectations are determined 

from equations 2.5 and 2.6 as: 
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One can see that  and  in equation 2.8 denote the terms appearing on the right hand 

side of equations 2.5 and 2.6 respectively. For instance,  can be interpreted as the 

acceleration of the fluid. For this reason, the conditional expectation involving  is also 

called the conditional acceleration. In principle, it is possible to compute the conditional 

expectations in equation 2.7. One can employ DNS simulations to obtain the full 

multipoint statistics of the velocity fields and species profiles and then extract the 

conditional expectations (Fox (2003)). In that case one would have to deal with the 

unresolved mathematical issues concerning the existence, uniqueness and regularity of 

the Navier-Stokes equations (Frisch (1995)). However attempts have been made to 

estimate the conditional expectations for Large Eddy Simulations of turbulence as 

reported in Langford and Moser (1999). In the combustion literature, various models 

have been used for the conditional expectations. All models involve stochastic processes 

that mimic the evolution of the conditional particles in velocity-composition space. These 

models require inputs from experimental measurements of different statistical quantities 

in turbulent reacting flows. Details behind some of the models used for the conditional 

expectations are outlined in the review article by Pope (1985).  

iA iΘ
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Figure 2.3. Schematic showing actual paths of the species and the path of notional (or 
conditional) particles in velocity composition space for a turbulent reacting 
flow.  

In this work, I shall deal with the joint scalar PDF transport equations. This 

equation is obtained by integrating over the velocity space to obtain the marginal PDF, 

),;( txf rr
r ψφ  , called the joint scalar PDF. The equation for the evolution of ),;( txf rr

r ψφ  is as 

follows (Fox (2003)): 
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In equation 2.9, the second term on the left hand side represents the transport of the scalar 

due to the mean flow field iU . The first term in the right hand side represents transport 
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due to turbulent velocity fluctuations that is modeled as a gradient diffusion process with 

turbulent diffusivity . The second term represents molecular diffusion which is 

modeled as the convection in 

TΓ

ψ
r  space due to the conditional expectation term. As 

mentioned earlier, the conditional expectation term needs to be modeled. The type of 

population balance equation that results depends on the model used for this term. A 

widely used model is the Interaction by Exchange with the Mean (IEM) described in 

Dopazo (1975). This is a deterministic mixing model which states that particles relax to 

the mean composition at a certain rate determined by a mixing time mixτ :  
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The PBE resulting from this model is a simple transport equation without the integral 

birth and death terms. Other models for the conditional expectation also exist. A popular 

model is the Coalescence-Dispersion model (C-D) model first described in Curl (1963). 

In this model the transport in composition space is modeled as a Poisson jump process 

which consists of random interactions between the notional particles. The PBE obtained 

from this model consists of birth and death terms that involve integrals (e.g. Pope 

(1985)). A Fokker Planck model can also be used for the transport term. In this case the 

PBE will contain a diffusion term in ψr  space. Details of this model can be found in Fox 

(2003). In this study I shall not investigate the C-D and Fokker-Planck models. While 

modeling of conditional expectations is the most important aspect of PDF transport 

methods in reacting flows (Fox (2003)), I shall only be concerned with the solution of the 

equations using known models. The last term on the right hand side of 2.8 represents the 

 18



chemical reactions. Since the chemical source term involves only the single-point 

statistical information that is provided by the single point joint scalar PDF ),;( txf rr
r ψφ , 

closure models are not required for this term.  

Despite the different physical and mathematical ideas used for derivation of the 

PDF transport equation, the resulting form is identical to Population Balance Equations. 

While some of the concepts presented here can aid the reader in understanding the 

physics behind PDF transport methods used in turbulent reacting flows, the discussion is 

not meant to be a rigorous introduction to the subject. Further details can be found in 

Pope (1985), Baldyga and Bourne (1999) and Fox (2003). 

2.3 MOMENT METHODS FOR THE GENERAL POPULATION BALANCE EQUATION. 
The solution to the general population balance equation defined in section 2.1 

involves several difficulties. These difficulties are due to the high dimensional nature and 

the integro-differential structure of the equations. The moment methods aim to simplify 

PBEs using certain averages called the moments of the density function. By the use of 

moments, one can convert the PBE into partial differential equations in three dimensional 

space. Furthermore, the form of the resulting equations is compatible with commercial 

PDE solvers that have been widely used in engineering. 

The moments of a general multivariate PDF, ),...,,( 21 Dn ξξξ , defined over D internal 

coordinates, Dii ..1; =ξ ,   is defined as follows: 
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Ω  is the domain in the D-dimensional space over which the PDF is defined. Each 

moment is indexed by a D-tuple of numbers { } ),...,,( 21 Dllll =  and is a scalar quantity that 

depends only on the spatial and temporal variables. In the method of moments, one first 

derives equations for the evolution of the moments. Let us consider the abstract PBE 

given in equation 2.1. To get the evolution equation for the moment indexed by 

, I multiply equation 2.1 by and integrate over the domain 

: 
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In the above equation, the third term in the left hand side represents the term involving 

the convection in internal coordinates. The fourth term accounts for the source terms on 

boundaries of the internal coordinates. Specifically, it is given by: 
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Ω∂  is the boundary of the domain Ω . The third and fourth terms are obtained using 

integration by parts on the 
i

inG
ξ∂

∂  term in equation 2.1. For the general PBE, the source 

terms in the boundary appear as boundary conditions over the internal coordinates and 

are not explicitly present in the equation. However, for the moment equations, which 
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involves integration over the domain of the internal coordinates, the boundary growth 

terms explicitly appear in the equations.  

 At this point, the presentation of the moment equation is very abstract. It is still 

possible to observe that while the dimensions have been reduced to the three spatial 

variables by integrating over all internal coordinates, the equation is still integro-

differential. All moment methods must prescribe some techniques for evaluating the 

integrals over the (unknown) number density function  ),;( txn rr
ξ . In subsequent sections, 

I shall discuss the quadrature method of moments that enable the evaluation of these 

integrals. Now I consider specific concrete examples of the moment equations for the 

aerosol General Dynamic Equation and the PDF transport equation defined earlier. 

2.4 CONCRETE EXAMPLES OF MOMENT EQUATIONS. 
To orient the reader, I consider concrete examples of the moment equations for 

the aerosol General Dynamic Equation (GDE) and the PDF transport equation defined 

earlier. 

2.4.1 Moment equation for the aerosol General Dynamic Equation. 
In this case, the number density depends only on the volume, v , of the particle. 

The k-th moment is defined as: 

∫
∞

=
0

),;(),( dvtxvnvtxM k
k

rr .        2.14 

The moments provide important information about the aerosol population. Integral 

moments (i.e. where k in equation 2.14 is an integer) such as  and  give the total 

number of particles and the total volume respectively. Fractional moments  where k 

0M 1M

kM
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is a fraction are also used. For instance the moment  is proportional to the total 

surface area of the aerosol particle population. The moment equation is obtained by 

multiplying equation 2.4 by the volume variable  and integrating over the range of : 

3/2M

v v
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Equation 2.15 is just a special case of equation 2.12 with D = 1, v=1ξ  and 

Dii ..2;0 ==ξ . The domain Ω  is [0,∞ ]. The second term on the left hand side 

represents the advection in physical space due to fluid velocity, particle settling velocity 

and thermophoretic velocity respectively. The third term represents the particle surface 

growth due to condensation or evaporation. The fourth term is a source term that 

accounts for the appearance of new particles of critical volume  by nucleation from the 

gas phase. It can be considered to be a growth term at the boundary of -space since  

is the smallest possible particle size. 

Cv

v Cv

)( CvvI =  is the nucleation rate that gives the rate at 

which new particles of critical size  form from the supersaturated gas phase. Details of 

the derivation of  for aerosols can be found in Friedlander (2000). The first 

term on the right hand side models the diffusion due to Brownian motion while the 

second term models coagulation. To write coagulation in this form requires the 

Cv

)( CvvI =
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assumption that the coagulation kernel ),( vuβ  is symmetric (Williams and Loyalka 

(1991)). This assumption is valid for most kernels used for Brownian, gravitational, 

laminar shear and turbulent coagulation. Equation 2.15 cannot be solved without a 

procedure that can enable the evaluation of the integrals over the unknown number 

density function . Details of how these expressions can be written in terms of the 

moments are discussed later. 

),;( txvn r

2.4.2 Moment equations for the PDF transport equation. 
In general, the PDF transport equation deals with the evolution of a multivariate 

PDF. Therefore one has to deal with the general moment equation outlined in section 2.3. 

Let ( txf ,; r
r )ψφ  be the joint scalar PDF of D chemical species denoted by 

( D )ψψψψ ,...,, 21=
r

. As mentioned earlier multivariate moments are characterized by a 

D-tuple of numbers { } : ),...,,( 21 Dllll =

{ }( ) D
l
D

ll
l dddtxntxM D ψψψψψψψ ...),;(..., 2121

21
rrr

∫
Ω

= .     2.16 

In this case I have taken Diii ..1; ==ψξ . The domain, Ω , is the allowable space of 

species concentrations (i.e. where the constraint of element conservation is satisfied) 

(Fox(2003)). If the iψ s are the species mass fractions then [ ]D1,0⊂Ω . Multivariate 

moments carry a lot of useful statistical information about the system. For the case D = 2, 

some of the useful moments are as follows. 

First order moments; , : Mean of species )0,1(M )1,0(M 1ψ  and species 2ψ  respectively. 
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Second order moments; , , : These moments are related to the variance 

of  

)0,2(M )2,0(M )1,1(M

1ψ , variance of 2ψ  and covariance between 1ψ , 2ψ  respectively. 

Other higher order moments may also be essential in describing the system. 

The moment equations for the PDF transport equation described in equation 2.9 are: 
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The IEM model defined in equation 2.10 has been used to model the molecular mixing 

term. The second term on the right hand side involves both the molecular mixing term 

(modeled by the IEM) and the chemical source term. The chemical source term cannot be 

written in terms of the moments  and therefore a moment closure scheme needs to be 

prescribed. The success of moment methods depends on the accuracy with which the 

chemical source term can be represented. However at the level of the PDF transport 

equation, the chemical source term appears in closed form (Pope (1985)) since it depends 

only on the one-point statistics described by 

{ }lM

( )txf ,; r
r
ψφ . 

2.5 CLOSURE OF MOMENT EQUATIONS USING NUMERICAL QUADRATURE. 
 In general, the equations for the moments are unclosed. This can be seen in the 

examples of moment equations given in the previous section. For the moment equations 

describing aerosol dynamics (equation 2.15), the closure issues arise due to volume 

dependent aerosol velocity, diffusion, surface growth terms, and coagulation. The 
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solution of the moment equations involves the determination of the space time evolution 

of a selected set of moments. The number density function is unknown and hence 

integrals over the unknown density function must be approximated in terms of the 

moments that are being solved. The closure issues in the PDF transport equation are also 

the same. Closure problems arise because the information contained in a PDF cannot be 

obtained from a finite set of moments. Population balance equations generally describe 

the dynamics of a probability density function (PDF) and in most cases the dynamics 

depends on the complete information contained in the PDF. Mathematically, the closure 

problem arises due to specific functional forms of the integrands in equation 2.15 that 

prevent writing the integrals in terms of known moments. One of the major objectives of 

this dissertation is to investigate the moment closure using quadrature based moment 

methods. These methods develop numerical integration formulae based on Gaussian 

quadrature to evaluate the unclosed integrals. The principal techniques are called the 

Quadrature Method of Moments (McGraw (1997)) and the Direct Quadrature Method of 

Moments (Fox (2003)). I shall first discuss the theory of QMOM and then explain some 

of the difficulties and limitations of QMOM. Then I shall discuss DQMOM and also 

consider some of the limitations. For both methods, I shall explain the computational 

issues that need to be investigated. These investigations are reported in chapters 3 and 4. 

2.6 QUADRATURE METHOD OF MOMENTS (QMOM).   
The Quadrature Method of Moments was first proposed by McGraw (1997) for 

the modeling of condensation in clouds. In recent years a number of papers have 

appeared in the literature dealing with the application of QMOM to all aspects of aerosol 



dynamics. I refer the reader to Terry, McGraw and Rangel (2001), Upadhyay and 

Ezekoye (2003, 2005, 2006), Marchisio et al. (2003), Marchisio, Vigil and Fox (2003a, 

2003b), McGraw and Wright (2003).   

 In QMOM, the moment equations are closed by using the Gaussian quadrature 

technique to evaluate unclosed integrals. The task is to evaluate integrals as accurately as 

possible when the number density function is unknown but a certain number of its 

moments are known. 

 Gaussian quadrature is a very old and established method for integrating a 

function. It is remarkable that the integration is extremely accurate with only a few 

quadrature points (Lanczos (1956)). Gaussian integration involves weighted integration 

of a function. For instance, let us take one of the unclosed terms appearing in the moment 

equation for the aerosol GDE: 

∫
∞

−=
0

1 )()( dvvnvGvI k .         2.18 

Here  is the function to be integrated with respect to an unknown weight 

function . In the univariate case, a number (say N

)(1 vGv k−

)(vn Q) of points are chosen in the 

interval (here [0, ]) and the function (here ) is evaluated at the N∞ )(1 vGv k−
Q points 

known as the quadrature points. An interpolating polynomial of order NQ-1 is passed 

through the discrete values of the function evaluated at the quadrature points. The 

integration scheme is then called NQ-point Gaussian quadrature or simply NQ-point 

quadrature. The fundamental theorem of Gaussian quadrature states that the quadrature 

points correspond to the roots of a polynomial that is orthogonal with respect to the 
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weight function  (Lanczos (1956)). Given a certain number of these quadrature 

points, Gaussian quadrature assures that the error in evaluating the integral would be the 

minimum. Standard Gaussian quadrature deals with integrals where the weight is of a 

known form (Press et. al. (1992)) and the orthogonal polynomials tend to be of a known 

type. In my case, the weight function is unknown but a certain of number of its moments 

are known. The theory of Gaussian quadrature with unknown weight function and the 

derivation of orthogonal polynomials is provided in Appendix A. The problem then 

reduces to determination of the quadrature points and weights from which one can 

compute the integral using the following quadrature formula. 
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In the above formula  are the quadrature points and  are the called the quadrature 

weights. By the theory of Gaussian quadrature, the N

iv̂ iW

Q-point quadrature formula is exact 

for all polynomials up to degree 2NQ-1.    

 The quadrature points are obtained as roots of orthogonal polynomials as outlined 

in Appendix A. The weights  are the weighted integrals of the Lagrange interpolating 

polynomials  passing through the quadrature points: 
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where ( , , ) are the coefficients that depend only on  2N0a ,....1a 1−QNa Q moments of . 

Both the N

)(vn

Q quadrature points and weights are functions of only the 2NQ moments of 

 and therefore the quadrature formula can be constructed from the moments of  

alone. The method of computing the quadrature points and weights by finding roots of 

polynomials is convenient only for 1-, 2- or 3- point quadrature. This is due to the 

availability of formulae that give the roots of linear, quadratic and cubic polynomials. For 

higher order quadrature schemes, it is more convenient to use an alternative procedure 

described by Gordon (1968). This is because the numerical problem of finding roots of 

higher-order polynomials is “notoriously ill-conditioned” (Gordon (1968)). In this 

method the quadrature points and weights are the eigenvalues and eigenvectors of a tri-

diagonal matrix. The Product-Difference algorithm presented in Gordon (1968) and also 

in Appendix A can be used to construct the elements of the tri-diagonal matrix. 

Computationally efficient algorithms exist for the computation of eigenvalues and 

eigenvectors of a tri-diagonal matrix (e.g. the GAUCOF subroutine in Press et al. 

(1992)). 

)(vn )(vn

 I now take a simple example to illustrate the technique. Let us try to evaluate an 

unclosed integral  when only the four moments  and  

are known. Figure 2.4 is a graphical representation of the Gaussian integration scheme. In 

this example, the two quadrature points (N

∫
∞

=
0

5.0
5.0 )( dvvnvM 210 ,, MMM 4M

Q = 2) are calculated from the four given 
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moments using the technique described in Appendix A. The function to be integrated, 

, is approximated using a linear function (a polynomial of order N5.0v Q-1). Figure 2.4 

shows that while the linear approximation of  is not good in a global sense, the 

approximation is fairly accurate in a localized region where the weight function  

peaks. An intuitive idea behind the quadrature based integration is to determine the 

discrete points in regions where the weight or measure is concentrated and then attempt 

to approximate the function accurately in those local regions. In Table 2.1, I present the 

error in the integration and I see that the integration is fairly accurate with a very small 

number (2 or 3) of quadrature points. 
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Figure 2.4. Integration of the function v0.5 with respect to the lognormal density function 
using 2-point Gaussian quadrature.  

No. of quadrature 

Points (NQ) 

M0.5

Integration 

Approximating

Function 

% Error

1 1.0420 Constant 2.1 

2 1.0229 Linear 0.21 

3 1.0213 Quadratic 0.06 

Exact 1.0207 
  

 

Table 2.1. Table showing the errors involved in computing the moment M0.5 using 2NQ+1 
integer moments for different numbers of quadrature points NQ. 
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  By using the Gaussian quadrature formula, a closed set of moment equations can 

be obtained. For the moment equation for the aerosol GDE, the closed set of moment 

equations are: 
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Equation 2.22 must be solved for a set of 2NQ moments such 
as{ }1210 ,...,, −QNMMM . Then equation 2.22 represents a set of coupled nonlinear partial 

differential equations. The quadrature points and weights depend on the moments alone 

and they are the same for each integral; summation in equation 2.22. They can be 

evaluated from the moment set at time t, to get the moments at time t+∆t. The solution to 

these equations will be discussed in subsequent chapters. The solution is subject to some 

constraints in the moments. From the theory of moments, (Wall (1948)), the moments 

always have to satisfy the following determinant conditions: 
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where P  is the number of quadrature points used and the moments are normalized so that 

. 10 =M

Condition (2.23) is the requirement that the size distribution is strictly positive 

while condition (2.24) is the requirement that the size distribution be defined for positive 

values only. Moment methods involving approximate closure suffer sometimes in that 

these conditions can be violated. This is a serious problem because if these conditions fail 

even once during the computations the method will fail. It is hard to determine if 

conditions (2.23) and (2.24) are satisfied at each instant during the computations. For 

problems involving combined nucleation, surface growth and coagulation, it is difficult to 

maintain conditions (2.23) and (2.24) for 2-point and 3-point quadrature calculations. For 

a problem in which particles of a single critical size form by nucleation, only the 1- point 

quadrature can be used to start the simulations. This is because for the 2-point and 3- 

point calculations, the size distribution must be at least bi- and tri-disperse respectively. 

In other pathological cases, it is easier to first calculate the roots and check if they are 

real, positive and distinct. If they are, then the above conditions are automatically 

satisfied. If not the roots must be recalculated using a smaller number of moments, that is 

the order of the quadrature method must be reduced. This method works because for one 

point quadrature the condition reduces to . This is easy to satisfy for almost 

any physical problem. Using this artifice does not seem to have a major effect on the 

accuracy of the method. From my experience, higher order quadrature methods fail when 

the size distribution is narrow and for these problems lower order quadrature methods are 

sufficiently accurate.  

0, 10 >MM
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2.6.1 Limitations of QMOM. 

(a) Extension to the multivariate case. 
 Apart from the need to satisfy constraints on the moments, QMOM suffers from a 

number of drawbacks. A major limitation of QMOM is the difficulty in extending it to 

the multivariate case. Some attempts have been made in extending QMOM as reported in 

Wright et al. (2001), Rosner and Pykkonen (2002) and Yoon and McGraw (2004a; 

2004b). The last work describes a technique called the PCA-QMOM in which principal 

component analysis is used to determine the principal axes along which the quadrature 

points and weights can be assigned using the univariate quadrature theory. All the above 

methods use ad hoc assumptions to circumvent the difficulty of finding suitable cubature 

formulae in higher dimensions. The mathematical issues regarding this problem are 

discussed in Dunkl and Xu (2001) and Xu (1994). In complete analogy to the univariate 

(one-dimensional) case, the cubature points are the common roots of a set of multivariate 

polynomials. A cubature formula in D-dimensions, analogous to equation 2.19 would be:  

( )∑
=

=
QN

k
kk WxfI

1

ˆ ,         2.25 

where the k-th  quadrature point kx̂  is now a point in D dimensions. For 2.25 to be a 

Gaussian  cubature formula (i.e. to be exact for all multivariate polynomials of total 

degree 2n-1), requires ( )
( ) !!1

!1
Dn
DnNQ −

+−
=  distinct quadrature points kx̂ . Xu (1994) 

mentions that one can very rarely find a Gaussian cubature formula in the multivariate 

case. One must therefore look for less optimal cubature formulae. There are lots of 

difficulties if one attempts to generalize the procedure outlined in Appendix A for the 
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one-dimensional case. For example, the three term relation for the successive orthogonal 

multivariate polynomials will involve matrices. In the D-dimensional case, the quadrature 

points and weights will be the joint eigenvalues and eigenvectors of a set of D block tri-

diagonal matrices (Xu (1994)). The construction of these block tri-diagonal matrices 

would require a number of matrix operations that can be quite complex. The author is not 

aware of any algorithm analogous to the Product-Difference algorithm that can create the 

block tri-diagonal matrices from the multivariate moments. A thorough discussion of 

multivariate cubature using linear algebraic techniques can be found in Dunkl and Xu 

(2001). A challenge remains in developing a computationally efficient algorithm for 

implementing some of the ideas explained in Dunkl and Xu (2001). 

(b) Awkward form for the transport terms in physical space.  
 From the computational point of view, a practical difficulty arises in the case of 

the transport terms in physical space. For example, for the moment evolution equations 

(equation 2.22), the flux in physical space (second term in the left hand side) is a flux of 

the quadrature sum. In practice, one would like to solve the moment equations using 

some CFD solver which solves convection diffusion equations of the form 

...=
∂
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+
∂
∂

ki
i

k MU
xt

M
, i.e. the convective flux should involve the same evolved moment 

. Since the quadrature sum depends on a set of moments, it is not possible to write the 

equation in the above form for QMOM. This practical difficulty can be avoided using the 

Direct Quadrature Method of Moments that will be discussed next. 

kM
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2.7 THE DIRECT QUADRATURE METHOD OF MOMENTS (DQMOM). 
As noted earlier, two of the difficulties associated with QMOM are the inability to 

easily extend it to multivariate problems and the practical difficulty in implementing it on 

commercial CFD codes. DQMOM is an extension of QMOM. Some of the ideas behind 

DQMOM can be found in Piskunov and Golubev (2002) and Piskunov et al. (2002). The 

JMT method proposed in McGraw and Wright (2003) is very similar to DQMOM. 

However a self-contained theory and an algorithm for computational implementation is 

provided by Fox and coworkers (Fox (2003), Fan et al. (2004) and Marchisio and Fox 

(2005)).  

In order to demonstrate the applicability to a general multivariate problem, I 

present the implementation of DQMOM to the case of the PDF transport equation. In 

DQMOM, a coarse grained representation of the underlying probability density function 

is defined as: 
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Here ),( txWn
r  is the n-th quadrature weight, ),(ˆ , txnk

rψ  is the n-th quadrature point for the 

k-th internal variable, )),(ˆ( , txnk
rψψδ −  is the Dirac delta function centered at ),(ˆ , txnk

rψ . 

A representation of the underlying PDF in this form ensures that a finite number of 

moments are exactly reproduced. Unlike in QMOM, evolution equations are solved for 

the quadrature weights ),( txWn
r  and the product of quadrature weights and points 

),(ˆ),(),( ,, txtxWtxS nknnk
rrr ψ= . These equations can be obtained by substituting equation 

2.26 into the PDF transport equation (equation 2.9). This procedure is detailed in Fox 
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(2003) and involves using properties of the Dirac Delta function. While this is a valid 

approach, an alternative method of deriving the equations without using generalized 

functions, would be to directly use the moment equations. The multivariate moments are: 
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In equation 2.27, { }  denotes a D-tuple of numbers that index a multivariate 

moment. Substitution of this form into the moment equation (equation 2.17) and 

algebraic manipulations yields the following set of linear equations: 
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The above set of equations can be written in a matrix form: 

βα =A .          2.29 

A  is an  matrix. Each row is indexed by a D-tuple ×+ )1(DNQ )1( +DNQ { }l : 
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Hence each row is determined by a moment  and to construct A requires a set of 

 moments. For this example, 

{ }lM

)1( +DNQ β  consists of the )1( +DNQ  terms defined in the 

right hand side of equation 2.28. The vector α  of length )1( +DNQ  consists of the 
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source terms ),...,1;,...,1;;,...,1;( , DmNnbNna QnmQn === . These terms are the source 

terms for the following equations for ),( txWn
r  and ),(, txS nm

r : 
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. Equation 2.31 is a system of convection- 

diffusion equations with source terms obtained by solving the system of linear equations 

defined in equations 2.28 or 2.29. The source terms  and  are extra terms needed 

to ensure that the evolution of the quadrature points and weights is consistent with the 

evolution of the chosen set of 

na nmb ,

)1( +DNQ  moments. The solution of 2.31 with suitable 

initial and boundary conditions provides the space-time dependent moments of the joint 

scalar PDF. A schematic that summarizes the DQMOM technique is outlined in Figure 

2.5. 

2.7.1 Computational issues regarding DQMOM. 
 From the previous section, I see that the DQMOM method involves the solution 

of convection-diffusion-reaction equations for a set of scalars. These equations can be 

easily implemented in any Computational Fluid Dynamics (CFD) code. To get the 

reaction source terms requires the solution of a system of  )1( +DNQ  linear equations. 

For instance for a 3-D unsteady problem, one would have to solve the matrix equation at 

each grid point for each time step. This would be a computationally expensive procedure  
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Figure 2.5. Schematic that shows the DQMOM procedure and the relation between 
QMOM and DQMOM. 
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if either  or  is large and therefore this method appears to be best suited for low 

dimensional problems (small ) and where a small number of quadrature points (small 

)  is sufficient for getting accurate results. A difficult problem arises due to the 

singularity of the matrix A defined in equation 2.29. It is well known that this matrix can 

be singular for some choices of moments. For instance, Fox (2003) gives the example of 

a bivariate problem (D = 2) with N

QN D

D

QN

Q = 2 quadrature points. In this case the most natural 

choice of moments , (i.e. the zeroth, first and second order 

moments) would give rise to a singular matrix A. Thus for these problems it is not 

possible to evolve this set of moments and if the particular application requires all these 

moments, then the number of quadrature points needs to be increased. In the following 

section, I shall discuss an algorithm that can construct a non-singular matrix A. 

200211100100 ,,,,, MMMMMM

 A practical advantage of DQMOM over QMOM is the expression for the flux and 

diffusion terms that makes it compatible with CFD solvers. In the example of the PDF 

transport equation, the convective and diffusive flux terms do not depend on the internal 

coordinates. In section 3, I shall discuss an aerosol problem of size dependent settling and 

diffusion that can be conveniently implemented using DQMOM.  

2.7.2 Construction of a non-singular matrix.   
 In this section I describe an algorithm that may be used to construct the non-

singular matrix A defined in equation 2.29. The matrix A can be interpreted as a Jacobian 

matrix that relates the changes in the quadrature points and weights to the changes in the 

moments:  
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 and  each row of the 

matrix A defined in equation 2.29 is constructed from a moment  indexed by a D-

tuple . Hence a specification of a set of moments is equivalent to the 

specification of a set of D-tuple of integers. The problem then is to choose a set of 

 moments that can be used to obtain the 

{ }lM

{ } { }Dllll ,...,, 21=

)1( +DNQ )1( +DNQ  rows of the matrix A with 

the restriction that the matrix be invertible. 

 Upadhyay and Ezekoye (2006) have demonstrated that the choice of moments 

may be dependent on the problem and that there may not be a universally optimal 

moment set. Hence to impose some order in the sequence of moments and at the same 

time to discard the moments that give rise to a singular matrix, I propose the method of 

Selective Graded Lexicographic Ordering (SGLO). 

 The graded lexicographic order is an ordering scheme for multivariate 

polynomials. It is clear that ordering a set of multivariate moments is equivalent to 

ordering a set of D-tuple of integers. Since any finite set of real numbers can be mapped 

to a set of integers, this method is valid for both integer and fractional moments. In this 

context I want to order multivariate moments of the form { } dllll MM ,...,, 21
= . The definition 

of graded lexicographic order (GLEX) is as follows (e.g. Dunkl and Xu (2001)). Let 

 and  be two D-tuples with ),...,,( 21 Dllll = ),...,,( **
2

*
1

*
Dllll = ∑

=

=
D

i
ill

1

. The moment  

precedes  in the ordering ( ) if (i) 

lM

*l
M *lglexl MM f *ll <  or (ii) in case  *ll =  then the 
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first non zero entry in the difference  is positive. As an example take the three 

multivariate moments indexed by 

*ll −

{ } 0,0,0MM l = , { } 0,0,1MM
l
=∗  and . Then 

by (i),  since 

{ } 0,1,0MM
l

=∗∗

{ } { } { }∗∗∗ llglexl MMM ,f ∗∗∗ =< lll  and by (ii)  since { } { }∗∗∗ lglexl
MM f

∗∗∗ = ll  but the first non-zero element in  = (1,0,0)-(0,1,0) = (1,-1,0) is positive. 

So the GLEX ordering is [ , , ] = [ , , ]. This type of 

ordering ensures that the 0

∗∗∗ − ll

{ }lM { }∗lM { }∗∗l
M 0,0,0M 0,0,1M 0,1,0M

th order moment is tracked before all the 1st order moments. 

And all 1st order moments are tracked before the 2nd order moments (which provide 

information on pair correlations) and so on. However a strict ordering using this scheme 

is not possible because some moments cause the resulting matrix to be singular. Hence a 

selective ordering is necessary. In practice a set of D-tuples (ordered according to GLEX) 

is generated; then, as the matrix A is built up row by row, a singular value decomposition 

of the matrix is performed. If the condition number of the matrix becomes very large then 

the current row associated with a particular D-tuple is discarded and the next D-tuple in 

the order is chosen. This procedure, which I have called Selective Graded Lexicographic 

Ordering (SGLO), ensures that the matrix A in (1.7) is non-singular. As an example let us 

take the case  (tri-variate problem with two quadrature points). In this case, 

 moments are required for the DQMOM. The set of eight valid moments 

obtained using SGLO  is given by  with 

3,2 == DNQ

8)1( =+× DNQ

321 ,, mmmM =),,( 321 mmm (0,0,0), (1,0,0), (0,1,0), 

(0,0,1), (2,0,0), (1,1,0), (3,0,0). Note that it is not possible to track some of the second 

order moments such as (0,1,1), (1,0,1), (0,0,2) etc. as inclusion of these moments would 

cause the Jacobian matrix A to be singular. If some of the moments carry essential 
 41



information for a particular application then they can be selected and the remaining 

moments can be ordered using SGLO. A graphical illustration of the Graded 

Lexicographic ordering method is shown in Figure 2.6. The ordering I have discussed is 

not the only possible ordering. However, it has several features that may be of use in 

moment methods. In most applications, the lower order moments may carry essential 

information and need to be tracked before higher order moments. This is ensured using 

GLEX ordering. Another feature is that it is possible to order the variables in terms of 

their importance in a problem. For example, in Figure 2.6, let us take the three 

coordinates to be associated with the variables ),,( 321 ψψψ . Further let us suppose that 

1ψ  is the principal variable, i.e. the most important variable for a particular application 

and for which one requires the most detailed statistics. Then GLEX ordering will ensure 

that a larger number of the higher order moments of 1ψ  are selected. While SGLO 

provides a systematic method of selecting valid moments and has many desirable 

features, I make no claim that it is a universally acceptable scheme. As we shall see, the 

optimal choice of moments does depend on the problem and may require trial and error to 

discover. 

 42



Zeroth order, | l | = 0 First order, | l | = 1

(0,0,0) 

(1,0,0)

(0,0,1)

(0,1,0)

(2,0,0)

(1,0,1)

(1,1,0) 
(0,2,0)

(0,1,1)

(0,0,2) 

Second order, | l | = 2

(Ψ1) 

(Ψ2) 

(Ψ3) 
(Ψ3)

(Ψ1)

(Ψ2)

 

Figure 2.6. Example of the Graded Lexicographic (GLEX) Ordering for a set of trivariate 
moments. (Note that not all these moments can be used to create a non-
singular Jacobian matrix A. Instead some moments need to be selectively 
discarded.) 

2.8 RESOLUTION OF SOME ISSUES IN QMOM AND DQMOM. 
 After presenting the theory behind population balance equations, moment 

methods and QMOM/DQMOM techniques to solve the moment equations, I discuss the 

issues that I shall investigate in further detail. The resolution of some of these 

problematic issues is the major scientific contribution of this work. 

(i) Application of QMOM to univariate population balance equations arising from 
aerosol dynamics. 

In chapter 3, I apply the QMOM for a number of problems arising in aerosol science. 

In particular I shall investigate the use of QMOM in problems involving aerosol 

nucleation and surface growth. In this class of problems, one has an aerosol population 

that grows from a single-sized nucleated particle. In this method one does not have a well 

defined initial number density function to initiate the simulations. I shall discuss the 
 43



 44

feasibility of adaptively changing the number of quadrature points during a simulation. 

Another important issue in aerosol dynamics is the simulation of size dependent aerosol 

transport. The transport of aerosol particles by settling and diffusion depends on the 

radius of each particle and hence each particle in the aerosol population is transported at 

different rates. This can lead to difficulties in the numerical solution due to dispersive 

fluxes. The QMOM equations involve awkward terms for the flux of particles in physical 

space. I shall demonstrate that DQMOM avoids these practical difficulties. By looking at 

a simple problem in which analytical solutions are available, I shall show that solutions 

depend on the set of moments that are chosen.  

I then discuss the coupling of population balance equations to CFD codes. This is 

important from a technological point of view because population balance models need to 

be used to model aerosol dynamics in the presence of complex fluid flows in devices with 

complex geometries. I take the example of a simplified smoke detector model and 

simulate the smoke entry and light scattering processes. These examples are meant to 

illustrate the numerous practical problems that can be solved by using the theoretical 

concepts discussed in this chapter.  

(ii) Application of DQMOM to multivariate population balance equations. 
As discussed in this section, there are a number of unresolved issues in the 

implementation of DQMOM to multivariate population balance equations. In chapter 4, I 

shall investigate the application of DQMOM to a Partially Stirred Reactor. I shall 

determine the accuracy of the DQMOM solutions by comparing results with results 

obtained using Direct Monte Carlo simulations. In particular, I shall investigate the 

feasibility of the SGLO method for selection of moments and then try to provide some 

heuristic guidelines on the optimal choice of moments for reacting flow simulations. 
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Chapter 3: Applications of QMOM and DQMOM to aerosol dynamics 
simulation. 

 Having described the theory behind population balances and moment 

methods for its solution, I now turn to some of the applications. In this chapter, I present 

solutions of the population balance equation for aerosols (known in the literature as the 

aerosol general dynamic equation (GDE)). I first consider a well known computational 

problem in aerosol science of nucleation, surface growth and coagulation in a perfectly 

stirred reactor (Upadhyay and Ezekoye (2003)). I then look at a problem involving size 

dependent gravitational settling and diffusion of particles between infinite parallel plates 

(Upadhyay and Ezekoye (2005b)). One of the objectives of considering these theoretical 

problems is to validate the quadrature method of moments (QMOM) and compare its cost 

and accuracy with respect to other solution techniques. Finally as an engineering 

application, I present a simulation of smoke entry and light scattering in a photoelectric 

smoke detector (Upadhyay and Ezekoye (2005a)).  

3.1 SIMULATING PARTICLE FORMATION AND GROWTH USING THE QUADRATURE 
METHOD OF MOMENTS.    

3.1.1 Introduction and motivation.  
Particles for many industrial applications are increasingly generated in the gas 

phase in aerosol reactors. There is then a need for obtaining a better understanding of the 

reactor parameters influencing generation of aerosol materials from the gas phase, 

especially the early stages of particle formation which involves nucleation and 

condensation of a low vapor pressure species.  To study a complex process like particle 

formation and growth and to predict strategies for production of monodisperse particles 
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requires more than just intuition and trial and error. This is especially so because the final 

powder characteristics are sensitive to reactor conditions and processes occurring in 

extremely short time scales. Accurate mathematical models describing different 

phenomena that occur in widely different time scales are necessary. As mentioned in 

chapter 2, the aerosol general dynamic equation is a very general model for simulating a 

variety of aerosol processes. There are numerous techniques for solving the GDE. In this 

section I consider the quadrature method of moments (QMOM) for solution. As 

discussed earlier, QMOM is a technique for solving the moment equations of the GDE 

without presuming a standard size distribution function and is applicable for a very large 

class of surface growth laws and coagulation kernels. 

The main focus in this section will be clarification of the applicability of reduced 

quadrature points in modeling multi-physics aerosol evolution.  I examine two classical 

analyses of aerosol formation process using the quadrature method of moments. The first 

is the formation and growth of aerosols in an isothermal, constant pressure, constant 

reaction rate, spatially homogeneous batch reactor. Friedlander (1983) derived an exact 

solution involving only the moments of the size distribution. The assumptions made were 

that the nucleation phenomena can be modeled using the classical theory of nucleation, 

surface condensational growth occurs in the free molecular regime and that coagulation 

can be neglected. These assumptions help in closing the moment equations because the 

diffusion growth law in the free molecular regime is independent of the radius. Pratsinis 

(1988) further studied this problem, solving the moment equations using the lognormal 

model for the aerosol size distribution function. This enables investigation of growth laws 

that are more complex, for example ones in which a transition occurs from the free 
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molecular to the continuum transport regime. Most importantly, coagulation can be 

studied to see how it affects the size distribution of the particles. Pratsinis (1988) was 

able to show that the simple lognormal approximation gave the correct trends for various 

useful reactor performance indices like the total number concentration of particles, their 

volume averaged diameters, the polydispersity index (a measure of the width of the 

distribution) etc. The QMOM is suitable for solving this problem without the assumption 

of lognormality and hence is expected to be more useful in the general case where the 

size distribution is not well known. The second problem of condensation in a nozzle is 

essentially a more complicated version of the first. The modeling of the formation and 

growth of aerosol particles here is slightly more involved than in the previous case 

because of the non-uniform temperature and pressure, sensitive dependence of 

thermodynamic parameters on the temperature and pressure, effects of the geometry of 

the nozzle and coupling of aerosol processes with the gas dynamics. Turner et al. (1988) 

developed a set of ordinary differential equations for modeling the aerosol dynamics 

coupled to the gas dynamics. The assumptions made are similar to the first problem 

where coagulation was neglected and surface growth was assumed to occur by the free 

molecular diffusion process. I also solve this problem using QMOM and discuss the 

various issues involved. 

3.1.2. Particle formation and growth in a box. 
This problem concerns the formation and growth of aerosol particles in a constant 

temperature, constant pressure and spatially homogeneous batch reactor. Due to the 

complete absence of transport phenomena, this model is also called a zero-dimensional 



model. A chemical reaction occurring at a constant rate creates supersaturation and new 

particles are formed by homogeneous nucleation. Friedlander (1983) has derived an exact 

solution for the moments for the case where the classical theory of nucleation is valid and 

where surface growth occurs in the free molecular regime. Pratsinis (1988) developed a 

less restrictive model assuming a lognormal profile for the size distribution. With this 

assumption more general surface growth laws can be used, such as one which models a 

transition from the free molecular regime to the continuum, and coagulation can also be 

included. I shall solve the same problem using the quadrature method of moments which 

obviates the need for assuming a specific form for the size distribution. 

I take the radius instead of the volume as the internal coordinate. In this case, this 

is more convenient because the surface growth law depends on the area of the particle 

which being proportional to the radius squared is naturally expressed as the second 

moment. For an isothermal, spatially homogeneous reactor with quiescent fluid and no 

diffusion of particles and after suitable non-dimensionalization, the QMOM equations 

reduce to the following: 
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The nomenclature and non-dimensionalization scheme is the same as in Pratsinis (1988) 

and given in Table 3.1.1. The equation for the condensable species is 
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The growth laws in radius space for the free molecular and continuum regimes are the 

following. 

Free molecular: 

2/1
11 )2/)(1(/ mTkSnvdtdrG bsFM π−== .      3.1.3  

Continuum: 

rSnvDdtdrrG sC /)1(/)( 11 −== .       3.1.4         

For the combined growth law the following interpolation formula is used. 

)(
)(

)(
rGG

rGG
rG

CFM

CFM

+
=          3.1.5 

In the above equations and in what follows, v1 is the volume, m1 is the mass and D1 the 

diffusivity of the monomer. S  is the saturation ratio. 

For the monomer equation the surface growth laws need to specify the number of 

monomers added and these are related to the volumetric growth rate. 

Free molecular: 

1
2 /4)(~ vGrrG FMFM π=         3.1.6 

Continuum: 

1
2 /)(4)(~ vrGrrG CC π=  

And for the problem of combined growth laws, the interpolating formula of the form 

given in equation 3.1.5 is used with  )(~ rGFM  and )(~ rGC . The coagulation kernels are of 

the following type: 

Free molecular:  
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((( ++= πβ ;   3.1.7 

Continuum: 

))(/)(/)((3/2),( 3/13/13/13/1 vvvvCuvvCuTkvv BC
((( ++= μβ :   3.1.8 

where  is the Cunningham slip factor given by )(vCu

))(/(25.11)( vrvCu λ+=         3.1.9 

Again for the combined coagulation problem the same interpolating formula (3.1.5) is 

used. The rate of nucleation is assumed to be given by the classical theory of nucleation. 

That expression is given in Friedlander (2000).  
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For the sake of comparison, the conditions necessary for the applicability of this equation 

are assumed to hold. In equations 3.1.2 to 3.1.10, , , ,  pertain to the volume 

mass, number density and diffusivity of the monomer (condensable species).  is the 

number concentration of the monomer at saturation. 

1v 1m 1n 1D

Sn

λ  is the mean free path of the gas, 

σ  is the surface energy of the solid particle and  is the Boltzmann constant. Bk

The formula in equation 3.1.5 to model the growth law over the entire range of 

Knudsen numbers has been shown to be very nearly the same as using Fuch’s 

interpolation formula that is more generally used (Pratsinis, 1988). It reduces to the free 

molecular and continuum growth laws at large and small Knudsen numbers respectively. 

The same formula is used to get a combined coagulation kernel from the free molecular 
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(equation 3.1.7) and continuum Brownian kernels (equation 3.1.8) to be consistent with 

Pratsinis (1988).  

Symbol Meaning 
τ = [ 12/1

11 )2/( −mTksn bs π ]  Characteristic time scale for particle growth 

τθ /t=  Time 
m

mm rnMM 11
* /=  mth moment 

1
* / rrr =  Size 

)//()()( *** τscc nrIrI =  Nucleation rate 

)//()()( 1
* τrrGrG =∗  Surface growth rate 

cvvk /* =  Number of nuclei in critical sized cluster of volume vc

c
m rrk /3/* =  Number of nuclei in critical sized cluster of radius rc

snnw /* =  Size distribution 

τββ sn=*  Coagulation rate 

snnS /1=  Saturation ratio 

)//(* τsnRR =  Rate of gas to particle production reaction 

Table 3.1.1. Non-dimensional terms used in equations 3.1.1 and 3.1.2. 

3.1.3. Particle formation and growth in a nozzle. 
Particles can also be formed by expanding a gas in a nozzle. Figure 3.1.1 shows a 

schematic of the process. The unsaturated vapor in a reservoir is transported by a carrier 

gas to the nozzle entrance. The expansion that takes place in the nozzle reduces the 

temperature and hence the saturation vapor pressure decreases rapidly. This leads to 

supersaturation of the vapor and a burst of nucleation at a fixed location. If the flow rate, 

concentration of the precursor and the nozzle area ratio are carefully chosen, a burst of 

nucleation occurs near the nozzle exit. After passing through the nozzle the condensed 

drops are allowed to solidify and grow by surface addition in a straight section. The vapor 

expansion method is a good strategy for production of monodisperse particles. However 
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in this chapter dealing with the validation of QMOM, I shall only be concerned with a 

solution to a simplified problem. 
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Figure 3.1.1. Schematic diagram showing particle formation and growth in a nozzle. 

Condensation in a nozzle is similar to the batch reactor model considered except 

that the temperature, pressure and volume change with location along the nozzle. Turner 

et al. (1988) developed a set of equations for modeling the aerosol nucleation and surface 

growth in the free molecular regime. This problem is a more complicated version of the 

box model (Pratsinis (1988)) in that the thermodynamic state variables depend on 

location along the nozzle and the gas dynamics is coupled to the aerosol dynamics. Here, 

I will solve exactly the same problem as in Turner et al. (1988) using QMOM. The set of 

equations for the gas dynamics and the thermodynamic properties is given in Turner et al. 
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(1988). The GDE for the aerosol dynamics with the quadrature approximation is the 

following. 
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The equation for the conservation of the monomer (condensable molecule) is 

*
1

****

*
1

22**

*
1

*
1

******
1

*

])1)(([

]))1((/)/1([

)(/

ndgQU

nDMagMadxdU

nnVAkIdxdnU s

−+Δ+−+

+−

=−++

μ

γαα       3.1.12 

The nucleation and growth term and the coagulation kernels have the same form as 

equations 3.1.3 to 3.1.10 given earlier. For this problem I use only the free molecular 

growth law and nucleation and neglect coagulation. A simple finite difference method is 

used to solve equations 3.1.11 and 3.1.12. Again the results of the solution to this 

problem using the QMOM are given in the next section. 

 
Symbol Meaning 

xsnx 110
* =   Length along the nozzle 

2/1
10

* )2//( mTkUU b π=  Gas velocity 
m

mm rnMM 110
* /=  mth moment 

1
* / rrr =  Particle size 

2/1
101

2
10

*** )2/(/)()( mTksnrIrI bcc π= Nucleation rate 
2/1

101110
** )2/(/)()( mTksrnrIrI b π=  Growth rate 

1
* / sββ = 2/1

10 )2/( mTkb π  Coagulation kernel 
α  Nozzle cross sectional area 
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Ma  Mach number 



g  Mass fraction in the condensed phase 
γ  Ratio of the heat capacities 

122 ])1)(1[( −−−−= gMagMad γ  Term appearing in equation for gas expansion 
*Q  Rate of heat generation due to condensation 

*Δ  Rate of mass loss of gas phase due to 
condensation 

*μ  Rate of change of average gas molecular weight 
due to condensation 

101
*

1 / nnn =  Monomer concentration normalized by 
concentration in the reservoir  10n

ss nnn 11
*

1 /=  Monomer concentration at saturation 

Table 3.1.2. Non-dimensional terms used in equations 3.1.11 and 3.1.12. 

3.1.4. Results and discussions. 

Particle formation and growth in a box. 
The objective is to compare results obtained using QMOM with the exact and 

lognormal calculations. Figure 3.1.2 shows the variation in total number concentration 

with the non-dimensional residence time for the case where coagulation is neglected and 

the growth law is the diffusion limited free molecular growth law. The results using the 

QMOM are compared with those in Pratsinis (1988). For this problem, the moment 

equations can be closed exactly for the 2- point and 3- point quadrature calculations and 

hence these match the exact solution. The 1-point quadrature calculation requires a 

quadrature approximation for computing the area and hence it is only approximate. The 

1-point approximation slightly overpredicts the total number concentration while the 

lognormal calculation underpredicts it. Figure 3.1.3 shows the comparison of the volume-

averaged diameters for the same problem. Again while the 2-point and higher quadrature 

schemes are exact, the one point computation gives a slightly better approximation than 
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the lognormal. This is a considerable advantage since the 1-point calculation is 

computationally more efficient and easier to implement than the lognormal calculation. 

This is because the 1-point scheme requires the tracking of just two moments whereas the 

lognormal method requires the tracking of three moments along with the evaluation of 

integrals. Figure 3.1.4 shows the variation in number concentration with time for two 

different reaction rates, and , for the combined growth law and with 

coagulation. In this case the growth law is taken to be the harmonic mean of the diffusion 

limited growth laws for free molecular and continuum regimes (equation 3.1.5). Then the 

functional form for this law is 

1.0* =R 0.1* =R

)/( crba + , which cannot be closed exactly. For the 

coagulation kernel I again use the harmonic mean of the two kernels as in Pratsinis 

(1988). For both reaction rates, there is very little difference between the 2- and 3-point 

quadrature calculations. This is presumably due to the fact that the size distribution never 

gets to be very wide due to the weaker effect of coagulation in this problem. As in the 

previous case, the 1-point quadrature solution is a more accurate approximation than the 

lognormal approximation.  Considering the 2- and 3- point calculations to be accurate, 

one can see that the accuracy of the lognormal and 1-point schemes gets better as the 

reaction rate increases. When the reaction rate increases, the size distribution becomes 

narrower and fewer moments are required to describe the aerosol dynamics. The errors 

associated with an assumed size distribution also begin to decrease. Figure 3.1.5 shows 

comparison of the volume-averaged diameter for the same problem as in figure 3.1.4. The 

trends shown by the three calculations are the same as that shown in figure 3.1.3. 

Although for figures 3.1.4 and 3.1.5 one cannot say which of the calculations are exact, it 
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seems reasonable to again conclude that the 3-point calculations are the most accurate. 2-

point results are very close to the 3-point that indicates the fast convergence. The 

accuracy improves very slightly on increasing the number of quadrature points. 
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Figure 3.1.2. Variation of total number concentration with time for , comparison 
between exact, 1-point QMOM and lognormal calculations, box model with 
free molecular surface growth law and no coagulation.  
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Figure 3.1.3. Variation of the volume averaged particle diameter with time for , 
comparison between exact, 1-point. QMOM and lognormal calculations, 
box model with free molecular surface growth law and no coagulation. 
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Figure 3.1.4. Variation of total number concentration with time for  and 
, comparison of the lognormal, 1-point, 2-point and 3-point 

QMOM calculations, box model, with coagulation and combined surface 
growth laws. 
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Figure 3.1.5. Variation of volume averaged particle diameter with time for  and 
, comparison of the lognormal, 1-point, 2-point and 3-point 

QMOM calculations, box model, with coagulation and combined surface 
growth laws. 

1.0* =R
0.1* =R

Particle formation and growth in a nozzle. 
This problem is interesting in that there is a very sharp burst of nucleation 

followed by surface growth. The two phenomena are separated. Figure 3.1.6 shows the 

variation in total number concentration with distance along the nozzle for the exact 

calculations from Turner et al. (1988) and the 1-point quadrature approximation. Figure 

3.1.7 shows the comparison for the number averaged diameter (defined as ). 

The 2-point and higher calculations are exact in this case due to assumptions listed 

earlier.  

*
0

*
1 / MM
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Figure 3.1.6. Variation of total number concentration with length along the nozzle, 
comparison of exact and 1-point QMOM calculations. 
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Figure 3.1.7. Variation of number averaged diameter with length along the nozzle, 
comparison of exact and 1-point QMOM calculations. 
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Evaluation of the one point quadrature approximation. 
There are various reasons for using the 1-point quadrature calculation as 

discussed in section 2.6 (page 32). In figure 3.1.8, I examine the error in calculating the 

area using the 1-point approximation as a function of the polydispersity index. The 

polydispersity index or the coefficient of variation is a measure of the width of the size 

distribution function (Randolph & Larson (1988)). It is defined as 

. It is seen from figure 3.1.8 that all the graphs for different 

reaction rates merge into one graph showing that the error in the area approximation is a 

function of the polydispersity index alone and independent of the reaction rate. This 

suggests that a useful way of deciding when to switch between various order quadrature 

calculations can be based on the magnitude of the polydispersity index. However this can 

be done only for 2-point and higher schemes since in the 1-point method, it is not 

possible to evaluate  to be used in the definition of the polydispersity index. The 

polydispersity index is calculated using the 2-point scheme to evaluate its effect on the 

error due to the 1-point calculation. The percentage error is computed from the difference 

between 1-point and 2-point quadrature results.   

1
2/12

102 /)( MMMMW −=

2M
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Figure 3.1.8. Variation in the error of 1-point quadrature calculation for area with 
polydispersity index for ,  and . 05.0* =R 1.0* =R 0.1* =R

In the problem of aerosol growth in a box, the inaccuracy in the area calculation leads to 

an inaccuracy in the saturation ratio because the saturation ratio is governed by the 

competition between the rate at which new particles are created by homogeneous 

nucleation and the rate at which the surface area of existing particles scavenge the 

condensable species. Homogeneous nucleation determines the total number 

concentration, and since the rate of nucleation depends sensitively on the saturation ratio, 

the error in the area computation leads to a large error in the total number calculation. But 

when the nucleation rate is much larger than the rate of surface growth, the variation in 

total number concentration is virtually independent of the surface area and hence errors in 

its calculation due to 1-point approximation are not significant. When the total area 

becomes large enough, the scavenging of the monomers by the existing particles leads to 
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a reduction in the saturation ratio. Hence in this case errors in the area calculation do 

matter in the final result. However, if the polydispersity index remains relatively small, 

the error is smaller, and tolerable accuracy can be obtained. This is illustrated in figure 

3.1.9 and figure 3.1.10. Interestingly, as the reaction rate is increased from  to 

, corresponding to a faster nucleation rate, there is a sharp decrease in the 

polydispersity index.  The associated result is that the error in the area calculation drops 

for the high reaction rate because the polydispersity index is lower; this is consistent with 

figure 3.1.8 which showed that the error in area grows more slowly when the 

polydispersity index is low. The error in the computation for the number concentration 

drops from approximately 35% to 15%. The 1-point computation also gets more accurate 

as the reaction rate gets higher. Figure 3.1.11 shows the same comparison for the problem 

of condensation in a nozzle. In the previous two cases the condensable species were 

generated by a steady chemical reaction. In the nozzle problem there is a much higher 

saturation ratio, leading to a burst of nucleation followed by a near immediate cessation 

of nucleation, and rapid surface growth. This suggests that nucleation and surface growth 

phenomena are separated. This can be seen by the much narrower peak and the sharper 

drop in the polydispersity index in figure 3.1.11. This figure also shows the variation in 

the error in the number calculation and average radius. 

1.0* =R

0.10* =R
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Figure 3.1.9. Polydispersity index and percentage error in total area, total number 
concentration and average diameter (1st moment) between 1-point QMOM 
and exact calculations, box model with . 0.1* =R
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Figure 3.1.10. Polydispersity index and percentage error in total area, total number 
concentration and average diameter (1st moment) between 1-point QMOM 
and exact calculations, box model with .  0.10* =R
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 64

In this case both the polydispersity and the error in the area calculation are large 

initially and although the error in area drops as fast as the polydispersity index, it is still 

sufficiently large to cause a slight error in the determination of the saturation ratio. Small 

differences in the saturation ratio can cause a large change in the final number 

concentration because of the very sensitive dependence of the rate of nucleation on the 

saturation ratio.  

This suggests a useful strategy for solving problems of this sort where the size 

distribution evolves “out of nothing”. In higher order quadrature methods there appears to 

be a need to specify an initial size distribution function. This does not appear to be a 

restriction for the 1-point method. When the first particles of a critical sized radius 

appear, the size-distribution is strictly monodisperse and the 1-point quadrature 

approximation can be implemented.  Thus, I recommend that at the beginning of a 

process when the polydispersity index is zero and beginning to increase, the 1-point 

approximation should be used.  In practice, there are physical scenarios where these 

requirements can be relaxed.  For example, if the coagulation rate is sufficiently large 

relative to the nucleation rate, or if the nucleation process results directly in a 

polydisperse distribution, it may be feasible to begin with a higher order approximation.  

For nucleation resulting in an effectively monodisperse distribution, errors in a one point 

approximation in the calculation of the area and other coagulation terms do not affect the 

result for the number concentration calculation because the rate of nucleation is many 

times larger than surface growth and coagulation rates. When the polydispersity begins to 

increase and the rate of surface growth gets comparable to the rate of homogeneous 

nucleation, then I suggest that the calculations be continued with two or more quadrature 



points, thus improving the accuracy in the crucial stages when the total surface area is 

important in quenching homogeneous nucleation.  
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Figure 3.1.11. Polydispersity index and percentage error in total area and total number 
concentration between 1-point QMOM and exact calculations, problem of 
condensation in a nozzle. 

3.1.5. Conclusions. 
In this section I have examined the suitability of applying the quadrature method 

of moments (QMOM) to the solution of problems in aerosol dynamics in which 

nucleation, surface growth and coagulation occur simultaneously. I have reworked three 

typical problems and compared the results with results obtained using the QMOM. The 

benefits of using QMOM are that it can handle more complex problems involving 

complicated growth and coagulation processes, can easily be incorporated into other fluid 

dynamic or combustion calculations and can be used for any form of the size distribution 
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function. This is expected to be a significant advantage in modeling processes where 

nothing is known about the size distribution. 

The 1-point quadrature is the simplest type of moment calculation in which only 

the first two moments need to be calculated. In the problems I considered, the 1-point 

calculations predicted the qualitative trends and gave quantitative results of accuracy 

comparable with the calculation which assumed a lognormal size distribution. 2-point 

quadrature, which is only slightly more complicated, gives very accurate results. As 

expected, the error in the 1-point quadrature approximations goes down as size 

distribution becomes narrower. In many cases where the size distribution evolves due to 

nucleation, surface growth and coagulation, it is desirable to start the computations 

without assuming any initial size distribution. This can be done by starting with 1-point 

and subsequently increasing the number of quadrature points. In this manner, the best 

features of 1-point and higher quadrature calculations can be utilized. 

3.2. TREATMENT OF SIZE DEPENDENT AEROSOL TRANSPORT PROCESSES USING 
QMOM/DQMOM. 

3.2.1 Introduction and motivation. 
 In the previous section, I discussed the applicability of QMOM to aerosol 

processes involving nucleation, surface growth and coagulation. While QMOM appears 

to be a promising tool for those problems and a number of other aerosol applications 

described in the references outlined in section 2.6, it is necessary to increase their 

applicability to a wider range of problems. Aerosol transport by gravitational settling and 

diffusion can be important in a number of natural phenomena and industrial applications 

such as filtration, sampling, deposition on the small airways of the lungs etc. The 
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diffusion of aerosols differs from the diffusion of molecules in that the diffusion 

coefficient depends on the size of the particle as shown by Einstein (1905). Further in the 

convective transport by gravitational settling, the settling velocity also depends on the 

size of the particle as has been described by Fuchs (1964). In fact for any other aerosol 

transport mechanism such as electrophoresis or thermophoresis, different sized particles 

move with different velocities leading to dispersive flux and diffusion problems. The 

implementation of size dependent transport phenomena in moment methods can lead to 

numerical difficulties. In a recent study, Settumba and Garrick (2004) have identified 

some problems associated with the implementation of size dependent diffusion in 

moment methods with closure based on the presumed lognormal density. The case of size 

dependent convection (flux) has been treated previously by Fan et al. (2004). To my 

knowledge an evaluation of QMOM or DQMOM for problems involving size dependent 

diffusion has not been carried out. 

In this section, I focus on the numerical issues related to the use of QMOM and 

DQMOM for simulation of aerosol settling and diffusion with size dependent 

coefficients. I take a simplified problem of aerosol settling and diffusion between infinite 

parallel plates. This is a problem for which analytical solutions for the number density 

function can be obtained and the moments can be obtained by integration over the 

number density. When the moment equations are considered, it is seen that using even the 

simplest expressions for the diffusion coefficient and settling velocities leads to moment 

closure problems. I use QMOM and DQMOM for closure of the moment equations. For 

the problem considered in this study, moment methods may not be the most appropriate 

choice for the solution. However, the simplified nature of the problem and the availability 



of analytical solutions can be used to clarify the nature of the solutions of the moment 

equations. I discuss the relation between the QMOM and DQMOM approaches for 

solution of the moment equations. These two methods lead to different interpretations 

and techniques for the solution of the moment equations but the solution is exactly the 

same. Furthermore, I find that solutions for the moments depend on the initial choice of 

moments and that it is possible to improve the accuracy with an optimal choice of 

moments. 

3.2.2. Mathematical formulation and analytical solutions.   
In this study I consider the diffusion and gravitational settling of particles contained 

within infinite horizontal plates. The governing differential equation is a Fokker-Planck 

equation of the type 
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Equation 3.2.1 is a part of the general dynamic equation for aerosols (Friedlander (2000)) 

in which the coagulation, surface growth and nucleation etc. have been neglected. Here 

the aerosol population is described by its radius, r .  is the aerosol number density 

function that depends on space and time. The diffusion coefficient  and the 

gravitational settling velocity  depend on the radius,
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In writing equations 3.2.2 and 3.2.3 I have neglected the slip correction which becomes 

important when the particle size approaches the mean free path of the gas. However this 

omission is not a serious restriction. In the analysis that follows, the effect of slip can be 

easily included as long as the settling velocity and diffusion coefficients do not depend on 

space and time. Forms of equation 3.2.1 have been studied by various researchers within 

the context of deposition of particles in the airways of the lungs. Davies (1949), Wang et 

al. (1968) and Goldberg et al. (1978) derived solutions of 3.2.1 with the assumption of 

constant diffusion and settling velocities (no size dependence).  

I now define the following non-dimensional quantities: 
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coefficient evaluated at the geometric mean radius 0r  of the initial distribution. 

In terms of the non-dimensional quantities, equation 3.2.1 can be written as:                   
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where 
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s

rD
LrC

Pe =  is a non-dimensional parameter, the Peclet number, that compares 

the effect of settling to diffusion. If , then the problem is settling dominated 

whereas if  implies that the problem is diffusion dominated. By definition  

1>>Pe
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depends on the height of the chamber as well as the mean of the initial aerosol size 

distribution. 

To solve equation 3.2.4, initial conditions and boundary conditions are required. I assume 

that the initial condition is a lognormal distribution that is uniform in space. The walls are 

taken to be perfect sinks for the particles: 

),()0,~;(~
0 gLN rnxrn σ=  )1~0( << x ; 

0)~,~;(~ =txrn    1,0~ =x .      3.2.5 

Case I: Simultaneous gravitational settling and diffusion. 
The solution to equation 3.2.4 with the boundary conditions 3.2.5 can be obtained using 

separation of variables. The tildes have been dropped and all quantities are 

dimensionless:  
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The solution is identical to the constant diffusivity case since in this problem there are no 

interactions between the particles and the particles of a fixed radius settle and diffuse 

independently of all the other particles. The solution 3.2.6 is similar to the solutions 

obtained by Wang et al. (1968) and Davies (1969) with the exception that I have retained 

the radius dependence of  and  . Now I look at the limiting cases. )(rD )(rCs
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Case II: Diffusion only. 
 

For the case of diffusion only,  is equal to zero and the  term in equation 3.2.4 

does not appear, as a different scaling is used for the characteristic time. In this case the 

following solution can be obtained using separation of variables: 
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Case III: Settling only. 
The solution for the case of pure settling is obtained using the method of characteristics. 

For settling only, equation 3.2.4 becomes: 
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The solution to equation 3.2.8 is given by: 

))((),;( 0 trCxntxrn s+=  if 1)( <+ trCx s , 

0),;( =txrn    if  1)( ≥+ trCx s .     3.2.9 

3.2.3. Semi-analytical solutions for the moments. 
 My objective in this section to obtain accurate solutions for the moments by 

integrating the analytical solutions 3.2.6, 3.2.7 and 3.2.9 using numerical quadrature. 

These moments will be used as benchmark solutions for comparison with moments 

obtained from the solution of the moment evolution equations using QMOM / DQMOM. 
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For cases I and II considered above, the moments can be obtained by integrating the 

solutions 3.2.6 or 3.2.7. It is seen that to get the  moment involves the integration of a 

function of the form  over the initial lognormal number density 

function , i.e., 

thk
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Here  is a finite sum that approximates the infinite series in 3.2.6 or 3.2.7. Each 

term of the series expression depends on the particle radius 

),;( txrf

r  through the r - dependence 

of  and . To evaluate this integral I make use of the method suggested by 

Wilck (2001) for accurate integration of functions over the lognormal distribution. In this 

case since the weight function (lognormal density) and hence all its moments are known, 

a Gaussian quadrature formula of arbitrarily high order can be developed.    

)(rCs )(rD

The quadrature formula for evaluating equation 3.2.10 is then given by  
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where  is the quadrature point and  is the quadrature weight.  is the number of 

quadrature points and  moments are required to determine  quadrature points. 

Due to the complicated dependence on 

ir̂ iW QN

QN2 QN

r  of the integrand, it is necessary to check the 

convergence of the quadrature sum. I now put forward a strategy for checking the 

convergence of quadrature approximations to the integral for all three cases. 

Case I and II. 
 

 72



To obtain the moments as a function of space and time one needs to evaluate an 

integral of the form 3.2.10. From equation 3.2.6, one sees that the r  dependence of the 

integrand is extremely complicated and one needs a large number of quadrature points for 

accurate evaluation of the integral. In my example,  needs to be integrated over 

a lognormal distribution using the quadrature formula (3.2.11). A sequence of moments 

of the lognormal density needs to be used to obtain the quadrature points and weights. 

The moments of the lognormal distribution are given by (e.g. Williams and Loyalka 

(1991)) 
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⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

2
))(ln(

)ln(exp
22

,0,
g

gLNLNk

k
rkMM

σ
      3.2.12 

In the above formula  can be taken to be an integer or fraction. When the integer 

moment sequence 

k

12,...3,2,1,0, −= Qk NkM  is chosen the quadrature approximation 

3.2.11 becomes exact for all integrands that are polynomials up to order . When 

a fractional moment sequence, say 

12 −QN

36...3,2,1,0,3/ −= Qk NkM  is specified, then at the 

cost of specifying three times more moments, one also gets exact results for all integrands 

that are polynomials up to order 12 −QN  or power laws of the form . By 

choosing fractional moment sequences of lower orders, it is possible to get the exact 

integral for a larger class of functions. Another interpretation is that by choosing a larger 

number of fractional moments, the underlying number density function (in this case the 

lognormal density), is represented more accurately. Due to the complicated form of the 

function  to be integrated, a-priori it is not evident which is the best moment 

∑
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36
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k

k
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sequence. Therefore to check the convergence of the quadrature sum, it is necessary to 

check that the quadrature sum is independent of the number of quadrature points and also 

independent of the choice of moment sequences of smaller and smaller fractions. 

The choice of fractional moment sequences to obtain a quadrature formula has 

been discussed by McGraw and Wright (2003) in the context of the quadrature method of 

moments (QMOM). The same principle is used for integration over the lognormal or any 

other distribution. Since the quadrature points are roots of an orthogonal polynomial 

obtained from the moments, a change of variables is required and the fractional moments 

of the original distribution is transformed into the integer moments of a new distribution. 

For example, suppose I specify a fractional moment sequence of the original lognormal 

distribution, , as )(rnLN 36...3,2,1,0,3/ −= Qk NkM . 
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A new variable  is defined by the mapping . The density , in terms of the 

transformed variable s , is related to the original density  by the coordinate 

transformation rule 

s 3/1rs = )(sm

)(rnLN

drrndssm LN )()( =          3.2.14 

By writing 3.2.13 in terms of the new variable s  and using 3.2.14, one gets 
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It can be seen that one does not need the expression for  since one knows its 

moments in terms of the moments of the original distribution. The fractional moment 

sequence { } in 

)(sm

3/kM r  is converted to an integer moment sequence { }kM~  in . Now the s
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quadrature points and weights can be obtained using { }kM~ . The quadrature 

approximation of the integral 3.2.11 in terms of the variable is  is given by s

∑
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≈
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i
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k
ik WsfstxM

1

33 )ˆ()ˆ(),(         3.2.16 

Where  are the moments of the analytical solution for the number density 3.2.6 

or 3.2.7. 

),( txM k

Case III. 
 In the case of pure settling a different strategy must be employed to obtain the 

moments. One needs to calculate the moments of the number density given in equation 

3.2.9. When the initial number density is a lognormal, the solution is a truncated 

lognormal density where the radius of truncation depends on space and time. From 

equation 3.2.3 one sees that  where  is a constant independent of 2
0)( rCrC ss = 0sC r  that 

is given by ⎟
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0 . The moment solution to 3.2.9 is given by 
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The lognormal density function with the radius normalized such that  is zero is 

given by 
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The lognormal density is a normal density in  so using  in 3.2.18 

and after some algebra one gets 
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The expression integrand is another lognormal density function with the same geometric 

standard deviation but shifted in r . Hence the solution for the moments is given by the 

cumulative distribution function (CDF) of the shifted lognormal distribution (e.g. 

Weisstein (1999)). 
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where  is the CDF of the shifted lognormal distribution given by  )(xCDF
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3.2.4. The moment methods. 
In this section I discuss alternative methods to obtain the moments by solving the 

moment transport equations corresponding to equation 3.2.4. In the previous section 

analytical solutions for the number density are obtained and moments can be obtained up 

to arbitrary accuracy by numerical integration using fixed quadrature points and weights. 

In moment methods a system of differential equations are solved for a sequence of 

moments and it becomes inefficient to track a very large number of moments. Therefore a 

truncated sequence of moments need to be used and the transport equations for the 

moments cannot be closed. I will use QMOM and DQMOM to solve the moment 
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equations. These methods use a smaller number of quadrature points and weights that 

change in time and space.  

Quadrature method of moments (QMOM). 
 The equation for the moments  can be obtained by multiplying equation 3.2.4 

by 

kM

kr  and integrating over the entire range of radii: 
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Equation 3.2.23 suffers from the ‘closure problem’. For  and  given by 

equations 3.2.2 and 3.2.3, it is not possible to represent the integrals directly in terms of 

the set of moments 

)(rD )(rCs

)120( −≤≤ Qk NkM  that are being solved. As discussed in section 

2.6, in QMOM, the closure is accomplished by Gaussian quadrature. The QMOM 

representation of equation 3.2.23 is given by 
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where  and  are the quadrature points and weights respectively and they only 

depend on the moments . The initial and boundary conditions are given by: 

jr̂ jW

kM

kLNk MxM )()0,( =    )10( << x  

0),( =txM k     1,0=x  

where  are the  moments of the initial lognormal distribution.        kLNM )(
thk
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Direct quadrature method of moments (DQMOM). 
The general theory of DQMOM is already discussed in section 2.7. The DQMOM 

formulation for the solution of the Fokker Planck equation in 3.2.1 is given in greater 

detail in Appendix B. One sees that transport equations have to be solved for the 

quadrature weights, , and quadrature point-weight products, iW iii rWS ˆ= . 
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ia  and  are source terms that are necessary in order to force a sequence of ib 12 −QN  

moments to evolve correctly. In general  and  are obtained by solving a system of 

linear equations as shown in Appendix B. The initial and boundary conditions are given 

by: 

ia ib

LNii WxW ,)0,( =    QNix ..1),10( =<<     3.2.27 

LNiLNiLNii rWStxS ,,, ˆ),( ==    QNix ..1),10( =<<     3.2.28 

0),1(),0(),1(),0( ==== tStStWtW iiii       3.2.29 

LNiLNi Wr ,, ,ˆ  are the  quadrature point and weight for the initial lognormal distribution. 

In general, if the diffusion coefficient is size dependent then the source terms  in 

equations 3.2.25 and 3.2.26 are complicated non-linear functions of ,  and their 

gradients. Equations 3.2.25 and 3.2.26 are then a set of coupled non-linear partial 

differential equations. It must be noted that in general the source terms contain 

expressions due to coagulation, breakage etc. which are again coupled and non-linear. In 

thi

ii ba ,

iW iS
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the problem that I have considered in this study, the initial number density is specified as 

being uniform throughout space and hence 0
ˆ
=

∂
∂

x
ri .  For this case the source terms  

and  are identically zero and the equations and boundary conditions for  and  are 

identical. The equations 3.2.26 and 3.2.27 become linear and uncoupled, but the size 

dependence of the velocity and diffusivity remain in the equations.  

ia

ib iS iW

3.2.5. QMOM vs. DQMOM.  
The QMOM formulation of the problem is given by equation 3.2.24 and the 

DQMOM formulation is given by equations 3.2.25 and 3.2.26. For univariate population 

balance equations, these two methods give identical solutions (Marchisio and Fox (2005)) 

but the methodology and the interpretation of the problem is different. 

 In terms of implementation in existing CFD codes, I see that the DQMOM 

formulation given in equations 3.2.25 and 3.2.26 is more convenient. The equations 

resemble transport equations for scalars and the coupling appears in the source terms. 

Most commercial CFD codes have been designed to handle the transport equations in the 

form of equations 3.2.25 and 3.2.26. In contrast, the flux and diffusion terms in the 

QMOM formulation involve integrals or quadrature sums. Another important difference 

between the two methods is in the choice of moment sequences. In the DQMOM 

formulation as given in Fox (2003) or in Appendix B, any moment sequence can be 

chosen as long as the matrices involved do not become singular. As mentioned earlier, in 

QMOM, a three term recurrence relation between consecutive orthogonal polynomials is 

used to compute the quadrature points and therefore an ordered moment sequence is 
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required. Further any ordered moment sequence such as [0,1/k,2/k,3/k,…] has to be 

transformed to an integer moment sequence after a change in variables.  

3.2.6. Results and discussion. 

Computation of the moments by integration of analytical solutions. 

 80

 As shown in section 3.2.3, one can obtain solutions for the moments by numerical 

integration of the number density function. These solutions will be used to benchmark the 

solutions for the moments obtained using QMOM and DQMOM. Due to the complicated 

form of equation 3.2.11, it is necessary to check for the convergence of the quadrature 

approximation of the integral. For the case of simultaneous gravitational settling and 

diffusion (Case I), the expression to be integrated is 3.2.6. Figure 3.2.1 shows the results 

of the quadrature approximations (3.2.11) (using large ) for computing .QN 0M  It is seen 

that a large number of quadrature points are needed before the solution converges. For 

instance, the difference between successive approximations becomes small only when 20 

or more quadrature points are used. The solutions are assumed to “converge” when the 

maximum difference between successive approximations becomes very small. However 

the converged solution for , obtained using an integer moment sequence for 

calculating the quadrature points and weights, may not be the correct solution. 

0M

As 

discussed in section 3.2.3, better accuracy can be obtained by the use of fractional lower 

order moments. Figure 3.2.2 shows the converged results for  and  for choices of 

an integer moment sequence  and fractional moment sequences .

0M 3M

kM 4/3/2/ ,, kkk MMM  

The graphs in figure 3.2.2 show that the converged solution obtained using integer 

moment sequences is different from that obtained using fractional moment sequences. 



For each of the moment sequences, 100 quadrature points (200 moments) are used to 

compute  and 0M 3M . However, for each moment sequence, the solutions get very close 

to each other after 20 or more quadrature points as shown in figure 3.2.1 for the integer 

moment sequence. The solutions obtained using  are all close together.4/3/2/ ,, kkk MMM  

For reasons outlined earlier, the converged solution obtained with the use of fractional 

moment sequences is considered to be the correct analytical solution for the moments. As 

an independent validation, the integration is also carried out using the Monte Carlo 

scheme that is not based on quadrature. Figure 3.2.2 also shows that the results obtained 

using Monte Carlo integration with 10,000 samples coincide with the solution using 

fractional moments. For diffusion only (Case II), the integrand is obtained from equation 

3.2.7. Inspection of equation 3.2.7 shows that the expression is greatly simplified 

compared to the combined settling and diffusion case (equation 3.2.6), in particular the 

exponential terms involving  drop out)(rCs . Figure 3.2.3 shows the convergence of the 

quadrature approximation using integer moment sequences. As compared to Case I, 

fewer moments are required to attain convergence. In this case the difference between the 

successive approximations becomes small when only 5 quadrature points are used.  

Figure 3.2.4 shows the effect of choice of different moment sequences. In contrast to 

figure 3.2.2 for Case I, the solutions obtained using different moment sequences are 

almost the same. For this case the Monte Carlo integration also converges to the solution 

obtained from quadrature. Surprisingly, compared to Case I a larger number of samples 

are needed for the Monte Carlo results to converge. For instance in figure 3.2.4 I show 

the results using 100,000 samples and these results still show some statistical 
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fluctuations. This is a puzzling effect as DQMOM results showed better convergence for 

this case. 
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Figure 3.2.1. Solutions for )1,(0 =txM  obtained from the numerical integration of the 
analytical solution (equation 6) with increasing number of quadrature points 
and choice of integer moment sequence for the case of combined diffusion 
and gravitational settling (Case I). 
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Figure 3.2.2. Converged solutions of the numerical integrations for  and 
 using integer moment sequence and several fractional moment 

sequences. Case of combined diffusion and gravitational settling (Case I). 
Also shown is the solution using Monte Carlo integration that coincides with 
the solution obtained from fractional moments.  
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Figure 3.2.3. Solutions for )1,(0 =txM  obtained form the numerical integration of the 
analytical solution (3.2.7) with increasing number of quadrature points and 
choice of integer moment sequence for the case of diffusion only (Case II). 
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Figure 3.2.4. Converged solutions for )1,(0 =txM  and )1,(3 =txM  using integer 
moment sequence and several fractional moment sequences. Case of 
diffusion only (Case II). Also shown is the solution from the Monte Carlo 
integration using 100,000 samples. 

Effect of the choice of moments on the accuracy of the solution obtained using 
QMOM/DQMOM.  
 When the moments are evaluated by integration of the analytical solution for the 

number density, one sees that as many as forty moments (for twenty quadrature points) 

may be needed. Further, the solutions obtained using integer moments or fractional 

moments may be different. In practice, for most aerosol computations it is not necessary 

to obtain extreme accuracy in the numerical solutions. However, while working with a 

fixed number of moments, it may be desirable to choose the optimum set of moments that 

gives the greatest accuracy. In this section, I compare numerical solutions of the moment 

equations with the benchmark solutions obtained by integrating analytical expressions for 

the number density. The results presented in this section are for the moment methods 
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discussed in section 3.2.4. Unlike in the previous section, here the quadrature points and 

weights are evolved in space and time and a maximum of only five quadrature points are 

used. 

 For numerical solutions of the moment equations, I choose to solve the DQMOM 

form of the equations given by equations 3.2.25 and 3.2.26. As discussed in section 3.2.4, 

for the problem considered, the source terms  in equations 3.2.25 and 3.2.26 are 

zero and the quadrature points  do not change with time. The equations are effectively 

uncoupled and linear. Equations 3.2.25 and 3.2.26 are a set of linear transport equations 

in one dimension. The finite control volume method (Patankar (1980)) is used. An 

explicit scheme is used for the time marching with very small time steps to avoid 

instability.  

ii ba ,
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 The objective of the study is to evaluate errors due to closure of the moment 

equations. A suitable quantity that is useful and whose error can be compared is the 

fraction of the number  or volume  of aerosol deposited. These are defined by: )(tN )(tV
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Two different methods are used to compute  and . First, the moments for each 

 are obtained by integration of analytical solutions using the methods described in 

)(tN )(tV
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the previous section. For the case of settling only, the solution is given directly by the 

formula 3.2.20. The analytical values  and  are obtained by numerical 

integration of the moments over the spatial domain 

aitN )( aitV )(

[ ]1,0  and using equations 3.2.30 and 

3.2.31. Then numerical solutions are computed for the same discrete set of points . If 

 and  denote the numerical solutions to equations 3.2.30 and 3.2.31, then the 

time integrated or cumulative error is defined as: 
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where the analytical solutions are evaluated at time intervals of . The numerical 

solutions are computed using much smaller time steps of  but in computing 

 and  the numerical solutions are sampled at the same times  as the analytical 

solutions.  

310−=Δ it

610−=Δ it

NE VE it

 It is necessary to ensure that numerical errors in the DQMOM solutions remain 

small and that for the monodisperse case the two solutions are very close to each other. 

Figure 3.2.5 shows the comparison of  and  for the monodisperse case. In 

this case there are no closure problems and the two solutions are very close together for 

all three cases. The maximum absolute difference is of the order of 10

atN )( ntN )(

-3 for Cases I and II 

while there is no difference for Case III. For the polydisperse case, the numerical 

solutions all use three quadrature points but with different initial moment sequences. The 

 86



sequence  means that initially the moments  are used to 

evaluate the quadrature points and weights. Figure 3.2.6, figure 3.2.7 and figure 3.2.8 

show the comparison of nd  for the case of pure diffusion (Case II), pure 

settling (Case III) and combined settling and diffusion (Case I) respectively. Figure 3.2.6 

shows that the solutions obtained using different moment sequences are very close, the 

maximum absolute error is around 0.05 for the  sequence. For the integer and 

fractional moment sequences, it is smaller than 0.005. In figure 3.2.7, I compare the 

solution obtained with the choice of different moment sequences with the analytical 

solution. The solution obtained with the  sequence shows that by , all the 

particles are deposited. In this case higher moments are used to calculate the quadrature 

points and weights and therefore the quadrature points are larger. As mentioned 

previously, the larger quadrature points correspond to bigger particles that settle faster.  

kM 3 15129630 ,,,,, MMMMMM
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Figure 3.2.5. Comparison of the number fraction of aerosol deposited obtained from the 
analytical solution  and numerical solution  for the 
monodisperse case and for the three cases of combined diffusion and settling 
(Case I), diffusion only (Case II) and settling only (Case III). 
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Figure 3.2.6. Comparision of  (analytical solution) and  (solution from 
QMOM/DQMOM) for the polydisperse case. Effect of the choice of 
different moment sequences in the numerical solution is compared. Case of 
diffusion only (Case II).  
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Figure 3.2.7. Comparision of  and  for the polydisperse case. Effect of the 
choice of different moment sequences in the numerical solution is 
compared. Case of settling only (Case III).     
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Figure 3.2.8. Comparision of  and  for the polydisperse case. Effect of the 
choice of different moment sequences in the numerical solution is 
compared. Case of combined diffusion and gravitational settling (Case I). 
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Looking at the solution obtained using the integer moment sequence  and the 

fractional moment sequences  and , I see that the  solution is better for the 

time interval  but for  the  and  solutions get better. At 

longer times the large particles will have settled and only the smaller particles are left. 

Then I see that solutions obtained using fractional moments are more accurate. For the 

solution obtained using the  sequence,  is initially small but starts to increase 

faster than the solutions obtained using ,  and . In figure 3.2.8, the 

combined effect of settling and diffusion is considered. In this case, the solutions 

obtained using different moment sequences are again slightly different, but the variations 

are smaller than for pure settling.  

kM

2/kM 3/kM kM

6.02.0~ −t 6.0>t 2/kM 3/kM

kM 2 nitN )(

kM 2/kM 3/kM

 The preceding results show that solutions depend on the initial choice of moments 

to describe the population. Further solutions obtained using a particular moment sequence 

may be more accurate for some time interval while it may be less accurate for other 

times. In Tables 3.2.1, 3.2.2 and 3.3.3, I look at the total error  and  defined in 

equations 3.3.32 and 3.3.33. Table 3.2.1 shows the results for Case II (diffusion). I see 

that errors for both  and  are smaller when the moment sequences ,  and 

 are chosen. The time integrated error is highest when the  sequence is chosen. 

The proper choice of moment sequence appears to be more significant factor in the 

reduction of error than the number of quadrature points used. For instance, in all cases I 

do not get much reduction in the error when the number of quadrature points is increased. 

The same trends are seen in Table 3.2.2 and Table 3.2.3 for Case III (pure settling) and 

NE VE

0M 3M kM 2/kM

3/kM kM 3
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Case I (simultaneous settling and diffusion) respectively. The errors are largest for the 

Case III. An interesting observation is that the choice of  moment sequence leads to 

a larger error for the problems considered. The  sequence is analogous to choice of 

the volume to describe the particle state. Results obtained in this work seem to indicate 

that for aerosol problems involving settling and diffusion, the particle radius is a better 

choice for the internal variable. 

kM 3

kM 3

 

Moment 1 pt. 

Sequence (×  10-3) 

3 pt. 

(×  10-3) 

4 pt. 

(×  10-3) 

5 pt. 

(×  10-3) 

 NE  VE  NE  VE  NE  VE  NE  VE  

m3    10.6 13.4 10.5 13.0 10.4 12.9 

m2    2.7 2.1 2.3 1.5 2.1 1.3 

m  0.84 0.84 0.8 0.9 0.8 0.8 0.8 0.8 

2/m    0.9 1.4 0.8 0.8 0.8 0.8 

3/m    0.9 3.0 0.8 0.8 0.8 0.8 

Table 3.2.1. Comparison of the errors  and  of the QMOM/DQMOM solutions for 
different moment sequences and number of quadrature points for the case of 
diffusion only (Case II). 
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Moment 1 pt. 

Sequence (×  10-3) 

3 pt. 

(×  10-3) 

4 pt. 

(×  10-3) 

5 pt. 

(  10× -3) 

 NE  VE  NE  VE  NE  VE  NE  VE  

m3    96.9 112.4 95.4 111.5 95.1 111.3 

m2    47.6 62.1 51.5 56.9 54.1 54.4 

m  0 0 48.8 34.3 34.9 35.6 36.4 37.9 

2/m    30.3 40.5 51.6 40.4 47.1 33.4 

3/m    36.2 41.6 53.0 36.5 40.2 32.7 

Table 3.2.2. Comparison of the errors  and  of the QMOM/DQMOM solutions for 
different moment sequences and number of quadrature points for the case of 
settling only (Case III). 

NE VE

Moment 1 pt. 

Sequence (×  10-3) 

3 pt. 

(×  10-3) 

4 pt. 

(×  10-3) 

5 pt. 

(×  10-3) 

 NE  VE  NE  VE  NE  VE  NE  VE  

m3    40.7 65.4 40 64.6 39.9 64.4 

m2    32.9 33.0 31.7 27.9 30.7 25.6 

m  5.3 5.3 10.7 19.8 10.3 11.8 6.2 9.2 

2/m    11.7 15.5 6.3 11.4 5.0 7.63 

3/m    8.7 16.7 7.3 10.6 5.5 7.3 

Table 3.2.3. Comparison of the errors  and  of the QMOM/DQMOM solutions for 
different moment sequences and number of quadrature points for the case of 
simultaneous diffusion and settling (Case I). 
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3.2.7. Conclusions. 
 In this section I examined the problem of aerosol settling and diffusion in which 

the settling velocity and diffusion coefficient depends on the size of the particle. I took a 

simple problem for which analytical solutions for the number density exists. The moment 

solutions can be obtained using numerical integration of the number density. I then 

compared these moments with the solutions obtained from the moment equations. The 

moment methods that I focussed on are the quadrature method of moments (QMOM) and 

the direct quadrature method of moments (DQMOM). Both methods use Gaussian 

quadrature for moment closure and give identical solutions but the implementation is 

different. The efficacy of these methods for treatment of size dependent aerosol transport 

processes had not been previously considered.  

 For the simplified problem considered in this study, it becomes possible to focus 

on the error in the closure of the moment equations. I investigated the nature of the 

solutions of the moment equations by taking different moment sequences of the initial 

number density and evaluating the number and volume fraction of aerosol deposited. Due 

to the unclosed form of the moment equations, the solutions depended on the initial 

choice of moment sequences. I also found that the error introduced by an improper choice 

of moment sequence may be more significant than the error due to choice of low order 

quadrature schemes. While it would be helpful if there were a rigorous procedure for 

determining the best moment sequence for any aerosol problem, it is unlikely that there is 

a globally optimal moment sequence. Different moment sequences give more weight to 

the larger particles or to the smaller sized particles. For instance at some stages of the 

evolution, the larger sized particles may influence the dynamics while for other stages, 
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the dynamics of the smaller particles may be more important. Then different moment 

sequences may be appropriate for different stages of the aerosol dynamics. This suggests 

that locally adaptive quadrature approximations could be developed to minimise the 

global error of the solutions. Investigation of these issues could lead to a better 

understanding of moment methods for various problems in aerosol science.     

3.3. EXAMPLE OF QMOM COUPLED WITH CFD: SIMULATION OF SMOKE ENTRY 
AND LIGHT SCATTERING IN A CYLINDRICAL CAVITY ABOVE A UNIFORM FLOW. 

After discussing the application of QMOM and DQMOM to some well known 

theoretical problems in aerosol science, I turn to an example illustrating an engineering 

application. In this section, I use computational fluid dynamics (CFD) and aerosol 

dynamics modeling to investigate the buildup of smoke and light scattering in a 

cylindrical cavity geometry, considered to be an idealized representation of a 

photoelectric smoke detector. CFD coupled with the quadrature method of moments 

(QMOM) is used for simulation of aerosol dynamics. The Rayleigh-Debye-Gans-

Polydisperse-Fractal-Aggregate (RDG-PFA) theory (Sorensen (2001)) is used for 

calculation of smoke extinction and angular light scattering. The major objective of the 

study is more to illustrate the application of a powerful tool for analyzing aerosol 

dynamics in practical devices than to investigate smoke detector physics. 

3.3.1. Introduction and background. 
Smoke detectors have been credited as being the single most influential 

technology in reducing the number of fire deaths over the past 30 years. The accurate 

detection of a fire often means the difference between safe egress and potentially life 

threatening conditions for people caught in structure fires. Consequently, during the 
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simulation of a fire scenario, the accurate prediction of the response of smoke detectors is 

crucial. Due to the scale and complexity of a fire event, methods for detector activation 

prediction have mostly relied on empirical techniques. A widely used method is the 

temperature correlation and the response time index (RTI) method (Heskestad and 

Delichatsios (1977a; 1977b), Benjamin et. al. (1979)). The temperature correlation 

method is based on the reasoning that heat generation and transport from a burning 

material to a sensing location is analogous to the smoke generation and transport from the 

fire to the sensor and therefore the temperature and smoke concentration must be 

correlated. The response is predicted using the RTI which is a measure of the sensitivity 

of the detector to temperature changes. Generally a temperature rise of 13°C above the 

ambient is used as the criterion for detector activation. The shortcomings of this approach 

have been discussed by Bukowski and Averill (1998). For effective detection of a fire 

one needs to accurately determine the total time associated with the ignition and growth 

of the fire, transit of the smoke or other combustion byproducts to a detector and the 

detector activation time. Simplified physical arguments have been used to derive 

correlations for the time scales associated with all of the above phenomena. A summary 

of these correlations is presented by Newman (1987). In particular, an empirical 

correlation for the detector response time based on a detector response function is given 

in Mulholland and Liu (1981). The correlation is developed for a particular smoke 

detector model. One of the objectives of this study is to compare detector response times 

obtained using this correlation with direct simulations. More detailed treatment like 

Computational Fluid Dynamics (CFD) can provide a more accurate prediction of fire 

detection times (Ierardi and Barnett (2003)). However detailed models involving the 



coupled flow field and aerosol dynamics effects are only recently being considered (e.g. 

Snegirev et al. (2001)). 

The two- parameter model for smoke detectors. 
For an understanding of activation for a particular type of detector it is 

appropriate to focus on the smoke/aerosol properties (concentration, size distribution, 

index of refraction etc.) in the vicinity of the detector. The most widely used model for 

smoke detector activation assumes that activation is dependent only on the smoke 

concentration within the sensing chamber/volume inside the smoke detector housing. The 

sensing chamber/volume smoke concentration is modeled as a first order system that is 

coupled to an external smoke concentration with a time lag (e.g. Cleary et al. (2000)). A 

schematic of this model is shown in figure 3.3.1. 

( eses
s tttCttC

dt
dC

≥−−= ∞ ;)()(1
τ

)        3.3.1 

In equation 3.3.1  is the smoke mass concentration inside the sensing chamber at 

time  and  is the smoke concentration external to the detector housing at an earlier 

time . There are two time parameters  and 

)(tCs

t ∞sC

ett − et τ  in equation 3.3.1. The parameter  

denotes the time lag that is associated with the entry and penetration of the smoke into the 

sensing chamber of the detector. Depending on the detector design, smoke has to be 

transported through an external detector housing consisting of filters, baffles and other 

obstacles used to block stray light (in the case of photoelectric detectors) from entering 

the sensing chamber. A model suggested by Heskestad (1975) is to use a plug flow model 

over an equivalent length scale, . The entry time is given by:  

et

eL
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e

e
e U

L
t = .          3.3.2 

The second time constantτ  gives the mixing time or the time scale required for smoke 

concentration to reach the threshold for detector activation. Both these parameters depend 

on the geometry as well as the size distribution of the smoke and local convection 

velocity through the detector. If I assume that the external smoke concentration is 

constant then equation 3.3.1 can be integrated to give 
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It may be possible to scale the mixing time parameter,τ , with the inlet velocity as 

e

mix

U
L

=τ ,          3.3.4 

where  is a characteristic mixing length scale. One of objectives of this work is to test 

this hypothesis and determine  using equation 3.3.4.  

mixL

mixL

Another quantity of interest in detection is the extinction coefficient and it is 

usually assumed that the extinction coefficient is proportional to the concentration. 

Experimental characterization of smoke detectors involves the determination of the two 

time parameters (  and et τ ) or the length scale  and threshold concentration  

by assuming a fit of the form 3.3.2 or 3.3.4 from which and

mixL )( rsr tC

et τ  can be calculated (e.g. 

Bjorkman et al. (2002); Cleary et al. (2000)).  
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Figure 3.3.1. Schematic illustrating the first order, two parameter smoke detector model. 

Motivations and scope of the present study. 
In spite of the numerous experimental studies to characterize smoke detectors, the 

theoretical study of these processes remains a difficult task. This is due to the fact that 

smoke detector geometries as well as the physics associated with the detection process 

are complicated. Nevertheless, due to differences in design and the practical difficulties 

in experimentally characterizing each brand, a theoretical analysis of detector response 

involving first principles is clearly necessary. Due to advances in CFD and aerosol 

dynamics modeling, it is gradually becoming feasible to study smoke entry and build up 

as well as predicting detector response theoretically. Once a standardized methodology is 

available manufacturers can evaluate different designs without the need for expensive 

testing.  
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In this study, I focus on some basic phenomena that are important in most 

detectors of the photoelectric type. I perform a CFD study coupled with aerosol dynamics 

of the smoke accumulation in the sensing chamber. Due to the extreme variations in 

design, I ignore the time constant associated with smoke entry, , and instead focus on 

the mixing process (i.e. the time scale

et

τ ). This allows us to focus on a simplified 

geometry that ignores the complications of the smoke entry process. The smoke entry 

problem is basically a CFD problem for which simulation tools exist. However, the 

detection process involves electromagnetic scattering for which specialized models need 

to be used. I therefore present calculations for the extinction coefficient and the angular 

distribution of light scattering from fractal agglomerates. Although I have chosen a 

simplified geometry, the purpose is to illustrate analytical methods that can be adapted to 

a wide range of detector designs. 

3.3.2. Flow and aerosol model. 
In this section I briefly describe the CFD model and the aerosol equations. A 

simplified geometry is used to model the smoke detector system (cf. figure 3.3.2). The 

computational grid shown in figure 3.3.2 is generated using the software Gambit 2.1. 

Hexahedral meshes are used for both the cavity and the external domain. The flow solver 

is capable of creating the grid interface between the two domains.  

Unlike typical smoke detectors that consist of an external housing enclosing a 

smaller sensing chamber, I effectively consider a detector whose internal cavity is 

comprised entirely of the sensing chamber. For simplicity only one half of the detector is 

considered as the inflow and detector geometry are both symmetric with respect to the 
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vertical plane. The main flow is set up along the x-axis (from –x to +x). The internal 

cavity has a radius of 7.5 cm and a height of 10cm. A LED light source and a photodiode  

 

Figure 3.3.2. Geometry and computational grid. Flow direction is shown and the 
boundaries are labeled and referred to in Table 1. 

Boundary Flow Boundary 
Condition 

Aerosol Boundary Condition 

I Fixed Inlet Velocity Fixed inlet moments (lognormal distribution). 
II Symmetry Symmetry 
III Constant pressure 

(Atmospheric pressure) 
Zero gradients for the moments in flow direction 

;3,2,1,0,0 ==∇⋅ mMV m

r
 

IV Wall (no slip) Perfectly absorbing wall 
3,2,1,0,0 == mM m  

V Symmetry Symmetry 
VI Wall (no slip) Perfectly absorbing wall 

3,2,1,0,0 == mM m  
VII Wall (no slip) Perfectly absorbing wall 

3,2,1,0,0 == mM m  
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Table 3.3.1. Summary of the boundary conditions used in the flow and aerosol dynamics 
simulation. (Boundaries are labeled in figure 3.3.2.) 

 

are assumed to be placed at an elevation of 5cm (mid-height) within the cavity. The 

details of the scattering arrangement are given in the next section. Below the cavity, an 

external flow is simulated in a computational volume that is 20 cm in length, 7.5 cm in 

width and 4 cm in depth.  As mentioned earlier I only consider the flow field at the 

location of the sensing chamber. The primary flow field induces a secondary recirculating 

flow within the cavity where the smoke detection takes place. This secondary flow is 

responsible for transport of the smoke to the location of the LED beam. The light 

scattered by the particles that are present in the path of the LED beam (i.e. the scattering 

volume at location s’) is detected by a photodiode that is assumed to be placed at the 

polar angle, φ, on the cavity circumference (cf. figure 3.3.3). The internal flow within the 

smoke detector is simulated using a commercial CFD package (Fluent 6.1). The CFD 

solver has been benchmarked to solve the mass and momentum equations. The aerosol 

dynamics associated with the problem is considered next. 

A user defined function has been included to solve the aerosol general dynamic 

equation (GDE). The GDE is discussed in section 2.2.1 (equation 2.4). The form of the 

GDE that I use in this study is: 
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where the state of the particle (fractal aggregate) is assumed to be defined by its volume 

equivalent radius . Comparison of equation 2.4 with equation 3.3.5 shows that I have 

neglected the surface growth terms that model nucleation and condensation as these 

phenomena are not important in smoke detector physics. The second term on the left 

hand side gives the convective transport of the smoke by the fluid flow. The flow field is 

obtained from the CFD solver. The term describes gravitational settling with terminal 

settling velocity . The first term on the right hand side gives the diffusion of the 

aerosol and the second term models the coagulation. For the problem under 

consideration, the effects of gravitational settling, diffusion and coagulation were found 

to be negligible. These aerosol evolution processes are important in the smoke generation 

and transport phases and ultimately determine the aerosol size distribution at the point of 

detector entry. The GDE is solved using a Quadrature Method of Moments (QMOM) 

formulation discussed in section 2.6. In QMOM the moment equations can be 

approximately closed once the integrals involving are evaluated using quadrature 

sums. The QMOM equations corresponding to equation 3.3.5 are 

vr

)(, viS rC

),( trn v

...3,2,1,0

)ˆ,ˆ(]ˆˆ)ˆˆ[(2/1
1 1

,,,,
33

,
3

,

,,

=

−−++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=
∂
∂

+
∂
∂

+
∂

∂

∑∑
= =

m

WWrrrrrr

x
M

D
x

MC
x

MU
xt

M

Q QN

k

N

l
lklvkv

m
lv

m
kv

m

lvkv

i

m

i
miS

i
mif

i

m

β ,    3.3.6 

where  are the quadrature points and  are the quadrature weights. In this work, size 

dependence of diffusivity is not considered. An equivalent diffusivity evaluated for the 

average size of the particles is used. The effective diffusivity and settling velocity, 

kvr ,ˆ iW
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=neglecting the slip correction, is given by  and  respectively. For 

the size of the particles considered, the settling velocities are found to be much smaller 

than the smallest flow velocities encountered in the problem and thus gravitational 

settling is neglected. For instance, for the typical particle sizes considered in this work, 

the diffusivity is of the order of 10-11 
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m2/s, and the settling velocity is of the order of 10-5 

to 10-6 m/s. Taking the radius of the cavity as a characteristic length scale, the 

characteristic time scales for diffusion, 
D
R

diff

2

~τ  is of the order of 108 seconds. The 

characteristic time for settling is approximately 410~~
t

settling U
Rτ  seconds. Both these 

time scales are much larger than the maximum flow convective time scale, 

210~~
U
R

flowτ , considered in this study. The continuum Brownian kernel for fractal 

aggregates is used.  for collision of two particles of volume  and  is given by iv jvβ

( )( ffff D
j

D
i

D
j

D
i

B vvvv
Tk /1/1/1/1

3
2 −− ++=
μ

β ). Taking an average value of β , the 

characteristic coagulation time is given by 
08

6~
MvTkB

coag
μτ . Here  is the first 

moment and 

0M

 is the average volume of the aggregates. Calculations show that v coagτ  is 

much greater than any other time scale. As mentioned earlier surface growth and 

nucleation effects are not considered. For the smoke detector problem considered in this 

work only convective effects are dominant and the aerosol computations are very much 

simplified. 



 As discussed earlier, the quadrature method of moments (QMOM) is an 

increasingly popular method for solving aerosol dynamics problems. This is because 

unlike other moment methods, there are no assumptions or restrictions on the form of the 

size distribution function. A further use of the QMOM is that other quantities of interest 

like the extinction coefficient and the intensity of scattered light can be approximated 

directly from the moments, , that are obtained from solution of equations 3.3.6. For 

this particular problem, the coagulation, diffusion, and sedimentation terms are 

negligible, and the full capabilities of QMOM are not utilized. QMOM nevertheless 

appears to be a very useful tool for more sophisticated studies of smoke detectors. The 

number of quadrature points  to be used in equation 3.3.6 is determined by the 

required accuracy of the quadrature sum in approximating the integral. The number of 

quadrature points must also be chosen such that other smoke properties that are 

approximated by quadrature sums are accurate. In this problem, the size distribution 

always remains lognormal due to negligible effects of diffusion and coagulation. A 

lognormal distribution can be completely specified using three moments. The smoke 

extinction coefficient and the angular intensity involve integration over the lognormal 

distribution and both are found to be accurately evaluated using two quadrature points. 

Therefore, in this study the two-point quadrature scheme (

mM

QN

2=QN ) is used and the four 

moments  are tracked. 3210 ,,, MMMM
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 105
light beam from a LED source is shone across the chamber. If particles are present in the 

 
 

 

 

 

Figure 3.3.3. Schematic of the light scattering arrangement. 

3.3.3. Light scattering model. 
The photoelectric detector works on the light scattering principle. A light source, 

typically a light emitting diode, emits a beam towards a light stop.  An alarm activation 

detector, typically at some angle, φ, to the beam in the scattering plane, measures light 

scattering to determine the presence of smoke particles. The geometry to be considered 

for the scattering model is shown in figure 3.3.3. The scattering arrangement is similar to 

that used in experimental studies of a photoelectric detector (e.g. Weinert et al. (2003)). A 

Area 
(Adet) Detector 

LED 

s’  

s’  

φθ(s’) 
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 a complicated phenomenon. A 

comple

chamber, they scatter light. The light scattered by the particles is incident on detectors 

placed on the periphery of the cavity. For this analysis I take an LED beam incident in a 

horizontal plane at the mid-height of the cylindrical cavity and calculate the angular 

scattering distribution along the outer circumference.  

Light scattering from irregular particles is

te characterization of the light scattered from soot or smoke requires the solution 

of Maxwell’s equations. Due to the complexity of these equations, they have only been 

carried out for some basic shapes. However a simplification exists for computation of 

light scattering due to soot produced from flaming fires. In this case, it has been shown 

that the structure of soot aggregates is fractal (e.g. Sorensen et al. (1992)). It has also 

been shown that for these aggregates, the Rayleigh-Debye-Gans approximation is 

applicable (see for example Farias et al. (1995), Sorensen (2001)). The Rayleigh-Debye-

Gans-Polydisperse-Fractal-Aggregates (RDG-PFA) approach considerably simplifies 

computations of the absorption and extinction properties of soot agglomerates as shown 

below. It must be mentioned that this approximation is valid only for soot produced from 

typical flaming fires. For smoke generated from smoldering combustion or other nuisance 

aerosols, this approximation is not valid as can be seen from the degree of polarization 

measurements presented in Loepfe et al. (1997) and Weinert et al. (2003). Computations 

using the more complicated Mie theory have only recently being carried out (Sorensen 

and Fischbach (2000)). In the following I briefly develop the equations for the absorption 

and scattering coefficients for fractal aggregates and present a methodology for 

computation of angular light scattering. 



Extinction. 
 

First the incident intensity along the LED light beam needs to be established. The 

general theory uses the total absorption and scattering cross sections. A soot cluster 

consists of a number of spherical primary particles distributed in a fractal cluster. The 

primary particles are assumed to be Rayleigh absorbers and scatterers. The total 

absorption cross section for an aggregate is the sum of the absorption cross sections of 

the Rayleigh particles (Nelson (1989)). 

)(4 3 mENkaabs πσ =          3.3.7  

In this equation  is the number of primary particles per aggregate,  is the primary 

particle radius and m  is the complex index of refraction for soot. In this work,  is taken 

to be . This value is reported in Koylu and Faeth (1996) for soot generated by 

turbulent diffusion flames of hydrocarbon fuels. It is also mentioned that the refractive 

index is relatively independent of the type of fuel in the visible and infrared spectrum. 

The factor for absorption  and 

aN

m

i48.054.1 +

λπ /2=k))2/()1Im(()( 22 +−= mmmE λ where  is the 

wavelength of the incident radiation. The differential scattering cross section is not 

simply the sum of the scattering cross sections of the individual Rayleigh particles 

because one has to consider the interference of light scattered by the individual primary 

particles. These effects are modeled by the use of a structure factor which contains the 

information about the spatial arrangement of the primary particles within the cluster. It is 

a function of the scattering wave vector,  ( 2/sin4 θ
λ
π

=q ) and a characteristic size of q
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the cluster usually taken to be the radius of gyration, . The differential scattering cross 

section for incident unpolarized light is then written as (Sorensen (1997)) 
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where 
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( )gS qR  is the structure factor,  is the fractal dimension of the aggregate. 

Various forms of the structure factor have been proposed in the literature. However they 

are not too different and for the sake of simplicity, the Fischer-Burford form (equation 

3.3.9) is used in this study. The differential scattering cross section multiplied by the 

incident intensity gives the fraction of the total power scattered in a particular solid angle 

and hence is an important quantity in the study of angular light scattering. The total 

scattering cross section can be found by integrating over all solid angles. Details of the 

integration can be found in Sorensen (1997). 
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The differential scattering cross section depends on θ . The integration in equation 3.3.10 

is non-trivial because the expression for the structure factor, which has a θ  dependence, 

is usually complicated. To carry out this integration, the relatively simpler Guinier form 



3
1)(

22
gRq

qS −=( ) of the structure factor that is valid for small  is used. The result is 

then modified to get an expression, , that is valid for the entire range of . 

This approach is similar to the one used by Dobbins and Megaridis (1991) with the slight 

difference that my computation involves unpolarized incident light. Expressions 3.3.7 

and 3.3.8 have been obtained for a cluster of a particular size. For a polydisperse 

population of aggregates, the expressions need to be integrated over the entire size 

distribution. The size dependencies are contained in  and . In my calculations I 

have chosen the volume equivalent radius as the size parameter. The volume of the 

fractal cluster can thus be obtained and from it the two quantities, N and : 
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The values of the fractal prefactor ( 44.2=fk ) and fractal dimension ( ) are 

taken from Koylu and Faeth (1994). The extinction for the entire population is 

determined by integrating over the size distribution. A particularly nice feature of the 

quadrature method of moments is that integrals over the size distribution can be easily 

and accurately approximated by quadrature sums. The value for the local population 

averaged extinction coefficient is then evaluated as 
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Once the total absorption and scattering cross sections and the extinction coefficient have 

been determined, the intensity along the path length of the light beam can be easily found 

using an application of the Beer Lambert law. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′′−= ∫

s

ext sdsKIsI
0

0 )(exp)(         3.3.15 

0=s0I  is the incident intensity at . Computational results show that extinction is 

negligible for detector activation studies and attenuation along the LED beam can be 

ignored. 

Angular light scattering. 
I can finally calculate the angular variation of the scattered light intensity. Refer 

to the geometry for the light scattering shown in figure 3.3.3. In my analysis, the 

scattering plane is a horizontal plane at the mid-height of the cylindrical cavity. A source 

of incoherent, monochromatic light of wavelength,λ , equal to 632nm (usually a Light 

Emitting Diode (LED)) is placed at one location at the circumference such that the beam 

is along a diameter. The diameter of the LED beam is assumed to be equal to the width of 

a computational cell (i.e. 5mm). In practice there could be a divergence of the beam from 

the LED. In such a case the scattering volume becomes a conical region and light 

scattering computations must be carried out over all the cells lying in the scattering 

volume. In this study, the LED beam is assumed to be collimated.  

A survey of different smoke detector designs revealed that there is a wide 

variation in the beam divergence as well as the wavelength of the LED. In most cases the 

beam divergence is small (around 10°-15°). Further, as most of the scattering into the 
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detector comes from the scattering volume close to the LED beam, the usually small 

angular divergence is ignored in this study. The beam diameter of 5mm is chosen by 

measuring the width of the aperture for a particular smoke detector model. The 

wavelength of 632 nm is characteristic of a red LED and also corresponds to the standard 

He-Ne lasers used by various researchers.   

  In the baseline case, a detector is placed at some global angle, φ, of 20° off the 

incident beam. The total intensity on a detector placed at this angle φ with respect to the 

center of the cylinder is given by the intensity scattered in that particular angle by all the 

particles along the LED beam. Consider a region at a distance s′  along the beam. The 

intensity incident on it can be found from equation 3.3.15. For a single particle, the power 

scattered per solid angle  at local angle 
Ω

′
d

d
sI scatσ

)(( ')sθ θ′ ≡  is given by  where Ω

Ωd
d scatσ

 is evaluated at θ ′ . The power received by the detector at the fixed angle 
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d r s
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(s R)φ θ ′≡ =  (as shown in figure 3.3.3) is given by .  

Note that cos( )φ θ ′− is required to create the projected detector area when viewed from 

s’.  Accounting for the polydispersity of the scattering particles, one gets the scattered 

power at the detector by particles at a spatial location s′  and within the scattering volume 

 as:  sdAs ′
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The total power at angleφ  is found by integrating over the contributions from all the 

particles along the beam path as: 

22 4 6 2det
20 0
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mmFwhere the factor for absorption . To evaluate detector response 

characteristics, the criteria used for detector activation is taken to be the power at the 

detector per unit power of the LED given by 

0

( )( )
s

PP
I A
φφ′ =            3.3.18  

In deriving expression 3.3.16 I am assuming that there is no intercluster scattering and the 

scattered intensity travels to the detector without any attenuation. This is justified because 

the smoke volume fraction within the detector is usually sufficiently small given that the 

detector would sound before the concentration levels become high enough for intercluster 

multiple scattering. As described later, my choice of the critical power for detector 

activation gives an optical thickness less than 10-3. The medium is certainly optically thin 

up to the moment at which the detector sounds. The evaluation of the scattered power 

received at the detector is as far as one can go in the prediction of the activation time 

from first principles. The alarm threshold is set by the electronics of the photodiode, 

which varies between different manufacturers. 
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3.3.4. Simulations and results. 
Simulations of the smoke entry, accumulation and detection are carried out for a 

range of flow velocities and particle volume fractions. A plug flow velocity profile is 

used as the input boundary condition at the location x = - 0.1 m (in figure 3.3.2). The flow 

is simulated using a commercial CFD package (Fluent 6.1). Taking the radius of the 

cavity as a characteristic length scale, the maximum Reynolds number is around 3000. 

The main flow is essentially an external flow past a flat plate. The velocities inside the 

cavity are even smaller. Therefore the flow is laminar for all the velocities considered. 

The boundary conditions used in the simulation are summarized in Table 3.3.1.  For the 

particles, the inlet condition is a fixed lognormal distribution of fractal particles 

characterized by the volume equivalent radius. The geometric mean volume equivalent 

radius and the geometric standard deviation are taken to be 0.15 and 2μm respectively for 

a wide range of volume fractions. For fractal aggregates, the mean radius of 0.15 μm 

corresponds to  for a primary particle radius, 400=N nma 20= . For this  and with 

, 

N

8.1=fD mRg μ36.0= . These values are characteristic of soot produced from flaming 

hydrocarbon fuels and have been reported in Koylu and Faeth (1994). To predict the 

detector response I assume that a LED shines across the cavity diameter at the plane of 

symmetry (y = 0) and at the mid height (z = 0.05m). A detector is assumed to be placed at 

the circumference at an angle of 20° to the incident beam. The scattered field is 

calculated using a series of steps. First a steady state flow profile is obtained from the 

CFD calculation. Then the aerosol calculations are carried out in a time dependent 

manner in the presence of the steady velocity profile. The outputs of the calculation are 
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the temporally and spatially varying moments of the particle size distribution. The 

moments along the spatial direction of the incident LED beam are used in the scattering 

analysis to determine the scattered intensities at the light detector location. 

Features of the flow field. 
The flow is predominantly responsible for transport of smoke into the detector 

and hence I include a brief description of the flow field. Due to negligible inertial effects, 

all particles move at the same speed as the fluid. The flow field generated inside the 

cavity at the plane of symmetry due to the outside flow is shown in figure 3.3.4a. The x- 

and z- components of the velocity are shown as a detailed look at the flow field revealed 

the y-velocity component to be much smaller than the other two. The external flow field 

is entrained near the base of the cavity and is pushed upwards at the wall. This induces a 

counterclockwise recirculating flow inside the cavity. The same type of profile was 

observed at different vertical planes parallel to the one shown. Figure 3.3.4b shows the 

component of the velocity along the z-direction that is responsible for transporting the 

smoke into the sensing chamber. Almost all the particles enter at the right and are 

transported up. Figure 3.3.5 shows the x-y velocity vectors at four different horizontal 

planes inside the cavity. These velocity components are responsible for horizontally 

dispersing the particles that are transported inside by the vertical (z-) velocity. Near the 

base of the plane and slightly upward the flow is in the + x direction. At a certain height 

the flow reverses due to the recirculation and flows in the – x direction. This motion aids 

in filling up the cavity uniformly with particles. The same flow features are seen for a 
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wide range of values of the inlet velocity. At very low inlet velocities (~0.001 m/s), the 

smoke entry process differs. Smoke enters from the left and exits from the right.   

 

Figure 3.3.4 (a) X- and Z- velocity vector components at the plane of symmetry at Y = 
0.0, (vector lengths are equal and do not show the magnitude). (b) Z- 
velocity component at the plane of symmetry at Y = 0.0. 
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Figure 3.3.5. Plots of X-Y velocity vectors at the four different horizontal planes at Z = 
0.0m, Z = 0.025m, Z = 0.05m and Z = 0.075m. Z-velocity contours are also 
shown. 

Smoke buildup within the detector. 
I first examine the buildup of smoke at the scattering volume along the LED beam 

(y = 0, z = 0.05m). Figure 3.3.6 shows the volume fraction profiles at different times for 

free stream smoke volume fraction of 10-9 and inlet velocity of 0.1 m/s. It is seen that 

flow processes are largely responsible for the smoke distribution within the cavity. For 

instance the flow enters the cavity towards the right (close to + 7 cm in figure 3.3.2) and 
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that is where the smoke first begins to build up. Some of the smoke is then transported 

across the detector by the velocity in the –x direction. After the flow loops around the 

cavity, smoke starts to appear at the opposite end and a second hump begins to grow. 
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Figure 3.3.6. Variation of volume fraction with distance at the mid height of the cavity 
for various times. Volume fraction of the free stream is 10-9. 

Light scattering by smoke particles. 
The angular distribution of the power due to scattering is computed using the 

methodology outlined in section 3.3.3. Figure 3.3.7 shows the attenuation of the incident 

intensity along the LED beam when the inlet volume fraction is 10-9 and the inlet velocity 

is 0.1 m/s. There is very little attenuation in this case. Figure 3.3.8 shows the variation in 

scattered power with angle along the circumference of the cavity for inlet volume fraction 

of 10-9. There is a slight increase in the scattered power with time. The strong forward 

 117



scattering is due to the structure factor and it distinguishes the scattering from fractal 

aggregates from Rayleigh scattering. There have been numerous experimental 

measurements of the extinction coefficient of fractal shaped soot aggregates obtained 

from different hydrocarbon fuels. A check on the computations for the extinction 

coefficient can be made by comparison with the experimental results compiled in 

Widmann (2003). The mass specific extinction coefficient ( sσ ) can be calculated from 

equation 3.3.14 as nm632=λ. For the wavelength ccgKexts /8.1,/ ≈= ρρσ  (and using 

typical values for the other paramenters),  while the empirical 

correlation given by Widmann (2003) is . This discrepancy is 

mostly due to uncertainty in the refractive index of soot. For instance in the experimental 

study by Dobbins et al. (1994), at 

136109.2 −−×= gmsλσ

13610808.4 −−×= gmsλσ
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nm630=λ sσ  is reported as 7.8m2g-1. They could get 

the same value from their theoretical computation only by setting the refractive index 

. Using  im 780.055.1 += im 780.055.1 +=  in (14), one gets . This small 

difference is possibly due to the simplified expression used by Dobbins et al. (1994) to 

compute the total scattering cross section. However, in this work the extinction is not 

significant and the slight error in its computation can be disregarded. My choice of the 

refractive index ( ) probably leads to some error in the computation of the 

angular scattering as well. Due to uncertainty in the value for the refractive index for 

smoke, this error is not easy to quantify. 

124.7 −= gmsσ

im 48.054.1 +=

Since the scattered intensity is not exactly computed but is obtained from a 

quadrature approximation, it is necessary to test its accuracy. As mentioned earlier, due to 



negligible effects of agglomeration, the distribution does not change (i.e. remains 

lognormal) and therefore higher moments can be calculated from any three moments. 

Results shown in figure 3.3.9 for the angular variation of scattered power show that there 

is a trivially small difference between two-point and higher point approximations. This is 

remarkable considering that the intensity has an  dependence which is very accurately 

approximated using moments up to  as in the 2-point scheme. In more realistic 

simulations of smoke detectors, where there may be more complex flow and diffusion 

effects and arbitrary size distribution of smoke, the accuracy of low order moment 

approximations would greatly simplify the simulations. 
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Figure 3.3.7. Variation of normalized intensity with distance at the mid height of the 
cavity for various times. Volume fraction of the free stream is 10-9. 
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Figure 3.3.8. Variation of scattered power at the circumference of the cavity with angle at 
mid-height for different times. Volume fraction of the free stream is 10-9. 
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Figure 3.3.9. Comparison of the angular scattering computed using 2-point, 3-point and 
4-point quadrature approximations. Differences are too small for the three 
profiles to be distinguishable.  
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3.3.5 Detector response study. 
The objective of any analysis on smoke detectors or other similar geometries is to 

predict the detector response time. While the analysis presented above enables the 

computation of the scattered power falling on the photodiode, a translation of the incident 

power to a detector signal is required. In a typical operation, the photodiode converts the 

scattered LED power incident on it into an electric current that upon reaching a certain 

threshold value, causes the alarm to sound. The relation between the incident power and 

the output current is usually linear but the threshold current depends on the electronics 

and varies widely. Consequently, for a theoretical study, an arbitrary choice must be 

made. A fixed value for the incident power per unit power of the source (LED) (hereafter 

referred to as the critical power, crP′ ) is chosen as the threshold criterion. Then the time 

taken to reach this critical value is assumed to be the detector response time. Another 

empirically based method has been suggested by Mulholland (1995). It involves use of a 

detector response function, , which when integrated over the size distribution 

gives the detector output voltage. The parameter d represents the volume equivalent 

diameter of the fractal aggregate. To compare with the calculations based on the light 

scattering analysis, I use a correlation for  developed for a particular photoelectric 

smoke detector in Mulholland and Liu (1980). I evaluate the output voltage,

)(det dR

)(det dR

p , by 

integrating over the smoke size distribution in the same scattering volume (i.e. along the 

LED beam). 

∫ ∫=′

∞

=
′′=

R

s d
sdddsdndR

R
p
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0 0 det ))(()(
2
1       3.3.19 

7.5
det 1312)( ddR =          3.3.20 
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The integral for p  in equation 3.3.19 is computed by a quadrature sum using the known 

quadrature points and weights. For this particular model, the detector sounds when  

volts (Mulholland and Liu (1980)). 

2≥p

Figure 3.3.10 is the log-log plot showing the variation of the activation time with 

the velocity. Due to the arbitrary choice of the threshold signal only the comparison of 

the trends are meaningful. Calculations for  using the scattering computations closely 

match the calculations using the detector response function for . As 

actt

crP′610−≈′crP  

increases to around 10-6, there is a slight deviation from the power law behavior at around 

m/s. For lower values of crP′1.0~eU , the light scattering calculations reveal a power law 

variation of the activation time, , with velocity, , given by .  The 

data for the entire range of velocities for different threshold criteria can be fit reasonably 

well with a power law given by , with a prefactor C  that varies 

according to the threshold intensity criterion. These results indicate that at least for this 

particular geometry, a simple scaling for the mixing time as 

12.1~ −
eact CUtactt eU

1,~ ≈− mCUt m
eact

e
act U

Lt =  may be adequate. 

Figure 3.3.11 shows the comparison of the detector response time with the smoke volume 

fraction at the inlet. The trends using the two different calculation procedures are again 

similar for  for a wide range of inlet volume fractions. The two curves begin to 

deviate at very low volume fractions (  onwards). At lower , the light 

scattering computations show a power law for the activation time in terms of the volume 

fraction as . However as 

610−≈′crP

crP′1010~ −
vf

09.0~ −
vact Cft crP′  is increased, the power law is only applicable at 
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higher volume fractions. For example figure 3.3.11 shows that with , the power 

law scaling begins to break down at  and for , it breaks down at 

. For these cases, the response time increases faster than a power law for 

decreasing volume fractions.  It is interesting that I observe similar trends for the 

activation time variation with smoke volume fraction using two different computational 

methods: a CFD with scattering calculations and an empirical detector response function 

calculation. This can be explained by analyzing the activation criterion in more detail.  

The activation signal computed using equation 3.3.19 depends on the  moment.  The 

moment dependency for the light scattering is not so easy to evaluate.  For the Guinier 

regime (small ), equation 3.3.17 gives an 

710−=′crP

610−=′crP910~ −
vf

810~ −
vf

7.5M

fD

MqM 12
6

2

6 3 +
⋅−gqR  dependence for the 

scattered intensity at a particular angle. However, for the power law regime (large ) 

an  dependence is expected.  Using these scalings I can imagine that if the smoke 

sample contains only small particles or if  is small (i.e. small scattering angles), then 

the scattered intensity is proportional to 

gqR

6M

q

6M . In this case it is reasonable to expect 

similar trends between the two types of calculations for the activation time. An 

interesting observation from figure 3.3.11 is that for the range of inlet velocity and 

volume fraction where a power law behavior is applicable, the value of the exponent is 

almost the same for all the curves. 
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Figure 3.3.10. Log-log plot showing the variation of the detector activation time with 
velocity at the inlet. Comparison of the results obtained using the light 
scattering calculation (equation 3.3.18) and the detector response function 
(equation 3.3.19) for different choices of the threshold power, . crP′

0

0.5

1

1.5

2

2.5

3

-11.0 -10.0 -9.0 -8.0 -7.0 -6.0
Log10(volume fraction)

Lo
g 1

0(
ac

tiv
at

io
n 

tim
e,

 t a
ct
(s

))

Detector response function.
P'cr=1E-9
P'cr=1E-8
'Pcr=1E-7
P'cr=1E-6

 

Figure 3.3.11. Log-log plot showing the variation of the detector activation time with 
smoke volume fraction at the inlet. Comparison of the results obtained using 
the light scattering calculation (equation 3.3.18) and the detector response 
function (equation 3.3.19) for different choices of the threshold power, 
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The CFD analysis and the light scattering computation allow a check on the 

validity of the assumptions leading to equation 3.3.3. This equation represents a model 

for a perfectly stirred mixing process. The volume fraction is proportional to the mass 

concentration and so equation 3.3.3 can be rearranged to give the following 
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f
tftt )(
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τ

         3.3.21 

There are two unknowns  and et . The characteristic mixing time mixτ mixτ  can be 

determined by computing an average volume fraction vf  obtained from CFD calculations 

(given by ∫=
cavV cavv

cav
v dVtxf

V
tf ),(1)( r ) for the entire cavity and fitting the variation of 

( )v v

v

f f t
f

∞

∞

−  with an exponential curve. The results shown in figure 3.3.12 show a very 

good agreement with the basic model (equation 3.3.13) for the entire range of inlet 

velocities. The data from figure 3.3.12 shows that mixτ  scales as 

. Comparison with equation 3.3.4 shows that  

for this particular geometry. For a chosen fixed velocity, the mixing time

197.0 3.203.20~ −− ≈ eemix UUτ mLmix 3.20=

mixτ  can then be 

obtained. Supposing that there is a single critical volume fraction for detector activation 

, then  can be computed as a function of inlet volume fraction using equation 

3.3.21. I fix  for each case by assuming this relation holds for  and 

using  computed from the CFD simulation. The other unknown parameter, , is 

obtained by a best fit of the data for  (obtained from direct simulations) to equation 

)( actv tf actt

)( actv tf 10
0 10−=vf

actt et
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3.3.21.  Figure 3.3.13 shows a plot of activation time with external volume fraction 

calculated using equation 3.3.21 for free stream velocity of 0.1 m/s and 1m/s. It is seen 

that the detector activation times calculated using equation 3.3.21 are very similar to the 

activation times obtained using the full CFD and light scattering model. Further under the 

assumption that  is specified as in equation 3.3.2, values of  between 0.3m and 

0.35m give the best fit for a wide range of inlet velocities. These values are of the order 

of the maximum size of the computational model (figure 3.3.2). However the most 

obvious choice of  with 

et eL

2/LLe = L  being the maximum size of the computational 

domain shown in figure 3.3.2 does not give a good fit. 
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Figure 3.3.12. Plot of the averaged and normalized volume fraction with time for 
different velocities to evaluate the mixing time scale parameter τ. 
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Figure 3.3.13. Log-log plot showing the variation of the detector activation time 
(calculated using equation 3.3.18) with smoke volume fraction at the inlet, 
free stream velocity is 0.1m/s and 1m/s. Also shown are the best fits of the 
data to equation 3.3.21 obtained from the simple model (equation 3.3.3). 

Figure 3.3.6 shows that smoke volume fraction is not uniform inside the cavity, 

especially at short times when the detector activates. Even though the spatial and 

temporal distribution of smoke inside the cavity is not homogeneous, for this particular 

geometry, the two parameter first order model given by equation 3.3.2 and 3.3.3 is seen 

to work very well for the prediction of detector activation time. 

The size distribution of the smoke that enters the detector can be quite different 

from the size distribution of the smoke at the location of the fire due to agglomeration 

during the transit from the fire to the detector. In figure 3.3.14, I plot the variation in 

activation time with volume fraction for different geometric mean radius and geometric 

standard deviation. For larger volume fractions there is no difference in the activation 

time while for smaller volume fractions , some differences can be seen. I see 1010~ −
vf
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that the activation time is almost independent of the geometric mean radius, , as the 

geometric standard deviation,

gr

gσ , (polydispersity) becomes higher. For the monodisperse 

case and for lower values of gσ , it is seen that detector activation time decreases with 

increasing . The activation time decreases with increasing polydispersity due to the 

increased scattering from the larger sized particles. However, the differences are not 

substantial since the results are plotted on a linear scale. It is important to note that these 

results apply only for fractal aggregates and differences in aerosol morphology could 

affect the response time. Computations also showed that detector activation time does not 

vary significantly with primary particle size. 
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Figure 3.3.14. Plot of the activation time with logarithm of the volume fraction for 
different values of the geometric mean radius and the geometric standard 
deviation. The free stream velocity is 0.1 m/s. 
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3.3.6. Conclusions. 
 A coupled CFD and aerosol dynamics simulation of smoke entry and 

accumulation processes in a cylindrical cavity geometry was carried out. The geometry 

and the flow represented an idealized smoke detector. It was seen that for this 

configuration, flow processes determine the distribution of smoke inside the cavity. Flow 

enters the cavity by entrainment, it is pushed up at one side setting up a recirculating flow 

inside the cavity. The same type of flow was seen for a wide range of inlet velocities. 

Light scattering calculations were carried out using the RDGPFA model for fractal 

agglomerates. Attenuation is weak for inlet volume fractions around 10-9 and hence the 

light scattered is also weak. I found that for higher inlet volume fractions (around 10-6), 

there is pronounced attenuation but the detector responds long before the attenuation 

effects become significant. Therefore, a simple model for the attenuation and scattering 

that ignores multiple scattering is applicable.  

A detailed CFD study has been used to test the validity of the simple mixing 

model (equation 3.3.3) that is widely used in the empirical characterization of smoke 

detectors. My calculations indicate that this model is accurate to predict the average mass 

concentration or volume fraction inside the cavity as well as the detector response time 

for mass fractal aggregates. This is particularly useful as the detector response time 

appears to depend very weakly on the size distribution parameters. Even though the 

spatial distribution of smoke inside the cavity is not homogeneous, it may still be possible 

to define a single average volume fraction or smoke concentration as a threshold. 

However the parameters τ  and  appearing in the simple model do not seem to be 

directly related to any geometric length scale of the problem. The manner of entry of the 

et
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smoke and its spatial variation within the sensing chamber may have to be considered 

only for the purposes of designing smoke detectors with faster response times. The results 

I have obtained are only for a very simple idealized model of a smoke detector. It is 

necessary to extend the type of analysis presented in this paper to more realistic smoke 

detector geometries and for different types of smoke to get a clearer understanding of 

how smoke entry and accumulation affects detector response time. The coupling of a 

general moment method like QMOM to a computational fluid dynamics package will 

allow more detailed evaluation of aerosol detector physics. Considering the importance of 

accurate prediction of smoke detector activation time, it is also desirable to check 

whether the simple model that is widely used in experimental characterization of smoke 

detectors is always applicable.    
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Chapter 4: Applications of QMOM and DQMOM to problems in 
uncertainty propagation and turbulent mixing and reaction. 

 
One sees from the previous chapter that problems in aerosol science lead directly 

to the application of population balance modeling concepts. In this chapter I extend the 

field of application to problems in which there is no physical collection of particles to 

define a population. In the examples considered in this chapter, the population involves 

abstract entities such as events or conditional particles. These applications come under 

the broad category of stochastic modeling and simulation. Without getting into the 

rigorous definitions from probability theory and stochastic processes, I provide a brief 

and informal discussion.  

The problems I am interested in are either deterministic processes with random 

initial conditions or stochastic processes. The first category of problems arises when one 

has a deterministic model that can be used to describe the time evolution of the dynamics 

of a system but one cannot specify the initial conditions in a precise manner. To describe 

the state of the system at a later time one needs to consider the evolution of the system 

starting from all the possible initial conditions. However with a particular initial 

condition, the dynamics is completely deterministic. In the second category of problems, 

the state of the system at a later time is not completely determined by its present state. 

This could be due to the dynamics itself being chaotic and unpredictable. The 

stochasticity could also arise because external influences, that have been neglected in 

constructing the model, do affect the evolution of the system and these effects cannot be 

ignored. This leads to a stochastic differential equation whose solution requires special 
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techniques. For these problems, even if the initial condition is exactly specified, the 

stochastic nature of the dynamics causes the solution at later times to be stochastic. 

In this section I discuss some examples illustrating both types of problems. My 

objective will be to evaluate the applicability of quadrature based moment methods to 

tackle these problems. For the first type, I consider a design problem in fire safety 

engineering. The issue is to incorporate the uncertainty in the fire size into a model that is 

used for simulating a compartment fire. As a representative example for the second class 

of problems, I consider the problem of turbulent mixing and combustion. I will discuss 

the motivation for using PDF based methods for turbulence and the models that are 

currently used for closing the PDF transport equations. The main objective of this work is 

to apply the theory of multivariate direct quadrature method of moments by simulating 

the turbulent mixing and chemical reactions in a partially stirred reactor. 

4.1 DESIGN FIRE EVALUATION USING THE QUADRATURE METHOD OF MOMENTS. 

4.1.1. Introduction and Background. 
Performance based fire design (PBFD) stipulates that a building must satisfy 

some performance requirement. That is, the fire safety of the building must be evaluated 

before the building can be deemed fit for occupancy (e.g. Buchanan (1999)). This is 

normally done by simulating fire evolution in a structure and evaluating safety criteria, 

such as the height of the smoke layer at some critical time after the start of the fire. The 

fire model typically consists of a design fire, i.e. a typical fire with a typical rate of heat 

release. However, the use of a single design fire while simulating a fire scenario may be 

inadequate. The type of combustible materials in a room, their arrangement and the point 
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and source of ignition are unpredictable. To account for this variability, the use of a 

single representative fuel has been proposed in Yung and Benichou (2002). This is a 

single fuel source, located at a center of the room, having the same heat release rate 

characteristics as the actual distribution of combustible material in the room. The single 

representative fuel source may be considered to be an average of the actual distribution of 

fuel sources. Due to the extreme variability in the type of fire that can occur in any 

modern building compartment, a single average representative fuel source may not be 

sufficient to characterize all the possible fire scenarios, and therefore one may have to 

consider a distribution of fire sizes. Furthermore, there are many other uncertainties such 

as operation of safety devices such as smoke detectors and sprinklers, opening or closing 

of vents etc. An early discussion of the uncertainties inherent in fire safety design is given 

by Watts (1986). In recent years there have been systematic studies to incorporate the 

uncertainty inherent in the variables relevant to any given design fire. A thorough 

discussion of existing techniques is provided in Notarianni (2002). In this study, I 

investigate a very general mathematical technique that can be used to simulate the 

propagation of uncertainty of any variable that is used in a fire model.  To this point my 

discussion of the use of probabilistic methods for performance based design analysis has 

been quite abstract.  A more physically based example is provided to explore the use of 

the techniques and the value of the outputs. 
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Figure 4.1.1. Schematic illustrating the fire heat release rate (S) and the smoke layer 
height (Z) for a compartment fire. 

Consider a design problem in which a designer requires an active fire protection 

system if a smoke layer descends below some critical height at a critical time as might be 

found from an egress model. A schematic illustrating the basic process is given in figure 

4.1.1. Clearly, the layer height is strongly dependent on the fire size that would be 

assumed to take place in the compartment.  As previously noted, the designer does not 

know a-priori the range of use of the compartment.  One means of clarifying the likely 

hazard associated with a range of potential fires is through the use of probabilistic 

assumptions about the fire size and fire models used to propagate the uncertainty in the 

fire size into a layer height distribution.  The problem is shown schematically in figure 

4.1.2. One has a deterministic fire model that takes as input the heat release rate of the 

fire and provides as output the height of the smoke layer. Any uncertainty in the input 

variables is propagated in time by the fire model and gives rise to the uncertainty of the 
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output parameter. The uncertainty in input variable, the heat release rate, is represented 

using a probability distribution function (PDF). For the output variable, the smoke layer 

height, the cumulative distribution function (CDF) is desired. The CDF gives useful 

statistical information that can be used in risk assessment studies, such as the probability 

of the smoke layer height to be within some critical range at different instances after the 

occurrence of a fire. The two models that I have considered are the Available Safe Egress 

Time (ASET) Model (Janssens (2000)) and the Consolidated Fire and Smoke Transport 

(CFAST) model (Jones et al. (2005)). These are both deterministic fire models that 

require other input parameters such as the height and area of the enclosure, the location of 

the vents, windows etc. In this study, these parameters are assumed to be known to a high 

level of certainty. The only uncertain variable is the heat release rate that is usually 

sampled from a statistical distribution of known/historical data. Problems of this type in 

which one has uncertain inputs in a deterministic fire model have been discussed by 

Magnusson et al. (1996). In the same article, the authors discuss the use of Monte Carlo 

simulation as an attractive technique for solving these problems. Monte Carlo simulations 

although easy to use can be extremely costly in terms of computational requirements. 

These methods work by sampling from the PDF of the input variable and running the fire 

model for each sample. A large number of random samples may be needed for accurate 

representation of the PDF. If the fire model is sufficiently complex then each run of the 

fire model involves considerable computational cost and Monte Carlo simulations 

become prohibitively expensive. To address these issues, I look at an alternative approach 

involving the method of moments and reconstruction of the CDF using the moments of 

the PDF. The discussion of this method follows. 
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Figure 4.1.2. Schematic of the propagation of statistical uncertainty problem as applied to 
a design fire application. 

4.1.2. Mathematical representation of the propagation of uncertainty and the 
quadrature method of moments. 

One has a system where the dynamics depends on a random input variable such as 

the heat release rate. Let  be the fire heat release rate, assumed to be stochastic, and let 

 be its PDF. The output of the model will be the PDF of the smoke layer height 

 at some critical time, , where  is the smoke layer height from the floor at 

the critical instant. The mathematical representation then consists of the transformation 

from  to  which is given by the change in variable rule for PDFs, 

S&

)(Sm &

crt )( crtZ)(Zn

),( 0ttSm =& ),( crttZn =

dZZnSdSm )()( =&&          4.1.1 
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The actual mapping between  and )( 0ttS =& )( crttZ =  is given by 
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 is provided by the fire model discussed later. where 

A widely used technique for obtaining the statistical properties of the layer height 

is through Monte Carlo Simulations. In this technique,  is randomly sampled from its 

known distribution and the fire model is integrated for each  to build up an ensemble of 

S&

S&

Z . As discussed earlier, this can be a computationally intensive procedure since a large 

number of samples of  need to be taken to obtain good statistics. If the fire model is 

sufficiently complex, each run of the fire model can be very expensive. In this study I 

attempt to solve the problem using the method of moments. I seek only the moments of 

the PDF of 

S&

,  and then attempt to reconstruct the CDF of Z Z)(Zn  using the moments. 

The moments of  can be written in terms of the initial PDF of ,  using 4.1.1 

and  4.1.2. 
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where  is the kth moment of . Hence the problem reduces to the task of finding 

an accurate approximation of  given the moments of the initial distribution . 

The approximation is carried out using the Gaussian quadrature rule that is described in 

chapter 2. 
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Here  are the quadrature points and  are the quadrature weights that are obtained 

from the moments of . It is seen that this technique requires only  samples of  

determined from  moments of . The fire model is run for only the  heat 

release rates ( ) to get . If   is small, typically 3 or 4, then this technique 

enables a dramatic reduction in the computational effort required for these types of 

problems. There are two computational tasks involved in determining the feasibility of 

the QMOM approach. Firstly, one needs to determine the accuracy of the moments 

predicted using QMOM. This is necessary because the set of moments   is given by 

a quadrature approximation using a limited number of quadrature points, , and one 

needs to find the optimum  that give accurate moments. Secondly, the moments do 

not give all the information that is contained in a CDF. Therefore, the CDF needs to be 

reconstructed from a finite number of known moments. This is carried out by matching 

the calculated moments to the moments of a four-parameter Generalized Lambda 

Distribution as discussed later. A schematic of the methodology is provided in Figure 

4.1.3. 
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Figure 4.1.3. Schematic illustrating the sampling procedure used in the quadrature 
method of moments and the procedure for getting the CDF. Note that the 
schematic shows three quadrature points and three weights which would 
correspond to six known moments. 

4.1.3. Details of input variable distributions and fire models used. 

The methodology outlined in Figure 4.1.2 shows that the computational model 

requires an input PDF of heat release rates and a fire model for evaluating the output 

parameter for each heat release rate. 

Input fire heat release rate distribution.   
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I use the generalized beta distribution for the input heat release rate PDF. In 

practice, the PDF needs to be determined from empirical or historical data. The 

generalized beta PDF is a four parameter distribution. It is very versatile because one can 



create different shaped PDFs by varying the four parameters. Further the beta PDF has 

bounded support which means that one can specify the maximum and minimum fire sizes 

that can occur in a compartment. This feature prevents the possibility of unrealistically 

large fires in a room of finite size containing a finite amount of combustible material. The 

generalized beta distribution with parameters 4321 ,,, ββββ  is given by Karian and 

Dudewicz (2000). 
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21,ββ  are the location and scale parameters. 
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Here β  is the beta function. I have taken 

01 =β 2002 =β and  kW. This choice defines the range of fire sizes to be between 0 and 

200 kW. 4β and 3β  are the shape parameters. Different shaped beta PDFs can be 

obtained by changing 4β and . The four different PDFs I use are parameterized by: 3β

I. 4;1 43 == ββ  

II. 2;0 43 == ββ  

III. 0;2 43 == ββ  

IV. 1;1 43 == ββ  

01 =β 2002 =β and For all these cases  kW. Figure 4.1.4 shows the different PDFs. 

PDFs II and III may respectively model situations where small and large sized fires are 

more likely to occur respectively. I and II model situations where mid-sized fires may be 



more likely. Figure 4.1.5 shows the corresponding CDFs for these distributions. Next, I 

consider the fire models used. 
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Figure 4.1.4. Generalized beta probability density functions (PDFs) used for the fire heat 
release rates. 
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Figure 4.1.5. Cumulative distribution functions (CDFs) corresponding to the PDFs in 
Figure 4.1.4. 

Available Safe Egress Time (ASET) Model. 
 

I use two well characterized zone models for simulating compartment fires. The 

first model is the Available Safe Egress Time Model (ASET) that is described in detail in 

Janssens (2000). The governing equation for the smoke layer height is 
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em&  is the rate of entrainment of the air into the plume and is given by a correlation for 

plume flow.  
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The properties of air are density ( aρ = 1 kg/m3) and specific heat capacity ( = 1.004 

kJ/kgK).  and  are empirical constants taken to be 0.8 and 0.35 respectively. The 

ambient temperature is ( = 300 K). = 9.8 m/s

ac

rLcL

2
aT g  is the acceleration due to gravity.  The 

floor area  is 31.5 m2, where A fZZZ −=Δ mZ f 2.0=  is the height of the base of the 

fire and the initial condition )( 0ttZ =  is the ceiling height which is taken as 6.15 m.  is 

the heat release rate which is random and whose PDF is given by the generalized beta 

distribution. I assume that  does not change with time. The range of fire heat release 

rates, room geometry, empirical constants and the assumption of steady heat release rate 

correspond to the conditions used in the experimental validation of the ASET model 

reported in Hurley (2003).  

S&

S&

Consolidated Fire and Smoke Transport (CFAST) Model. 
CFAST is a more sophisticated zone model than ASET that is widely used by 

architects, fire protection engineers, safety officials etc. (Jones et al. (2005)). It is a two 

zone model that models the evolution of smoke, combustion gases and temperature in a 

building compartment that is on fire (Jones et al. (2004)). The details of the software 

program can be found in Jones et al. (2004). One can take CFAST to be a fire model that 

provides, among other things, the smoke layer height for a particular fire heat release 

rate. CFAST simulations are performed for two cases. In one case I use exactly the same 

compartment geometry as in ASET. In the second case, I add a window of width 4m, 

height 2m located 2m above the floor as shown in figure 4.1.6. 

 



L=5.62m 

H=6.15m

Fire 

W=5.62m 5.62m 

5.62m

4m

2m

2m

WINDOW

 

Figure 4.1.6. (Left) Compartment geometry for the ASET and CFAST (without window) 
models. (Right) Compartment geometry for the CFAST model with a 
window. 

4.1.4. Computational methods. 

Monte Carlo Simulations. 
In the Monte Carlo simulations, the fire heat release rates, , are sampled from 

the generalized beta distribution (equation 4.1.5) using the rejection sampling method 

discussed in Cheng (1978). ASET and CFAST models are run for each sample of  as 

an input. These models return the smoke layer height, Z, at the specified critical time of 

120 seconds. The CDF of Z can then be directly obtained from the output of the multiple 

runs of the fire models. More efficient methods of sampling from a PDF have been 

developed (e.g. as discussed in Magnusson et al. (1996)). My objective in performing 

Monte Carlo simulations is to determine the accuracy of the results obtained using 

S&

S&
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moment methods and therefore I do not consider issues on the computational efficiency 

of My Monte Carlo simulations. 

Quadrature Method of Moments (QMOM). 
The quadrature method of moments is discussed in greater detail in Chapter 2. In 

this work I discuss its application to an uncertainty propagation problem discussed in 

section 4.1.2. In QMOM, one first computes the moments of the beta distribution. The 

moments of the beta distribution are given by 
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kM  is the k-th moment of , )(Sm &
4ββ  is the beta function and ,3β  are the shape 

parameters. Using a sequence of  moments, one can find  quadrature points and 

weights using the method discussed earlier. The  quadrature points  correspond 

to the beta PDF. The corresponding quadrature points for the generalized beta 

distribution (GBD), defined in equation 4.5, can be obtained using 

QN2 QN

BDnS ,
&

QN

12,, ββ +⋅= BDnGBDn SS && ,         4.1.9 

where  is the quadrature point for the GBD, GBDnS ,
&

1β 2β is the location parameter, and  

the scale parameter defined earlier. In QMOM, one can choose either an integral moment 

sequence such as  or any fractional moment sequence such as 

. Upadhyay and Ezekoye (2006) have shown that the use of 

a fractional moment sequence can sometimes lead to better quadrature approximations. 

{ ,...,, 210 MMM }

}{ } { ,...,, /2/10/ LLLk MMMM =



The theoretical details and methods for using fractional moment sequences for QMOM 

applications are discussed in greater detail in chapter 3. 

For the moment method, the  quadrature points can be considered to be the 

samples of the heat release rate. The fire model is then run for each of these sampled heat 

release rates to get  smoke layer heights at a specified instant. Therefore, the QMOM 

technique can be considered to be an efficient way of sampling from a known PDF.  The 

moments of the layer height can be obtained using equation 4.1.4. The CDF is then 

reconstructed by matching the computed moments to the moments of the four-parameter 

GLD. 

QN

QN

GLD reconstruction of the CDF. 
Karian and Dudewicz (2000) detail the basis and development of the Generalized 

Lambda Distribution (GLD) for use in fitting statistical data. The four parameter GLD 

can be represented by 1 2 3 4( , , , )GLD λ λ λ λ . The GLD is most easily specified in terms of 

the percentile function 

2
14321

43 )1(),,,;()(
λ

λλλλλ
λλ yyyQyQ −−

+==      4.1.10 

with . The CDF is obtained as an inverse of 4.1.10, i.e. . The 

central task of the GLD method is to obtain the four parameters 

10 ≤≤ y yyQCDF =))((

4321 ,,, λλλλ  from the 

four moments  of equation 4.1.4. One computes the skewness )4,3,2,1;( )( =kM Z
k 3α  and 

kurtosis 4α  from the raw moments. One can also compute these terms for the GLD 

distribution using the (unknown) parameters 4λ and .  3λ
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4λ 4λThe  are irrational functions of iG  and  and contain beta functions in  and 3λ 3λ . 

The difficulty lies in solving the coupled, nonlinear, bivariate equations in 4.1.11 to get 

an optimum 4λ 4λ, . In this study I simply use the results for  and 3λ 3λ  presented in 

tabular form in Karian and Dudewicz (2000). The table provides 4λ and  along with 3λ

)1,0(),1,0( 21 λλ  for a wide range of allowable values of the skewness and kurtosis ( 3α  

and 4α
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). Linear interpolation is used for values in between. There are spaces of ( , 4α3α ) 

that are not covered by the tables. In some of these cases a nonlinear optimization 

problem must be solved for equation 4.1.11, while for other cases either the generalized 

beta distribution (GBD) is a better fit or else the reconstruction of the CDF using 

GLD/GBD is impossible. In all My simulations, ( , 4α3α ) fell in the range covered by the 

tables. )1,0(),1,0( 21 λλ1λ 2λ and  can be computed from the tabulated  using 

2221211 /)1,0(;)1,0( αλλααλλ =+=           4.1.12 

where  is the variance and 11 M=α2
122 MM −=α  is the mean of the smoke layer height 

distribution obtained from the QMOM solutions. The four lambdas give us the percentile 

function, , whose inverse gives the CDF. )( yQ



4.1.5. Results and Discussions. 

Comparison of ASET and CFAST results. 
I first compare results obtained using CFAST and ASET results. The room 

geometry is the same as used by Hurley (2003) for comparison of the ASET predictions 

of the smoke layer height with full-scale test data. I take two particular cases with 

constant fire heat release rates of 195 kW and 33kW (test #1 and test#5 in Hurley 

(2003)). These cases correspond to some of the tests in which a constant heat release rate 

was maintained and these heat release rates also fall within the range that I consider in 

this study. Figure 4.1.7 shows the comparison of ASET and CFAST predictions of the 

smoke layer height for two different heat release rates. ASET results closely match the 

test data. These results agree with those presented by Hurley(2003).  However, the 

CFAST results show smaller layer heights for both heat release rates. 
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Figure 4.1.7. Comparison of the ASET and CFAST model results for the smoke layer 
height with experimental data reported in Hurley (2003). 
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Monte Carlo Simulation results for ASET and CFAST models. 
Figure 4.1.8 shows the PDF of the smoke layer height obtained from Monte Carlo 

simulations using the ASET model. Four different PDFs of the smoke layer, n(Z), are 

obtained for the four different input heat release rate PDFs, , defined in equation  

4.1.5. 10,000 Monte Carlo samples of the heat release rates are taken to ensure converged 

results. All the PDFs show positive skewness and kurtosis (i.e. they are asymmetric, have 

a higher peak around the mean and fatter tails compared to a normal distribution). The 

mean smoke layer height depends on the . For instance, PDF III consists of a 

distribution of larger heat release rate fires and consequently the smoke layer heights are 

smaller. PDF II consists of a distribution of smaller heat release rate fires and the smoke 

layer heights are larger (farther from the ground). Figure 4.1.9 shows the corresponding 

CDFs. The CDFs are more useful for risk assessments since the probability of the layer 

being below any given value is immediately available from the CDF. Despite the 

variability in the shapes of the PDFs, the CDFs look almost the same, only the locations 

where they increase sharply are different. Figure 4.1.10 and Figure 4.1.11 show the PDF 

and corresponding CDF obtained using Monte Carlo simulations for the CFAST model 

where the compartment is exactly the same as for the ASET model. Figure 4.1.12 and 

Figure 4.1.13 show the PDFs and CDFs obtained using CFAST model for a compartment 

with a window (Figure 4.1.7 shows the compartment geometry for both cases). As 

discussed in the previous section, smoke layer heights predicted using CFAST are 

smaller than those predicted by ASET. Differences in the PDFs and CDFs due to the 

presence of a window are also apparent. Since the window allows smoke to escape, one 

sees that smoke layer height peaks between 2.5 and 3 m. Due to increased complexity of 

)(Sm &

)(Sm &
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the CFAST models, only 500 samples are used for the heat release rate. Furthermore, the 

smallest resolution of the smoke layer heights output by CFAST is 10cm. For these 

reasons, both the PDFs and CDFs obtained using CFAST are coarser compared to those 

obtained using ASET.  
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stcr 120=Figure 4.1.8. PDFs of the smoke layer height at a critical time  obtained from 

Monte Carlo Simulations using the ASET model. The labels I, II, III, IV correspond to 
the different heat release rate PDFs in figure 4.1.4.  
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Figure 4.1.9. CDFs corresponding to the PDFs in figure 4.1.8. 
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stcr 120=Figure 4.1.10. PDFs of the smoke layer height at a critical time  obtained from 

Monte Carlo Simulations using the CFAST model with the same geometry as for the 
ASET. I, II, III, IV correspond to the different heat release rate PDFs in figure 4.1.4.   
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Figure 4.1.11. CDFs corresponding to the PDFs in figure 4.1.10. 
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stcr 120=Figure 4.1.12. PDFs of the smoke layer height at a critical time  obtained from 
Monte Carlo Simulations using the CFAST model with a horizontal vent 
(window) shown in figure 4.1.7. I, II, III, IV correspond to the different heat 
release rate PDFs in figure 4.1.4.    
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Figure 4.1.13. CDFs corresponding to the PDFs in figure 4.1.12. 

QMOM results for ASET and CFAST models. 
In the quadrature method of moments, one obtains the moments of the smoke 

layer height PDF, n(Z). The moments required for matching with the GLD moments are 

the mean, variance, skewness and kurtosis. Since the moments of n(Z), , are 

obtained from a quadrature approximation, it is essential to determine the accuracy in 

their prediction. As shown in equation 4.1.11, the skewness and kurtosis are functions of 

the moments . They are important quantities because the GLD parameters 

)(Z
kM

)(Z
kM 43 ,λλ  are 

found by matching the skewness and kurtosis (equation 4.1.11). In figure 4.1.14 and 

figure 4.1.15, I compare the skewness and kurtosis predicted using QMOM with those 

obtained from converged Monte Carlo simulations for the ASET model. One sees that 

both skewness and kurtosis fail to converge for the choice of an integral moment set 

(e.g.{ ). However the choice of fractional moment sets such as the k/2, k/3 }...,, 210 MMM
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and k/4 sets (i.e. the sets { },...,,, 2/312/10 MMMM { },...,,, 13/23/10 MMMM, , 

), gives faster convergence and more accurate predictions. For 

instance, just three quadrature (or sampling) points determined from a set of 6 k/4 

moments gives very accurate results for all cases considered. Similar trends are seen for 

the prediction of means and variances although their predictions are much more accurate. 

{ ,...,,, 4/34/24/10 MMMM }

Figure 4.1.16 shows the reconstructed CDFs using the Generalized Lambda 

Distribution (GLD) compared with CDFs obtained from Monte Carlo simulations. To get 

the moments, , four quadrature points, , obtained from eight k/4 moments of 

 are used in all cases. The GLD parameters are obtained from Appendix B in Karian 

and Dudewicz (2000). Figure 4.1.16 shows that the GLD reconstruction is very accurate 

for all four CDFs. Figure 4.1.17 shows the comparisons for the CFAST model, with and 

without a window. It is seen that the GLD reconstruction is accurate for the CFAST 

model as well. Only one input PDF (PDF I) is shown, but the same effect is seen for all 

four PDFs. 

GBDnS ,
&)(Z
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Figure 4.1.14. Study of the convergence of the skewness with increasing number of 
quadrature points. Results of using different moment sequences are shown. 
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Figure 4.1.15. Study of the convergence of the kurtosis with increasing number of 
quadrature points. Results of using different moment sequences are shown.  
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Figure 4.1.16. Reconstructed CDF using the Generalized Lambda Distribution (GLD) 
compared with CDF obtained from Monte Carlo simulations for the ASET 
model. 
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Figure 4.1.17. Reconstructed CDF using the GLD compared with the CDF obtained from 
Monte Carlo Simulations using the CFAST model, with and without a 
window. The CDFs obtained using the ASET model is also shown. PDF I is 
used for the heat release rate PDF. 
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4.1.6. Conclusions and further work. 
As computational models become more widely used for fire safety designs, a 

methodology for incorporating the uncertainties in any fire scenario becomes extremely 

important. Due to the extreme complexity of the physical phenomena involved, the 

occurrence of fire in any building and the chain of events triggered by the fire are very 

uncertain. Designers and fire safety engineers need efficient computational techniques 

that provide statistical information for assessing the risk in any fire event. The quadrature 

method of moments proposed in this work is a general technique that has already been 

used in many other disciplines to solve for the time and space evolution of the moments 

of a PDF. In many cases, QMOM solutions are much more efficient and reasonably 

accurate when compared to results obtained using Monte Carlo simulations or other 

solution techniques as seen in the results presented in chapter 3.  

In this work, I considered the evolution of the smoke layer height given the 

uncertainties in the fire heat release rate. For this problem, I saw that the moments of the 

smoke layer height PDF can be accurately predicted using very few quadrature points, 

especially if fractional moments are used to obtain quadrature points and weights. Since 

each quadrature point acts like a sample for the heat release rate, this method also has the 

potential to reduce the computational effort in Monte Carlo simulations. Furthermore, the 

CDF was reconstructed from the moments by matching the moments with those of a four 

parameter GLD. For all cases considered, I found that the reconstruction was accurate.  

The fire models used in this study were all reasonably simple and computational costs for 

running any given scenario were reasonable.  If these zone fire models were replaced by 

computational fluid dynamics based models, it would be prohibitively expensive to 
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perform Monte Carlo type simulations in order to identify probabilistic estimates of risk.  

On the other hand, it would be feasible to run several (six to eight) CFD simulations in 

order to generate an accurate cumulative distribution function of the output variable. 

While the results from the present study appear promising, this method remains to 

be tested for significantly more complex fire scenarios. As discussed earlier, there are a 

large number of uncertain variables in any fire event and one has to simulate the 

interactions among all these uncertain variables. While the QMOM is well suited for 

describing the dynamics of the moments of a univariate PDF (for a single uncertain 

variable), the extension to multivariate PDFs (for multiple uncertain variables) is not 

straightforward. The direct quadrature method of moments (DQMOM) detailed in 

chapter 2 can be used to simulate the dynamics of the moments of a multivariate PDF.  

For multivariate PDFs, there will be a question on the ability to generate meaningful 

CDFs for the system.  While the QMOM approach appears to suitable for the type of 

problem considered in this work, both QMOM and DQMOM need to be tested on a 

number of relevant problems in fire science and engineering to investigate their 

computational efficiency and accuracy. 

4.2. SIMULATION OF THE PDF TRANSPORT EQUATION FOR TURBULENT MIXING AND 
COMBUSTION USING THE DIRECT QUADRATURE METHOD OF MOMENTS.  

4.2.1 Introduction and motivations. 
The necessity of using stochastic methods for modeling deterministic systems has 

been discussed earlier. A typical example is the modeling of turbulence. In principle 

turbulent flow can modeled using the deterministic Navier Stokes Equations. It is well 

known that for higher Reynolds numbers these equations are chaotic and display sensitive 
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dependence on initial conditions. This leads to the impossibility of long term prediction 

and therefore the best that one can do is to predict some statistical properties of the 

turbulent flow. A brief discussion of the use of the PDF transport equation for modeling 

turbulent flows as well as turbulent reacting flows is provided in Chapter 2. More 

detailed discussions can be found in Pope (1985). My objective in this section is to 

investigate the applicability of multivariate DQMOM for simulation of the PDF transport 

equation.  

Before discussing the computational aspects of the problem, I provide some 

motivation for using moment methods for turbulent reacting flows. The prediction of 

mixing and chemical reactions in the presence of a turbulent flow field is of great 

importance in the chemical process industries and is the subject of intense research. In a 

turbulent flow there are fluctuations at all length scales down to the Batchelor scales. 

However molecular mixing and combustion occur at the Batchelor scales that are 

generally of the same order or smaller than the Kolmogorov scales (Batchelor (1952)). 

Therefore the resolution of chemical processes requires resolution finer than the 

Kolmogorov scale. A computational simulation of an industrial scale chemical reactor 

that resolves the fluctuations of the velocity field and chemical species down to the 

smallest time and length scales is intractable with the currently available hardware and 

software, especially for large Reynolds numbers (Raman and Pitsch (2005)). 

Consequently different schemes for modeling turbulent reacting flow processes have 

been developed. A popular approach is called Large Eddy Simulation (LES) in which 

only the larger, energy containing velocity fluctuations are resolved while the smaller 

scales are assumed to be universal and are modeled using known statistics. However the 
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mixing and chemical reactions take place at the molecular scales and these processes are 

certainly not universal, i.e. they depend on the details of how the reactants are fed into the 

vessel, the rate of stirring, the large scale flow fields as well as the smaller scale velocity 

fluctuations that enhance mixing. In the chemical engineering literature various 

simplified approaches have been developed for treating turbulent reacting flows. In the 

fast mixing limit, the mixing process is much faster than the chemical reactions and 

therefore all fluctuations in the species mass fractions are negligible. In this simplified 

scenario, laminar reaction models that ignore fluctuations in species concentrations and 

temperatures are used. These cases are also amenable to the use of zone models which 

represent complex chemical reactors as a network of perfectly stirred reactors as 

discussed in the textbook by Hill (1977). Fox (2003) cautions that use of laminar reaction 

models in cases where the chemical reaction time scale is comparable to mixing time 

scales can lead to significant errors. In the fast chemistry-slow mixing limit, a mixture 

fraction approach has been widely used to describe the mixing, the conversion of 

reactants to products assumed to be instantaneous. Neglecting chemical reactions makes 

the problem more tractable but one still needs to model the mixing process which takes 

place at very small length scales over which there are unresolved turbulent velocity 

fluctuations. The interesting phenomena of extinction and reignition arise when the 

chemical reactions occur at time scales comparable to the mixing time scales and the 

residence time scales (determined by turbulent velocity fluctuations) as discussed in 

Peters (2000)). The computational modeling of these phenomena is another highly 

complex task.  
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Since mixing and chemical reactions take place at scales that are not resolved, one 

must resort to stochastic methods. A widely used stochastic modeling technique is the 

transport equation for the velocity-composition joint probability distribution function 

(Pope (1985)). This equation gives us the space and time variation of the PDF of the 

velocity and scalar concentrations from which one can determine the complete one point 

statistics of the state of the fluid. The PDF transport evolves in a higher dimensional 

space and therefore the solution requires alternative methods like Monte Carlo simulation 

or Moment methods. The computational requirements for using a statistical method such 

as Monte Carlo simulation in some grid based simulations are very large. As an example, 

in a simulation of a turbulent jet diffusion flame, Branley and Jones (2001) used 624,100 

computational cells. To represent the subgrid scale processes around 20-100 notional 

particles are required to describe the PDF in each cell. Then stiff sets of ordinary 

differential equations need to be solved for each particle. Branley and Jones (2001) 

assumed fast chemistry and used a univariate PDF with a single mixture fraction variable. 

In the case of a reacting flow with finite rate chemistry, the number of equations to be 

solved increases linearly with the number of extra dimensions (species) needed to 

describe the PDF. In view of these requirements, it is useful to consider moment 

methods. The moment methods only track the moments of the PDF and therefore do not 

carry all the information that is present in the PDF. Thus I again encounter a closure 

problem for processes that cannot be described using a finite set of moments. The 

purpose in this section is to investigate the use of the Direct Quadrature Method of 

Moments (DQMOM) for solving the PDF transport equation describing turbulent mixing 

and combustion. For this purpose, I consider a partially stirred reactor (PaSR) model 



(Ren and Pope (2004), Chen (1997)). As will be seen later, a PaSR model can be used to 

investigate most of the interesting features of a turbulent reacting flow problem. A PaSR 

can be considered to be a single computational cell in a more detailed CFD simulation or 

an element of zone models for industrial scale reactors. However, the purpose of the 

exercise is not to investigate the physics of the PaSR but to use it to validate the 

DQMOM simulations by comparison with the solutions obtained using Monte Carlo 

simulation. 

4.2.2 Derivation of the pdf transport equation for simulating a Partially Stirred 
Reactor. 

The joint scalar PDF transport equation has already been described in chapter 2. 

Using the IEM model (equation 2.10) in the joint scalar PDF transport equation (equation 

2.9) gives us: 
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The physical meaning of all terms in this equation is discussed in section 2.2.2. In a 

PaSR, one assumes the PDF to be homogeneous in space, i.e.  is not a function of 

spatial variable . Thus one can integrate equation 4.2.1 over the reactor volume, shown 

in figure 4.2.1.  
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For a variable density problem, I define the density weighted PDF by 
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r ff =  as in Pope (1985). The first and second terms on the right hand side 
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represent the outflow and inflows at the boundaries of the reactor and hence model the 

large scale macromixing. The third term represents micromixing that is modeled using  

the IEM. I neglect the mesomixing term for simplicity. Inclusion of this term would 

require the turbulent diffusivity and the spatial gradient of f~  at the boundaries. This term 

is usually neglected in PaSR models and equation 4.2.2 is in the same form as given in 

Ren and Pope (2004). The residence time 
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 and , where  

is the mass of gas inside the reactor and  are inlet mass flow rates of the oxidizer 

and fuel respectively. The equivalence ratio is then given by 
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the value of 

stP

)(~ Ff  for which the inflow mixture gives stoichiometric proportions.  and P

)(~ Of  are the fuel and oxidizer PDFs at the inlet. In this example, I assume that there are 

no fluctuations in the fuel and oxidizer concentrations at the inlet and hence )(~ Ff  and 

)(~ Of  are given by Delta functions. 
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fuψ  and )(F

Tψ  are the concentration and temperature of fuel at the inlet fuel stream 

respectively. )(O
oxψ  and )(O

Tψ  are the concentration and temperature of oxidizer at the inlet 

oxidizer stream. 



By scaling the time by the residence time,  I obtain equation 4.2.2 in a form 

that shows the effect of the chemical, mixing and residence time scales. 
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The mixing can be controlled by varying the mixing time scale  at fixed mixτ resτ  and the 

chemical time scale can be changed by changing the residence time . resτ
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Figure 4.2.1. Schematic of a partially stirred reactor showing the fuel and oxidizer inlet 

4.2.3 Application of the DQMOM. 
 in chapter 2, the DQMOM uses a coarse grained 

representation of the underlying PDF (Fox (2003)). 

and products outlet. 

As discussed in greater detail
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)ˆ( ,nkk ψψδ −)(tWn  is the quadrature weight,  is the Dirac delta function centered 

at the  nth
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 quadrature point of the kth variable , nk ,ψ̂ .  is the total number of quadrature 

points, and  is the dimension of the space (i.e. the number of scalars defined in the pdf). 

As discussed in chapter 2, one can substitute 4.2.5 into equation 4.2.3 and obtain 

evolution equations for the densities  and 
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The initial conditions are taken to be pure air inside the reactor. 

To recapitulate, the  source terms  and  are obtained by forcing 

 moments of the pdf to evolve correctly. This essentially involves solving a 

matrix equation of the form 
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( )dll ,...,1 d-tuple There are  rows given by . This choice of )1( +dNQ )1( +dNQ

 ensures that  moments  moments evolve consistently. The vector A )1( +dNQ dmmM ,...,1
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)()( , O
T

O
ox ψψ  denote the oxygen mass fraction and temperature at the oxidizer inlet. 

)()( , F
T

F
ox ψψ  denote the fuel mass fraction and temperature at the fuel inlet. For simplified 

chemistry schemes the scalars can be defined in terms of mixture fractions and progress 

variables and equation 4.2.8 must be redefined accordingly. Therefore the solution of the 

problem involves solving the system of ODEs (equation 4.2.6) with the source terms for 

each time step determined by the solution of a matrix equation. 

From equation 4.2.3, one can see why the partially stirred reactor model is a 

suitable problem for investigating multivariate DQMOM. If one employs more 

sophisticated reaction mechanisms to evaluate the chemical source term , then one 

needs to include the mass fraction information of a larger number of species. This 

immediately gives rise to a multivariate PDF. In the calculations that follow, I apply the 

theory for multivariate DQMOM outlined in Chapter 2 and compare the DQMOM 

predictions with Monte Carlo simulations. 

iS

4.2.4 Chemistry Models. 
To investigate the performance of DQMOM for low and high dimensional 

systems I consider chemical reaction mechanisms of increasing complexity. The 
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chemical reaction model is required to evaluate the chemical source terms 

)(ψriS appearing in equation 4.2.6.  

(a) One step chemistry mechanism. 
This is the simplest possible mechanism. I use the global 1-step reaction for 

propane combustion from Westbrook and Dryer (1981). 

2222283 8.180438.185 NHCONOHC ++→++       4.2.8 

The one step chemistry problem gives rise to a bivariate problem (D = 2). Here I 

use a mixture fraction and progress variable approach (Fox (2003)). The mixture fraction, 
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Z , is defined to be zero for pure oxygen, i.e. )(O
oxψψ =  and 1 for pure fuel )(F

fuψψ = . The 

intermediate values represent the various degrees of mixing. The progress variable, Y , is 

a variable that is proportional to the mass fraction of carbon dioxide. For the one step 

mechanism, the mass fractions of all the species can be obtained from Z  and Y using 

linear transformations. The concentration of nitrogen in the inlet air can be obtained from 

the concentration of the remaining species.  
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 and the quantity The stoichiometric mixture fraction,  is 

defined such that when KF
T

O
T 298)()( ==ψψ
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 and , the temperature Tψ1=Y  equals the 

adiabatic flame temperature of propane (2250 K). Once the mass fractions of the species 

and the temperature are obtained using the above relations, the chemical source terms for 

 and Y can be obtained as  Z
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where  is the molar concentration of the fuel in gmol/cc,  , 

,  and 

11106.8 ×=A

1.0=a 65.1=bmolkcalEa /0.30= . 

(b) Two-step chemistry mechanism. 
I use the 2-step mechanism for propane taken from Westbrook and Dryer (1981). 

22

222283
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16.1304316.135.3

COOCO
NHCONOHC

→+
++→++

     4.2.11 

This is an example of a competitive-consecutive reaction (Fox (2003)) and gives 

rise to a trivariate (D = 3) problem. I again use the mixture fraction progress variable 

approach as in the one step reaction. Here one needs two progress variables,  and  

that are proportional to the mass fractions of   and . The species mass fractions 

and temperature can again be written down in terms of 

1Y 2Y

2CO OH 2

,  and  as follows. 1Y 2YZ
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The stoichiometric mixture fraction, , is defined as in the previous section. In order to 

avoid issues arising due to the varying specific heats, I define  such that when 

stZ

pC

121 == YYKF
T

O
T 298)()( ==ψψ Tψ and , becomes the adiabatic flame temperature of 

propane.  

The chemical source terms for the variables Z ,  and  are 1Y 2Y
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, ,5.0=d 25.0=e , . Activation energies for the various 0.1=f



molkcalEa /0.402 =reactions are ,molkcalEa /0.301 = . Pre-exponential factors are 

 and . 8
2

6.14
2 105,10 ×== bf AA12

1 100.1 ×=A

Problem Dimension Mixing 

Model 

Chemistry Chemical Source Terms 

Mixing 1 IEM N/A N/A 

1 step global reaction 
 

for propane 1-step 
2 IEM R1 = 0 

reaction C H +5O +18.8N  3 8 2 2
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3CO2+4H2O+18.8N2

R2~[YF]a[YO]b exp(-Ea/RT)

2-step         3 IEM 2 step reaction for R  = 0 1

reaction propane  

C3H8+3O2+13.3N2       

CO+4H2O+13.2N2 

CO + ½ O2   CO2

R2 ~ [YF]a [YO]b (Ea1/RT)  e 

 

R3 ~ {[YCO]c [YO]d [Y ]d
H2O   

–[YCO2]f (-Ea2/RT)} e

Table 4.2.1. Summary of mixing and chemistry sub-models used in the computational 
problem for the partially stirred reactor.  

4.2.5 Computations and Discussion of Results. 
Having described the equations to be solved and the chemistry models used, I 

proceed to study the accuracy of the DQMOM solutions by comparing the means and 

variances of the species with the means and variances obtained using Monte Carlo 



simulations. I present a summary of the problems studied in Table 4.2.1. To obtain the 

DQMOM solution I integrate equations 4.2.5 starting with conditions of pure air inside 

the reactor. As per Ren and Pope (2004), the time step is  and 

fractional time stepping is used, that is first the inflow-outflow step is evaluated, then the 

mixing and finally the reaction step. For the Monte Carlo simulations I follow the exact 

procedure described in Ren and Pope (2004). Ren and Pope (2004) present only the 

stationary state results and start with an initial condition that is close to the expected 

stationary state. In this study, I use the initial condition of pure air in the reactor and 

simulate the transient phenomena as well. The mixture-fraction/ progress-variable PDF 

inside the reactor is represented using  notional particles. At the beginning of each 

time step,  particles are chosen randomly with replacement from 

the ensemble of  particles. (Here is the function that returns the integer that 

is closest to

resmixrest τττ /),min(1.0=Δ ∗

totN

)( totreplace NtNINTN ∗Δ=

totN )(xNINT

x ). The chosen  particles are replaced by replaceN

)( *

oxfu

fu
totF mm

m
NtNINTN

&&

&

+
Δ=  fuel particles and FreplaceA NNN −=  oxygen particles. 

Then all the particles are mixed according to the IEM model and finally the reaction step 

is evaluated by integrating the reaction rate term starting with the varying chemical 

compositions and temperature associated with each particle. The integration is performed 

using the stiff integrator DASSL (Petzold (1983)) that is available in the public domain.  

(a) Two stream mixing problem.  
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The two stream mixing problem without chemistry can be described by the mixture 

fraction variable alone. The problem is then a univariate problem which presents fewer 



difficulties. Further, for the simple, linear mixing model (IEM), one can obtain exact 

solutions for the time varying mean and variance of the mixture fraction in the reactor. 

Figures 4.2.2 and 4.2.3 show the mean and variances of for the case of slower mixing, Z

0.1=
res

mix

τ
τ

1.0=
res

mix

τ
τ

, and faster mixing, . Also shown is the solution using Monte Carlo 

simulations with 10,000 and 100,000 particles. By comparing the two cases, one can see 

that the mean is unaffected by the mixing time scale while the variance goes down with 

faster mixing. A stationary state is attained at 5~
res

t
τ

 when both the mean and variance 

do not change with time. The final steady state value for mean mixture fraction depends 

solely on the residence time and the rates of inflow of fuel and air. The steady state value 

for the variance depends on the mixing rate as well as the residence time and rates of fuel 

and air flow. In this case, the DQMOM solutions are also the exact, analytical solution 

and the Monte Carlo solutions converge to the same. Hence these results can be taken to 

be a validation of the Monte Carlo simulations. 
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Figure 4.2.2. Plot showing the mean and variance of the mixture fraction for the case of 

slower mixing, 1=
res

mix

τ
τ

. Convergence of Monte Carlo solutions can be seen. 
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Figure 4.2.3. Plot showing the mean and variance of the mixture fraction for the case of 

faster mixing, 1.0=
res

mix

τ
τ

. Variances are lower due to faster mixing. 
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(b) One step chemistry problem. 
 The PaSR model with one step chemistry is a slightly more advanced 

model that allows the examination of finite rate chemistry effects such as ignition and 

extinction phenomena. Treatment of this problem using the transported PDF methods 

leads us to evaluate the time evolution of a bivariate PDF. This gives us an opportunity to 

test the theory for the multivariate DQMOM outlined in chapter 2. As stated earlier, the 

two variables will be the mixture fraction, Z , and a reaction progress variable, . Figure 

4.2.4 shows the scatter plot for the final stationary distribution. One can see that all the 

Y

Z ,Y  points lie on a manifold. This appears to be true for a deterministic mixing model 

such as the IEM but not for stochastic mixing models such as the coalescence-dispersion 

or the EMST models where there can be some scatter in the values of Z  and Y  as shown 

in Ren and Pope (2004). In addition one sees that the points lie on the equilibrium curve 

for the fast mixing case ( ss
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mixres 01.0;1.0 =τ = τ ) while for the slow mixing case 

( ss mix 1.0;1.0 = ) there are some non-equilibrium effects for higher values of res =τ τ Z  

(fuel rich mixtures) even in the final stationary state.  
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Figure 4.2.4 Scatter plot showing the distribution of mixture fraction (Z) and reaction 
progress variable (Y) at the stationary state. Dashed line shows the 
equilibrium state, circles slower mixing and triangles faster mixing. 
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Figure 4.2.5 Species means for the slower mixing case of 1.0,1.0 == mixres ττ . Only 
stationary state values are shown for the 3 point quadrature results. 
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Figure 4.2.6 Species variances for the slower mixing case of 1.0,1.0 == mixres ττ . Only 
stationary state values are shown for the 3 point quadrature results. 
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Figure 4.2.7 Species means for the faster mixing case of 01.0,1.0 == mixres ττ . Only 
stationary state values are shown for the 3 point quadrature results. 
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Figure 4.2.8 Species variances for the faster mixing case of 01.0,1.0 == mixres ττ . Only 
stationary state values are shown for the 3 point quadrature results. 

Next I check the predictions for the species means and variances obtained using 

both the DQMOM as well as the Monte Carlo simulations. Since there are no closure 

issues in the Monte Carlo simulations one may assume that the converged Monte Carlo 

results are more accurate. For the DQMOM calculations I use both 2 and 3 point 

quadrature. For the 3 point calculations, due to difficulties encountered in starting with 

pure air in the reactor, the initial conditions are set from the results obtained from Monte 

Carlo simulations. Hence only the final stationary results are shown for the 3 point 

calculations. In figure 4.2.5 and 4.2.6, I plot the species means and variances for the 

slower mixing case. Looking at the species means in figure 4.2.5, one finds good 

agreement for the species means for both the transient phenomenon of ignition as well as 

the final stationary states. Further it is seen that the 3 point results coincide with the 2 

point predictions. For the variances (shown in figure 4.2.6), one sees a lot of deviation 
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between the DQMOM results and the Monte Carlo simulations. The variances compare 

favorably only for the fuel while the 2 point DQMOM predictions for the other species 

show considerable error. Better agreement for the variances for all the species can be 

obtained with three point DQMOM. The same phenomena can also be seen for the faster 

mixing case. There is a very good agreement between 2 and 3 point DQMOM and Monte 

Carlo simulations for the species mass fraction means as shown in figure 4.2.7 while 

there is significant error in prediction of the variance (seen in figure 4.2.8) with the 2 

point DQMOM. Again one finds much better agreement for the variances with three 

quadrature points . It should be noted that the variances are quite small in all cases. This 

appears to be true for air rich and stoichiometric combustion conditions as well as for fast 

mixing cases. However, even if the species variances are low, the variance in the 

temperature can be quite large and therefore it is important to predict the variances 

correctly. 

As discussed in Chapter 2, there are two possible sources of error for the 

DQMOM solutions. One is the error due to the quadrature approximation of integrals for 

the chemical source term using a truncated set of moments. The other source of error is 

due to the selective elimination of some of the moments (Selective Graded Lexicographic 

Ordering) in order to get a non-singular matrix. For instance using the mixture fraction 

variable, Z , as the primary variable and using SGLO gives us the following valid 

moment set: { })0,3(),1,1(),0,2(),1,0(),0,1(),0,0(),,(:,, =kjiM kji . This set does not contain 

the second moment of the reaction progress variable . From equation 4.2.9, one sees 

that the variance of CO

2,0M

 and H O will be proportional to the variance of the reaction 2 2
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progress variable which in turn depends on . Thus it is crucial to ascertain the 

magnitude of the error incurred in discarding some of the moments. To quantify the 

different sources of error, I define a total relative difference of species means and 

variances defined as: 

2,0M
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To isolate the error due to the incompleteness of the moment set, I first obtain the 

moment set used in the DQMOM simulations from the Monte Carlo simulations (e.g. the 

set { })0,3(),1,1(),0,2(),1,0(),0,1(),0,0(),(:, =jiM ji ) and reconstruct the quadrature points 

and weights directly from this set. This is done by solving the set of equations given by 

 for the  variables . In this study, I used the 

multivariate Newton Raphson method (Press et al. (1992)) to solve these equations. It 

must be understood that the moments obtained in this manner are exact since they are 

obtained directly from the Monte Carlo simulations that do not contain closure errors. 

However, the species means and variances computed using these moments (or 

equivalently, using the quadrature points and weights  obtained from this 

moment set) are not exact. This is because the species means and variances also depend 

on other moments that are not contained in the DQMOM set. I compare the species 

means and variances using the “exact but incomplete” moment set with the species means 

and variances obtained using the “exact and complete” moment set. Let ERR

∑
=

=
QN

n

l
n

k
nnlk YZWM

1
, nnn YZW ,,QN3

nnn YZW ,,

1 be the total 

relative difference between the two solutions. I also compare with the species means and 
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variances obtained using DQMOM with the “exact” values obtained from Monte Carlo 

simulations. Let ERR be the total relative difference of the two solutions. ERR2 2 

quantifies the error due to the incomplete moment set as well as the error accumulated 

over time due to the quadrature approximation of integrals. 

In figure 4.2.9, I plot the histogram summarizing the error for the slower mixing 

case. The first column is ERR  while the second column is ERR . ERR1 2 2 is only very 

slightly larger than ERR1 which implies that most of the error is due to the incomplte 

moment set. The quadrature closure error accumulated during the DQMOM evolution is 

very small compared to the error in the selection of moments. For the first two columns, 

the moment sets are selected using the Selective Graded Lexicographic Ordering (SGLO) 

scheme with the mixture fraction variable Z as the principal dimension (variable) as 

discussed in section 2.7.2. The next two columns show the same comparison with the set 

of moments obtained by choosing the reaction progress variable Y  as the principal 

dimension and applying SGLO. In this case a larger number of moments containing Y 

will be selected.  Here the error in the reconstructed solution is lower probably because in 

the final stationary state, only the products are predominant and the reaction progress 

variable better describes the products. However the error in the DQMOM solution is 

much higher which indicates that proper resolution of the mixture fraction variable is 

essential to obtain accurate solutions while dealing with the transient phenomena. This 

could be due to the fact that the mixture fraction better describes the mixing of the 

incoming fuel and air streams. It is also noted that during the 2 point DQMOM 

simulations with Y  as the principal variable, one of the quadrature points exceeds the 

bounds on the species mass fractions set by the constraint of element conservation. 
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Violation of element conservation bounds is not observed for cases in which Z  is the 

principal dimension (variable). As a tentative conclusion, I propose that for problems of 

mixing and chemical reaction using the mixture fraction variable and two point 

quadrature, the mixture fraction Z  as the principal dimension in SGLO. For three points, 

there is negligible error in the reconstructed solution because in this case one has all the 

relevant moments in the moment set. There is a smaller error in the 3 point DQMOM 

solution, most of which is due to errors in the variance. Figure 4.2.10 shows the same 

error histogram for the faster mixing case and one sees that similar conclusions can be 

drawn. 
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Figure 4.2.9. Histogram that summarizes the total relative errors in the species means and 
variances. (ERR  and ERR1 2 are as defined in the text. Z, Y Principal 
Dimension indicates that the mixture fraction (Z), reaction progress variable 
(Y) respectively are used as the principal dimension in SGLO.) Case of 
slower mixing 1.0,1.0 . 
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Figure 4.2.10. Same histogram as in figure 4.2.8 for the case of faster mixing 
( 01.0,1.0 == ). mixresτ τ

(b) Two step chemistry problem. 
In the two step chemistry problem, I use a more sophisticated chemical reaction 

mechanism. There are now two reactions that compete with each other and also the 

dimension of the problem is increased by one so that one is dealing with a trivariate 

problem. The variables used in the PDF are the mixture fraction, Z and two reaction 

progress variables, Y  and Y1 2. One can get all the relevant species mass fractions from 

these two variables as shown in equation 4.2.12. Figure 4.2.11 shows the scatter plot for 

the stationary distribution. One again sees that the points lie on a (deterministic) manifold 

that is characteristic of a deterministic mixing model such as the IEM. Unlike the 1 step 

mechanism, one sees significant deviations from equilibrium and greater differences 

between the slow mixing and fast mixing cases. In figures 4.2.12 and 4.2.13, I compare 

the species means and variances for the faster mixing case. The species means show good 
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agreement both for the transient and final stationary states. In particular, the peak mean 

CO concentration as well as the steady mean concentration is in close agreement with the 

Monte Carlo results. The variances again show the same trend, large errors for the 2-point 

prediction that get a lot better with three points. In figures 4.2.14 and 4.2.15, I plot the 

means and variances for the slow mixing case. All species means are predicted correctly 

except the CO concentration which seems to show large and opposite deviations for the 

2-point and 3-point calculations. I believe that this is due to the extreme sensitivity to the 

temperature of the second reaction that determines the CO concentration. It should be 

mentioned that in some cases I considered with a longer residence time sres 1=τ , I find 

the mean CO predictions to be reasonably accurate. In figure 4.2.16, I plot the error 

histogram. One sees that errors are larger in part because I consider more species. An 

interesting observation is that for the 3 point calculations, the error due to reconstruction 

of moments is slightly larger than the error due to DQMOM (i.e. the error ERR1 defined 

earlier is larger than ERR2). A closer examination reveals that the error in the 

reconstruction is due to a large error in the mean CO predictions. By ignoring the mean 

CO error in definition of the total error gives us the next two columns which follows the 

same trend as shown in the results obtained using the one-step chemistry model. The 

reason behind the error in mean CO prediction is puzzling. Apart from the extreme 

temperature sensitivity of the reaction, a possible reason is that for the trivariate case 

even the 3 point DQMOM calculations do not use all the moments that are required to 

reconstruct the species means and variances. In this higher dimensional setting, one may 

need to go to 4-point quadrature if one requires greater accuracy.  
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Figure 4.2.11. Scatter plot showing distribution of the mixture fraction and two reaction 
progress variables at the stationary state. Dash-dot lines correspond to 
equilibrium, unfilled triangles (∆) the fast mixing case 
( 01.0,1.0 == mixresτ τ ) and filled circles the slow mixing 
case( 1.0,1.0 ). 
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Figure 4.2.12. Species means for the faster mixing case of 01.0,1.0 == mixres ττ , 2 step 
chemistry model. Only stationary state values are shown for the 3 point 
quadrature results.  
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Figure 4.2.13. Species variances for the faster mixing case of 01.0,1.0 == mixres ττ , 2 step 
chemistry model. Only stationary state values are shown for the 3 point 
quadrature results. 
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Figure 4.2.14. Species means for the slower mixing case of 1.0,1.0 == mixres ττ , 2 step 
chemistry model. Only stationary state values are shown for the 3 point 
quadrature results. 
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Figure 4.2.15. Species variances for the slower mixing case of 1.0,1.0 == mixres ττ , 2 step 
chemistry model. Only stationary state values are shown for the 3 point 
quadrature results. 
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Figure 4.2.16. Histogram that summarizes the total relative errors in the species means 
and variances. (ERR1 and ERR2 are as defined in the text. Z, Y Principal 
Dimension indicates that the mixture fraction (Z), reaction progress variable 
(Y) respectively are used as the principal dimension in SGLO.)The two 
columns indicated as “Without Mean CO error” is the total relative error 
neglecting the mean CO mass fraction error. Case of slower 
mixing 1.0,1.0 . 
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4.2.6 Conclusions. 
In this section I discuss the implications of some of my findings in the previous 

section. The DQMOM method is really a systematic expansion of the PDF transport 

equation in terms of its moment equations. Hence its major advantage ought to be the 

reduced computational cost. Indeed in my simulations, I got results from DQMOM 

almost instantly while it took several hours to get the converged Monte Carlo results. As 

a caveat, I point out that I did not use some of the developments in accelerating the 

Monte Carlo results such as parallelization of the code, ISAT for the chemistry etc. While 

inclusions of these techniques would certainly speed up the Monte Carlo simulation, it 
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will be surprising if these computations become any faster than the DQMOM 

computations. The Monte Carlo simulations will eventually be more effective as the 

dimension of the problem becomes high enough. A detailed analysis of the algorithmic 

complexity of the DQMOM and asymptotic analyses on the dimensions and number of 

quadrature points is beyond the scope of this work. However, granted that DQMOM 

calculations are more efficient than the Monte Carlo simulations, one needs to evaluate 

the feasibility and accuracy of solutions. In terms of feasibility, I found that if the 

multivariate moments are chosen according to a scheme that avoids the formation of a 

singular or ill-conditioned Jacobian matrix, then the calculations can be carried out 

without any blowup. I found that this method even works for a 19 dimension problem 

(using the more detailed ARM2 chemical reaction mechanism described in the TNF 

website maintained by Sandia (http://www.ca.sandia.gov/TNF/chemistry.html)). 

However the act of creating a non-singular matrix forces me to discard moments that may 

be extremely important for the accuracy of my simulations. This appears to be a 

fundamental drawback of the DQMOM method for multivariate problems. This problem 

can only be avoided by choosing a larger number of quadrature points. My analysis of the 

error also revealed that the error due to the use of an incomplete moment set is higher 

than the error due to closure using the quadrature approximation.  

In the univariate problem, one can evolve a full set of moments and therefore the 

QMOM/DQMOM method gives highly accurate results. This wass observed in all the 

problems considered in chapter 3. In chapter 3, I made the observation that the accuracy 

of the solution can be increased by a proper choice of the moments. The proper choice of 

moments appears to be a more crucial in multivariate problems since in the multivariate 
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case there are further constraints in the choice of a valid set of moments. To avoid the 

constraints in the choice of moments, one needs to look at other methods that do not 

involve a Jacobian transformation between the space of moments and the space of 

quadrature points and weights. As a further extension of this work, one may apply the 

PCA-QMOM theory to this problem or investigate algorithms that provide the quadrature 

points and weights directly from the moments. As noted in chapter 2, this leads us to 

unsolved problems in Gaussian cubature.  

After discussion of some of the limitations of the DQMOM method, it is 

important not to lose sight of key advantages. One is the ability to solve the PDF 

transport equation in an Eulerian setting and therefore being able to couple these 

problems to existing CFD codes that can handle complex geometries and large scale 

industrial reactors. DQMOM is like an asymptotic method where one can increase the 

number of quadrature points to get better and better accuracy. Further advances in key 

research areas in mathematics and numerical analysis such as multivariate cubature 

formulae, the theory of moments etc. has the potential to make a decisive impact on this 

method.          
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Chapter 5: Conclusions and further work. 

5.1 SUMMARY OF MAIN RESULTS. 

The objective of this work was to critically evaluate a promising technique for 

simulating population balance equations. The two solution techniques that I investigated 

were the Quadrature Method of Moments (QMOM) and the Direct Quadrature Method of 

Moments (DQMOM). The theory behind PBE, the method of moments along with the 

moment closure scheme that is used in QMOM/DQMOM was discussed in greater detail 

in chapter 2. There I mentioned that the closure scheme for QMOM involves Gaussian 

integration. Since an approximation was used to close moment equations, there was an 

accumulation of closure errors as the moment equations were evolved. A simple way of 

evaluating these errors is to use the QMOM to solve some well formulated problem in 

aerosol science for which exact solutions can be found. In my treatment of aerosol 

nucleation and growth in well stirred reactors and nozzles discussed in chapter 3 (section 

3.1), I evaluated the possibility of using lower order quadrature schemes in QMOM. By 

comparison with exact solutions, I saw that results obtained using the lowest 1-point and 

2-point quadrature schemes were remarkably accurate. In particular, even the one point 

approximation appeared to be superior to the lognormal method that is widely used. 

These results and conclusions are consistent with a growing number of results that have 

appeared in the literature dealing with the application of the QMOM to problems in 

aerosol science. QMOM has generated a great deal of excitement in the aerosol 

community due to its accuracy and computational simplicity. 

The QMOM does have a few drawbacks. In chapter 3 (section 3.1) I studied a 

problem of size dependant transport of aerosols due to gravitational settling and diffusion 

between infinite parallel plates. The solution to this theoretical problem revealed an 



 191

interesting feature of moment equations. The solutions of the unclosed moment equations 

depended on the choice of moments that were evolved. Errors in the moment solutions 

provided in tables 3.2.1 to 3.2.3 indicated that the source of error due to incorrect choice 

of moment sets can be significant. In some cases, these errors were larger than the errors 

incurred in selecting smaller number of quadrature points. In much of the published work 

in QMOM, the convergence of the method is tested by increasing the number of 

quadrature points using integer moments. Convergence is typically not tested using 

different moment sequences. My findings indicate that solutions should also be checked 

for different moment sequences. The identification of the effect of choice of moment 

sequence on the accuracy of the solution is one of the key contributions of this study. In 

some cases, one may even converge to different solutions with different choices of 

moment sequences. The choice of optimal moment set for a problem appears to be a 

difficult problem. In this work, I have not been able to provide a systematic and rigorous 

procedure for developing an optimal moment set.  An interesting problem in numerical 

analysis is to determine whether a globally optimal moment set exists for a particular 

PBE. In case of existence, one might find an algorithm for determining the optimal 

moment set. 

An important technological objective is to couple population balance equations 

with CFD solvers for fluid flow. This enables the study of numerous interesting 

engineering problems involving particulate processes. An advantage of moment methods 

is that they are amenable to coupling with commercial CFD codes. I considered a 

problem of smoke entry and light scattering in a cylindrical cavity above a uniform flow. 

The solution to this problem demonstrated that is possible to incorporate complex 

physical models along with the particle dynamics to make engineering level predictions. 

The methodology of calculating the electromagnetic scattering by fractal shaped 
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aggregates that is presented in section 3.3 can be implemented in more realistic models of 

smoke detectors. It is also possible to treat a host of engineering applications requiring a 

combination of population balance modeling and computational fluid dynamics at a much 

more detailed resolution than has been previously possible. 

 In chapter 4 (section 4.1), I examined the applicability of QMOM and DQMOM 

for applications in statistical uncertainty propagation. The study of statistical uncertainty 

propagation using moment methods is not very well known. The application of QMOM 

and DQMOM to this class of problems appears to be an original contribution of this 

work. I considered a design problem in which uncertainty in the size of a fire in the room 

leads to uncertainties in a critical design parameter, the height of the smoke layer from 

the ceiling. In these applications, one requires a cumulative distribution function for risk 

assessment studies. Moment methods provide only the moments of the uncertain variable. 

I used the QMOM and a CDF-reconstruction method that uses the Generalized Lambda 

Distribution. Solution to this problem revealed that predicted moments again depend on 

the choice of moments and that fractional moments provide greater accuracy. 

Furthermore, the CDF-reconstruction scheme was found to be very accurate when 

compared to exact results obtained from Monte Carlo simulations. The implications of 

this work suggest that QMOM may be a computationally efficient tool that can be used to 

simplify the uncertainty calculations in more complex design processes.  

 In section 4.2, I found that the simulation of turbulent mixing and chemical 

reaction using moment methods provided the greatest difficulties. In this work I used 

DQMOM to solve a bivariate and trivariate PBE that describes the turbulent mixing and 

reaction in a partially stirred reactor. Unlike earlier problems dealing with the univariate 

PBE, one requires special procedures for selecting a valid set of moments as discussed in 

section 2.7. In section 2.7.2 I presented a very general method that I call Selective Graded 
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Lexicographic Ordering (SGLO) for selection of valid moments in DQMOM. The 

development of the SGLO scheme is another original contribution of this dissertation. 

This scheme could be used for DQMOM solutions of multivariate population balance 

equations. Solutions using DQMOM-SGLO presented in chapter 4 (section 4.2.4) 

indicated that there can be large errors in the solutions obtained using some moment 

sequences. Furthermore, with some moment sequences, one may even obtain physically 

unrealistic solutions. Predictions for variances of species showed bigger errors than in the 

univariate examples discussed earlier. One must mention that solution of multivariate 

PBEs using moment methods is generally considered to be a difficult task and serious 

research on this subject has begun only very recently.    

5.2 RECOMMENDATIONS FOR FUTURE WORK. 

 Further work on any of the applications of QMOM and DQMOM that is 

considered in this work is suggested in the conclusions at the end of each section. Here I 

outline some possible directions of work for the general QMOM and DQMOM. An open 

ended problem is to find efficient algorithms for obtaining cubature formulae in higher 

dimensions. A possible approach is suggested in section 2.6.1. Implementation of a 

cubature scheme for multivariate moment equations will lead to a better understanding of 

the limitations of the DQMOM method. More work is required on the use of DQMOM 

for solutions of multivariate PBEs. In particular, it is desirable to study the computational 

requirements for this method as the number of dimensions and/or the number of 

quadrature points is increased. It will be useful to see the comparison with Monte Carlo 

simulation techniques that are currently the only tools for studying very high dimensional 

systems. It is also important to demonstrate the stability of DQMOM for these 

calculations.  
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 A difficult question is whether QMOM or DQMOM is a model or a rigorous 

numerical scheme for solving the moment equations of population balance equations. If it 

is a numerical scheme, then one needs to demonstrate that as the number of quadrature 

points are increased, one can exactly recover all the moments of the underlying density 

function (i.e. all moments converge). However this may not be possible in general 

because for a large class of density functions (for instance, those PDFs whose tails decay 

as a power law), the higher order moments may not even exist and therefore, indefinitely 

increasing the number of moments would not be feasible. Even if the convergence of the 

moment equations cannot be defined in the mathematical sense, one can still interpret the 

moment equations as models that accurately predict the evolution of physically relevant 

lower order moments of the density function. In this scenario, an analysis that shows how 

the closure error propagates in time would be very useful. Then one could independently 

test the accuracy of this method without having to run Monte Carlo simulations. For 

moment equations of a general population balance equation, the propagation of the error 

could depend on a number of factors such as the initial number density as well as the 

transition probability and other growth laws. Knowledge of how the moments of self-

similar or other long time asymptotic density functions behave might give some clues 

about the stability and growth of error. Various schemes for numerical analysis of 

moment methods for linear kinetic equations exist in the literature as described in 

Schmeiser and Zwirchmayr (1998). The author is not aware of similar analyses for 

general nonlinear population balance equations. Alongside these theoretical 

considerations, one can develop QMOM or DQMOM based solution strategies for an 

ever wider range of important problems in engineering and the sciences. 



Appendix A. 

A.1. OBTAINING THE ABSCISSAS AND WEIGHTS FOR THE QUADRATURE FORMULA. 
 

A scheme for obtaining the quadrature points and weights for the Quadrature 

Method of Moments (QMOM) has been given by Gordon (1968). However his 

formulation involving continued fractions is more complicated and obscures the central 

mathematical concepts. An alternate formulation using orthogonal polynomials is 

provided here. 

The problem is formulated as follows. Obtain the integral of any function with 

respect to an unknown size distribution, some of the lower order moments of the size 

distribution being known. 

∫∫
∞∞

==
00

)()()()( vdnvfdvvnvfI        A.1 

The central idea is approximating the function using a set of orthonormal polynomials in 

a suitably defined normed inner product function space. The inner product is defined as 

∫
∞

=
0

)()()(, dvvnvgvfgf           A.2 

where  are any two functions in the space. The inner product is well defined even in 

an infinite interval because the weight  as 

gf ,

∞→v0)( →vdn . In the calculations that 

follow, the exact form of the size distribution remains unknown. Its only role is in 

defining the weight so that integrals of the form A.2 do not diverge. Then the norm of 

any function  in this space is defined by  f
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One seeks a sequence of orthonormal polynomials such that any function can be best 

approximated by a unique polynomial that belongs to the vector space spanned by that 
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Formula A.9 gives a direct method of calculating the orthonormal polynomials from the 

moments. For 1-point and 2-point quadrature, the roots of the polynomials defined in A.5 
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and A.7 are required and these can be computed directly. For higher order quadrature 

schemes, the roots are not computed directly because ‘the numerical problem of finding 

roots of high-order polynomials is notoriously ill-conditioned’ (Gordon (1968)). The 

problem of finding the roots is reduced to the computation of eigenvalues of a tri-

diagonal matrix for which efficient computational techniques exist. The first step in 

constructing a tri-diagonal matrix is to obtain a recurrence relationship among the 

polynomials using the orthogonality property (i.e. each  is orthogonal to any 

polynomial up to the  power. Taking the polynomial  and eliminating the 

term  gives some polynomial up to the power which can be written as a linear 

combination of 
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Taking the inner product of A.10 with  and using the orthogonality 

property, one gets 
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Using A.10, A.11, A.12 and A.13 one sees that there is a recurrence relationship 

involving three consecutive polynomials. 
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The expressions for  and nα nβ  look deceptively simple in the notation used. In practice 

it is easy to calculate a few of these terms by hand but for  the terms become very 

long and algebraically complicated. The product-difference algorithm can be used to 

compute these terms as given later. Equation A.17 can be written as the following system 

of linear equations 
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221100 =+−+ vPvPvvP βαβ                    A.21 )1( =n

 198



0)(ˆ)(ˆ)()(ˆ
332212 =+−+ vPvPvvP βαβ         )2( =n

and so on. Taking the example of the three point quadrature scheme, choose  such that 

. Then for a non trivial solution to A.21, one requires the determinant  

v

0)(3 =vP
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IA λ−That is the roots are the three eigenvalues of the matrix  such that A  is given by 

A.17. The eigenvectors give the weights as shown below. 

For each eigenvalue ,kλ  the eigenvector is  which can be normalized by 
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One is interested in approximating any function using the orthonormal polynomials 

 for the example of three-point quadrature. )(ˆ),(ˆ),(ˆ
210 vPvPvP

)(ˆ)(ˆ)(ˆ)( 221100 vPcvPcvPcvf ′+′+′≈        A.24 

321 ,, λλλ=v which are the three eigenvalues, one gets Taking the points 
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)(ˆ)(ˆ)(ˆ)( 3223113003 λλλλ PcPcPcf ′+′+′=  

.3,2,1, =′ ici  can be evaluated.  Using the orthonormality condition (A.13), the coefficients 
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One needs to evaluate the integral  
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But  etc. are all orthogonal to 1 and . So ),....(ˆ),(ˆ),(ˆ
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0
2Mw αα ρ=  is the quadrature weight and  is the quadrature point or abscissa. αλ

 

A.2. THE PRODUCT DIFFERENCE ALGORITHM FOR GETTING ELEMENTS OF THE 
TRIDIAGONAL MATRIX. 
 
The problem is given a set of moments  find the terms ,.......,, 210 MMM  and nα nβ  that 

are defined in B.19 and B.20. This algorithm is outlined in McGraw (1997) and Gordon 

(1968). First an array  is constructed from the moments as follows. ),( jiQ



For the first column, ,     A.32 1=j .1,0)1,(,1)1,1( ≠== iiQQ

In the second column,  the moments are written down with the signs changed: 2=j

,.......3,2,1,)1()2,( 1
1 =−= −
− iMiQ i

i         A.33 

Then the remaining elements are obtained using the recursive formula for . 3≥j

    A.34 )1,1()2,1()2,1()1,1(),( −+−−−+−= jiQjQjiQjQjiQ

and  Once this array has been created, a vector is constructed with 0)1( =A

)1,1(),1(
)1,1()(
−

+
=

nPnP
nPnA         A.35 

Finally the matrix elements are calculated as 
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α
         A.36 

 ..),.........4,3,2,1( =n

Appendix B. 

B.1. DERIVATION OF DQMOM EQUATIONS FOR SIZE DEPENDENT DIFFUSION AND 
TRANSPORT. 
 Fox (2003) presents a detailed derivation of the DQMOM equations for general 

multivariate population balance equations. However, to the best of My knowledge, a 

derivation for the case where the diffusion coefficients depend on the internal variable 

does not exist in the literature. Equation 3.2.1 for the combined settling and diffusion of 

aerosols with size dependent diffusion coefficient and settling velocity is    

),;()(),;()(),;( txrnrC
xx
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xt

txrn
s∂

∂
+

∂
∂

∂
∂

=
∂

∂ .     B.1 
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In DQMOM, the number density function is represented by Dirac Delta functions: 

∑
=

−=
QN

i
ii txWtxrrtxrn

1

),()),(ˆ(),;( δ .       B.2 
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In the following I drop the x ,  dependence of  and and also the limits of the 

summation. 

ir̂t iW

Substituting B.2 in B.1 and using the properties of the delta function one gets, 
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where  and  are distributional derivatives of the delta function given by  )1(δ )2(δ

)ˆ()1()()ˆ( )()(
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Equation B.3 is exact. Now by multiplying both sides by  

, one can force the  moments to be exact and one gets the 

following relation:  

mrrg =)( ,

12,...3,2,1,0 −= QNm QN2
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It is not necessary to choose only integer moment sequences;  can also be a fraction or 

any arbitrary sequence of real numbers.  

m

In deriving B.5, I have used the property of the derivatives of the delta function B.4. The 

derivation so far follows from Fox (2003). In this derivation additional terms appear 

because of the 
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r  dependence of  and . After some manipulation I obtain 

transport equations for  and :  
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Now substituting B.6 into B.5, one gets 
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For the general aerosol problem involving coagulation, breakage etc., there will be 

additional source terms in addition to the source terms for the diffusion. The source terms 

 for the transport equations B.6 are obtained by the solution of the set of 

simultaneous linear equations B.7. This can be written in matrix form as shown in Fox 

(2003). The purpose of this appendix is to illustrate that additional terms appear due to 

the radius dependence of the diffusivity. For constant diffusivity one recovers the 

expression given in Fox (2003). 

ii ba ,
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