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Block transmission systems have recently gained considerable interest

as a promising method for high data rate communications. This is due to their

uncomplicated implementation and simple equalization of frequency-selective

fading channels. For coherent signal detection and channel equalization in

block transmission systems, channel state information (CSI) should be known

to, or estimated at, the receiver.

In this dissertation, we present three approaches for efficient channel es-

timation in block transmission systems. First, to provide a bandwidth-efficient

solution for multiple-input multiple-output (MIMO) orthogonal frequency di-

vision multiplexing (OFDM) channel estimation, we establish conditions for

channel identifiability and propose a blind channel estimation method based

on a subspace technique.

Second, to relax existing strict conditions for blind MIMO channel iden-

tification without a sacrifice of data rates and to provide a bandwidth-efficient

solution for channel estimation in MIMO block transmission systems with a

vii



cyclic prefix, we present a framework for blind channel estimation based on a

general non-redundant precoding. Using this framework, we propose a blind

channel estimator exploiting a simplified non-redundant precoding. To com-

plete the channel estimation, we also develop a technique for resolving the

channel ambiguity in the proposed method.

Third, in rapid mobile environments where channels change very fast,

blind channel estimation techniques may not be suitable to obtain CSI due to

their relatively slow convergence. In this case, to achieve accurate estimation

of doubly selective channels in OFDM systems, we propose an optimal (in

the sense of mean square error) pilot tone placement applicable to OFDM

systems regardless of the time variations of a channel. In addition, we present

an accurate linear minimum mean square error (LMMSE) channel estimator

that exploits a small number of pilot tones located according to the derived

optimal placement. To achieve computationally efficient channel estimation

with lower complexity than the LMMSE estimator and to obtain performance

close to the LMMSE estimator, an approximate LMMSE (ALMMSE) channel

estimator is also proposed. Finally, we propose a novel iterative ALMMSE

channel estimator that achieves better performance than the LMMSE and

ALMMSE estimators, while having complexity in between the two.
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Chapter 1

Introduction

1.1 Background

Mobile radio channels impose fundamental limitations on the reliabil-

ity and throughput of wireless communications. Due to scattering, diffraction,

and reflection of electromagnetic waves from buildings and other objects, the

transmitted signal arrives at a receiver through multiple paths from the trans-

mitter to the receiver. This results in multipath fading. The different paths

have different time delays and attenuations that are generally time-varying.

On the one hand, a wireless channel can be generally classified into

either a frequency flat fading channel or a frequency selective fading channel

according to the relative duration of the delay spread and the symbol pe-

riod [132,152,156]. This classification is based on the time dispersive property

of a wireless channel. On the other hand, considering the frequency disper-

sive characteristics of the wireless channel, i.e, the Doppler spread, we can

categorize the channel as slow fading (or time flat) and fast fading (or time

selective) [132, 152,156].

Frequency selectivity and time selectivity are two different properties of

a fading channel. Considering combinations of frequency selectivity and time

selectivity, we can classify a fading channel as one of the following four types:

a flat (slow) fading channel that is both time and frequency flat, a frequency

selective (slow) fading channel that is frequency selective but time flat, a flat

1



fast fading (or time selective) channel that is time selective but frequency flat,

and a frequency selective fast (or doubly selective) fading channel that is both

frequency and time selective.

Recently, increasing interest has been concentrated on modulation tech-

niques providing high data rates over broadband wireless channels for appli-

cations including wireless multimedia, wireless Internet access, and future-

generation mobile communication systems. In radio transmission, however,

high data rates lead to additional technical considerations. A broadband ra-

dio channel is characterized by both time-variant behaviors caused by a moving

receiver or transmitter and frequency selective fading caused by a multipath

delay spread. If a conventional single carrier system is used for this purpose,

channel equalization at a receiver can be very complicated.

By exploiting redundancy in the cyclic prefix (CP), block transmission

techniques provide a useful solution to combat such multipath effects. The CP

is a repetition of the last data symbols in a symbol block, and the length of

the CP exceeds the maximum expected delay spread. By introducing the CP,

these block transmission systems effectively remove intersymbol interference

(ISI), and simplify equalization. Due to these advantages along with other

benefits we will discuss later, the techniques are suitable for broadband wireless

communications and have been adapted for many communication standards.

As a representative example for block transmission systems with a CP,

we can consider the orthogonal frequency division multiplexing (OFDM) [10,

35, 137, 171] system. OFDM is a multicarrier modulation technique where

a block of N information symbols is transmitted in parallel on N subcarri-

ers [171]. A baseband model for a OFDM system is shown in Fig. 1.1. As we

can see from Fig. 1.1, a block of N complex symbols is serial-to-parallel (S/P)

2
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Figure 1.1: Baseband model of OFDM system.

converted, and is modulated by the inverse fast Fourier transform (IFFT).

Then, the modulated signal is parallel-to-serial (P/S) converted back to a fast

data sequence. Before transmission, the CP is appended in front of each block

of the modulated signal. This augmented symbol block is sent through a

multipath channel

At the receiver, the CP, which is corrupted by previous OFDM symbols,

is discarded, and the remaining portion of the received symbol block is demod-

ulated by the fast Fourier transform (FFT). As long as the channel length is

smaller than the length of the CP, the impact of previous symbol blocks on the

current symbol block is confined to the CP portion in the beginning of each

received symbol block. By removing the CP, the receiver eliminates easily

and completely ISI. In addition, since the CP converts a linear convolution of

the transmitted sequence and the multipath channel to a circular convolution,

compensation for the channel distortion is performed by a frequency-domain

equalizer (FEQ) consisting of one tap for each tone. Finally, the transmitted

3



symbols are detected.

OFDM provides a simple implementation based on the IFFT/FFT and

a robustness against frequency selective fading channels, which is obtained

by converting the channels into flat fading subchannels. In the transmission

through a linearly dispersive wireless channel, transmitted signals are dis-

torted by multipath propagation. Linear channel distortion leads to ISI at

the receiver which, in turn, may lead to high error rates in symbol detection.

Compared to other modulation methods, OFDM symbols have a relatively

long time duration, whereas each subchannel has a narrow bandwidth. The

bandwidth of each subchannel is small enough to assume a flat fading in a

frequency selective channel causing ISI. Thus, the narrowband nature of the

subchannels makes the signal robust against frequency selectivity caused by

multipath delay spread. Furthermore, OFDM systems require simple one-tap

frequency domain equalization in time-invariant channel environments, and

can achieve overall bandwidth efficiency higher than single carrier techniques,

because its orthogonal subcarriers allow the subchannels to mutually overlap

without interference [10, 35]. In relatively slow time-variant channels, OFDM

systems may significantly enhance the capacity by exploiting adaptive modu-

lation according to the signal-to-noise ratio (SNR) of each subcarrier. Due to

these advantages, OFDM has been adopted for a variety of applications such

as digital audio broadcasting (DAB) [51], terrestrial digital video broadcast-

ing (DVB-T) [52], the IEEE 802.11a WirelessLAN standard [77,78], the IEEE

802.16a WirelessMAN standard [79], and the IEEE 802.16e Mobile Wireless-

MAN standard [80]. In addition, OFDM is a potential candidate for future

mobile wireless systems.

For another block transmission system with a CP, we can consider the
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Figure 1.2: Baseband model of SC-FDE system.

single carrier modulation with frequency domain equalization (SC-FDE) [54,

137, 174]. A single carrier (SC) system is a traditional digital transmission

technique in that a single carrier modulated with data symbols is transmitted

at a high symbol rate. Frequency domain equalization (FDE) in a SC system

indicates the execution of receiver filtering in the frequency domain to minimize

time-domain ISI. The function of FDE is the same as that of a conventional

time-domain equalization [129]. For channels with severe delay spreads, FDE

is computationally simpler than corresponding time-domain equalization due

to the same reason that OFDM is simpler. A baseband model for a SC-FDE

system is shown in Fig. 1.2. As shown in Fig. 1.2, the transmitter adds the

CP in front of each block of complex symbols before transmission. Then, this

augmented symbol block is sent through a multipath channel. At the receiver,

the CP, which is contaminated by previous symbol blocks, is discarded, and

the remaining portion of the received symbol block is transformed by the

FFT. In the same manner that OFDM eliminates ISI, the SC-FDE receiver

removes ISI as long as the length of the CP is not less than the channel order.

5



Since the CP converts a linear convolution of the transmitted sequence and

the multipath channel to a circular convolution, the channel distortion can

be compensated by a FEQ. Finally, the compensated signal in the frequency

domain is converted into the time-domain signal by the IFFT, and then the

transmitted symbols are detected.

As we see in Figs 1.1 and 1.2, a SC-FDE system shares signal processing

techniques, associated with the frequency-domain receiver processing, with an

OFDM system. Thus, a SC-FDE system has essentially the same performance

and low complexity as an OFDM system [54,137]. In addition, a SC-FDE sys-

tem has a smaller peak-to-average power ratio than an OFDM system, thereby

allowing the utilization of less expensive RF power amplifiers. Channel cod-

ing, while desirable, is not necessary for combating frequency selectivity. A

SC-FDE system is less sensitive to phase noise and frequency offsets than

an OFDM system [53, 137]. SC-FDE systems, however, have generally lower

bandwidth efficiency than OFDM systems. Furthermore, unlike OFDM sys-

tems, SC-FDE systems cannot employ adaptive loading according to the SNR

of each subcarrier.

1.2 Motivation

The ultimate goal of a receiver is to reliably detect transmitted infor-

mation symbols. For coherent signal detection and channel equalization in

the block transmission systems, various receivers including zero-forcing (ZF),

minimum mean square error (MMSE), and maximum likelihood (ML) receivers

require that channel state information (CSI) is known to, or reliably estimated

at, the receivers [129]. Fig. 1.2 shows an example emphasizing the importance

of CSI for symbol recovery in OFDM systems. Without the CSI, the detected
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symbols are almost useless due to the poor performance of the bit error rate

(BER). With the CSI, however, the transmitted symbols are reliably recovered

and thus good BER performance is demonstrated.

Channel estimation is the process of characterizing the effect of the

physical medium on the transmitted sequence. By exploiting CSI obtained

by channel estimation, the receiver can approximate the effect of the true

channel on the transmitted signal and recover the transmitted symbols from

the distorted received signal.

Conventionally, receivers rely on training signals sent from a trans-

mitter to extract CSI. Since the training signals are known to both the re-
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ceiver and the transmitter and do not carry any information for user data,

training-based channel estimation decreases communications throughput. As

an example, the global system for mobile communications (GSM) has con-

siderable overhead associated with training signals, which is as much as 20%

of the overall transmission [15]. In particular, multiple-input multiple-output

(MIMO) communications, enabled by multiple transmit and receive antennas,

generates a large amount of CSI that should be simultaneously estimated at

a receiver. In this case, the training requirements are significant [8, 37, 42, 65,

72, 96, 99, 100, 110, 111, 113, 149, 150, 179, 188]. Thus, the loss of throughput

becomes an important issue. Furthermore, in broadcasting networks such as

digital television broadcasting systems, it is undesirable for a base station to

start sending training signals to reactivate a particular channel whenever the

channel from the base station to one of the tributary stations goes down. This

frequent transmission of training signals will significantly decrease bandwidth

efficiency. In addition, since regularly inserted training signals usually gener-

ate periodic characteristics, the transmitted information signals may become

vulnerable to interception by a surveillance receiver. For instance, [177] shows

that regularly inserted OFDM pilots result in cyclic characteristics in the time

domain. This can cause the information signals to be intercepted with high

probability [109]. Even if the interception probability can be lowered by plac-

ing pilots in pseudo-random positions [109], the positions of the pilots are

still identified with no difficulty [176]. Since military communication systems

should be more secure against the interception than commercial systems, the

utilization of training signals needs to be avoided in future military commu-

nication systems. Furthermore, in certain computer networks, links between

terminal and central computers need to be established in an asynchronous way

such that, in some instances, training is impossible [62].
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In contrast, (semi)blind channel estimation techniques mainly rely on

the received information-bearing signals, and obtain CSI by exploiting sta-

tistical information and/or transmitted signal properties [41, 60] (and refer-

ences therein). Thus, by eliminating the transmission of training signals or

by exploiting only a few pilot symbols, blind channel estimation can prevent

a surveillance receiver from intercepting the information signals and improves

bandwidth efficiency, thereby increasing transmission capacity for user infor-

mation.

Despite these benefits of blind channel estimation techniques, existing

blind techniques require a lot of transmitted information symbols to obtain

reliable CSI, exact knowledge of a true channel order, or restrictive condi-

tions for channel identification. Furthermore, these techniques usually result

in poor estimation performance. These shortcomings keep the blind estimation

techniques from being widely used in practice. Thus, to overcome these short-

comings, we propose novel blind MIMO channel estimation algorithms in this

dissertation. Our proposed algorithms will enable blind channel estimation in

practical communication systems.

In rapid mobile environments where channels change very fast, how-

ever, blind channel estimation techniques may not be suitable to obtain CSI

due to their relatively slow convergence. In this case, training-based chan-

nel estimation is more advantageous than blind channel estimation, and var-

ious training-based techniques for estimation of fast time-variant channels in

OFDM systems have been developed [25, 39, 50, 95, 98, 112, 115, 151, 180, 185].

Although these channel estimation techniques consider channel variations be-

tween OFDM symbols, they ignore time variation of a channel for one OFDM

symbol duration. Since each OFDM symbol can have a long duration rel-
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ative to fast channel variations associated with rapid mobile environments,

neglecting channel variation over an OFDM symbol period can cause an ir-

reducible error floor in conventional receivers [21, 97, 133, 135]. To improve

receiver performance in such fast time-variant channels, channel estimators

need to obtain accurate estimates of rapid channel variations without excess

complexity. Thus, this dissertation proposes a pilot tone placement scheme

and channel estimators which fully take channel variations within one OFDM

symbol period into account, thereby achieving accurate channel estimation

with low complexity. Furthermore, our proposed techniques are applicable to

OFDM systems regardless of channel variations for one OFDM symbol dura-

tion.

1.3 Summary of Contributions

In this dissertation, to provide bandwidth efficient channel estimation

for MIMO block transmission systems, we propose two approaches, which

are presented in Chapters 2 and 3. In addition, to achieve computationally

efficient channel estimation for OFDM systems, we develop a pilot tone place-

ment, which enables accurate doubly selective channel estimation, and doubly

selective channel estimators exploiting this pilot tone placement, which is pre-

sented in Chapter 4. Furthermore, the state of the art relevant to the proposed

approach in each chapter is provided in the Introduction to the corresponding

chapter. Our contributions can be summarized as follows:

First, since a MIMO channel consists of a lot of single-input single-

out (SISO) channels between transmit and receive antennas, estimating the

MIMO channel requires many pilot symbols. This, however, decreases band-

width efficiency for user information. To provide bandwidth efficient channel
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estimation for spatial multiplexing MIMO-OFDM systems with any number

of transmit and receive antennas, we establish precise conditions for MIMO

channel identification, and propose a subspace based blind MIMO channel esti-

mator. The proposed estimator unifies and generalizes existing subspace-based

methods for blind channel estimation in SISO-OFDM systems to blind channel

estimation for two different MIMO-OFDM systems, which are distinguished

according to the number of transmit and receive antennas. In particular, the

proposed method obtains accurate channel estimation with insensitivity to

overestimates of the true channel order. If virtual carriers (VCs) are available,

the proposed method can work with no or insufficient CP, thereby potentially

increasing channel utilization. Furthermore, it is shown under specific system

conditions that the proposed method can be applied to MIMO-OFDM sys-

tems without CPs, regardless of the presence of VCs, and obtains an accurate

channel estimate with a small number of OFDM symbols [146, 147].

Second, strict channel conditions are typically required for the MIMO

channels to be blindly identified. To relax the strict conditions for MIMO

channel identification without a sacrifice of data rates, and to provide a band-

width efficient solution for channel estimation in MIMO block transmission

systems with a CP, we present a framework for blind channel estimation based

on a general non-redundant precoding. Using this framework, we propose a

blind estimator exploiting a simplified non-redundant precoding that is ro-

bust against overestimates of a true MIMO channel order. Furthermore, in

the case with the number of transmit antennas greater than the number of

receive antennas, we show under specific system conditions that the proposed

blind algorithms can be used for estimation of the MIMO channel without

oversampling the received signals. With the simplified precoding conditions
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established in this dissertation, the proposed method does not impose the strict

channel conditions required for the existing methods on the MIMO channel

for its identification, and achieves accurate channel estimation with a small

number of symbol blocks. In addition, we derive a simplified precoding which

is optimized in the sense of minimizing the impact of unknown additive noise,

and investigate a trade-off between channel estimation accuracy and BER per-

formance associated with the simplified precoding. To complete the channel

estimation, we develop a technique for resolving the channel ambiguity in the

proposed method [145].

Third, placing each pilot tone in an equally spaced manner according

to the conventional placement scheme is not suitable for doubly selective chan-

nel estimation. Furthermore, since the number of channel impulse response

taps to be estimated is typically much greater than the number of pilot tones,

estimation techniques for time-invariant channels cannot be straightforwardly

extended to doubly selective channel estimation. To achieve accurate estima-

tion of doubly selective channels in a manner compatible with practical OFDM

systems, we propose a linear minimum mean square error (LMMSE) channel

estimator. To achieve performance close to the LMMSE estimator but with

lower complexity, an approximate LMMSE (ALMMSE) channel estimator is

also developed. Furthermore, we propose a novel iterative ALMMSE channel

estimator that achieves better performance than the LMMSE and ALMMSE

estimators, while having complexity in between the two. Finally, we propose

an optimal (in the sense of mean square error) pilot tone placement applicable

to OFDM systems regardless of the time variations of a channel. The proposed

channel estimators exploit a small number of pilot tones located according to

the derived optimal placement [144, 148].
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1.4 Organization

The rest of this dissertation is organized as follows. In Chapter 2, we

establish conditions for MIMO-OFDM channel identification, and propose a

subspace based blind channel estimator for spatial multiplexing MIMO-OFDM

systems. In Chapter 3, we present blind channel estimation techniques ex-

ploiting non-redundant precoding for MIMO block transmission with a CP. In

addition, we derive precoding conditions for MIMO channel identification, and

design an optimal precoding. A technique for resolving the channel ambiguity

in the proposed blind estimators is also developed. In Chapter 4, we propose an

optimal pilot tone placement for doubly selective channel estimation in OFDM

systems. Furthermore, we present pilot-aided channel estimators that exploit

the proposed pilot tone placement. Finally we conclude the dissertation and

suggest future research topics in Chapter 5.

1.5 Notation

The notation used in this dissertation is as follows. Matrices and vec-

tors are denoted by symbols in boldface, and (·)∗, (·)T , and (·)H represent com-

plex conjugate, transpose, and Hermitian, respectively. rank(X) and span(X)

mean the rank of a matrix X and the subspace spanned by the column vec-

tors of a matrix X, respectively. ∗ and ⊗ stand for the convolution and the

Kronecker product, respectively. wN is equal to ej2π/N . Im denotes the m×m

identity matrix and 0 stands for the all-zeros matrix of appropriate dimen-

sions. 1m indicates a m × 1 vector with all ones. diag(x) denotes a diagonal

matrix with x on its main diagonal. tr{X} is the sum of the diagonal ele-

ments of a matrix X. E{·} denotes statistical expectation. x[1 : k] denotes

the first k elements of a vector x. [x]i indicates the ith element of a vector x.
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X[i1 : i2, j1 : j2] denotes a submatrix obtained by extracting rows i1 through

i2 and columns j1 through j2 from a matrix X. If no specific range appears

at the row or column position in the notation, then all rows or columns are

considered to constitute the submatrix. X[:, j] means the jth column of a

matrix X. [X]i,j denotes the (i, j)th element of a matrix X. ⌊x⌋ is the largest

integer less than or equal to x. Also, ⌈x⌉ indicates the nearest integer that is

not smaller than x. 〈x〉y means the integer remainder after x is divided by y.

det(X) denotes the determinant of a square matrix X. min{x} is the smallest

element in x. ‖ · ‖2 and ‖ · ‖F mean the l2-norm and the Frobenius matrix

norm, respectively. δ(·) indicates the Kronecker delta function. CN(0, σ2) de-

notes a circular symmetric complex Gaussian distribution with zero mean and

variance σ2. Q(x) is equal to 1√
2π

∫∞
x

e−
y2

2 dy.
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Chapter 2

Blind Channel Estimation for MIMO-OFDM

Systems

2.1 Introduction

OFDM is a promising digital modulation scheme to simplify equal-

ization in frequency-selective channels [10, 35]. The main benefit is that it

simplifies implementation and it is robust against frequency-selective fading

channels. MIMO communication, enabled by multiple transmit and receive

antennas, can increase significantly the channel capacity (see e.g. [58,125,126,

157] and references therein). Thus, MIMO-OFDM systems, which combine

OFDM with MIMO communication, can provide high-performance transmis-

sion [48, 125, 136,157,172] (and references therein).

In a MIMO-OFDM system, coherent signal detection requires a reliable

estimate of the channel impulse responses between the transmit and receive

antennas. These channels can be estimated by sending training sequences. The

training requirements, however, are significant [8,47,65,96,99,100,110,113,149].

Furthermore, transmitting training sequences is undesirable for certain com-

munication systems [59,62]. Thus, blind channel estimation for MIMO-OFDM

systems has been an active area of research in recent years. Zhou et al. [191]

proposed a subspace-based blind channel estimation method for space-time

coded MIMO-OFDM systems using properly designed redundant linear pre-

coding and the noise subspace method [2,118,130]. Bölcskei et al. [12] proposed
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an algorithm for blind channel estimation and equalization for MIMO-OFDM

systems using second-order cyclostationary statistics induced by employing a

periodic nonconstant-modulus antenna precoding. Yatawatta et al. [182] pre-

sented a blind channel estimation method based on a non-redundant linear

block precoding and cross-correlation operations. Zeng et al. [187] proposed

a subspace technique based on the noise subspace method for estimating the

MIMO channels in the uplink of multiuser multiantenna zero-padding OFDM

systems [120,138].

A variety of second-order statistics (SOS)-based blind estimators (see

e.g. [1–3,38,40,41,57,60,67,73,74,92,102,104,105,118,128,130,153,160,165–169]

and references therein) have been presented since Tong et al. [162] introduced

a SOS-based technique for the blind identification of single-input multiple-

output systems. Among those methods, the noise subspace method is be-

lieved to be one of the most promising due to its simple structure and good

performance. Thus, by exploiting the fundamental structure of the noise sub-

space method, subspace methods [20, 94, 119] for SISO-OFDM systems have

been proposed and achieved good estimation performance. Muquet et al. [119]

developed a subspace method for SISO-OFDM systems by utilizing the re-

dundancy introduced by the CP insertion, and derived a condition for channel

identifiability. For shaping of the transmit spectrum, practical OFDM systems

are not fully loaded [171]. The subcarriers that are set to zero without any

information are referred to as VCs [137]. Other than the CP, the presence of

VCs provides another useful resource that can be used for channel estimation.

Li and Roy [94] proposed a subspace blind channel estimator for SISO-OFDM

systems by considering the existence of VCs and provided a condition for

channel identifiability. They showed that their estimator based on the noise
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subspace method can achieve better estimation performance than other blind

estimation techniques [20, 70]. In particular, they demonstrated that CPs are

more useful for their estimator than VCs. In [94], however, the reason why

the utilization of CPs rather than VCs increases the accuracy of channel esti-

mation was not discussed. In addition, it was not considered how the channel

estimation performance can be improved in cases with no or insufficient CPs.

In this chapter, we unify and generalize the SISO-OFDM subspace

methods in [119] and [94] to the case of blind channel estimation for spatial

multiplexing MIMO-OFDM systems with any number of transmit and re-

ceive antennas. We present a new blind channel estimator based on the noise

subspace method and establish conditions for blind channel identification in

spatially multiplexed MIMO-OFDM systems. The proposed method works

regardless of the presence of VCs, can use as little as one received OFDM

symbol for a filtering matrix, and operates with any number of transmit or re-

ceive antennas. Considering the presence of VCs, the proposed method can be

applied to MIMO-OFDM systems without CPs where blind estimation tech-

niques based on CPs cannot be employed, thereby providing the systems with

the potential to achieve higher channel utilization. For MIMO-OFDM sys-

tems with CPs, the proposed method can provide additional performance gain

with respect to the existing blind channel estimation methods. We provide

numerical results that illustrate tradeoffs in mean square error as a function

of the CP length, number of VCs, and number of OFDM symbols used in the

estimate.

Compared with [12] and [182], we do not use transmit precoding to aid

our blind channel estimator. Furthermore, by virtue of our subspace approach,

we need fewer OFDM symbols to obtain a reliable estimate. Our estimator,
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however, has an additional full rank requirement that is not present in the

precoding based methods. The combination of our estimator and the pre-

coding based methods is an interesting topic for future work. Our approach

generalizes [119] and [94] to operate with multiple transmit and multiple re-

ceive antennas under the assumption that spatial multiplexing is used at the

transmitter. With one transmit and receive antenna our approach and iden-

tifiability conditions are simplified to those presented in [119] and [94]. A

subspace based method for MIMO-OFDM systems with spatial multiplexing

was proposed in [7]. Compared with [7] we also consider the case of excess

transmit antennas. Furthermore the identifiability conditions provided in [7]

are not complete. Specifically their full rank requirement does not appear

to be sufficient, and the channel ambiguity condition does not appear to be

comprehensive.

The rest of the chapter is organized as follows. In Section 3.2, we

briefly describe a MIMO-OFDM system model. In Section 3.3, we establish

conditions for the MIMO-OFDM channel identifiability by generalizing the

conditions presented in [94] and develop a blind channel estimation scheme

based on the noise subspace method. Section 3.5 contains simulation results

demonstrating the performance of the proposed method. Finally, a conclusion

is provided in Section 3.6.

2.2 MIMO-OFDM System Model

In this section, we describe the MIMO-OFDM system model with Mt

transmit and Mr receive antennas considered in this chapter, as illustrated in

Fig. 2.1. Fig. 2.2 shows the baseband model of an OFDM system for the jth

transmit and ith receive antennas in Fig. 3.1, which has N subcarriers and
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Figure 2.1: MIMO-OFDM system model with Mt transmit and Mr receive
antennas.

uses the subcarriers numbered k0 to k0 + D − 1 for information data. The

remaining N −D unmodulated carriers are referred to as VCs that are needed

for the input signal pulse shaping by a transmit filter such as the raised cosine

filter with a roll-off factor [137,154]. If we set k0 to 0 and D to N , the system

no longer has VCs. Thus, our system model can be applied to both systems

with and without VCs. Let the nth block of the frequency-domain information

symbols in the jth transmit antenna be written as

dj(n) = [dj(n, k0) dj(n, k0 + 1) · · · dj(n, k0 + D − 1)]T , (2.1)

where the subscript j is the transmit antenna index with 1 ≤ j ≤ Mt. Assum-

ing the length of the CP is P , each OFDM modulator adds N − D zeros for

VCs to the data block in (3.1), applies a N -point inverse fast Fourier transform

(IFFT) to this block, and inserts the CP in front of the IFFT output vector,

which is a copy of the last P samples of the IFFT output. This results in the
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time-domain sample vector of the nth OFDM symbol written as

sj(n) = [sj(n, N − P ) · · · sj(n, N − 1) sj(n, 0) · · · sj(n, N − 1)]T . (2.2)

To generate the continuous-time signal to be sent on the channel, each element

in the vector sj(n) is pulse-shaped by a transmit filter gtx[t]

sj [t] =

∞∑

n=−∞

Q−1∑

k=0

sj(n, 〈N − P + k〉N)gtx[t − (k + nQ)T ], (2.3)

where Q = N + P , and T is the sample duration in the time domain. By

denoting sj(n, 〈N − P + k〉N), meaning the kth sample of the nth OFDM

symbol in the time domain, as sj((k+nQ)T ), and k+nQ as a, the transmitted

signal sj[t] can be concisely expressed as

sj[t] =
∞∑

a=−∞
sj(aT )gtx[t − aT ]. (2.4)

Then, Mt transmit antennas simultaneously transmit the signals s1[t],···, sMt[t].

During the transmission, the transmitted signal sj [t] from the jth trans-

mit antenna passes through a dispersive channel with an impulse response
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cij [t], it gets corrupted by a spatially uncorrelated additive white Gaussian

noise (AWGN) vi[t], and it finally enters into a front-end receive filter grx[t]

at the ith receive antenna. When we denote the composite channel impulse

response between the jth transmit antenna and the ith receive antenna as

hij [t] = gtx[t] ∗ cij[t] ∗ grx[t], and the filtered noise at the ith receive antenna

as ηi[t] = vi[t] ∗ grx[t], the received signal ri[t] at the ith receive antenna is

expressed as

ri[t] =
Mt∑

j=1

∞∑

a=−∞
sj(aT )hij[t − aT ] + ηi[t]. (2.5)

We suppose that the composite channel impulse responses hij [t] have the finite

support [0, (L + 1)T ) with L ≤ P , which guarantee that ri[t] is not contam-

inated by previous OFDM symbols. By sampling ri[t] at a rate 1
Ts

= q
T

with

a positive integer q, the sampled received signal ri[ǫi + mTs] = ri

[
ǫi + mT

q

]
at

the ith receive antenna is given as

ri

[
ǫi+

mT

q

]
=

Mt∑

j=1

⌊m/q⌋∑

a=⌊m/q⌋−L

sj(aT )hij

[
ǫi+

mT

q
−aT

]
+ηi

[
ǫi+

mT

q

]

=

Mt∑

j=1

L∑

l=0

sj

(⌊
m

q

⌋
T−lT

)
hij

[
ǫi+

〈m〉qT
q

+lT

]
+ηi

[
ǫi+

mT

q

]
,

(2.6)

where ǫi ∈ [0, Ts) is the sample timing error at the ith receive antenna.

2.3 Subspace Based Blind Channel Estimation

In this section, we establish conditions for the channels to be identifiable

and present a subspace method for blind channel estimation for two MIMO-

OFDM system structures. We distinguish between two different MIMO-OFDM

system structures: one with Mt ≤ Mr and the other with Mt > Mr.
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2.3.1 MIMO-OFDM System with Mt ≤ Mr

Based on the systems illustrated in Figs. 3.1 and 2.2, we denote the

information symbols before OFDM modulation as

d(n, k) = [d1(n, k) d2(n, k) · · · dMt(n, k)]T (2.7)

dn =
[
d(n, k0)

T d(n, k0 + 1)T · · · d(n, k0 + D − 1)T
]T

, (2.8)

where dj(n, k) is an information symbol loaded on the kth subcarrier in the nth

OFDM symbol to be transmitted from the jth transmit antenna. By collecting

J consecutive OFDM symbols from Mt transmit antennas, the information

symbol vector d(n) is constructed as given in

d(n) =
[
dn

T dn−1
T · · · dn−J+1

T
]T

. (2.9)

When we define the matrices W(i), W, and W associated with IFFT as,

respectively,

W(i) ,
1√
N

[
wik0

N w
i(k0+1)
N · · · w

i(k0+D−1)
N

]
(2.10)

W ,

[
W(N − 1)T · · · W(0)T W(N − 1)T · · · W(N − P )T

]T
(2.11)

W , IJ ⊗W ⊗ IMt, (2.12)

and denote the time-domain signal vector s(n) to be transmitted after OFDM

modulation as

s(n, k) = [s1(n, k) s2(n, k) · · · sMt(n, k)]T (2.13)

sn =
[
s(n, N − 1)T · · · s(n, 0)T s(n, N − 1)T · · · s(n, N − P )T

]T
(2.14)

s(n) =
[
sn

T sn−1
T · · · sn−J+1

T
]T

, (2.15)
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we obtain the relationship given as

s(n) = Wd(n). (2.16)

In (2.13), sj(n, k) means the (k+P +1)th element of the vector sj(n) in (2.2).

By sampling a received signal at each receive antenna with a rate 1/T ,

meaning q = 1 in (2.6), we can consider the discrete composite channels as

given in (2.6) instead of continuous channels at Mr receive antennas. We

assume that the discrete composite channels between Mt transmit antennas

and Mr receive antennas is modeled as a Mr×Mt finite impulse response (FIR)

filter with L as the upper bound on the orders of these channels. When we

denote hij [ǫi + lT ] in (2.6) as hij(l), and the lth lag of the MIMO channel as

h(l) =




h11(l) h12(l) · · · h1Mt(l)
h21(l) h22(l) · · · h2Mt(l)

...
...

...
...

hMr1(l) hMr2(l) · · · hMrMt(l)


 , (2.17)

respectively, the matrix transfer function H(z) is given as

H(z) =

L∑

l=0

h(l)z−l. (2.18)

Denoting ri[ǫi +mT ] in (2.6) as ri(m), and rearranging ri(m) according

to ri(n, k) = ri(k +nQ), we express the received signal at Mr receive antennas

as

r(n, k) = [r1(n, k) r2(n, k) · · · rMr(n, k)]T (2.19)

rn =
[
r(n, Q − 1)T r(n, Q − 2)T · · · r(n, 0)T

]T
. (2.20)

By collecting J consecutively received OFDM symbols, the received signal

vector r(n) is given as

r(n) =
[
rn

T rn−1
T · · · rn−J+1[1 : (Q − L)Mr]

T
]T

. (2.21)
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Similarly, denoting ηi[ǫi + mT ] in (2.6) as ηi(m), and rearranging ηi(m) ac-

cording to ηi(n, k) = ηi(k + nQ), we write the additive noise at Mr receive

antennas as

η(n, k) = [η1(n, k) η2(n, k) · · · ηMr(n, k)]T (2.22)

ηn =
[
η(n, Q − 1)T

η(n, Q − 2)T · · · η(n, 0)T
]T

(2.23)

η(n) =
[
ηn

T ηn−1
T · · · ηn−J+1[1 : (Q − L)Mr]

T
]T

. (2.24)

When we define a (JQ − L)Mr × JQMt channel matrix H as

H ,




h(0) · · · h(L) 0 · · · 0
0 h(0) · · · h(L) · · · 0
...

. . .
. . .

0 · · · 0 h(0) · · · h(L)


 , (2.25)

the received signal vector r(n) in (2.21) can be written in a matrix form as

r(n) = Hs(n) + η(n) = HWd(n) + η(n) , Ξd(n) + η(n). (2.26)

By assuming that Nyquist pulse shaping is employed, η(n) is considered as a

spatially and temporally uncorrelated complex Gaussian noise vector with the

zero mean vector and the covariance matrix σ2
ηI(JQ−L)Mr .

For the MIMO channel to be identified by the noise subspace method [118],

the matrix Ξ in (2.26) should have full column rank. The following Theo-

rem 2.3.1 gives a necessary and sufficient condition for the full column rank

requirement.

Theorem 2.3.1. In the case of Mt≤Mr and L≤(Q − D), the matrix Ξ

in (2.26) has full column rank, if and only if rank(H(wi
N)) = Mt for all

i ∈ {k}k0+D−1
k=k0

.
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Proof. Refer to Appendix A.

This theorem generalizes the identifiability condition for SISO-OFDM

systems in [94] to the condition for MIMO-OFDM systems. As we can see from

the above theorem, the identification of a MIMO-OFDM channel based on the

noise subspace method requires frequency-domain MIMO channel matrices at

the subcarriers, where information symbols are loaded, to have full column

rank. In addition, the identifiability condition needs an upper bound for the

MIMO channel order rather than accurate knowledge of the MIMO channel

order. Since the length of the CP is usually set to be greater than the channel

delay spread in practical MIMO-OFDM systems, we can consider the CP

length as an upper bound of the MIMO channel order.

In our derivation, we consider MIMO channels satisfying the condition

of rank(H(wi
N)) = Mt for all i ∈ {k}k0+D−1

k=k0
as stated in Theorem 2.3.1. In

addition, we suppose that the additive noise is uncorrelated with the trans-

mitted signal, and the autocorrelation matrix Rdd = E{d(n)d(n)H} of the

information symbol vector d(n) in (2.9) has full rank. When the autocorrela-

tion matrix Rrr = E{r(n)r(n)H} of the received signal vector r(n) in (2.21)

is diagonalized through the eigenvalue decomposition, we can partition the

eigenvectors U into the vectors Us spanning a signal subspace span(Us) and

the vectors Un spanning a noise subspace span(Un) [118] as

U = [Us Un] = [u1 · · · uJDMt uJDMt+1 · · · u(JQ−L)Mr ]. (2.27)

Since span(Ξ) and span(Us) share the same JDMt-dimensional space and are

orthogonal to span(Un), we have an orthogonal relationship as follows [118].

uH
k Ξ = 0 for all k ∈ {n}(JQ−L)Mr

n=JDMt+1 . (2.28)
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Let us define the (L + 1)Mr × 1 channel response vector hi associated with

channel impulse responses between the ith transmit antenna and Mr receive

antennas, and the channel coefficient matrix H consisting of hi as, respectively,

hi ,

[
h(0)[:, i]T h(1)[:, i]T · · · h(L)[:, i]T

]T
, 1 ≤ i ≤ Mt (2.29)

H , [h1 h2 · · · hMt ] =
[
h(0)T h(1)T · · · h(L)T

]T
. (2.30)

Under the appropriate conditions detailed in Theorem 2.3.2 and Lemma 2.3.3

to be given below, the noise subspace can determine the channel coefficient

matrix H up to a Mt × Mt multiplicative matrix associated with the number

of transmit antennas.

Let H′ be a matrix that has the same dimension as that of H. Let H
′

be a nonzero matrix constructed from H′ in the same manner as the matrix

H is constructed from H. In addition, we denote H
′
W as Ξ′, and

L∑
l=0

h′(l)z−l

as H′(z). By using these notations, we state Theorem 2.3.2 and Lemma 2.3.3

associated with the ambiguity of an estimated MIMO channel as follows.

Theorem 2.3.2. Assume that the matrix Ξ in (2.26) has full column rank

with J ≥ 2, Mr ≥ Mt, and (Q − D) ≥ L. Then, H′ is equal to HΩ with a

Mt × Mt invertible matrix Ω, if and only if span(Ξ′) is equal to span(Ξ).

Proof. Refer to Appendix B.

By Theorem 2.3.2, a scalar channel ambiguity for SISO-OFDM sys-

tems in [94] is extended to a matrix channel ambiguity for MIMO-OFDM

systems. The channel ambiguity is inherent to blind estimation schemes, and

can be resolved by exploiting techniques based on independent component
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analysis [23] (and references therein) and/or a small number of pilot sym-

bols as given in [173] and [187]. Furthermore, since practical MIMO-OFDM

systems provide pilot symbols for the purpose of synchronization, these pilot

symbols can be used to resolve the ambiguity matrix.

In particular, when a MIMO-OFDM system structure possesses the

specific conditions given in the following Lemma 2.3.3, we can estimate a

MIMO channel with J ≤ 2.

Lemma 2.3.3. In the case of Mt < Mr and L ≤
⌊

JD−1
Mt+1

⌋
with J ≤ 2, assume

that h(0), h(L) and H(z) have full column rank for all z. Then, H′ is equal

to HΩ with a Mt × Mt invertible matrix Ω, if and only if H′ has full column

rank and span(Ξ′) is equal to span(Ξ).

Proof. Refer to Appendix C.

Since Lemma 2.3.3 allows a MIMO channel to be estimated with J ≤ 2,

we can obtain a MIMO channel estimate by exploiting a small number of

OFDM symbols with J = 1. Furthermore, although the channel conditions

required by Lemma 2.3.3 are stricter than those in Theorem 2.3.2, we note that

the conditions in Lemma 2.3.3 do not impose any constraints on the number

of CPs associated with the number of VCs. Thus, we can estimate a MIMO

channel without CPs as long as the conditions are satisfied, thereby increasing

transmission bandwidth efficiency. Obviously, the above theorems and lemma

are still valid for a MIMO-OFDM system with no VCs by setting k0 to 0 and

D to N .

To find the signal and noise subspaces, the true Rrr is required. In
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practice, Rrr is estimated over Nb blocks by

R̂rr =
1

Nb

Nb−1∑

n=0

r(n)r(n)H . (2.31)

Thus, when a MIMO channel is estimated by the orthogonal relationship in

(2.28), only estimates Ûn of the eigenvectors spanning the noise subspace,

which are obtained by the eigenvalue decomposition of R̂rr, are available in

practice. In this case, we can obtain the channel matrix estimate Ĥ by mini-

mizing a quadratic cost function C(H) given as

C(H) =

(JQ−L)Mr∑

k=JDMt+1

∥∥ûH
k Ξ
∥∥2

2
=

(JQ−L)Mr∑

k=JDMt+1

∥∥ûH
k HW

∥∥2

2
. (2.32)

Partitioning the eigenvector estimate ûk with dimension (JQ − L)Mr into

JQ − L equal segments as given in

ûk =




v̂
(k)
1

v̂
(k)
2
...

v̂
(k)
JQ−L




, (2.33)

constructing the (L + 1)Mr × JQ matrix V̂k as

V̂k =




v̂
(k)
1 v̂

(k)
2 · · · v̂

(k)
JQ−L 0 · · · 0

0 v̂
(k)
1 v̂

(k)
2 · · · v̂

(k)
JQ−L · · · 0

...
. . .

. . .
. . .

. . .

0 · · · 0 v̂
(k)
1 v̂

(k)
2 · · · v̂

(k)
JQ−L




, (2.34)

and defining the matrix Ψ as

Ψ ,

(JQ−L)Mr∑

k=JDMt+1

V̂k(IJ ⊗ W∗WT )V̂
H

k , (2.35)
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we can write a cost function
Mt∑
i=1

hi
HΨhi equivalent to C(H). By imposing the

constraints such as ‖hi‖2 = 1 for 1 ≤ i ≤ Mt to avoid trivial solutions, the

estimate Ĥ of the channel coefficient matrix H in (2.30) is obtained by

Ĥ =
[
ĥ1 ĥ2 · · · ĥMt

]
= arg min

‖hi‖2=1

(
Mt∑

i=1

hi
HΨhi

)
. (2.36)

When we find ĥi satisfying ∂

(
Mt∑
i=1

(
hi

HΨhi + λi (1 − ‖hi‖2
2)
))

/∂hH
i = 0 with

a Lagrange multiplier λi, the estimates ĥi of the channel response vectors hi,

1 ≤ i ≤ Mt in (2.29) are the eigenvectors associated with the smallest Mt

eigenvalues of Ψ. Since the orthogonal relationship uH
k Ξ = 0 in (2.28) can be

rewritten as (IJ ⊗ WT )VH
k hi = 0 for 1 ≤ i ≤ Mt, we should find hi closely

orthogonal to column vectors of V̂k(IJ ⊗ W∗) with an estimate V̂k of Vk. In

addition, h1, h2, · · · hMt should be linearly independent to satisfy the condi-

tion in Theorem 2.3.1. Thus, the solution of (2.36) satisfies these orthogonality

and linear independence conditions. Although the vectors h1, h2, · · · , hMt

and the solution of (2.36) span the same Mt-dimensional space in the ideal case

with the knowledge of true Rrr, we do not have information about the direc-

tion and magnitude of each hi in the space. This causes the channel ambiguity

stated in Theorem 2.3.2 and Lemma 2.3.3. Thus, if the eigenvectors associ-

ated with the smallest Mt eigenvalues of Ψ are denoted as ĥ′
1, ĥ′

2, · · · , ĥ′
Mt

,

respectively, we can express the estimated channel coefficient matrix Ĥ as

Ĥ =
[
ĥ1 ĥ2 · · · ĥMt

]
=
[
ĥ′

1 ĥ′
2 · · · ĥ′

Mt

]
Ω, (2.37)

where Ω is a Mt × Mt channel ambiguity matrix.

In summary, in so far as the condition in Theorem 2.3.1 is satisfied, the

proposed subspace method can be applied to blind channel estimation for a
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MIMO-OFDM system with Mt ≤ Mr. In addition, we note that the condition

requires an upper bound of a true MIMO channel order rather than the exact

knowledge of the MIMO channel order. The estimated MIMO channel has

an ambiguity corresponding to a Mt × Mt invertible matrix given in Theo-

rem 2.3.2. Furthermore, without relying on the presence of VCs under the

specific condition given in Lemma 2.3.3, we can apply the proposed method

with a smaller J to blind channel estimation for the MIMO-OFDM system

without CPs. This increases the bandwidth efficiency and makes it possible

to obtain an accurate channel estimate by utilizing a small number of OFDM

symbols.

Next, we extend the above results obtained in a MIMO-OFDM system

with Mt ≤ Mr to blind channel estimation for a MIMO-OFDM system with

Mt > Mr.

2.3.2 MIMO-OFDM System with Mt > Mr

To perform blind channel estimation for a MIMO-OFDM system with

Mt > Mr, we set the sampling rate at the receiver to q/T with q ≥ ⌈Mt/Mr⌉
in the system shown in Fig. 2.2. By considering the discrete composite channel

impulse response between the jth transmit antenna and the ith receive antenna

in (2.6), and defining h
(ξ)
ij (l) with ξ = 〈m〉q as

h
(ξ)
ij (l) , hij

[
ǫi +

(
ξ

q
+ l

)
T

]
, (2.38)
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we denote the lth lag of the oversampled MIMO channel as

h̃(l) =




h
(0)
11 (l) h

(0)
12 (l) · · · h

(0)
1Mt

(l)
...

...
...

...

h
(q−1)
11 (l) h

(q−1)
12 (l) · · · h

(q−1)
1Mt

(l)

h
(0)
21 (l) h

(0)
22 (l) · · · h

(0)
2Mt

(l)
...

...
...

...

h
(q−1)
21 (l) h

(q−1)
22 (l) · · · h

(q−1)
2Mt

(l)
...

...
...

...

h
(0)
Mr1(l) h

(0)
Mr2(l) · · · h

(0)
MrMt

(l)
...

...
...

...

h
(q−1)
Mr1 (l) h

(q−1)
Mr2 (l) · · · h

(q−1)
MrMt

(l)




. (2.39)

Assuming that the discrete composite MIMO channel has L as the upper

bound on the order of the channel, we construct the (JQ − L)qMr × JQMt

channel matrix H̃, in the same way as given in (2.25), as

H̃ =




h̃(0) · · · h̃(L) 0 · · · 0

0 h̃(0) · · · h̃(L) · · · 0
...

. . .
. . .

0 · · · 0 h̃(0) · · · h̃(L)




. (2.40)

Recalling m
q

=
⌊

m
q

⌋
+ 〈m〉q

q
and defining m′ and ξ as m′ ,

⌊
m
q

⌋
and ξ , 〈m〉q,

respectively, we denote ri

[
ǫi + mT

q

]
in (2.6) as r

(ξ)
i (m′). Rearranging r

(ξ)
i (m′)

according to r
(ξ)
i (n, k) = r

(ξ)
i (k + nQ), we express the oversampled received

signal at Mr receive antennas as

r̃(n, k) =
[
r
(0)
1 (n, k) · · · r

(q−1)
1 (n, k) · · · r

(0)
Mr

(n, k) · · · r
(q−1)
Mr

(n, k)
]T

(2.41)

r̃n =
[
r̃(n, Q − 1)T r̃(n, Q − 2)T · · · r̃(n, 0)T

]T
(2.42)

r̃(n) =
[
r̃T

n r̃T
n−1 · · · r̃n−J+1[1 : (Q − L)qMr]

T
]T

. (2.43)
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Similarly, denoting ηi

[
ǫi + mT

q

]
in (2.6) as η

(ξ)
i (m′), and rearranging η

(ξ)
i (m′)

according to η
(ξ)
i (n, k) = η

(ξ)
i (k+nQ), we write the oversampled additive noise

at Mr receive antennas as

η̃(n, k) =
[
η

(0)
1 (n, k) · · · η

(q−1)
1 (n, k) · · · η

(0)
Mr

(n, k) · · · η
(q−1)
Mr

(n, k)
]T

(2.44)

η̃n =
[
η̃(n, Q − 1)T

η̃(n, Q − 2)T · · · η̃(n, 0)T
]T

(2.45)

η̃(n) =
[
η̃

T
n η̃

T
n−1 · · · η̃n−J+1[1 : (Q − L)qMr]

T
]T

. (2.46)

Then, the oversampled received signal vector r̃(n) in (2.43) can be written in

a matrix form as

r̃(n) = H̃s(n) + η̃(n) = H̃Wd(n) + η̃(n) , Ξ̃d(n) + η̃(n). (2.47)

When we consider (2.39) through (2.47), we can model a MIMO-OFDM system

with Mt transmit and Mr receive antennas, where the received signals are

oversampled by a factor of q, as an equivalent MIMO-OFDM system with Mt

transmit and qMr receive antennas. This equivalent system model is shown

in Fig. 2.3, where the received signal at each receive antenna is sampled at

the rate 1/T . Since the equivalent system has qMr ≥
⌈

Mt

Mr

⌉
Mr ≥ Mt, we

can apply Theorem 2.3.1 for the channel identifiability of the system. Let

us denote
L∑

l=0

h̃(l)z−l as H̃(z). According to Theorem 2.3.1, if the condition

in (2.48) is satisfied,

rank(H̃(wi
N)) = Mt for all i ∈ {k}k0+D−1

k=k0
, (2.48)

the matrix Ξ̃ has full column rank, which implies that the oversampled MIMO

channel can be identified through the noise subspace method.

In our derivation, we consider MIMO channels satisfying the condition

in (2.48). Furthermore, we note that since the sampling rate q/T is higher than
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Figure 2.3: Equivalent MIMO-OFDM system model with Mt transmit and
qMr receive antennas.

the Nyquist rate, the oversampled noise η
(ξ)
i (n, k) is not necessarily temporally

uncorrelated. Although it is possible to design a front-end receive filter grx[t]

with a wider bandwidth to whiten the oversampled noise [14], we suppose

that the oversampled noise vector η̃ is generally colored with the covariance

matrix Rfηη that has full rank. By decomposing Rfηη as Rfηη = R
1
2fηη

R
H
2fηη

, and

whitening the oversampled received signal vector r̃(n) in (2.47) by the inverse

of R
1
2fηη

, denoted as R
− 1

2fηη
, we obtain the whitened received signal vector r̃w(n)

as given in

r̃w(n) = R
− 1

2fηη
r̃(n) = R

− 1
2fηη
Ξ̃d(n) + R

− 1
2fηη
η̃(n). (2.49)

We assume that the additive noise is uncorrelated with the transmitted signal,

and the autocorrelation matrix Rdd of the information symbol vector d(n) has
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full rank. When the autocorrelation matrix Rerwerw = E{r̃w(n)r̃w(n)H} of the

whitened received signal vector r̃w(n) is diagonalized through the eigenvalue

decomposition, we can partition the eigenvectors Ũ into the vectors Ũs span-

ning a signal subspace span(Ũs) and the vectors Ũn spanning a noise subspace

span(Ũn) as

Ũ =
[
Ũs Ũn

]
=
[
ũ1 · · · ũJDMt ũJDMt+1 · · · ũ(JQ−L)qMr

]
. (2.50)

Since span(R
− 1

2eηeη Ξ̃) and span(Ũs) share the same JDMt-dimensional space

and are orthogonal to span(Ũn), we obtain the orthogonal relationship given

as

ũH
k R

− 1
2eηeη Ξ̃ = 0 for all k ∈ {n}(JQ−L)qMr

n=JDMt+1 . (2.51)

Defining the (L+1)qMr×1 channel response vector h̃i associated with channel

impulse responses between the ith transmit antenna and qMr receive antennas,

and the channel coefficient matrix H̃ consisting of h̃i as, respectively,

h̃i ,

[
h̃(0)[:, i]

T
h̃(1)[:, i]

T · · · h̃(L)[:, i]
T
]T

, 1 ≤ i ≤ Mt (2.52)

H̃ ,

[
h̃1 h̃2 · · · h̃Mt

]
=
[
h̃(0)

T
h̃(1)

T · · · h̃(L)
T
]T

, (2.53)

and replacing Mr, ûk, Ξ, H, hi, and H in (2.32) through (2.37) with qMr,

R
−H

2eηeη ̂̃uk, Ξ̃, H̃, h̃i, and H̃, respectively, we can construct a cost function in the

same manner as given in Subsection 3.3.2.2. By minimizing this cost function,

we can estimate the channel coefficient matrix H̃ up to a Mt × Mt channel

ambiguity matrix stated in Theorem 2.3.2 and Lemma 2.3.3. Furthermore, the

channel ambiguity matrix can be resolved by using the schemes given in [173]

and [187].

In summary, when the received signal at each receive antenna is over-

sampled by a factor of q ≥ ⌈Mt/Mr⌉ and the condition in (2.48) according to

34



Theorem 2.3.1 is satisfied, we can still apply the proposed method to blind

channel estimation for a MIMO-OFDM system with Mt > Mr. Again, the

condition depends on an upper bound of a true MIMO channel order rather

than the exact knowledge of the MIMO channel order. A MIMO channel is

estimated up to a Mt × Mt ambiguity matrix given in Theorem 2.3.2. If the

matrices h̃(0), h̃(L), and H̃(z) satisfy the same conditions as those required

for h(0), h(L), and H(z) in Lemma 2.3.3, respectively, the proposed method

with J ≤ 2 is still applicable to blind channel estimation for the MIMO-OFDM

system without CPs, regardless of the existence of VCs. This increases the

bandwidth efficiency and enables accurate channel estimation by exploiting a

small number of OFDM symbols.

2.4 Simulation Results

To evaluate the performance of the proposed method, we consider a

MIMO-OFDM system with 2 transmit antennas (Mt = 2) and 2 receive anten-

nas (Mr = 2). The number of subcarriers N is set to 64. Information symbols

di(n, k)’s are independent and identically distributed (i.i.d.) 16-Quadrature

amplitude modulation (QAM) symbols. Each channel tap hij(l) is i.i.d. and

randomly generated from CN(0, σ2
h). The order of the MIMO channel is con-

sidered to be L = 3. We suppose that the channel is time-invariant during each

channel estimation. For the fairness of performance comparison, the transmit

power per OFDM symbol is fixed to Es for all simulations, and the addi-

tive noise at each receive antenna is a spatially uncorrelated complex white

Gaussian noise with zero mean and variance σ2
η determined by the SNR defined

as

SNR , 10 log10

Mt(L + 1)σ2
hEs

(N + Po)σ2
η

(dB), (2.54)
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where Po is the maximum CP length used throughout simulations, which is

set to 3.

As a measure of performance, we consider the normalized root mean

square error (NRMSE) given as

NRMSE =

√√√√√√
1

NmMtMr(L + 1)

Nm∑

k=1

Mt∑

i=1

∥∥∥h(k)
i − ĥ

(k)
i

∥∥∥
2

2∥∥∥h(k)
i

∥∥∥
2

2

, (2.55)

where Nm is the number of Monte Carlo trials, the superscript k refers to the

kth Monte Carlo trial, and h
(k)
i and ĥ

(k)
i represent the true channel response

vector and the estimated channel response vector after resolving a channel am-

biguity, respectively. All results are obtained by averaging Nm = 500 indepen-

dent Monte Carlo trials. To isolate the impact of a scheme for resolving a chan-

nel ambiguity on channel estimation in computing NRMSE, we calculate the

ambiguity α by minimizing
∥∥∥
[
h

(k)
1 h

(k)
2 · · · h

(k)
Mt

]
−
[
ĥ
′(k)
1 ĥ

′(k)
2 · · · ĥ

′(k)
Mt

]
α

∥∥∥
2

F

as used in [92] and [102].
[
ĥ
′(k)
1 ĥ

′(k)
2 · · · ĥ

′(k)
Mt

]
is the estimated channel coef-

ficient matrix by the proposed method. By using this approach, the NRMSE

provides a measure of how well the true MIMO channel and the estimated

MIMO channel by the proposed method span the same Mt-dimensional space.

In Fig. 2.4, the NRMSE performance of the proposed method with dif-

ferent combinations of the number of information symbols (D) and the number

of CPs (P ) is compared with that of the method in [12] that is marked with

“Bölcskei”. In the cases for the proposed method, the redundancy (N−D+P )

is fixed to 3 through various combinations of VCs and CPs. An observed

OFDM symbol block J associated with the dimensions of subspaces is fixed

to 2. To obtain the NRMSE performance as a function of SNR shown in

Fig. 2.4(a), we use 2000 OFDM symbols. The NRMSE performance as a

36



0 10 20 30 40 50
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

N
R

M
S

E

SNR (dB)

 

 

Bolcskei (D=64, P=3)
J=2, D=61, P=0
J=2, D=62, P=1
J=2, D=63, P=2
J=2, D=64, P=3

(a)

500 1000 1500 2000 2500 3000 3500 4000
10

−4

10
−3

10
−2

10
−1

10
0

N
R

M
S

E

Number of OFDM symbols N
s

 

 

Bolcskei (D=64, P=3)
J=2, D=61, P=0
J=2, D=62, P=1
J=2, D=63, P=2
J=2, D=64, P=3

(b)

Figure 2.4: Comparison of normalized root mean square error (NRMSE) per-
formance when the sum of the number of virtual carriers (N − D) and the
number of cyclic prefixes (P ) is fixed to 3. Fig. 2.4(a) shows the NRMSE ver-
sus SNR, and Fig. 2.4(b) presents the NRMSE versus the number of OFDM
symbols used for channel estimation Ns.
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function of the number of OFDM symbols Ns used for channel estimation in

Fig. 2.4(b) is obtained by setting the SNR to 25 dB. For a fair comparison,

the complex scalar ambiguities αij from the method in [12] are also resolved by

minimizing
∥∥∥
[
h

(k)
ij (0) h

(k)
ij (1) · · · h

(k)
ij (L)

]
−αij

[
ĥ
′(k)
ij (0) ĥ

′(k)
ij (1) · · · ĥ

′(k)
ij (L)

]∥∥∥
2

2
,

where
[
ĥ
′(k)
ij (0) ĥ

′(k)
ij (1) · · · ĥ

′(k)
ij (L)

]
is the estimated channel impulse response

vector between the jth transmit antenna and the ith receive antenna by the

method in [12].

As we can see from Fig. 2.4, the estimator errors of all the cases de-

crease with increasing SNR and OFDM symbol record length Ns. Further-

more, the proposed method demonstrates much better performance than the

method in [12], which reveals the fast convergence property of the noise sub-

space method for a small data record. In addition, there are performance gaps

among the non-CP system (J = 2, D = 61, P = 0), the insufficient CP sys-

tems (J = 2, D = 62, P = 1 and J = 2, D = 63, P = 2), and the CP-only

system (J = 2, D = 64, P = 3). This demonstrates that CPs are more useful

for the noise subspace based estimation method than VCs. We discuss this

benefit of CPs by referring to Fig. 2.5 that is obtained by using 2000 OFDM

symbols at the SNR of 25 dB and averaging 500 independent trials. Fig. 2.5(a)

shows the estimated eigenvalues of the autocorrelation matrix Rrr correspond-

ing to the estimated eigenvectors spanning the signal subspace in a descend-

ing order of the eigenvalues. From Fig. 2.5(a), we note that as fewer CPs

are used in the presence of VCs, the eigenvalues rapidly decrease. Although

the boundary between the signal subspace and the noise subspace is theoreti-

cally given in (2.27), this boundary with the rapidly decreasing eigenvalues is

usually indistinguishable in the presence of additive noise. That is, it is diffi-

cult to accurately differentiate eigenvectors spanning the signal subspace and
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Figure 2.5: Comparison of eigenvalue distributions. Fig. 2.5(a) shows the
distributions of estimated eigenvalues of the autocorrelation matrix Rrr cor-
responding to estimated eigenvectors spanning the signal subspace in a de-
scending order of the eigenvalues, and Fig. 2.5(b) presents the distributions
of eigenvalues of the matrix Ψ in (2.35) in a descending order.
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eigenvectors spanning the noise subspace from the estimated eigenvalues and

eigenvectors in the presence of noise. This causes the performance degradation

in the cases exploiting fewer CPs. In addition, the more rapid the eigenvalues

decrease, the poorer the estimation performance becomes. Furthermore, since

the eigenvectors corresponding to the 7th and 8th smallest eigenvalues of the

matrix Ψ in (2.35) provide the estimated MIMO channel with an ambiguity

for this simulation example, a distinctive boundary between the 6th smallest

eigenvalue and the 7th smallest eigenvalue is desirable. As demonstrated in

Fig. 2.5(b), which shows the eigenvalues of Ψ in a descending order, however,

this boundary is not clear in the cases with a reduced number of CPs. Also,

CPs increase the dimension of each eigenvector estimate spanning the noise

subspace, thereby imposing more constraints on the estimates of the chan-

nel impulse responses. Thus, although the subspace dimension extended by

larger CPs increases the computational complexity of the proposed method,

increasing CPs rather than VCs can significantly improve performance of the

subspace method.

As another measure evaluating the closeness between two Mt-dimensio-

nal spaces spanned by the true MIMO channel and the estimated MIMO chan-

nel by the proposed method, we can consider the Fubini-Study distance [49]

given as

dFS(U
(k)
h , Ĥ(k)) = arccos

∣∣∣det
(
U

(k)
h

H
Ĥ(k)

)∣∣∣ . (2.56)

In (2.56), U
(k)
h is a matrix consisting of eigenvectors associated with nonzero

eigenvalues of H(k)H(k)H , where H(k) is the kth realization of the true chan-

nel coefficient matrix and Ĥ(k) is an estimate of H(k) obtained by the pro-

posed method. By comparing the average Fubini-Study distances defined as

1
Nm

Nm∑
k=1

dFS(U
(k)
h , Ĥ(k)) in Fig. 2.6, we evaluate the performance of the proposed
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method for the systems considered in Fig. 2.4. To compute the average Fubini-

Study distances, we use Nm = 500 independent trials. Fig. 2.6(a) shows the

average Fubini-Study distance of the proposed method as a function of SNR

with the utilization of 2000 OFDM symbols for channel estimation, whereas

Fig. 2.6(b) demonstrates the average Fubini-Study distance of the proposed

method as a function of the number of OFDM symbols used for channel esti-

mation with the SNR fixed to 25 dB. As expected, the Fubini-Study distances

of all the cases still decrease with increasing SNR and OFDM symbol record

length Ns. Furthermore, we can see that the decreasing trends in the distances

are similar to those in the NRMSE performance in Fig. 2.4, which reconfirms

that exploitation of CPs rather than VCs for the proposed method improves

the closeness of the distance. Due to the similarity between the NRMSE and

the Fubini-Study distance in our simulations, we consider only NRMSE per-

formance in the simulations hereafter.

In the cases having no or insufficient CPs, Fig. 2.7 shows the NRMSE

performance of the proposed method obtained by increasing an observed OFDM

symbol block J in two cases of D = 61, P = 0 and D = 62, P = 1. We obtain

the NRMSE performance as a function of SNR in Fig. 2.7(a) by using 2000

OFDM symbols. The NRMSE performance as a function of the number of

OFDM symbols Ns in Fig. 2.7(b) is obtained with the SNR fixed to 25 dB.

From Fig. 2.7, we notice that the channel estimation performance in both

cases is improved by increasing J which is associated with the dimensions of

subspaces. In particular, increasing J from 2 to 3 significantly improves the

estimation performance, whereas increasing J from 3 to 4 results in trivial

performance improvement. This illustrates that there might be an adequate

dimension for channel estimation based on the noise subspace method and in-
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Figure 2.6: Comparison of average Fubini-Study distances when the sum of
the number of virtual carriers (N − D) and the number of cyclic prefixes (P )
is fixed to 3. Fig. 2.6(a) shows the average Fubini-Study distance versus SNR,
and Fig. 2.6(b) presents the average Fubini-Study distance versus the number
of OFDM symbols used for channel estimation Ns.
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Figure 2.7: Comparison of normalized root mean square error (NRMSE) per-
formance when an observed OFDM symbol block J increases. Fig. 2.7(a)
shows the NRMSE versus SNR, and Fig. 2.7(b) presents the NRMSE versus
the number of OFDM symbols used for channel estimation Ns.
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creasing J more than the adequate dimension might not enhance remarkably

the performance. Thus, even if the dimension extended by a larger J increases

computational complexity of the eigenstructure based method, the proposed

method with an adequate dimension is applicable to a MIMO-OFDM system

with no or insufficient CPs and can achieve the improved performance, thereby

potentially leading to higher channel utilization.

To demonstrate that the proposed method is insensitive to a true chan-

nel order, we consider the following MIMO channel given in [12].

H(z)=

[
0.4851 0.3200
−0.3676 0.2182

]
+

[
−0.4851 0.9387
0.8823 0.8729

]
z−1+

[
0.7276 −0.1280
0.2941 −0.4364

]
z−2.

(2.57)

We assume that the upper bound of the channel order L is equal to 3 even if

the true channel order is 2, and the zero-forcing detection based on the esti-

mated MIMO channel is used for symbol recovery. Figs. 2.8(a) and 2.4 show

the NRMSE and BER performance as functions of SNR when the MIMO chan-

nel in (3.59) is estimated by using 2000 OFDM symbols, respectively. As we

can see from Fig. 2.8(a), the proposed method still achieves good estimation

performance, which demonstrates its insensitivity to a true channel order. In

addition, the proposed method outperforms the method in [12]. Even in this

example, we observe that the utilization of CPs rather than VCs increases

the accuracy of channel estimation. The BER performance in Fig. 2.8(b) re-

flects an influence of the channel estimation accuracy shown in Fig. 2.8(a)

on symbol recovery. In particular, we note that although the two cases of

J = 2, D = 61, P = 0 and J = 2, D = 62, P = 1 using the proposed method

achieve lower estimation errors than the method in [12], they exhibit poorer

BER performance than the method in [12]. This is due to the fact that the

estimated channel matrices in these cases, which are obtained by combining
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Figure 2.8: Comparison of normalized root mean square error (NRMSE) and
bit error rate (BER) performance when the MIMO channel in (3.59) is esti-
mated by using 2000 OFDM symbols. Fig. 2.8(a) shows the NRMSE versus
SNR, and Fig. 2.8(b) presents the BER versus SNR.

45



block Toeplitz matrices constructed from estimated MIMO channels with the

IFFT matrices, tend to be ill-conditioned. In this case, the zero-forcing de-

tection by the inversion of the channel matrices may increase the detrimental

effects of the channel estimation error and the additive noise on the symbol

recovery. Thus, this ill-conditioning can result in poor BER performance even

with a small channel estimation error or a small amount of additive noise. On

the other hand, as the length of CPs increases, the BER performance of the

proposed method is significantly improved and much better than that of the

method in [12].

Finally, we consider a MIMO-OFDM system with 2 transmit antennas

(Mt = 2) and 3 receive antennas (Mr = 3) and the MIMO channel in (2.58)

to evaluate the performance of the proposed method with an observed OFDM

symbol block J = 1.

H(z) =




0.2200 + j0.0850 0.0904 − j0.2397
0.0397 − j0.5745 0.0172 − j0.1402
−0.0096 − j0.0873 0.4328 + j0.2893




+




−0.1739 − j0.7379 −0.1858 + j0.3828
0.7121 + j0.0601 −0.0209 − j0.1041
−0.1419 + j0.4276 −0.2524 + j0.6386


 z−1

+




0.1984 − j0.4376 0.6829 + j0.4328
−0.1216 + j0.2128 0.2530 + j0.3916
−0.0433 − j0.6528 0.2312 + j0.1217


 z−2

+




0.3704 − j0.0400 0.0855 − j0.3039
0.2967 − j0.0977 0.6466 + j0.5773
−0.2574 − j0.5432 0.3431 − j0.2673


 z−3.

(2.58)

To achieve high bandwidth efficiency, we do not insert the CP to each OFDM

symbol to be transmitted. Fig. 2.9(a) shows the NRMSE performance as a

function of SNR that is obtained by using 1000 OFDM symbols. Fig. 2.9(b)

demonstrates the NRMSE performance as a function of the number of OFDM
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symbols Ns that is obtained with the SNR fixed to 25 dB. The channel esti-

mation errors of all the cases still decrease with increasing SNR and OFDM

symbol record length Ns, which demonstrates that the proposed method can

achieve accurate channel estimation by using a smaller number of OFDM sym-

bols with J = 1. In particular, the estimation performance in all the cases

are almost identical. This indicates that the dimensions of the subspaces in

all the cases reach an adequate dimension for the proposed subspace method.

Furthermore, by applying the proposed method to a MIMO-OFDM

system with 4 transmit and 2 receive antennas, we also confirmed the similar

results to those of the MIMO-OFDM system with 2 transmit and 2 receive

antennas given above.

2.5 Conclusions

In this chapter, we established the conditions for blind channel identi-

fiability in a MIMO-OFDM system and presented a blind channel estimation

scheme based on the noise subspace method. The proposed method unifies

and generalizes existing SISO-OFDM blind channel estimators to the case of

MIMO-OFDM with any number of transmit and receive antennas. Further-

more, the proposed method achieves accurate channel estimation and fast con-

vergence. This method also demonstrates insensitivity to the exact knowledge

of a true MIMO channel order, which implies that it only requires an upper

bound on the MIMO channel order. In terms of both channel estimation ac-

curacy and convergence speed, increasing the length of CPs rather than the

number of VCs for the proposed method was found to significantly improve

the performance in the simulations. In addition, by increasing an observed

OFDM symbol block to an adequate dimension for channel estimation, the
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Figure 2.9: Comparison of normalized root mean square error (NRMSE) per-
formance for a MIMO-OFDM system without the CP when the observed
OFDM symbol block J = 1 is used. Fig. 2.9(a) shows the NRMSE ver-
sus SNR, and Fig. 2.9(b) presents the NRMSE versus the number of OFDM
symbols used for channel estimation Ns.
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proposed method can achieve accurate channel estimation in a MIMO-OFDM

system with no or insufficient CPs, thereby potentially increasing channel uti-

lization. Finally, when a system configuration is satisfied with the specific

conditions given in Lemma 2.3.3, the proposed method can be applied to a

MIMO-OFDM system without CPs regardless of the presence of VCs, thereby

achieving higher bandwidth efficiency.
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Chapter 3

Non-redundant Precoding Based Blind

Channel Estimation for MIMO Block

Transmission with a Cyclic Prefix

3.1 Introduction

For various applications including wireless multimedia communications,

wireless Internet access, and future-generation mobile communication sys-

tems, there exist increasing demands for wireless communication techniques

to significantly increase the link throughput and the network capacity. Since

MIMO communication, enabled by multiple transmit and receive antennas,

can considerably improve the channel capacity, MIMO communications have

emerged as a breakthrough for high data rate wireless communications (see

e.g. [58, 125, 126] and references therein).

A broadband radio channel is characterized by frequency-selective fad-

ing caused by multipath delay spread. When a conventional single carrier

system is employed for broadband wireless communications, channel estima-

tion and equalization are complicated. In contrast, due to the insertion of

the CP, block transmission techniques with a CP such as OFDM [10,35] and

SC-FDE [54, 137, 174] can simplify channel estimation and equalization by

effectively removing ISI, and converting the linear convolution in the time do-

main to the circular convolution in the frequency domain. Therefore, MIMO

block transmission systems with a CP, which combine block transmission mod-
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ulation such as OFDM and SC-FDE with MIMO communication, can provide

high-performance transmission [5,36,37,48,68,125,136,157,172,192,193] (and

references therein).

In MIMO block transmission systems with a CP, reliable estimation of

CSI between the transmit and receive antennas is essential for coherent signal

detection. Using multiple antennas at the transmitter and receiver requires a

large amount of CSI to be estimated. Although the CSI can be estimated by

sending training sequences, the training requirements are significant [8,37,42,

65, 72, 96, 99, 100, 110, 111, 113, 149, 150, 179, 188]. Furthermore, transmitting

training sequences is undesirable for certain communication systems [59, 62].

Thus, to provide bandwidth-efficient solutions to channel identification for the

MIMO block transmission systems, blind channel estimation for MIMO block

transmission systems has been actively studied in recent years [7, 12, 146, 183,

186,187,191].

Since Tong et al. [162] introduced a SOS based technique for blind

identification of single-input multiple-output systems, a variety of SOS based

blind estimators (see e.g. [2, 38, 40, 41, 60, 74, 104, 105, 118, 128, 138, 160, 169]

and references therein) have been presented. Among those methods, the noise

subspace method [2, 118] is considered to be one of the promising blind tech-

niques due to its simple structure and good performance with a relatively

small number of samples. By employing the noise subspace method, Zeng

et al. [186] proposed a blind channel estimator for space-time coded MIMO-

OFDM systems. Zhou et al. [191] presented a blind channel estimator for

space-time coded MIMO-OFDM systems which exploits the noise subspace

method and a redundant linear precoding. Subspace based blind techniques

for channel estimation in spatial multiplexing MIMO-OFDM systems were
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developed in [7], [187], and [146]. Yatawatta et al. [183] presented a blind

channel estimation method based on a non-redundant linear block precoding

and cross-correlation operations. For a MIMO channel to be identified by the

methods in [183,187], and [146], however, the channel should satisfy relatively

strict conditions. This requirement might limit the extensive application of

these methods to practical systems. Alternatively, by using second-order cy-

clostationary statistics induced by a periodic nonconstant-modulus antenna

precoding, Bölcskei et al. [12] proposed a blind channel estimation algorithm

for MIMO-OFDM systems without imposing channel conditions for its identi-

fication. This approach, however, requires a large number of OFDM symbols

to obtain a reliable estimate of the cyclic correlation and thus the channel

estimate.

To blindly obtain a channel estimate for SISO systems, Lin et al. [102]

recently developed a technique exploiting a periodic modulation precoding

that is simpler and shows better performance than the techniques based on

a periodic modulation precoding in [142] and [30]. Furthermore, this method

does not impose any requirement for the identification on a channel provided

the precoding to induce periodic modulation is properly designed. By ex-

tending the method in [102] to the case of a SISO SC-FDE system, Wu et

al. [178] presented a blind channel estimation technique based on a periodic

modulation precoding for SISO SC-FDE systems, and demonstrated that the

technique achieves good estimation performance with a small number of SC-

FDE symbols. In addition, the extension of the method in [102] to blind

channel estimation for a MIMO system structure was proposed in [101].

In this chapter, by considering a general CP-based block transmission

system with multiple transmit and receive antennas and by providing a frame-
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work for blind channel estimation based on a general non-redundant precoding,

we generalize the method for SISO SC-FDE systems in [178] to blind channel

estimation for spatial multiplexing MIMO block transmission systems with a

CP. We propose a blind channel estimator using a simplified non-redundant

precoding that is insensitive to overestimates of a true channel order. In the

case where the number of transmit antennas is greater than the number of

receive antennas, we show under specific system conditions that the proposed

blind methods are applicable for estimation of the MIMO channel without

oversampling received signals. In addition, we establish conditions required

for the simplified precoding to enable blind MIMO channel identification, and

derive a simplified precoding which is optimized in the sense of minimizing the

impact of unknown additive noise. A trade-off between channel estimation per-

formance and BER performance by this simplified precoding is investigated.

To complete the channel estimation, we also present a technique for resolving

the channel ambiguity inherent in blind estimators, which uses only a few pilot

symbols. By doing so, the proposed method achieves accurate channel esti-

mation for MIMO block transmission systems including MIMO-OFDM and

MIMO SC-FDE systems with a small number of symbol blocks, and increases

bandwidth efficiency for information data.

Compared with the techniques in [187], [183], and [146], our proposed

estimator does not impose strict conditions on a MIMO channel for its iden-

tification. In addition, our algorithm can be applied to channel estimation for

both MIMO-OFDM systems and MIMO SC-FDE systems. Furthermore, our

estimator needs fewer OFDM symbols to obtain a reliable estimate than the

method in [12]. Unlike [187] and [146], however, our estimator has a trade-off

between the accuracy of a channel estimate and BER performance caused by
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the utilization of the precoding. When we compare our blind estimator with

the methods in [102] and [101], we focus on blind channel estimation for MIMO

block transmission systems with the CP, which is different from the system

structures in [102] and [101]. Thus, we obtain a precoding condition for the

channel identification that is different from and is simpler than the conditions

in [102] and [101]. Furthermore, we provide a framework for blind channel

estimation based on a general precoding structure, and propose a technique

for resolving the channel ambiguity. Compared with [178], our approach gen-

eralizes [178] for SISO SC-FDE systems to MIMO block transmission with the

CP including OFDM and SC-FDE operating with multiple transmit and mul-

tiple receive antennas under the assumption that spatial multiplexing is used

at the transmitter. According to the number of transmit and receive anten-

nas, we discuss conditions for MIMO channel identification. Furthermore, we

investigate blind channel estimation based on a more general precoding than

the precoding in [178]. Our precoding condition for the channel identification

is more relaxed than the one in [178]. In addition, we provide a technique for

resolving the channel ambiguity matrix by imposing the unitary constraint on

the ambiguity matrix.

The rest of the chapter is organized as follows. In Section 3.2, we briefly

describe the MIMO block transmission model with a CP. In Section 3.3, we

present a blind channel estimation method based on a general precoding. Fur-

thermore, we propose a blind estimation technique using a simplified system-

atic precoding, which can be considered as a generalization of [178] to the case

of MIMO block transmission systems. The necessary conditions for the simpli-

fied systematic precoding for blind channel identification are established, and

an optimal simplified precoding is derived. In addition, we investigate a trade-
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Figure 3.1: MIMO block transmission system with a CP. The system has Mt

transmit and Mr receive antennas.

off between channel estimation performance and BER performance caused by

the simplified precoding. In Section 3.4, we present a technique for resolving

the channel ambiguity matrix in the proposed blind estimators. Section 3.5

contains simulation results demonstrating good estimation performance of the

proposed method. A conclusion is provided in Section 3.6.

3.2 System Model for MIMO Block Transmission with
a CP

In this section, we briefly describe the MIMO block transmission system

with a CP that has Mt transmit and Mr receive antennas as illustrated in

Fig. 3.1. As we discuss later, this system model also includes both OFDM and

SC-FDE systems as a special case.
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Let the information symbol vector d(n, k) be written as

d(n, k) , [d1(n, k) d2(n, k) · · · dMt(n, k)]T , (3.1)

where di(n, k) means the information symbol loaded at the kth slot of the nth

symbol block in the ith transmit antenna. By stacking d(n, k) with 0 ≤ k ≤
N − 1, we define the NMt × 1 vector d(n) as

d(n) ,
[
d(n, 0)T d(n, 1)T · · · d(n, N − 1)T

]T
, (3.2)

where N is the size of a symbol block. By applying a N × N matrix T to

information symbols at each transmit antenna, the transformed signal vector

s(n) at Mt transmit antennas is expressed as

s(n, k) , [s1(n, k) s2(n, k) · · · sMt(n, k)]T , (3.3)

s(n) ,
[
s(n, 0)T s(n, 1)T · · · s(n, N − 1)T

]T
= (T ⊗ IMt)d(n). (3.4)

Before the signal is transmitted, the CP, which is a copy of the last PMt

components of the vector s(n), is inserted in front of s(n) as given in

scp(n) ,
[
s(n, N − P )T · · · s(n, N − 1)T s(n, 0)T · · · s(n, N − 1)T

]T
, (3.5)

where P is the length of the CP at each transmit antenna, and is set to be equal

to or greater than a MIMO channel order to avoid ISI. scp(n) from Mt transmit

antennas is sent through a composite MIMO channel combining Mt transmit

filters, a MIMO dispersive channel, and Mr receive filters. We assume that

the composite MIMO channel is modeled as a Mr ×Mt finite impulse response

(FIR) filter with L as the upper bound on the channel order, and denote the

lth lag of the MIMO channel as

H(l) ,




h11(l) h12(l) · · · h1Mt(l)
h21(l) h22(l) · · · h2Mt(l)

...
...

...
...

hMr1(l) hMr2(l) · · · hMrMt(l)


 . (3.6)
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By removing the CP portion corrupted by previous symbol blocks at the re-

ceiver after the nth symbol block transmission, the received signal vector r(n)

can be written as

r(n, k) , [r1(n, k) r2(n, k) · · · rMr(n, k)]T (3.7)

r(n) ,

[
r(n, 0)T r(n, 1)T · · · r(n, N − 1)T

]T
= Hs(n) + η(n), (3.8)

where the subscript in (3.7) indicates the receive antenna index. In (3.8), η(n)

is the AWGN vector, and H is a block circulant matrix with [H(0)T · · · H(L)T

0T · · · 0T ]T as the first column block.

When we associate the system in Fig. 3.1 with conventional block trans-

mission systems, this system reduces to a MIMO-OFDM system by setting T

to the N × N unitary inverse discrete Fourier transform (IDFT) matrix. In

addition, by exploiting IN instead of T, this system becomes a MIMO SC-

FDE system. Furthermore, when TTH = Ω 6= IN , the system is simply a

MIMO-OFDM or MIMO SC-FDE system with precoding.

In the derivation hereafter, we express the matrix T as the product of

a precoding matrix Ω
1
2 and an unitary matrix UT without loss of generality,

i.e., T = Ω
1
2 UT with Ω = Ω

1
2Ω

H
2 .

3.3 Precoding Based Blind Channel Estimation

In this section, we present precoding based blind channel estimation

methods for the MIMO block transmission system in Section 3.2, and a tech-

nique for resolving the channel ambiguity subject to the proposed blind esti-

mation methods. Before we describe these methods, we make the following

assumptions.
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(AS1) The matrix H, which is defined as
[
H(0)T H(1)T · · · H(L)T

]T
, has

full column rank.

(AS2) Each information symbol dj(n, k) is spatially and temporally uncorre-

lated with other information symbols, i.e., E{di(n1, k1)d
∗
j(n2, k2)} =

σ2
dδ(i − j)δ(n1 − n2)δ(k1 − k2).

(AS3) Each information symbol is uncorrelated with the AWGN, i.e.,

E{d(n)η(n)H} = 0.

(AS4) The AWGN is also spatially uncorrelated, i.e., E{η(n)η(n)H} = σ2
ηINMr .

3.3.1 Blind Channel Estimation Exploiting a General Precoding

To provide a precoding based blind estimation technique, we first define

the N × N matrix Π as

Π ,

[
0 1

IN−1 0

]
. (3.9)

By using this definition, we can rewrite the block circulant channel matrix H

in (3.8) as

H =

L∑

i=0

Πi ⊗H(i). (3.10)

In (3.10), Π0 is defined as IN . By using (3.4) and (3.8), r(n) is rewritten as

r(n) =

(
L∑

i=0

ΠiT ⊗H(i)

)
d(n) + η(n), (3.11)

and the autocorrelation matrix of r(n) is given as

Rrr , E{r(n)r(n)H} = σ2
d

L∑

i=0

L∑

j=0

ΠiΩ(ΠT )j ⊗H(i)H(j)H + σ2
ηINMr . (3.12)

To preserve the signal power per symbol block including the CP after the

transformation by T, the following constraint is imposed on the matrix Ω.

tr{Ω} + tr{Ω[N − P + 1 : N, N − P + 1 : N ]} = N + P. (3.13)
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We note from (3.12) that if the matrix Ω is properly designed, the

matrices H(i)H(j)H can be obtained from the autocorrelation matrix of the

received signal Rrr without any additional information. Using H(i)H(j)H , we

can construct the matrix HHH , thereby obtaining the MIMO channel H up

to a channel ambiguity which is inherent in blind channel estimators. In the

following, we present a design of Ω to achieve this goal, and how to obtain the

MIMO channel H from Rrr in detail.

Partitioning the NMr × NMr matrix Rrr as

R(m,n) , Rrr[mMr + 1 : (m + 1)Mr, nMr + 1 : (n + 1)Mr], 0 ≤ m, n < N,

(3.14)

we obtain

R(m,n) =

L∑

i=0

L∑

j=0

[Ω]〈m−i〉N +1,〈n−j〉N+1H(i)H(j)H , 0 ≤ m < n < N. (3.15)

Since Rrr is Hermitian, the information from R(m,n) for 0 ≤ n < m < N

is exactly the same as that in (3.15), and which is redundant. In addition,

R(m,m) for 0 ≤ m < N are contaminated by the autocorrelation matrix of

the additive noise. Let us denote Λi(Rrr) as a matrix composed of Mr × Mr

submatrices on the ith upper block diagonal as given in

Λi(Rrr) , [RT
(0,i) RT

(1,i+1) · · · RT
(N−1−i,N−1)]

T , (3.16)

and Λi(HHH)
(
Λ−i(HHH)

)
as a matrix consisting of Mr × Mr submatrices

on the ith upper (lower) block diagonal as given in

Λi(HHH) ,

[
H(i)∗H(0)T H(i + 1)∗H(1)T · · · H(L)∗H(L − i)T

]T
(3.17)

Λ−i(HHH) ,

[
H(0)∗H(i)T H(1)∗H(i + 1)T · · · H(L − i)∗H(L)T

]T

. (3.18)

59



Then, we define the matrices R and G as, respectively,

R ,
[
ΛT

1 (Rrr) ΛT
2 (Rrr) · · · ΛT

N−1(Rrr)
]T

(3.19)

G ,
[
ΛT

0 (HHH) ΛT
1 (HHH) · · · ΛT

L(HHH) ΛT
−1(HHH) · · · ΛT

−L(HHH)
]T

.

(3.20)

By defining the matrix Ψ as

[Ψ]k+1,l+1 = [Ω]〈b−d〉N +1,〈a+b−c−d〉N +1

[Ψ]k+1, 1
2
(L+1)(L+2)+l′+1 = [Ω]〈b−c′−d′〉N +1,〈a+b−d′〉N+1

(3.21)

k = (a − 1)N − 1

2
a(a − 1) + b, 1 ≤ a ≤ N − 1, 0 ≤ b ≤ N − a − 1 (3.22)

l = (L + 2)c − 1

2
c(c + 1) + d, 0 ≤ c ≤ L, 0 ≤ d ≤ L − c (3.23)

l′ = (L + 1)(c′ − 1) − 1

2
c′(c′ − 1) + d′, 1 ≤ c′ ≤ L, 0 ≤ d′ ≤ L − c′, (3.24)

and assuming that Ψ has full column rank with N(N − 1) ≥ 2(L + 1)2, we

obtain the matrix G as

G =
((

ΨHΨ
)−1

ΨH ⊗ IMr

)
R. (3.25)

Using Λi(HHH), 0 ≤ i ≤ L given by the matrix G in (3.25), we can construct

HHH . When HHH is decomposed by the eigenvalue value decomposition,

HHH is expressed as

HHH = U diag{[λ1 λ2 · · · λ(L+1)Mr ]}UH, (3.26)

where U is an unitary matrix corresponding to eigenvectors and λi is the

ith eigenvalue. In (3.26), the eigenvalues are considered to be in decreasing

order. Since the matrix H has full column rank by assumption (AS1), we have
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λ1 ≥ λ2 ≥ · · · ≥ λMt > 0 and λMt+1 = λMt+2 = · · · = λ(L+1)Mr = 0, thereby

obtaining H as

H = U[:, 1 : Mt]




√
λ1 0 · · · 0
0

√
λ2 · · · 0

0 0
. . . 0

0 0 · · ·
√

λMt


VH , (3.27)

where the Mt × Mt matrix V is an arbitrary unitary matrix that represents

a MIMO channel ambiguity inherent in blind channel estimation techniques.

We also note that the matrix R in (3.19) is constructed so as to exclude the

detrimental effect of the additive noise. Thus, this blind channel estimator

can provide an accurate MIMO channel estimate that is less affected by the

additive noise.

If the true Rrr is known, the components H(i)HH(j) and H(j)HH(i)

of the matrix G in (3.25) obviously satisfy H(i)HH(j) =
(
H(j)HH(i)

)H
. In

practice, however, the true Rrr is unknown, and should be estimated. Thus,

to prevent the error in an estimate of Rrr from being magnified, the condition

number of ΨHΨ should be as small as possible. Furthermore, the estimates

H(i)HH(j) and H(j)HH(i) of H(i)HH(j) and H(j)HH(i) in the estimate of

G may not satisfy the relationship of H(i)HH(j) =
(
H(j)HH(i)

)H

for i 6= j.

In this case, we can update H(i)HH(j) and H(j)HH(i) to H(i)H(j)
H

and

H(j)H(i)
H

by, respectively,

H(i)H(j)
H

= 0.5

(
H(i)HH(j) +

(
H(j)H(i)H

)H
)

H(j)H(i)
H

=
(
H(i)H(j)

H
)H

.

(3.28)

When we consider MIMO channel identification according to the num-

ber of transmit and receive antennas, the full column rank of H implies
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Mr ≥ ⌈ Mt

L+1
⌉. This indicates that a MIMO channel whose H has full col-

umn rank can be identified by (3.27) in cases with ⌈ Mt

L+1
⌉ ≤ Mr < Mt as well

as Mr ≥ Mt. When the MIMO block transmission system has Mr < ⌈ Mt

L+1
⌉,

however, the matrix H is no longer a tall matrix. In this case, we can obtain

a MIMO channel estimate by constructing the matrix H based on oversam-

pled channel impulse responses in a similar manner to [146]. That is, received

signals are oversampled by a factor of q satisfying q ≥ ⌈ Mt

(L+1)Mr
⌉, and the ma-

trix H based on channel impulse responses corresponding to the oversampled

signals is formed. We also note that the oversampled noise vector is generally

colored. In this case, we suppose that front-end receiver filters are designed

with a wider bandwidth to whiten the oversmpled noise [14]. Since the ma-

trix H is now a tall matrix, we can estimate the oversampled MIMO channel

by (3.27) if H has full column rank.

We find that it is quite difficult to obtain a systematic way to design

the general precoding Ω which guarantees both the full column rank of Ψ and

the small condition number of ΨHΨ. To circumvent this problem and provide

an alternative to the precoding, we also present an effective and systematic

precoding for blind channel estimation.

3.3.2 Blind Channel Estimation Exploiting a Simplified Systematic
Precoding

In this subsection, it is assumed that N is an even number with N ≥
4L + 2, which can be satisfied in practical systems, and the Hermitian matrix
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Ω is limited to be in the form given as

[Ω]m+1,n+1 =





ξ(m) ≥ 0, if 0 ≤ m < N and n = m,

ρ(m), if 0 ≤ m < N/2 and n = N/2 + m,

ρ(n), if 0 ≤ n < N/2 and m = N/2 + n,

0, elsewhere,

(3.29)

where ρ(m) are real numbers and
∑N−1

m=0 ξ(m) +
∑N−1

m=N−P ξ(m) = N + P

according to the condition in (3.13).

When we consider the noiseless case (σ2
η = 0), we can express Λi(Rrr)

as, respectively,

[
ΛN/2(Rrr)

T Λ−N/2(Rrr)
T Λ0(Rrr)

T
]T

=σ2
d

([
A0

T A0
T B0

T
]T⊗IMr

)
Λ0(HHH),

(3.30)
[ΛN/2+i(Rrr)

T Λ−(N/2−i)(Rrr)
T Λi(Rrr)

T Λ−(N−i)(Rrr)
T ]T

= σ2
d

([
Ai

T Ai
T Bi

T
]T ⊗ IMr

)
Λi(HHH), 1 ≤ i ≤ L,

(3.31)

where Ai and Bi are defined for 0 ≤ i ≤ L as, respectively,

Ai,




ρ(0) ρ(N/2−1) ρ(N/2−2) ··· ρ(〈N/2−L+i〉N/2)
ρ(1) ρ(0) ρ(N/2−1) ··· ρ(〈N/2−L+1+i〉N/2)
ρ(2) ρ(1) ρ(0) ··· ρ(〈N/2−L+2+i〉N/2)

...
...

...
...

...
ρ(N/2−1) ρ(N/2−2) ρ(N/2−3) ··· ρ(〈N/2−L−1+i〉N/2)



,

(3.32)

and

Bi ,




ξ(0) ξ(N − 1) ξ(N − 2) · · · ξ(〈N − L + i〉N )
ξ(1) ξ(0) ξ(N − 1) · · · ξ(〈N − L + 1 + i〉N)
ξ(2) ξ(1) ξ(0) · · · ξ(〈N − L + 2 + i〉N)

...
...

...
...

...
ξ(N − 1) ξ(N − 2) ξ(N − 3) · · · ξ(〈N − L − 1 + i〉N)




.

(3.33)
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Thus, Λ0(HHH) and Λi(HHH) are obtained with 1 ≤ i ≤ L as, respectively,

Λ0(HHH) =
1

σ2
d

((2A0
TA0 + B0

TB0)
−1[A0

T A0
T B0

T ] ⊗ IMr)

·
[
ΛN/2(Rrr)

T Λ−N/2(Rrr)
T Λ0(Rrr)

T
]T

,

Λi(HHH) =
1

σ2
d

((2Ai
TAi + Bi

TBi)
−1[Ai

T Ai
T Bi

T ] ⊗ IMr)

·
[
ΛN/2+i(Rrr)

T Λ−(N/2−i)(Rrr)
T Λi(Rrr)

T Λ−(N−i)(Rrr)
T
]T

.

(3.34)

To obtain Λi(HHH) for 0 ≤ i ≤ L, 2Ai
TAi+Bi

TBi should be invertible. Since

both Ai
TAi and Bi

TBi are positive semidefinite matrices, it is guaranteed

that 2Ai
TAi + Bi

TBi is nonsingular if Ai or Bi has full column rank. When

we choose ξ(i) satisfying the condition in the following theorem, Bi has full

column rank for all i ∈ {m}L
m=0.

Theorem 3.3.1. The matrix Bi has full column rank for all i ∈ {m}L
m=0, if

and only if the matrix Ω is chosen so that Ξ(k), defined as
∑N−1

n=0 ξ(n)e−
j2πkn

N ,

has a nonzero value for all k ∈ {ki}K
i=0, where {ki}K

i=0 ⊂ {n}N−1
n=0 and K ≥ L.

Proof. Refer to Appendix D.

In the same way, by using ρ(i) conforming to the requirement in the

following corollary, we can generate Ai having full column rank for all i ∈
{m}L

m=0.

Corollary 3.3.2. The matrix Ai has full column rank for all i ∈ {m}L
m=0, if

and only if Γ(k), defined as
∑N/2−1

n=0 ρ(n)e−
j2πkn
N/2 , has a nonzero value for all

k ∈ {ki}K
i=0, where {ki}K

i=0 ⊂ {n}N/2−1
n=0 and K ≥ L.

Since the proof of Corollary 3.3.2 is similar to that of Theorem 3.3.1,

we omit the proof.
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Thus, by utilizing ξ(i) or ρ(i) satisfying the conditions in Theorem 3.3.1

and Corollary 3.3.2, constructing HHH from Λi(HHH) in (3.34), and decom-

posing HHH by the eigenvalue decomposition, we obtain a MIMO channel

estimate as given in (3.27).

Furthermore, when the matrix Ω is a diagonal matrix i.e., all ρ(n) are

equal to zeros, this proposed blind technique can be applied to the system

with N ≥ 2L + 1 as well.

3.3.2.1 Design of an Optimal Precoding Matrix

To design an optimal matrix for the precoding matrix Ω
1
2 in our pro-

posed method, we adopt the criterion for the optimal design in [102], which

corresponds to minimization of the impact of unknown additive noise. When

additive noise exists, Λo(HHH) is corrupted by the autocorrelation matrix of

the additive noise, whereas Λi(HHH) for 1 ≤ i ≤ L are not affected by the au-

tocorrelation matrix of the additive noise. That is, [ΛN/2(Rrr)
T Λ−(N/2)(Rrr)

T

Λ0(Rrr)
T ]T is written as

[ΛN/2(Rrr)
T Λ−N/2(Rrr)

T Λ0(Rrr)
T ]T =σ2

d

(
[A0

T A0
T B0

T ]T⊗IMr

)
Λ0(HHH)

+σ2
η1N⊗IMr ,

(3.35)

and then Λo(HHH) is obtained as

Λ0(HHH) =
1

σ2
d

((2A0
TA0 + B0

TB0)
−1[A0

T A0
T B0

T ] ⊗ IMr)

·
[
ΛN/2(Rrr)

T Λ−N/2(Rrr)
T Λ0(Rrr)

T
]T

−
σ2

η

σ2
d

((2A0
TA0 + B0

TB0)
−1B0

T1N ⊗ IMt).

(3.36)

Since we do not have the knowledge of σ2
η in practice, we cannot find Λo(HHH)

accurately. In this case, if B0
H1N in (3.36) is equal to 0, Λo(HHH) is precisely
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obtained. However, since ξ(n)(≥ 0) satisfying the condition in Theorem 3.3.1

is unable to make BT
0 1N = 0, it is required that (2A0

TA0 + B0
TB0)

−1B0
T1N

gets as close to a null vector as possible. In addition, to guarantee the recovery

of transmitted symbols at the receiver, Ω should be positive definite. This

imposes the constraint ξ(n) ≥ α > 0 on ξ(n), and requires δ < min
0≤n<N

ξ(n),

where δ = max
0≤n<N/2

|ρ(n)|. According to the condition in (3.13), we also impose

another constraint
∑N−1

n=0 ξ(n) +
∑N−1

n=N−P ξ(n) = N + P on ξ(n). Thus, by

denoting ξ(n) as γ(n) + α, the optimal γ(n)opt and ρ(n)opt can be obtained

from

(γ(n)opt, ρ(n)opt)

=arg min
γ(n),ρ(n)

∥∥(2A0
TA0+B0

TB0)
−1B0

T 1N

∥∥
∞

=arg min
γ(n),ρ(n)

(
N−1∑

n=0

γ(n)+Nα

)

·

∥∥∥∥∥∥

(
2A0

T A0+B0
T
B0+

(
2α

N−1∑

n=0

γ(n)+Nα2

)
1L+11L+1

T

)−1
∥∥∥∥∥∥
∞

subject to γ(n)≥0,

N−1∑

n=0

γ(n)+

N−1∑

n=N−P

γ(n)=(N+P)(1−α), and δ<α+ min
0≤n<N

γ(n),

(3.37)

where B0 is formed with γ(n) instead of ξ(n) in the same manner that B0

in (3.33) is constructed. Referring to the derivation in Appendix E, we obtain

ξ(n)opt and ρ(n)opt as
{

ξ(n)opt = (N + P )(1 − α) + α, if n = n0,

ξ(n)opt = α, if n 6= n0,

ρ(n)opt = ±δ,

(3.38)

where n0 is an integer satisfying 0 ≤ n0 ≤ N − P − 1, and δ < α. In

addition, the ξ(n)opt obviously satisfies the condition in Theorem 3.3.1. Thus,
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by constructing Ωopt based on the ξ(n)opt and ρ(n)opt, and decomposing the

matrix Ωopt into Ω
1
2
optΩ

H
2
opt, we obtain the optimal precoding matrix Ω

1
2
optU1,

where U1 is an arbitrary unitary matrix.

Constructing A0 and B0 with ξ(n)opt and ρ(n)opt in (3.38), and denot-

ing 1
σ2

d
((2A0

TA0 + B0
TB0)

−1[A0
T A0

T B0
T ] ⊗ IMr)[ΛN/2(Rrr)

T Λ−N/2(Rrr)
T

Λ0(Rrr)
T ]T in (3.36) as Λo(H̃H̃H) and the lower bound in (E.5) as ν, respec-

tively, we can rewrite (3.36) as

Λo(H̃H̃H) = Λo(HHH) +
νσ2

η

σ2
d

(1L+1 ⊗ IMr). (3.39)

When we construct the matrix H̃H̃H , H̃H̃H is expressed as

H̃H̃H = HHH +
νσ2

η

σ2
d

I(L+1)Mr

= U diag

{[
λ1 +

νσ2
η

σ2
d

λ2 +
νσ2

η

σ2
d

· · · λMt +
νσ2

η

σ2
d

νσ2
η

σ2
d

· · ·
νσ2

η

σ2
d

]}
UH ,

(3.40)

and the estimated MIMO channel H̃ under the presence of the additive noise

is obtained as

H̃ = U[:, 1 : Mt]




√
λ1 +

νσ2
η

σ2
d

0 · · · 0

0
√

λ2 +
νσ2

η

σ2
d

· · · 0

0 0
. . . 0

0 0 · · ·
√

λMt +
νσ2

η

σ2
d




VH. (3.41)

Since ν is an increasing function of α for 0 < α < 1 but a decreasing function

of δ for δ ≥ 0, we can find a MIMO channel estimate more accurately as α

approaches to zero while δ is as large as possible. However, we note that the

value of δ is limited by that of α.
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In practice, the autocorrelation matrix Rrr should be estimated. When

2Ai
TAi +Bi

TBi is ill-conditioned, the inverse of 2Ai
TAi +Bi

TBi may signif-

icantly amplify the estimation error in Rrr. Thus, we need to investigate the

condition number of 2Ai
TAi +Bi

TBi formed by using the optimal ξ(n)opt and

ρ(n)opt in (3.38). By noting that 2Ai
TAi + Bi

TBi is expressed, regardless of

the choice of n0, as (ξ(n0)
2
opt − 2αξ(n0)opt + α2)IL+1−i + (2αξ(n0)opt + (N −

2)α2 + Nδ2)1L+1−i1
T
L+1−i, we obtain the 2-norm condition number, denoted

by K2(2Ai
TAi + Bi

TBi) for 0 ≤ i < L, as

K2(2Ai
TAi+Bi

TBi)=1+
(L+1−i)(2α(N+P )(1−α)+N(α2+δ2))

(N+P )2(1−α)2
. (3.42)

As shown in Fig 3.2, K2(2Ai
TAi + Bi

TBi) is an increasing function of α for

0 < α < 1. In addition, it is obvious from (3.42) that the condition number

is an increasing function of δ for δ ≥ 0. Thus, α and δ should be as small

as possible to obtain an accurate channel estimate. This reconfirms that as

we choose α close to zero, we can improve the accuracy of MIMO channel

estimation, but on the other hand this implies that there is a trade-off in

choosing the value of δ between a small lower bound in (E.5) and a small

condition number in (3.42).

Considering MIMO channel identification according to the number of

transmit and receive antennas, we can obtain a MIMO channel estimate by

applying the same approach as discussed in Subsection 3.3.1 to two cases

depending on the number of transmit and receive antennas. That is, if Mr ≥
⌈ Mt

L+1
⌉ and the matrix H has full column rank, we can estimate the MIMO

channel by the proposed method based on the simplified precoding without

oversampling received signals. When Mr < ⌈ Mt

L+1
⌉ and front-end receiver filters

are properly designed [14], an oversampled MIMO channel estimate can be
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Figure 3.2: 2-norm condition number of the matrix 2Ai
TAi +Bi

T Bi in (3.42)
for i = 0, 2, 4, 6 according to different choices of α. The symbol block size
N is equal to 64, and both the length of the CP and the channel order are set
to 8. δ is fixed at 0.

obtained by oversampling received signals if the matrix H consisting of the

oversampled channel impulse responses has full column rank.

3.3.2.2 Effect of the Optimal Precoding Matrix on BER Perfor-
mance

To investigate the effect of the optimal matrix Ωopt on BER perfor-

mance, we suppose that the zero-forcing detection based on the perfectly ob-

tained CSI H is utilized for symbol recovery, and H has full column rank.

Considering the vectors r(n) in (3.8) and s(n) in (3.4), and defining the aver-

age instantaneous BER Pinst as 1
NMt

∑Mt

i=1

∑N−1
j=0 Pij , where Pij indicates the
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instantaneous BER for information symbols loaded on the jth slot of each sym-

bol block from the ith transmit antenna, we find that Pinst is upper bounded

as

Pinst ,
1

NMt

Mt∑

i=1

N−1∑

j=0

Pij

≈ µ

NMt

NMt∑

k=1

Q

(√
βσ2

d

σ2
η

[
(T−1 ⊗ IMt)(H

H
H)−1(T−H ⊗ IMt)

]
k,k

)

≤ µQ



√

βλ
(H)
minλ

(Ωopt)
min σ2

d

σ2
η


 = µQ



√

βλ
(H)
min(α − δ)σ2

d

σ2
η


 ,

(3.43)

where λ
(H)
min and λ

(Ωopt)
min indicate the minimum eigenvalues of H

H
H and Ωopt,

respectively. In (3.43), each slot is assumed to use the same signal constellation

for information symbols, and the constants µ and β depend on the signal

constellation [63]. To minimize the upper bound in (3.43), we should choose

the values of α and δ so that α−δ is as large as possible, i.e., α should approach

to 1 whereas δ is close to 0. Fig. 3.3 demonstrates the average BER E{Pinst}
according to different values of α− δ in the case that a MIMO-OFDM system

with two transmit and two receive antennas, and 64 subcarriers transmits

16-QAM symbols over Rayleigh fading channels with channel order 8 and a

uniform power delay profile. We see in Fig. 3.3 that as α− δ approaches to 1,

the BER performance is improved. This observation of the BER performance,

however, conflicts with the fact that as α is close to 0, an accurate channel

estimate is obtained. Thus, there is a trade-off in the choice of α between good

BER performance and accurate channel estimation. In addition, as the value

of δ is smaller, the BER performance is better but the lower bound in (E.5) is

larger, which also implies that a trade-off in the selection of δ exists.
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Figure 3.3: Average BER E{Pinst} according to different choices of α and δ.
Pinst is given in (3.43).

3.3.2.3 Robustness Against Overestimated Channel Orders

In practice, the MIMO channel order is unknown. Furthermore, it

is difficult to accurately estimate the channel order. In block transmission

systems with a CP, the length of the CP is set to be greater than or equal to

the channel order to avoid IBI. Thus, we can assume that the length of the CP

P is an upper bound for the MIMO channel order L (≥ L). With this upper

bound L, Rrr is written as

Rrr = σ2
d

L∑

i=0

L∑

j=0

ΠiΩ(ΠT )j ⊗ H(i)HH(j) + σ2
ηINMr . (3.44)
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Since the true MIMO channel taps H(i) are equal to 0 for L+1 ≤ i ≤ L, we ob-

tain H(i)H(i+j)H = 0 for 0 ≤ i ≤ L and L+1 ≤ i+j ≤ L by (3.34). By rear-

ranging this information, we obtain
[
H(0)T H(1)T · · · H(L)T

]T
H(L + i)H =

0 for 1 ≤ i ≤ L − L. Since it is assumed in (AS1) that the true MIMO

channel
[
H(0)T H(1)T · · · H(L)T

]T
has full column rank, H(L + i) = 0 for

1 ≤ i ≤ L−L should be satisfied. This means that a MIMO channel estimate

H with the overestimated channel order L is obtained as

H ,

[
H(0)T H(1)T · · · H(L)T · · · H(L)

T
]T

=
[
H(0)T H(1)T · · · H(L)T 0T · · · 0T

]T
,

(3.45)

which indicates that the proposed blind channel estimator is insensitive to

overestimates of the true MIMO channel order.

In summary, when we consider the matrix Ω for the simplified system-

atic precoding in (3.29) for blind MIMO channel identification, Ω should be

positive definite to guarantee the recovery of transmitted symbols at the re-

ceiver. This requires that ξ(n) is lower bounded by α(> 0), whereas |ρ(n)| is

upper bounded by δ(≥ 0) with δ < α. Both α and δ are adjustable parameters

for the simplified precoding. From the optimal ξ(n) and ρ(n) in (3.38), it is

noted that 0 < α < 1 and the channel estimation accuracy is improved as α is

small, but δ is large. When we consider the condition number in (3.42), small

values of both α and δ improve the accuracy. This means that to improve

the channel estimation accuracy, there is a trade-off in selecting a value of

δ. As will be shown in Section 3.5, as a result of this trade-off, the channel

estimation accuracy is insensitive to δ. In addition, considering the impact of

the optimal simplified precoding on BER performance, we note that using a

large value of α results in better BER performance. Thus, to balance between
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the channel estimation accuracy and BER performance, α should be adjusted

in the proposed channel estimator. Also, the proposed estimator is insensi-

tive to overestimated MIMO channel orders, which indicates that the proposed

estimator does not require the exact knowledge of a true MIMO channel order.

3.4 Identification of the MIMO Channel Ambiguity

Since the true Rrr is unknown in practice, Rrr is usually estimated over

Nb blocks as given in

R̂rr =
1

Nb

Nb−1∑

n=0

r(n)r(n)H . (3.46)

In this case, only estimates Û and λ̂i of U and λi in (3.27) are available,

respectively. Specifically, when the MIMO channel is estimated by the pro-

posed method based on a simplified systematic precoding in Subsection 3.3.2

in the presence of the additive noise, each λ̂i contains the effect of
νσ2

η

σ2
d

as given

in (3.41). To improve the accuracy of a MIMO channel estimate, reducing the

impact of
νσ2

η

σ2
d

in each λ̂i is desirable. Noting from (3.40) that λi for i > Mt

corresponds to
νσ2

η

σ2
d

, we estimate
νσ2

η

σ2
d

as follows.

ν̂σ2
η

σ2
d

=
1

(L + 1)Mr − Mt

(L+1)Mr∑

i=Mt+1

λ̂i. (3.47)

By denoting λ̂i − ν̂σ2
η

σ2
d

as λ̃i, an improved channel estimate Ĥ is given as

Ĥ = Û[:, 1 : Mt]




√
λ̃1 0 · · · 0

0

√
λ̃2 · · · 0

0 0
. . . 0

0 0 · · ·
√

λ̃Mt




VH. (3.48)
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In contrast, since the MIMO channel estimate by the proposed method

exploiting a general precoding in Subsection 3.3.1 is not affected by the auto-

correlation matrix of the additive noise, the noise reduction in the eigenvalues

is not required. In this case, λ̃i in (3.48) is considered to be equal to λ̂i.

To allow resolving the channel ambiguity corresponding to a Mt × Mt

unitary matrix VH in (3.48) with the small sacrifice of transmission capacity,

we exploit the transmission of MMt (M ≥ Mt) pilot symbols, and remove the

ambiguity as described in the following. By defining Ĉ =
[
Ĉ(0)T · · · Ĉ(L)T

]T

as

Ĉ = Û[:, 1 : Mt]




√
λ̃1 0 · · · 0

0

√
λ̃2 · · · 0

0 0
. . . 0

0 0 · · ·
√

λ̃Mt




, (3.49)

and a NMr×NMt block circulant matrix with
[
Ĉ(0)

T · · · Ĉ(L)
T

0T · · · 0T
]T

as the first column block as Ĉ, respectively, (3.8) is rewritten as

r(n) = Ĉ(IN ⊗ VH)s(n) + η(n)

= Ĉ(IN ⊗ VH)(T ⊗ IMt)d(n) + η(n)

= Ĉ(T ⊗VH)d(n) + η(n).

(3.50)

When Ĉ has full column rank with Mr ≥ Mt, (3.50) can be expressed as

d̂(n) =
[
d̂(n, 0)

T
d̂(n, 1)

T · · · d̂(n, N − 1)
T
]T

= (IN ⊗ VH)d(n) + η̂(n)

(3.51)

η̂(n) , (T−1 ⊗ IMt)(Ĉ
H

Ĉ)−1
Ĉ

H
η(n) (3.52)

d̂(n) = (IN ⊗ VH)d(n) + η̂(n). (3.53)

74



Supposing that a pilot symbol is placed at the kith slot of the nth symbol

block from each transmit antenna, we can express the vector composed of the

pilot symbols as d(n, ki) for 1 ≤ i ≤ M . Defining M ×Mt matrices D and D̂

as, respectively,

D , [d(n, k1)
∗ d(n, k2)

∗ · · · d(n, kM)∗]
T

(3.54)

D̂ ,

[
d̂(n, k1)

∗
d̂(n, k2)

∗ · · · d̂(n, kM)
∗]T

, (3.55)

we use the least squares estimation with the constraint VVH = IMt to obtain

the channel ambiguity estimate V̂ as given in

V̂ = arg min
VVH=IMt

∥∥∥D̂ − DV
∥∥∥

2

F
= arg max

VVH=IMt

tr
{
VH

D
H

D̂

}
. (3.56)

When we decompose D
H

D̂ into UΣV
H by the singular value decomposition,

the solution of (3.56) is given as V̂ = UV
H [64]. Finally, the estimated MIMO

channel Ĥ is obtained without the channel ambiguity as

Ĥ = ĈVU
H . (3.57)

In the case of Mt > Mr, we can resolve the channel ambiguity by

oversampling received signals by a factor of q satisfying q ≥ ⌈Mt

Mr
⌉. That is, we

obtain the matrix Ĉ corresponding to an estimate of the oversampled MIMO

channel impulse response with a channel ambiguity by the proposed blind

channel estimator, and then construct the matrix Ĉ from Ĉ. Since Ĉ is now

a NqMr × NMt tall matrix, the channel ambiguity can be resolved as given

in (3.50) through (3.57) if the matrix Ĉ has full column rank.
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3.5 Simulation Results

To evaluate the performance of the proposed method, we consider a

MIMO-OFDM system with 2 transmit antennas (Mt = 2) and 2 receive an-

tennas (Mr = 2) as a MIMO block transmission system with a CP, since the

same scenarios and analysis as given in the case of MIMO-OFDM systems can

be applied to MIMO SC-FDE systems. The number of subcarriers or time-

slots N for one symbol block is set to 64. Since unlike the general precoding,

the simplified precoding can be generated in a systematic manner, we focus

on the case of the simplified precoding for a fair comparison. The simplified

precoding matrix, which is applied to each OFDM symbol in the time domain,

is given as Ω
1
2 IN with Ω in (3.29). The matrix Ω is constructed by using the

optimal ξ(n)opt and ρ(n)opt in (3.38). In this case, the matrix T is equal to

Ω
1
2FH , where FH is the N × N unitary IDFT matrix, and each OFDM sym-

bol in the frequency domain can be equivalently considered to be precoded

by FΩ
1
2FH . If a MIMO SC-FDE system is used instead of a MIMO-OFDM

system, each block of information symbols is considered to be precoded by

Ω
1
2FH .

The information symbols di(n, k)’s are generated as uncorrelated 16-

QAM symbols. Both the MIMO channel order (L) and the length of the CP

(P ) are assumed to be equal to 8. Each channel tap hij(l) is independent

and identically distributed, and randomly generated from a CN
(
0, 1

L+1

)
with

a uniform power delay profile. We suppose that the channel is time-invariant

during each channel estimation. The perturbed noise at each receive antenna

is a complex white Gaussian noise with zero mean and variance σ2
η determined

by the SNR defined as
σ2

d

σ2
η
. As a measure of performance, we consider the mean
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square error (MSE) given as

MSE ,
1

NmMtMr(L + 1)

Nm∑

k=1

∥∥∥H(k) − Ĥ(k)
∥∥∥

2

F
, (3.58)

where Nm is the number of Monte Carlo trials, the superscript k refers to

the kth Monte Carlo trial, and H(k) and Ĥ(k) represent the true and estimated

MIMO channels, respectively. All simulation results are obtained by averaging

Nm = 2, 000 independent Monte Carlo trials. In addition, to obtain the BER

performance, we use the zero-forcing detection for symbol recovery.

To isolate the impact of a technique for resolving a channel ambiguity

on channel estimation in the simulations, except for the numerical experiments

associated with resolving the channel ambiguity, we compute the ambiguity

matrix V̂ by decomposing H(k)HĈ(k) through the singular value decomposi-

tion, and then obtain the MIMO channel estimate Ĥ(k) as given in (3.57). Ĉ(k)

is the estimated channel matrix by the proposed method as given in (3.49).

Fig. 3.4 shows the impact of α in Ω on the MSE and BER performance

with δ fixed at 0.05. Fig. 3.4(a) presents the MSE performance as a function

of SNR with the utilization of 500 OFDM symbols for channel estimation,

whereas Fig. 3.4(b) demonstrates the MSE performance as a function of the

number of OFDM symbols used for channel estimation with the SNR fixed at

20dB. As expected, we see from both figures that as the value of α decreases,

the proposed method achieves accurate channel estimation. In addition, we

observe from Fig. 3.4(a) that although the estimation performance is improved

when the SNR increases from a low SNR to a intermediate SNR, the rate of

the performance improvement becomes insignificant at intermediate and high

SNR regimes. In contrast, as shown in Fig. 3.4(b), the MSE performance

is consistently improved as the number of OFDM symbols used for channel
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Figure 3.4: Comparison of mean square error (MSE) and bit error rate (BER)
performance according to different values of α when δ is fixed at 0.05. Fig.
3.4(a) shows the MSE versus SNR, Fig. 3.4(b) presents the MSE versus the
number of OFDM symbols used for channel estimation, and Fig. 3.4(c) demon-
strates the BER performance when each channel is estimated by using 500
OFDM symbols.

estimation increases. This reflects the fact that the more reliable the autocor-

relation matrix estimate of the received signal, the more accurate the channel

estimate by the proposed method.

When we consider the BER performance in Fig. 3.4(c), it is shown

that using a large value of α achieves better BER performance than using a

small value of α at the low SNR regime, whereas exploitation of the small

α rather than the large α is more beneficial for the BER performance at the

high SNR regime. Furthermore, in the case of large values of α, error floors are

observed at high SNRs, and are due to relatively inaccurate channel estimates
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by the utilization of the large values of α. Compared with the improved

accuracy in channel estimation by the exploitation of a small α, the additive

noise magnified by the small α dominantly affects the BER performance at the

low SNR regime. In contrast, at the high SNR regime, an accurate channel

estimate by the utilization of a small α has a more important effect on the

BER performance than the noise amplification by the small α. Thus, to achieve

better BER performance, it is desirable to use a large α at the low SNR regime

and a small α at the high SNR regime.

As shown in Fig. 3.5, to investigate the effect of δ in Ω on channel esti-

mation performance, we consider the MSE performance according to different

values of δ with α fixed at 0.7. Fig. 3.5(a) demonstrates the MSE performance

obtained by using 500 OFDM symbols as a function of SNR, and Fig. 3.5(b)

presents the MSE performance obtained with the SNR fixed at 20dB as a

function of the number of OFDM symbols utilized for channel estimation. We

notice from the both figures that regardless of the values of δ, the MSE perfor-

mance is almost identical with the fixed α. As discussed in Subsection 3.3.2.1,

the exploitation of a large δ decreases the lower bound in (E.5), but increases

the condition number in (3.42). Although using a small δ decreases the condi-

tion number, this increases the lower bound. Due to the conflicting effects, the

choice of δ appears to play a less important role in channel estimation than

that of α whose small values consistently improve the accuracy of channel

estimates.

To demonstrate that the proposed method is insensitive to overesti-

mates of the true channel order, we consider the following MIMO channel
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Figure 3.5: Comparison of mean square error (MSE) performance according
to different values of δ when α is fixed at 0.7. Fig. 3.5(a) shows the MSE
versus SNR, and Fig. 3.5(b) presents the MSE versus the number of OFDM
symbols used for channel estimation.
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given in [12].

H(z)=

[
0.4851 0.3200
−0.3676 0.2182

]
+

[
−0.4851 0.9387
0.8823 0.8729

]
z−1+

[
0.7276 −0.1280
0.2941 −0.4364

]
z−2.

(3.59)

We assume that the upper bound L of the channel order is equal to 8 even if

the true channel order is 2. Although δ is fixed at 0.05, α has different values.

Fig. 3.6(a) shows the MSE performance as a function of SNR when the chan-

nel in (3.59) is estimated by using 500 OFDM symbols, whereas Fig. 3.6(b)

presents the MSE performance obtained with the SNR fixed at 20dB as a

function of the number of OFDM symbols used for channel estimation. The

proposed method still achieves good estimation performance with decreasing

values of α, which demonstrates its robustness against overestimated channel

orders. In addition, Fig. 3.6(a) demonstrates that in all the cases, the MSE

performance improvement is insignificant when the SNR increases from a in-

termediate SNR to a high SNR. The estimation errors, however, consistently

decrease with increasing OFDM symbol record length as shown in Fig. 3.6(b).

This is the exactly same as what we see in Fig. 3.4.

Finally, Fig. 3.7 exhibits the MSE and BER performance when the

channel ambiguity by the proposed blind estimation method is resolved by the

technique that is presented in Section 3.4. Since it is expected from Fig. 3.5

that the choice of δ is unlikely to affect the MSE performance, we fix δ at 0 to

improve the BER performance in this simulation. The power of a pilot symbol

is set to be equal to that of an information symbol. Each MIMO channel is

estimated by using 500 OFDM symbols. Figs 3.7(a) and 3.7(b) show the MSE

and BER performance as functions of SNR when 2 pilot symbols are used for

each transmit antenna, respectively, whereas Figs 3.7(c) and 3.7(d) present the

MSE and BER performance when 4 pilot symbols are utilized for each transmit
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Figure 3.6: Comparison of mean square error (MSE) performance when the
MIMO channel order in (3.59) is assumed to be equal to 8, and δ is fixed at
0.05. Fig. 3.6(a) shows the MSE versus SNR, and Fig. 3.6(b) presents the
MSE versus the number of OFDM symbols used for channel estimation.
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Figure 3.7: Comparison of mean square error (MSE) and bit error rate (BER)
performance when the channel ambiguity is resolved by the proposed tech-
nique. Fig. 3.7(a) and Fig. 3.7(b) show the MSE versus SNR and the BER
versus SNR when 2 pilot symbols per transmit antenna are used, respectively,
and Fig. 3.7(c) and Fig. 3.7(d) present the MSE versus SNR and the BER
versus SNR when 4 pilot symbols per transmit antenna are used, respectively.
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antenna, respectively. In this case, when a MIMO channel is estimated with

a small value of α at low SNRs, the estimation error is greater than the error

obtained with a large α. This is due to the fact that since the additive noise

amplified by using a small α significantly distorts the partial CSI obtained by

the pilot symbols, the channel ambiguity matrix is poorly resolved. Thus, both

the inaccurate channel estimate and the amplified noise by the utilization of a

small α result in poor BER performance at the low SNR regime. In contrast,

since the noise amplification by a small α is not severe at the high SNR regime,

the partial CSI is accurately obtained by the pilot symbols. In addition, the

proposed blind method with a small α achieves good channel estimation up

to the channel ambiguity. These allow the ambiguity matrix to be precisely

resolved, and therefore an accurate channel estimate is obtained without the

channel ambiguity at high SNRs. Since the accuracy in a channel estimate is a

more dominant factor than the amplification of the additive noise at the high

SNR regime, the better BER performance at the high SNR regime is achieved

with a small, rather than large, α. From these observations, we can conclude

that the utilization of a large α improves the MSE and BER performance at

the low SNR regime, whereas the exploitation of a small α is beneficial in

enhancing the performance at the high SNR regime. Furthermore, comparing

Figs 3.7(a) and 3.7(b) with Figs 3.7(c) and 3.7(d), respectively, we see that as

the number of pilot symbols for each transmit antenna increases, both MSE

and BER performance is improved. Increasing the number of pilot symbols,

however, decreases the transmission capacity.
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3.6 Conclusions

In this chapter, we presented a framework for exploiting a general non-

redundant precoding for blind channel estimation in MIMO block transmission

systems with a CP. We also proposed a blind channel estimator based on a

simplified non-redundant precoding that is robust against overestimates of a

true channel order. Necessary conditions of the simplified precoding for blind

channel identification were established, and an optimal simplified precoding

was derived. In addition, we discussed MIMO channel identification by the

proposed method according to the number of transmit and receive antennas.

Furthermore, we developed a technique for resolving the channel ambiguity in

the proposed blind estimation method. By using non-redundant precoding,

the proposed method relaxes the existing conditions for MIMO channel iden-

tification without a sacrifice of data rates, and achieves accurate MIMO chan-

nel estimation by using a relatively small number of symbol blocks. Without

knowledge of the true MIMO channel order, the proposed method can obtain

an accurate channel estimate even with knowledge of only an upper bound on

the MIMO channel order. We note that the derived optimal simplified precod-

ing results in a trade-off between channel estimation performance and BER

performance. However, as discussed in Section 3.5, when the channel ambi-

guity is resolved by our proposed technique, the proposed estimation method

can improve both the MSE and BER performance by using a large value of

α at the low SNR regime and by using a small value of α at the high SNR

regime.
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Chapter 4

Optimal Design of Doubly Selective Channel

Estimation for OFDM Systems

4.1 Introduction

In OFDM modulation, each subcarrier has a bandwidth narrow enough

to assume flat fading. The narrowband nature of the subcarriers makes the sig-

nal robust against the frequency selectivity caused by multipath delay spread.

In addition, the utilization of the IFFT at the transmitter and the FFT at the

receiver simplifies practical implementation [10,35,137,171]. Despite these ad-

vantages, OFDM is sensitive to time selectivity due to its long OFDM symbol

period relative to fast channel variations due to rapid mobile environments,

e.g., high speed trains. Such rapid time variations in a mobile channel lead to a

loss of subcarrier orthogonality, intercarrier interference (ICI) [21,97,133,135],

and an irreducible error floor.

There is an increasing demand for applications such as digital TV and

DVB-T [52] in rapid mobile environments, and OFDM is central to several fu-

ture mobile multimedia communication standards, such as IEEE 802.16e [80]

and 802.20 [81]. Thus, suppression of the ICI caused by rapid channel vari-

ations will prove crucial. To compensate for the ICI and to reliably re-

cover transmitted symbols, the acquisition of a doubly selective channel show-

ing both time and frequency selectivity is essential. Therefore, reliable es-

timation of such a channel is required and many techniques for this pur-
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pose have recently been developed with their own advantages and limita-

tions [18,31,66,69,76,83,86,88,107,117,121,140,143,155,159,175,176,184,185].

A common shortcoming of these previous works is that they do not jointly con-

sider optimal pilot tone placement and channel estimation in fast time-variant

channels in a manner that is compatible with practical OFDM systems. For

example, the schemes in [83], [107], and [86] exploit time-domain pilot blocks

with a Kronecker delta structure. The method in [140] uses specific time-

domain pilots to achieve a low complexity. However, utilizing these time-

domain pilot signals may not provide compatibility with most existing OFDM

systems in practice, such as DVB-T, and IEEE 802.11 [77] and 802.16 [79].

The technique in [31] employs LMMSE channel estimation in the time domain

by assigning all subcarriers in a given time slot to pilot tones. This approach

can cause OFDM symbol delays for reliable symbol recovery and can result

in a large estimation error when the channel changes rapidly in time [21, 24].

To achieve a lower bound on the mean square error (MSE) of doubly selective

channel estimates, Kannu and Schniter [87,88] proposed a pilot pattern with a

frequency-domain Kronecker delta, but their channel model is restricted to the

case where the channel variation for one OFDM symbol duration is rapid and

the variation can be captured by finite Fourier bases. The scheme in [155] uti-

lizes piecewise linear interpolation and least squares (LS) estimation without

considering channel statistics. Therefore, this scheme is unable to take ad-

vantage of channel statistics when they are available. The LMMSE estimator

in [143] utilizes the continuous Fourier transform instead of the FFT at the re-

ceiver and ignores off-diagonal elements of the channel matrix in the frequency

domain. Thus, this estimator cannot be considered an accurate LMMSE es-

timator. The scheme in [159] exploits pilot tones, and is based on iterative

estimation of zero- and higher-order derivatives of channel information. It is
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expected that the pilot tone placement will affect the accuracy of the deriva-

tive estimates. However, an optimal pilot tone placement for this estimator is

not discussed. Although [176] presents a new OFDM structure, and develops

an iterative technique for joint frequency offset and channel estimation in the

presence of intersymbol and intercarrier interference, this technique cannot be

directly used for existing OFDM systems.

Pilot tone placement is an important issue in pilot-aided channel esti-

mation [4,22,44–46,122,124,161]. To find an optimal pilot tone placement for

channel estimation in OFDM systems, the approaches in [122], [4], and [124]

consider a time-invariant channel within one OFDM symbol duration and show

that placing each pilot tone in an equally spaced manner is optimal. The

schemes in [117] and [175] use this pilot tone placement to perform doubly

selective channel estimation. However, when a channel is time-variant within

one OFDM symbol duration, this pilot tone placement scheme is no longer

optimal. On the other hand, we note that the pilot tone placement scheme

in [155] suggests grouping pilot tones into equally spaced clusters for fast time-

variant channel estimation. However, the details on how many clusters of pilot

tones are suitable for channel estimation are not given.

In this chapter, in order to accurately estimate doubly selective channels

in a manner compatible with practical OFDM systems by using frequency-

domain pilots, we develop an optimal pilot tone placement (in the sense of

MSE), and propose three novel pilot-aided channel estimation schemes exploit-

ing the proposed pilot tone placement. Since the proposed pilot tone placement

is optimal regardless of channel variations within one OFDM symbol duration,

this placement scheme generalizes the existing placement schemes [4,122,124]

for time-invariant channels. Compared with the placement in [88] and [87],
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our proposed scheme has a different pilot pattern and placement by consider-

ing a commonly used channel model that is different from the channel model

in [88] and [87]. In addition, the number of channel impulse response taps to

be estimated is much greater than that of the given pilot tones. This prevents

LMMSE estimation schemes for time-invariant channels from being simply ex-

tended to doubly selective channel estimation. To provide a solution to this

problem, a LMMSE channel estimator is presented, which achieves accurate

LMMSE estimation with a small number of pilot tones satisfying the proposed

pilot tone placement. In addition, to provide a low-complexity channel esti-

mator achieving similar performance to the LMMSE estimator, we develop

an ALMMSE channel estimator. Furthermore, to considerably improve the

performance of the ALMMSE estimator with just a moderate increase in com-

plexity, we also propose an iterative ALMMSE channel estimator that requires

only a few iterations.

The rest of the chapter is organized as follows. In Section 4.2, we briefly

describe an OFDM system model in a doubly selective channel environment.

In Section 4.3, we derive an accurate LMMSE channel estimator incorporating

the channel time variations within one OFDM symbol duration and discuss the

optimal pilot tone placement for the LMMSE estimator. We also present the

ALMMSE channel estimator and the iterative ALMMSE channel estimator,

and the optimal pilot tone placement for the ALMMSE estimator. Section 4.4

contains numerical experiments demonstrating the performance of the pro-

posed estimators, and which support our contention that optimal pilot tone

placement entails grouping pilot tones into a number of equally spaced clus-

ters corresponding to the channel length. Finally, conclusions are provided in

Section 4.5.
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4.2 System Model

4.2.1 Channel Model

In many wireless channels, there may be more than one path from

a transmitter to a receiver. Such multiple paths occur due to atmospheric

reflection, refraction, or reflections from buildings and other objects [132]. The

incoming radio waves arrive from different directions with different propagation

delays. The time delays and attenuation factors of the different paths are

generally time-varying in mobile communication and the complex baseband

representation of a channel impulse response (CIR) can be described by

h(t, τ) =
∑

m

αm(t)δ(τ − τm(t)), (4.1)

where τm(t) and αm(t) are the delay and the complex amplitude of the mth

path, respectively. If we assume the well-known wide sense stationary uncor-

related scattering (WSSUS) model [9, 71], the channel is characterized by its

power delay profile and Doppler spectrum. The power delay profile determines

the power distribution among the channel paths, and the Doppler spectrum

describes time-varying behavior of each path. Furthermore, the multipath

channel can be modelled by the sample-spaced time-variant CIR h(n, l), which

denotes the impulse response of the channel at time n to an impulse applied at

time n−l [71,84,141,155]. In this chapter, we assume that the multipath chan-

nel modelled by h(n, l) obeys the WSSUS model, and has the channel order

of L. The assumption of the WSSUS model states the following condition.

E{h(n, l)h∗(n − τ, l −m)} = rl(τ)δ(m), rl(τ) = E{h(n, l)h∗(n− τ, l)}. (4.2)
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4.2.2 OFDM System Model

In an OFDM system with N subcarriers, a set of frequency-domain

symbols {d(i)
k } is collected to form the ith OFDM symbol d(i) = [d

(i)
0 d

(i)
1 · · ·

d
(i)
N−1]

T . By applying the IFFT to d(i) and then adding a CP, the OFDM sym-

bol is converted into the time-domain sample vector s(i) = [s(i)(−Ncp) s(i)(−Ncp

+1) · · · s(i)(−1) s(i)(0) s(i)(1) · · · s(i)(N −1)]T , where the length of the CP de-

noted as Ncp is set to be not less than the channel order L, s(i)(−Ncp + j) =

s(i)(N − Ncp + j), 0 ≤ j < Ncp, and s(i)(n), −Ncp ≤ n < N , denotes

s(i(N+Ncp)+Ncp+n) [141]. Then, the time-domain samples are serially trans-

mitted over a doubly selective channel. Using the sample-spaced time-variant

CIR h(n, l) described in Subsection 4.2.1, we can express the ith received signal

y(i)(n) denoting y(i(N + Ncp) + Ncp + n), −Ncp ≤ n < N , as

y(i)(n) =

L∑

l=0

h(i)(n, l)s(i)(n − l) + w(i)(n), (4.3)

where h(i)(n, l) is the CIR for the ith OFDM symbol duration representing

h(i(N +Ncp)+Ncp +n, l), −Ncp ≤ n < N , and w(i)(n) is the AWGN with zero

mean and variance σ2
w. In the range 0 ≤ n < N , the received signal y(i)(n) is

not corrupted by previous OFDM symbols due to the CP added to the time-

domain samples before transmission. Thus, in this interval, the received signal

in the time domain can be written as

y(i)(n) =
1√
N

N−1∑

k=0

d
(i)
k ej2πnk/N

L∑

l=0

h(i)(n, l)e−j2πlk/N +w(i)(n). (4.4)

Denoting the N -point unitary discrete Fourier transform (DFT) matrix as F,

and defining [H(i)]m,n = h(i)(m−1, 〈m−n〉N ), y(i) = [y(i)(0) y(i)(1) · · · y(i)(N−
1)]T , and w(i) = [w(i)(0) w(i)(1) · · · w(i)(N − 1)]T , we can rewrite (4.4) in a
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matrix form as

y(i) = H(i)FHd(i) + w(i). (4.5)

By applying the FFT to both sides of (4.5) and defining the ith channel matrix

in the frequency domain H
(i) as H

(i) = FH(i)FH , the frequency-domain out-

put signal vector Y(i) = [Y
(i)
0 Y

(i)
1 · · · Y

(i)
N−1]

T at the receiver can be expressed

as

Y(i) = Fy(i) = H
(i)d(i) + W(i), (4.6)

where W(i) = Fw(i). In (4.6), [H(i)]k,m is given as

[H(i)]k,m =
1

N

N−1∑

n=0

L∑

l=0

h(i)(n, l)e−j2πl(m−1)/Nej2πn(m−k)/N . (4.7)

In general, off-diagonal elements of the matrix H
(i), [H(i)]k,m, k 6= m, are

not zeros in a doubly selective channel. This indicates that each subcarrier is

coupled with other subcarriers. Thus, this subcarrier coupling effect results in

ICI.

4.3 Pilot-Aided Channel Estimation

When channel statistics including the power delay profile, the Doppler

spectrum, and the noise variance are available, we can estimate a channel ac-

curately by exploiting such information. To obtain these channel statistics,

different techniques have been presented recently [6,16,17,19,27,29,43,89–91,

114,123,127,131,158] (and the references therein). In this chapter, we assume

that these channel statistics are known or obtained accurately by these meth-

ods. In addition, since carrier frequency errors cause a structured ICI pattern

in OFDM systems, the ICI can be effectively removed by utilizing existing blind

or training based methods [11,26,28,32–34,56,75,103,106,112,134,163,170,181,
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189,190] (and the references therein). Thus, we also suppose that the frequency

offset is accurately estimated and eliminated by these techniques. With these

assumptions, we present three novel pilot-aided estimators for the acquisition

of doubly selective channels in OFDM systems (LMMSE, ALMMSE, and iter-

ative ALMMSE channel estimators) that exploit the known channel statistics

and consider the ICI induced by the Doppler spread other than the ICI caused

by the frequency offset. The received signal y(i)(n) in (4.3) contains contribu-

tions from only the ith transmitted OFDM symbol in the range 0 ≤ n < N

and we only consider OFDM symbol to symbol-based estimation schemes in

this chapter. Thus, without loss of generality, we omit the superscript i in-

dicating the OFDM symbol index and restrict the range of n to 0 ≤ n < N .

Before we describe our proposed channel estimators, we suppose that P pilot

symbols in a vector dpilot are placed at subcarriers p(0), p(1), · · · , p(P − 1).

Information-bearing subcarriers are denoted as q(0), q(1), · · · , q(N −P −1).

We also make the following assumptions:

(AS1) Each data symbol dq(i) is uncorrelated with other data symbols.

(AS2) Each data symbol has zero mean and variance σ2
d.

(AS3) The data symbols, the noise, and the channel are uncorrelated with one

another.

(AS4) Each pilot symbol dp(i) has the same power as that of each data symbol.

4.3.1 Linear Minimum Mean Square Error (LMMSE) Channel Es-
timation

4.3.1.1 Derivation of the LMMSE Channel Estimator

Unlike the channel estimation scheme in [143], we find an accurate

LMMSE estimator for each element [H]m,n of the matrix H by utilizing the
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FFT in the receiver and considering the off-diagonal elements of H. When we

express an estimate [H̃]m,n of [H]m,n by using a 1 × N complex vector ωm,n

as

[H̃]m,n = ωm,nY, 1 ≤ m, n ≤ N, (4.8)

the optimal complex vector ω̃m,n can be obtained for the given dpilot in each

OFDM symbol as [139]

ω̃m,n = arg min
ωm,n

E{|[H]m,n − [H̃]m,n|2 | dpilot}

= E{[H]m,nY
H | dpilot}E{YYH | dpilot}−1.

(4.9)

The matrix E{YYH | dpilot} in (4.9) is written as

E{YYH | dpilot} = E{HddH
H

H | dpilot} + σ2
wIN . (4.10)

By denoting {p(i)}P−1
i=0 as P, the (m, n)th element of the matrix E{HddHH

H|
dpilot} in (4.10) is given as

[
E{HddH

H
H | dpilot}

]
m,n

=σ2
d

∑

a/∈P

E{[H]m,a+1[H]∗n,a+1}

+
∑

a∈P

∑

b∈P

dad
∗
bE{[H]m,a+1[H]∗n,b+1}.

(4.11)

The vector E{[H]m,nY
H | dpilot} in (4.9) is expressed as

E{[H]m,nY
H ] | dpilot} = E{[H]m,n(Hd + W)H | dpilot}

= E{[H]m,nd
H

H
H | dpilot}.

(4.12)

The kth element of the vector E{[H]m,nY
H | dpilot} in (4.12) is given as

[
E{[H]m,nY

H | dpilot}
]
k

=
[
E{[H]m,nd

H
H

H | dpilot}
]
k

=
∑

a∈P

d∗
aE{[H]m,n[H]∗k,a+1}.

(4.13)
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To evaluate (4.11) and (4.13), we need to find the correlation between elements

of the matrix H. By using (4.2) and (4.7), we can write the correlation as

E{[H]m,i[H]∗n,j}=
1

N2

L∑

l=0

e−j2πl(i−j)/N
N−1∑

n1=0

N−1∑

n2=0

rl(n1−n2)e
−j2π(n1(m−i)−n2(n−j))/N .

(4.14)

Assuming that each channel tap has the same shape as the Doppler spectrum

but a different variance, i.e., rl(n) = σ2
l r(n), (4.14) may be rewritten as

E{[H]m,i[H]∗n,j}=
1

N2

L∑

l=0

σ2
l e

−j2πl(i−j)/N
N−1∑

n1=0

N−1∑

n2=0

r(n1−n2)e
−j2π(n1(m−i)−n2(n−j))/N

=
1

N2
Ψ(i−j)R(m−i,j−n),

(4.15)

where Ψ(k) is the DFT of σ2
l given as

∑L
l=0 σ2

l e
−j2πlk/N and R(k1, k2) is the

two-dimensional DFT of the truncated r(n1−n2) given as
∑N−1

n1=0

∑N−1
n2=0 r(n1−

n2)e
−j2π(k1n1+k2n2)/N . By using the optimal filter coefficients ω̃m,n in (4.9), the

MMSE ρm,n is obtained as

ρm,n=E{|[H]m,n|2}−E{[H]m,nY
H |dpilot}E{YYH|dpilot}−1E{Y[H]Hm,n|dpilot}.

(4.16)

In addition, the MMSE in channel estimation defined as E{
∑N−1

n=0

∑N−1
l=0 |h(n, l)

−h̃(n, l)|2 | dpilot}
(
= E{‖H− H̃‖2

F | dpilot}
)

can be written by using a rela-

tionship between the Frobenius norm and the trace operation as

E{
N−1∑

n=0

N−1∑

l=0

|h(n, l) − h̃(n, l)|2 | dpilot} = E{‖H − H̃‖2
F | dpilot} =

N∑

m=1

N∑

n=1

ρm,n,

(4.17)

where H̃ = FHH̃F.

The LMMSE estimator requires knowledge of the channel statistics.

However, the true channel statistics are not known exactly in practice. When
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we suppose that ω̂m,n, rather than ω̃m,n in (4.9), is obtained with the estimated

channel statistics, we can write the relationship between the MSE ρ̂m,n by the

estimate ω̂m,nY and the MMSE ρm,n in (4.16) as

ρ̂m,n = ρm,n + (ω̂m,n − ω̃m,n)E{YYH | dpilot}(ω̂m,n − ω̃m,n)H . (4.18)

Since the second term on the right hand side of (4.18) indicates the addi-

tional MSE caused by the mismatch between the true channel statistics and

the estimated channel statistics, the estimate ω̂m,nY exhibits performance

degradation depending on the extent of the mismatch.

4.3.1.2 Pilot Tone Placement for the LMMSE Channel Estimator

The optimal pilot tone placement in the sense of MSE P⋆ can be ob-

tained from

P
⋆ = arg min

P

N∑

m=1

N∑

n=1

ρm,n. (4.19)

However, we note that not only is it difficult to find an analytical so-

lution of (4.19) but the optimal placement can change depending on an in-

stantaneous choice of pilot symbol values. Since pilot symbols are usually

generated randomly but in a manner known to the receiver, it is necessary

that an invariant placement should be obtained regardless of the exact pilot

symbol values. To seek an optimal placement applicable in the mean sense

with random choices of pilot symbols, we find a solution of (4.20) instead

of (4.19) by a search for given N and P .

P
⋆ = arg min

P

N∑

m=1

N∑

n=1

E{ρm,n}. (4.20)

Since ICI from adjacent subcarriers is dominant, grouping pilot tones allows

ICI information at the pilot tones to be effectively extracted. To obtain accu-
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rate channel state information over the overall FFT grid, groups of pilot tones

need to be evenly distributed on the FFT grid. Thus, given the number of

pilot tones, we can simplify the search for the optimal pilot tone placement by

investigating placements composed of equally spaced clusters with the almost

same number of pilot tones per cluster. Furthermore, it can be shown that

ρm,n in (4.16) is invariant with respect to integer shifts of subcarriers with

pilot tones, i.e., ρm,n with pilot tones at subcarriers {p(k)}P−1
k=0 is equal to ρm,n

with the same pilot tones at subcarriers {〈p(k) + i〉N}P−1
k=0 with integer i. This

simplifies the search further.

As a simple example of the placement search, we consider an OFDM

system in a Rayleigh fading channel with N = 16, L = 0, P = 2, the nor-

malized maximum Doppler frequency (fD) = 0.12, and the classical Doppler

spectrum [82]. The normalized maximum Doppler frequency fD is defined as

NfdTS [83] where fd and Ts indicate the maximum Doppler frequency and

the signaling period in the time domain, respectively. The SNR defined as
σ2

d

σ2
w

is fixed at 15dB. Pilot symbols are randomly selected from binary phase-

shift keying (BPSK) symbols {1, −1}. Each pilot symbol pattern is assumed

to be equiprobable. That is, the pilot patterns {1, 1}, {1, −1}, {−1, 1},
and {−1, −1} have an equal probability, 1

4
. Fig. 4.1 demonstrates that since

the placement with {p, 〈p + 1〉N} achieves the best MSE performance, the

optimal pilot tone placement is obtained by putting one pilot tone p1 next

to the other pilot tone p2, i.e., {p, 〈p + 1〉N}, 0 ≤ p < N . This indicates

that grouping pilot tones is effective for doubly selective channel estima-

tion. Furthermore, we note that the number of equally spaced clusters of

pilot tones in this placement is equal to unity corresponding to the channel

length L + 1. To investigate the effect of channel length on the pilot tone

99



0

5

10

15

0

5

10

15

10
−0.18

10
−0.16

10
−0.14

10
−0.12

Pilot tone p
1

Pilot tone p
2

M
ea

n 
sq

ua
re

 e
rr

or
 (

M
S

E
)

(a)

Pilot tone p
1

P
ilo

t t
on

e 
p 2

0 5 10 15
0

5

10

15

(b)

Figure 4.1: Comparison of mean square error (MSE) performance given as∑N
m=1

∑N
n=1 E{ρm,n} in (4.20) according to different placements of 2 pilot

tones p1 and p2. Fig. 4.1(a) shows MSE in (4.20) versus (p1, p2), and Fig.
4.2(b) presents the contour plot of MSE in (4.20) versus (p1, p2) where local
minima are marked by •.
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Figure 4.2: Comparison of mean square error (MSE) performance given as∑N
m=1

∑N
n=1 E{ρm,n} in (4.20) according to different placements of 8 pilot

tones with 0 ≤ p < N . Rayleigh fading channels with fD = 0.05 and 0.22 are
considered.

placement, we consider another simple example in which an OFDM system

in a Rayleigh fading channel is considered with N = 32, L = 1, P = 8,

fD = 0.05 and 0.22, the classical Doppler spectrum, and an exponentially

decaying power delay profile rl(0) = e−0.5l

1+e−0.5 , where l = 0, 1. Fig. 4.2 shows

that the pilot tone placement {p, 〈p + 1〉N , 〈p + 2〉N , 〈p + 3〉N , 〈p + 16〉N ,

〈p + 17〉N , 〈p + 18〉N , 〈p + 19〉N}, 0 ≤ p < N obtains the best performance,

which is provided by grouping eight pilot tones into two equally spaced clus-

ters corresponding to the channel length. Although only a few representative

placements of pilot tones are plotted in Fig. 4.2 in order to make the figure

clearer, we did consider all feasible placements of pilot tones in the simulation
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and confirmed the same result as stated above. From these examples, we no-

tice that the optimal pilot tone placement scheme in a time-invariant channel

for one OFDM symbol duration previously described in [122], [4], and [124]

may not be suitable for doubly selective channel estimation. When P
L+1

and

N
L+1

are positive integers, we observe that grouping pilot tones into a number

of equally spaced clusters corresponding to channel length L + 1 can provide

an optimal placement of pilot tones for doubly selective channel estimation.

We confirmed this observation using both different values for the parameters

N , L, P and fD, and various power delay profiles via numerical simulations.

Figs 4.3 through 4.6 provide some experimental results, and demonstrate MSE

performance given as
N∑

m=1

N∑
n=1

E{ρm,n} in (4.20) as a function of SNR when an

OFDM system with N = 32 is considered. These results support the obser-

vation associated with the optimal pilot tone placement. Furthermore, it can

be analytically shown that this placement scheme reduces to the optimal pilot

tone placement for the special case where the channel is time-invariant for one

OFDM symbol duration [4,122,124]. Thus, as an optimal pilot tone placement

in OFDM systems, pilot tones grouped into L + 1 equally spaced clusters can

be used for both time-invariant channel and doubly selective channel estima-

tion without knowledge of channel statistics such as the Doppler spread and

the power delay profile. This indicates that the proposed pilot tone placement

scheme is insensitive to the channel statistics.

4.3.2 Approximate Linear Minimum Mean Square Error (ALM-
MSE) Channel Estimation

4.3.2.1 Derivation of the ALMMSE Channel Estimator

To simplify doubly selective channel estimation and thus reduce the

computational complexity without significant performance degradation, we
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Figure 4.3: Comparison of mean square error (MSE) performance according to
different placements of 8 pilot tones with 0 ≤ p < N . Rayleigh fading channels
are considered with the classical Doppler spectrum, L = 1, and fD = 0.05 and
0.22. Fig. 4.3(a) shows the case with a power delay profile {0.99, 0.01}, and
Fig. 4.3(b) presents the case with a uniform power delay profile.
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Figure 4.4: Comparison of mean square error (MSE) performance according
to different placements of 8 pilot tones with 0 ≤ p < N . Rayleigh fading
channels are considered with the uniform Doppler spectrum [97, 98], L = 1,
and fD = 0.05 and 0.22. Fig. 4.4(a) shows the case with a power delay profile
{0.99, 0.01}, and Fig. 4.4(b) presents the case with a uniform power delay
profile.

104



0 5 10 15 20 25 30
10

−1

10
0

10
1

10
2

SNR (dB)

M
ea

n 
sq

ua
re

 e
rr

or
 (

M
S

E
)

 

 

Pilot placement {p, <p+1>
N
, <p+2>

N
, <p+3>

N
, <p+4>

N
, <p+5>

N
, <p+6>

N
, <p+7>

N
} when f

D
=0.05

Pilot placement {p, <p+1>
N
, <p+2>

N
, <p+3>

N
, <p+4>

N
, <p+5>

N
, <p+6>

N
, <p+7>

N
} when f

D
=0.22

Pilot placement {p, <p+1>
N
, <p+2>

N
, <p+3>

N
, <p+16>

N
, <p+17>

N
, <p+18>

N
, <p+19>

N
} when f

D
=0.05

Pilot placement {p, <p+1>
N
, <p+2>

N
, <p+3>

N
, <p+16>

N
, <p+17>

N
, <p+18>

N
, <p+19>

N
} when f

D
=0.22

Pilot placement {p, <p+1>
N
, <p+8>

N
, <p+9>

N
, <p+16>

N
, <p+17>

N
, <p+24>

N
, <p+25>

N
} (proposed) when f

D
=0.05

Pilot placement {p, <p+1>
N
, <p+8>

N
, <p+9>

N
, <p+16>

N
, <p+17>

N
, <p+24>

N
, <p+25>

N
} (proposed) when f

D
=0.22

Pilot placement {p, <p+4>
N
, <p+8>

N
, <p+12>

N
, <p+16>

N
, <p+20>

N
, <p+24>

N
, <p+28>

N
} (conventional) when f

D
=0.05

Pilot placement {p, <p+4>
N
, <p+8>

N
, <p+12>

N
, <p+16>

N
, <p+20>

N
, <p+24>

N
, <p+28>

N
} (conventional) when f

D
=0.22

(a)

0 5 10 15 20 25 30
10

−1

10
0

10
1

10
2

SNR (dB)

M
ea

n 
sq

ua
re

 e
rr

or
 (

M
S

E
)

 

 

Pilot placement {p, <p+1>
N
, <p+2>

N
, <p+3>

N
, <p+4>

N
, <p+5>

N
, <p+6>

N
, <p+7>

N
} when f

D
=0.05

Pilot placement {p, <p+1>
N
, <p+2>

N
, <p+3>

N
, <p+4>

N
, <p+5>

N
, <p+6>

N
, <p+7>

N
} when f

D
=0.22

Pilot placement {p, <p+1>
N
, <p+2>

N
, <p+3>

N
, <p+16>

N
, <p+17>

N
, <p+18>

N
, <p+19>

N
} when f

D
=0.05

Pilot placement {p, <p+1>
N
, <p+2>

N
, <p+3>

N
, <p+16>

N
, <p+17>

N
, <p+18>

N
, <p+19>

N
} when f

D
=0.22

Pilot placement {p, <p+1>
N
, <p+8>

N
, <p+9>

N
, <p+16>

N
, <p+17>

N
, <p+24>

N
, <p+25>

N
} (proposed) when f

D
=0.05

Pilot placement {p, <p+1>
N
, <p+8>

N
, <p+9>

N
, <p+16>

N
, <p+17>

N
, <p+24>

N
, <p+25>

N
} (proposed) when f

D
=0.22

Pilot placement {p, <p+4>
N
, <p+8>

N
, <p+12>

N
, <p+16>

N
, <p+20>

N
, <p+24>

N
, <p+28>

N
} (conventional) when f

D
=0.05

Pilot placement {p, <p+4>
N
, <p+8>

N
, <p+12>

N
, <p+16>

N
, <p+20>

N
, <p+24>

N
, <p+28>

N
} (conventional) when f

D
=0.22

(b)

Figure 4.5: Comparison of mean square error (MSE) performance according to
different placements of 8 pilot tones with 0 ≤ p < N . Rayleigh fading channels
are considered with the classical Doppler spectrum, L = 3, and fD = 0.05 and
0.22. Fig. 4.5(a) shows the case with an exponentially decaying power delay

profile rl(0) = e−l/0.7P3
i=0 e−i/0.7 , where l = 0, 1, 2, 3, and Fig. 4.5(b) presents the

case with a uniform power delay profile.
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Figure 4.6: Comparison of mean square error (MSE) performance according to
different placements of 8 pilot tones with 0 ≤ p < N . Rayleigh fading channels
are considered with the uniform Doppler spectrum, L = 3, and fD = 0.05 and
0.22. Fig. 4.6(a) shows the case with an exponentially decaying power delay

profile rl(0) = e−l/0.7P3
i=0 e−i/0.7 , where l = 0, 1, 2, 3, and Fig. 4.6(b) presents the

case with a uniform power delay profile.
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also present an ALMMSE estimator. It is known that the basis expansion

model (BEM) provides a sparse finite parameter representation of a realization

of a time-variant channel in a small time interval [61, 107, 140, 164] (and the

references therein). Considering a time-variant channel h(n, l) for 0 ≤ n < N

and using the BEM, we can model the channel as

h(n, l) =

Q−1∑

k=0

ak(l)gk(n), 0 ≤ l ≤ L, 0 ≤ n < N. (4.21)

In (4.21), the Q(L + 1) coefficients ak(l)’s are invariant for 0 ≤ n < N , and

gk(n), 0 ≤ k < Q, represent basis functions. In addition, we note that the

choice of basis functions is important to precisely approximate a time-variant

channel with a small set of basis functions in the BEM. It is shown in [13] that

the time variation of a smoothly time-variant channel, such as a bandlimited

mobile wireless channel, can be closely approximated over a short interval by a

small set of polynomial basis functions. From these observations, we propose

to exploit the discrete orthonormal Legendre polynomial basis functions [116]

in (4.22) for {gk(n)}Q−1
k=0 .

gk(n) =
1

Ck

k∑

i=0

(−1)i

(
k

i

)(
k + i

i

)
n{i}

(N − 1){i}
, Ck =

√
(N + k){k+1}

(2k + 1)(N − 1){k}
,

(4.22)

where the superscript {i} is used for an indication of a backward factorial

function of order i, i.e., m{i} = m(m − 1) · · · (m − i + 1). Compared with

basis functions in [107], [88], [87] and [185], the discrete orthonormal Legendre

polynomial basis functions can well approximate the channel variation for one

OFDM symbol duration with lower complexity.

When there are only Q(<
⌊

N
L+1

⌋
) basis functions that capture the time

variation, the number of coefficients in the BEM to be estimated can be re-
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duced to less than N , which is much smaller than N(L + 1) channel taps to

be directly estimated.

Let us assume that we know M(≥ Q) CIRs h(v(n), l), 0 ≤ n < M ,

where v(n − 1) < v(n) for 1 ≤ n < M and {v(n)}M−1
n=0 ⊂ {n}N−1

n=0 . Defining

hv(l), g(n), G, and α(n) as, respectively,

hv(l) = [h(v(0), l) h(v(1), l) · · · h(v(M − 1), l)] (4.23)

g(n) = [g0(n) g1(n) · · · gQ−1(n)]T (4.24)

G = [g(v(0)) g(v(1)) · · · g(v(M − 1))] (4.25)

α(n) = GH [GGH ]−1g(n), (4.26)

the time-variant channel h(n, l) in (4.21) can be expressed as

h(n, l) = hv(l)α(n), 0 ≤ l ≤ L, 0 ≤ n < N. (4.27)

Although we assumed knowledge of hv(l) for the derivation for h(n, l) in (4.27),

the information for hv(l) is unknown in practice. In order to estimate hv(l),

we exploit frequency-domain pilot tones for compatibility with most existing

practical OFDM systems.

Let us define h(n), h̄v, and cm,k
i (l) as, respectively,

h(n) = [h(n, 0) h(n, 1) · · · h(n, L)]T (4.28)

h̄v = [hT (v(0)) hT (v(1)) · · · hT (v(M − 1))]T (4.29)

cm,k
i (l) = e−j2πkl/N 1

N

N−1∑

n=0

[α(n)]i e
j2πn(m−k)/N . (4.30)

In addition, we can write the received signal Yk at the kth subcarrier in (4.6)

as

Yk =
dk

N

N−1∑

n=0

L∑

l=0

h(n, l)e−j2πlk/N + βk + Wk (4.31)
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βk =
1

N

N−1∑

m=0
m6=k

N−1∑

n=0

L∑

l=0

dmh(n, l)e−j2πlk/Nej2πn(m−k)/N , (4.32)

where βk represents ICI and Wk = 1√
N

∑N−1
n=0 w(n)e−j2πnk/N . By assuming

P ≥ M(L+1) and considering the received signal vector YP = [Yp(0) Yp(1) · · ·
Yp(P−1)]

T at the subcarriers occupied by the pilot tones, we can write YP as

YP = A(P )h̄v + η (4.33)

η = Bh̄v + WP , (4.34)

where WP =[Wp(0) Wp(1) · · · Wp(P−1)]
T . In (4.33) and (4.34), A(P ) and B are

the P ×M(L+1) matrices with elements of [A(P )]m,n=
∑P−1

i=0 dp(i)c
p(m−1),p(i)
k (l)

and [B]m,n=
∑N−P−1

i=0 dq(i)c
p(m−1),q(i)
k (l),

respectively, where k =
⌊

L+n
L+1

⌋
and l = 〈n − 1〉L+1.

To obtain a LMMSE estimate of h̄v, we regard the residual ICI at the

pilot tones Bh̄v as another additional noise and combine this noise with the

AWGN as given in (4.34). Then we can obtain the LMMSE estimate h̃v of h̄v

from YP in (4.33) as [139]

h̃v = Rh̄vh̄v
A(P )H[A(P )Rh̄vh̄v

A(P )H + Rηη]−1YP , (4.35)

where Rh̄vh̄v
= E{h̄vh̄

H
v } and Rηη = E{ηηH} = σ2

dB(Rh̄vh̄v
⊗ IN−P )BH +

σ2
wIP . In (4.35), B is the P × M(L + 1)(N − P ) matrix with elements of

[B]m,n = c
p(m−1),q(i)
k (l), where µ =

⌊
n−1
N−P

⌋
, k =

⌊
µ

L+1

⌋
+ 1, l = 〈µ〉L+1, and

i = 〈n − 1〉N−P . Thus, by obtaining h̃v (i.e., the estimate h̃v(l) of hv(l)

in (4.23)) from (4.35) and using h̃v(l) instead of hv(l) in (4.27), we can estimate

the time-variant channel h(n, l).
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4.3.2.2 Selection of Channel Model Parameters for the ALMMSE
Channel Estimator

Before we perform the ALMMSE channel estimation, we should choose

optimal channel model parameters with the given number of pilot tones P .

Those parameters are the number of partial CIRs (M), a set of time instants

at which these partial CIRs are obtained
(
V = {v(n)}M−1

n=0

)
, a set of subcarriers

at which P pilot tones are placed
(
P = {p(k)}P−1

k=0

)
, and the number of the

discrete orthonormal Legendre polynomial basis functions (Q). To obtain

optimal channel model parameters applicable in the mean sense with random

choices of pilot symbols, we find the optimal parameters in the sense of MSE

as follows.

(P⋆, V
⋆, M⋆, Q⋆) = arg min

P, V, M, Q
E{‖h− Ξh̃v‖2}, (4.36)

where h = [hT (0) hT (1) · · · hT (N − 1)]T and Ξ = [α(0) α(1) · · · α(N −
1)]T ⊗ IL+1.

However, as we can expect from (4.35) and (4.36), it is prohibitive to

directly find the optimal values P
⋆, V

⋆, M⋆, and Q⋆. To circumvent this diffi-

culty and to simplify this optimization by reducing the parameter space to be

searched, we separate the overall optimization of (4.36) to an individual opti-

mization for each parameter and iteratively pursue a sequential optimization

of these parameters as follows:

Step 0: Set i to 1, assign a large value to ε, and initialize M⋆
0 , Q⋆

0, V⋆
0, and

P⋆
0 that are estimates of M⋆, Q⋆, V⋆, and P⋆, respectively.

Step 1: Assign a large value to ζ0. In addition, assign M⋆
0 , Q⋆

0, V
⋆
0, and P

⋆
0

to M⋆, Q⋆, V⋆, and P⋆, respectively. Allocate i to both Q⋆
0 and M⋆

0 . If
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P < M⋆
0 (L + 1), choose P

⋆, V
⋆, M⋆ and Q⋆ as the optimal parameters

and terminate this optimization. Otherwise, go to Step 2.

Step 2: Assign V⋆
0 to V⋆

1, and construct Ξ by using M = M⋆
0 and Q = Q⋆

0.

Then, find V⋆
0 = {v⋆

0(n)}M0−1
n=0 as given in

V
⋆
0 = arg min

V0

E{‖h−Ξh̄v‖2}

subject to v0(n−1) =
v0(n)+v0(n−2)

2
for 2 ≤ n < M⋆

0 ,
(4.37)

where V0 = {v0(n)}M0−1
n=0 ⊂ {n}N−1

n=0 .

Step 3: Assign P⋆
0 to P⋆

1. By exploiting M⋆
0 , Q⋆

0, and V⋆
0, find P⋆

0 = {p⋆
0(k)}P−1

k=0

as given in

P
⋆
0 = arg min

P0

E{‖h̄v − h̃v‖2} = arg min
P0

E{E{‖h̄v − h̃v‖2| dpilot}}

= arg min
P0

tr{E{(R−1
h̄vh̄v

+ A(P )HRηη

−1A(P ))−1}},
(4.38)

where P0 = {p0(k)}P−1
k=0 ⊂ {k}N−1

k=0 . In (4.38), the matrices Rh̄vh̄v
, A(P ),

and Rηη are constructed by utilizing M = M⋆
0 , Q = Q⋆

0, and V = V⋆
0.

Search P0 by grouping P pilot tones into clusters that are equally spaced

on the FFT grid.

Step 4: By using M⋆
0 , Q⋆

0, V⋆
0, and P⋆

0 given above, evaluate ζ1 expressed as

ζ1 = E{‖h−Ξh̃v‖2}. (4.39)

Then, consider three cases as follows:

Case 1: When ζ1 ≤ ζ0, assign ζ1 to ζ0 and then go to Step 5.

Case 2: When ζ0 < ζ1 and ζ0 ≤ ε, assign ζ0, V⋆
1, and P⋆

1 to ε, V⋆
0, and

P⋆
0, respectively, decrease M⋆

0 by 1, increase i by 1, and then go to

Step 1.
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Case 3: When ε < ζ0 < ζ1, choose M⋆, Q⋆, V
⋆, and P

⋆ as the optimal

parameters and terminate this optimization.

Step 5: If M⋆
0 <

⌊
P

L+1

⌋
, increase M⋆

0 by 1 and then go to Step 2. Otherwise,

consider two cases as follows:

Case 1: When ζ1 ≤ ε, assign ζ1 to ε, increase i by 1, and then go to

Step 1.

Case 2: When ζ1 > ε, choose M⋆, Q⋆, V⋆, and P⋆ as the optimal para-

meters and terminate this optimization.

Although this iterative optimization is performed once as long as the

channel statistics are not changed, this optimization may still require high

computational complexity. To mitigate this problem, we apply this itera-

tive optimization approach to the selection of those parameters in a WSSUS

Rayleigh fading channel, thereby finding a suboptimal empirical rule for a

proper parameter selection in the following. We first choose M⋆
0 and Q⋆

0, and

find V⋆
0 as given in Step 2 of the iterative optimization procedure. Given M⋆

0

and Q⋆
0, we can numerically obtain a global minimizer V∗

0 of E{‖h − Ξh̄v‖2}
as a function of v0(0) and v0(n)− v0(n− 1). Furthermore, we find that for the

fixed N , Q0, and M0, the minimizer V⋆
0 is almost identical for various Doppler

spreads. Thus, by precomputing and storing V⋆
0 for some representative val-

ues of N , Q0, and M0 of interest, we can reduce the computational burden

associated with the search of V⋆
0.

By using M⋆
0 , Q⋆

0, and V⋆
0 given above, we find P⋆

0 as given in Step 3 of

the iterative optimization procedure. To investigate an optimal placement of

pilot tones for the ALMMSE channel estimator, we consider the same numer-

ical examples as given in Subsection 4.3.1.2. As the first example, we consider
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an OFDM system in a Rayleigh fading channel with N = 16, L = 0, P = 2,

fD = 0.12, and the classical Doppler spectrum. Q⋆
0 = M⋆

0 = 2 is used and V⋆
0

is obtained by (4.37). The SNR is set to 15dB. Pilot symbols are randomly

selected from BPSK symbols. Each pilot symbol pattern is assumed to be

equiprobable. As we can see from Fig. 4.7, the optimal pilot tone placement

P
⋆
0 is obtained as {p, 〈p + 1〉N}, 0 ≤ p < N , which is exactly the same as

the optimal placement shown in Fig. 4.1. In the second example, an OFDM

system in a Rayleigh fading channel is considered with N = 32, L = 1, P = 8,

fD = 0.05 and 0.22, the classical Doppler spectrum, and an exponentially de-

caying power delay profile rl(0) = e−0.5l

1+e−0.5 , where l = 0, 1. V⋆
0 is obtained with

Q⋆
0 = M⋆

0 = 3 by (4.37). Fig. 4.8 demonstrates that the pilot tone placement

{p, 〈p+1〉N , 〈p+2〉N , 〈p+3〉N , 〈p+16〉N , 〈p+17〉N , 〈p+18〉N , 〈p+19〉N}, 0 ≤
p < N obtains the best performance, which is the same as the optimal place-

ment in Fig. 4.2. Although only a few representative placements of pilot tones

are plotted in Fig. 4.8 in order to make the figure clearer, we did consider

all feasible placements of pilot tones in the simulation and obtained the same

result as stated above.

As we can see from these examples, the optimal placement of pilot tones

for the ALMMSE channel estimator coincides with the optimal placement for

the LMMSE channel estimator in Subsection 4.3.1. In addition, we confirmed

this observation using both different values for the parameters N , L, P , Q,

M and fD, and various power delay profiles. Thus, the optimal pilot tone

placement in Subsection 4.3.1.2 is applicable to both the LMMSE estimator

and the ALMMSE estimator.

So far we investigated the choice of the parameters V and P. Next,

we consider the selection of the parameters Q and M . The autocorrelation
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Figure 4.7: Comparison of mean square error (MSE) performance given as

E{‖h̄v − h̃v‖2} in (4.38) according to different placements of 2 pilot tones p1

and p2. Fig. 4.7(a) shows MSE in (4.38) versus (p1, p2), and Fig. 4.7(b)
presents the contour plot of MSE in (4.38) versus (p1, p2) where local minima
are marked by •.
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Figure 4.8: Comparison of mean square error (MSE) performance given as

E{‖h̄v − h̃v‖2} in (4.38) according to different placements of 8 pilot tones
with 0 ≤ p < N . Rayleigh fading channels with fD = 0.05 and 0.22 are
considered.

function rl(u) of a Rayleigh fading channel can be rewritten in a power series

form [93] as

rl(u) = σ2
l J0(2πfD

u

N
) = σ2

l

Q′−1∑

k=0

(−1)k 1

(k!)2
(πfD

u

N
)2k + ξ(u) (4.40)

ξ(u) = σ2
l

∞∑

k=Q′

(−1)k 1

(k!)2
(πfD

u

N
)2k, (4.41)

where J0(·) is the zero-order Bessel function of the first kind. If ξ(u) is very
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small for 0 ≤ u < N , rl(u) can be well approximated over 0 ≤ u < N as

rl(u) ≈ σ2
l

Q′−1∑

k=0

(−1)k 1

(k!)2
(πfD

u

N
)2k. (4.42)

We find that when Q′ satisfying max
0≤u<N

| ξ(u)| < 0.005σ2
l is chosen, the ap-

proximate autocorrelation function in (4.42) is almost identical to the true

autocorrelation function. In addition, when an instantaneous autocorrelation

function of this channel is expanded over 0 ≤ u < N in a power series form, we

can expect from (4.42) that this function should be at least of order 2(Q′−1).

This implies that the order of the channel in a polynomial form should be

greater than or equal to Q′ − 1. Thus, Q satisfying Q ≥ Q′ is applicable

to the ALMMSE estimator. However, the utilization of a large Q requires a

large M due to the condition of M ≥ Q, thereby resulting in an increase of

the overall complexity of the ALMMSE estimator. With M = Q for a rea-

son to be discussed later, we investigate an effect of the parameter Q via an

example as shown in Fig. 4.9, where an OFDM system with N = 128 and

P = 32 is considered in a Rayleigh fading channel with L = 3, fD = 0.22, the

classical Doppler spectrum, and an exponentially decaying power delay profile

rl(0) = e−0.5lP3
i=0 e−0.5i , where l = 0, 1, 2, 3. We see from Fig. 4.9 that the MSE

performance in (4.39) is almost identical with Q ≥ Q′ = 3. However, the

utilization of a augmented M attributed to a large Q may result in numerical

instability, which will be discussed when the choice of the parameter M is

considered in the following. Thus, to reduce the estimator complexity with-

out significant performance degradation and the required minimum number

of pilot tones (P ≥ M(L + 1)), and to avoid the numerical instability, it is

reasonable to choose Q = Q′.

On the other hand, Fig. 4.10 demonstrates an effect of the parameter
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Figure 4.9: Comparison of mean square error (MSE) performance in (4.39)
according to the different number of the discrete orthonormal Legendre poly-
nomial basis functions (Q = 2, 3, 4, 5 and 6). M is equal to Q in each case.
Each pilot symbol is randomly chosen from BPSK symbols. Each mean square
error is averaged over 1000 different patterns of pilot symbols. These patterns
are randomly chosen.

M for this OFDM system. The parameter Q is fixed to 3. We observe that

the MSE performance in (4.39) is almost identical with different M . When we

denote the partial CIR estimation error h̄v−h̃v as ςv, E{‖h−Ξh̃v‖2} in (4.36)

can be decomposed into the terms of E{‖h − Ξh̄v‖2} and E{‖Ξςv‖2}. Al-

though the utilization of a small M decreases E{‖Ξςv‖2}, i.e., the inaccuracy

of the partial CIR estimates, it can increase E{‖h − Ξh̄v‖2}, i.e., the CIR

interpolation error. On the other hand, the utilization of a large M decreases

E{‖h−Ξh̄v‖2}. However, using a large M tends to increase E{‖Ξςv‖2} and
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Figure 4.10: Comparison of mean square error (MSE) performance in (4.39)
according to the different number of partial channel impulse responses (M =
3, 4, 5 and 6). Q is fixed to 3. Each pilot symbol is randomly chosen from
BPSK symbols. Each mean square error is averaged over 1000 different pat-
terns of pilot symbols. These patterns are randomly chosen.

cause the matrix Rh̄vh̄v
to be ill-conditioned. For example, with M = 7 and 8

in the above OFDM system, Rh̄vh̄v
has a large condition number [108], thereby

resulting in numerical instability. Thus, considering both the numerical stabil-

ity and the complexity, we can reasonably choose M = Q without significant

performance degradation.

In summary, we can state an empirical rule for the proper selection of

the channel model parameters from the analysis given above as follows:

(1) Choose Q′ for both Q and M by using (4.42).
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(2) Find the optimal v(n), 0 ≤ n < M with the chosen Q and M by using

(4.37).

(3) Place P pilot tones into equally spaced clusters corresponding to channel

length L + 1 on the FFT grid.

4.3.3 Iterative Approximate Linear Minimum Mean Square Error
Channel Estimation

In mobile channels with severe ICI, the pilot tone information is spread

over all subcarriers. When a small number of pilot tones are used for channel

estimation, the performance of the LMMSE and ALMMSE estimators exhibits

an error floor and no longer improves even with a high SNR. Thus, to extract

the effect of pilot tones from each subcarrier and to achieve accurate channel

estimation, the utilization of many pilot tones is generally required. However,

assigning a lot of subcarriers to pilot tones decreases the transmission capacity.

To significantly improve the estimation performance of the ALMMSE estima-

tor with a small number of pilot tones, we develop the iterative ALMMSE

channel estimation scheme that operates as indicated in the following. Using

the initial channel estimate h̃(0)(n, l) obtained by the ALMMSE estimation

scheme, a symbol detection scheme makes intermediate decisions on transmit-

ted symbols. To refine the channel estimate, the intermediate decisions d̂(0)

are fed back to the ALMMSE estimator. Then, this estimator considers those

symbols d̂(0) as new pilot symbols and refines the channel estimate by per-

forming the ALMMSE estimation with the N new pilot tones instead of the

P given pilot tones. The refined channel estimate h̃(1)(n, l) is then provided

to the symbol detection scheme. After the ith iteration of channel estima-

tion performed in the same manner as stated above, we obtain the ith refined
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channel estimate h̃(i)(n, l) from the (i − 1)th intermediate decisions d̂(i−1). In

summary, the iterative ALMMSE estimation scheme can be stated as follows:

Step 0: Set i to 0, and find an initial channel estimate h̃(0)(n, l) by using

(4.27) and (4.35).

Step 1: Make intermediate decisions d̂(i) on transmitted symbols by a symbol

detection scheme based on h̃(i)(n, l) using, for example, a zero-forcing

or MMSE receiver with hard or soft decision, or maximum likelihood

detection.

Step 2: If d̂(i) is satisfactory or is equal to d̂(i−1), terminate this iterative

ALMMSE channel estimation. Otherwise, go to Step 3.

Step 3: Send the intermediate decisions d̂(i) from Step 1 as new pilot tones

back to the ALMMSE channel estimator, and obtain the refined channel

estimate h̃(i+1)(n, l) by (4.43) through (4.46).

h̃(i+1)
v = Rh̄vh̄v

A(N)H [A(N)Rh̄vh̄v
A(N)H + σ2

wIN ]−1Y (4.43)

Y = [Y0 Y1 Y2 · · · YN−1]
T (4.44)

h̃(i+1)
v (l) =

[
[h̃(i+1)

v ]l+1 [h̃(i+1)
v ]l+L+2 · · · [h̃(i+1)

v ]l+(M−1)(L+1)+1

]
(4.45)

h̃(i+1)(n, l) = h̃(i+1)
v (l)α(n), 0 ≤ l ≤ L, 0 ≤ n < N. (4.46)

Then, increase i by 1 and go to Step 1.

4.3.4 Complexity Comparison of the Proposed Channel Estimators

In this subsection, we compare complexity of the proposed estimators

which are the LMMSE, ALMMSE, and iterative ALMMSE estimators. Since

these estimators share similar matrix structures based on LMMSE estima-

tion, existing efficient algorithms for reduced numerical computations can be
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equally applied to all the channel estimators. Thus, the complexity trends

among these channel estimators, which are based on the efficient algorithms,

will be identical to those based on naive numerical computations. To demon-

strate the complexity trends among the proposed estimators by using naive

computations and symmetric characteristics of some matrices, we summarize

the complexity of these estimators as given in Tables 4.1 through 4.3. As we

Table 4.1: Complexity of the LMMSE estimator

Complexity of LMMSE estimator

Complex multiplication 1
2
N(N + 1)(PN + N + 2P 2) + N2

Complex addition 1
2
N(N + 1)(PN + P 2 − 2) + N2

Matrix inversion O(N3)

Table 4.2: Complexity of the ALMMSE estimator

Complexity of ALMMSE estimator

M2(L + 1)2(P + 1)
Complex multiplication +M(L + 1)(2P 2 + P + N)

+P 2

M2(L + 1)2(P + 1)
Complex addition +M(L + 1)(2P 2 − P − 2)

+N(L + 1)(M − 1) + P (P − 1)
Matrix inversion O(P 3)

can see in Table 4.1, the LMMSE estimator has the approximate complexity of

O((P + 1)N3), which is a rather high computational complexity. In contrast,

we note from Table 4.2 that the ALMMSE estimator approximately requires

the complexity of O(P 3 + P 2M(L + 1) + NM(L + 1)). This complexity is
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Table 4.3: Complexity of the iterative ALMMSE estimator

Complexity of iterative ALMMSE estimator
with i iterations

M2(L + 1)2(iN + P + i + 1)
Complex multiplication +M(L + 1)(2iN2 + (2i + 1)N + 2P 2 + P )

+iN2 + P 2

M2(L + 1)2(iN + P + i + 1)
Complex addition +M(L + 1)(2iN2 − iN + 2P 2 − P − 2i − 2)

+N(i + 1)(L + 1)(M − 1)
+iN(N − 1) + P (P − 1)

Matrix inversion O(P 3) + O(iN3)
Others O(iNm)

much lower than that of the LMMSE estimator. In addition, when we con-

sider the complexity of the iterative ALMMSE estimator in Table 4.3, the

overall complexity of this channel estimator can be roughly expressed as the

sum of O(iN3 + iN2M(L + 1) + P 3 + P 2M(L + 1) + (i + 1)NM(L + 1)) for i

iterations of the ALMMSE estimation and O(iNm) for i utilizations of a cho-

sen symbol detection technique. The parameter m in O(iNm) depends on the

chosen symbol detection technique. For example, the MMSE detection tech-

nique has m = 3. On the one hand, the complexity of the iterative ALMMSE

estimator is higher than that of the ALMMSE estimator. On the other hand,

the iterative ALMMSE estimator achieves better estimation performance with

only a few iterations as we will demonstrate in Section 4.4. Thus, with the

condition of i ≪ P and the exploitation of a low-complexity symbol detec-

tor, the iterative ALMMSE estimator can achieve both lower complexity and

better performance than the LMMSE estimator.
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4.4 Simulation Results

We evaluate the performance of our proposed channel estimators in a

harsh channel environment. To simulate a severe time-variant channel for a

numerical experiment, we consider an OFDM system with N = 128 subcarri-

ers, a bandwidth of 1.25MHz, and a carrier frequency fc=10GHz. The velocity

of the mobile user is set to 250km/h. Quadrature phase-shift keying (QPSK)

symbols are used for user information-bearing symbols. Each pilot symbol is

also randomly chosen from QPSK symbols with the same power as that of

a user information-bearing symbol. The mobile channels are generated using

the Jakes model [82] with L = 7 and an exponentially decaying power delay

profile rl(0) = e−0.25lP7
i=0 e−0.25i , where l = 0, 1, · · · , 7. Performance comparisons

are made in terms of the BER and the MSE given as

MSE =
1

NmN2

Nm∑

i=1

∥∥∥H(i) − H̃
(i)
∥∥∥

2

F
, (4.47)

where Nm is the number of channel realizations and H
(i) is the channel matrix

in the frequency domain as given in (4.6). H̃
(i)

is an estimate of H
(i) obtained

by the proposed estimators. In our simulations, Nm = 104 is used, and the

MMSE detection scheme combined with hard decision is adopted both to re-

cover transmitted symbols, and to make intermediate decisions in the iterative

ALMMSE estimator. The SNR is measured at the receiver and is defined as
E{‖H(i)d(i)‖2}

Nσ2
w

.

To estimate a doubly selective channel for this OFDM System, we

use 32 pilot tones for each OFDM symbol. In the ALMMSE and iterative

ALMMSE estimators, we set Q to 3 by (4.42). As given in Subsection 4.3.2.2,

M is set to be equal to Q. V is given as {13, 63, 113} by (4.37).
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Figure 4.11: Comparison of mean square error (MSE) performance given as∑N
m=1

∑N
n=1 E{ρm,n} in (4.20) for the LMMSE estimation according to differ-

ent placements of 32 pilot tones. Each mean square error is averaged over 104

different patterns of pilot symbols that are randomly chosen.

To demonstrate the validity of the proposed pilot tone placement scheme,

we compare the MSE performance according to different placements of the pi-

lot tones in both the LMMSE estimator and the ALMMSE estimator. Fig. 4.11

shows the MSE performance given as
∑N

m=1

∑N
n=1 E{ρm,n} in (4.20) of the

LMMSE estimator as a function of SNR. In addition, Fig. 4.12 shows the MSE

performance given as E{‖h̄v − h̃v‖2} in (4.38) of the ALMMSE estimator as a

function of SNR. As expected, the best MSE performance in both estimators

is achieved with the pilot tones placed into 8 equally spaced clusters on the

FFT grid. This exactly coincides with our contention in subsections 4.3.1.2

and 4.3.2.2 that the optimal pilot tone placement can be obtained by group-
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Figure 4.12: Comparison of mean square error (MSE) performance given as

E{‖h̄v − h̃v‖2} in (4.38) for the ALMMSE estimation according to different
placements of 32 pilot tones. Each mean square error is averaged over 104

different patterns of pilot symbols that are randomly chosen. Q = M = 3 is
used for the ALMMSE estimation.

ing the pilot tones into a number of equally spaced clusters corresponding to

channel length L + 1.

To evaluate the performance of the proposed channel estimators ac-

cording to different pilot tone placements, we consider the MSE performance

in (4.47) of these estimators. For this simulation, we consider two differ-

ent placements, namely the conventional placement in [21], [22] and [24] (32

equally spaced pilot tones), and our proposed placement (8 equally spaced

clusters). Fig. 4.13 shows the MSE performance of the proposed estima-

tors as a function of SNR. We see from Fig. 4.13 that our estimators with
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LMMSE estimator (proposed placement)
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ALMMSE estimator (proposed placement)
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Figure 4.13: Comparison of mean square error (MSE) performance of the
proposed channel estimators. The theoretical MSE of LMMSE estimation is
calculated by 1

N2

∑N
m=1

∑N
n=1 E{ρm,n}, where ρm,n is given in (4.16). Each

mean square error is averaged over 104 different patterns of pilot symbols that
are randomly chosen. Q = M = 3 is used for the ALMMSE and iterative
ALMMSE estimators.

the proposed placement exhibit better MSE performance than those with the

conventional placement. Compared with the ALMMSE estimator exploiting

the proposed placement, the LMMSE estimator with the proposed placement

achieves slightly better MSE performance in the high SNR regime, whereas

the performance of the LMMSE estimator is similar to that of the ALMMSE

estimator in the low SNR regime. This is due to the optimality of the LMMSE

estimator. In addition, it is shown that the MSE performance of the LMMSE

estimator with the proposed placement is almost identical to the performance
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anticipated by 1
N2

∑N
m=1

∑N
n=1 E{ρm,n}, where ρm,n in (4.16) is calculated by

using the true autocorrelation function of the Rayleigh fading channel. Nev-

ertheless, the ALMMSE estimator with the proposed placement demonstrates

an overall MSE performance close to that of the LMMSE estimator with the

proposed placement. This is due to the fact that the channel model based

on the discrete orthonormal Legendre polynomials well approximates the time

variation of a true channel within one OFDM symbol duration and LMMSE

estimation optimally combines known channel statistics with partial channel

state information obtained from the pilot tones. When we consider a trade-off

between the performance and the complexity, the ALMMSE estimator with

the proposed placement appears to be attractive.

On the other hand, the iterative ALMMSE estimator achieves signif-

icant performance improvement at the expense of computational complexity

associated with the iterations. By considering intermediate decisions fed back

from a symbol detector as new pilot symbols, the ALMMSE estimator can

effectively reduce the residual ICI at the given pilot tones and provide a good

estimate of the doubly selective channel to the symbol detector. By exploiting

the improved channel estimate, the symbol detector can more reliably recover

the transmitted symbols and send better intermediate decisions back to the

ALMMSE estimator. By iterations of this process, the iterative ALMMSE

estimator continues to refine the channel estimate. Furthermore, this iterative

process jointly optimizes the channel estimation and the symbol detection.

In addition, as we can see from Fig. 4.13, the good MSE performance of the

iterative ALMMSE estimator is obtained with only three iterations, which in-

dicates that this estimator can achieve fast convergence. Since the iterative

ALMMSE estimator is composed of the ALMMSE estimator and the MMSE
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Figure 4.14: Comparison of bit error rate (BER) performance. The trans-
mitted symbol recovery is performed by the MMSE detection scheme with
hard decision. Q = M = 3 is used for the ALMMSE and iterative ALMMSE
estimators.

symbol detection scheme in this simulation, the iterative ALMMSE estimator

still has lower computational complexity than the LMMSE estimator. Even

with its lower complexity, the iterative ALMMSE estimator exhibits better

MSE performance than the LMMSE estimator.

Fig. 4.14 illustrates the influence of the estimation accuracy of the pro-

posed estimators with different pilot tone placements on the BER performance.

As expected, the MMSE symbol detections based on the estimators with the

proposed placement demonstrates better BER performance than those cases

with the conventional placement. In addition, the MMSE symbol detection
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based on the LMMSE estimator with the proposed placement shows slightly

better BER performance than that based on the ALMMSE estimator with the

proposed placement in the high SNR regime. The performance gap is around

1.1dB at a BER of 7× 10−3. On the other hand, the MMSE symbol detection

based on the iterative ALMMSE estimator achieves much better BER perfor-

mance due to the small estimation error shown in Fig. 4.13. Compared with

the MMSE symbol detection based on perfect channel knowledge, the MMSE

symbol detection based on the iterative ALMMSE estimator with three or

four iterations has around 3.2dB loss at a BER of 2 × 10−3. For another sim-

ulation, we consider an OFDM system with the following system parameters:

N = 512, 54 pilot tones for each OFDM symbol, a bandwidth of 1.25MHz,

fc=3.2GHz, the speed of the mobile user set to 300km/h, and QPSK user

data symbols. The mobile channels are generated using the Jakes model with

L = 8 and an exponentially decaying power delay profile rl(0) = e−l/3P8
i=0 e−i/3 ,

where l = 0, 1, · · · , 8. The pilot tones for each channel estimator are placed

according to the proposed pilot tone placement, i.e., 9 equally spaced clusters

on the FFT grid. We use Q = M = 4 by (4.42) for the ALMMSE and iterative

ALMMSE estimators. V is given as {35, 182, 329, 476} by (4.37). In this

simulation, Nm = 2000 is used. Figs 4.15 and 4.16 demonstrate MSE and

BER performance as a function of SNR, respectively. Due to the huge com-

putational time required for the proposed LMMSE estimator with the large

parameter values, the performance associated with the LMMSE estimator is

omitted in Figs 4.15 and 4.16. In this simulation, we compare the performance

of the proposed estimators with that of the existing channel estimators which

are the estimator in [155] and the LMMSE estimator in [50] and [115]. As

shown in Figs 4.15 and 4.16, since the LMMSE estimator in [50] and [115]

ignores channel variations for one OFDM symbol duration, and the channel
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Figure 4.15: Comparison of mean square error (MSE) performance. Each pilot
symbol is randomly chosen from QPSK symbols. Each mean square error is
averaged over 2000 different patterns of pilot symbols. These patterns are
randomly chosen.

estimator in [155] does not exploit the channel statistics, these estimators

demonstrate severe error floors in both the MSE and BER performance. In

contrast, without exhibiting any noticeable error floors in Figs 4.15 and 4.16,

the proposed channel estimators achieve similar MSE and BER performance

trends to those in Figs 4.13 and 4.14, respectively, which supports the effec-

tiveness of our proposed estimators. Furthermore, we see that the MMSE

symbol detection based on the iterative ALMMSE estimator with two or three

iterations achieves closer BER performance to that based on perfect channel

knowledge.
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Figure 4.16: Comparison of bit error rate (BER) performance. The transmit-
ted symbol recovery is performed by the MMSE detection scheme with hard
decision.

Finally, when the assumed channel statistics for the proposed channel

estimators are not matched with the true channel statistics, MSE and BER

performance of the proposed estimators are shown in Figs 4.17 and 4.18. The

true and assumed channel statistics are described in Table 4.4. The other

system parameters including the exponentially decaying power delay profile

for the true channel statistics are identical with those in the simulation for

Figs 4.15 and 4.16. In Figs 4.17 and 4.18, the curves indicated as “true”

present the performance of the estimators based on the true channel statistics,

whereas the curves marked as “mismatch” exhibit the performance of the

estimators designed by using the assumed channel statistics. As expected, the
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Table 4.4: Comparison of true and assumed channel statistics

True channel statistics Assumed channel statistics

Doppler spectrum Classical Doppler Uniform Doppler
spectrum spectrum

Power delay profile Exponentially decaying Uniform
profile delay profile power delay profile

Mobile user speed 200km/h 300km/h
SNR 0dB to 30dB 25dB

existing estimators still demonstrate severe error floors. Even if the proposed

estimators exploit the mismatched channel statistics with the true statistics,

the proposed estimators achieve better overall performance than the existing

estimators. In addition, compared with the proposed estimators based on the

true channel statistics, the proposed estimators using the assumed channel

statistics do not exhibit significant performance degradation except at low

SNRs. The degradation at low SNRs is due to the fact that the proposed

estimators assume a high SNR equal to 25dB. Since BER performance at low

SNRs is largely affected by the additive noise rather than the accuracy of a

channel estimate, the BER performance gaps between the proposed estimators

based on the true statistics and those based on the assumed statistics are

rather small. Furthermore, regardless of which channel statistics are used

for the proposed iterative ALMMSE estimator, this channel estimator with

2 iterations obtains BER performance close to that based on perfect channel

knowledge. This indicates that the proposed estimators can achieve good

estimation performance even without exact knowledge of the channel statistics.
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Figure 4.17: Comparison of mean square error (MSE) performance in the case
with mismatched channel statistics. Each pilot symbol is randomly chosen
from QPSK symbols. Each mean square error is averaged over 2000 different
patterns of pilot symbols. These patterns are randomly chosen.

4.5 Conclusions

We proposed a MSE-optimal pilot tone placement scheme applicable

to OFDM systems regardless of time variations in the channel. The proposed

placement scheme generalizes the existing placement scheme for time-invariant

channels to the case of time-variant channels. Furthermore, we presented three

pilot-aided doubly selective channel estimation schemes that exploit the pro-

posed pilot tone placement. The proposed LMMSE estimator achieves accu-

rate LMMSE channel estimation with a small number of pilot tones without

any approximation. By using a channel model based on the discrete orthonor-

133



0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

B
it 

er
ro

r 
ra

te
 (

B
E

R
)

SNR (dB)

 

 

Estimator in [155]
LMMSE estimator in [50] and [115] (true)
LMMSE estimator in [50] and [115] (mismatch)
ALMMSE estimator (true)
ALMMSE estimator (mismatch)
Iterative ALMMSE estimator−2 iterations (true)
Iterative ALMMSE estimator−2 iterations (mismatch)
Perfect channel knowledge

Figure 4.18: Comparison of bit error rate (BER) performance in the case with
mismatched channel statistics. The transmitted symbol recovery is performed
by the MMSE detection scheme with hard decision.

mal Legendre polynomials, the proposed ALMMSE estimator obtains estima-

tion performance close to the LMMSE estimator but with much lower com-

plexity. By iteratively reducing the residual ICI at the given pilot tones and by

iteratively refining the channel estimate, the proposed iterative ALMMSE es-

timator significantly improves on the performance of the ALMMSE estimator

with only a few iterations and with moderate complexity.
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Chapter 5

Conclusions

5.1 Summary

For coherent signal detection and channel equalization in block trans-

mission systems, CSI should be known to, or reliably estimated at, a receiver.

The methods for obtaining CSI can be roughly categorized as (semi)blind chan-

nel estimation techniques and training-based channel estimation techniques.

In this dissertation, we proposed three approaches for efficient chan-

nel estimation in block transmission systems. Two approaches are based on

blind channel estimation and the other one is based on training-based channel

estimation.

In Chapter 2, to provide bandwidth efficient channel estimation for

MIMO-OFDM systems, we established the conditions for blind channel iden-

tifiability in a MIMO-OFDM system and presented a blind channel estimator

based on the noise subspace method. The proposed method obtains accurate

channel estimation with insensitivity to overestimates of the true channel or-

der. In addition, if VCs are available and an observed OFDM symbol block in-

creases to an adequate dimension for channel estimation, the proposed method

can achieve accurate channel estimation in a MIMO-OFDM system with no

or insufficient CPs, thereby accomplishing higher bandwidth efficiency. Fur-

thermore, when a system configuration is satisfied with the specific conditions

given in Lemma 2.3.3, the proposed method can be applied to MIMO-OFDM
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systems without CPs, regardless of the presence of VCs, and obtains an accu-

rate channel estimate with a relatively small number of OFDM symbols.

In Chapter 3, to relax existing conditions for MIMO channel identifi-

cation and to provide a bandwidth-efficient solution for channel estimation in

MIMO block transmission systems with a CP, we presented a framework for

blind channel estimation based on a general non-redundant precoding. Using

this framework, we proposed a blind estimator exploiting a simplified non-

redundant precoding that is robust against overestimates of a true MIMO

channel order. With the simplified precoding conditions established in this

chapter, the proposed method does not impose strict conditions required for

the existing methods on the MIMO channel for its identification, and achieves

accurate channel estimation with a small number of symbol blocks. Further-

more, we developed a technique for resolving the channel ambiguity in the

proposed blind estimation method. By exploiting only a few pilot symbols for

resolving the channel ambiguity, the proposed estimator can increase band-

width efficiency.

In Chapter 4, to achieve accurate estimation of doubly selective chan-

nels showing both time- and frequency-selectivity within one OFDM symbol

duration, we proposed a MSE-optimal pilot tone placement. The proposed pi-

lot tone placement is applicable to OFDM systems regardless of time variations

in the channel. In addition, we presented three pilot-aided doubly selective

channel estimators that exploit the proposed pilot tone placement. First, the

proposed LMMSE estimator achieves accurate LMMSE channel estimation

without any approximation. Second, to accomplish computationally efficient

channel estimation with lower complexity than the LMMSE estimator and to

obtain performance close to the LMMSE estimator, an ALMMSE channel esti-
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mator was also proposed. Finally, we developed an iterative ALMMSE channel

estimator that achieves better performance with only a few iterations than the

LMMSE and ALMMSE estimators, while having moderate complexity.

5.2 Future Work

In the future, to achieve bandwidth efficient channel estimation in rapid

mobile environments, convergence speeds of blind estimation techniques should

be improved. In addition, techniques relying on fewer pilot symbols are re-

quired to accurately resolve a channel ambiguity inherent in blind channel

estimators. In blind channel estimation based on precoding, other criteria

balancing MSE performance with BER performance need to be investigated

for optimal precoding designs. Blind channel estimation for space-time coded

MIMO systems constitutes another future research topic. Furthermore, since

existing blind channel estimation techniques require high computational com-

plexity, blind channel estimators with low complexity should be developed for

affordable communication systems.

To improve doubly selective channel estimation performance further,

the proposed pilot-aided channel estimators can be extended to employ infor-

mation from two or more received OFDM symbols. In this case, an optimal

pilot placement should be also investigated by considering placements between

OFDM symbols as well as placements within one OFDM symbol. In addition,

if the proposed iterative ALMMSE channel estimator is combined with novel

soft decision techniques, it is expected that the performance of this estimator

will become much better. A design of channel estimators, which require lower

complexity than the proposed estimators, still provides a future research topic

for practical realization of simpler and less expensive receivers. Furthermore,
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these approaches for SISO-OFDM systems should be extended to doubly se-

lective channel estimators for MIMO-OFDM systems.
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Appendix A

Proof of Theorem 2.3.1

First, we show that if rank(H(wi
N)) = Mt for all i ∈ {k}k0+D−1

k=k0
, the

matrix Ξ has full column rank. We define λ(i) and Λ as

λ(i) , w
(k0+i−1)L
N H(w

(k0+i−1)
N ) (A.1)

Λ , diag(λ(1), λ(2), · · · , λ(D)). (A.2)

By choosing the rows (j − 1)QMr + 1 to (j − 1)QMr + DMr for 1 ≤ j ≤ J

from the matrix Ξ, we can generate a JDMr×JDMt submatrix Ξ̂ that is

a block diagonal matrix with (W ⊗ IMr)[LMr + 1 : (L + D)Mr, :]Λ’s on its

main diagonal [94]. By using the structure of (W ⊗ IMr)[LMr + 1 : (L +

D)Mr, :] and a Vandermonde matrix property [108], we can easily show that

(W ⊗ IMr)[LMr + 1 : (L + D)Mr, :] is a nonsingular matrix. In addition, if

rank(H(wi
N)) = Mt for all i ∈ {k}k0+D−1

k=k0
, the matrix Λ has full column rank.

Thus, rank((W ⊗ IMr)[LMr + 1 : (L + D)Mr, :]Λ) = rank(Λ) = DMt, and

consequently rank(Ξ̂) = JDMt. Since the submatrix Ξ̂ is generated from the

matrix Ξ by removing some rows, rank(Ξ) becomes JDMt, which means that

the matrix Ξ has full column rank.

Conversely, to prove that if the matrix Ξ has full column rank, then

rank(H(wi
N)) = Mt for all i ∈ {k}k0+D−1

k=k0
, we show that if rank(H(wi

N)) 6= Mt

for some i ∈ {k}k0+D−1
k=k0

, then the matrix Ξ does not have full column rank.

We can construct a proper matrix Ξ column equivalent to Ξ by applying
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elementary column operations [108] to the matrix Ξ, so that the submatrix

Ξ[:, 1 : DMt] can be expressed as the product of a matrix having full column

rank of DMr and the matrix Λ [94]. From the structure of this submatrix,

it is observed that if any diagonal element of the block diagonal matrix Λ

does not have full column rank, equivalently rank(H(wi
N)) 6= Mt for some

i ∈ {k}k0+D−1
k=k0

, then rank(Ξ[:, 1 : DMt]) < DMt. Thus, the matrix Ξ does not

have full column rank. Since rank(Ξ) = rank(Ξ) [108], the matrix Ξ does

not have full column rank if rank(H(wi
N)) 6= Mt for some i ∈ {k}k0+D−1

k=k0
.
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Appendix B

Proof of Theorem 2.3.2

First, we prove that if span(Ξ′) is equal to span(Ξ), H′ = HΩ where

Ω is a Mt ×Mt invertible matrix. From the condition of span(Ξ′) = span(Ξ),

we know that there exists a nonsingular matrix A satisfying Ξ′ = ΞA. Let us

partition the matrix A as

A[(iD+m)Mt +1 : (iD+m+1)Mt, (jD+n)Mt +1 : (jD+n+1)Mt] = Ω(i, j)
m, n .

(B.1)

In (B.1), i, j, m, and n are integers satisfying 0 ≤ i, j ≤ J − 1 and 0 ≤
m, n ≤ D − 1. Performing some mathematical manipulations to Ξ′ = ΞA

and considering the submatrix Ξ′[iQMr + 1 : ((i + 1)Q − L)Mr, iDMt + 1 :

(i + 1)DMt] for 0 ≤ i ≤ J − 1, we can obtain

(K1Θ ⊗ IMr)




H′(wk0
N )Ω

(i, i)
0, n

H′(w
(k0+1)
N )Ω

(i, i)
1, n

...

H′(w
(k0+n−1)
N )Ω

(i, i)
(n−1), n

H′(w
(k0+n+1)
N )Ω

(i, i)
(n+1), n

...

H′(w
(k0+D−1)
N )Ω

(i, i)
(D−1), n




= 0, 0 ≤ n ≤ D − 1 (B.2)

Θ = diag(θ(k0), θ(k0+1), · · · , θ(k0+n−1), θ(k0+n+1), · · · , θ(k0+D−1))

(B.3)

θ(k) = w−k
N − w

−(k0+n)
N . (B.4)
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In (B.2), the matrix K1 is generated by removing the (n+1)th column from the

matrix [W(N − 1)T W(N − 2)T · · · W(L − P + 1)T ]T . From the condition

(Q − D) ≥ L and the structure of K1 based on a Vandermonde matrix, we

can show that the matrix K1 is a tall matrix with full column rank. Since the

matrix Ξ has full column rank by the assumption and span(Ξ′) = span(Ξ),

Theorem 3.3.1 states that the matrix H′(wi
N) for k0 ≤ i ≤ k0 + D − 1 has full

column rank. Thus, we obtain Ω(i, i)
m, n = 0 for 0 ≤ i ≤ J − 1, 0 ≤ m, n ≤ D− 1

and m 6= n. By using this result, we can easily show that Ω(0, 0)
m, m = Ω(1, 1)

m, m =

· · · = Ω(J−1, J−1)
m, m for 0 ≤ m ≤ D − 1 as well.

On the other hand, by considering the submatrix Ξ′[iQMr + 1 : ((i +

1)Q−L)Mr, jDMt +1 : (j +1)DMt] for 0 ≤ i, j ≤ J −1 and i 6= j, we obtain,

for 0 ≤ n ≤ D − 1,

([
W(N−1)T W(N−2)T ··· W(L−P )T

]T
⊗IMr

)



H′(wk0
N )Ω

(i,j)
0,n

H′(w
(k0+1)
N )Ω

(i,j)
1,n

...

H′(w
(k0+D−1)
N )Ω

(i,j)
(D−1),n



=0.

(B.5)

Since the matrix [W(N − 1)T W(N − 2)T · · · W(L − P )T ]T is a tall matrix

with full column rank and the matrix H′(wi
N) for k0 ≤ i ≤ k0 + D − 1 has full

column rank, we obtain Ω(i, j)
m, n = 0 for 0 ≤ i, j ≤ J − 1, 0 ≤ m, n ≤ D − 1

and i 6= j. Thus, the submatrix Ω(i, i)
m, m for 0 ≤ i ≤ J − 1 and 0 ≤ m ≤ D− 1 is

invertible. By using the above results and rearranging Ξ′[(Q−L− 1)Mr + 1 :

QMr, 1 : DMt] = (ΞA)[(Q − L − 1)Mr + 1 : QMr, 1 : DMt], we obtain

(K2 ⊗ IMr)(H
′ − HΩ

(0, 0)
k−k0, k−k0

) = 0, k0 ≤ k ≤ k0 + D − 1 (B.6)
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K2 =




w
(N−Q+L)k
N w

(N−Q+L−1)k
N · · · w

(N−P+1)k
N w

(N−P )k
N

w
(N−Q+L−1)k
N w

(N−Q+L−2)k
N · · · w

(N−P )k
N 0

. .
.

. .
.

. .
. ...

w
(N−P )k
N 0 · · · 0 0




, (B.7)

thereby deriving H′ = HΩ(0, 0)
m, m for 0 ≤ m ≤ D−1. Since the matrix H(wi

N) for

k0 ≤ i ≤ k0 +D−1 has full column rank, rank(([ 1 w−i
N · · · w−iL

N ]⊗ IMr)H) =

rank(H(wi
N)) = Mt ≤ rank(H) ≤ Mt [108], which means that H has full

column rank. Thus, we have Ω
(0, 0)
0, 0 = Ω

(0, 0)
1, 1 = · · · = Ω

(0, 0)
D−1, D−1. By denoting

Ω(i, i)
m, m for 0 ≤ i ≤ J − 1 and 0 ≤ m ≤ D − 1 as an invertible matrix Ω, we

conclude H′ = HΩ.

Next, we show that if H′ = HΩ with an invertible matrix Ω, span(Ξ′)

is equal to span(Ξ). By using H′ = HΩ, we can write

Ξ′ = H
′
W

= H(IJ ⊗ IQ ⊗ Ω)(IJ ⊗W ⊗ IMt)

= H(IJ ⊗ W ⊗ IMt)(IJ ⊗ ID ⊗Ω)

= HW(IJ ⊗ ID ⊗ Ω)

= Ξ(IJ ⊗ ID ⊗ Ω).

(B.8)

Since Ω is invertible, the matrix (IJ ⊗ ID ⊗Ω) is a nonsingular matrix. Thus,

this means that span(Ξ′) = span(Ξ).

144



Appendix C

Proof of Lemma 2.3.3

First, we show that if rank(H′) = Mt and span(Ξ′) = span(Ξ), then

H′ = HΩ with a Mt × Mt invertible matrix Ω. Once we obtain a proof for

the case with J = 2, the same approach can be applied to a proof for the case

with J = 1, which is simpler than that of the case with J = 2. Thus, our

proof is focused on the case with J = 2 by setting J to 2.

For brevity of notation, we define several matrices as follows.

B1,H[1:(Q−D)Mr,1:(Q−D)Mt]

B2,H[1:(Q−D)Mr,(Q−D)Mt+1:QMt]

B3,H[(Q−D)Mr+1:(Q+D−L)Mr,(Q−D)Mt+1:QMt]

B4,H[(Q−D)Mr+1:(Q+D−L)Mr,QMt+1:(Q+D)Mt]

B5,H[(Q+D−L)Mr+1:(2Q−L)Mr,QMt+1:(Q+D)Mt]

B6,H[(Q+D−L)Mr+1:(2Q−L)Mr,(Q+D)Mt+1:2QMt]

W1,W[1:(Q−D)Mt,1:DMt]

W2,W[(Q−D)Mt+1:QMt,1:DMt]

W3,W[QMt+1:(Q+D)Mt,DMt+1:2DMt]

W4,W[(Q+D)Mt+1:2QMt,DMt+1:2DMt].

(C.1)
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By using the notations in (C.1), we can write the matrix Ξ with J = 2 as

Ξ =




B1 B2 0 0
0 B3 B4 0
0 0 B5 B6







W1 0
W2 0
0 W3

0 W4


 =




Z1W2 0
B3W2 B4W3

0 Z2W3


 . (C.2)

In (C.2), the matrices Z1 and Z2 represent B1W1W
−1
2 +B2 and B5+B6W4W

−1
3 ,

respectively. From the assumption of rank(h(0)) = Mt and rank(H(z)) = Mt

for all z, the polynomial matrix H(z) is irreducible [55, 85, 105]. In addition,

H(z) is column reduced [55, 85, 105] by the assumption of rank(h(L)) = Mt.

Thus, the column polynomial vectors of H(z) form a minimal polynomial ba-

sis [55, 85, 105] for span(H(z))1. Since h(L) has full column rank, deg(H(z)[:

, i])2 = L for all i ∈ {k}Mt
k=1. Therefore, by Theorem 1 in [105], the submatrix

[B3 B4] has full column rank with the conditions of Mt < Mr and L ≤
⌊

2D−1
Mt+1

⌋
.

In addition, the submatrix W[(Q − D)Mt + 1 : (Q + D)Mt, :] is a block di-

agonal matrix with W2 and W3 on its main diagonal, and W2 and W3 are

all nonsingular. Thus, the submatrix Ξ[(Q − D)Mr + 1 : (Q + D − L)Mr, :]

has full column rank, which implies that the matrix Ξ has full column rank

as well.

After we perform the eigenvalue decomposition of the autocorrelation

matrix Rrr of the received signal vector r(n) in (2.26) and reorder its eigen-

vectors and the corresponding eigenvalues, we partition the unitary matrix

1span(H(z)) denotes the linear subspace over the field of scalar rational functions
spanned by the column vectors of H(z), i.e., the set of rational fuction vectors written as
Mt∑
i=1

ci(z)H(z)[:, i], where ci(z) is a scalar rational function (see [60] and references therein).

2The degree of a Mr × 1 polynomial vector H(z)[:, i] =
[ [H(z)]1,i [H(z)]2,i · · · [H(z)]Mr,i ]T is defined as the greatest degree of its compo-
nents as given in deg(H(z)[:, i]) = max

1≤k≤Mr

deg([H(z)]k,i) (see [2, 55, 85, 105] and references

therein).
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U consisting of the eigenvectors and the diagonal matrix D composed of the

eigenvalues as, respectively,

U =




U11 U12 U13 U14

U21 U22 U23 U24

U31 U32 U33 U34


 (C.3)

D =




σ2
ηI(Q−D)Mr 0 0 0

0 Σ + σ2
ηI2DMt 0 0

0 0 σ2
ηI(2D−L)Mr−2DMt 0

0 0 0 σ2
ηI(Q−D)Mr


 . (C.4)

In (C.3), the submatrices Ui1, Ui2, Ui3 and Ui4 for 1 ≤ i ≤ 3 have (Q−D)Mr,

2DMt, (2D − L)Mr − 2DMt and (Q − D)Mr columns, respectively. The

submatrices U1j , U2j and U3j for 1 ≤ j ≤ 4 have (Q − D)Mr, (2D − L)Mr

and (Q − D)Mr rows, respectively. The submatrix Σ in (C.4) is a 2DMt ×
2DMt diagonal matrix with positive diagonal elements. From (2.26) and (C.2)

through (C.4), we obtain the following relationship

[B3 B4]

[
W2 0
0 W3

]
R

1
2
dd = U22Σ

1
2VH , (C.5)

where E{d(n)d(n)H} = Rdd = R
1
2
ddR

H
2
dd, Σ = Σ

1
2Σ

H
2 , and V is an uni-

tary matrix. Assuming that Rdd has full rank, we obtain span([B3 B4]) =

span(U22) from (C.5). Therefore, the matrix U22 has full column rank. Defin-

ing a (2D − L)Mr × (2D − L)Mr − 2DMt matrix U⊥
22 whose column vectors

are linearly independent and span the subspace orthogonal to span(U22), we

can find an invertible matrix G satisfying the following condition [108]

Un =




U11 U13 U14

U21 U23 U24

U31 U33 U34


 =




Ũ11 0 Ũ14

Ũ21 U⊥
22 Ũ24

Ũ31 0 Ũ34


G, (C.6)
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where Ũij has the same dimension as that of Uij for 1 ≤ i ≤ 3 and j = 1, 4.

By defining the matrices B′
3 and B′

4 as, respectively,

B′
3 , H

′[(Q − D)Mr + 1 : (Q + D − L)Mr, (Q − D)Mt + 1 : QMt]

B′
4 , H

′[(Q − D)Mr + 1 : (Q + D − L)Mr, QMt + 1 : (Q + D)Mt],
(C.7)

and using the condition of span(Ξ′) = span(Ξ) and the orthogonal relationship

in (2.28), we derive

U
H
n Ξ′ = 0 =⇒ (U⊥

22)
H [B′

3 B′
4]

[
W2 0
0 W3

]
= 0 ⇐⇒ (U⊥

22)
H [B′

3 B′
4] = 0.

(C.8)

Furthermore, we know that the column vectors of U⊥
22 constitute a basis for

the left-hand nullspace of the matrix [B3 B4]. By relying on Theorem 2 in [60]

along with the relationship in (C.8) and the condition of rank(H′) = Mt, we

obtain H′(z)=H(z)Ω with a Mt×Mt invertible matrix Ω. That is, H′ = HΩ.

On the other hand, by following the same procedure as given in (B.8),

we can prove that if H′ = HΩ with an invertible matrix Ω, then span(Ξ′) =

span(Ξ). In addition, since H′ = HΩ, we have h′(0) = h(0)Ω. By the

assumption of rank(h(0)) = Mt, we can conclude that H′ has full column

rank.
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Appendix D

Proof of Theorem 3.3.1

First, we show that if Ξ(k) has a nonzero value for all k ∈ {ki}K
i=0, where

{ki}K
i=0 ⊂ {n}N−1

n=0 and K ≥ L, Bi has full column rank for all i ∈ {m}L
m=0.

Noting that if B0 has full column rank, the remaining Bi’s also have full

column rank, we only consider the case of B0. Since B0 has a circulant matrix

structure, B0 can be expressed as [64]

Bi = FH diag{[Ξ(0) Ξ(1) · · · Ξ(N − 1)]}F[:, 1 : L + 1], (D.1)

where F is the N×N unitary DFT matrix. Thus, rank(Bi) = rank(diag{[Ξ(0)

Ξ(1) · · · Ξ(N − 1)]}F[:, 1 : L + 1]). By assuming k0 < k1 < · · · < kK without

loss of generality, and using the condition of Ξ(k) 6= 0 for all k ∈ {ki}K
i=0, we

obtain rank(B0) = rank(A), where the (K +1)× (L+1) matrix A is defined

with [A]m+1,n = [F]km+1,n for 0 ≤ m ≤ K and 1 ≤ n ≤ L + 1. To check if the

columns of the matrix A are linearly independent, we want to find cn satisfying
∑L+1

n=1 cnA[:, n] = 0. By relying on a Vandermonde matrix property [64],

we find that
∑L+1

n=1 cnA[:, n] = 0 implies c1 = c2 = · · · = cL+1 = 0, which

indicates that B0 has full column rank. Thus, Bi has full column rank for all

i ∈ {m}L
m=0.

Next, we prove that if Bi has full column rank for all i ∈ {m}L
m=0,

Ξ(k) 6= 0 for all k ∈ {ki}K
i=0, where {ki}K

i=0 ⊂ {n}N−1
n=0 and K ≥ L. Since Bi
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has full column rank, we obtain

rank(Bi)=L+1−i

≤min{rank(diag{[Ξ(0) Ξ(1) ··· Ξ(N−1)]}), rank(F[:,1:L+1−i])}.
(D.2)

Since rank(F[:, 1 : L + 1 − i]) = L + 1 − i, it should be satisfied that

rank(diag{[Ξ(0) Ξ(1) · · · Ξ(N − 1)]}) ≥ L+1− i. This means that Ξ(k) 6= 0

for all k ∈ {ki}K
i=0, where {ki}K

i=0 ⊂ {n}N−1
n=0 and K ≥ L.

150



Appendix E

Derivation of ξ(n)opt and ρ(n)opt

Since
∥∥∥∥∥∥

(
2A0

TA0+B0
T
B0+

(
2α

N−1∑

n=0

γ(n)+Nα2

)
1L+11L+1

T

)−1
∥∥∥∥∥∥
∞

≥
∥∥∥∥∥2A0

TA0+B0
T
B0+

(
2α

N−1∑

n=0

γ(n)+Nα2

)
1L+11L+1

T

∥∥∥∥∥

−1

∞

≥
(

2‖A0
TA0‖∞+‖B0

T
B0‖∞+(L+1)

(
2α

N−1∑

n=0

γ(n)+Nα2

))−1

,

(E.1)

∥∥B0
T
B0

∥∥
∞= max

0≤i≤L

L∑

j=0

N−1∑

n=0

γ(〈n−i〉N )γ(〈n−j〉N)≤
(

N−1∑

n=0

γ(n)

)2

, (E.2)

and

∥∥A0
TA0

∥∥
∞= max

0≤i≤L

L∑

j=0

∣∣∣∣∣∣

N/2−1∑

n=0

ρ(〈n−i〉N/2)ρ(〈n−j〉N/2)

∣∣∣∣∣∣
≤(L+1)

N/2−1∑

n=0

ρ(n)2,

(E.3)
∥∥(2A0

TA0 + B0
TB0)

−1B0
T1N

∥∥
∞ is lower bounded as

∥∥(2A0
TA0+B0

TB0)
−1B0

T 1N

∥∥
∞

≥

N−1∑
n=0

γ(n)+Nα

(
N−1∑
n=0

γ(n)

)2

+(L+1)

(
2α

N−1∑
n=0

γ(n)+Nα2+2
N/2−1∑
n=0

ρ(n)2

) .
(E.4)
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When we minimize this lower bound with the constraints γ(n)≥0,
N−1∑
n=0

γ(n)+

N−1∑
n=N−P

γ(n) = (N + P )(1 − α), and δ < α + min
0≤n<N

γ(n), we obtain

∥∥(2A0
TA0+B0

TB0)
−1B0

T1N

∥∥
∞

≥ N+P (1−α)

(N+P )2(1−α)2+2α(L+1)(N+P )(1−α)+N(L+1)(α2+δ2)
.

(E.5)

In (E.5), the equality is satisfied with the following ξ(n)opt and ρ(n)opt.

{
ξ(n)opt = (N + P )(1 − α) + α, if n = n0,

ξ(n)opt = α, if n 6= n0,

ρ(n)opt = ±δ,

(E.6)

where n0 is an integer satisfying 0 ≤ n0 ≤ N − P − 1, and δ < α.
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