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Bioplast ics from primary and secondary sources



Seaweed cultivation, provides ecosystem services:

Reduces eutrophication via nutrient uptake

Carbon uptake and oxygenation of coastal waters

Seaweed-based plastic

No land-use

Alginate-based

Emerging technology, pilot scale only

Yet unclear life-cycle trade-offs and impact

Seaweed-based plast ic



Consequential LCA

Consequences for increasing demand of bioplastic

Scope: from seaweed cultivation to plastic production and end-of-life

Carbon balance and footprint

Modelling different co-products scenarios (substitution method)

EoL scenarios for the plastic management

Support in early R&D stage within PlastiSea project

LCA methods used in this study



Scenario 1:  base pi lot  scale system

CO2 uptake

Waste water and acid treatment

End of life: Incineration and biodegradation

No co-products



Scenario 2:  cel lulose recovery

Recovery of cellulose: Residue in alkaline 

extraction and an input in crosslinking

End of life: Incineration and biodegradation



Scenario 3:  mannitol  recovery  

Recovery of cellulose and mannitol

Mannitol could be used to replace glycerol (a hotspot) 

in the crosslinking. 

End of life: Incineration and biodegradation



Scenarios 4,  5:  PLA substi tut ion (5%, 30%) 

5% to 30%Seaweed residue integrated in 

polylactic acid (PLA) production

It can substitute between 5% and 30%



Scenario 1:  carbon balance - base scenario

The alginate from the seaweed is used to 

produce the bioplastic

kg of carbon



Scenario 2:  carbon balance - cel lulose recovery

The alginate and cellulose from the 

seaweed is used to produce the bioplastic

kg of carbon



Scenario 3:  carbon balance - mannitol  recovery

The alginate, cellulose and mannitol 

from the seaweed is used to produce the 

bioplastic

kg of carbon



Results:  carbon footprint ,  co -products scenarios
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Results:  carbon footprint ,  substi tut ion
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Wrap up

Full carbon balance for different scenarios shows 

great potential of resource recovery

Base scenario carbon footprint of 5,7 kg CO2 eq.

Recirculate by-products: cellulose and mannitol 

recovery reduce footprint by approx. 40%

End of life scenario reduce footprint by approx. 

23% via biodegradation compared to incineration



Uncertaint ies and future work

Pilot scale data, unrealistic picture: working on 

upscaling scenarios using different techniques

Recirculate by-products: only theoretical, trade offs 

to be investigated in lab and then model

Unclear which end-of-life pathways will be used, 

likely a mix and location-specific

Future work on upscaled industrial scale impacts
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