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©® Seaweed cultivation and seaweed-based plastics
© Consequential LCA and pilot scale data

© Scenarios for resource recovery and end-of-life
© Carbon balances and carbon footprints

© Wrap up, uncertainties and future work



Bioplastics from primary and secondary sources

First generation biomass Second generation biomasx
Corn, sugarcane, wheat ——r—— Bagasse, corn stover, wood, grass

First generation bioplastic Second generation bioplastic
biopolymer biopolymer

v

Biocomposite
\ (bio)polymer + natural fibers /




Seaweed-based plastic

Seaweed cultivation, provides ecosystem services:
© Reduces eutrophication via nutrient uptake

©® Carbon uptake and oxygenation of coastal waters

Seaweed-based plastic

OH 0 OH
© No land-use Jox=l | Lo Q _
HO L\ HO nO"'
0% “OH

© Alginate-based
©® Emerging technology, pilot scale only

©® Yet unclear life-cycle trade-offs and impact




LCA methods used in this study

©® Consequential LCA

©® Consequences for increasing demand of bioplastic

©® Scope: from seaweed cultivation to plastic production and end-of-life
©® Carbon balance and footprint
® Modelling different co-products scenarios (substitution method)

©® EoL scenarios for the plastic management

© Support in early R&D stage within PlastiSea project

PlastiSea



Scenario 1: base pilot scale system
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© Waste water and acid treatment
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Scenario 2: cellulose recovery

Hatchery

® Recovery of cellulose: Residue in alkaline
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Scenario 3: mannitol recovery

Hatchery
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® Recovery of cellulose and mannitol

© Mannitol could be used to replace glycerol (a hotspot)
in the crosslinking.

® End of life: Incineration and biodegradation
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Scenarios 4, 5: PLA substitution (5%, 30%)

Hatchery
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© Seaweed residue integrated in
polylactic acid (PLA) production

© |t can substitute between 5% and 30%
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Scenario 1:

Carbon uptake: 1.60

kg of carbon

carbon balance - base scenario

Seaweed: 1.60

Others: 1.16

Alginate: 0.44 I

Cellulose: 0.03

Glycerol: 0.53

©® The alginate from the seaweed is used to

produce the bioplastic

Bioplastic: 1.00

End-of-life: 1.00
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Scenario 2:

Carbon uptake: 1.60

kg of carbon

carbon balance - cellulose recovery

® The alginate and cellulose from the
seaweed is used to produce the bioplastic

Others: 1.13

Seaweed: 1.60

I Alginate: 0.44

Cellulose: 0.03 ionlastic: 1. End-of-life: 1.00

Glycerol: 0.53
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Scenario 3:

Carbon uptake: 1.60

kg of carbon

carbon balance - mannitol recovery

Seaweed: 1.60

Others: 0.60

® The alginate, cellulose and mannitol
from the seaweed is used to produce the
bioplastic

Alginate: 0.44

End-of-life: 1.00
Cellulose: 0.03

Mannitol: 0.53
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Results: carbon footprint, co-products scenarios

kg CO2 eq

5,7

5,2

Base, EoL Base, EoL | Cellulose, EoL Cellulose, EoL | Mannitoland  Mannitol and
incineration  biodegradation | incineration biodegradation | cellulose, EoL cellulose, EoL
incineration  biodegradation

Scenario 1 Scenario 2 Scenario 3

= End-of-Life

m Crosslinking

= Acid wash and alkaline extraction
m Offshore farm

= Hatchery
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Results: carbon footprint, substitution

kg CO, eq
o — N w EaN ol (@) ~ (00]

5,5

Substitution 5%, EoL
incineration

Substitution 5%, EoL
biodegradation

4,6

Substitution 30%, EoL  Substitution 30%, EoL
incineration biodegradation

Scenario 4

Scenario 5

m Polylactide PLA

= End-of-Life

m Crosslinking

= Acid wash and alkaline extraction
= Offshore farm

= Hatchery
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Wrap up

® Full carbon balance for different scenarios shows

great potential of resource recovery
©® Base scenario carbon footprint of 5,7 kg CO, eq.

©® Recirculate by-products: cellulose and mannitol

recovery reduce footprint by approx. 40%

® End of life scenario reduce footprint by approx.

23% via biodegradation compared to incineration

15



© Pilot scale data, unrealistic picture: working on

upscaling scenarios using different techniques

© Recirculate by-products: only theoretical, trade offs

to be investigated in lab and then model

® Unclear which end-of-life pathways will be used,

likely a mix and location-specific

© Future work on upscaled industrial scale impacts
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