
 

  

 

Aalborg Universitet

Decomposable Graphical Models With a View Towards Outlier Detection and Sparse
Tables

Lindskou, Mads

DOI (link to publication from Publisher):
10.54337/aau470863492

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Lindskou, M. (2022). Decomposable Graphical Models With a View Towards Outlier Detection and Sparse
Tables. Aalborg Universitetsforlag. Ph.d.-serien for Det Ingeniør- og Naturvidenskabelige Fakultet, Aalborg
Universitet https://doi.org/10.54337/aau470863492

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 19, 2022

https://doi.org/10.54337/aau470863492
https://vbn.aau.dk/en/publications/2bd99590-1262-41a0-8686-926dd7c6d241
https://doi.org/10.54337/aau470863492




M
a

d
s Lin

d
sk

o
u

D
ec

o
m

po
sa

b
le G

r
a

ph
ic

a
l M

o
d

els W
ith

 a View
 To

w
a

r
d

s O
u

tlier
 D

etec
tio

n
 a

n
d

 Spa
r

se Ta
b

les

Decomposable Graphical Models 
With a View Towards Outlier 
Detection and Sparse Tables

by
Mads Lindskou

Dissertation submitted 2022





Decomposable Graphical
Models With a View Towards
Outlier Detection and Sparse

Tables

Ph.D. Dissertation
Mads Lindskou

Dissertation submitted February 27, 2022



Dissertation submitted:	 February 27, 2022

PhD supervisor: 	 Associate Professor Torben Tvedebrink
			   Aalborg University

Assistant PhD supervisors:	 Associate Professor Poul Svante Eriksen
			   Aalborg University

			   Professor Niels Morling
			   Aalborg University
			   University of Copenhagen

PhD committee: 	 Honorary Professor Steffen Lauritzen (chair)
			   University of Copenhagen, Denmark

			   Professor Niels Richard Hansen
			   University of Copenhagen, Denmark

			   Professor Thore Egeland
			   Norwegian University of Life Sciences, Norway

PhD Series:	 Faculty of Engineering and Science, Aalborg University

Department:	 Department of Mathematical Sciences

ISSN (online): 2446-1636
ISBN (online): 978-87-7573-937-0

Published by:
Aalborg University Press
Kroghstræde 3
DK – 9220 Aalborg Ø
Phone: +45 99407140
aauf@forlag.aau.dk
forlag.aau.dk

© Copyright: Mads Lindskou

Printed in Denmark by Rosendahls, 2022



Abstract

This thesis concerns graphical models, mainly with discrete variables, a class
of probabilistic models that can be understood pictorially using an interaction
graph. Some classical graphical models includes the naive Bayes classifier
and the Ising model, where the interaction graph of the former has directed
edges, and the latter has undirected edges. At the core of graphical models is
the concept of conditional independence; X is conditionally independent of Y
given variable Z if by knowing Z, Y is irrelevant for X. Having access to such
knowledge typically simplifies the model and hence the interaction graph.
For classification problems, the structure of the interaction graph may be of
lesser importance, whereas the structure may be essential in problems where
the goal is the understand the underlying phenomenon. A large number of
different graphical models exists with special structures of the interaction;
graphs with both directed and undirected edges, both discrete and continu-
ous variables etc. Common to all these is that the graphical structure must be
learned either from data, also referred to as structure learning, or specified
through expert knowledge. Given an interaction graph, calculating posterior
probabilities, also known as inference, is essential in graphical models. Al-
though both structure learning and inference are, in general, NP-complete
problems there exist efficient heuristics for both, and even exact methods for
inference. Most notably is the junction tree algorithm.

The thesis consists of two parts, where the first serves as a brief introduction
to graphical models and highlights some of the findings in the thesis papers
by examples. The second part consists of the main papers A-D. Outlier detec-
tion in high-dimensional discrete data is a challenging task, which involves
determining observations with small counts in the data. In paper A, a novel
outlier detection method based on decomposable graphical models with dis-
crete variables is presented. This method is directly extended in paper B to
include continuous variables. Insights from the software complementing pa-
per A revealed that sparsity in the involved tables can be exploited to save
both time and memory during inference in graphical models as explained
in detail in paper C. Finally, in the pursuit of optimizing memory and infer-

iii



ence time a novel scheme, called unity propagation, is proposed in paper D
along with a new smoothing technique, called unity smoothing, for handling
inconsistencies between the model and new observations.



Resumé

Denne afhandling omhandler grafiske modeller, hovedsageligt for diskrete
variable, hvilket er en klasse a probabilistiske modeller, som kan forstås ved
hjælp af en dertilhørende interaktions graf. To klassiske modeller indenfor
denne klasse tæller naive Bayes classifier og Ising modellen, hvor interak-
tions grafen for den førstnævnte indeholder orienterede kanter hvorimod
interaktions grafen for den sidstnævne indeholder ikke-orienterede kanter.
Kernen i grafiske modeller er konceptet om betinget uafhængighed; X er
betinget uafhængig af Y givet Z, hvis informationen om Z gør Y irrele-
vant for X. Information om betinget uafhængighed simplificerer modellen
og dermed interaktions grafen. For klassifikations problemer kan struk-
turen på interaktions grafen have en mindre betydning, hvorimod struk-
turen er essentiel i problemer hvor formålet er at forstå det underliggende
fænomen som modelleres. Der eksisterer mange typer af grafiske mod-
eller med forskellige interaktions grafer, dvs. grafer med både orienterede og
ikke-orienterede kanter og både diskrete og kontinuerte variable osv. Fælles
for disse er, at den grafiske struktur skal læres fra data, også kaldet struk-
turlæring, eller bestemmes ved hjælp af ekspertviden. Givet en interaktion-
sgraf, er det muligt at beregne posterior sandsynligheder, også kaldet infer-
ens, hvilket er essentiel for grafiske modeller. Selvom både strukturlæring og
inferens generelt er NP-komplette problemer, eksisterer der effektive heuris-
tiker og eksakte metoder for inferens. Af særlig interesse er junction tree
algoritmen.

Afhandlingen består af to dele, hvor den første fungerer som en kort intro-
duktion til grafiske modeller og eksempler som belyser nogle af resultaterne
i afhandlingens artikler. Anden del består af hoved artiklerne A-D Outlier
detektion i højdimensionale diskrete data er et kompliceret problem, som in-
volverer at bestemme observationer som er set få gange i data. Der gives
en ny metode til outlier detektion i dekomposable grafiske modeller med
diskrete variable i artikel A. Denne metode udvides direkte i artikel B for at
kunne håndtere kontinuerte variable. Indsigt fra det komplementerende soft-
ware for artikel A viste, at sparsiteten i de involverede tabeller kan udnyttes

v



for at spare både tid og hukommelse i forbindelse med inferens i grafiske
modeller som forklaret i detaljer i artikel C. Slutteligt, i jagten på at optimere
hukommelse og tidsforbrug ved inferens, forelås en ny metode, kaldet unity
propagation, i artikel D sammen med en ny smoothing teknik, kaldet unity
smoothing, til at håndtere inkonsistenser mellem modellen og nye observa-
tioner.



Contents

Abstract iii

Resumé v

Preface xi

I Background 1

Introduction 3
1 Undirected Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Graphical Log-Linear Models . . . . . . . . . . . . . . . . . . . . 4
3 Bayesian Networks and the Junction Tree Algorithm . . . . . . 8

3.1 The Road to the Junction Tree Algorithm . . . . . . . . . 11
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

II Papers 15

A Outlier Detection in Contingency Tables Using Decomposable Graph-
ical Models 17
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2 Undirected graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3 Notation and preliminaries for contingency tables . . . . . . . . 22
4 Test for outliers in contingency tables . . . . . . . . . . . . . . . 24

4.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5 An Example in Forensic Genetics . . . . . . . . . . . . . . . . . . 29

5.1 Summary of 1000 Genome Data . . . . . . . . . . . . . . 30
5.2 Testing For z Being an Outlier . . . . . . . . . . . . . . . 31
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

vii



Contents

B Detecting Outliers in High-dimensional Data with Mixed Variable
Types using Conditional Gaussian Regression Models 37
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2 Decomposable Mixed Graphs . . . . . . . . . . . . . . . . . . . . 41
4 Notation and the Likelihood Function . . . . . . . . . . . . . . . 43
5 The Null Hypothesis and Deviance Test Statistic . . . . . . . . . 46

6.1 A Note on Studentized Residuals . . . . . . . . . . . . . 47
6.2 The Homogeneous Case . . . . . . . . . . . . . . . . . . . 48
6.3 Evaluating Deviances . . . . . . . . . . . . . . . . . . . . 49

7 The Outlier Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8 Real Data Example . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8.1 Verifying CGR Assumptions . . . . . . . . . . . . . . . . 53
8.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 54

9 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . 55
A Variance Estimation for Inhomogeneous Models . . . . . . . . . 58
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

C The jti and sparta Packages: Junction Tree Inference using Sparse
Tables with a View Towards High Dimensional Graphical Models 63
1 Notation and Terminology . . . . . . . . . . . . . . . . . . . . . . 67
2 Motivation Through Message Passing in Bayesian Networks . . 68

2.1 Evidence and Slicing . . . . . . . . . . . . . . . . . . . . . 72
3 An Intuitive way of Representing Sparse Tables . . . . . . . . . 72
4 Sparse Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1 How to use sparta . . . . . . . . . . . . . . . . . . . . . . 79
4.2 When to use sparta . . . . . . . . . . . . . . . . . . . . . . 81
4.3 Probability Trees and Value Based Potentials . . . . . . . 82

5 Usecases of jti and sparta . . . . . . . . . . . . . . . . . . . . . . 85
5.1 Inference in Decomposable Markov Random Fields . . . 88
5.2 The Impact of Evidence . . . . . . . . . . . . . . . . . . . 89

6 Time and Memory Trade off in Sparta . . . . . . . . . . . . . . . 91
7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

D Unity Smoothing for Handling Inconsistent Evidence in Bayesian
Networks and Unity Propagation for Faster Inference 97
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

2.1 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . 101
2.2 Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
2.3 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3 Unity Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

viii



Contents

4 The Junction Tree Algorithm with the LS Scheme . . . . . . . . 107
5 Unity Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.1 Prediction Error and Inference Time with Inconsistent
Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Inference Time for Unity Cliques Emerging from Trian-
gulation and Initialization . . . . . . . . . . . . . . . . . . 115

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

ix



Contents

x



Preface

This thesis contains the scientific research conducted by me and my collabo-
rators during my PhD study at the Department of Mathematical Sciences at
Aalborg University. The work was partially funded by The Section of Foren-
sic Genetics, Department of Forensic Medicine, Faculty of Health and Med-
ical Sciences, University of Copenhagen, Denmark. The research concerns
outlier detection and optimizing existing methods for inference in graphical
models. Part I introduces graphical models and small examples to facilitate
some of the findings in the papers. Part II is a collection of the four research
papers:

A: Lindskou, M., Eriksen, P. S., and Tvedebrink, T. Outlier detection in con-
tingency tables using decomposable graphical models. Scandinavian Journal
of Statistics, 47(2), 347-360.

B: Lindskou, M., Tvedebrink, T., Eriksen, P. S. and Morling, N. Detecting
Outliers in High-dimensional Data with Mixed Variable Types using Condi-
tional Gaussian Regression Models. Submitted to arXiv.

C: Lindskou, M., Tvedebrink, T., Eriksen, P. S., Højsgaard, .S, and Morling,
N. The jti and sparta Packages: Junction Tree Inference using Sparse Tables
with a View Towards High Dimensional Graphical Models. Submitted to
Journal of Statistical Software.

D: Lindskou, M., Tvedebrink, T., Eriksen, P. S., Højsgaard, .S, and Mor-
ling, N. Unity Smoothing for Handling Inconsistent Evidence in Bayesian
Networks and Unity Propagation for Faster Inference. Submitted to Interna-
tional Journal of Approximate Reasoning.

Other work, by the PhD candidate, not included in the thesis counts

• Lindskou, M.. molic: An R package for multivariate outlier detection in
contingency tables. Journal of Open Source Software, 4(42), 1665.

• Lindskou, M. Outlier Detection in Categorical Data. Symposium i An-
vendt Statistik 2020.

xi



Preface

I wish to thank my supervisor Torben Tvedebrink who have always taken
the time to listen to my ideas and motivated me to keep going even in dif-
ficult periods. Torben and I have had countless pleasant conversations both
regarding the thesis but also on a personal level. The same can be said about
my co-supervisor Svante. I have always felt that I was welcome in his office,
either for a nerdy talk or just everything and nothing. I have been part of a
dream team working with you guys. I also wish to thank my co-supervisor
Niels Morling, who has been invaluable in the entire process by always be-
ing critical and motivated about my work. Also, a big thank you to Søren
Højsgaard, whom I had the pleasure to work with on paper C and D. During
my stay a the Department of Computer Science, I had the privilege to work
with Thomas Dyhre Nielsen and Kristian G. Olesen on a new method for
triangulating non-decomposable graphs. The work is ongoing.

Finally, and most important, a special thanks to my beloved family; Mette,
Viktor and Alberte. You guys are the very reason that I have completed
my PhD study without severe stress and anxiety. The three of you are my
everything ♥.

Mads Lindskou

Aalborg University, February 27, 2022

xii



Part I

Background

1





Introduction

Graphical models (Lauritzen, 1996, Pearl, 2014, Edwards, 2012) is a family of
probability distributions that can be interpreted using directed or undirected
graphs, in which each node represents a random variable; an edge (or arc) be-
tween two variables indicates a relationship between these. Such a graphical
representation is convenient, since, for high-dimensional problems the local
interpretation of a subset of variables can be interpreted in the sub-graph
induced by these and connected variables to these. In essence, a graphical
model encodes for conditional independencies among the variables.

By exploiting the graph-theoretic representation, general algorithms can be
used for computing marginal and conditional probabilities. For large enough
problems, it may be impossible to compute such probabilities without ex-
ploiting the graphical representation. Of particular importance for calcula-
tions of probabilities in graphical models is the junction tree algorithm ex-
plained in more detail in both paper C and D. By far, the two most popu-
lar types of graphical models are Bayesian networks (BNs) and undirected
graphical models (also known as Markov random fields, MRFs) which are
two of three different types of graphical models considered in this thesis. In
paper B, we also consider a type of graphical models called mixed graphical
models that contains both discrete and continuous variables.

In the following, a brief exposition of undirected graphical models and BNs
is presented in order to put the contributions of the thesis into perspective.
The notation in the following may differ slightly from the notation used in
the papers, and we strive to keep things simple and non-technical by using
toy examples.

1 Undirected Graphs

An undirected graph G = (V, E) is a pair consisting of a set of vertices, V, and
a set of edges E = {{u,v} | u,v ∈V,u , v}. A clique is a subset of V, for which

3



all nodes are connected in the induced sub-graph of G (a complete graph). A
maximal clique, with respect to inclusion, is a clique, which is not contained
in any other cliques. From here, by clique we always mean a maximal clique.

Let A,S and B be disjoint subsets of the vertices in an undirected graph
G. Then (A,S, B) forms a (weak) decomposition of G if V = A ∪ S ∪ B, S
separates all vertices in A from all vertices in B, and S is complete. The
decomposition (A,S, B) decomposes G into two sub-graphs, GA∪S and GB∪S
defined over the vertices A ∪ S and B ∪ S, respectively. The graph G is said
to be decomposable if it can be successively decomposed into sub-graphs
defined on its cliques.

2 Graphical Log-Linear Models

An undirected graphical model with discrete variables is, in its essence, a log-
linear model with the additional property that conditional independencies
can be inferred from an undirected graph called the interaction graph. Con-
sider three binary variables x,y and z, defined over Ix, Iy and Iz respectively
where each equals {0,1}. Denote by p a generic probability mass function. If
it holds that

p(x,y,z) =
p(x,z)p(y,z)

p(z)
, (1)

we say that x and y are conditionally independent given z, written x y y | z.
It can be shown that if x y y | z, the joint density factorizes as

p(x,y,z) = h(x,z)g(y,z) (2)

for some functions h and g. This result is also known as the factorization
criterion. Using this, the conditional independencies in (1) can be encoded
via a hierarchical log-linear model as

log p(x,y,z) = µ + µx + µy + µz + µx,z + µy,z, (3)

where µ is a constant, and all other terms are parameters that are set to zero
if one of the corresponding variables is zero. The term hierarchical means
that if a parameter in (3) is set to zero, all its other higher-order relatives
are also set to zero. If, for example, µy = 0, we must also set µy,z = 0. In
a log-linear model, two variables are conditionally independent of all other
variables if they do not appear in any interaction term together. In what fol-
lows, we use the model in (3) as a running example and show the connection
to decomposable graphical models.

The global Markov property states that for any decomposition (A,S, B) it
holds that A y B | S, meaning that all variables in A are conditionally inde-

4



2. Graphical Log-Linear Models

pendent of all variables in B given S. Consider now the interaction graph, G,
in Figure 1 with cliques C1 = {x,z} and C2 = {y,z} and separator S = {z}.
The triple (C1,S,C2) forms a decomposition of G and hence encodes for the
same conditional independencies as the log-linear model in (3). In fact, G is
decomposable and the model is called a decomposable graphical model. If,
however, the edge {x,y} is added to G and µx,y is added to (3), the model is
no longer graphical since the three-way interaction term µx,y,z must also be
present. That is, not all log-linear models are graphical models. Furthermore,
not all graphical models are decomposable. Finally, the cliques are called gen-
erators of the hierarchical log-linear model in (3) since they uniquely specify
the terms needed in the model.

x

z

y

Fig. 1: The interaction graph G.

z0 z1

y0 y1 y0 y1

x0 125 87 17 5
x1 67 40 30 9

Table 1: A contingency table
of the variables x,y and z.

Consider a sample of N = 380 observations from p and denote by n(x,y,z)
the number of observations for a specific value of x,y and z. The sample
can then be summarized in the contingency table shown in Table 1, where
x0 is an abbreviation for x = 0 etc. From the table, we see for example that
n(x1,y1,z1) = 9. Given z, the rows in Table 1 are approximately proportional
and it seems reasonable to state that x y y | z corresponding to the interaction
graph G.

We could just as well have adopted the multinomial scheme, and the likeli-
hood function then takes the form

L(p) ∝ ∏
(x,y,z)∈I

p(x,y,z)n(x,y,z), (4)

where I = Ix × Iy × Iz. The maximum likelihood estimates (MLEs) under the
constraint that x y y | z is given by

p̂(x,y,z) = N−1 n(x,z)n(y,z)
n(z)

, (5)

where e.g., n(x,z) is the marginal table over x and z. In general, the maximum
likelihood estimates is given by a product over the clique tables divided by a
product over the separator tables. Let q(x,y,z) be the saturated model, where
the edge {x,y} is added. That is, q corresponds to a log-linear model where

5



all interaction terms are included and no restrictions are imposed other than
∑(x,y,z)∈I q(x,y,z) = 1. The MLEs are then given by

q̂(x,y,z) = N−1n(x,y,z). (6)

For high-dimensional contingency tables, possibly with many complex in-
teraction terms, it is difficult a priori to have very precise ideas about the
relevant models and where one initially should look for possible conditional
independence among the variables (Darroch et al., 1980). As such, the graph
representation is important when searching for models. A cornerstone in
the thesis is the R library ess (Lindskou, 2021) that fits decomposable undi-
rected graphical models according to the method described in Deshpande
et al. (2013). It is a forward procedure that starts with the independence
graph, (V,∅), (which is indeed decomposable) and successively adds the
"best edge" in each step. The edges that are allowed to be inserted are com-
pletely characterized since the graph is forced to be decomposable and hence
the search space is considerably narrowed. Let G = (V, E) be a decomposable
graph and assume {x,y} < E. Given two cliques, C1 and C2 with separator S,
the edge {x,y} can be added if, and only if, x ∈ C1, y ∈ C2 and both x and y
are connected to all vertices in S.

Recall that the entropy of p is given by

H(p) = − ∑
(x,y,z)∈I

p(x,y,z) log p(x,y,z).

It can be shown that minimizing the Kullback-Leibler (KL) divergence of a
given model, p, from the saturated model, q̂, is equivalent to maximum like-
lihood estimation. For decomposable graphical models, Malvestuto (1991)
showed that

KL(p, q̂) = H(p(x,y,z))− H(q̂(x,y,z))

= H(p(x,z)) + H(p(y,z))− H(p(z))− H(q̂(x,y,z)).

Furthermore, this is the same as minimizing the entropy of the given model,
p. In each step of ess, one seeks to add the edge that maximizes the difference
in entropy, which in turn minimizes the entropy of p. One property of ess
is that it can reuse the entropies in subsequent calculations saving a lot of
computational time and memory. However, the difference in entropy does
not give us any idea as to when we should stop adding edges. Consider
Akaikes Information Criterion defined as

AIC = −2log
(

L̂
)
+ 2k,

6



2. Graphical Log-Linear Models

where L̂ is the maximum value of the likelihood function in (4), and k is the
number of estimated parameters in the model. Let AIC and AIC

′
denote

Akaikes information criteria for the models p̂ and q̂, respectively. We strive
for AIC−AIC′ > 0. That is

∆AIC = 2log
(

L̂′/L̂
)
+ 2(k− k′) > 0.

The first term of ∆AIC is called the deviance, and it follows that

D2 = 2 ∑
(x,y,z)∈I

n(x,y,z) log
n(x,z)n(y,z)
n(x,y,z)n(z)

= 2N {H( p̂(x,y,z))− H(q̂(x,y,z))} .

The difference in AIC then reduces to

∆AIC = 2N {H( p̂(x,y,z))− H(q̂(x,y,z))}+ 2(k− k′).

Finally, this gives us a stopping criteria while preserving the savings in com-
putational time of the entropies. In the running example, it follows that

k− k′ = |Iz|(|Ix| − 1)(|Iy| − 1) = |I| − |Ixz| − |Iyz|+ |Iz| = 2,

where Ixz = Iyz = I × I. This corresponds to adding the terms µx,y and
µx,y,z to (3) as discussed above. Define by J = {i ∈ I | i is observed in data}
the sparse statespace of I (and similarly for Ixz etc.). In ess, the difference in
parameters can be calculated based on either J or I . In the former case, more
edges are added to accommodate for associations that would not otherwise
be included due to sparsity.

Log-linear regression models are less suited for complex models with many
nodes and edges whereas the graphical models enjoy the Markov prop-
erty enabling easy verification of conditional independence via the interac-
tion graph. Moreover, when interest is in calculating posterior probabilities,
the decomposable graphical models are a necessity and many different algo-
rithms have been developed for this very purpose. One algorithm that stands
out is the Junction Tree Algorithm explained broadly using a flow-chart in
Section 4. This algorithm is also the topic of paper C and D.

Paper A deals with the notion of outliers in decomposable undirected graph-
ical models, which only makes sense when the number of variables and their
statespaces have a certain size. However, in the toy example with observa-
tions given in Table 1, we may declare the observation (x0,y1,z1) as an outlier
since it was only observed five times. The method exploits the decomposition
to assign local scores on cliques and separators. Paper B directly extends the

7



work in paper A to allow for a mix of discrete and continuous variables.

3 Bayesian Networks and the Junction Tree Algo-
rithm

Bayesian networks (BNs), also called belief networks, are graphical models
where the interaction graph is a directed acyclic graph (DAG). The model
is easier to define, but, in general, it requires more effort to determine con-
ditional independencies from a DAG. Consider the DAG G in Figure 2(a)
where the set of nodes is given by {v1,v2,v3,v4,v5,v6}. The joint pmf is then
given by

p(v1,v2,v3,v4,v5,v6) = p(v1)p(v2)p(v3 | v1,v2)p(v4 | v1,v2)p(v5 | v4,v6)p(p6).
(7)

v1 v2

v3 v4 v5

v6

(a)

v1 v2

v3

v4 v5

v6

(b)

1,2,3,4

C1

93,4,69

C2

94,5,69

C3

(c)

Fig. 2: TBA

That is, the pmf factorizes into conditional probability tables (CPTs) of the
nodes given their parents. Computing marginals and other conditionals from
(7) can be done simply by marginalization. However, the order in which the
variables are marginalized out is crucial. Choosing a particular order may re-
sult in a failed attempt to marginalize due to lack of computer memory. This
is where the junction tree algorithm comes to rescue. It starts by moralizing,
i.e., add an edge between nodes that have a common child and remove the
directions. If the resulting graph is not decomposable, cf. Section 1, it must
be made so by triangulation, i.e., add fill-in edges until no cycles of length
greater than three are present. The moralized graph of G is already decom-
posable, but assume we are interested in the joint pmf of v3 and v6. Because
they are not situated in the same clique of the moralized graph, we must ex-
tend the moralized graph with the edge {v3,v6} depicted with a dotted line.
This in turn makes the graph non-decomposable and we must add the dashed
fill-in edge {v3,v4}. The maximal cliques, C1 = {v1,v2,v3,v4},C2 = {v3,v4,v6}
and C3 = {v4,v5,v6}, can now be located e.g., using maximum cardinality

8



3. Bayesian Networks and the Junction Tree Algorithm

search and used to construct a secondary structure called the junction tree,
see Figure 2(c). We choose C2 as the root of the junction tree, meaning that
we send messages towards C2 such that we can query the joint pmf of v3
and v6. The CPTs can now be allocated to the cliques to form the clique po-
tential tables i.e., those table objects that are manipulated via multiplication,
division and marginalization during message passing in the junction tree. In
paper C we introduce a new object, called sparta, that is efficient when the
tables are sparse. A CPT can be allocated to a clique if the child node and all
its parent nodes belong to the clique. Notice, that no CPTs belong to clique
C2; we call such cliques for unity cliques and these cliques can be exploited
to speed up the message passing, which is the topic of paper D.

When the message passing has finished, each clique potential table encodes
for the joint pmf of the variables involved in the clique. Hence, the joint
pmf of (v3,v6) is easily obtained by marginalizing out v4 in the potential
associated with C2.

Imagine now that G is a pedigree. That is, v1 and v2 are indeed the parents
of v3 and v4, etc. The genetic information passed on from parent to child
is deterministic if we assume no artifacts like mutations, etc. We consider a
single DNA marker with the possible alleles a,b and c. Assume that both v1
and v2 have the genotype (a,b). Since v1 and v2 passes on one of their alleles
to v3 with equal probability, it follows that

p(v3 = x | v1 = (a,b),v2 = (a,b)) =


1/4 if x = (a, a)
1/4 if x = (b,b)
1/2 if x = (a,b)
0 else

(8)

irrespectively of the allele frequencies pa, pb and pc. However, to encode
the entire table p(v3 | v1,v2), the entire statespace must be present. If we
make the encoding 1 7→ 4, 1/2 7→ 2, 1/4 7→ 1 (where the number to the left
of the arrow is a probability and the number to the right of the arrow is the
encoding), and we symbolize a zero with a dot, then p(v3 | v1,v2) can be
represented as shown in Table 2. The conditional (8) is highlighted with a
dashed rectangle. The interesting thing is, that the table is very sparse. If we
let nl be the number of alleles, then the number of heterozygotes is nh = (nl

2 ),
and the number of genotypes is ng = nl + nh. Given the parents genotypes,
there are either one, two, three or four possible genotypes that the child can
inherit. If for example, both parents are homozygous with the same allele,
the child must also be homozygous with the same allele. Investigating these
four cases, it can be shown that the number of non-zero cells in p(v3 | v1,v2)

9



is given by

nz =

{
n2

l + 4nlnh if nl = 2
n2

l + 4nlnh + 3nh + 4nh(nh − 1) if nl ≥ 3.
(9)

The total number of cells is given by nt = n3
g. Using (9), the total number

of cells in Table 2 is 216 of which only 78 non-zero. In Figure 3, a plot
of nl and nt is shown for 4,5, . . . ,30 alleles, indicating that there is a huge
benefit by leveraging sparsity. Let φC1 = p(v1)p(v2)p(v3 | v1,v2)p(v4 | v1,v2)
be the clique potential for clique C1. In the following, we analyze the memory
needed to store φC1 with dense tables and using the new sparse tables, called
sparta, proposed in paper C. First, the product φ23 = p(v3 | v1,v2)p(v4 | v1,v2)
contains

n2
l + 2 · 4nlnh + 3 · 3nh + 4 · 4nh(nh − 1) (10)

non-zero cells.

v3 aa bb cc ab ac bc v3 aa bb cc ab ac bc
v2 v1 v2 v1

aa aa 4 . . 2 2 . ab aa 2 . . 1 1 .
bb . . . . . . bb . 2 . 1 . 1
cc . . . . . . cc . . . . . .
ab . 4 . 2 . 2 ab 2 2 . 2 1 1
ac . . 4 . 2 2 ac . . 2 . 1 1
bc . . . . . . bc . . 2 . 1 1

bb aa . . . . . . ac aa 2 . . 1 1 .
bb . 4 . 2 . 2 bb . . . . . .
cc . . . . . . cc . . 2 . 1 1
ab 4 . . 2 2 . ab . 2 . 1 . 1
ac . . . . . . ac 2 . 2 1 2 1
bc . . 4 . 2 2 bc . 2 . 1 . 1

cc aa . . . . . . bc aa . . . . . .
bb . . . . . . bb . 2 . 1 . 1
cc . . 4 . 2 2 cc . . 2 . 1 1
ab . . . . . . ab 2 . . 1 1 .
ac 4 . . 2 2 . ac 2 . . 1 1 .
bc . 4 . 2 . 2 bc . 2 2 1 1 2

Table 2: A pedigree CPT with the encoding 1 7→ 4, 1/2 7→ 2, 1/4 7→ 1, where the number to the
left of the arrow is a probability and the number to the right of the arrow is the encoding.

Multiplying φ23 with p(v1) and p(v2) will leave the number of non-zero cells

10



3. Bayesian Networks and the Junction Tree Algorithm

unchanged. Assume now that nl = 30, then φC1 has 3,129,855 non-zero cells
compared to the number of total cells, 46,753,250,625, resulting in a fraction
of non-zero cells given by 0.000067. For large enough tables, each element
can be assumed to take up 8 bytes in R, and the memory needed to store the
dense clique potential is therefore 374 gigabytes. A sparta object takes up
y(4k+ 8) bytes (see Paper C) where y is the number of non-zero elements, and
k is the number of variables. Hence, the sparse table takes up 0.07 gigabytes
which easily fits into memory on any standard laptop.

0.0e+00

2.5e+06

5.0e+06

7.5e+06

1.0e+07

10 20 30
Number of alleles

N
um

be
r 

of
 a

ll 
ce

lls

All cells Non−zero cells

Fig. 3: Number of all cells and non-zero cells for at pedigree CPT with three alleles.

Denote by N(m) the number of observed alleles for the pedigree members in
the index vector m. The R package pednoa1 was designed to determine the
distribution p(N(m)) (possibly over several different DNA markers) and to
show the benefit of using sparta tables as backend in the jti package. It
is a direct extension of the work in Tvedebrink (2014), where they provide
closed form solutions to calculate p(N(m)) for m unrelated contributors over
L different DNA markers.

3.1 The Road to the Junction Tree Algorithm

The junction tree algorithm was briefly described in the previous section. In
the following, JTA is described using a flow-chart in Figure 4 in order to give

1https://github.com/mlindsk/pednoa

11



an insight into the complexity and numerous sub-routines that together form
the algorithm in its entirety. The solid boxes are the meta routines that must
be conducted, whereas a dashed box is an example of concrete algorithm
that can be used for the routine that it points towards. All solid boxes were
described in the previous section, but it should be clear that JTA is not a trivial
algorithm to implement when the flowchart is augmented with the dashed
boxes. It takes quite some time to implement any of the dashed boxes, and
in particular sparta and unity propagation described in paper C and D.

Encode graph

Moralize

Elimination
game

Triangulate

Maximum car-
dinality search

Find maxi-
mal cliques

Learn/specify
CPTs

Allocate CPTs
to clique
potentials

Sparta

Create junc-
tion tree

Send messages
between

cliques in the
junction tree

Kruskals

Determine
a root and

schedule all
messages
towards
the root

Query pos-
terior prob-

abilities

Laurtizen-
Spiegelhalter

message-
passing scheme

Depth first
search

Unity prop-
agation

Fig. 4: The road to junction tree inference.

12



References

References

Darroch, J. N., Lauritzen, S. L., and Speed, T. P. (1980). Markov fields and
log-linear interaction models for contingency tables. The Annals of Statistics,
pages 522–539.

Deshpande, A., Garofalakis, M., and Jordan, M. I. (2013). Efficient stepwise
selection in decomposable models. arXiv preprint arXiv:1301.2267.

Edwards, D. (2012). Introduction to graphical modelling. Springer Science &
Business Media.

Lauritzen, S. L. (1996). Graphical models, volume 17 of Oxford Statistical Science
Series. Clarendon Press.

Lindskou, M. (2021). ess: Efficient Stewise Selection in Decomposable Markov
Random Fields. R package version 1.1.2.

Malvestuto, F. M. (1991). Approximating discrete probability distributions
with decomposable models. IEEE Transactions on systems, man, and cyber-
netics, 21(5):1287–1294.

Pearl, J. (2014). Probabilistic reasoning in intelligent systems: networks of plausible
inference. Elsevier.

Tvedebrink, T. (2014). On the exact distribution of the numbers of alleles in
dna mixtures. International journal of legal medicine, 128(3):427–437.

13



References

14



Part II

Papers

15





Paper A

Outlier Detection in Contingency Tables Using
Decomposable Graphical Models

Mads Lindskou, Poul Svante Eriksen and Torben Tvedebrink

The paper has been published in the
Scandinavian Journal of Statistics, 47(2), 347-360



The layout has been revised.



1. Introduction

Abstract

For high-dimensional data, it is a tedious task to determine anomalies such as outliers.
We present a novel outlier detection method for high-dimensional contingency tables.
We use the class of decomposable graphical models to model the relationship among
the variables of interest, which can be depicted by an undirected graph called the
interaction graph.

Given an interaction graph, we derive a closed form expression of the likelihood ra-
tio test (LRT) statistic and an exact distribution for efficient simulation of the test
statistic. An observation is declared an outlier if it deviates significantly from the
approximated distribution of the test statistic under the null hypothesis.

We demonstrate the use of the LRT outlier detection framework on genetic data mod-
eled by Chow-Liu trees.

1 Introduction

An outlier is a case-specific unit since it may be interpreted as natural ex-
treme noise in some applications, whereas in other applications it may be
the most interesting observation. A universal definition of an outlier is given
by "Hawkins (1980): “an observation which deviates so much from the other
observations in the data-set as to arouse suspicions that it was generated by a
different mechanism”. It will be clear that our method adapts this definition
by specifying a hypothesis of an outlier being distributed differently than all
other observations in a given contingency table. This definition, however, is
extremely vague and cannot be used for outlier detection on an operational
level. In Section 4, we define an outlier in a contingency table by means of
the likelihood ratio principle. This definition captures the perception of the
definition suggested by "Hawkins (1980).

Although the literature on outlier detection is vast, the problem of detecting
outliers in contingency tables has mainly been focused on two-way tables
(Kuhnt, 2004, Kuhnt et al., 2014). Kuhnt (2004) took a probabilistic approach
using a log-linear model and gave a formal definition of outliers based on
this model. They defined an outlier region, and declared an observation as
an outlier if it fell within this region. No example was given for tables with
dimensions larger than three. However, for many real-world applications it
is not unusual to have more than 100 dimensions, and the method of Kuhnt
(2004) may fail due to the curse of dimensionality. In this paper, we focus on
high-dimensional tables and the application in forensic genetics. The method
is general and applies to any outlier detection problem in contingency tables
including sparse and/or high-dimensional tables.

19



Paper A.

A more recent approach for outlier detection in contingency tables was pro-
posed by Kuhnt et al. (2014) using what they called minimal patterns in log-
linear models. However, it is difficult to find the minimal patterns, and they
focused solely on two-dimensional tables. Kuhnt et al. (2014) commented
on the need of exploring high-dimensional sparse tables, a challenge that we
address in this paper.

We use a decomposable graphical model (DGM), which is a log-linear model
with further restrictions imposed on the probability mass function. The ad-
vantage of using DGMs is that the probability mass function can be expressed
in a closed form (Lauritzen, 1996). For DGMs, the probability mass function
can be associated with an interaction graph, from which conditional indepen-
dences among the variables can be inferred. This gives a way to investigate
the underlying nature of outliers.

Our method relies on the assumption, that the table is adequately described
by a given DGM. That is, we do not focus on learning the interaction graph.
Therefore, we can not directly compare efficiency and running time with
other state-of-the-art methods. However, it is also advantageous to sepa-
rate the learning procedure from the outlier test since one can exploit expert
knowledge and use the most recent algorithms of DGM learning in order to
form the interaction graph.

The paper is organized as follows. In Section 2, we briefly introduce DGMs
with some notation used for contingency tables and preliminary results in-
troduced in Section 3. In Section 4, we introduce our novel outlier detection
procedure for contingency tables using DGMs. In Section 5, we show the
procedure using genetic data with a simple interaction structure between the
variables. Finally, in Section 6, we discuss the work and summarize the nov-
elties presented in the paper.

2 Undirected graphs

A brief outline of some important properties for undirected graphs are ex-
plained and visualized by a running example using the graph in Figure 1.
For more details, see for example Lauritzen (1996).

A graph G = (∆, E) is a structure, in which ∆ is a finite set of vertices, and
E ⊆ ∆(2) is a finite set of edges, in which ∆(2) = {{a,b} | a,b ∈ ∆, a , b}. The
graph is weighted if a weight is assigned to each edge. The subgraph GA
consists of vertices A⊆ ∆ from G and the corresponding edges EA = E∩ A(2)

between them. The union of two graphs, say G = G1 ∪ G2, is the graph with
vertex set E = E1 ∪ E2 and edge set ∆ = ∆1 ∪ ∆2. A graph is complete if there
is an edge between all pairs of vertices, and a complete subgraph is called a

20



2. Undirected graphs

clique if it is not contained in any other complete subgraph. A subset of ∆ is
complete if it induces a complete subgraph. The cliques of the graph in Figure
1 are C1 = {a,b},C2 = {b, c,d},C3 = {c,d, e},C4 = {d, e, f }, and C5 = { f , g}.

a

b

c

d

e

f

g

Fig. 1: Example of a decomposable graph with cliques C1 = {a,b},C2 = {b, c,d},C3 =
{c,d, e},C4 = {d, e, f }, and C5 = { f , g}.

A sequence of vertices v0,v1, . . . ,vn such that {vi,vi+1} ∈ E is called a path of
length n. Two sets, A, B ⊆ ∆, are separated by a third set C ⊆ ∆ if all paths
between vertices in A and B intersect C. A triple (A, B,C) of disjoint subsets
of ∆ forms a decomposition of G if

1. ∆ = A ∪ B ∪ C,

2. C separates A from B, and

3. C is a complete subset of ∆.

The triplet (A, B,C) is said to decompose G into GA∪C and GB∪C. A decom-
posable graph is one that can be successively decomposed into its cliques.

A triangulated graph is an undirected graph with no cycle (i.e. a path start-
ing and ending at the same vertex) of length n≥ 4 without chords, i.e. edges
that are not part of the cycle but connects two vertices of the cycle. It can
be shown that whenever a graph is triangulated, it is also decomposable and
vice versa. The graph in Figure 1 is triangulated and therefore decompos-
able. Triangulatedness can be verified algorithmically using the Maximum
Cardinality Search algorithm (Yannakakis, 1981).

Let C1,C2, . . . ,CK be a sequence of the cliques in an undirected graph G and
define the history and separators, respectively, as

Hj = C1 ∪ C2 ∪ · · · ∪ Cj and Sj = Hj−1 ∩ Cj

for j = 2, . . . , K with H1 = C1. The sequence is said to obey the running inter-
section property (RIP) if Si ⊆ Cj for some j < i for i = 2,3, . . . ,K. The cliques
of a decomposable graph can be numbered to have RIP ordering; the cliques
C1,C2,C3,C4, and C5 obtained from the graph in Figure 1, in that order, is a
RIP ordering with separators S2 = {b},S3 = {c,d},S4 = {d, e}, and S5 = { f }.
Notice that the RIP ordering is not necessarily unique.

21



Paper A.

A graph is connected if there is a path between any two nodes. If not, the
graph is called disconnected and the subgraphs, for which the graph is con-
nected, are called the components of the graph. A tree is a connected graph
without cycles, in which any path between two vertices is unique. A mini-
mum spanning tree is a subgraph that is a tree with minimum possible total
edge weight in an undirected weighted graph. A graph, in which each com-
ponent is a tree, is called a forest. The graph in Figure 1 is connected but not
a tree. It follows that all forests are decomposable.

Finally, a probability measure can be associated with an interaction graph; an
undirected graph in which each vertex is a random variable and two vertices
are neighbors if, and only if, interaction is permitted between the variables.

For decomposable graphs, the density can be factorized in terms of the
cliques and separators. Collectively, models for which the interaction graph is
decomposable, are called decomposable graphical models (DGMs). A crucial
property is that we can read the conditional probabilities from the interaction
graph using the RIP ordering. More precisely, the random variables in the
j′th clique are conditionally independent of the variables in the i′th clique
given the j′th separator for all i < j.

3 Notation and preliminaries for contingency ta-
bles

We use the notation introduced by Lauritzen (1996). Let ∆ denote a finite set
of discrete variables, in which each variable, δ ∈ ∆, takes a value in the level
set Iδ. An outcome, i = (iδ)δ∈∆, is a cell of the contingency table, where

i ∈ I = ×δ∈∆ Iδ.

The entire contingency table of counts is the set n = {n(i)}i∈I , where n(i) is
the number of observations that falls in cell i and |n| = ∑i∈I n(i) is the total
number of observations. The probability that an observation belongs to cell i
is denoted as p(i).

When interest is only on some subset of ∆, say a, we can form the a-marginal
with marginal cells

ia ∈ Ia = ×δ∈a Iδ.

The number of observations in cell ia in the a-marginal is given by

na(ia) = ∑
j∈I:ja=ia

n(j) = ∑
j∆\a∈I∆\a

n(ia, j∆\a),

22



3. Notation and preliminaries for contingency tables

where the last expression is convenient for handling marginal tables. Simi-
larly, pa denotes the a-marginal density of p.

The decomposable graphical model can then be written (Lauritzen, 1996) as

p(i) = pC1(iC1)
K

∏
k=2

pCk (iCk )

pSk (iSk )
, (1)

where C1,C2, . . . ,CK and S2,S3, . . . ,SK are the RIP ordered cliques and separa-
tors in a decomposable graph.

Let the sample y1,y2, . . . ,yM with M = |n| be drawn independently from the
density in (1) and define the contingency table of zeroes except for cell i = yα,
which contains a one:

x(α)(i) =

{
1 if i = yα,
0 otherwise

for α = 1,2, . . . , M. The cell counts in the observed table is then given by

n(i) =
M

∑
α=1

x(α)(i), i ∈ I.

Assume the cell counts to be random, but the total number of counts to be
fixed, and denote by Na the stochastic counterpart of na. Then, the joint
density of the marginal tables Na, a⊆ ∆, follows the multinomial distribution

P(Na = na) =

(
M
na

)
∏
i∈Ia

pa(i)na(i), (2)

where (
M
na

)
:=

M!
∏i∈Ia na(i)!

is a multinomial coefficient. Since the model of interest is decomposable,
it follows that the set of clique marginals, N∗ = {NC}C∈C , is sufficient (al-
though not minimally sufficient) for p∗ = {pC}C∈C , where C is the set of
cliques. When the cell probabilities are not restricted in any way, except
for the constraints of being positive and summing to one, the model is said
to be saturated. In the family of log-linear models, the logarithms of the
cell probabilities are typically constrained to follow an ANOVA-like factorial
expansion (Højsgaard et al., 2012). Graphical models are constructed from
saturated models that are saturated on each clique. For saturated models,
the estimated cell probabilities are given as the cell counts divided by the
total number of observations (Lauritzen, 1996). Hence, we obtain the set of

23



Paper A.

maximum likelihood estimates

p̂∗ =
{nC

M

}
C∈C

,

and the estimate of (1) is thus

p̂(i) =
(

nC1(iC1)

M

) K

∏
k=2

nCk (iCk )

nSk (iSk )
. (3)

Let n∗ denote a realized value of N∗. Hence, the maximum of the likelihood
function over the clique marginals is

L(n∗) = ∏
i∈I

p̂(i)n(i)

=

{
∏
i∈I

(
nC1(iC1)

M

)n(i)
}{

K

∏
k=2

∏i∈I nCk (iCk )
n(i)

∏i∈I nSk (iSk )
n(i)

}

=

 ∏
iC1
∈IC1

(
nC1(iC1)

M

)∑i∆\C1
n(iC1

,i∆\C1
)
×

K

∏
k=2

∏iCk
∈ICk

nCk (iCk )
∑i∆\Ck

n(iCk
,i∆\Ck

)

∏iSk
∈ISk

nSk (iSk )
∑i∆\Ck

n(iSk
,i∆\Sk

)


= ∏

iC1
∈IC1

(
n(iC1)

M

)n(iC1
) K

∏
k=2

∏iCk
∈ICk

n(iCk )
n(iCk

)

∏iSk
∈ISk

n(iSk )
n(iSk

)
. (4)

4 Test for outliers in contingency tables

In order to test if an observation, say y := yM, is an outlier, we assume
that yM is an observation sampled from a distribution different from that
of y1,y2, . . . ,yM−1. Let X(α) be the stochastic counterpart of x(α). The distri-
bution of YM can then be described by the expected table E

[
X(M)

]
, where

E
[

X(M)(yM)
]
= P(YM = yM). Assuming that

E
[

X(α)
]
= p, α = 1,2, . . . , M− 1

and
E
[

X(M)
]
= q,

24



4. Test for outliers in contingency tables

where p and q are specified through (1), the null hypothesis is

H0 : q = p.

Hence, if H0 is false, yM is considered an outlier in the table defined by
yα,α < M. Denote by n∗ − x∗ the subtraction of the two sets of tables n∗ and
x∗ as

n∗ − x∗ := {nC − xC}C∈C ,

where nC − xC is the element-wise subtraction in the C-marginals of n and x.
We then define the likelihood ratio

LR =
L(n∗)

L(x∗)L(n∗ − x∗)
, (5)

where x∗ := (x(M))∗ and where the numerator corresponds to the likelihood
(4) under H0. Small values of LR will be critical to H0. It is clear from (4) that
L(x∗) = 1 since we obtain factors of either 00 or 11. Consider the remaining
fraction of LR:

L(n∗)
L(n∗ − x∗)

. (6)

The factors involving M can be written as

Z(M) = ∏
iC1
∈IC1

( 1
M

)nC1
(iC1

)

( 1
M− 1

)nC1
(iC1

)−xC1
(iC1

)
= M−M(M− 1)M−1.

The remaining factors are of the form

Q(a) = ∏
ia∈Ia

na(ia)na(ia)

(na(ia)− xa(ia))(na(ia)−xa(ia))
=

na(ya)na(ya)

(na(ya)− 1)(na(ya)−1)
,

where the ratios are simplified since xa(ia) = 0 unless ia = ya. Combining it
all, we end up with

LR = Z(M)
K

∏
k=1

Q(Ck)
K

∏
k=2

Q(Sk)
−1.

Define H(x) := G(x− 1)− G(x), where

G(x) =

{
0 if x ≤ 0

x log(x) otherwise .

25



Paper A.

The deviance statistic D(y) = −2log (LR) then becomes

D(y) = 2

(
K

∑
k=1

H(nCk (yCk ))−
K

∑
k=2

H(nSk (ySk ))− H(M)

)
,

where large values are critical to the null hypothesis.

In order to perform an exact test of H0, the conditional distribution of D(X∗) :=
D(Y) given N∗ is needed. Below, we derive a closed form of the probability

P(X∗ = x∗ | N∗ = n∗) =
P(X∗ = x∗, N∗ = n∗)

P(N∗ = n∗)

=
P(X∗ = x∗)P(N∗ − X∗ = n∗ − x∗)

P(N∗ = n∗)
. (7)

We show how to approximate the distribution of D(Y) by simulating from
(7). From the proof of Theorem 4.22 in Lauritzen (1996), we infer that

P(N∗ = n∗) = P(NC1 = nC1)
K

∏
k=2

P(NCk = nCk )

P(NSk = nSk )
. (8)

Using (2) together with (8), the contribution from the kth clique to (7) is
reduced to one since

∏
iCk
∈ICk

pCk (iCk )
xCk

(iCk
)pCk (iCk )

nCk
(iCk

)−xCk
(iCk

)

pCk (iCk )
nCk

(iCk
)

= 1,

and thus all the parameters, pCk (iCk ), cancel in (7); and similarly for the
separators. Also, it is clear from (2) that all remaining contributions from
P(X∗ = x∗) are reduced to 1. Putting it all together, we have

P(X∗ = x∗ | N∗ = n∗) = ∏
iC1
∈IC1

(
M− 1

nC1(iC1)− xC1(iC1)

)
(

M
nC1(iC1)

)
×

K

∏
k=2

∏
iCk
∈ICk

(
M− 1

nCk (iCk )− xCk (iCk )

)
(

M
nCk (iCk )

) ∏
iSk
∈ISk

(
M

nSk (iSk )

)
(

M− 1
nSk (iSk )− xSk (iSk )

)
 ,

26



4. Test for outliers in contingency tables

which, in terms of y, can be written as:

P(Y = y | N∗ = n∗) =
nC1(yC1)

M

K

∏
k=2

nCk (yCk )

nSk (ySk )
, (9)

where 0/0 := 0; i.e. if nSk (ySk ) = 0 for some k > 1, then nCk (yCk ) = 0 and
hence P(Y = y | N∗ = n∗) = 0. Notice that the density in (9) is the same as
in (3). This is not surprising since our best estimate of the probability of
observing Y = y is exactly the cell probability in (3) based on all observations
including y.

In order to calculate the conditional mean of D(Y), define the transformation
of D(Y) discarding the constant H(M) as

T(Y) =
K

∑
k=1

Tk(Y), (10)

where

• T1(Y) := H(nC1(YC1)) and

• Tk(Y) := H(nCk (YCk ))− H(nSk (YSk )) for k = 2,3, . . . ,K.

Notice that Tk is a function depending only on Y through YCk for k = 1,2, . . . ,K.

Lemma 1. The conditional distribution of YCk given N∗ is

P(YCk = yCk | N
∗ = n∗) =

nCk (yCk )

M
. (11)

Proof. We prove the lemma by induction on the number of cliques. If K = 1,
the result is trivial and we assume the result hold for K > 1. In this proof, we
use the more compact notation P(ya) := P(Ya = ya). Suppose now that the
number of cliques is K + 1. Then by conditional independence induced by
the separator SK+1, it follows that

P(yC1 , . . . ,yCK+1 ,ySK+1 | n
∗)

=P(yCK+1 | ySK+1 ,yC1 , . . . ,yCK ,n∗)P(yC1 , . . . ,yCK | n
∗)

=P(yCK+1 | ySK+1 ,n∗)P(yC1 , . . . ,yCK | n
∗), (12)

implying by (9) that

P(yCK+1 | ySK+1 ,n∗) =
nCK+1(yCK+1)

nSK+1(ySK+1)
. (13)

27



Paper A.

Furthermore, by the induction hypothesis, it follows that

P(ySK+1 | n
∗) = ∑

y
Cj\SK+1

nCj(yCj\SK+1
,ySK+1)

M
=

nSK+1(ySK+1)

M
, (14)

since SK+1 ⊆ Cj for some j < K + 1. Multiplication of (13) and (14) gives the
result stated in (11). �

Using Lemma 1, the conditional expectation takes the form

E[T(Y) | N∗ = n∗] =
K

∑
k=1

∑
iCk
∈ICk

Tk(iCk ) ·
nCk (iCk )

M
. (15)

The conditional variance can be calculated from moments over pairs of cliques,
which can be done efficiently by using the RIP ordering.

4.1 Simulation

Using (12), it follows that

P(Y = y | N∗ = n∗) = P(YC1 = yC1 | N
∗ = n∗)

K

∏
k=2

P(YCk = yCk | YSk = ySk , N∗ = n∗).

Hence, we can simulate an observation Y = y from the table conditionally on
N∗ = n∗ by

• simulating YC1 = yC1 from the distribution

P(YC1 = yC1 | N
∗ = n∗) =

nC1(yC1)

M
, (16)

• for k = 2,3, . . . ,K, simulate YCk = yCk conditionally on YSk = ySk from the
distribution

P(YCk = yCk | YSk = ySk , N∗) =
nCk (yCk\Sk

,ySk )

nSk (ySk )
. (17)

For k = 1, it is straightforward to simulate using (16). Suppose that we have
simulations of YCj for 1 ≤ j < k. Since Sk ⊂ Cj for some j < k, we know
the value of YSk and we can simulate YCk\Sk

= yCk\Sk
using (17) to obtain

yCk = (yCk\Sk
,ySk ).

28



5. An Example in Forensic Genetics

5 An Example in Forensic Genetics

Ancestry Informative Markers (AIMs) are genetic markers selected for their
informativeness concerning genogeographic origin. The term genogeographic
is used rather than geographic since it emphasizes the genetic component of
the phenomena and also stresses that populations in this context are defined
more by their shared genetic ancestry than by geography. Often, genetics and
geography is strongly associated. However, culture, ethnicity, and language
are often stronger associated with populations than with regional origin (Har-
rison, 1977, Cavalli-Sforza et al., 1994).

The prevailing AIMs are single nucleotide polymorphisms (SNPs), which
are specific locations in the genome with nucleotide variation in the popula-
tion. Bi-allelic SNPs are most common, but tri- and tetra-allelic SNPs exist.
SNPs used for ancestry assessment are also referred to as ancestry infor-
mative SNPs (AISNPs), and there exists large population tables with allele
frequencies (Kidd et al., 2018).

The standard approaches to infer the population of origin of a DNA profile
of interest include analysis with the STRUCTURE program (Pritchard et al.,
2000, Phillips, 2015), maximum likelihood assignment (Phillips et al., 2007,
Kidd et al., 2018), and principal components analysis (Phillips, 2015). How-
ever, none of these methods directly allow all populations in a reference table
to be rejected as potential populations of origin. That a given population is
the most likely one among a number of populations does not imply that the
population is relevant for a given profile of interest.

Tvedebrink et al. (2018) developed an LRT based on the principles of Fisher’s
exact test. Each population in the reference table is tested as a possible pop-
ulation of origin. In fact, this is an outlier detection test.

Recently, advances in DNA sequencing has made it possible to sequence short
segments of DNA (< 200 basepairs) including two or more SNPs. These are
called microhaplotypes (Kidd et al., 2014, Kidd and Speed, 2015, Oldoni et al.,
2019) (or microhaps for short). They have been demonstrated to be well
suited for ancestry assessment. The short distance between SNPs within a
microhap implies that recombination among them rarely occurs. Hence, the
methodology of Tvedebrink et al. (2018) can not be used as this assumes mu-
tually independence of the SNPs within a population. However, the caveats
of not having a relevant population in the reference table still exists, which
makes the methodology derived above relevant to use for microhaps.

Let L denote the total number of microhaps of interest in a given population.
Each microhap, Hl = (sl1, . . . , slml

), l = 1, . . . , L, consists of ml SNPs, where slk
is the k’th SNP in the l’th microhaplotype.

29



Paper A.

A given profile, z, of interest is written

z = (z(1),z(2)),

where
z(j) ∈ I = ×δ∈∆ Iδ, j = 1,2

is the j′th partial profile of z, one for each chromosome. Here, ∆ is the col-
lection of all SNPs in consideration with each variable δ ∈ ∆ being binary
(bi-allelic SNPs). By Mendelian segregation, we can assume the two partial
profiles for each profile to be independent.

Below, we demonstrate how to exploit the dependency structure of microhaps
by using the likelihood ratio test derived in Section 4 in order to test whether
a DNA profile is an outlier in a given table.

5.1 Summary of 1000 Genome Data

We analyzed data from the 1000 Genomes Project Consortium et al. (2015)
consisting of 5,008 partial DNA profiles and 130 microhaps from five dif-
ferent continental regions, see Table 1. We excluded 21 microhaps from the
original data because all SNPs were not available. We found that some micro-
haps at a specific chromosome were not independent (data not shown). We
disregarded these and assumed all remaining microhaps to be independent
within and between chromosomes. The total number of analyzed microhaps
considered was L = 97 consisting of a total of 276 bi-allelic SNP markers. The
number of SNPs, m`, within microhaps ranges from two to five. However, it
should be noticed that the derived methodology handles any value of m`.

Marginal tables restricted to profiles in a given continental region will be
referred to as continental specific tables. A table is then expressed as the sum
of the continental specific tables as

n = ∑
d∈CR

nd,

where CR = {AFR,AMR,EAS,EUR,SAS} is the set of continental regions de-
scribed in Table 1. Hence,

|n| = ∑
d∈CR
|nd|.

As an example, the genotype of a selected profile, z, from Europe on H1 is
seen in Table 2. The s12-marginals are

z(1)s12 = T and z(2)s12 = C.

30



5. An Example in Forensic Genetics

Continental region space Number of partial profiles: |nd|
Africa (AFR) 1,322
America (AMR) 694
East Asia (EAS) 1,008
Europe (EUR) 1,006
South Asia (SAS) 978

Table 1: Number of partial profiles for each continental region in the 1000 Genomes Project data.

In order to exploit the framework presented in Section 4, we need to deter-
mine an interaction graph. The framework of Section 4 works for all DGMs.
In the following section, we demonstrate the outlier framework using Chow-
Liu trees (Chow and Liu, 1968). In order to learn a Chow-Liu tree, one must
compute the mutual information for all pairs of variables and assign these
weights to the corresponding edges. A Chow-Liu tree is then formed as a
minimum spanning tree of the weighted graph. Chow and Liu (1968) showed
that among all minimum spanning trees Chow-Liu trees are optimal in terms
of maximizing the likelihood function. We denote Chow-Liu trees as GT . For
the saturated model, the interaction graph is denoted GS i.e. the complete
graph. Finally, the graph with no edges, implying mutual independence
among all SNPs, is denoted as G∅.

SNP s11 s12 s11

z(1)H1
T T C

z(2)H1
T C C

Table 2: The genotype of haplotype H1 for a selected profile in the European table nEUR.

5.2 Testing For z Being an Outlier

Consider again an arbitrary profile z = (z(1),z(2)) and suppose that we are
interested in whether or not z belongs to a given table nd. Define nd,j, j = 1,2
as the table nd with the partial profile z(j) included. Next, construct the
interaction graphs for nd,1 and nd,2 and denote by Gj,` the `′th component
of the interaction graph for nd,j with the set of cliques C(Gj,`). Here, G is
arbitrary. Below, we will consider the interaction graphs already mentioned:
GT , GS and G∅.

Assume that Z(1) ∼ p1, Z(2) ∼ p2 and all partial profiles in nd are distributed

31



Paper A.

according to p. The hypothesis then takes the form

H0 : p1 = p2 = p.

For j = 1,2, define the two test statistics T(Z(j)) using (10), where we aggre-
gate over all microhaps

T(Z(j)) =
L

∑
`=1

∑
C∈C(Gj,`)

TC(Z(j)).

To evaluate H0 that both partial profiles originate from the same population,
we define

T(Z) := T(Z(1)) + T(Z(2))

as the convolution of T(Z(1)) and T(Z(1)). If the p-value P(T(Z) ≥ T(z)),
where P is the probability density function of T(Z), is below a chosen level
of significance α, the null hypothesis, H0, is rejected. Here, we arbitrarily,
choose α = 0.05.

5.3 Results

Now, for each combination (d′,d) ∈ CR× CR and for each interaction graph
GT , GS and G∅, we calculate the proportion of profiles in nd′ that are outliers
in nd as follows: For all profiles z = (z(1),z(2)) in nd′ , we form nd,j, j = 1,2.
If the observed value T(z) falls below the α−quartile in the distribution of
T(Z), we regard z as an outlier in nd. Note, that d′ corresponds to the true
origin, while d is the hypothesized origin. For cells with d′ , d, we aim for
numbers close to one that reflect that the model predicts the true origin in
all cases. For cells with d′ = d, the aim is to obtain numbers as close to α as
possible.

The results are shown in Table 3, where rows indicate d′ and columns indicate
d. As an example, the proportion of profiles from SAS that are outliers in EUR
according to the model, is 0.922 for GT , 0.928 for GS and 0.863 for G∅. In
general, both GT and GS outperform G∅, especially when the hypothesized
origin is SAS. For cells with d′ = d, the performance is equally good for the
three types of interaction graphs. However, for cells with d , d, GS in general
performs slightly better than GT . It is striking that the proportion of outliers
detected for (d′,d) = (EUR,SAS) is more than doubled if we use either GT or
GS rather than G∅. This underlines that SNPs within microhaps cannot be
assumed to be mutually independent.

The excess of outliers (proportions greater than α = 0.05) for AFR and AMR
when H0 is true, d = d′, may be caused by heterogeneity in the continental

32



6. Discussion

regions. That is, genotyping errors or genetic deviations among the profiles
may result in higher rejecting rates than the significance level.

d′
d EUR EAS AMR SAS AFR

EUR
0.054 1 0.191 0.509 1
0.036 1 0.175 0.495 1
0.046 1 0.145 0.231 1

EAS
1 0.054 0.994 0.966 1
1 0.044 0.994 0.986 1
1 0.063 0.994 0.980 1

AMR
0.778 1 0.095 0.769 1
0.790 1 0.089 0.847 1
0.697 1 0.049 0.565 1

SAS
0.922 1 0.710 0.037 1
0.928 1 0.699 0.025 1
0.863 1 0.620 0.047 1

AFR
1 1 0.997 1 0.101
1 1 0.998 1 0.098

0.998 1 0.918 0.834 0.106

I GT I GS I G∅

Table 3: Performance matrix of outlier tests using GT , GS and G∅ ( . , . , . ) as interaction
graphs. Rows (d′) correspond to the true origin, while columns (d) correspond to the model
under the null hypothesis. The numbers are the proportions of profiles in d′ that were declared
outliers in d according to the model.

6 Discussion

We propose a new method based on decomposable graphical models to de-
tect outliers and anomalies in contingency tables of any dimension and spar-
sity.

We provide a closed form expression of the deviance and demonstrate how
to approximate the distribution of the deviance using simulation. A simu-
lation study showed the performance of the method for different types of
associations between SNPs within microhaps.

The performance of the presented method is not affected by sparsity due
to the fact that the model aggregates local information via cliques in the
interaction graph.

Especially for sparse tables, however, it is crucial that the hypothesized outlier

33



References

is appended to the table as described in Section 5.2. An increase from zero
to one in a cell count in a sparse table can affect the result dramatically.
However, this may also lead a large increase in computational time since the
approximated distribution must be recalculated each time an observation is
being tested as an outlier. Furthermore, the structure of the interaction graph
must be refitted. Hence, if the model is to be deployed, it is important how
the model is implemented and, in particular, what kind of interaction graph
is used.

We have implemented the relevant method in the programming languages R
and C++. The user can choose between the three graphs GT , GS and G∅ or
specify any decomposable interaction graph. The program can be shared on
request.

In the forensic genetic example, the model based on GT was slightly more
inaccurate in detecting outliers than the model based on GS. There may be
several reasons for this. The sample size is large compared to the dimension
of the tables, and it may be adequate to use the naïve estimates obtained using
GS. In addition, more than half of the microhaps included only two SNPs
implying that GT and GS coincide. Furthermore, it may be too restrictive to
model the dependencies between SNPs using only trees.

Although decomposable models are a subclass of undirected graphical mod-
els, finding an optimal decomposable model is known to be intractable (Desh-
pande et al., 2001). However, there exists interesting heuristic algorithms that
handles more complex structures than the tree-based method that we have
used (Pérez et al., 2016, Deshpande et al., 2001, Bukszár and Prékopa, 2001,
Altmueller and Haralick, 2004).

Acknowledgments

The authors would like to thank Niels Morling and Helle Smidt Mogensen
from Section of Forensic Genetics, Department of Forensic Medicine, Faculty
of Health and Medical Sciences, University of Copenhagen, Denmark for
providing data and valuable comments on the manuscript.

Furthermore, anonymous reviewers increased the level of clarity and pointed
to previous work on similar topics.

References

Altmueller, S. M. and Haralick, R. M. (2004). Practical aspects of efficient
forward selection in decomposable graphical models. In 16th IEEE Interna-
tional Conference on Tools with Artificial Intelligence, pages 710–715. IEEE.

34



References

Bukszár, J. and Prékopa, A. (2001). Probability bounds with cherry trees.
Mathematics of Operations Research, 26(1):174–192.

Cavalli-Sforza, L. L., Menozzi, P., and Piazza, A. (1994). The History and
Geography of Human Genes. Princeton Universily Press, 41 William Street,
Princeton, New Jersey 08540.

Chow, C. and Liu, C. (1968). Approximating discrete probability distributions
with dependence trees. IEEE transactions on Information Theory, 14(3):462–
467.

Consortium, . G. P. et al. (2015). A global reference for human genetic varia-
tion. Nature, 526(7571):68.

Deshpande, A., Garofalakis, M., and Jordan, M. I. (2001). Efficient stepwise
selection in decomposable models. In Proceedings of the Seventeenth con-
ference on Uncertainty in artificial intelligence, pages 128–135. Morgan Kauf-
mann Publishers Inc.

Harrison, G. A. (1977). Population structure and human variation. International
Biological Programme. Cambridge University Press.

"Hawkins, D. M. ("1980"). "Identification of outliers", volume "11". "Springer".

Højsgaard, S., Edwards, D., and Lauritzen, S. (2012). Graphical models with R.
Springer Science & Business Media.

Kidd, K. K., Pakstis, A. J., Speed, W. C., Lagacé, R., Chang, J., Wootton, S.,
Haigh, E., and Kidd, J. R. (2014). Current sequencing technology makes mi-
crohaplotypes a powerful new type of genetic marker for forensics. Forensic
Science International: Genetics, 12:215 – 224.

Kidd, K. K., Soundararajan, U., Rajeevan, H., Pakstis, A. J., Moore, K. N., and
Ropero-Miller, J. D. (2018). The redesigned forensic research/reference on
genetics-knowledge base, frog-kb. Forensic Science International: Genetics,
33:33 – 37.

Kidd, K. K. and Speed, W. C. (2015). Criteria for selecting microhaplotypes:
mixture detection and deconvolution. Investigative Genetics, 6(1):1–10.

Kuhnt, S. (2004). Outlier identification procedures for contingency tables us-
ing maximum likelihood and l1 estimates. Scandinavian journal of statistics,
31(3):431–442.

Kuhnt, S., Rapallo, F., and Rehage, A. (2014). Outlier detection in contingency
tables based on minimal patterns. Statistics and Computing, 24(3):481–491.

35



References

Lauritzen, S. L. (1996). Graphical models, volume 17 of Oxford Statistical Science
Series. Clarendon Press.

Oldoni, F., Kidd, K. K., and Podini, D. (2019). Microhaplotypes in forensic
genetics. Forensic Science International: Genetics, 38:54 – 69.

Pérez, A., Inza, I., and Lozano, J. A. (2016). Efficient approximation of proba-
bility distributions with k -order decomposable models. International Jour-
nal of Approximate Reasoning, 74(nil):58–87.

Phillips, C. (2015). Forensic genetic analysis of bio-geographical ancestry.
Forensic Sci Int Genet, 18:49–65.

Phillips, C., Salas, A., Sánchez, J. J., Fondevila, M., Gómez-Tato, A., Álvarez-
Dios, J., Calaza, M., de Cal, M. C., Ballard, D., Lareu, M. V., and Carracedo,
Á. (2007). SNPforID Consortium. Inferring ancestral origin using a single
multiplex assay of ancestry-informative marker SNPs. Forensic Sci Int Genet,
1:272–280.

Pritchard, J. K., Stephens, M., and Donnelly, P. J. (2000). Inference of popula-
tion structure using multilocus genotype data. Genetics, 155:945–959.

Tvedebrink, T., Eriksen, P. S., Mogensen, H. S., and Morling, N. (2018). Weight
of the Evidence of Genetic Investigations of Ancestry Informative Markers.
Theoretical Population Biology, 120:1–10.

Yannakakis, M. (1981). Computing the minimum fill-in is np-complete. SIAM
Journal on Algebraic Discrete Methods, 2(1):77–79.

36



Paper B

Detecting Outliers in High-dimensional Data with
Mixed Variable Types using Conditional Gaussian

Regression Models

Mads Lindskou, Torben Tvedebrink, Poul Svante Eriksen and
Niels Morling

The paper has been submitted to
arXiv



The layout has been revised.



1. Introduction

Abstract

Outlier detection has gained increasing interest in recent years, due to newly emerg-
ing technologies and the huge amount of high-dimensional data that are now avail-
able. Outlier detection can help practitioners to identify unwanted noise and/or locate
interesting abnormal observations. To address this, we developed a novel method for
outlier detection for use in, possibly high-dimensional, datasets with both discrete
and continuous variables. We exploit the family of decomposable graphical models in
order to model the relationship between the variables and use this to form an exact
likelihood ratio test for an observation that is considered an outlier. We show that
our method outperforms the state-of-the-art Isolation Forest algorithm on a real data
example.

1 Introduction

Outlier detection is an important learning paradigm and has drawn signif-
icant attention within the research community, as shown by the increasing
number of publications in this field. An outlier in a data set is an obser-
vation that, for some reason, does not share the same characteristics as the
majority (there may be more than one outlier) of all other observations. An
outlier may be the most interesting observation in some situations. In other
situations, it may be regarded as extreme noise, and it may be appropriate
to remove it from the data. There is no clear mathematical definition of an
outlier in the literature. "Hawkins (1980) gave the following definition: “an
observation which deviates so much from the other observations in the data-
set as to arouse suspicions that it was generated by a different mechanism”.
In Lindskou et al. (2019), this definition, was adapted by specifying a sta-
tistical hypothesis of an outlier being distributed differently than all other
observations for discrete data sets. In this paper, we extend this definition to
capture outliers in data sets with variables of mixed types, i.e. both discrete
and continuous variables.

Most research on outlier detection has been focused on the two pure cases
where all variables are either discrete or continuous, while little research has
been done in the mixed case for high-dimensional data sets (Garchery and
Granitzer, 2018). State-of-the art algorithms include the Isolation Forest (iFor-
est) algorithm (Liu et al., 2008) which has gained a lot of attention in recent
years. Many software packages implement iForest. In particular, the pro-
cedure is implemented in the major data science languages, such as R and
Python, making it readily available to practitioners. Although iForest was
designed for outlier detection in the pure continuous case, it is frequently
used in the mixed case where the discrete variables are transformed into

39



Paper B.

continuous variables. However, the transformation may induce an unwanted
ordering of or distance between the levels of the discrete variables. Hence,
the information content of the data may be altered by the transformation, but
nonetheless iForest is used in many papers on outlier detection with mixed
data, and the performance is most often excellent, see e.g. Eiras-Franco et al.
(2019), Xu et al. (2019), Aryal et al. (2016), Garchery and Granitzer (2018) and
Aryal et al. (2019). In the review papers by Domingues et al. (2018) and Em-
mott et al. (2015), iForest is recommended as the best overall outlier detection
procedure and is recommended in production environments. In Section 8.2,
we show that our method outperforms iForest as an outlier detection method
in the mixed case, when data includes a large number of discrete variables.
This is in contradiction the findings in the aforementioned papers.

We propose a novel probabilistic outlier detection method that relies on the
family of decomposable mixed graphical models, see e.g. Lauritzen (1996).
Graphical models is a family of statistical models, for which the dependen-
cies between variables can be depicted or read off from a graph called the
interaction graph. They are composed of a set of random variables (possibly
both continuous and discrete) and an interaction graph, for which each of the
vertices represents one of the random variables. In essence, a graphical model
encodes the conditional independencies between the random variables. By
imposing the graphs to be decomposable, the likelihood function is ensured
to be on closed form, which enables us to express what is meant by an out-
lier using an exact likelihood ratio test (LRT). Furthermore, the components
of the proposed LRT are composed of local information from the graph in
terms of cliques yielding a way to explore which variables have the largest
impact of the declaration of an observation as an outlier.

The likelihood function corresponds to a multivariate multiple regression
model over the continuous variables, however due to local independencies,
it is possible to restrict attention to simple multiple linear regressions with
both continuous and discrete explanatory variables. In the pure discrete case,
the method coincide with the one given in Lindskou et al. (2019) which will
be apparent in Section 5. In addition, the method also handles the pure
continuous case which is shown to be equivalent to a sum of studentized
residuals over local structures in the graph.

The LRT relies on simulating observations from the model, as in Lindskou
et al. (2019). However, in the mixed case we show that it is redundant to sim-
ulate the continuous counterpart of a simulated discrete observation. It turns
out that the continuous contribution to the likelihood ratio can be drawn
from a beta distribution once the discrete counterpart is known.

The rest of the paper is organised as follows. Section 2 reviews the definitions
of graphical models needed together with a useful proposition. Section 4 is

40



2. Decomposable Mixed Graphs

devoted to the notation and likelihood function needed to arrive at the exact
likelihood ratio test given in Section 5. Section 7 summaries the proposed
outlier detection method, ODMGM, in a pseudo algorithm providing a very
detailed explanation of the steps to carry out. In Section 8, a real data set
with mixed variable types is analysed, and the results are compared to those
obtained with iForest.

2 Decomposable Mixed Graphs

We focus on undirected graphs, i.e. graphical models for which the edges
in the interaction graph are not directed. Such models are also known as
Markov random networks. In the following, we introduce notation and con-
cepts that can be found in e.g. Lauritzen (1996). An undirected mixed graph,
G = (V, E), is a pair consisting of a set of vertices V and a set of edges
E = {{u,v} | u,v ∈ V,u , v}. Furthermore, V is the union of ∆, the dis-
crete variables, and Γ, the continuous variables, where |∆| = s, |Γ| = r and
m = |V| = s + r. In the figures, we use circles to represent continuous vari-
ables and dots (discs) to represent discrete variables.

A mixed graph is triangulated if it has no cycle of length ≥ 4 without a chord.
Mixed graphs are said to be decomposable if they are triangulated and do not
contain any path between two non-adjacent discrete vertices passing through
continuous variables only. Such paths are also called forbidden paths. For a
decomposable mixed graph, G, with vertex set V, it holds that the sub-graph
GA = (A,{{u,v} | u,v ∈ A u , v}) is also decomposable for all subsets A⊆ V.
The subset A is called a clique if GA is a complete graph, i.e. any two vertices
are adjacent. Define the star graph of G = (V, E) as

G? = (V?, E?) =
(
V ∪ {?}, E ∪ {{d,?} | d ∈ ∆}

)
.

That is, G? is the graph, in which V is extended with the ?−node, and all
discrete vertices are connected to this. Leimer (1988) showed, that a graph is
decomposable if and only if the corresponding star graph is triangulated. It
can, therefore, be checked if a graph G is decomposable by using the maxi-
mum cardinality search (MCS) algorithm (Yannakakis, 1981) on G?.

Let C1,C2, . . . ,Ck be a sequence of the cliques in an undirected graph, and
define for j = 1,2 . . . ,k

• Hj = C1 ∪ · · · ∪ Cj,

• Sj = Cj ∩ Hj−1 and

• Rj = Cj \ Hj−1,

41



Paper B.

where we define H0 as the empty set. These sets are also referred to as the
histories, separators and residuals, respectively. The sequence is then said to
be perfect if the following conditions hold:

(a) for all j > 1, there exist an index i < j such that Sj ⊆ Ci,

(b) all separators are complete, and

(c) either Rj ⊆ Γ or Sj ⊆ ∆ for all j > 1.

Condition (a) is known as the running intersection property, and condition
(c) ensures that no forbidden path exists. Denote by ne(v) = {u | {u,v} ∈
E} and cl(v) = ne(v) ∪ {v} the neighbours and closure of the vertex v ∈ V,
respectively, and define

B(vj) = cl(vj) ∩ {v1,v2, . . . ,vj}, j > 1. (1)

If the sets in (1) form a perfect sequence of sets, the sequence of vertices,
v1,v2, . . . ,vm, is said to be a perfect numbering of the vertices. A graph is
decomposable if and only if, the vertices admit a perfect numbering and/or
the cliques of the graph can be perfectly numbered to form a perfect sequence
(Lauritzen, 1996). The cliques are then said to have the running intersection
property (RIP).

We use the notation pa(v) := B(v) \ {v} to denote the parents of v defined
as the preceding numbered vertices of v that are also neighbours of v. The
following result appears in Lauritzen (1996, p. 18) as a remark. However, this
result is vital for the model assumptions in Section 4, and we therefore give
a concise formal proof.

Proposition 3. For decomposable mixed graphs, a perfect numbering of the vertices
can be chosen such that the discrete variables are numbered before the continuous
ones.

Proof. Let δ be a discrete vertex numbered after the continuous vertex γ. By
definition, γ < pa(δ) and δ < pa(γ). Hence, interchanging δ and γ in the per-
fect sequence would leave B(γ) and B(δ) unchanged and, thus, complete and
satisfy B(δ)⊆ ∆. After a suitable number of such interchanges, all continuous
vertices will be preceded by the discrete vertices. �

Consider the mixed graph in Figure 1 (left), where V = {a,b, c,d, e, f }, and

E =
{
{a,b},{b, c},{b,d},{c,d},{c, e},{d, e}

}
,

with ∆ = {b, c, f } and Γ = {a,d, e}. The corresponding star graph is de-
picted in Figure 1 (right), where it can be seen that the graph is triangulated

42



4. Notation and the Likelihood Function

and hence decomposable. A perfect numbering of the vertices is given as
c,b, f ,d, e, a.

f

a b

c

d

e f

a b

?
c

d

e

Fig. 1: A decomposable mixed graph (left) and its corresponding star graph (right), where
represents discrete variables and represents continuous variables, respectively.

4 Notation and the Likelihood Function

Let I be a s−dimensional discrete random vector and Y a r−dimensional real
random vector. A realised value of the random vector X = (I,Y) is denoted
x = (i,y), where i = (id)d∈∆ is a tuple of discrete outcomes, also referred to as
cell i, and y = (yγ)γ∈Γ is a real-valued vector. The state space of I is denoted
as I = ×d∈∆Id, where Id is the level set of d; hence i ∈ I. Marginal vectors
are written xa = (ia∩∆,ya∩Γ), where ia∩∆ and ya∩∆ are sub-vectors restricted to
the sets a∩ ∆ and a∩ Γ, respectively. We usually use the shorthand notations
ia := ia∩∆ and ya := ya∩Γ. The level set for the a−marginal ia is denoted Ia;
hence ia ∈ Ia = ×d∈aId. If the vertices are numbered, we write

x = (x1, x2, . . . , xm) = (i1, i2, . . . , is,y1,y2, . . . ,yr).

The observed counts in cell i is denoted n(i), and the probability of an ob-
servation falling in cell i is p(i). The a−marginal table is then defined by the
counts

na(ia) = ∑
j:ja=ia

n(j),

and similarly for the marginal probabilities pa. For the empty set, a = ∅, we
write n(i∅) = |n|, where |n| = ∑i∈I n(i) is the total number of counts.

We assume that I has probability mass function p, and that Y, given I = i, is
a multivariate Gaussian model with mean and variance depending on cell i.
A distribution of this form is called an inhomogeneous conditional Gaussian
(CG) distribution (Lauritzen and Wermuth, 1989). The joint density is written
as

f (x) = f (i,y) = f (y | i)× p(i). (2)

43



Paper B.

If the variance is assumed to be independent of the discrete variables, the
model is referred to as a homogeneous CG distribution. The inhomogeneous
case is treated below (with some additional details in Appendix A). The ho-
mogeneous case is discussed in Section 6.2. Given a perfect numbering of the
vertices, Proposition 3 allows the following factorisation of the joint density

f (x) = p(i)×
r

∏
j=1

f (yj|xpaj
), (3)

with paj :=pa(yj). The univariate conditional densities in the product (3) are still
Gaussian with a conditional mean depending on the parents. Such models
are called CG regressions, see e.g. Edwards (2012). One particular useful
feature of decomposable models is, that the maximum likelihood estimates
of the parameters in (2) can be obtained from those in (3). We now derive the
maximised likelihood of (3), which is then exploited in Section 5 in order to
arrive at a test statistic to be used in connection with outlier detection.

Suppose we have a sample of i.i.d. observations, x` = (i`,y`) for `= 1,2, . . . , |n|,
from a decomposable mixed graphical model, and let x = (x1, x2, . . . , x|n|) be
the vector of observations. The likelihood of the j’th Gaussian factor then
takes the form

L(θj; x) =
|n|

∏
`=1

f (y`j | x`paj
) =

( |n|
∏
`=1

σ2(ipaj
)−1/2

)
× (4)

exp
{
−1

2

|n|

∑
`=1

σ−2(ipaj
)(y`j − µ(x`paj

))2
}

,

where µ(xpaj
) and σ2(ipaj

) are the conditional variance and mean of Yj given
Xpaj

= xpaj
, respectively, and θj is the set of parameters. Note, that the vari-

ances only depend on the cell values. From here, we simply write µj(x) :=
µ(xpaj

) and σj(i) := σ(ipaj
) to ease notation. The means are assumed to have

linear parameterisations of the form

µj(x) = αj(i) + βT
j (i)ypaj

, for i ∈ Ipaj
,

where αj is a real-valued function of the cells, and β j is a real-valued vector
function of the cells with dimension |paj∩Γ|. Define the subset of observations
in cell ia by η(a) := {` | i`a = ia}. Then, the likelihood in (4) can be written as

44



4. Notation and the Likelihood Function

the product of simple Gaussian likelihoods

L(θj; x) =
(

∏
i∈Ipaj

σ2
j (i)

−npaj (i)/2
)
× exp

{
−1

2 ∑
i∈Ipaj

σ−2
j (i) ∑

k∈η(paj)

(yk
j − µj(xk))2

}

= ∏
i∈Ipaj

(
σ2

j (i)
−npaj (i)/2 × exp

{
− 1

2σ2
j (i)

∑
k∈η(paj)

(yk
j − µj(xk))2

})
,

implying that the sum of squares depends on a particular cell as xk = (ik,yk).
The set of parameters can be written as θj = ∪i∈Ipaj

{αj(i), β j(i),σ2
j (i)}. When

paj∩∆=∅, we define I∅ as the empty set and η(∅) := {1,2 . . . , |n|}. In this case,
the likelihood reduces to the ordinary Gaussian likelihood, where the mean
only depends on continuous variables, and the variance is homogeneous.
That is,

L(θj; x) = (σ2
j )
−|n|/2 × exp

{
− 1

2σ2
j

|n|

∑
`=1

(y`j − µj(y`))2
}

,

where θj := {αj, β j,σ2
j }. For the pure discrete factors, the likelihood is denoted

by

L(p;n) = ∏
i∈I

p(i)n(i), (5)

where n is the table of counts and p = {p(i)}i∈I . Hence, the complete likeli-
hood is given by

L(θ; x) = L(p;n)
r

∏
j=1

L(θj; x), (6)

where θ = ∪r
j=1{θj} ∪ {p}. Finally, using standard results for linear normal

models, the maximum of the likelihood takes the form

L(θ̂; x) =
r

∏
j=1

(
∏

i∈Ipaj

σ̂2
j (i)

−npaj (i)/2 × exp
{
−npaj

(i)/2
})
×∏

i∈I
p̂(i)n(i), (7)

where

σ̂2
j (i) =

1
npaj

(i) ∑
k∈η(paj)

(yk
j − µ̂j(xk))2 and µ̂j(xk) = α̂j(ik) + β̂T

j (i
k)yk

paj
,

for i ∈ Ipaj
and the linear parameters are estimated by ordinary least squares.

45



Paper B.

Let C1,C2, . . . ,CK be a sequence of cliques in G∆ satisfying the RIP ordering.
It can then be shown (Lauritzen, 1996) that

p̂(i) =
1
|n|

∏K
k=1 nCk (iCk )

∏K
k=2 nSk (iSk )

, for i ∈ I ,

which is the maximum likelihood estimates of (5) as also exploited in the
outlier detection model given in Lindskou et al. (2019).

5 The Null Hypothesis and Deviance Test Statistic

We aim to test if the observation z = (i0,y0) := x|n| is an outlier, i.e. it de-
viates significantly from all other observations. Suppose that i0 is an obser-
vation sampled from a distribution, q, different from p, the distribution of
i1, i2, . . . , i|n|−1 and that Y0

j | Zpaj
= (i0paj

,y0
paj

) ∼ N(λ0
j ,σ2

j (i
0)). Then, the null

hypothesis takes the compound form

H0 :
{

λ0
j = αj(i0) + β j(i0)Ty0

paj
, j = 1,2, . . . ,r

}
∧

{
q = p

}
.

Let E0,j :=
{

αj(i), β j(i); i ∈ Ipaj

}
, and define the set of mean parameters un-

der H0 as E0 = ∪r
j=1E0,j. The set of mean parameters under the alternative

hypothesis is then given by E = ∪r
j=1Ej, where Ej = E0,j ∪ {λj} and λj is a sin-

gle parameter describing the conditional mean of Y0
j given Zpaj

= (i0paj
,y0

paj
).

Hence, under the alternative hypothesis, the mean λj of Y0
j is not restricted

and is free to vary, and hence λ̂j = y0
j . Let

θ0 = E0∪{p}∪{σ2
j (i)}j=1,2,...,r, i∈Ipaj

and θ = E∪{q}∪{σ2
j (i)}j=1,2,...,r, i∈Ipaj

.

The likelihood ratio is then given by

LR(z) =
L(θ̂0; x)
L(θ̂; x)

.

Using (7), we obtain

LR(z) =
r

∏
j=1

∏
i∈Ipaj

( σ̂2
j (i)

σ̂2
j,0(i)

)npaj (i)/2

× L( p̂;n)
L(q̂;n)

=
r

∏
j=1

( σ̂2
j (i

0)

σ̂2
j,0(i

0)

)npaj (i
0
paj

)/2

× L( p̂;n)
L(q̂;n)

,

by exploiting that the two variance estimates coincide in all cells but i0paj
.

46



5. The Null Hypothesis and Deviance Test Statistic

Further define

Qj := σ̂2
j (i

0)/σ̂2
j,0(i

0), (8)

and let the degrees of freedom dfj = npaj
(i0paj

) − |paj∩Γ|−1. Using that E0,j

and Ej differ by exactly one parameter, λj, together with Cochran’s theorem
(Cochran, 1934), it then follows that

Qj ∼ Beta(dfj/2,1/2), for npaj
(i0paj

) > |paj∩Γ|+1. (9)

The likelihood ratio for the pure discrete part, QD := L( p̂;n)/L(q̂;n), was
investigated by Lindskou et al. (2019): Given a RIP ordering C1,C2, . . . ,CK of
the cliques in G∆, it was shown that

−2log QD(z) = −2
( K

∑
k=1

H(nCk (i
0
Ck
))−

K

∑
k=2

H(nSk (i
0
Sk
))− H(|n|)

)
, (10)

where H(x) := G(x− 1)− G(x) and

G(x) =

{
0 if x ≤ 0
x log(x) if x > 0.

The total deviance test statistic for testing H0 is therefore given by

D(z) := −2log LR(z) = −
r

∑
j=1

npaj
(i0paj

) log Qj − 2log QD(z). (11)

The following result state, that the quantities in (8) can be calculated inde-
pendently when i0 is known.

Proposition 6. The quantities Q1, Q2, . . . , Qr are jointly independent given i0.

Proof. Notice first, that the distribution of Qj in (9) is conditional on x0
1, . . . , x0

j−1.
But since the distribution only depends on dfj, we conclude that Qj is in-
dependent of Q1, Q2, . . . , Qj−1 given i0. Repeating this argument for j =
r,r− 1, . . . ,2, the result follows. �

6.1 A Note on Studentized Residuals

For each j, the ratio Qj can be used for an outlier test on data that conforms
with i0paj

using studentized residuals. Recall, that a studentized residual is of

47



Paper B.

the form

r0
j =

y0
j − µ̃j(z)√

σ̃2
j (i

0)(1− h0
j )
∼ tdfj

,

where h0
j is the so called leverage, which is the j’th diagonal element of the

hat matrix, and where σ̃2 and µ̃ are the estimates under the alternative hy-
pothesis, i.e. excluding z. Let f = (r0

j )
2. Then, f ∼ F1,dfj

, and since the Beta
distribution is mirror-symmetric, we obtain

Qj := 1−
f /dfj

1 + f /dfj
∼ Beta(dfj/2,1/2).

Hence, the contribution of the j’th ratio Qj in (11) is large when |r0
j | is large,

i.e. when y0
j is deviating from the expectation under H0 in cell i0paj

.

6.2 The Homogeneous Case

In the homogeneous case, the conditional variance of Yj given Xpaj
= (ipaj

,ypaj
)

is assumed to be independent of the discrete parents. That is, it is assumed
that σ2

j (i) = σ2
j for all i ∈ Ipaj

. It follows that the maximised likelihood func-
tion in (7) reduce to

r

∏
j=1

(σ̂2
j )
−|n|/2 × exp{−|n|/2} ×∏

i∈I
p̂(i)n(i),

where

σ̂2
j =

1
|n| ∑

i∈Ipaj

∑
k∈η(paj)

(
yk

j − µ̂j(xk)
)2 and µ̂j(xk) = α̂j(ik) + β̂T

j yk
paj

. (12)

Notice, that β̂ j does not depend on any cells, since otherwise the marginal
variance would not be independent of the discrete parents. Under the null
hypothesis, the likelihood ratio now takes the form

r

∏
j=1

( σ̂2
j

σ̂2
j,0

)−|n|/2

×QD.

48



7. The Outlier Test

Let Qh
j = σ̂2

j /σ̂2
j,0, and define df h

j = |n| − |paj∩Γ|−|I+paj
|, where I+paj

is the non-
zero cells in Ipaj

, j = 1, . . . ,r. Then

Qh
j ∼ Beta(df h

j /2,1/2),

when df h
j > 0. In the case where paj∩∆=∅, the degrees of freedom coincide in

the homogeneous and inhomogeneous case, such that df h
j = dfj = |n| − |paj∩

Γ|−1.

6.3 Evaluating Deviances

In order to evaluate the deviance, D(z), for a new observation, z, in the
inhomogeneous case, one must compute the variance estimates σ̂2

j,0(i
0) and

σ̂2
j (i

0) to obtain Qj for j = 1,2, . . . ,r. Similarly, in the homogeneous case, the

estimates σ̂2
j and σ̂2

j,0 must be computed to obtain Qh
j for j = 1,2, . . . ,r. In the

following, we give efficient methods for the calculations.

Inhomogeneous Case

A natural way of estimating the variances in the inhomogeneous case is by
fitting two linear regression models, one under the null hypothesis and one
under the alternative hypothesis. Exploiting the connection to studentized
residuals, it is only required to fit a single linear regression model under
the alternative hypothesis (i.e. excluding z) and then calculate the quantities
Qj = 1− ( f /dfj)/(1 + f /dfj) as explained in Section 6.1.

Homogeneous Case

In order to estimate the variances in the homogeneous case using linear
regression, (|paj∩Γ|+|I+paj

|)×(|paj∩Γ|+|I+paj
|)−dimensional matrices must be in-

verted. Such inversions can be expensive even when |paj | is small since |I+paj
|

may be large if some of the discrete variables have many levels. However,
it is not of interest to know the estimated mean parameters; these are only
required to estimate the variances and hence calculate Qh

j . We circumvent
this problem by centring the observations. As a consequence, we only need
to invert matrices of dimension |paj∩Γ|×|paj∩Γ|. See Appendix A for details.

7 The Outlier Test

In this section, we summarise the results of the previous sections and sug-
gest a novel outlier detection procedure, ODMGM, using CGR models in

49



Paper B.

Algorithm 2. We first reiterate the method given in Lindskou et al. (2019)
for simulating discrete cells in Algorithm 1, which is needed in Algorithm 2.
The method is based on a RIP ordering of the cliques in a pure discrete graph
and, exploiting, the chain rule

P(I = i) = P(IC1 = iC1)
K

∏
k=2

P(ICk = iCk | ISk = iSk ),

where the RIP ordering ensures that the cell value iSk is known, since it holds
that Sk ⊂ Cj for some j < k (this is exploited in line 7 of Algorithm 1).

Algorithm 1 Simulate Cells in Pure Discrete Decomposable Graphical Models
1: procedure (G: Pure discrete decomposable graph. U: Dataset of observa-

tions)
2: Form the contingency table n of all observations in U
3: Construct a sequence of cliques, C1,C2, . . . ,CK, having RIP from G
4: Let i := {} be an ordered list
5: Simulate iC1 using the probability table nC1(iC1)/|n| and append iC1

to i
6: for k = 2,3, . . . ,K do
7: Simulate iCk\Sk

using the table nCk (iCk\Sk
, iSk )/nSk (iSk )

8: Append iCk\Sk
to i

9: end for
10: end procedure

Notice that, in Algorithm 2 the new observation, z, is appended to the data,
U; i.e. under the null hypothesis it is assumed that z originates from the same
generating process as all the observations in U. Next, due to the results in (9),
it is not necessary to simulate the associated continuous part of each simu-
lated cell in order to simulate the deviances. This implies a large reduction in
the computational time needed for simulation. As a consequence of Propo-
sition 6, the quantities Qj, can be computed in parallel due to conditional
independence.

The homogeneous version follows by replacing dfj and Qj with their respec-

tive counterparts, df h
j and Qh

j , and replacing all npaj
(ipaj

) in line 12 with |n|.

8 Real Data Example

In this section, we apply ODMGM to the cover type (CT) data from the UCI
Machine Learning Repository (Dua and Graff, 2017). This dataset demands
the usage of non-trivial models in order to capture the large amount of infor-
mation. This has caught the attention of researchers in the machine learning

50



8. Real Data Example

Algorithm 2 Outlier Detection in Mixed Graphical Models (ODMGM)
1: procedure (G: Decomposable mixed graph, U: Dataset of observations,

z: New observation.)
2: Append z to U and form the contingency table n of all observations
3: Find a perfect ordering of the vertices in G
4: Construct the pure graph G∆
5: for ` = 1,2, . . . , N do
6: Simulate cell i` by applying Algorithm 1 on G∆
7: for j = 1,2, . . . ,r do
8: if dfj ≥ 0 then
9: simulate Qj from Beta(dfj/2,1/2)

10: end if
11: end for
12: Calculate D(x`) by applying (10) to cell i` and add it to
−∑j:dfj≥0 npaj

(i`paj
) log(Qj)

13: end for
14: Let F(x) = N−1 ∑N

`=11[D(x`) ≤ D(x)], and calculate D(z) using (11)
15: if F(z) ≥ 1− α then
16: declare z as outlier in U at an α−level
17: end if
18: end procedure

community in order to benchmark different classification models. Each sam-
ple in the data is taken from a 30m× 30m patch of forest that is classified as
one of seven CTs represented as integers: 1: Spruce/Fir (37%), 2: Lodgepole
Pine (48%), 3: Ponderosa Pine (6%), 4: Cottonwood/Willow (1%), 5: Aspen
(2%), 6: Douglas-fir (3%) and 7: Krummholz (4%). In addition, the CT data
contains 53 explanatory variables of which 44 are discrete with two levels
(i.e. binary). Of these, 40 describe the presence (or absence) of a particular
soil type, and four describes the presence (or absence) of the wilderness area.
The remaining variables are continuous and includes for example elevation,
slope, horizontal distance to hydrology and hillshade at noon. Dua and Graff
(2017) gave a thorough explanation of the entire dataset. The original dataset
consists of 581,000 samples, however, we have down-sampled to 20,000 sam-
ples to keep the CPU running time down while preserving the frequency
distribution of the CTs.

Recently, Kumar and Sinha (2020) applied a random forest model to obtain
a classification accuracy of 95% when predicting the CT of a sample. We
demonstrate, that classification should be conducted with caution since, in
many situations, more than a single CT is a statistically plausible explanation
of a sample. Furthermore, some authors, e.g. Zhiwei et al. (2017), assumed

51



Paper B.

the explanatory variables to be independent, which we show is an invalid
exorbitant assumption.

We start the analysis by fitting an interaction graph using the R package
gRapHD (de Abreu et al., 2009) to investigate the complexity of the CT data.
The interaction graph, G, is depicted in Figure 2 (left), where white vertices
represent continuous variables, black vertices represent discrete variables,
and the grey vertex is the class variable. Clearly, the explanatory variables
are associated with CT either by a direct relation or implicitly through other
explanatory variables. The interaction graph is rather complex and it is thus
questionable to assume independence among all variables. There are four
isolated variables, i.e. they are not connected to any other variable in the
graph. We have removed these four variables (columns 21, 22, 50 and 51 in
the UCI dataset) to reduce the complexity.

In order to benchmark ODMGM as an outlier tool, we construct seven inter-
action graphs, one for each class. Figure 2 shows one of the more complex
interaction graphs for class 1 (G1, middle) and the simplest one for class 7
(G7, right). Notice, that these are quite different implying that samples from
different classes are, most likely, generated by different mechanisms with
intrinsic association differences among the explanatory variables.

In Section 8.2, we use these interaction graphs to calculate the proportion of
samples that ODMGM is able to declare as outliers in each class. We bench-
mark the results to those of iForest. In the following section, we investigate if
the underlying assumptions of the CGR model in class 7, which was chosen
for simplicity due to its simpler interaction structure compared to the other
classes, is valid.

●
●
●
●

●
●

●
●

●●●●●●●●●●●●
●

●
●

●
●
●
●
●
●
●
●
●
●
●

●
●●●●●●●●●●●●

●
●
●
●
●
●
●

●

GG

●
●

●

●

●
●

●●

●

●

●

●
●

●

● ●●
●

●

●
●

●

●

●

●

●

●

●
●

●●
●●

●

●
●

●
●

●
●

●

●
●

●

●●

●

●

●

●

G1G1

●
●

●

●

●
●

●●

●

●

●

●
●

●

● ●●
●

●

●
●

●

●

●

●

●

●

●
●

●●
●●

●

●
●

●
●

●
●

●

●
●

●

●●

●

●

●

●

G7G7

Fig. 2: Left: Interaction graph, G, for the down-sampled CT data including the class variable.
Middle: Interaction graph, G1, for class 1. Right: Interaction graph, G7, for class 7. Discrete
variables are black, continuous variables are white and the central, grey vertex in the left graph
represent the class variable.

52



8. Real Data Example

8.1 Verifying CGR Assumptions

Consider the subgraph H7 of G7 in Figure 3, where we have named the ver-
tices according the column position of the corresponding variables in the
cover type data.

●

●

●

●●

●

●

●

●

●

● ●

●

●

v1

v54

v12

v52v53

v11

v5

v10

v8

v9

v7 v6

v3

v2

H7H7

Fig. 3: The subgraph H7 of G7 illustrating some of the associations between the CT variables for
class 7.

The subgraph H7 in Figure 3 consists of the continuous variables and the cor-
responding discrete parents. Using MCS together with Proposition 3, a per-
fect numbering of the vertices can be computed such that pa(v1) = {v52,v54},
pa(v5) = {v6,v10,v11}, pa(v7) = {v2,v3,v52,v53}, pa(v8) = {v2,v3,v7,v52,v53},
pa(v9) = {v2,v3,v7,v8,v52,v53} and pa(v10) = {v11,v12}. First, we make a
graphical check for v1 and v10 being approximately Gaussian given their par-
ents, see Figure 4. In the light of a rather complex model, the density plots in
Figure 4 look fairly symmetric and bell-shaped for v1 (top row, Figure 4). For
v10, the densities are neither symmetric nor bell-shaped, but the deviations
from the Gaussian distribution are not large (bottom row, Figure 4).

It is difficult graphically to verify, whether v5,v7,v8 and v9 are Gaussian with
mean values depending on their parents, since they all have more than one
continuous parent. Instead, we shall assess the adequacy of the assumptions
simply by calculating the squared coefficient of determination, R2, for each
combination of the discrete parents. The results are summarised in Table 1,
where the numbers represent the values of R2 for the given configurations
of v52 and v54. It can be noticed, that no samples had the configuration
(v52,v54) = (1,1). The values of R2 are overall satisfactory. Notice, that the
values for the model of v9 indicates a nearly perfect linear association. The
model of v5 has R2−values of 0.011 and 0.258 for v11 = 0 and v11 = 1, respec-
tively which is less impressive.

53



Paper B.

v52 = 0, v54 = 0, n(0, 0) = 368 v52 = 0, v54 = 1, n(0, 1) = 130 v52 = 1, v54 = 0, n(1, 0) = 203

v1

v11 = 0, v12 = 0, n(0, 0) = 450 v11 = 0, v12 = 1, n(0, 1) = 79 v11 = 1, v12 = 0, n(1, 0) = 172

v10

Fig. 4: Density plots of v1 (top row) and v10 (bottom row) given the configurations of their
discrete parents. The panel headers indicate the level of the discrete parents, e.g. v52 = 0,v54 = 0,
and the numbers of observations, e.g. n(0,0) = 368.

Model (v52,v54) : (0,0) (1,0) (0,1)

v7 ∼ v2 + v3 0.174 0.580 0.396
v8 ∼ v2 + v3 + v7 0.575 0.405 0.599
v9 ∼ v2 + v3 + v7 + v8 0.992 0.998 0.988

Table 1: Summary of model performance using the squared coefficient of determination, R2.

8.2 Performance

We now apply both ODMGM and iForest to the CT data and summarise the
results in Figure 5. Given a specific class, one of the facets, we calculate the
proportion of observations for all other classes that ODMGM and iForest,
respectively, are able to declare as outliers in that specific class. Proportions
for ODMGM are shown by circles whereas results for iForest are shown as
filled dots. The grey bands highlight the proportion of in-class outlier detec-
tion; proportions in this band should optimally equal the significance level,
here, 0.05. Notably, it is difficult to detect outliers in class 1 and 2 regardless
of which method is used. In general, though, ODMGM outperforms iForest
and iForest is in fact worse than random guessing in the majority of the tests
(many rejection fractions less than 0.5). Specifically, for class 7 the difference
in performance is heavily pronounced.

The presented methodology allows each observation to be tested as outlier
in each of the classes in a dataset. Consequently, an observation can be de-
clared an outlier in no, some, or all classes. In the cover type dataset with

54



9. Conclusions and Future Work

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

Cover type: 5 Cover type: 6 Cover type: 7

Cover type: 1 Cover type: 2 Cover type: 3 Cover type: 4

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Tested class

R
ej

ec
tio

n 
fr

ac
tio

n
Method: ● ●iForest ODMGM

Fig. 5: Each observation in the down-sampled dataset was tested as outlier in each class using
both iForest (dark points) and ODMGM (light points), respectively. The panels show how often
each of the cover types is rejected in the classes. The grey bands highlights the proportion of
in-class outlier detection.

seven classes, this implied that there may be up to 27 = 128 different rejec-
tion/acceptance combinations. In Figure 6, we plotted the different types
of combinations seen in the down-sampled dataset (created by the UpSetR
R-package, Gehlenborg, 2019). There are 819 observations that were rejected
in all classes and 1,784 observations accepted in a single class. Furthermore,
as expected from Figure 5, many observations are simultaneously accepted
in both class 1 and 2 (e.g. 5,479 in just those two, and 6,931 with an addi-
tional class (class 5: 3,639, class 7: 3,151, and class 6: 141, respectively). The
aggregation in Figure 6 does not take the true class into consideration as in
Figure 5. However, since the majority of the observations are of class 1 or
2 (85%), these also belong to the classes in which most observations are ac-
cepted. Furthermore 77% (n = 15,365) and 80% (n = 16,078) were accepted as
being of class 1 and 2, respectively. This emphasises the risk of assigning an
observation to a single class, which is the typical approach in a classification
setup.

9 Conclusions and Future Work

In this paper, we present a new probabilistic method, ODMGM, for outlier
detection in high-dimensional data with mixed variables. The methodology
uses a theoretically sound formulation of what is meant by an outlier. We
studied the performance of ODMGM on a real data set and benchmarked it
with the performance of the state-of-the-art algorithm iForest. We found that

55



Paper B.

ODMGM was superior to iForest and that iForest, in general, is worse than
random guessing for outlier detection for this particular dataset. This contra-
dicts the findings of several other authors, see e.g. Eiras-Franco et al. (2019),
Xu et al. (2019), Aryal et al. (2016, 2019), Domingues et al. (2018), Emmott
et al. (2015). Furthermore, we saw from Figure 6 that in many cases, it is
not, statistically, possible to assign a given sample to a single class. This is in
contrast to classification methods where, if a sample is plausible to originate
from two or more different classes, the method assign the sample to the most
probable class, which may arguably be undesirable in healthcare and foren-
sics e.g. where the cost of a false positive may be fatal. Thus, we suggest an
outlier detection method like ODMGM, and leave the further investigation
to a specialist if it is plausible for a sample to belong to several classes or
to be excluded from all classes. The latter case may reveal a new interesting
finding.

Furthermore, we provide software for use in the R language (Lindskou, 2020)
together with all code snippets used to generate all the results in this paper.

Another approach in the homogeneous case, which we hope to investigate in
future research is to assume a different parameterisations of the conditional
mean value in (12). Consider a generic continuous variable, y, and suppose
the discrete parents consist of i = (i1, . . . , ik). The conditional mean of y could

819
683

510
292

190
51 42 16

5479

1035

465418

82 73 52 48 27 17 8 7 1

3639

3151

328228141125 77 30 14 6 1 1 1

594515
334

209
17 11

0

2000

4000

6000

S
et

s 
of

 n
on

−
re

je
ct

ed
 C

T
s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

 CT = 7

 CT = 6

 CT = 5

 CT = 4

 CT = 3

 CT = 2

 CT = 1

   

5126

2758

6083

682

2377

16078

15365

050001000015000
Samples not rejected in given CT

Fig. 6: Diagram showing the distribution of the various combinations of accepted classes for the
down-sampled CT dataset. Dots (and lines) in the lower part correspond to the accepted CT
classes (created by the UpSetR R-package, Gehlenborg, 2019).

56



9. Conclusions and Future Work

then, for example, only include main effects, i.e.

α1(i1) + α2(i2) + · · ·+ αk(ik) + βTypa(y).

In this setup, we only require |n| ≥ ∑k
j |Ij| − k + |pa(y) ∩ Γ|+ 1. All though

much simplified, the estimates would be more robust and the model, if ap-
propriate, will have more power.

Learning a graphical model from high dimensional data is a notoriously hard
task, not least because of the many possible structures and the vast amount of
data. However, it is more tangible if the graph is assumed to be decomposable
since the computational advantages of such an assumption are tremendous.
One of the most promising approaches was suggested by Deshpande et al.
(2001) which offered a detailed algorithm, named ESS, for efficient stepwise
model selection in mixed graphical models (including the pure case) is given.
Altmueller and Haralick (2004) discovered a flaw in ESS and gave a proof for
the correction. For the pure discrete case the ESS algorithm is implemented in
the R software package ess, originally a part of the molic package (Lindskou,
2019). The ESS algorithm is not yet implemented to handle the mixed case
in any known software to our knowledge. The R package gRapHD (Edwards
et al., 2010) was designed for model selection in high-dimensional mixed
graphical models. Unfortunately, the package is no longer maintained. To
our knowledge, the only maintained R package for model selection in the
mixed case is the mgm package. However, one must specify the highest order
of interaction in advance and even for small orders the procedure is much too
slow for model selection in high-dimensional data. In connection to outlier
detection where the procedure may need to run several times, it is crucial
that fitting the interaction graph can be done reasonably fast. We plan to
implement the ESS procedure for mixed graphs in the future.

It is well-known, that linear regression models are not robust when data is
contaminated with outliers (Yu and Yao, 2017). The robustness of the param-
eter estimators in linear regression is often characterised by the breakdown
point which indicates the proportion of outliers that the estimators can re-
sist. It can be shown, that the breakdown point of OLS estimates is 1/|n|
which tends to zero when the sample size |n| increases. Since the estimates
in ODMGM are calculated within sub-tables with npaj

(i0paj
) observations, the

effective sample size is markedly decreased. Hence, in a way, ODMGM is
more robust against outliers compared to a global outlier test that uses all |n|
observations for parameter estimation. Practical computations of robust es-
timates are challenging and therefore increases the computational time. We
hope to explore the issue of robustness in connection to ODMGM in more
detail in the future to make the method more robust.

57



Paper B.

A Variance Estimation for Inhomogeneous Mod-
els

First, we need a little more notation, and to ease this, we define a :=paj.
Denote by yk

j (ia) the k’th observation of yj in cell ia, i.e. the observation of yj

corresponding to the k’th index in η(a). Similarly, denote by yk
a(ia) the k’th

observation of ya in cell ia. The centred observations in cell ia is then given as

γk
j (ia) := yk

j (ia)− ȳj(ia), where ȳj(ia) = ∑
k∈η(a)

yk
j (ia),

and
γk

a(ia) := yk
a(ia)− ȳa(ia), where ȳa(ia) = ∑

k∈η(a)
yk

a(ia).

Our goal is to minimise the sums of squared errors

SSEj(α, β) = ∑
ia∈Ia

∑
k∈η(a)

(
yk

j (ia)− α(ia)− βTyk
a(ia)

)2.

Using the centred observations, it can be seen that

SSEj(α, β) = ∑
ia∈Ia

∑
k∈η(a)

(
γk

j (ia)− βTγk
a(ia)

)2
+ ∑

ia∈Ia

∑
k∈η(a)

(
ȳj(ia)− α(ia)− βT ȳa(ia)

)2.

Thus, α̂(ia) = ȳj(ia)− βT ȳa(ia) and β̂ = S−1
a,a Sa,j where

Su,v = ∑
ia∈Ia

∑
k∈η(a)

γk
u(ia){γk

v(ia)}T .

Finally, it follows that

SSEj(α̂, β̂) = Sj,j − Sj,aS−1
a,a Sa,j and σ̂j = |n|−1SSEj(α̂, β̂). (13)

The problem is now reduced to inverting a (|paj∩Γ|)×(|paj∩Γ|) matrix. The
quantities Qh

j can thus be computed using (13) twice; one with the new obser-
vation included and one without. Notice that the minimised sums of squared
errors reduces as follows in the special cases:

SSEj =


Sj,j when paj⊂∆

S̃j,j − S̃j,aS̃−1
a,a S̃a,j when paj⊂Γ

S̃j,j when paj=∅,

(14)

58



References

where S̃u,v = ∑
|n|
`=1 γ`

u(γ
`
v)

T and γ`
u = y`u − ȳu.

References

Altmueller, S. M. and Haralick, R. M. (2004). Practical aspects of efficient
forward selection in decomposable graphical models. In 16th IEEE Interna-
tional Conference on Tools with Artificial Intelligence, pages 710–715. IEEE.

Aryal, S., Baniya, A. A., and Santosh, K. (2019). Improved histogram-based
anomaly detector with the extended principal component features. arXiv
preprint arXiv:1909.12702.

Aryal, S., Ting, K. M., and Haffari, G. (2016). Revisiting attribute indepen-
dence assumption in probabilistic unsupervised anomaly detection. In
Pacific-Asia Workshop on Intelligence and Security Informatics, pages 73–86.
Springer.

Cochran, W. G. (1934). The distribution of quadratic forms in a normal sys-
tem, with applications to the analysis of covariance. In Mathematical Pro-
ceedings of the Cambridge Philosophical Society, volume 30, pages 178–191.
Cambridge University Press.

de Abreu, G. C., Labouriau, R., and Edwards, D. (2009). High-
dimensional graphical model search with graphd r package. arXiv preprint
arXiv:0909.1234.

Deshpande, A., Garofalakis, M., and Jordan, M. I. (2001). Efficient stepwise
selection in decomposable models. In Proceedings of the Seventeenth con-
ference on Uncertainty in artificial intelligence, pages 128–135. Morgan Kauf-
mann Publishers Inc.

Domingues, R., Filippone, M., Michiardi, P., and Zouaoui, J. (2018). A com-
parative evaluation of outlier detection algorithms: Experiments and anal-
yses. Pattern Recognition, 74:406–421.

Dua, D. and Graff, C. (2017). UCI machine learning repository.

Edwards, D. (2012). Introduction to graphical modelling. Springer Science &
Business Media.

Edwards, D., de Abreu, G. C., and Labouriau, R. (2010). Selecting high-
dimensional mixed graphical models using minimal aic or bic forests. BMC
Bioinformatics, 11(1):18.

Eiras-Franco, C., Martinez-Rego, D., Guijarro-Berdinas, B., Alonso-Betanzos,
A., and Bahamonde, A. (2019). Large scale anomaly detection in mixed
numerical and categorical input spaces. Information Sciences, 487:115–127.

59



References

Emmott, A., Das, S., Dietterich, T., Fern, A., and Wong, W.-K. (2015). A meta-
analysis of the anomaly detection problem. arXiv preprint arXiv:1503.01158.

Garchery, M. and Granitzer, M. (2018). On the influence of categorical fea-
tures in ranking anomalies using mixed data. Procedia Computer Science,
126:77–86.

Gehlenborg, N. (2019). UpSetR: A More Scalable Alternative to Venn and Euler
Diagrams for Visualizing Intersecting Sets. R package version 1.4.0.

"Hawkins, D. M. ("1980"). "Identification of outliers", volume "11". "Springer".

Kumar, A. and Sinha, N. (2020). Classification of forest cover type using
random forests algorithm. In Advances in Data and Information Sciences,
pages 395–402. Springer.

Lauritzen, S. L. (1996). Graphical models, volume 17 of Oxford Statistical Science
Series. Clarendon Press.

Lauritzen, S. L. and Wermuth, N. (1989). Graphical models for associations
between variables, some of which are qualitative and some quantitative.
The annals of Statistics, pages 31–57.

Leimer, H.-G. (1988). Triangulated graphs with marked vertices. In Annals of
Discrete Mathematics, volume 41, pages 311–324. Elsevier.

Lindskou, M. (2019). molic: An R package for multivariate outlier detection
in contingency tables.

Lindskou, M. (2020). mlindsk/odmgm v1.1. https://doi.org/10.5281/
zenodo.3999522 and https://github.com/mlindsk/odmgm.

Lindskou, M., Eriksen, P. S., and Tvedebrink, T. (2019). Outlier detection
in contingency tables using decomposable graphical models. Scandinavian
Journal of Statistics.

Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2008). Isolation forest. In 2008 Eighth
IEEE International Conference on Data Mining, pages 413–422. IEEE.

Xu, H., Wang, Y., Wang, Y., and Wu, Z. (2019). Mix: A joint learning frame-
work for detecting both clustered and scattered outliers in mixed-type data.
In 2019 IEEE International Conference on Data Mining (ICDM), pages 1408–
1413. IEEE.

Yannakakis, M. (1981). Computing the minimum fill-in is np-complete. SIAM
Journal on Algebraic Discrete Methods, 2(1):77–79.

60

https://doi.org/10.5281/zenodo.3999522
https://doi.org/10.5281/zenodo.3999522
https://github.com/mlindsk/odmgm


References

Yu, C. and Yao, W. (2017). Robust linear regression: A review and compar-
ison. Communications in Statistics-Simulation and Computation, 46(8):6261–
6282.

Zhiwei, Z., Xiaomin, G., Lin, W., Mengmeng, Z., Zhikang, L., Yamin, Z., and
Jianhua, Z. (2017). Research on search engine of knowledge adaptation
system based on large scale data set. Procedia engineering, 174:308–316.

61



References

62



Paper C

The jti and sparta Packages: Junction Tree Inference
using Sparse Tables with a View Towards High

Dimensional Graphical Models

Mads Lindskou, Torben Tvedebrink, Poul Svante Eriksen, Søren
Højsgaard and Niels Morling

The paper has been submitted to
Journal of Statistical Software



The layout has been revised.



Abstract

A graphical model is a multivariate (potentially very high dimensional) probabilistic
model, formed by combining lower-dimensional components. Inference (computa-
tion of conditional probabilities) is based on message passing algorithms that utilize
conditional independence structures. In graphical models for discrete variables with
finite state spaces, there is a fundamental problem in high dimensions: A discrete
distribution is represented by a table of values, and in high dimensions, such tables
can become prohibitively large. In inference, such tables must be multiplied which
can lead to even larger tables. The jti package meets this challenge by using the
package sparta by implementing methods that efficiently handle multiplication and
marginalization of sparse tables. The two packages are written in the R programming
language and are freely available from the Comprehensive R Archive Network. We
show that jti is able to handle highly complex graphical models, which are other-
wise infeasible due to lack of computer memory, using sparta as a back-end for table
operations.

A probability mass function can be represented by a multi-dimensional array.
However, for high-dimensional distributions where each variable may have
a large state space, lack of computer memory can become a problem. For
example, an 80-dimensional random vector in which each variable has 10
levels will lead to a state space with 1080 cells. Such a distribution can not
be stored in a computer; in fact, 1080 is one of the estimates of the number of
atoms in the universe. However, if the array consists of only a few non-zero
values, we need only store these values along with information about their
location. That is, a sparse representation of a table. We describe the R (R Core
Team, 2020) package sparta (Lindskou, 2021c) for efficient multiplication and
marginalization of sparse tables.

The family of graphical models (Pearl, 2014, Lauritzen, 1996, Højsgaard et al.,
2012, Maathuis et al., 2018) is vast and includes many different models. In this
paper, we consider Bayesian networks and decomposable undirected graphi-
cal models. Undirected graphical models are also known as Markov random
fields (MRFs). Decomposability is a property ensuring a closed form of the
maximum likelihood parameters. Graphical models enjoy the property that
conditional independencies can be read off from a graph consisting of nodes,
representing the random variables. In Bayesian networks, edges are directed
from a node to another and represent directed connections. In a MRF the
edges are undirected and these should be regarded as associations between
pairs of nodes in a broad sense. A Bayesian network is specified through a
collection of conditional probability tables (CPTs) as we outline in Section 1
and a MRF is specified through tables described by the cliques of the graph.
Graphical models are used in a diverse range of applications, e.g., forensic
identification problems, traffic monitoring, automated general medical di-

65



Paper C.

agnosis and risk analysis Andrade and Ferreira (2009), Kumar et al. (2003),
Zagorecki et al. (2013), Weber et al. (2012). Finally, we mention that the word
‘inference‘ within the realm of graphical models is synonymous with esti-
mating conditional probabilities.

The R packages slam (Hornik et al., 2020) and tensorr (Zamora, 2019) do
also implement sparse tables (arrays). In fact, sparta, slam, and tensorr have
almost the exact same coordinate list representation of sparse tables where: 1)
the index vectors of the non-zero elements are stored in an integer matrix, 2)
the values in a corresponding vector of doubles and 3) the dimension names
is an attribute. In connection with jti, it is crucial to be able to convert high-
dimensional sparse conditional probability tables represented as R arrays into
an equivalent sparse representation. An important difference between sparta
and slam/tensorr is that sparta allows fast coercion between dense tables
(arrays in R) and sparse tables. Neither tensorr nor slam provides a method
for converting a data frame of character or factor variables into a sparse table
which is crucial for a data-driven approach using the junction tree algorithm
(JTA). Finally, neither slam nor tensorr implements the algebras on sparse
tables as introduced in Section 4, and implemented in sparta, facilitating
multiplication and marginalizaion of sparse probability mass functions etc.

There are several interesting suggestions in the litterature for exploiting spar-
sity in tables. Some interesting approaches includes probability trees (PTs)
(Boutilier et al., 2013) and value-based potentials (VBPs) (Gómez-Olmedo
et al., 2021), which we discuss further in Section 4.3.

We illustrate sparta using the jti package (Lindskou, 2021b), which imple-
ments JTA for discrete variables using the Lauritzen-Spiegelhalter updating
scheme (Lauritzen and Spiegelhalter, 1988) with table operations relying on
sparta. JTA is used for inference in Bayesian networks (BNs). We also show,
that multiplication and marginalization of sparse tables are fast compared
with standard built-in R functions and is comparable to gRbase when the
tables are sparse. On the other hand, for high-dimensional tables it is possi-
ble that the dense version can not be kept in memory and the sparse version
comes to the rescue.

In addition to jti, there are to our knowledge three other packages for be-
lief propagation in R; gRain (Højsgaard, 2012), BayesNetBP (Yu et al., 2020)
and RHugin (Konis, 2014), where the latter is not on the Comprehensive R
Archive Network (CRAN). The only R package on CRAN that has an API
for (dense) table operations is gRbase, on which gRain depends. Some R
packages that rely on gRain and gRbase are geneNetBP (Moharil, 2016) and
bnspatial (Masante, 2020). The bnclassify package (Mihaljevic̀ et al., 2018)
has an internal lower C++ class implementation of dense conditional proba-
bility tables.

66



1. Notation and Terminology

Although the paper is not concerned with learning the graph structure, we
mention the packages bnlearn (?), gRain, sparsebn (Aragam et al., 2019),
deal (Boettcher and Dethlefsen, 2003) and bnstruct (?) which can all be used
to learn the DAG of a Bayesian network. In addition, gRain and ess (Lind-
skou, 2021a) can be used to estimate the interaction graph of a MRF.

The goal of this paper is twofold: Firstly, to provide an efficient back-end
for sparse table operations for other R packages dealing with discrete graph-
ical models. Secondly, to provide a new implementation of JTA, namely jti,
using sparta as a back-end. In Section 1, we introduce basic notation and
terminology and in Section 2 we motivate the use of sparse tables through
JTA. Section 3 serves as a primer to our novel representation of tables and
their algebra given in Section 4. In Section 4, we also demonstrate the use of
sparta. Section 5 outlines how to use jti and gives specific examples using
two BNs, which are well known from the literature. Moreover, we demon-
strate the strength of sparta using the ess (Lindskou, 2021a) package to fit
a decomposable MRF on real data. In Section 6, we show that the trade-off
between execution time and memory allocation using sparta is acceptable
for small and medium-sized tables and comparable to gRbase in high di-
mensional sparse tables. Finally, we mention that sparta leverages from the
RcppArmadillo package (Eddelbuettel and Sanderson, 2014) by implement-
ing compute-intensive procedures in C++ for better run-time performance.

1 Notation and Terminology

Let p be a discrete probability mass function of a random vector X = (Xv |
v ∈ V) where V is a set of labels. The state space of Xv is denoted Iv and the
state space of X is then given by I = ×v∈V Iv. A realized value x = (xv)v∈V
is called a cell. Given a subset A of V, the A-marginal cell of x is the vector,
xA = (xv)v∈A, with state space IA = ×v∈A Iv. A Bayesian Network can be
defined as a directed acyclic graph (DAG), see Figure 1, for which each node
represents a random variable together with a joint probability of the form

p(x) = ∏
v∈V

p(xv | xpa(v)), (1)

where xpa(v) denotes the parents of xv; i.e. the set of nodes with an arrow
pointing towards xv in the DAG. Also, xv is a child of the variables xpa(v).
Notice, that p(xv | xpa(v)) has domain Iv × Ipa(v). Hence, we can encode the
conditional probabilities in a table, say φ(xv, xpa(v)), of dimension |Iv| · |Ipa(v)|.
It is also common in the literature to refer to these tables as potentials and we
shall use these terms interchangeably. In general, a potential does not have an
interpretation. Sometimes, we also use subscript notation to explicitly show

67



Paper C.

the set of variables on which a potential depends. That is, φA is a potential
defined over the variables XA. The product φA ⊗ φB of two generic tables
over A and B is defined cell-wise as

(φA ⊗ φB)(xA∪B) := φA(xA)φB(xB).

In other words, the product is defined over the union of the variables of each
of the two potentials. Division of two tables, φA � φB, is defined analogously.
The marginal table, φ↓BA , over the variables B ⊆ A is defined cell-wise as

φ↓BA (xB) := ∑
xA\B∈IA\B

φA(xB, xA\B).

Finally, for some B ⊆ A, fix x∗B. The x∗B slice of φA(x) is then given by

φ
x∗B
A (xA\B) = φA(xA\B, x∗B).

2 Motivation Through Message Passing in Bayesian
Networks

Consider the simple DAG given in Figure 1(a), from which the joint density
can be read off:

p(xa, xb, xc, xd, xe) = p(xc)p(xa | xc)p(xb | xa, xd)p(xd | xc)p(xe | xc, xd) (2)

If, for example, interest is in the joint distribution of (xa, xd) we have to sum
over xb, xc and xe and exploiting the factorization we could calculate this as

p(xa, xd) = ∑
xc

p(xc)p(xa | xc)p(xd | xc)∑
xe

p(xe | xc, xd)∑
xb

p(xb | xa, xd).

The junction tree algorithm can be seen as an algorithm for automatically
factorizing to circumvent the direct summation as described in what follows
using a minimal example (a more general and technical exposition of the
algorithm can be found in e.g., Højsgaard et al., 2012): First,

• moralize the DAG; i.e. connect nodes that share a common child node,

• remove directions in the DAG to obtain an undirected graph, and

• triangulate the resulting graph.

Moralization ensures that the corresponding parent and child nodes are put
in the same maximal clique. A clique is a subset of the nodes for which the

68



2. Motivation Through Message Passing in Bayesian Networks

a b

c d

e
(a)

a b

c d

e
(b)

a,b,dC1

a, c,dC2

c,d, eC3

(c)

Fig. 1: (a) A DAG. (b) A moralized and triangulated version of (a). (c) A rooted junction tree
representation of (b) with root C1.

induced subgraph is complete, and it is maximal if it is not contained in any
other clique. From here, by clique, we always mean a maximal clique, and
we refer to these as the cliques of the graph.

A graph is triangulated (or chordal) if it has no cycles of length greater than
3. If such cycles are present, the fill edges must be added to produce a
triangulated graph. A triangulated graph is also called decomposable, and
hence the connection to decomposable MRFs shows here. Finding an optimal
triangulation (in terms of minimizing the number of fill edges) is a NP hard
problem, but good heuristic methods exists, see Flores and Gámez (2007).
Finding a good triangulation can have a huge impact on the performance of
JTA, which we detail in Section 5.2. A moralized and triangulated version
of the graph in Figure 1(a) is shown Figure 1(b), where no fill edge was
necessary to make the graph triangulated.

A triangulated graph can always be represented as a junction tree. A junction
tree is a tree where the nodes are given by the cliques of the triangulated
graph with the property that for two cliques, C and C′, the intersection C∩C′

is contained in all clique nodes on the unique path between C and C′. This is
a consequence of the running intersection property.

The cliques of the graph in Figure 1(b) are given as C3 = {c,d, e},C2 = {a, c,d}
and C1 = {a,b,d} where we arbitrarily designate C1 as the root to obtain the
rooted junction tree in Figure 1(c). Now, assign each potential in (2) to a

69



Paper C.

clique potential for which the variables conform, e.g.,

φC1(xa, xb, xd)← p(xa | xb, xd),

φC2(xa, xc, xd)← p(xc)p(xa | xc),

φC3(xc, xd, xe)← p(xd | xc)p(xe | xc, xd).

The clique potentials are now initialized (the network is also said to be ini-
tialized) and note that the clique potentials in general do not have any inter-
pretation at this stage. We have obtained the clique potential representation

p(xa, xb, xc, xd, xe) = φC1(xa, xb, xd)φC2(xa, xc, xd)φC3(xa, xc, xd). (3)

The network is said to be compiled at this stage, i.e. when moralization and
triangulization have been performed, and the clique potential representation
has been obtained. In complex networks with large clique potentials, it might
not be feasible to even initialize the clique potentials due to lack of memory.
We give an example of overcoming this in Section 5.2 by entering evidence
into the model as described in Section 2.1.

Next, the message passing scheme can now be applied to the junction tree.
We describe here, the Lauritzen-Spiegelhalter (LS) scheme which works as
follows. Locate a leaf node, here we choose C3, and find the intersection,
S32 = C3 ∩ C2 = {c,d}, with its parent clique C2. Then calculate the marginal
potential φS32(xc, xd) = ∑xe φC3(xc, xd, xe) and perform an inward message by
setting

φC2(xa, xc, xd)← φC2(xa, xc, xd)φS32(xc, xd)

and update the leaf node as

φC3(xc, xd, xe)← φC3(xc, xd, xe)/φS32(xc, xd), (4)

where 0/0 := 0. We say that C2 has collected its messages from all of its
children. This procedure must be repeated until the root, C1, has collected
all its messages. Hence, we perform another inwards message by setting
φS21(xa, xd) = ∑xc φC2(xa, xc, xd) and update:

φC1(xa, xb, xd)← φC2(xa, xc, xd)φS21(xa, xd),

φC2(xa, xc, xd)← φC2(xa, xc, xd)/φS21(xa, xd).

The inward phase terminates when the root clique potential has been nor-
malized:

φC1(xa, xb, xd)← φC1(xa, xb, xd)/ ∑
xa ,xb ,xd

φC1(xa, xb, xd).

70



2. Motivation Through Message Passing in Bayesian Networks

To summarize, we have now obtained the set chain representation

p(xa, xb, xc, xd, xe) = φC1(xa, xb, xd)φC2(xa, xc, xd)φC3(xc, xd, xe)

= p(xa, xb, xd)p(xa | xc, xd)p(xc, xd | xe),

where the clique potentials are now conditional probability tables. Notice
especially that φC1(xa, xb, xd) = p(xa, xb, xd). In the outward phase we start
by sending messages from the root by performing an outward message by
letting φS12(xa, xd) = ∑xb

φC1(xa, xb, xd) and update:

φC2(xa, xc, xd)← φC2(xa, xc, xd)φS12(xa, xd). (5)

We say that C1 has distributed evidence to C2. Notice, that φC2 is now iden-
tical to the probability distribution defined over the variables xa, xc, and xd.
Finally, let φS23(xc, xd) = ∑xa φC2(xa, xc, xd) and update φC3 :

φC3(xc, xd, xe)← φC3(xc, xd, xe)φS23(xc, xd).

As a consequence we finally obtain the clique marginal representation

p(xa, xb, xc, xd, xe) =
φC1(xa, xb, xd)φC2(xa, xc, xd)φC3(xc, xd, xe)

φS12(xa, xd)φS23(xc, xd)

=
p(xa, xb, xd)p(xa, xc, xd)p(xc, xd, xe)

p(xa, xd)p(xc, xd)
,

where all clique and separator potentials are identical to the marginal prob-
ability distribution over the variables involved. Hence, we can now find
p(xa, xd) by locating a clique containing xa and xd and sum out all other
variables. If we choose C2, we get

p(xa, xd) = ∑
xc

φC2(xa, xc, xd).

Each time we multiply, divide or marginalize potentials, a number of binary
operations (addition, multiplication and division) are conducted under the
machinery. For a network with 41 variables and a maximum size of the state
space for each variable being 3, Lepar and Shenoy (1998) recorded a total
number of 2,371,178 binary operations. We do not intend to follow the same
analysis here. For sparse tables, however, the number of necessary binary
operations is potentially much smaller.

71



Paper C.

2.1 Evidence and Slicing

Suppose it is known, before message passing, that XE = x∗E for some labels
E ⊂ V. We refer to x∗E as evidence. Evidence can be entered into the clique
potential representation (3) as follows. For each v ∈ E, choose an arbitrary
clique, C, where v∈C, and set entries in φC that are inconsistent with x∗v equal
to zero. The resulting clique potential is then said to be sliced. After message
passing, all queries are then conditional on XE = x∗E. Thus, entering evidence
leads to more zero-cells, and in a sparse setup, the resulting clique potentials
will be even more sparse. After message passing, the clique potential φC(xC)
is now equal to the conditional probability p(xC\E | x∗E).

It suffices to modify a single clique potential such that it is inconsistent with
v ∈ E, for all v as described above. However, for sparse tables, it is advanta-
geous to enter evidence in all clique potentials containing v since this leads
to a higher degree of sparsity.

This is how evidence is handled in jti. In fact, this is one of the reasons why
jti is able to handle very complex networks by exploiting the evidence using
sparse tables from sparta. Whenever a clique, say C, receives evidence on
some variables, the size of the sparse potential corresponding to C will be
reduced. This will be illustrated in Section 4.1.

It is also possible to enter evidence into the factorization (2). This is the
key to handle complex networks that are otherwise infeasible due to lack of
memory as we show in Section 5.2. This is related to cutset conditioning, and
if one can enter evidence into variables that breaks cycles, the effect can be
huge (Pearl, 2013). One can exploit the law of total probability to sum out
the variables conditioned on (since we obtain the probability of the evidence
during propagation) and recover whatever probability is of interest.

space

3 An Intuitive way of Representing Sparse Tables

Before describing our method for multiplication and marginalization of sparse
tables, it is illuminating to describe sparse tables in a standard R language
setup. Consider two arrays f and g:

R> dn <- function(x) setNames(lapply(x, paste0, 1:2), toupper(x))

R> d <- c(2, 2, 2)

R> f <- array(c(5, 4, 0, 7, 0, 9, 0, 0), d, dn(c("x", "y", "z")))

R> g <- array(c(7, 6, 0, 6, 0, 0, 9, 0), d, dn(c("y", "z", "w")))

with flat layouts

72



3. An Intuitive way of Representing Sparse Tables

R> ftable(f, row.vars = "X")

Y y1 y2

Z z1 z2 z1 z2

X

x1 5 0 0 0

x2 4 9 7 0

R> ftable(g, row.vars = "W")

Y y1 y2

Z z1 z2 z1 z2

W

w1 7 0 6 6

w2 0 9 0 0

Converting f and g to data.frame objects and exclude the cases with a value
of zero:

R> df <- as.data.frame.table(f, stringsAsFactors=FALSE)

R> df <- df[df$Freq != 0,]

R> dg <- as.data.frame.table(g, stringsAsFactors=FALSE)

R> dg <- dg[dg$Freq != 0,]

R> print(df, row.names = FALSE)

X Y Z Freq

x1 y1 z1 5

x2 y1 z1 4

x2 y2 z1 7

x2 y1 z2 9

R> print(dg, row.names = FALSE)

Y Z W Freq

y1 z1 w1 7

y2 z1 w1 6

y2 z2 w1 6

y1 z2 w2 9

This leaves us with two sparse tables, df and dg, respectively. To multiply
df by dg, we must, by definition, determine the cases that match on the
variables Y and Z that they have in common. For example, row 4 in dfmust be
multiplied with row 4 in dg such that (y1, z2, x2, w2) is an element in the
product with the value 81. And since the tables are sparse, no multiplication
by zero will be performed. The multiplication can be performed with the
following small piece of R code (which will be used in Section 6 in connection
with the bench-marking):

R> sparse_prod <- function(df, dg){

+ S <- setdiff(intersect(names(df), names(dg)), "Freq")

+ mrg <- merge(df, dg, by = S, suffixes = c("_df", "_dg"))

+ mrg <- within(mrg, val <- Freq_df * Freq_dg)

+ mrg[, setdiff(names(mrg), c("Freq_df", "Freq_dg"))]

+ }

The merge function performs, by default, what is also called an inner join
or natural join in SQL terminology, which is exactly how we defined table
multiplication in Section 1. Multiplying df and dg yields

R> sparse_prod(df, dg)

73



Paper C.

Y Z X W val

1 y1 z1 x1 w1 35

2 y1 z1 x2 w1 28

3 y1 z2 x2 w2 81

4 y2 z1 x2 w1 42

Marginalization is even more straightforward. Marginalizing out X from df
can for example be done using the built-in R function aggregate (which is
also used in Section 6 for benchmarking):

R> aggregate(Freq ~ Y + Z, data = df, FUN = sum)

Y Z Freq

1 y1 z1 9

2 y2 z1 7

3 y1 z2 9

Thus, we have the necessary tools to implement JTA using sparse tables.
So why should we bother redefining sparse tables and algebras on these;
because of execution time and memory storage. In Section 6, we show the
effect of the effort of going beyond the merge and aggregate functions.

4 Sparse Tables

Let T be a dense table with domain I = ×v∈V Iv. Define the level set L :=
×v∈VLv where Lv = {1,2, . . . , |Iv|} and let # : I→L be a bijection. We define
the sparse table τ = (Φ,φ), of T as the pair where Φ is a matrix with columns
given by the set of vectors in the sparse domain I := {#(x) | T(x) , 0, x ∈
I}, consisting of non-zero cells and where φ is the corresponding vector of
values. Thus, a column in Φ represents a cell in I and is written a tuple i =
(i1, i2, . . . , i|V|; iv ∈ Lv) which explicitly determines the ordering of the labels
and hence the order of the rows in Φ. The order of the columns in Φ is not
important as long as it agrees with φ. We denote by Φ[j] the j′th column of Φ
and by φj the corresponding j′th value in φ. The sub-matrix ΦS defined over
the set of labels, S ⊆ V, is the resulting matrix when rows corresponding to
labels in V \ S have been removed. Let T be the table f from Section 3:

Y y1 y2

Z z1 z2 z1 z2

X

x1 5 0 0 0

x2 4 9 7 0

74



4. Sparse Tables

The domain is given by

I = {x1, x2} × {y1,y2} × {z1,z2}

and we can choose # as the map (x`1 ,y`2 ,z`3) 7→ (`1,`2,`3) for `1,`2,`3 ∈ {1,2}.
The non-zero cells can then be identified as I = {(1,1,1), (2,1,1), (2,2,1), (2,1,2)}.
Hence

Φ =

1 2 2 2
1 1 2 1
1 1 1 2

 ,

with values φ = (5,4,7,9), corresponding to df in Section 3. Let G be another
dense table with domain J = ×u∈U Ju and sparse representation γ = (Ψ,ψ)
with sparse domain J . We then aim at defining the sparse multiplication
τ⊗ γ of T⊗G. Let S = V ∩U be the separator labels shared between the two
sparse tables τ and γ. Next, define the map MS(Φ), which transform ΦS into
a look-up table1 as follows: the keys are the unique columns of ΦS and the
value of MS(Φ) at key k is the set of column indices where column k can be
found in ΦS and hence also in Φ and is given by

MS(Φ)[k] = {j ∈ {1,2, . . . , |I|} : Φ[j] = k}.

Let K denote the mutual keys of MS(Φ) and MS(Ψ). The number of columns
in the matrix of the resulting product τ ⊗ γ is then given as

N := ∑
k∈K
|MS(Φ)[k]| · |MS(Ψ)[k]|.

This observation is crucial, since the memory storage of the sparse product
can then be computed in advance. If (Π,π) is the sparse product of τ and
γ, we can therefore initialize Π as a matrix with |V|+ |U \ V| rows and N
columns and π as an N−dimensional vector. Finally, π is given by the values
φj · ψj′ for j ∈ MS(Φ)[k] and j′ ∈ MS(Ψ)[k] for all k ∈ K. The procedure is
formalized in Algorithm 3.

The number of binary operations is smaller than the equivalent dense ta-
ble multiplication since every multiplication with zero is avoided. Moreover,
since we only loop over the mutual keys, K, the execution time will depend
on the table having the least unique keys over the separator labels. Triv-
ially, division of two sparse tables can be obtained by substituting line 11 of
Algorithm 3 with πl = φj/φ′j.

1A lookup table is a list arranged as key-value pairs. In R one can think of a look-up table as
a named list where the names are the keys and the values are the elements of the list.

75



Paper C.

Algorithm 3 Multiplication of Sparse Tables
1: procedure (τ = (Φ,φ): sparse table, γ = (Ψ,ψ): sparse table)
2: S := V ∩U
3: K: Mutual keys of MS(Φ) and MS(Ψ)
4: N := ∑k∈K |MS(Φ)[k]| · |MS(Ψ)[k]|
5: Initialize the matrix Π with |V|+ |U \V| rows and N columns
6: Initialize the vector π of dimension N
7: l := 1
8: for k ∈ K do
9: for j ∈ MS(Φ)[k] and j′ ∈ MS(Ψ)[k] do

10: Π[l] := (Φ[j],ΨU\V [j′])
11: πl := φj · ψj′

12: l = l + 1
13: end for
14: end for
15: return (Π,π)
16: end procedure

Now, let G be the table g from Section 3 where the domain is given by

J = {w1,w2} × {y1,y2} × {z1,z2}.

Choose the map (w`1 ,y`2 ,z`3) 7→ (`1,`2,`3) for `1,`2,`3 ∈ {1,2}. In summary,
we have the tables

Φ =

1 2 2 2
1 1 2 1
1 1 1 2

 , Ψ =

1 2 2 1
1 1 2 2
1 1 1 2

 ,

along with φ = (5,4,7,9) and ψ = (7,6,6,9). The separator labels are given by
S = {y,z} and the lookup tables of Φ and Ψ are then given by

MS(Φ) = {(1,1) := {1,2}, (2,1) := {3}, (1,2) := {4}}
MS(Ψ) = {(1,1) := {1}, (2,1) := {2}, (1,2) := {4}, (2,2) := {3}}.

Above, y corresponds to row two, and z corresponds to row three in Φ. So, for
example, MS(Φ)[(1,1)] = {1,2} means that the key (1,1) has the value {1,2},
which in turn means that (1,1) is found in columns 1 and 2 in Φ. Therefore,
all values φj for j ∈ MS(Φ)[(1,1)] must be multiplied with all values ψj for

76



4. Sparse Tables

j ∈ MS(Ψ)[(1,1)], etc. Hence,

Π =


1 2 2 2
1 1 2 1
1 1 1 2
1 1 1 2

 ,

and
π = (φ1 · ψ1,φ2 · ψ1,φ3 · ψ2,φ4 · ψ4) = (35,28,42,81),

as expected from the result in Section 3 using sparse_prod. Notice, that we
save any computation with ψ3 since (2,2) is not a key in MS(Φ).

We mention that, addition and subtraction of sparse tables are more demand-
ing since we have to reconstruct zero-cells if one of the tables has a non-zero
cell-value while the other table has a zero-cell in the corresponding separator
cell. Fortunately, these operations are not needed in JTA.

The marginal sparse table τ↓A = (Φ↓A,φ↓A) of τ, corresponding to T↓A, can
be calculated using the map MA(Φ) and, for each key k ∈ MA(Φ), sum the
corresponding values in φ. However, for massive tables, the memory foot-
print of MA(Φ) is unnecessarily large. Instead, we construct the lookup-
table HA(Φ) where the keys are the unique columns of ΦA, as was the case
in MA(Φ). However, the values are themselves pairs where the first element
is an index to any of the column indices where the corresponding key can
be found in ΦA. The second element is the final cell value in the marginal-
ized table corresponding to the key. The pair corresponding to the key k is
therefore on the form

HA(Φ)[k] = (j,v), v = ∑
`:ΦA [`]=k

φ` and ΦA[j] = k.

The value v can easily be computed iteratively. The point here is, that we
never have to store ΦA since we can deduce all information from Φ on the
fly given the row indices corresponding to A in Φ. The number of columns
in the final matrix Φ↓A, and hence the number of elements in φ↓A, is given
by |HA(Φ)|. The procedure is formalized in Algorithm 4. Consider again the
sparse table τ of T and let A = {y,z}. Then, the resulting sparse marginal
table have two rows corresponding to y and z. The construction of HA(Φ) is
as follows. The first column in Φ is extracted, and the entry corresponding
to x is deleted. Call the resulting vector (key) k1. Now, set HA(Φ)[k1] = (j =
1,v = 5) since φ1 = 5. Extract now, the second column of Φ and let k2 be the
resulting key when removing the entry corresponding to x. Since k1 = k2 and

77



Paper C.

Algorithm 4 Marginalization of Sparse Tables
1: procedure (τ = (Φ,φ): sparse table, A: Set of labels)
2: Construct HA(Φ)
3: N = |HA(Φ)|
4: Initialize the matrix Φ↓A with |A| rows and N columns
5: Initialize the vector φ↓A of dimension N
6: Let K be the keys of HA(Φ)
7: l := 1
8: for k ∈ K do
9: (j,v) := HA(Φ)[k]

10: Φ↓A[l] := ΦA[j] . deduced by picking elements from Φ[j]
11: φ↓A

l := v
12: l = l + 1
13: end for
14: return (Φ↓A,φ↓A)
15: end procedure

φ2 = 4 we update HA(Φ)[k1] = (j = 2,v = 9). Proceeding this way gives

HA(Φ) = {(1,1) := (j= 2,v= 9), (2,1) := (j= 3,v= 7), (1,2) := (j= 4,v= 9)}}.

Thus

Φ↓A =

[
1 2 1
1 1 2

]
,

and ψ↓A = (9,7,9). For B ⊂ V, the i∗B− slice of a sparse table τ = (Φ,φ) is
obtained by removing columns, k, in Φ for which k does not agree with i∗B.
We leave out the formal procedure for slicing.

Finally, we mention that Algorithm 3 is generic and applies in every situation.
However, if the domain of one of the tables is a subset of the domain in the
other table, multiplication can be performed much faster since we do not
have to create new cells. This is always the case in JTA since the domain of
the message is a subset of the domain in the potential receiving this message.
We leave out the formal algorithm and just mention, that this algorithm also
exploits the lookup table M whereafter it locates the cells to keep in the larger
table without constructing new cells.

78



4. Sparse Tables

4.1 How to use sparta

To demonstrate the use of sparta, we revisit the example from Section 3 of
the two (dense) tables f and g with mutual variables, Y and Z

R> ftable(f, row.vars = "X")

Y y1 y2

Z z1 z2 z1 z2

X

x1 5 0 0 0

x2 4 9 7 0

R> ftable(g, row.vars = "W")

Y y1 y2

Z z1 z2 z1 z2

W

w1 7 0 6 6

w2 0 9 0 0

We can convert these to their equivalent sparta versions as

R> library("sparta")

R> sf <- as_sparta(f); sg <- as_sparta(g)

Printing the object by the default printing method yields

R> print.default(sf)

[,1] [,2] [,3] [,4]

X 1 2 2 2

Y 1 1 2 1

Z 1 1 1 2

attr(,"vals")

[1] 5 4 7 9

attr(,"dim_names")

attr(,"dim_names")$X

[1] "x1" "x2"

attr(,"dim_names")$Y

[1] "y1" "y2"

attr(,"dim_names")$Z

[1] "z1" "z2"

attr(,"class")

[1] "sparta" "matrix"

The columns are the cells in the sparse matrix and the vals attribute are
the corresponding values which can be extracted with the vals function.
Furthermore, the domain resides in the dim_names attribute, which can also
be extracted using the dim_names function. From the output, we see that (x2,
y2, z1) has a value of 2. Using the sparta print method prettifies things:

79



Paper C.

R> print(sf)

X Y Z val

1 1 1 1 5

2 2 1 1 4

3 2 2 1 7

4 2 1 2 9

where row i corresponds to column i in the sparse matrix. We settled for
this print method because printing column wise leads to unwanted format-
ting when the values are decimal numbers. Consider the cell (2,1,1). The
corresponding named cell is then

R> get_cell_name(sf, sf[, 2L])

X Y Z

"x2" "y1" "z1"

where sf[, 2L] is the second column (row in the output) of sf, which is
(2,1,1). The product of sf and sg is

R> mfg <- mult(sf, sg); mfg

X Y Z W val

1 2 1 2 2 81

2 2 2 1 1 42

3 1 1 1 1 35

4 2 1 1 1 28

The equivalent dense table has 24 = 16 entries. However, mfg stores 20 values
after all, 16 of which are information about the cells. That is, there is some
overhead storing the information about the cells, see Section 4.2. Converting
sf into a conditional probability table (CPT) with conditioning variable Z:

R> sf_cpt <- as_cpt(sf, y = "Z"); sf_cpt

X Y Z val

1 1 1 1 0.312

2 2 1 1 0.250

3 2 2 1 0.438

4 2 1 2 1.000

Slicing sf on X = x1

R> slice(sf, s = c(X = "x1"), drop = TRUE)

Y Z val

1 1 1 5

80



4. Sparse Tables

reduces sf to a single non-zero element, whereas the equivalent dense case
would result in a (Y,Z) table with one non-zero element and three zero-
elements. This slice function is used in jti when the evidence X = x1 is
entered into the clique potential corresponding to sf. Marginalizing out Y in
sg yields

R> marg(sg, y = c("Y"))

Z W val

1 2 2 9

2 2 1 6

3 1 1 13

This is in correspondence with the example in Section 4. Finally, we mention
that a sparse table can be created using the constructor sparta_struct, which
can be necessary to use if the corresponding dense table is too large to have
in memory.

4.2 When to use sparta

As shown in Section 4.1, there is an overhead of storing the information in
a sparta object. A dense array with x elements takes up 8x bytes plus some
negligible memory of storing the variable names etc. On the contrary, a
sparta object with y < x elements takes up y(4k + 8) bytes, where k is the
number of variables (these can be stored as integers and hence only requires
4 bytes each). In Figure 2, we have plotted this relation for k = 4, 6 and 8,
and different levels of sparsity. That is, a sparsity of 1/2 implies that y = x/2.
The black identity line indicates the number of gigabytes needed to store the
dense table with x elements. The size of the state spaces of the variables
are implicitly reflected by the memory needed to store the dense table. The
more memory needed, the larger state space of the variables. However, more
variables and a larger state space of the variables will intuitively result in a
more sparse table, making sparta efficient even for several variables.

The take away message from Figure 2 is that when the state space of the
variables and the sparsity increases the benefit of storing the tables using
sparta will outweigh the overhead of storing the additional information.

In connection to JTA, sparta is favorable when cliques with many variables
imply a high degree of sparsity. In particular, this is often the case for tables in
a Bayesian network representing a genetic pedigree. In this case, cliques tend
to be small, but the state space of the variables can be arbitrarily large due
to the large amount of DNA information for each member of the pedigree.
In Section 5.1, we fit a decomposable MRF to real data and show that the
sparsity of the clique potentials is much favorable towards sparta.

81



Paper C.

Variables: 4 Variables: 6 Variables: 8

0 1 2 3 0 1 2 3 0 1 2 3

0

2

4

6

8

Memory (Gb) storage of a dense table

M
em

or
y 

(G
b)

 s
to

ra
ge

 o
f a

 s
pa

rt
a 

ta
bl

e

Sparsity

0.5

0.6

0.7

0.8

0.9

0.95

Fig. 2: The black identity line indicates the number of gigabytes needed to store the dense
table with x elements. The colored lines indicate the number of gigabytes required to store the
equivalent sparta object with the respective number of variables and sparsity.

4.3 Probability Trees and Value Based Potentials

This section is devoted to discussing differences between sparta and prob-
ability trees (PTs) (Boutilier et al., 2013) and value based potentials (VBPs)
(Gómez-Olmedo et al., 2021). Firstly, PTs are potentials that are represented
as trees where context specific information (CSI) (conditional independen-
cies that only hold in specific contexts) can be exploited by collapsing nodes
in the tree. This, however calls for methods to learn these CSIs, which can
be computationally demanding. Moreover, PTs can be pruned, further re-
sulting in an approximation of the potential by collapsing leaf nodes (in the
same branch though) for which all values are close to the mean value of that
branch. Finally, PTs can not disregard zero-cells in any way, which, by con-
struction, is the power of sparta. We are not aware of any open source code
that implements PTs.

Very recently, and almost parallel to this paper, VBPs were introduced with
the goal of overcoming the limitations of PTs (Gómez-Olmedo et al., 2021).
VBPs is an acronym for four new potentials that can be either value driven or
index driven. We shall only focus on the new potentials called index driven
with map (IDM) since these have the most resemblance with sparta, and
also because they seem to perform best overall according to the benchmarks
provided in Gómez-Olmedo et al. (2021).

To introduce IDMs, we first consider a dense table, dt, over the variables Z,
Y, and X where all cells are represented by a vector of integers and assign to
each cell a unique index:

82



4. Sparse Tables

R> dt <- cbind(

+ expand.grid(Z = 1:2, Y = 1:2, X = 1:2),

+ Freq = c(.4, .1, .7, .1, .6, 0, 0, .9),

+ idx = 1:2^3

+ )

R> print(dt, row.names = FALSE)

Z Y X Freq idx

1 1 1 0.4 1

2 1 1 0.1 2

1 2 1 0.7 3

2 2 1 0.1 4

1 1 2 0.6 5

2 1 2 0.0 6

1 2 2 0.0 7

2 2 2 0.9 8

Since indices are unique, the table can be represented by the vector

R> structure(dt$Freq, names = dt$idx)

1 2 3 4 5 6 7 8

0.4 0.1 0.7 0.1 0.6 0.0 0.0 0.9

where the names are the indices. The correspondence between indices and
cells is as follows (Gómez-Olmedo et al., 2021): First assign to variable ` the
weight w` = w`+1 · |I`+1|· for ` < |V| and w|V| = 1 where |V| is the number
of variables. The ordering is given from first to last, i.e. Z is the first, Y is the
second, and X is the third variable in the case of dt.

The index of a given cell, i, is then given by

idx(i) =
|V|

∑
`=1

(i` − 1) · w`. (6)

Thus, the index of cell (z1,y2, x2) is (1− 1) · 4 + (2− 1) · 2 + (2− 1) · 1 = 4 as
expected. Given an index, `, the k′th component of the corresponding cell is
given by

bk/wlc modulo |I`|, (7)

where I` is the statespace of the `′th variable. Thus, it is a fairly cheap oper-
ation to convert between the index and the cell, which is the backbone when
manipulating IDMs. The IDM, IDMφ, of the potential φ is a representation of
φ consisting of a lookup table D and an array A. A holds all unique values
of φ, excluding zero. The keys in D are the indices in φ excluding indices
corresponding to zero-cells and the values are indices from A corresponding

83



Paper C.

to the cell value. We can now form the IDM of dt:

R> dt_no_zeroes <- subset(dt, Freq != 0)

R> unique_values <- unique(dt_no_zeroes$Freq)

R> A <- structure(unique_values, names = seq_along(unique_values))

R> D <- structure(sapply(dt_no_zeroes$Freq, function(k) {

+ match(k, A)

+ }), names = dt_no_zeroes$idx)

R> (IDM <- list(A = A, D = D))

$A

1 2 3 4 5

0.4 0.1 0.7 0.6 0.9

$D

1 2 3 4 5 8

1 2 3 2 4 5

First, notice that A and D are not true lookup tables with constant lookup, but
ordinary R vectors. At first, it may seem redundant to form the A instead of
just forming the structure

R> (B <- structure(dt_no_zeroes$Freq, names = dt_no_zeroes$idx))

1 2 3 4 5 8

0.4 0.1 0.7 0.1 0.6 0.9

This is because that for IDMs, repeated values, like 0.1, take up a single float
in the memory as opposed to B that must store a float for each repetition of
the same value. For tables with many repeated values, this can potentially
save a lot of memory. The question is now whether or not IDMs can be mul-
tiplied and marginalized within reasonable time. There are no benchmarks
of multiplication and marginalization in Gómez-Olmedo et al. (2021). Still,
we can with reasonable confidence state that multiplication of IDMs becomes
increasingly slower than sparta as the state space of the product increases.
We state this for two reasons. For one, we did actually consider a variant of
IDMs for which multiplication turned out to be extremely slow for large ta-
bles. Second, when IDMs are multiplied one must loop over the entire dense
state space of the resulting table. In more detail, suppose we want to find
the product IDMφZ = IDMφX ⊗ IDMφY . Let zl be the `′th cell in IDMφZ . Then
for all ` = 1,2, . . . , |IZ|, one must use (7) to construct the cell zl , project this
cell onto A, use (6) to convert to and index in IDMφA and lookup the value
and test if this is zero. If not, also project z` onto B, multiply the values and
append the scalar product and ` to IDMφC . Imagine |IC| being huge, then
multiplication of IDMs is cumbersome.

84



5. Usecases of jti and sparta

Based on this, we do not intend to benchmark IDMs against sparta, but we
summarize the discussion by saying that neither IDMs nor sparta is, gener-
ally, better than the other. It depends on the problem at hand. IDMs are most
often more memory efficient than sparta but for larges tables with high de-
grees of sparsity, sparta is faster. For very large networks, it may even make
sense to encode a Bayesian network to hold both IDMs and spartas such that
the IDM potentials ensure that it is even possible to compile the network.
This calls for methods to combine IDMs and sparta tables which we leave for
future research.

5 Usecases of jti and sparta

In jti, there are two ways of specifying a Bayesian network. Either by a
list of CPTs or a dataset together with a DAG. In the latter case, the CPTs
are found using maximum likelihood estimates. Here, we describe how to
use jti with the classic Bayesian network asia (Lauritzen and Spiegelhalter,
1988) where the corresponding CPTs is part of jti. The network represents a
simplified model to help diagnose patients arriving at a respiratory clinic. A
history of smoking has a direct influence on both whether or not a patient has
bronchitis and whether or not a patient has lung cancer. Both lung cancer and
bronchitis can result in dyspnoea. An x-ray result depends on the presence
of either tuberculosis or lung cancer. Finally, a visit to Asia influences the
probability of having tuberculosis. The DAG is depicted in Figure 3.

A

T

E

S

L

B

X

D

Fig. 3: The DAG for the asia network with variables asia (A), tuberculosis (T), either (E),
x-ray (X), lung (L), dysp (D), smoke (S) and bronc (B).

We use the version of asia called asia2, both shipped with jti, which is a list
of CPTs and which is shipped with jti. The first step is to call cpt_list for
some initial checks and conversion to sparta tables:

85



Paper C.

R> cl <- cpt_list(asia2)

R> cl

List of CPTs

-------------------------

P( asia )

P( tub | asia )

P( smoke )

P( lung | smoke )

P( bronc | smoke )

P( either | lung, tub )

P( xray | either )

P( dysp | bronc, either )

<cpt_list, list>

-------------------------

From the output, we see the inferred CPTs corresponds to Figure 3, giving
rise to a factorization in the same way as in (2). The network is now ready for
compilation which involves moralization and triangulation. In jti there are
four different choices for triangulation which are all based on the elimination
game algorithm, see Flores and Gámez (2007). One of the most well-known
heuristics is min_fill which tries to minimize the number of fill edges. Ev-
idence can be entered either at compile stage or just before message passing
begins. It is always advisable to enter evidence at compile stage since we
know from Section 2.1 that this reduces the number of non-zero elements in
the CPTs and hence the memory footprint and execution time. A good strat-
egy might be to locate one or more of the largest cliques and enter evidence
on the nodes contained in these. We can investigate the cliques and their
state spaces prior to compilation by triangulating the graph as follows:

R> tri <- triangulate(cl, tri = "min_fill")

The tri object is a list containing the triangulated graph, new_graph as a ma-
trix, a list of fill_edges, the cliques, and the size of the dense statespace
of each clique. In Section 5.2, we show how to exploit information about the
cliques with largest state space in order to compile and propagate in a net-
work that is otherwise infeasible on a ’standard’ laptop. Now, let for example
tub = yes be the evidence indicating that a given person has tuberculosis.
The compiled network is then constructed as

R> cp <- compile(cl, evidence = c(tub = "yes"), tri = "min_fill")

R> cp

86



5. Usecases of jti and sparta

Compiled network

-------------------------

Nodes: 8

Cliques: 6

- max: 3

- min: 2

- avg: 2.67

Evidence:

- tub: yes

<charge, list>

-------------------------

The cliques can be extracted from the compiled object with get_cliques(cp).
The compiled object can now be entered into the message passing procedure
as:

R> j <- jt(cp)

The junction tree can be visualized by plotting the object as plot(j), see
Figure 4. Finally, we can calculate the probability of a given person having a
positive x-ray result, xray = yes, given that the person has tuberculosis as

R> query_belief(j, nodes = "xray")

$xray

xray

yes no

0.98 0.02

Thus, given that a person has tuberculosis, the probability of observing a
positive x-ray result is 0.98. The probability of observing positive x-ray result
given that tub = "no" can be calculated accordingly and equals 0.1012. Joint
queries can be calculated by specifying type = "joint" in query_belief.

A
T

E
L
T

B
E
L

B
L
S

B
D
E

E
X

Fig. 4: A junction tree for the asia network.

87



Paper C.

5.1 Inference in Decomposable Markov Random Fields

In this section, we illustrate the gain of using sparta for the analysis of the
public-domain derma data set (part of the ess package) originally obtained
from the UCI Machine Learning Repository (Dua and Graff, 2017). The data
set consists of 358 observations, 35 variables of which there is one class vari-
able called ES. The class variable has six states, seboreic dermatitis, psoriasis,
lichen planus, chronic dermatitis, pityriasis rosea and pityriasis rubra pilaris,
each representing a skin disease. The remaining 34 clinical variables (all with
4 states except age, which has been discretized into six bins) are used to
predict the type of skin disease. We first fit a decomposable MRF

R> library("ess")

R> g <- fit_graph(derma, q = 1.5, sparse_qic = TRUE)

The fitted graph is plotted in Figure 5, where we just notice, that it is a rather
complex graph with large cliques. Hence, for such a small data set and a
graph with big cliques, the chance of sparse clique potentials is significant.
Extracting the sparse tables clique potentials using pot_list and compile:

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

h12

h13

h14

h15 h16

h17

h18

h19

h20

h21

h22
h23

h24

h25

h26

h27

h28

h29

h30

h31

h32

h33

age

ES

Fig. 5: The fitted decomposable MRF for the derma data set.

R> cl <- pot_list(derma, as_igraph(g))

R> j <- jt(compile(cl, root_node = "ES"), propagate = "no")

The argument root_node = "ES" forces ES into the root clique. Hence, if
we are interested in queries about ES, we only need to conduct the inwards
message passing, collect, since the root clique potential is identical to the
probability distribution over the variables in the root clique. The argument
propagate = "no" means that message passing should be postponed. By

88



5. Usecases of jti and sparta

doing so, the initialization is only performed once, and the junction tree can
be exploited as many times as needed with different evidence.

The largest clique of j has 6 variables, and the mean sparsity of the clique
potentials is given by

R> mean(sapply(j$charge$C, sparta::sparsity))

[1] 0.9233838

showing that the tables are extremely sparse. The junction tree can now be
used for e.g., classification. Consider the first observation in derma

R> z <- unlist(derma[1, -ncol(derma)])

and update the junction tree with evidence corresponding to z and perform
inwards message passing

R> jz <- propagate(set_evidence(j, z), prop = "collect")

The probability distribution of the class variable given the evidence z is then

R> q <- query_belief(jz, nodes = "ES", type = "marginal")[[1]]

R> which.max(q)

seboreic dermatitis

1

Hence, we classify z as an observation from class seboreic dermatitis.

5.2 The Impact of Evidence

The Bayesian Network Link (Jensen and Kong, 1999) is a large Bayesian net-
work with 724 nodes and 1,125 arcs. The network has been used for linkage
analysis where, previously, only approximate methods have been applied to
make inference in the network. We have verified that sparta generates a large
amount of overhead in the CPTs for the Link network. In fact, jti uses ap-
proximately 16 times more memory to store the clique potentials than the
dense version. However, in the following, we show how sparta leverages
from entering evidence and hence reduces the CPTs.

We tested three of the most comprehensive software packages, across differ-
ent programming languages for belief propagation and tested if they were
able to handle Link on a “standard” laptop machine. We used the R package
gRain, the R package BayesNetBP, the Python package pyAgrum (Gonzales
et al., 2017), the Julia package BayesNet (Stanford, 2020). Interestingly, all
of these failed due to lack of computer memory on the first author’s laptop
machine2 while jti succeeded. The pyAgrum package is a high-level inter-

2See Section 7 for details about this machine.

89



Paper C.

face to the extremely efficient C++ library aGrum (Gonzales et al., 2017). In
Gonzales et al. (2017), the authors of pyAgrum themselves failed to propa-
gate in Link on a computer with 32Gb memory. An investigation revealed
that exploiting the triangulation found by jti, gRain is now also able to make
inference in Link. We have not tried this with the other packages mentioned
but conjecture that the other packages would also be able to handle the Link
network. Interestingly, this triangulation was the result of one of the most
well-known heuristics, namely min_fill. The reason that triangulation has
such a big impact is, that it determines the resulting cliques and hence the
size of the clique potentials. If the cliques are too large, and hence the num-
ber of elements in the state space is large, it may not be possible to initialize
the clique potentials due to lack of memory.

We now compare the cliques with large state spaces resulting from the two
heuristics min_fill and min_nei (a variant of min_fill which also tries to
minimize the number of fill-in edges). We have extracted the Link network
from https://www.bnlearn.com/bnrepository/ as a list of CPTs with infor-
mation about child and parent-node relations. In jti, we just need a list of
CPTs, which we extract as

R> cpts <- bnfit_to_cpts(Link)

Next, we convert these CPTs to their sparta equivalent using cpt_list while
deducing the underlying network, conducting some sanity checks and trian-
gulate with the two heuristics

R> cl <- cpt_list(cpts)

R> tri_min_fill <- triangulate(cl, tri = "min_fill")

R> tri_min_nei <- triangulate(cl, tri = "min_nei")

The size of the five largest clique state spaces can then be extracted as

R> sp_min_fill <- sort(tri_min_fill$statespace, decreasing = TRUE)[1:5]

R> sp_min_nei <- sort(tri_min_nei$statespace, decreasing = TRUE)[1:5]

and the memory usage, for dense tables, in gigabytes of allocating memory
for each of these are

R> round(sum(sp_min_fill) / 1e9 * 8, 2)

[1] 0.2

R> round(sum(sp_min_nei) / 1e9 * 8, 2)

[1] 26.98

We imagine that there is no triangulation of Link such that any software pack-
ages, including jti, are able to compile and propagate in Link on a standard
laptop. In what follows we show that we can overcome the initialization step

90

https://www.bnlearn.com/bnrepository/


6. Time and Memory Trade off in Sparta

with jti, by exploiting evidence and sparsity. We use the min_nei heuristic
since this was the poorest method, locate one of the cliques with largest state
space, and insert evidence on 10 variables.

R> max_idx <- which.max(tri_min_nei$statespace)

R> max_vars <- tri_min_nei$cliques[[max_idx]]

R> max_dim <- dim_names(cl)[max_vars[1:10]]

R> e <- sapply(max_dim, ‘[[‘, 1L)

R> cp <- compile(cl, e, tri = "min_nei")

R> j <- jt(cp)

The memory size (Gb), in the dense sense, in the resulting five largest clique
potentials is

R> round(sort(sum(sapply(j$charge$C, sparta::table_size) / 1e9 * 8),

+ TRUE), 2)

[1] 0.06

which is negligible compared to 26.98 Gbs. The sparse tables take up 0.02
Gbs.

6 Time and Memory Trade off in Sparta

We investigate the trade off between memory allocation and execution time
for multiplication and marginalization on sparta objects. If sparta objects
do not perform reasonably well for small and medium sized tables, their
practical usage is limited in real usecases.

Thus, we compare three functions for multiplication and three functions for
marginalization: 1) The mult and marg functions from sparta, 2) the tabMult
and tabMarg functions from gRbase and 3) the sparse_prod and aggregate
functions from Section 3. In the latter case, we just refer to R as the package.

We randomly generate pairs of tables such that the number of cells in the
product of the two tables does not exceed 106. We varied the sparsity of
the product of the tables; 0% sparsity (dense tables), (1− 75]% sparsity, and
(75,99]% sparsity. For each pair of tables, we multiply them together and
record the memory usage (in megabytes) of the product and the execution
time (in seconds). As gRbase is the standard and most mature package for
graphical models in R, the performance comparisons are relative to that of
gRbase. Hence, in Figure 6, gRbase performs better for tables with the rela-
tive scores above one (indicated by horizontal dashed lines), whereas values
below one show cases where the alternative approaches are better. The com-
parisons are plotted for different ranges of table sizes (panels) and sparsity
of the resulting table (first axis).

91



Paper C.

No. of cells : [0, 102] No. of cells : (102, 104] No. of cells : (104, 106]

M
ultiplication (size)

M
ultiplication (tim

e)
M

arginalization (tim
e)

0% (0%−75%] >75% 0% (0%−75%] >75% 0% (0%−75%] >75%

 0.3

 1.0

 3.0

10.0

   0.1

   1.0

  10.0

 100.0

1000.0

   0.1

   1.0

  10.0

 100.0

1000.0

Sparsity of resulting table

P
er

fo
rm

an
ce

 r
el

at
iv

e 
to

 g
R

ba
se

Package: R sparta

Fig. 6: Comparison of R (sparse_prod and aggregate) and sparta (mult and marg) to gRbase
(tabMult and tabMarg) in terms of memory usage and timing. The top row shows the relative
memory usage for multiplication, whereas the two lower rows show the relative timing for
multiplication and marginalizaion, respectively.

Multiplication (size): The first row of Figure 6 describes the size of the
table resulting from multiplying two tables. It can be seen that R consistently
produces tables of smaller sizes than sparta for very small tables with 100
(102) cells. For tables with more than 100 cells, sparta consistently produces
smaller tables except for a single case. Increasing the degree of sparsity leads
to reduced object sizes for both R and sparta, and for tables with more than
75% sparsity, sparta outperforms both R and gRbase except in the first two
panels with small tables.

Multiplication (time): The second row of Figure 6 describes the computing
time for multiplying two tables. Clearly, sparta outperforms R by orders of
magnitude. For larger tables (the two rightmost columns), there is also a clear
effect of the degree of sparsity on the computing time.

Marginalization (time): The third row of Figure 6 describes the comput-
ing time for marginalizing out all variables in a table. When the degree of
sparsity increases, the computing time decreases. In the comparison between
gRbase and sparta, we see that the marginalization implementation of sparta
is competitive to that of gRbase. For tables with 10,000 (104) or fewer cells,

92



7. Summary

it is faster irrespective of the sparsity except in a single case. For 75% spar-
sity, sparta’s marginalization is consistently faster. Efficient marginalization
is not only relevant for propagation, but also for querying propababilites in
a junction tree that has been fully propagated.

7 Summary

We have presented a novel method for the multiplication and marginaliza-
tion of sparse tables. The method is implemented in the R package sparta.
However, the method is generic, and we have provided detailed pseudo al-
gorithms facilitating the extension to other languages. In addition, we have
presented the companion package jti to illustrate some of the advantages of
sparta in connection with the junction tree algorithm. We hope to explore the
benefit of the C API for working with external pointers to reduce the mem-
ory usage for sparta objects in the future. We also described IDM potentials
which are very memory efficient but less time efficient. We intend to explore
how IDMs and sparta can be combined in the future.

The memory footprint of the clique potentials can become prohibitively large
when the sizes of the cliques are large This may not be true in general for
sparse tables. As a matter of fact, it may be optimal to have large cliques if
they are very sparse and/or if it is common to observe evidence variables in
such cliques.

The benchmark study indicates that our proposed method for table multi-
plication and marginalization performs well for small, medium, and large
tables. However, our real interest is in the performance on massive tables,
which is impossible to benchmark in this paper due to the increased running
time and memory usage of gRbase and R. For pedigree networks e.g., the
CPTs can be huge. Thus, it is possible to construct the sparse tables without
representing the dense arrays. Finally, we mention that the benchmark did
not consider tables where the domain of one of the tables is contained in the
domain in the second table. As discussed in Section 4, these are the typi-
cal cases in JTA and the performance of mult, in these cases, is considerably
faster.

Although JTA, and hence jti, can not handle non-decomposable MRFs, it
would be possible to utilize sparta in connection to loopy belief propagation
for this task.

93



References

Acknowledgment

We are thankful for the constructive comments from the anonymous review-
ers. The paper has been greatly improved by these.

Computational Details

We used versions 0.8.3 of jti and version 0.8.3 of sparta in this paper. Detailed
examples, source code, and information about installation can be found at

https://github.com/mlindsk/jti

and

https://github.com/mlindsk/sparta

jti have a GNU general public license whereas sparta has a MTI license.

In addition to the packages already mentioned, the following R packages
were used for the benchmark results:

• dplyr version 1.0.7.

• glue version 1.4.2.

• tictoc version 1.0.1.

• ggplot2 version 3.3.5.

We used R version 4.1.0. All computations were carried out on a 64-bit Linux
computer with Ubuntu 20.04.2 and Intel(R) Core(TM) i7-6600U CPU 2.60GHz
LTS. The machine has approximately 6Gb of free memory for use in calcula-
tions.

References

Andrade, M. and Ferreira, M. A. M. (2009). Bayesian networks in forensic
identification problems.

Aragam, B., Gu, J., and Zhou, Q. (2019). Learning large-scale bayesian net-
works with the sparsebn package. Journal of Statistical Software, 91(11):1–38.

Boettcher, S. G. and Dethlefsen, C. (2003). deal: A package for learning
bayesian networks. Journal of Statistical Software, 8(20):1–40.

Boutilier, C., Friedman, N., Goldszmidt, M., and Koller, D. (2013). Context-
specific independence in bayesian networks. arXiv preprint arXiv:1302.3562.

94

https://github.com/mlindsk/jti
https://github.com/mlindsk/sparta


References

Dua, D. and Graff, C. (2017). UCI machine learning repository.

Eddelbuettel, D. and Sanderson, C. (2014). RcppArmadillo: Accelerating R
with high-performance C++ linear algebra. Computational Statistics and Data
Analysis, 71:1054–1063.

Flores, M. J. and Gámez, J. A. (2007). A review on distinct methods and
approaches to perform triangulation for bayesian networks. In Advances in
Probabilistic Graphical Models, pages 127–152. Springer-Verlag.

Gómez-Olmedo, M., Cabañas, R., Cano, A., Moral, S., and Retamero, O. P.
(2021). Value-based potentials: Exploiting quantitative information reg-
ularity patterns in probabilistic graphical models. International Journal of
Intelligent Systems.

Gonzales, C., Torti, L., and Wuillemin, P.-H. (2017). aGrUM: a graphical
universal model framework. In International Conference on Industrial, Engi-
neering and Other Applications of Applied Intelligent Systems, pages 171–177.
Springer-Verlag.

Højsgaard, S., Edwards, D., and Lauritzen, S. (2012). Graphical models with R.
Springer Science & Business Media.

Hornik, K., Meyer, D., and Buchta, C. (2020). slam: Sparse Lightweight Arrays
and Matrices. R package version 0.1-48.

Højsgaard, S. (2012). Graphical independence networks with the gRain pack-
age for R. Journal of Statistical Software, Articles, 46(10):1–26.

Jensen, C. S. and Kong, A. (1999). Blocking gibbs sampling for linkage anal-
ysis in large pedigrees with many loops. The American Journal of Human
Genetics, 65(3):885 – 901.

Konis, K. (2014). RHugin: R Package Version 7.8.

Kumar, P., Ranganath, S., and Weimin, H. (2003). Bayesian network based
computer vision algorithm for traffic monitoring using video. In Proceed-
ings of the 2003 IEEE International Conference on Intelligent Transportation Sys-
tems, volume 1, pages 897–902. IEEE.

Lauritzen, S. L. (1996). Graphical models, volume 17 of Oxford Statistical Science
Series. Clarendon Press.

Lauritzen, S. L. and Spiegelhalter, D. J. (1988). Local computations with prob-
abilities on graphical structures and their application to expert systems.
Journal of the Royal Statistical Society: Series B (Methodological), 50(2):157–194.

95



References

Lepar, V. and Shenoy, P. P. (1998). A comparison of lauritzen-spiegelhalter,
hugin, and shenoy-shafer architectures for computing marginals of proba-
bility distributions. In Proceedings of the Fourteenth conference on Uncertainty
in artificial intelligence, pages 328–337. Morgan Kaufmann Publishers Inc.

Lindskou, M. (2021a). ess: Efficient Stewise Selection in Decomposable Markov
Random Fields. R package version 1.1.2.

Lindskou, M. (2021b). jti: Junction Tree Inference. R package version 0.8.0.

Lindskou, M. (2021c). sparta: Tables. R package version 0.8.1.

Maathuis, M., Drton, M., Lauritzen, S., and Wainwright, M. (2018). Handbook
of graphical models. CRC Press.

Masante, D. (2020). bnspatial: Spatial Implementation of Bayesian Networks and
Mapping. R package version 1.1.1.

Mihaljevic̀ et al. (2018). bnclassify: Learning Bayesian Network Classifiers.

Moharil, J. (2016). Belief Propagation in Genotype-Phenotype Networks. R pack-
age version 2.0.1.

Pearl, J. (2013). A constraint propagation approach to probabilistic reasoning.
arXiv preprint arXiv:1304.3422.

Pearl, J. (2014). Probabilistic reasoning in intelligent systems: networks of plausible
inference. Elsevier.

R Core Team (2020). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria.

Stanford, I. S. L. (2020). A Julia package for Bayesian Networks. Julia package
version v.3.3.2.

Weber, P., Medina-Oliva, G., Simon, C., and Iung, B. (2012). Overview on
bayesian networks applications for dependability, risk analysis and main-
tenance areas. Engineering Applications of Artificial Intelligence, 25(4):671–682.

Yu, H., Moharil, J., and Blair, R. (2020). BayesNetBP: An R package for
probabilistic reasoning in bayesian networks. Journal of Statistical Software,
Articles, 94(3):1–31.

Zagorecki, A., Orzechowski, P., and Hołownia, K. (2013). A system for auto-
mated general medical diagnosis using bayesian networks. In MEDINFO
2013, pages 461–465. IOS Press.

Zamora, R. (2019). tensorr: Sparse Tensors in R. R package version 0.1.1.

96



Paper D

Unity Smoothing for Handling Inconsistent Evidence
in Bayesian Networks and Unity Propagation for

Faster Inference

Mads Lindskou, Torben Tvedebrink, Poul Svante Eriksen, Søren
Højsgaard and Niels Morling

The paper has been submitted to
International Journal of Approximate Reasoning



The layout has been revised.



1. Introduction

Abstract

We propose Unity Smoothing (US) for handling inconsistencies between a Bayesian
network model and new unseen observations. We show that prediction accuracy, us-
ing the junction tree algorithm with US is comparable to that of Laplace smoothing.
Moreover, in applications were sparsity of the data structures is utilized, US outper-
forms Laplace smoothing in terms of memory usage. Furthermore, we detail how to
avoid redundant calculations that must otherwise be performed during the message
passing scheme in the junction tree algorithm which we refer to as Unity Propagation
(UP). Experimental results shows that it is always faster to exploit UP on top of the
Lauritzen-Spigelhalter message passing scheme for the junction tree algorithm.

1 Introduction

Bayesian networks (BNs) (Pearl, 2014, Cowell et al., 2007) are statistical mod-
els that encode complex joint probability distributions using directed acyclic
graphs (DAGs), from which conditional independencies among the variables
can be inferred. Generally, the variables can be of any type, but we assume
that the variables are discrete. In some applications, it is intractable to cal-
culate probabilities from the joint distribution. BNs alleviate this by factor-
izing the joint distribution into lower-dimensional conditional probability tables
(CPTs), which can be identified from the DAG. BNs can be fully data-driven,
entirely expert specified, or a combination of these, which is a very elegant
feature not shared by many statistical methods. By knowing the DAG, one
can utilize both exact and approximate methods to answer inference ques-
tions, i.e., calculate posterior probabilities. In more general terms, BNs are
used to support decision-making under uncertainty.

As for most other statistical methods, BNs can be used to make predictions
for one or more of the variables given evidence on a subset of the other vari-
ables. In cases where the evidence specifies a previously unobserved con-
figuration of the variables, the BN would, in many cases, lead to a degener-
ate model and assignment of zero probability to this evidence configuration.
To circumvent this, Laplace smoothing may be applied to ensure non-zero
probabilities for all possible configurations by adding a pseudo-count α > 0
to each cell of the contingency table. However, in effect this also discards
all structural zeroes, which are domain-induced constraints representing im-
possible outcomes. Structural zeroes are frequent in expert-specified BNs.
However, they may also occur in data-driven BNs. We propose Unity Smooth-
ing (US) as an alternative to Laplace smoothing, which has several attractive
properties: (1) if the evidence does not violate the structural zeroes, these
are preserved, (2) prediction accuracy in BNs using US is comparable to that

99



Paper D.

of Laplace smoothing (see Section 6), (3) sparse CPTs (Lindskou et al., 2021)
are equally sparse after smoothing, and (4) the smoothing takes place only in
case of inconsistent evidence and only for the zero-probability CPTs involved
(just-in-time smoothing).

For BNs to succeed in real applications, it is crucial that run-time perfor-
mance is at an acceptable level. Especially for online problems, where pos-
teriors must be computed continuously, even small improvements matter.
Memory may be the biggest concern in other situations, where the multipli-
cation of CPTs may become intractable.

Exact methods for inference in BNs include variable elimination (VE) (?) and
the junction tree algorithm (JTA). In VE, one specifies a query (evaluation of
a posterior density) in advance and sum out the relevant variables of the
factorization to reach the query. JTA is much more involved and consists of
many sub-routines. Here, a second structure called the junction tree is con-
structed, in which messages are passed between nodes. After a full round of
message passing, one can query posterior probabilities on all variables given
the evidence, that refers to a set of variables that are instantiated to have
a specific value. There exists different architectures for sending messages
where the most well-known ones are Lauritzen-Spigelhalter (LS) (Lauritzen
and Spiegelhalter, 1988), HUGIN (Jensen et al., 1990), Shafer-Shenoy (SS)
(Shafer and Shenoy, 1990), and Lazy Propagation (LP) (Madsen and Jensen,
1999). The LS and HUGIN architectures are very similar, though with small
differences that have their own advantages. SS differs substantially from LS
and HUGIN in that it keeps a factorization of the CPTs, whereas the for-
mer two does not. While LS, HUGIN, and SS do not use the independency-
information from the DAG, LP exploits the factorization of SS and the DAG
to further reduce the complexity of the message passing by removing irrele-
vant CPTs. This introduces some overhead and (Butz et al., 2018) introduced
Simple Propagation (SP) as a lighter and faster version of LP.

In the need for speed and quest of reducing the required memory during
JTA, we propose a new architecture, which we call Unity Propagation (UP).

This architecture can be combined with any of the aforementioned schemes.
In this paper, we use LS as back-end to showcase UP. In essence, UP avoids
multiplication with the trivial unity tables.

The paper is organized as follows: Section 2 reviews BNs and introduces
necessary notation to introduce UP. The novel just-in-time method US, for
inconsistent evidence is introduced in Section 2.3.

Sections 4 and 5 details how UP modifies the typical steps of the Junction Tree
Algorithm and how some specific computations can be avoided to speed up
the propagation. The effect of Laplace Smoothing versus US is compared in

100



2. Preliminaries

context of classification prediction accuracy for a number of standard ma-
chine learning datasets. The numerical experiments in Section 6 also include
an investigation of the computational time-gain from using UP for a larger
number of BNs encompassing both data-driven and expert-specified struc-
tures.

2 Preliminaries

2.1 Bayesian Networks

Let V be a set of discrete random variables with finite statespaces and let G
be a directed acyclic graph (DAG), where the set of nodes is given by V. The
joint probability mass function (pmf) over V is then given by

p(V) = ∏
X∈V

p(X | πX), (1)

where p(X | πX) is the probability of X given πX , and πX is the set of par-
ent nodes of X, i.e., the nodes for which a directed edge points towards X.
Usually, the inference task of interest is to calculate posterior marginals of
p. For prediction and classification problems, interest is most often to com-
pute posteriors of the form p(X | U), where U is the evidence. By evidence,
we mean variables that have been instantiated to take on a specific value.
Let E ⊂ V be a set of evidence variables, the evidence is then on the form
U = {X = x | X ∈ E}, where x is an instantiation of the random variable X.

Because of the discrete nature of the conditionals in (1), p(X | πX) can be rep-
resented as a CPT, i.e., a table where each element is a conditional probability.
A BN consists of CPTs together with a DAG.

2.2 Potentials

Sometimes, we use the shorter notation, pX|πX
, for the corresponding CPT of

p(X | πX). However, we also denote it as φA = pX|πX
, A = {X,πX}, when

the specific relation between X and πX does not matter. We say that φA is a
potential, and the subscript notation explicitly denotes that φA is a potential
defined over the variables in the domain A ⊆ V. In general, a potential is a
real-valued and non-negative function. A CPT is always a potential, whereas
a potential is not necessarily a CPT.

Let a ∈ A be a variable with k possible outcomes, then Ia = {a1, a2, . . . , ak}
denotes the levelset of variable a. The levelset of a set, A, is defined as the
product IA = ×a∈A Ia with |IA| = ∏a∈A |Ia| elements. The elements in IA are
called the cells of the potential φA, and the value of φA at cell iA ∈ IA is

101



Paper D.

denoted φA(iA). The sum of all cell values of φA is denoted as |φA|. The
product φA ⊗ φB of two potentials with domain A and B is defined cell-wise
as

(φA ⊗ φB)(iA∪B) := φA(iA)φB(iB) (2)

for iA ∈ IA, iB ∈ IB and iA∪B ∈ IA∪B. Division is defined similarly, where
0/0 := 0. We also use the notation

φ↓BA (iB) = ∑
IA\B

φA(iB, iA\B), B ⊆ A (3)

to denote the iB−th cell-value of the projection of φA onto to the set B.

Two potentials are of special interest in the following: A null potential, 0g A, is
a potential in which all cell values are zero. Such cells are also termed zero-
cells. A unity potential, 1A, is a potential in which all cell values are one. The
product of a null potential with any potential is a null potential but possible
with a larger domain, that is φA ⊗ 0B = 0A∪B. Likewise, the unity potential
1B, has the property that φA ⊗ 1B = φA for any potential φA with domain A
if B ⊆ A and φA ⊗ 1B = φA ⊗ 1B\A if B * A. Conceptually, we can think of
this operation as creating |B \ A| copies of φA. We use the convention that
φ∅ ≡ 1 and define γ⊗ φA = γφA for all γ ∈R which amounts to multiplying
all cells in φA by γ.

Suppose we are given evidence on the variables E ⊆ A. Entering evidence
into a potential, φA, is done in two steps: First, all cell values that do not
agree with the evidence are set to zero. Second, we realize that the modified
potential effectively has domain A \ E and remove the dimensions of the φA
corresponding to E. We refer to this as evidence-reduction and write ∂EφA to
denote the resulting potential with domain A \ E.

Inconsistent evidence is evidence, which happens with probability zero. Incon-
sistent evidence on a set of variables E⊆ A is equivalent to ∂EφA = 0A\E, and
in this case the Bayesian network becomes degenerate. Evidence reduction is
central for reducing the complexity, both in the memory storage and the time
it takes to multiply the potentials.

For disjoint sets A and B, write (φA, B,γ) for the full potential φA ⊗ γ1B, with
domain A ∪ B. We say that φA is the partial potential, B is the set of unity
variables and γ ∈ R is the weight. This triple object induces a more compact
representation of the full potential since the unit potential, 1B, does not have
to be stored in memory. We just store the levelset of B. That is, the multipli-
cation φA ⊗ 1B is never carried out. It follows from (2) that

(φA1 , B1,γ1)⊗ (φA2 , B2,γ2) =
(
φA1 ⊗ φA2 , (B1 ∪ B2) \ (A1 ∪ A2),γ1γ2

)
(4)

102



2. Preliminaries

b

a b+ b−

a+ 5 7
a− 6 0

(a)

c

b c+ c−

b+ 3 0
b− 8 4

(b)

c+ c−

a b+ b− b+ b−

a+ 15 56 0 28
a− 18 0 0 0

(c)

Table 1: Partial potentials: (a) φ{a,b} (b) φ{b,c} (c) φ{a,b,c}.

and from (3) that

(φA, B,γ)↓C =

{(
φ↓A∩C

A , B ∩ C,γ|IB\C|
)
, for A ∩ C , ∅(

1,C,γ|φA||IB\C|
)
, for A ∩ C = ∅,

(5)

for C ⊆ A ∪ B.

Example

Consider the two potentials ψ{a,b,c}= (φ{a,b},{c},2) and ψ{b,c,e}= (φ{b,c},{e},3),
where φ{a,b} and φ{b,c} are given in Tables 1a and 1b. The partial potential
φ{a,b,c} = φ{a,b} ⊗ φ{b,c} of the product

ψ{a,b,c} ⊗ ψ{b,c,e} = (φ{a,b,c},{e},6),

is given in Table 1c. In comparison, Table 2 shows the full potential φ{a,b,c} ⊗
1{e} · 6, which obviously does not contain any additional information com-
pared to (φ{a,b,c},{e},6). In fact, it is nothing but φ{a,b,c} copied |Ie| times and
finally multiplied by 6.

e+ e−

a b c+ c− c+ c−

a+ b+ 90 0 90 0
b− 336 168 336 168

a− b+ 108 0 108 0
b− 0 0 0 0

Table 2: The full potential (φ{a,b,c},{e},6).

Recently, Lindskou et al. (2021) introduced a representation of sparse poten-
tials, called sparta, and defined multiplication, division, and projection on
these together with open source software (Lindskou, 2021c) in the R pro-

103



Paper D.

gramming language R Core Team (2020). Let φA be a potential with levelset
IA, then the corresponding sparse potential has the sparse levelset

IA =
{

iA ∈ IA | φA(iA) , 0
}

consisting of non-zero cells. Thus, the sparse version of φ{a,b,c} has the sparse
levelset {

(a+,b+, c+), (a+,b−, c+), (a+,b−, c−), (a−,b+, c+)
}

consisting of four cells. Another interesting representation of sparse ta-
bles called value-based potentials (VBPs) was given in Gómez-Olmedo et al.
(2021). VBPs can compress data more than sparta potentials, but it takes
longer time to multiply and project for large potentials.

The method presented in this paper can be implemented for both ordinary
potentials and sparse potentials. In the rest of the paper, if nothing else is
stated, a potential can be of either type. However, the methods we introduce
are aimed at enhancing belief propagation using sparse tables since multi-
plication with a unity potential inflates sparse tables unnecessarily and ruins
the table’s sparsity. We use the same notation for operators on both ordinary
and sparse potentials.

2.3 Smoothing

Given data, the parameters of a CPT are typically estimated using maximum-
likelihood estimation. Given a BN with |V| nodes, X1, X2, . . . , X|V|, define

θk(i, j) = p(Xk = i | πXk = j), i ∈ IXk , j ∈ IXπk
,k = 1,2, . . . , |V|.

Denote by nk(i, j) the number of observations where Xk = i and πXk = j. The
maximum likelihood estimates (MLEs) are then given by

θ̂MLE
k (i, j) =

nk(i, j)
∑i nk(i, j)

,

where the denominator is the number of observations where the parents have
cell j. We take θ̂MLE

k (i, j) ≡ 0 if ∑i nk(i, j) = 0 i.e., if the parent cell, j, has not
been seen. Hence, the MLE is zero for all zero-cells. In this paper, we are in
particular concerned with observed zero-cells, i.e., cells for which θ̂MLE

k (i, j) =
0, that arise from inconsistent evidence.

Assume all parameters are estimated using maximum likelihood estimation.
We can then treat new observations as evidence, enter it into the model,
and query for different posterior probabilities given the evidence. This is
also known as the all-marginal problem, which is usually solved using the

104



3. Unity Smoothing

junction tree algorithm (see Section 4). However, for inconsistent evidence,
the model becomes degenerate at zero since the concerned CPTs collapses
to the null potential. A typical remedy of inconsistent evidence is to apply
Laplace smoothing to all cells in every CPT by adding a pseudo-count α to
each cell. The estimated parameters then take the form

θ̂LP
k (i, j) =

nk(i, j) + α

∑i nk(i, j) + α|IXk |
. (6)

These estimates equal the expected value of the posterior distribution of
θk(i, j), using a symmetric Dirichlet distribution with α as prior. In prac-
tice, α should be chosen carefully as showed in Steck (2008). Nonetheless, it
is standard to choose α = 1 (?). Structural zeroes are zero-cells that will re-
main zero-cells regardless of the amount of data. That is, structural zeroes
correspond to events that happen with probability zero. Laplace smoothing
will inevitably turn structural zeroes into non-zero cells. However, applying
Laplace smoothing in sparse CPTs will repeal the sparsity. In the following
section, we provide a new method for smoothing that is essential for sparse
tables, and optional for ordinary tables.

3 Unity Smoothing

Consider the sparse CPT

p(X = i | πX = j) =
p(X = i,πX = j)

p(πX = j)
.

Let j∗ = (jE∗ , jR) where jE∗ ∈ IE is observed as evidence, and jR ∈ IR is not. If
p(πX = j∗) = 0, the CPT is not defined, and it seems natural to set

p(X = i | πX = j∗) = 1/|IX |, (7)

for all i ∈ IX since there is no prior knowledge for the case of πX = j∗ when
n(j∗) = 0. Notice, that this corresponds to Laplace smoothing, see (6).

We shall in the following make a simple assumption which is most easily
explained by an example. If X has state space IX = {x+, x−} in the model,
we do not allow to insert the evidence X = x∗ for x∗ < IX . Consequently,
inconsistent evidence cannot occur unless there is evidence on two or more
variables. Assume now that p(πX = j∗) > 0 and define

A0(j∗) =
{

i∈ IX | p(X = i |πX = j∗) = 0
}

, A+(j∗) =
{

i∈ IX | p(X = i |πX = j∗)> 0
}

.

Hence, the set A0(j∗) consists of child indices i ∈ IX for which p(X = i | πX =

105



Paper D.

j∗) = 0, corresponding to zero-cells. When A0(j∗) = ∅, there is no need for
smoothing. Therefore, assume that A0(j∗) , ∅. For a small positive number
ε, the smoothed probabilities are then set to

pε(X = i | πX = j∗) =

{
ε, i ∈ A0(j∗),
p(X = i | πX = j∗)

(
1− ε|A0(j∗)|

)
, i ∈ A+(j∗),

where it should be noticed that ∑i∈IX
pε(X = i | πX = j∗) = 1, whenever jR

is also observed. Hence, it follows that probabilities for which i ∈ A+(j) are
scaled according to the number of zero-cells. Suppose now that i = i∗ ∈ IX is
observed. If i∗ ∈ A0(j∗), we smooth and set

pε

(
X = i∗ | πX = j∗

)
= ε,

for all jR ∈ IR. Thus, after smoothing, the evidence-reduced CPT is repre-
sented as (1, R,ε). This approach is different from adding the pseudo-count,
α, to all cells as in Laplace smoothing, which affects all CPTs. Here, we only
change those CPTs with inconsistent evidence and leave all other CPTs intact.
By doing so, sparsity is not repealed for sparse CPTs, and in fact, the sparsity
is increased since the unity potential 1R does not have to be stored.

After message passing, the probability of the entered evidence can be ex-
tracted without further computations. If this probability is of no interest, ε
can be disregarded and we can therefore set ε = 1. Otherwise, if the evidence
is inconsistent and the probability of evidence is needed, one must choose
a value of ε. See Section 4 and the example in Section 5.1 for details about
the probability of evidence. As such, inference is independent of ε, whereas
Laplace smoothing depends on the smoothing parameter α.

3.1 Example

Consider again Table 1c and assume that the table is used to construct the
CPT p(a | b, c). First, consider the case with inconsistent evidence on the
parents, e.g., {b = b+, c = c−}. In this case, the resulting table after evi-
dence reduction is identical for both Laplace smoothing and unity smooth-
ing, and the result is (a+ = 1/2, a− = 1/2), regardless of the choice of α.
Next, consider the case where there is inconsistent evidence on the child, a,
and the parent b, e.g. {b = b−, a = a−}. The resulting evidence-reduced po-
tential after Laplace smoothing is φL = (c+ = α/(56+ 2α), c− = α/(28+ 2α)),
whereas for unity smoothing φU = (c+ = ε, c− = ε). If α = 1, it follows that
φL = (c+ = 1/58, c− = 1/30) ≈ 1

58 (c
+ = 1, c− = 2). This illustrates that the

more uniform the cell counts are on the remaining parent variables, the more
similar are Laplace and unity smoothing.

106



4. The Junction Tree Algorithm with the LS Scheme

4 The Junction Tree Algorithm with the LS Scheme

Consider a DAG, G, with the set of nodes given by V. The junction tree
algorithm (Lauritzen and Spiegelhalter, 1988, Højsgaard et al., 2012) consists
of several steps. First, the DAG is moralized, meaning that all pairs of nodes
that share a common child are connected by an edge, and all directions are
dropped resulting in an undirected graph GM. If the moralized graph is not
triangulated, fill-in edges are added to the moralized graph until all cycles of
length ≥ 4 have a chord, i.e., an edge connecting two non-neighbors in the
cycle. The triangulated graph is denoted as GT . A junction tree is a tree
whose set of nodes is the (maximal) cliques, C, of GT , and where each pair
of neighboring clique nodes, C1 and C2, share a separator S = C1 ∩ C2. A
junction tree satisfies that the separator between any two cliques is contained
in all cliques on the unique path between these two cliques. This property is
also known as the running intersection property.

Once a junction tree is constructed, each CPT p(X | πX) is associated with
a clique, C, such that {X,πX} ⊆ C. Denote by ΦC the set of CPTs that are
associated with clique C. If we observe evidence on the variables E, all CPTs
in ΦC are evidence-reduced, and the resulting tables are multiplied together
to initialize the clique potential, φC. When all CPTs that contain E have been
evidence-reduced, and all clique potentials have been initialized, we say that
the model has been initialized. If ΦC = ∅, we set φC = 1C. Furthermore, to
each separator, S, we associate the unity potential 1S. Before the message
passing can begin, a root node is chosen in order to specify the direction of
the messages.

The LS message passing scheme is performed in two passes, collect and dis-
tribute. When collecting, the root node starts by collecting messages from all
of its neighbors. However, a node is only allowed to distribute a message
if it has collected a message from all of its outward neighbors, i.e., the neigh-
bors that have already themselves collected messages. Thus, if a node has no
outward neighbor, it begins sending messages. Clique C2 collects a message
from C1 by: computing the message φ↓SC1

, set φC2 ← φC2 ⊗ φ↓SC1
, and update φC1

as φC1 ← φC1 /φ↓SC1
. When the root node, say C0, has collected all its messages,

the root potential is normalized, i.e.,

φiC0
← φC0 /|φC0 |,

and the collecting phase has ended. At this stage, it can be shown that the
root potential is the joint distribution of the variables in the root clique. Fur-
thermore, if evidence was entered into any of the CPTs or the clique poten-
tials before the collecting phase, it holds that before the normalization, the

107



Paper D.

normalizing constant |φC0 | equals the probability of observing the evidence.

In the distributing phase, each node distributes a message to its outwards
neighbors, when it has collected a message from all of its inwards neighbors,
i.e., the neighbors that have already distributed messages. The root node is
the only node that can start by distributing a message. Clique C2 distributes
a message to C1 by setting φC1 ← φC1 ⊗ φ↓SC2

and then update the separator

potential φS← φ↓SC2
.

When both the collecting and distributing phases have ended, all clique and
separator potentials are identical to the conditional distribution defined over
the variables involved given the evidence.

5 Unity Propagation

Assume that the collecting phase has begun, and we are ready to send a
message from clique C1 to clique C2. We denote by C∗1 = C1 \ E and C∗2 = C2 \
E the corresponding evidence-reduced cliques, for some evidence variables E.
That is, C∗1 ⊆ C1 and C∗2 ⊆ C2. Let ψC∗1

= (φA1 , B1,γ1) and ψC∗2
= (φA2 , B2,γ2)

be the clique potentials where Aj ∪ Bj = C∗j and Aj ∩ Bj = ∅ for j = 1,2. Notice
that if Aj ∪ Bj , Cj, the variables Cj \ (Aj ∪ Bj) are evidence variables. Denote
by S = C∗1 ∩ C∗2 the evidence-reduced separator. Unity propagation arises in
the following four scenarios:

i no partial potential needs to be multiplied when sending a message,

ii no partial potential needs to be divided when updating a node,

iii partial potentials must be multiplied, and (B1 ∪ B2) \ (A1 ∪ A2) is non-
empty

iv multiplication with an inconsistent CPT is avoided due to unity smooth-
ing.

Scenario (i) happens if and only if A1 ∩ S = ∅ or A2 = ∅ (or both), which
follows directly from (4) and (5). For A1 = ∅, we can even avoid marginaliza-
tion as the message equals |IB1\S|1S, and we only need to pass on the constant
|IB1\S|. Thus, scenario (i) is given by

(φA1 , B1,γ1)
↓S ⊗ (φA2 , B2,γ2) ={(

φ↓A1∩S
A1

, B2 \ (A1 ∩ S), |IB1\S|γ1γ2
)
, when A1 ∩ S , ∅ and A2 = ∅(

φA2 , B2, |φA1 ||IB1\S|γ1γ2
)
, when A1 ∩ S = ∅ and A2 , ∅.

When A1∩ S,∅ and A2 = ∅, we simply replace the (empty) partial potential,
φA2 , with the partial potential of the message and change the unity potential

108



5. Unity Propagation

and weight appropriately. For A1 ∩ S = ∅ and A2 ,∅, it is enough to update
the weight. The case of A1 ∩ S = ∅ and A2 = ∅ follows trivially from the
above. Scenario (ii) happens when A1 ⊆ S, where

φA1 /φ↓SA1
= (1, A1,γ1),

and no division is needed. Thus, in the collecting phase, some clique poten-
tials may turn into unities, and scenario (i) can be exploited again during the
distributing phase. The computational savings in scenario (iii) are illustrated
in Section 2.2 by the example where

(φ{a,b},{c},2)⊗ (φ{b,c},{e},3) = (φ{a,b,c},{e},6).

Here, (B1 ∪ B2) \ (A1 ∪ A2) = {e} and the full potential amounts to creating
an extra copy of φ{a,b,c} which is shown in Table 2. The savings in Scenario
(iv) are immediate.

As discussed in Section 3, all weights can be neglected, i.e., set to one if the
probability of evidence is of no interest.

5.1 Example

Consider the DAG, G, with nodes V = {a,b, c,d, e} in Figure 1(a) with a tri-
angulated graph, GT , shown in Figure 1(b), and a junction tree with root C1
in Figure 1(c). The joint pmf factorizes as

pV = pa|b pb pc|b,e pd|a,b pe p f |d,e,

where we have omitted ⊗−products for readability. Now, let

ΦC1 = {pe, p f |d,e}, ΦC2 = {1C2} ΦC3 = {pc|b,e}, ΦC4 = {pb, pa|b, pd|a,b}.

We say that C2 is a unity clique since no CPT was associated with this clique.
If, instead of associating pb with C4, it was associated with C2, no unity
cliques would have been created. Assume now that we have observed evi-
dence on the variables E = {b, c} and that this induces inconsistent evidence
in pc|b,e, i.e. ∂E pc|b,e = 0e. Then we apply unity smoothing and initialize

ψC∗3
= (1,{e},ε),

where the asterisk symbolizes that the domain of the clique has been re-
duced by the evidence. Moreover, the remaining clique potentials are also
evidence-reduced (if needed), and we initialize the remaining clique poten-

109



Paper D.

tials as follows:

ψC∗4
= (φC∗4

,∅,1) and ψC∗2
= (1,{d, e},1) and ψC∗1

= (φC∗1
,∅,1),

where

φC∗4
= (∂{b}pb)(∂{b}pa|b)(∂{b}pd|a,b) and φC∗1

= pe p f |d,e.

Let Sij be the (evidence-reduced) separator between clique Ci and Cj. The
collecting phase can begin, and the messages

ψ↓S23
C∗3

= ψC∗3
and ψ↓S24

C∗4
= (φ

↓{d}
C∗4

,∅,1)

are sent to C∗2 . In other words, update C∗2 as

ψC∗2
← ψC∗2

⊗ ψ↓S23
C∗3
⊗ ψ↓S24

C∗4
= (φ

↓{d}
C∗4

,{e},ε).

Moreover, update C∗3 and C∗4 as

ψC∗3
← ψC∗3

/ψ↓S23
C∗3

= (1,{e},1) and ψC∗4
← ψC∗4

/ψ↓S24
C∗4

= (φC∗4
/φ
↓{d}
C∗4

,∅,1).

The root clique, C∗1 , is now ready to collect its message

ψ↓S12
C∗2

= ψC∗2
,

and C∗1 is updated as

ψC∗1
← ψC∗1

⊗ ψ↓S12
C∗2

=
(
φC∗1
⊗ φ

↓{d}
C∗4

,∅,{e},ε
)
.

Finally, define η = ε|φC∗1
⊗ φ

↓{d}
C∗4
| and normalize C∗1 as ψC∗1

← ψC1 /η. Then,
we have obtained

φC∗1
≡ pd,e, f ,

and the probability of the evidence equals η. In summary, only one multi-
plication and one division with partial potentials were carried out. Without
unity propagation, four multiplications and four divisions were needed.

6 Experiments

We conducted several experiments to investigate the effect of unity propa-
gation both in terms of prediction accuracy and the execution time of the
junction tree algorithm. All experiments can be reproduced via the research

110



6. Experiments

a

b c

d e

f

(a)

a

b c

d e

f

(b)

a,b,dC4 b, c, e C3

b,d, e C2

d, e, f C1

(c)

Fig. 1: (a) A DAG G. (b) The triangulated graph, GT , of G, which equals GM since no fill-ins are
needed. (c) A rooted junction tree representation of (b) with root C1.

compendium found at https://github.com/mlindsk/unity_propagation_
research_compendium. We use the R package jti (Lindskou, 2021b) that uses
sparse potentials from the sparta package as back-end for table operations.
Our hypothesis is that unity propagation and unity smoothing, in general,
enhances the inference time at very little expense of prediction accuracy.

6.1 Prediction Error and Inference Time with Inconsistent
Evidence

We use the public available data sets adult, chess, mushroom, derma, credit,
and parkinson from the UCI machine learning repository (Dua and Graff,
2017). The two latter datasets contains numerical variables, which we have
discretized. For all datasets, incomplete observations were removed. The
resulting number of observations and variables for each data set are summa-
rized in Table 3. For each data set, we used the R package ess (Lindskou,
2021a) to fit a Bayesian network.

The number of observations, the number of variables, the number of cliques,
the size of the largest clique, |Cmax|, and the distribution of sparsity of the
CPTs are reported in Table 3. The distribution of the CPT sparsity is defined
on the unit interval, [0,1], where 0 means no sparsity, i.e., no zero-cells, and
1 means that all cells are zero-cells. The distributions reveals that most CPTs
in derma, mushroom and parkinson are more than 0.75 sparse. On the other
hand, most CPTs in credit have sparsity less than 0.25, whereas the CPTs in
adult and chess are approximately 0.50 sparse on average.

Each data set contains a class variable, which we use to benchmark the pre-
diction error of the junction tree algorithm using unity propagation.

111

https://github.com/mlindsk/unity_propagation_research_compendium
https://github.com/mlindsk/unity_propagation_research_compendium


Paper D.

Dataset #Obs #Vars #Cliques |Cmax| CPT Sparsity

adult 30,162 15 11 5

chess 3,196 37 30 7

credit 653 16 12 5

derma 385 35 29 5

mushroom 5,644 23 16 6

parkinson 195 23 18 5

Table 3: Meta information of the UCI data sets used in the benchmarking. |Cmax | is the number
of variables in the largest clique. The distributions of CPT sparsity is defined on the unit interval,
[0,1], where 0 means no sparsity, i.e., no zero-cells, and where 1 means only zero-cells.

Prediction Error

For each network, we calculated a 10−fold cross validation score, which
equals the prediction error. For a given fold, denote by Dtrain the training
data and by Dtest the test data. All parameters in the model were estimated
using Dtrain, and we predicted the class of the observations in Dtest as fol-
lows. Let z be the current observation in Dtest, where we can think of z as
a cell with |V| entries, where |V| is the number of variables in the data set,
and the |V|′th entry corresponds to the class variable. Then, we successively
chose q = 2,3, . . . , |V|−1 entries from z at random and entered this informa-
tion into the model as evidence. The collecting phase was then conducted to
the root clique (containing the class variable by design) and we calculated the
posterior distribution of the class variable given the evidence using a Bayes
classifier. That is, the class label with the highest probability was used as
the prediction. Thus, for each data set, we calculated |V|−4 cross-validation
scores, where the first determines the prediction error we make when the
model contains evidence on two variables, the second determines the predic-
tion error we make when the model contains evidence on three variables, and
so forth. As the number of evidence variables increases, so does the proba-
bility of inconsistent evidence since there are more observations in Dtest that
were never seen in Dtrain
The cross validation score was recorded where we used sparse tables with
unity smoothing (dashed curves) and dense tables with Laplace smoothing
with α = 1 as the smoothing parameter (solid curves), see Figure 2.

112



6. Experiments

Fig. 2: Trajectories of 10−fold crossvalidation scores of six datasets based on the number of
evidence variables, q.

The prediction accuracy differ slightly in credit, derma, and parkinson. For
credit and derma, the differences are negligible, whereas for parkinson,
unity smoothing seem to perform slightly better when 5 < q < 10. The data
parkinson only has 195 observations, but the CPTs are rather sparse, indi-
cating that too many zero-cells may have been Laplace smoothed. For adult
and chess, which both have larger numbers of observations and less sparse
CPTs, there is no difference in prediction accuracy. Surprisingly, there is no
difference between the two methods in mushroom even though the CPTs are
very sparse.

Computation Time

As the number of inconsistent CPTs increases, the size of the clique potentials
reduces when using unity smoothing leading to faster computation time. To
benchmark run time performance, we ran the junction tree algorithm with
and without unity propagation. Here, without unity propagation means that
when a message has to be sent to a unity clique, we actually populate the
unity clique with 1s and calculate the (unnecessary) product. We use a simi-
lar setup as in Butz et al. (2018). For each q ∈ {2,4, . . . , |V|−1}, we randomly
generated 200 sets of evidence, and for each q, measure the computation
time for the junction tree algorithm to propagate the 200 sets of evidence.
We report the ratio of computation time between unity and non-unity prop-

113



Paper D.

agation for each q, see Figure 3. The ratio of computation time is given as

Fig. 3: Trajectories of the ratio of computational time during the junction tree algorithm between
unity propagation and non-unity propagation. The solid lines are smoothed curves based on the
actual measurements represented with dashed lines.

the computation time for unity propagation relative to computation time for
non-unity. Hence, a value below one favors unity propagation. We first no-
tice that unity propagation is consequently faster. In the worst case, the two
methods are identical. The fluctuations of the actual measurements are pro-
nounced in derma and parkinson, i.e., the datasets with fewest observations.
The savings in computational time seem to be proportional to the sparsity
of the CPTs, as one would expect. The largest saving in computational time
occurs in mushroom, which also has the most sparse CPTs. On the other hand,
credit has the most dense CPTs, and the savings in computational time is
less than for all other datasets. For all datasets the trend is that when q is very
small or very large, the savings are close to none. When q is small, almost
no CPTs have inconsistencies, and when q is large, most clique potentials are
reduced to scalars for both unity and non-unity propagation. However, in all
cases, there is a large number of q′s for which the savings in computational
time is significant.

Interestingly, it seems that the largest savings, measured as the value of the
critical point of the solid curve, occurs when there is evidence on approx-
imately 70% of the variables: adult (10/15 ≈ 0.67), chess (26/37 ≈ 0.70),
credit (12/16 = 0.75), derma (25/35 ≈ 0.71), mushroom (16/23 ≈ 0.70) and
parkinson (17/23 ≈ 0.74). The savings decrease on both sides of the critical
point.

114



6. Experiments

6.2 Inference Time for Unity Cliques Emerging from Trian-
gulation and Initialization

In this section, we benchmark the gain of unity propagation on the classic
expert Bayesian networks listed in Table 4, where we do not insert any evi-
dence. Thus, the gain of unity propagation in this benchmark is solely from
unity cliques emerging from triangulation and initialization. Table 4 lists the
number of unity cliques and the size of the largest unity clique, |Umax|. Inter-
estingly, for all networks the largest clique is a unity clique except for munin.
Also, the more complex the network is, measured in number of variables and
number of cliques, the more unity cliques there is. Again, define the ratio
of computation time as the computation time for unity propagation relative
to computation time for non-unity. Figure 4 shows the ratio of computa-
tional time against the ratio of unity cliques to non-unity cliques. There is a
clear trend indicating that the higher the ratio of unity cliques, the larger the
computational savings is which is to be expected. Two networks stand out;
link and mildew. For link, the ratio of unity cliques to non-unity cliques is
the smallest of all networks although the computational savings is the sec-
ond best. This is due to the very large unity cliques, where the largest unity
clique alone contains 16,777,216 cells. In mildew, the CPTs are very sparse,
and hence, the gain of unity propagation is pronounced.

BN #Vars #Cliques #Unity Cliques |Cmax| |Umax|
andes 223 178 49 17 17
asia 8 6 1 3 3
barley 48 36 7 8 8
diabetes 413 337 96 5 5
hailfinder 56 43 6 5 5
insurance 27 19 3 7 7
link 724 591 77 16 16
mildew 35 29 7 5 5
munin 1,041 872 114 9 8
pigs 441 368 71 11 11
win95pts 76 50 9 9 9

Table 4: Meta information of expert networks used in the benchmark.

115



References

Fig. 4: Ratio of computational time of the junction tree algorithm between unity propagation
and non-unity propagation against the ratio of unity to non-unity cliques. See Table 4 for meta
information of the networks.

7 Conclusion

We proposed a new smoothing technique called unity smoothing that over-
come the problem of inconsistent evidence for Bayesian networks with sparse
tables. Unity smoothing also works for ordinary tables. Moreover, we intro-
duced a set of rules called unity propagation that, by adhering to these, ensure
fewer calculations during message passing in the junction tree algorithm.
Through experiments we have shown the usefulness of both unity smoothing
and unity propagation in terms of prediction accuracy and faster inference
time.

References

Butz, C. J., Oliveira, J. S., dos Santos, A. E., and Madsen, A. L. (2018). An
empirical study of bayesian network inference with simple propagation.
International Journal of Approximate Reasoning, 92:198–211.

Cowell, R. G., Dawid, P., Lauritzen, S. L., and Spiegelhalter, D. J. (2007). Prob-
abilistic networks and expert systems: Exact computational methods for Bayesian
networks. Springer Science & Business Media.

Dua, D. and Graff, C. (2017). UCI machine learning repository.

Gómez-Olmedo, M., Cabañas, R., Cano, A., Moral, S., and Retamero, O. P.

116



References

(2021). Value-based potentials: Exploiting quantitative information reg-
ularity patterns in probabilistic graphical models. International Journal of
Intelligent Systems.

Højsgaard, S., Edwards, D., and Lauritzen, S. (2012). Graphical models with R.
Springer Science & Business Media.

Jensen, F., Lauritzen, S., and Olesen, K. (1990). Bayesian updating in causal
probabilistic networks by local computations. Computational Statistics Quar-
terly, 4:269–282.

Lauritzen, S. L. and Spiegelhalter, D. J. (1988). Local computations with prob-
abilities on graphical structures and their application to expert systems.
Journal of the Royal Statistical Society: Series B (Methodological), 50(2):157–194.

Lindskou, M. (2021a). ess: Efficient Stewise Selection in Decomposable Markov
Random Fields. R package version 1.1.2.

Lindskou, M. (2021b). jti: Junction Tree Inference. R package version 0.8.0.

Lindskou, M. (2021c). sparta: Tables. R package version 0.8.1.

Lindskou, M., Højsgaard, S., Eriksen, P. S., and Tvedebrink, T. (2021). sparta:
Sparse tables and their algebra with a view towards high dimensional
graphical models. arXiv preprint arXiv:2103.03647.

Madsen, A. L. and Jensen, F. V. (1999). Lazy propagation: a junction tree
inference algorithm based on lazy evaluation. Artificial Intelligence, 113(1-
2):203–245.

Pearl, J. (2014). Probabilistic reasoning in intelligent systems: networks of plausible
inference. Elsevier.

R Core Team (2020). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria.

Shafer, G. R. and Shenoy, P. P. (1990). Probability propagation. Annals of
mathematics and Artificial Intelligence, 2(1):327–351.

Steck, H. (2008). Learning the bayesian network structure: Dirichlet prior
versus data. Appears in Proceedings of the Twenty-Fourth Conference on Uncer-
tainty in Artificial Intelligence (UAI2008). . arXiv preprint arXiv:1206.3287.

117



M
a

d
s Lin

d
sk

o
u

D
ec

o
m

po
sa

b
le G

r
a

ph
ic

a
l M

o
d

els W
ith

 a View
 To

w
a

r
d

s O
u

tlier
 D

etec
tio

n
 a

n
d

 Spa
r

se Ta
b

les

ISSN (online): 2446-1636
ISBN (online): 978-87-7573-937-0


	Kolofon_ML.pdf
	_PHD_ML_FOR_OPPONENTS.pdf
	Omslag_ML.pdf
	PHD_ML_TRYK.pdf
	Kolofon_ML.pdf
	thesis_mads_lindskou.pdf
	Front page
	Abstract
	Resumé
	Contents
	Preface
	I Background
	Introduction
	1 Undirected Graphs
	2 Graphical Log-Linear Models
	3 Bayesian Networks and the Junction Tree Algorithm
	3.1 The Road to the Junction Tree Algorithm

	References


	II Papers
	A Outlier Detection in Contingency Tables Using Decomposable Graphical Models
	1 Introduction
	2 Undirected graphs
	3 Notation and preliminaries for contingency tables
	4 Test for outliers in contingency tables
	4.1 Simulation

	5 An Example in Forensic Genetics
	5.1 Summary of 1000 Genome Data
	5.2 Testing For z Being an Outlier
	5.3 Results

	6 Discussion
	References

	B Detecting Outliers in High-dimensional Data with Mixed Variable Types using Conditional Gaussian Regression Models
	1 Introduction
	2 Decomposable Mixed Graphs
	4 Notation and the Likelihood Function
	5 The Null Hypothesis and Deviance Test Statistic
	6.1 A Note on Studentized Residuals
	6.2 The Homogeneous Case
	6.3 Evaluating Deviances

	7 The Outlier Test
	8 Real Data Example
	8.1 Verifying CGR Assumptions
	8.2 Performance

	9 Conclusions and Future Work
	A Variance Estimation for Inhomogeneous Models
	References

	C The jti and sparta Packages: Junction Tree Inference using Sparse Tables with a View Towards High Dimensional Graphical Models
	1 Notation and Terminology
	2 Motivation Through Message Passing in Bayesian Networks
	2.1 Evidence and Slicing

	3 An Intuitive way of Representing Sparse Tables
	4 Sparse Tables
	4.1 How to use sparta
	4.2 When to use sparta
	4.3 Probability Trees and Value Based Potentials

	5 Usecases of jti and sparta
	5.1 Inference in Decomposable Markov Random Fields
	5.2 The Impact of Evidence

	6 Time and Memory Trade off in Sparta
	7 Summary
	References

	D Unity Smoothing for Handling Inconsistent Evidence in Bayesian Networks and Unity Propagation for Faster Inference
	1 Introduction
	2 Preliminaries
	2.1 Bayesian Networks
	2.2 Potentials
	2.3 Smoothing

	3 Unity Smoothing
	3.1 Example

	4 The Junction Tree Algorithm with the LS Scheme
	5 Unity Propagation
	5.1 Example

	6 Experiments
	6.1 Prediction Error and Inference Time with Inconsistent Evidence
	6.2 Inference Time for Unity Cliques Emerging from Triangulation and Initialization

	7 Conclusion
	References




	Omslag_ML
	Blank Page

	Blank Page



