

Aalborg Universitet

Towards Spatio-Temporal Aware Traffic Time Series Forecasting--Full Version

Cirstea, Razvan-Gabriel; Yang, Bin; Guo, Chenjuan; Kieu, Tung; Pan, Shirui

Publication date:
2022

Link to publication from Aalborg University

Citation for published version (APA):
Cirstea, R-G., Yang, B., Guo, C., Kieu, T., & Pan, S. (2022). Towards Spatio-Temporal Aware Traffic Time
Series Forecasting--Full Version.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 19, 2022

https://vbn.aau.dk/en/publications/41838ea4-3679-4bb7-8fe1-663985e13dbd

Towards Spatio-Temporal Aware Traffic Time Series
Forecasting–Full Version

Razvan-Gabriel Cirstea1, Bin Yang1 Chenjuan Guo1, Tung Kieu1, Shirui Pan2
1Department of Computer Science, Aalborg University, Denmark
2Faculty of Information Technology, Monash University, Australia
{razvan, byang, cguo, tungkvt }@cs.aau.dk, shirui.pan@monash.edu

Abstract—Traffic time series forecasting is challenging due
to complex spatio-temporal dynamics—time series from different
locations often have distinct patterns; and for the same time
series, patterns may vary across time, where, for example, there
exist certain periods across a day showing stronger temporal
correlations. Although recent forecasting models, in particular
deep learning based models, show promising results, they suf-
fer from being spatio-temporal agnostic. Such spatio-temporal
agnostic models employ a shared parameter space irrespective
of the time series locations and the time periods and they
assume that the temporal patterns are similar across locations
and do not evolve across time, which may not always hold,
thus leading to sub-optimal results. In this work, we propose a
framework that aims at turning spatio-temporal agnostic models
to spatio-temporal aware models. To do so, we encode time series
from different locations into stochastic variables, from which
we generate location-specific and time-varying model parameters
to better capture the spatio-temporal dynamics. We show how
to integrate the framework with canonical attentions to enable
spatio-temporal aware attentions. Next, to compensate for the
additional overhead introduced by the spatio-temporal aware
model parameter generation process, we propose a novel win-
dow attention scheme, which helps reduce the complexity from
quadratic to linear, making spatio-temporal aware attentions also
have competitive efficiency. We show strong empirical evidence
on four traffic time series datasets, where the proposed spatio-
temporal aware attentions outperform state-of-the-art methods
in term of accuracy and efficiency. This is an extended ver-
sion of “Towards Spatio-Temporal Aware Traffic Time Series
Forecasting”, to appear in ICDE 2022 [1], including additional
experimental results.

I. INTRODUCTION

We are witnessing impressive technological developments in
the last years, leading to inexpensive and effective monitoring
systems using a wide variety of sensors [2], [3]. For example,
the transportation sector has deployed different sensors, e.g.,
loop detectors or speed cameras, in different roads to contin-
uously capture useful traffic information, such as speeds and
traffic flows, at different roads, giving rise to a large amount of
traffic time series. An example is shown in Figure 1, where we
plot the physical locations of four traffic flow sensors deployed
on the highways of Sacramento, California, and the traffic flow
time series collected by these sensors.

Traffic forecasting using traffic time series collected by the
sensors is a core component of many Intelligent Transportation
Systems (ITS) [4]. Accurate forecasting on traffic statuses,
e.g., traffic flow, speeds, lane occupancy, reveals holistic
dynamics of the underlying traffic network, contributing to

(a) Sensors Locations, Sacramento, California.

(b) Time series from the above 4 sensors, showing 1-week traffic
conditions

Fig. 1: Example of four sensors and their time series. The time series
from sensors 1 and 2 show similar traffic patterns as the sensors are
deployed on the same street. The same happens for sensors 3 and 4,
but the time series from sensors 1 and 3 show different patterns.

early warnings for emergency management [5], [6], diagnosing
faulty equipment [7]–[9], and route planning and recom-
mendation [10]–[14]. However, accurate traffic forecasting is
challenging due to its complex spatio-temporal dynamics.

First, time series collected from different locations have
distinct patterns. To illustrate this, we show four different time
series collected from the four sensors shown in Figure 1(a).
Sensors 1 (blue) and 2 (orange), which are deployed along
one street, exhibit different patterns, comparing to sensors 3
(green) and 4 (red), which are deployed along another street.
More specifically, sensors 1 and 2 have two clear peek hours
in the morning and in the afternoon, respectively, in weekdays;
while sensors 3 and 4 do not have a spike in the afternoon,
instead the flow gradually decreases. This calls for spatial-
aware modeling where different model parameters can be used
for modeling time series from different locations.

Second, the patterns within time series often vary across

1

ar
X

iv
:2

20
3.

15
73

7v
3

 [
cs

.L
G

]
 5

 A
pr

 2
02

2

time. Figure 1(a) shows that during weekdays, it exhibits
similar temporal patterns, which are different from the patterns
during the weekends. This holds for both sets of sensors. In
such scenarios, it can be beneficial to automatically adjust
model parameters across time such that they can better model
different temporal patterns in, e.g., weekdays vs. weekends.
The ability of adjusting model parameters across time can also
be useful for accidents or road closures, where traffic patterns
may deviate from regular temporal patterns. This calls for
temporal-aware modeling where different model parameters
can be used for modeling time series during different times.

Based on the above, the complex spatio-temporal traffic
dynamics calls for spatio-temporal aware forecasting model
that is able to (1) capture distinct patterns at different locations;
(2) quickly adapt to pattern changes in different time periods.

However, existing methods are often spatio-temporal agnos-
tic, thus failing to capture the spatio-temporal dynamics. Tra-
ditional methods such as Auto-Regressive Integrated Moving
Average (ARIMA) or Vector Auto-Regression (VAR) cannot
capture nonlinear patterns and thus fail to capture complex
spatio-temporal patterns among different time series, resulting
in sub-optimal forecasting accuracy [15]. Recently, various
deep learning models have been proposed with promising ac-
curacy, which are mainly based on three types of architectures,
i.e., recurrent neural networks (RNNs) [16]–[20], temporal
convolution networks (TCNs) [21]–[23], and attentions [24]–
[26]. However, none of the architectures offers time-varying
and location-specific modeling. First, the model parameters
are static, thus failing to capture patterns that change over
time and being temporal-agnostic. In particular, the weight
matrices in RNN cells, the convolution filters in TCNs, and
the projection matrices in attentions, stay the same across
time [16], [17], [22], [27]–[29]. Second, the same parameters
are employed for time series from different locations [16],
[17], [22], [29], [30], by assuming that the traffic patterns
are similar for all locations. However, this is often not the
case in reality as shown in Figure 1. Such modeling forces
the learned parameters to represent an “average” of the traffic
patterns among all time series, thus being spatial-agnostic.

In this paper, we strive to enable spatio-temporal aware
forecasting models by utilizing time-varying and location-
specific model parameters in a data driven manner. We
propose to encode each location’s recent time series into a
stochastic variable that captures both location-specific and
time-varying patterns, from which we generate distinct model
parameters for modeling time series from different locations
and for different time periods. This approach is purely data
driven, which avoids using additional location and time spe-
cific features, such as coordinates of sensor locations and
prior knowledge on peak vs. offpeak hours. This approach
is generic as it can be applied to generate spatio-temporal
aware parameters for different models, such as RNNs, TCNs
and attentions. We use attention as a concrete model in this
paper as it shows superior accuracy, even for very long time
series [26], compared to, e.g., RNNs and TCNs.

To alleviate the additional overhead caused by the spatio-

temporal aware model parameter generation, we propose a
novel efficient and accurate attention mechanism to ensure
that the spatio-temporal aware attentions also have competitive
efficiency. More specifically, in canonical self-attention, each
timestamp directly attends all other timestamps, thus resulting
in quadratic complexity. We propose a window attention to
reduce the complexity from quadratic to linear, thus ensuring
competitive efficiency overall, without compromising accu-
racy. More specifically, we strategically break an input time
series into small windows and introduce a small constant
number of proxies for each window to harvest information
within the window. Then, each timestamp only attends to the
proxies, but not all other timestamps anymore. This enables us
to reduce the complexity from O(H2) of the canonical self-
attention to O(H) of the window attention, where H is the
length of the input time series. This linear window attention
operation ensures competitive overall efficiency, even with the
additional spatio-temporal aware parameter generation.

To the best of our knowledge, this is the first study to
enable spatio-temporal aware modeling where time-varying
and location-specific model parameters are employed. The
study makes four contributions. First, we propose Spatio-
Temporal Aware Parameter Generation Network to generate
location-specific and time-varying model parameters to turn
spatio-temporal agnostic models to spatio-temporal aware
models. Second, we integrate the proposed mechanism into
attentions to enable spatio-temporal aware attentions. Third,
we propose an efficient window attention by using proxies, re-
ducing the complexity of attentions operations from quadratic
to linear, thus ensuring overall competitive efficiency for
spatio-temporal aware attentions. Fourth, we conduct extensive
experiments on four commonly used traffic time series data
sets, justifying the design choices and demonstrating that the
proposal outperforms the state-of-the-art.
Paper Outline: Section II covers the recent advancements
in the field. Section III-A formally defines the problem and
presents the overview of the model. Section V-B describe the
experimental study and the results and VI concludes.

II. RELATED WORK

Time Series Forecasting. To achieve accurate forecasting
results, modeling temporal dynamics is an essential component
of any time series forecasting model. Traditional methods
such as Vector Auto-Regression (VAR) or Auto-Regressive
Integrated Moving Average (ARIMA) [31] cannot capture
nonlinear patterns and thus fail to capture complex temporal
patterns among different time series, resulting in sub-optimal
forecasting accuracy [15]. Recent studies show that deep learn-
ing methods are able to consistently outperform traditional
methods in the context of time series forecasting [17]. Existing
studies on deep learning time series forecasting often use three
types of models—recurrent neural networks (RNNs) [16]–[20],
[32] in the form of LSTM or GRU, and temporal convolutions
networks (TCNs) [21]–[23].

Recently attention mechanism such as
Transformers [24]–[26], [33], [34] have shown superior

2

performance when compared with RNN and TCN based
models, as they are better at handling long term dependencies.
However, they suffer from quadratic memory and runtime
overhead w.r.t. to the input sequence length H . To address
those limitations, in sliding window attentions, e.g., [35],
[36], each timestamp considers a sliding window of length
S, covering its past and future neighboring timestamps. As
such, each timestamp attends only to the S timestamps in the
sliding window. This leads to O(H × S) complexity, where
H is the length of time series. We instead strive for attentions
with linear complexity O(H). Furthermore, existing attention
models, including the sliding window attentions, are still
spatial-temporal agnostic as they use the same projection
matrices irrespective of the time series locations and the time
periods.

Categorization of Deep Learning Based Forecasting. We
systematically review deep learning studies on time series
forecasting from two aspects—spatial awareness vs. temporal
awareness. First, spatial agnostic models use the same set
of model parameters for time series from different locations,
whereas spatial aware models use distinct sets of model param-
eters for time series from different locations. Second, temporal
agnostic models use the same set of model parameters for
different time periods, whereas temporal aware models use
distinct sets of model parameters for different time periods.
The categorization is shown in Table II.

Spatial
Temporal Agnostic Aware

Agnostic
[16], [24], [25], [36]–[40]

[17], [22], [28]–[30], [41],
[33], [35]

[42]

Aware [43], [44], [18], [45] Ours

TABLE II: Categorization of Related Studies. The bold references
are included in the empirical study, covering the strongest and latest
baselines in each category.

Most of the related studies are spatio-temporal agnostic, as
shown in the top-left corner of Table II. They apply the same
model parameters, e.g., projection matrices in self-attention,
weight matrices in RNNs, convolution filters in TCNs, for
all time series from different locations. By using the same
parameter space for all locations such studies implicitly as-
sume that the traffic patterns are similar among locations. Such
assumption may not always hold in practice, as demonstrated
by a real world example in Figure 1, and this inhibits the model
capabilities as the models parameters only learn to capture the
“average” traffic dynamics among all locations.

Three existing studies [18], [43], [45] propose spatial-
aware but still temporal-agnostic, RNN based models by using
location-specific weight matrices for RNNs. Specifically, [43]
generates location-specific weight matrices for RNNs based
on additional meta-knowledge, e.g., categories of points of
interest around the deployed sensor locations which might not
always be available, limiting the applicability of the model,
e.g., in the data sets where such additional meta-knowledge
is unavailable. [18] learns a pool of candidate weights and
choose to combine them differently to obtain location-specific

Variable Definition
X Time series data
H Length of the input time series
U Length of the predicted time series
N Number of sensors/time series

h(i) Output of attention for the i-th sensor
Θ

(
ti) Stochastic latent variable for the i-th sensor

z(i) Spatial-aware stochastic variable
z(i)t Temporal-aware stochastic variable
Eψ An encoder network E parameterized by ψ
Dω A decoder network D parameterized by ω
W Number of windows
S Window size
P Proxy tensor

Q,K,V Learnable projection matrices in attentions

TABLE III: Table of notations

weight matrices for RNNs. One recent study [45] employs a
deterministic memory per location to generate spatial-aware
model parameters for time series forecasting, but still fails
to enable temporal-aware modeling. In contrast, our proposal
proposes to employ a stochastic variable to generate both
spatial and temporal aware model parameters. Thus, [45] can
be considered as a special case of the paper with the standard
deviation of the stochastic variable being always 0 and without
temporal-aware parameter generation. We show strong empir-
ical results that our proposal outperforms [18] and [45] (see
Table IV). Spatial-aware model parameter generation has also
been studied for image recognition and object detection [46]–
[48], but fail to capture temporal dynamics and thus cannot
be applied directly to enable time series forecasting.

Finally, one existing study [42] is temporal-aware but still
spatial-agnostic. The authors propose to use an additional
LSTM which acts as a meta-LSTM. The meta-LSTM’s hidden
representation, which varies across time, is then used to
generate time-varying model parameters for another LSTM.
The empirical study shows that our proposal outperforms [42].

III. PRELIMINARIES

A. Problem Definition

Given a set of N sensors that are deployed in different
locations in a spatial network, each sensor produces a mul-
tidimensional time series recording F attributes (e.g., traffic
speed, traffic flow) across time. Assuming that each time series
has a total of T timestamps, we use X ∈ RN×T×F to represent
the time series from all N sensors. We use x(i) ∈ RT×F to
denote the time series from the i-th sensor, xt ∈ RN×F to
denote the attributes from all sensors at the t-th timestamp,
and x

(i)
t ∈ RF to represent the attribute vector from the i-th

sensor at the t-th timestamp.
Time series forecasting learns a function F that, at times-

tamp t, given the attributes of the past H timestamps from all
sensors, predicts the attributes of all sensors in the future U
timestamps.

Fφ(xt−H+1, ...,xt−1,xt) = (x̂t+1, x̂t+2, ..., x̂t+U), (1)

3

where φ denotes the learnable model parameters of the fore-
casting model and x̂j is the prediction at time j. Important
notation is shown in Table III.

B. Spatio-temporal Agnostic Attention based Forecasting

We use canonical attention [49], more specifically, self-
attention, which is spatio-temporal agnostic, as an example
to illustrate the needs of spatio-temporal aware modeling
for traffic forecasting. Figure 2 shows an overview of self-
attention based forecasting, where multiple attention layers are
stacked and then a predictor, e.g., a neural network, is applied
on the output of the last layer to make forecasts X̂.

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f c
ar

s

ST-Agnostic Attention

ST-Agnostic Attention

ST-Agnostic Attention

Predictor

ST-Aware Model
Parameter Generator

+ Predictor

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

ST-WA ST-WA ST-WA ST-WA

ST-WA ST-WA

ST-WA

La
ye

r 1
La

ye
r 2

La
ye

r 3

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

Querry

H timestamps

H 2

Key

z(1)

z(2)

zt(1)

zt(2)
zt(3)

+

Θt(1)

Encoder
Eψ

+ Point-wise
summation

ST-Aware Model Parameters

Temporal
adaption

Stochastic latent
variable space

Sampling

Sampling

ST-Aware Attention

ST-Aware Attention

ST-Aware Attention

Predictor

Decoder
Dω

1st window
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

H timestamps

Aggregator Aggregator

P×H p1 p2 p3 p4
Querry

Key

Entity Correlation Entity Correlation

x{

x{

{Q, K, V}

{Qt(1), Kt(1), Vt(1)}

{Qt(3), Kt(3), Vt(3)}

{Qt(2), Kt(2), Vt(2)}

Spatial-aware Variables

Temporal Adaption Variables
Model parameter

space
Spatial-aware

stochastic variables
ST-aware stochastic

latent variable

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f c
ar

s

{Q, K, V}
{Qt1(1), Kt1(1), Vt1(1)}

x(1) x(2) x(1) x(2)

{Qt2(1), Kt2(1), Vt2(1)}
{Qt1(2), Kt1(2), Vt1(2)} {Qt2(2), Kt2(2), Vt2(2)}

t1 t2 t1 t2

{Qt(i), Kt(i), Vt(i)}i=1
N

Θt(2)

Θt(3)

Θt(i) i-th location hidden
representation at time t

Input Time Series

(i) xt
(i)xt-1

(i)

z(3)

h2

ϑ

ˆ

{ xt-H+1, …, xt }(i)
i=1
3

h1ˆ

x̂

x̂

}Ni=1{xt-H+1

xt
(i)xt-1

(i) N
i=1{xt-H+1

(i) }

h

h

2nd window

Fig. 2: Spatio-temporal Agnostic Forecasting Model.

In the following, we first cover how to use self-attention to
make forecasting for a single time series and multiple time
series, respectively, and then illustrate the needs of spatio-
temporal aware modeling.
Single Time Series: Consider an input time series with H
timestamps, e.g., time series x(i) ∈ RH×F from the i-th
sensor. Self-attention first transforms the time series into a
query matrix x(i)Q, a key matrix x(i)K and a value matrix
x(i)V. Here, projection matrices Q,K,V ∈ RF×d are the
learnable model parameters of self-attentions.

The output h(i) ∈ RH×d of self-attention is represented as
a weighted sum of the values in the value matrix, where the
weights, a.k.a., attention scores, represent pairwise similarities
between any two timestamps and are computed based on the
query matrix and the key matrix, as shown in Equation 2.

h(i) = Att(x(i) | Q,K,V)

= σ(
(x(i)Q)(x(i)K)T√

d
)(x(i)V),

(2)

where σ represents the softmax activation function.
Multiple Time Series: We now consider the time series from
all N censors, upon which we can rewrite self-attentions as
shown in Equation 3.

h = Att(x | Q,K,V)

=

{
σ(

(x(i)Q)(x(i)K)T√
d

)(x(i)V)

}N
i=1

,
(3)

where x ∈ RN×H×F and h ∈ RN×H×d correspond to N
sensors.

As we aim to capture more complex relationships between
different timestamps, it is often useful to stack multiple atten-
tion layers to increase the model’s representation power [49],
and each layer’s attention uses its own set of projection
matrices. The output of an attention layer is fed as the input
of the next attention layer. After multiple layers have been
staked, we can take the output of the last layer to feed into
a predictor. The predictor can be any type of neural network
which is responsible of forecasting future values X̂. Figure 2
illustrates the procedure.
Needs of Spatio-Temporal Aware Modeling: When model-
ing multiple time series, related studies [24], [25], [29] use
the same set of key, query, and value projection matrices
{Q,K,V}, for all N different time series and during different
times (cf. the left of Figure 3). This gives rise to a spatio-
temporal agnostic model that fails to capture distinct patterns
from different time series and dynamic patterns that change
across time. A spatio-temporal model is called for, where
different projection matrices {Q(i)

t ,K
(i)
t ,V

(i)
t } are used for

different time series i and during different times t (cf. the
right of Figure 3).

One straightforward solution is to employ a distinct set of
projection matrices for each sensor, thus being spatial-aware,
and for each time period, thus being temporal-aware. However,
this gives rise to a prohibitively large number of parameters
to be learned, which leads to high computation time, large
memory consumption, slow convergence, and over-fitting is-
sues. Instead, we propose to generate such location-specific
and time-varying projection matrices using an encoder-decoder
network. The idea is illustrated in Figure 4, where a Spatio-
Temporal (ST) Aware Model Parameter Generator generates
distinct model parameters {Q(i)

t ,K
(i)
t ,V

(i)
t }Ni=1 for N differ-

ent sensors’ time series and during each time window that
ends at time t. This enables spatio-temporal aware attentions
without inuring an explosion of model parameters.

IV. METHODOLOGY

A. Spatio-Temporal Aware Modeling

1) Design Considerations: We propose a data-driven and
model-agnostic method to generate location-specific and time-
varying parameters, thus being able to turn spatio-temporal
agnostic models to spatio-temporal aware models.

First, the method is purely data-driven that only relies on
the time series themselves (see the input of the Encoder in
Figure 5) and does not rely on any additional information,
e.g., points-of-interest around the deployed locations of the
sensors, or the knowledge on when morning and afternoon
peak hours start at different locations.

Second, the method is not restricted to a specific type of
model as the decoder can produce model parameters for differ-
ent types of models. Figure 5 shows an example decoder that
outputs location-specific and time-varying model parameters
for attentions, i.e., projection matrices. The above two features
ensure smooth transformations of existing, different types

4

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f c
ar

s

ST-Agnostic Attention

ST-Agnostic Attention

ST-Agnostic Attention

+ Predictor

ST-Aware
Model

Parameter
Generator

+ Predictor

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

ST-WA ST-WA ST-WA ST-WA

ST-WA ST-WA

ST-WA

La
ye

r 1
La

ye
r 2

La
ye

r 3

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

Querry

H timestamps

H 2

Key

z(1)

z(2)

zt(1)

zt(2)
zt(3)

+

Θt(1)

Encoder
Eψ

+ Point-wise
summation

ST-Aware Model Parameters

Temporal
adaption

Stochastic latent
variable space

Sampling

Sampling

ST-Aware Attention

ST-Aware Attention

ST-Aware Attention

+ Predictor

Decoder
Dω

Window

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12
H timestamps

Aggregator Aggregator

P×H p1 p2 p3 p4
Querry

Key

Entity Correlation Entity Correlation

x{

x{

{Q, K, V}

{Qt(1), Kt(1), Vt(1)}

{Qt(3), Kt(3), Vt(3)}

{Qt(2), Kt(2), Vt(2)}

Spatial-aware Variables

Temporal Adaption Variables
Model parameter

space
Spatial-aware

stochastic variables
ST-aware stochastic

latent variable

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f c
ar

s

{Q, K, V}
{Qt1(1), Kt1(1), Vt1(1)}

x(1) x(2) x(1) x(2)

{Qt2(1), Kt2(1), Vt2(1)}
{Qt1(2), Kt1(2), Vt1(2)} {Qt2(2), Kt2(2), Vt2(2)}

t1 t2 t1 t2

{Qt(i), Kt(i), Vt(i)}i=1
N

xt-H+1
(i)

Θt(2)

Θt(3)

Θt(i) i-th location hidden
representation at time t

Input Time Series

xt
(i)xt-1

(i)

xt-H+1
(i) xt

(i)xt-1
(i)

z(3)

h2

ϑ

ˆ

{ xt-H+1, …, xt }(i)
i=1
3

h1ˆ

x̂

x̂

Fig. 3: Spatio-temporal Agnostic Attentions (Left) use the same set of projection matrices for different time series across different times.
Spatio-temporal Aware Attentions (Right) use distinct sets of projection matrices for different time series across different times.

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f c
ar

s

ST-Agnostic Attention

ST-Agnostic Attention

ST-Agnostic Attention

Predictor

ST-Aware Model
Parameter Generator

+ Predictor

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

ST-WA ST-WA ST-WA ST-WA

ST-WA ST-WA

ST-WA

La
ye

r 1
La

ye
r 2

La
ye

r 3

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

Querry

H timestamps

H 2

Key

z(1)

z(2)

zt(1)

zt(2)
zt(3)

+

Θt(1)

Encoder
Eψ

+ Point-wise
summation

ST-Aware Model Parameters

Temporal
adaption

Stochastic latent
variable space

Sampling

Sampling

ST-Aware Attention

ST-Aware Attention

ST-Aware Attention

Predictor

Decoder
Dω

1st window
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

H timestamps

Aggregator Aggregator

P×H p1 p2 p3 p4
Querry

Key

Entity Correlation Entity Correlation

x{

{Q, K, V}

{Qt(1), Kt(1), Vt(1)}

{Qt(3), Kt(3), Vt(3)}

{Qt(2), Kt(2), Vt(2)}

Spatial-aware Variables

Temporal Adaption Variables
Model parameter

space
Spatial-aware

stochastic variables
ST-aware stochastic

latent variable

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f c
ar

s

{Q, K, V}
{Qt1(1), Kt1(1), Vt1(1)}

x(1) x(2) x(1) x(2)

{Qt2(1), Kt2(1), Vt2(1)}
{Qt1(2), Kt1(2), Vt1(2)} {Qt2(2), Kt2(2), Vt2(2)}

t1 t2 t1 t2

{Qt(i), Kt(i), Vt(i)}i=1
N

Θt(2)

Θt(3)

Θt(i) i-th location hidden
representation at time t

Input Time Series

(i) xt
(i)xt-1

(i)

z(3)

h2

ϑ

ˆ

{ xt-H+1, …, xt }(i)
i=1
3

h1ˆ

x̂

x̂

}Ni=1{xt-H+1

xt
(i)xt-1

(i) N
i=1{xt-H+1

(i) }

h

h

2nd window

x̂

Fig. 4: Spatio-temporal Aware Forecasting Model

of spatio-temporal agnostic models to spatio-temporal aware
models without using additional, third party information.

In the following, we use attentions as an example to
illustrate how to use the method to turn spatio-temporal
agnostic attentions to spatio-temporal aware attentions. In the
experiments, in addition to attentions, we also test the method
on RNNs to justify the method is model-agnostic.

We proceed to offer an overview of the spatio-temporal
aware parameter generation, as shown in Figure 5. We aim
to learn a unique stochastic latent variable Θ

(i)
t for each loca-

tion’s time series during each time period. More specifically,
Θ

(i)
t denotes the variable from the i-th time series for a period

ending at time t. We design Θ
(i)
t as the sum of a spatial-aware

variable z(i) and a temporal adaption variable z(i)t . Then, we
generate location-specific and time-varying model parameters
using a decoder from Θ

(i)
t . This facilities us to generate spatio-

temporal aware parameters for different models, thus being
model-agnostic. In the following, we first cover the learning
of stochastic latent variable Θ

(i)
t and then model parameter

decoding from Θ
(i)
t .

2) Learning Stochastic Latent Variables Θ
(i)
t : We design

the unique stochastic latent variable Θ
(i)
t for the i-th time

series during a time period ending at t as the sum of two
stochastic latent variables—spatial-aware variable z(i) and
temporal adaption variable z(i)t (cf. Equation 4).

Θ
(i)
t = z(i) + z(i)t (4)

Here, we expect the spatial-aware variable z(i) to capture the
most general and prominent patterns of the i-th time series and

Algorithm 1: Efficient ST-Aware Modeling Algorithm
Input: X

1
{
µ(i)

}N
i=1

,
{

Σ(i)
}N
i=1
← randomly initialize;

2 Eψ, Dω,
{

P(i)
}N
i=1
← randomly initialize;

3 while did not converge do
4 Sample a batch of training data and labels from X;

5 Sample
{

z(i)
}N
i=1

using Eq. 5;

6 Compute
{
µ

(i)
t

}N
i=1

,
{

Σ
(i)
t

}N
i=1

using Eq. 6;

7 Sample
{

z(i)t
}N
i=1

using Eq. 7;

8
{

Θ
(i)
t

}N
i=1

=
{

z(i)
}N
i=1

+
{

z(i)t
}N
i=1

;

9 Compute ST-Aware parameters
{
φ
(i)
t

}N
i=1

using Eq. 8;
10 foreach w in W do
11 Update the proxy tensor with information from the

previous window using Eq. 14;

12 Compute proxy values
{

h(i)
w

}N
i=1

using Eq. 10;

13 Compute proxy weights
{

A(i)
w

}N
i=1

using Eq. 12;

14 Aggregate all proxies into
{

ĥ
(i)

w

}N
i=1

using Eq. 13;
15 end
16 Optimize parameters using Eq. 20;
17 end

the temporal adaption variable z(i)t to accommodate specific
variations w.r.t. the most general patterns at different times.
We use stochastic variables because they generalize better and
have stronger representational power [50] when compared with
deterministic variables, which are a special case of stochastic
variables with covariance matrix being all 0.

The spatial-aware stochastic latent variable z(i) is expected
to represent the most general and prominent patterns of the i-
th time series. It is spatial-aware, as time series from different
locations have different variables z(i), and thus are expected
to capture different patterns from different locations.

Since we do not rely on any prior knowledge of the distri-
butions of the latent variables, and many real world processes
follow Gaussian distributions [51], we assume they follows
a multivariate Gaussian distribution in a k-dimensional space
(cf. Equation 5). Moreover, this assumption is well used and
accepted in stochastic models such as [50], [52]. In addition,

5

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f c
ar

s

ST-Agnostic Attention

ST-Agnostic Attention

ST-Agnostic Attention

+ Predictor

ST-Aware
Model

Parameter
Generator

+ Predictor

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

ST-WA ST-WA ST-WA ST-WA

ST-WA ST-WA

ST-WA

La
ye

r 1
La

ye
r 2

La
ye

r 3

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

Querry

H timestamps

H 2

Key

z(1)

z(2)

zt
(1)

zt
(2)

zt
(3)

+

Θt
(1)

Encoder
Eψ

+ Point-wise
summation

ST-Aware Model Parameters

Temporal
adaption

Stochastic latent
variable space

Sampling

Sampling

ST-Aware Attention

ST-Aware Attention

ST-Aware Attention

+ Predictor

Decoder
Dω

Window

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

H timestamps

Aggregator Aggregator

P×H p1 p2 p3 p4

Querry

Key

Entity Correlation Entity Correlation

x{

x{

{Q, K, V}

{Qt
(1), Kt

(1), Vt
(1)}

{Qt
(3), Kt

(3), Vt
(3)}

{Qt
(2), Kt

(2), Vt
(2)}

Spatial-aware Variables

Temporal Adaption Variables
Model parameter

space
Spatial-aware

stochastic variables
ST-aware stochastic

latent variable

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f c
ar

s

{Q, K, V}
{Qt1

(1), Kt1
(1), Vt1

(1)}

x(1) x(2) x(1) x(2)

{Qt2
(1), Kt2

(1), Vt2
(1)}

{Qt1
(2), Kt1

(2), Vt1
(2)} {Qt2

(2), Kt2
(2), Vt2

(2)}

t1 t2 t1 t2

{Qt
(i), Kt

(i), Vt
(i)}i=1

N

xt-H+1
(i)

Θt
(2)

Θt
(3)

Θt
(i) i-th location hidden

representation at time t

Input Time Series

xt
(i)xt-1

(i)

xt-H+1
(i) xt

(i)xt-1
(i)

z(3)

h2

ϑ

ˆ

{ xt-H+1, …, xt }(i)
i=1
3

h1ˆ

x̂

x̂

Fig. 5: Spatio-temporal Aware Model Parameters Generation

multivariate Gaussian distributions offer nice properties such
as analytical evaluation of the KL divergence in the loss
function (cf. Equation 20) and the reparameterization trick
for efficient gradient computation. Furthermore, we provide
empirical evidence in Table XI which shows that our proposal
outperforms its deterministic variant.

z(i) ∼ N (µ(i),Σ(i)) (5)

We let z(i) be directly learnable in a pure data-driven
manner, without using an encoder. This means that the mean
µ(i) and covariance matrix Σ(i) are learnable parameters.
Alternatively, we may use an encoder to generate z(i) using
location related features, such as POIs around the censor
locations [43]. However, such information is often unavailable
from time series data itself, but from third parties, which limits
the applicability of the method. We thus choose a pure data-
drive design.

Next, the temporal adaption variable z(i)t represents changes
w.r.t. the most prominent patterns captured by z(i) at a partic-
ular time t, which accommodates the pattern changes during
at t. Thus, z(i)t should be temporal aware as it changes over
time. To do so, we produce the temporal adaption variable
z(i)t conditioned on the most recent H timestamps from
the i-th time series. To this end, given {x(i)t−H+1, . . . , x

(i)
t }

consisting of the most recent H timestamps from the i-th
time series, inspired by [50] we opt for a variational encoder
Eψ , parameterized by ψ, e.g., a neural network, to generate
the stochastic variable z(i)t , which we assume also follows a
multivariate Gaussian distribution (cf. Equations 6 and 7). We
opted for a variational encoder to generate model parameters
due to its ability to capture the distributions of the input data,
which better generalize to cases that were not seen during
training.

µ
(i)
t ,Σ

(i)
t = Eψ(x(i)t−H+1, . . . , x

(i)
t) (6)

z(i)t ∼ N (µ(i)
t ,Σ

(i)
t) (7)

Note that µ
(i)
t and Σ

(i)
t are the output of the encoder Eψ ,

where the encoder parameters in ψ are learnable. This is

different from the learning of z(i) where µ(i) and Σ(i) are
directly learnable.

The two stochastic variables z(i) and z(i)t need to be in the
same k-dimensional space, as illustrated by the diamond-shape
space in Figure 5, such that the sum of them is meaningful,
i.e., still in the same space.

3) Decoding to Spatio-Temporal Aware Model Parameters:
We use a decoder Dω parameterized by ω, e.g., a neural
network, to decode the learned stochastic latent variable Θ

(i)
t

to model parameters φ(i)t for a specific type of forecasting
model, e.g., attentions, or RNNs, as shown in Equation 8.
Since we can not directly backpropagate the gradients through
a distribution, which is required to achieve an end to end
training, we use the reparameterization trick [50] to circumvent
this issue. More specifically, we first obtain samples according
to the distribution specified by Θ

(i)
t , which are then used as

the input to the decoder to generate model parameters (cf.
Equation 8).

φ
(i)
t = Dω(Θ

(i)
t) (8)

Figure 5 shows an example where the decoder maps the
stochastic latent variables Θ

(i)
t into model parameters for

attention, i.e., projection matrices, where we have φ
(i)
t =

{Q(i)
t ,K

(i)
t ,V

(i)
t }. When using the obtained location-specific,

time-varying projection matrices in attentions, it turns spatio-
temporal-agnostic attention into spatio-temporal-aware atten-
tion, as shown in Equation 9.

h = Att(x|φ(1)t , . . . , φ
(N)
t)

=

{
σ(

(x(i)Q
(i)
t)(x(i)K(i)

t)T√
d

)(x(i)V
(i)
t)

}N
i=1

(9)

Figure 4 shows an overview of the forecasting model based
on spatio-temporal aware attentions.

Comparing to the naive approach that directly learn projec-
tion matrices for each location, the proposed spatio-temporal
aware model parameter generation reduces significantly the
amount of parameters to be learned. In the naive way where
each of the N sensors has its own set of projection matrices.

6

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f c
ar

s

ST-Agnostic Attention

ST-Agnostic Attention

ST-Agnostic Attention

Predictor

ST-Aware Model
Parameter Generator

+ Predictor

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

ST-WA ST-WA ST-WA ST-WA

ST-WA ST-WA

ST-WA

La
ye

r 1
La

ye
r 2

La
ye

r 3

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

Query

H timestamps

H 2

Key

z(1)

z(2)

zt(1)

zt(2)
zt(3)

+

Θt(1)

Encoder
Eψ

+ Point-wise
summation

ST-Aware Model Parameters

Temporal
adaption

Stochastic latent
variable space

Sampling

Sampling

ST-Aware Attention

ST-Aware Attention

ST-Aware Attention

Predictor

Decoder
Dω

1st window
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

H timestamps

Aggregator Aggregator

p×H p1 p2 p3 p4
Query

Key

Entity Correlation Entity Correlation

x{

{Q, K, V}

{Qt(1), Kt(1), Vt(1)}

{Qt(3), Kt(3), Vt(3)}

{Qt(2), Kt(2), Vt(2)}

Spatial-aware Variables

Temporal Adaption Variables
Model parameter

space
Spatial-aware

stochastic variables
ST-aware stochastic

latent variable

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f c
ar

s

{Q, K, V}
{Qt1(1), Kt1(1), Vt1(1)}

x(1) x(2) x(1) x(2)

{Qt2(1), Kt2(1), Vt2(1)}
{Qt1(2), Kt1(2), Vt1(2)} {Qt2(2), Kt2(2), Vt2(2)}

t1 t2 t1 t2

{Qt(i), Kt(i), Vt(i)}i=1
N

Θt(2)

Θt(3)

Θt(i) i-th location hidden
representation at time t

Input Time Series

(i) xt
(i)xt-1

(i)

z(3)

h2

ϑ

{ xt-H+1, …, xt }(i)
i=1
3

h1

x̂

x̂

}Ni=1{xt-H+1

xt
(i)xt-1

(i) N
i=1{xt-H+1

(i) }

h

h

2nd window

x̂

_ _

O1

O2

O3

(a) Canonical Attention, Θ(H2)

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f c
ar

s

ST-Agnostic Attention

ST-Agnostic Attention

ST-Agnostic Attention

+ Predictor

ST-Aware
Model

Parameter
Generator

+ Predictor

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

ST-WA ST-WA ST-WA ST-WA

ST-WA ST-WA

ST-WA

La
ye

r 1
La

ye
r 2

La
ye

r 3

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

Querry

H timestamps

H 2

Key

z(1)

z(2)

zt(1)

zt(2)
zt(3)

+

Θt(1)

Encoder
Eψ

+ Point-wise
summation

ST-Aware Model Parameters

Temporal
adaption

Stochastic latent
variable space

Sampling

Sampling

ST-Aware Attention

ST-Aware Attention

ST-Aware Attention

+ Predictor

Decoder
Dω

Window

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

H timestamps

Aggregator Aggregator

p×H p1,1 p1,2 p2,1 p2,2
Querry

Key

Sensor Correlation Sensor Correlation

x{

x{

{Q, K, V}

{Qt(1), Kt(1), Vt(1)}

{Qt(3), Kt(3), Vt(3)}

{Qt(2), Kt(2), Vt(2)}

Spatial-aware Variables

Temporal Adaption Variables
Model parameter

space
Spatial-aware

stochastic variables
ST-aware stochastic

latent variable

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f c
ar

s

{Q, K, V}
{Qt1(1), Kt1(1), Vt1(1)}

x(1) x(2) x(1) x(2)

{Qt2(1), Kt2(1), Vt2(1)}
{Qt1(2), Kt1(2), Vt1(2)} {Qt2(2), Kt2(2), Vt2(2)}

t1 t2 t1 t2

{Qt(i), Kt(i), Vt(i)}i=1
N

xt-H+1
(i)

Θt(2)

Θt(3)

Θt(i) i-th location hidden
representation at time t

Input Time Series

xt
(i)xt-1

(i)

xt-H+1
(i) xt

(i)xt-1
(i)

z(3)

h2

ϑ

_

{ xt-H+1, …, xt }(i)
i=1
3

h1
_

x̂

x̂

1st window 2nd window

(b) Window Attention, Θ(H)

Fig. 6: Complexity Comparison between Canonical Attention (CA) vs. Window Attention (WA). In CA, both Key and Query include all H
timestamps as the input time series, and each timestamp in Key attends to all timestamps in Query. In WA, we split the input time series
into multiple windows (2 windows in this example) and we perform attentions per window. For each window, Query only includes a limited
number of p proxies (p = 2 in this example) and each timestamp in Key attends to each proxy in Query.

This gives rise to O(N ×d2) parameters. Such a high number
of parameters require high memory consumption and also lead
to over-fitting and poor scalability w.r.t. the number of sensors.
In contrast, our proposal requires O(N×k) parameters for the
spatial stochastic latent variable µ and Σ. In addition when
using a 2 layer MLP network as the decoder Dω with m1 and
m2 neurons then we only need O(k×m1+m1×m2+m2×d2)
as the decoder is shared across all sensors. By doing so we
decouple the number of sensors N from d2 which is the
dominant term. Furthermore, now m1 and m2 are hyper-
parameters which can be controlled such that it offers a trade-
off between number of parameters, i.e. memory usage, and
efficiency.

B. Efficient Spatio-Temporal Aware Attention

Although attention based models show promising accuracy,
a limitation is its quadratic complexity O(H2), where H
is the size of the input time series. This is because each
timestamp in the Key attends to all timestamps in the Query
(cf. Figure 6(a)). When the input time series is long, e.g.,
in settings of long term forecasting, the quadratic complexity
becomes a serious barrier.

The spatio-temporal aware parameter generation incurs fur-
ther computation costs, making its efficiency even worse.
To contend with the efficiency challenges, we propose an
efficient Window Attention (WA) with linear complexity, to
ensure competitive overall efficiency, even when using the
spatio-temporal aware parameter generation.

We propose to break down the input time series of size H
into W = H/S smaller windows along the temporal dimen-
sion where S is the window size. We compute attention scores
per window; and for each window, we introduce multiple
(a small constant, e.g., 2 or 3) learnable proxies which act
as the “Query” in the canonical attention. Within a window,
each timestamp in the Key only computes a single attention
score w.r.t. each proxy in the Query, thus achieving linear
complexity.

More specifically, in canonical attention, each of the S
timestamps in a window should compute an attention score
w.r.t. each timestamp in the windows, thus having O(S2).

Instead, assuming that we have p proxies in window attentions,
each of the S timestamps in the window computes an attention
score w.r.t. each proxy, resulting in O(p · S). Since we use a
small constant of proxies, i.e., p being a constant, then we
have linear complexity O(S) for window attentions.

The idea is illustrated in Figure 6(b) with an example input
time series of size H = 12 being split into W = 2 windows,
where the window size is S = 6 and each window has p = 2
proxies. We proceed to describe the details and the design
intuition behind proxies. We assume that for each window
there exist p representative temporal patterns, which we use p
proxies to capture. The proxies then replace the Query inside
canonical self-attention. To this end, we introduce a distinct
learnable proxy tensor P ∈ RW×N×p×d, such that during
each of the W windows, each of the N sensors has a total
of p proxies. Each proxy uses a d-dimensional vector, which
intends to capture a specific, hidden temporal pattern in the
window.

Specifically, when considering the i-th time series and the
w-th window, P(i)

w ∈ Rp×d replaces the Query x(i)WQ ∈
RH×d in Equation 3. This serves as a set of p proxies. Then,
each time timestamp in window w of the i-th time series needs
to compute a single attention score w.r.t. each proxy of the p
proxies in P(i)

w . Formally the operation is defined as shown in
Equation 10:

h(i)
w = Att(x(i)

w | P(i)
w ,K(i)

t ,V(i)
t)

=

{
σ(

P(i)
w,j(x

(i)
w K(i)

t)T
√
d

)(x(i)
w V

(i)
t)

}p
j=1

,
(10)

where x(i)w = (x(i)w∗S+1, x
(i)
w∗S+2, ..., x

(i)
(w+1)∗S) and the output

of window w for time series i is h(i)
w ∈ Rp×d. To get the

output of the layer we need to apply Equation 11 for each
window w:

h(i) =
{
Att(x(i)w |P(i)

w ,K(i),V(i))
}W−1
w=0

, (11)

where h(i) ∈ RW×p×d. Note that by applying the proxies, we
reduce the complexity of canonical self-attention on an input

7

time series of size H from quadratic O(H2) to O(W · p · S).
Since the number of proxies p is a constant and since W ·S =
H , the asymptotic complexity becomes linear, i.e., O(H).

To further reduce the complexity for the upcoming layers,
we propose an aggregation function responsible of aggregating
all the p proxies within a window w, i.e., h(i)

w = {h(i)
w,j}

p
j=1,

into a single, shared hidden representation ĥ
(i)

w . The resulting
ĥ
(i)

w is shrinked by a factor of p, thus giving rise to less
attention scores computation at the next layer. The idea is
illustrated in Figure 7.

Fig. 7: Illustration of Proxy Aggregator

First, we use a weighting network, e.g., 2-layer neural
network as shown in Equation 12, to weigh each proxy.

A(i)
w = f2(W2(f1(W1h(i)

w))) (12)

where W1 and W2 are trainable parameters which are shared
among different windows. f1 is a non-linear activation, which
is set to tanh in our experiments, and f2 represents the
Sigmoid activation function which ensures the weights are
bounded in range [0, 1], controlling the information flow. Next,
after we have computed the proxy weight scores A(i)

w ∈ Rp×d
we can calculate the final window representation as follows:

ĥ
(i)

w =

p∑
j=1

A(i)
w,j � h(i)

w,j (13)

where � represents the point-wise multiplication. We first
scale each proxy h(i)

p with its respective weight coefficient
A(i)
p and then sum all the proxies within the same window.
The reduced complexity comes with a price that the tem-

poral receptive filed of each timestamp in window attention
is reduced from H , as in the canonical attention, to S, i.e.,
the window size S. This makes it impossible to capture
relationships among different windows and also long-term
dependencies, thus adversely affecting accuracy. To compen-
sate for reduced temporal receptive field, we connect the
output of a window to the next window proxies such that the
temporal information flow is maintained. More specifically, we
utilize a function ϑ, e.g., a neural network, to fuse the output
of the previous window ĥ

(i)

w−1 with all p learnable proxies{
P(i)
w,j

}p
j=1

in the current window before the window attention

computation (see ϑ in Figure 6(b)).

P(i)
w,j = ϑ(ĥ

(i)

w−1 || P
(i)
w,j) ∀ j ∈ [1, p] (14)

C. Sensor Correlation Attention

Traffic time series from different sensors often show
correlations—traffic from one sensor is often influenced by
traffic from nearby sensors, thus the traffic information cap-
tured by the sensors show correlations. In order to accurately
predict the future, we need a way to model such correlations,
which we refer to as sensor correlations. We proceed to
elaborate how we can utilize the same attention mechanism
introduced already to capture the interactions between different
sensors within a window w. After we aggregate the proxies,
the output of a window attention is ĥw ∈ RN×d, where the
window information is summarized into a fixed representation
for the i-th sensor, where 1 ≤ i ≤ N . To capture how one
sensor i if affected by another sensor j, we use a normalized
embedded Gaussian function:

B(ĥ(i)
w , ĥ(j)

w) =
eθ1(ĥ

(i)
w)Tθ2(ĥ(j)

w)∑N
j=1 e

θ1(ĥ
(i)
w)Tθ2(ĥ

(j)
w)

, (15)

where θ1 and θ2 are two embedding functions to perform
a linear transformation on the data between sensors i and
j. The numerator of Equation 15 calculates the similarity
between the source sensor i and the target sensor j, while
the denominator ensures that the final attention scores for a
specific target sensor is normalised. Next, we can get a new
updated representation of the i-th sensor h(i) ∈ RN×d as
shown in Equation 16:

h(i)
=

N∑
j=1

B(ĥ
(i)

w , ĥ
(j)

w)� ĥ
(j)
, (16)

where � represents points-wise multiplication. Similar to
temporal attention, we assume that a single set of linear
transformation θ1 and θ2 might not be sufficient to describe all
the interactions between different sensors, and thus we can use
the model parameters generation process already introduced in
Section IV to generate a distinct set of transformation matrices
for each sensor.

D. Full Model

When using attentions, multiple layers of attentions are
often stacked together to improve accuracy. Figure 8 shows
the full model, which consists of multiple layers of Spatio-
Temporal Aware Window Attention (ST-WA), where location-
specific and time-varying projection matrices are used. Each
window attention layer has its own set of learnable proxy ten-
sor P. The output of the l-th layer is derived by concatenating
the output of each window:

Ol = [h1,h2, ...,hW], (17)

where Ol ∈ RW×N×d. To ease gradient propagation we create
gradient shortcuts by connecting each layer output directly to
the predictor. Since the dimension of the input is exponentially
decreased at each layer we use a skip-connection in the form

8

of 1 layer neural network to ensure consistent output shape
between each layer as shown in Equation 18.

O =

L∑
l=1

Wl(Ol), (18)

where L represents the total number of layers, and Wl repre-
sents the learnable parameters of the skip connection at layer
l. Finally we employ a predictor with a 2 layer neural network
which is responsible of mapping the hidden representation O
to future predictions X̂ as shown in Equation 19.

X̂ = W4(ReLU(W3(O))), (19)

where ReLU represents the rectified linear unit activation
function, W3 and W4 are learnable weight matrices.

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f c
ar

s

ST-Agnostic Attention

ST-Agnostic Attention

ST-Agnostic Attention

Predictor

ST-Aware Model
Parameter Generator

+

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

ST-WA ST-WA ST-WA ST-WA

ST-WA ST-WA

ST-WA

La
ye

r 1
La

ye
r 2

La
ye

r 3
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

Query

H timestamps

H 2

Key

z(1)

z(2)

zt(1)

zt(2)
zt(3)

+

Θt(1)

Encoder
Eψ

+ Point-wise
summation

ST-Aware Model Parameters

Temporal
adaption

Stochastic latent
variable space

Sampling

Sampling

ST-Aware Attention

ST-Aware Attention

ST-Aware Attention

Predictor

Decoder
Dω

1st window
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

H timestamps

Aggregator Aggregator

p×H p1 p2 p3 p4
Query

Key

Entity Correlation Entity Correlation

x{

{Q, K, V}

{Qt(1), Kt(1), Vt(1)}

{Qt(3), Kt(3), Vt(3)}

{Qt(2), Kt(2), Vt(2)}

Spatial-aware Variables

Temporal Adaption Variables
Model parameter

space
Spatial-aware

stochastic variables
ST-aware stochastic

latent variable

0

200

400

600

800

1000

1200

1400

Nu
m

be
r o

f c
ar

s

{Q, K, V}
{Qt1(1), Kt1(1), Vt1(1)}

x(1) x(2) x(1) x(2)

{Qt2(1), Kt2(1), Vt2(1)}
{Qt1(2), Kt1(2), Vt1(2)} {Qt2(2), Kt2(2), Vt2(2)}

t1 t2 t1 t2

{Qt(i), Kt(i), Vt(i)}i=1
N

Θt(2)

Θt(3)

Θt(i) i-th location hidden
representation at time t

Input Time Series

(i) xt
(i)xt-1

(i)

z(3)

h2

ϑ

{ xt-H+1, …, xt }(i)
i=1
3

h1

x̂

x̂

}Ni=1{xt-H+1

xt
(i)xt-1

(i) N
i=1{xt-H+1

(i) }

h

h

2nd window

x̂

_ _

O1

O2

O3

Predictor

Fig. 8: Full Model

Complexity Analysis When using attention, multiple layers
of attention are often stacked together to improve accuracy.
In canonical self-attentions, each attention layer has the same
input size, e.g., the input time series size H . Thus, when
having L layers, the complexity is Θ(LH2).

When using window attention, the size of (l+1)-th layer is

only
1

Sl
of the size of the l-th layer, where Sl is the window

size of the l-th layer. Consider the example shown in Figure 8
with 3 layers of window attention (WA). The size of the input
time series is H = 12. The window size in the first layer S1

is 3, making the input of the 2-nd layer WA to be
1

3
· 12 = 4.

As the 2-nd layer’s window size S2 is 2, the input of the 3-rd

layer WA has an input size of
1

2
· 4 = 2. Thus, the input size

of the L-th layer is at most
H

ŜL−1
, where Ŝ = min1≤i≤L Si

is the minimum window size of all layers. Since
L∑
i=1

H

Ŝi−1
<

Ŝ

Ŝ − 1
· H , the complexity of L stacks of WA is still linear

O(H).

E. Loss Function and Optimization

We train the proposed spatio-temporal aware parameters
generation by optimizing the loss function shown in Equa-

tion 20 in an end-to-end fashion.

argmin
ψ,ω,{µi},{Σi}

∑
t

H(Xt+1,...,t+U , X̂t+1,...,t+U)

+αDKL[Θt || p̂]
(20)

The first term measures the discrepancies between the predic-
tions X̂t+1,...,t+U and the ground truth values Xt+1,...,t+U .
We use Huber loss to measure the discrepancies in our
experiments, since it is less sensitive to outliers in the training
data [53].

H(XU , X̂U) =


1

2
(XU − X̂)2U |XU − X̂U | ≤ δ

δ(|XU − X̂U | −
1

2
δ) otherwise

(21)

Here, δ is a threshold parameter that controls the range of
squared error loss. The second term is a regularizer w.r.t. a
prior distribution p̂ = N (0, I).

Different from traditional learning settings, where we di-
rectly optimize the model parameters, e.g., projection matrices
in attention. In our setting, the model parameters are generated
from a stochastic latent variable by a decoder. Thus, the
learning goal is to optimize the parameters that generate
the model parameters. More specifically, the decoder Dω is
parameterized by ω; the stochastic hidden variable Θt is
the sum of the location specific stochastic variable decided
by the learnable parameters {µi}Ni=1 and {Σi}Ni=1; and the
stochastic temporal adaption that is returned by the encoder
Eψ parameterized by ψ. Thus, minimizing the loss function
enables the identification of the optimal parameters ω, ψ,
{µi}Ni=1 and {Σi}Ni=1. When learning the stochastic latent
variable Θt, in order to enforce our assumption that it follows
a multivariate Gaussian distribution, we make the learned
posterior distribution close to a prior distribution p̂ = N (0, I).
Here, DKL represents the Kullback–Leibler divergence and α
is a penalty term to control the contribution of the regulariza-
tion term. We empirically study the impact of the regularizer
and reported the results in the Section V-B.

V. EXPERIMENTAL STUDIES

A. Experimental Setup

Data Sets: We use four commonly used, public traffic time
series data sets [18], [28], [30]. The data has been collected
by California Transportation Agencies Performance Measure-
ment System (PEMS, http://pems.dot.ca.gov/) and is released
by [30]. Every 5 minutes, a time series has F = 1 attribute,
representing the average traffic flow. Thus, no personally iden-
tifiable information, e.g., information on individual vehicles,
is revealed. To facilitate fair comparisons, we follow existing
studies [18], [29] by splitting the data sets in chronological
order with 60% for training, 20% for validation, and 20% for
testing. The number of time series N and the duration of each
dataset is shown in Table IV.
Forecasting setting: We consider a commonly used forecast-
ing setup as the default setup [17], [22], [30], where given

9

http://pems.dot.ca.gov/

Baseline methods ST-agnostic S-aware T-aware ST-aware

Dataset Metric LongFormer DCRNN STGCN STG2Seq GWN STSGCN ASTGNN STFGNN EnhanceNet AGCRN meta-LSTM ST-WA
PEMS03
N=358
T=3mo

MAE 17.50 18.18 17.49 19.03 19.85 17.48 15.07 16.77 16.05 16.06 19.89 15.17
MAPE 16.80 18.91 17.15 21.55 19.31 16.78 15.80 16.30 15.83 15.85 20.38 15.83
RMSE 30.24 30.31 30.12 29.73 32.94 29.21 26.88 28.34 28.33 28.49 33.71 26.63

PEMS04
N=308
T=2mo

MAE 23.83 24.70 22.70 25.20 25.45 21.19 19.26 19.83 20.44 19.83 25.37 19.06
MAPE 15.57 17.12 14.59 18.77 17.29 13.90 12.65 13.02 13.58 12.97 17.09 12.52
RMSE 37.19 38.12 35.55 38.48 39.70 33.65 31.16 31.88 32.37 32.26 39.90 31.02

PEMS07
N=883
T=4mo

MAE 26.80 25.30 25.38 32.77 26.85 24.26 22.23 22.07 21.87 21.29 27.02 20.74
MAPE 12.11 11.66 11.08 20.16 12.12 10.21 9.25 9.21 9.13 8.97 12.32 8.77
RMSE 42.95 38.58 38.78 47.16 42.78 39.03 35.95 35.80 35.57 35.12 43.00 34.05

PEMS08
N=170
T=2mo

MAE 18.52 17.86 18.02 20.17 19.13 17.13 15.98 16.64 16.33 15.95 19.99 15.41
MAPE 13.66 11.45 11.40 17.32 12.68 10.96 9.97 10.60 10.39 10.09 12.51 9.94
RMSE 28.68 27.83 27.83 30.71 31.05 26.80 25.67 26.22 25.46 25.22 31.65 24.62

TABLE IV: Overall Accuracy, H = 12, U = 12

the previous H = 12 timestamps (1 hour), we predict the
following U = 12 timestamps (1 hour). We consider two
additional setups. First, we increase the historical timestamps
to H = 36 (3 hours) and H = 120 (10 hours) while keeping
U = 12 to study the impact on long term dependency. Second,
we increase the historical timestamps to H = 72 (6 hours) and
the forecasting horizon to U = 72 (6 hours) to quantify the
scalability of the methods.
Baselines: To evaluate the performance of our proposal,
we compare with widely used baselines and state-of-the-
art models for traffic time series forecasting. In particular,
this includes ST-agnostic models (LongFormer, DCRNN,
STGCN, STG2Seq, GWN, STSGCN, ASTGNN, STFGNN), S-
aware models (EnhanceNet, AGCRN), and T-awre models
(meta-LSTM).

• LongFormer [35] a Transformer like architecture which
employs sliding window attention.

• DCRNN [17] employs GRU to model temporal dependen-
cies (TD) and diffusion graph convolution to model sensor
correlations (SC).

• STGCN [29] uses 2D convolution to model TD and graph
convolution to model SC.

• STG2Seq [41] uses gated residual with attentions to
model TD and graph convolution to model SC.

• GWN [22] Graph WaveNet uses dilated causal convolu-
tions to model TD and graph convolution for SC.

• STSGCN [30] a state-of-the-art method which jointly
captures TD and SC using graph convolution.

• ASTGNN [33] an encoder-decoder network which incor-
porates local context into self-attention.

• STFGNN [28] relies on gated convolutions to jointly
capture TD and SC.

• EnhanceNet [45] A state-of-the-art spatial-aware
method that enhances existing RNN and TCN based mod-
els for TD and graph convolution for SC.

• AGCRN [18] A state-of-the-art spatial-aware method that
uses RNN for modeling TD and graph convolution for SC,
achieving the best accuracy so far.

• meta-LSTM [42] a temporal-aware method that uses
LSTM to capture TD, while SC is not captured.

We do not include another spatial-aware model
ST-MetaNet [43] as it requires POI information. However,

no POI information is available along with the data sets and
all other baselines do not rely on POI information.
Evaluation Metrics: For accuracy, we follow existing liter-
ature [17], [22] to report mean absolute error (MAE), root
mean square error (RMSE), and mean absolute percentage
error (MAPE). We also report runtime and memory usage.
Implementation Details and Hyperparameter Settings: We
train our model using Adam optimizer with a fixed learning
rate of 0.001 and with a batch size of 64. The total number
of epochs is set to 200 and we use early stopping with a
patience of 15. We tune the hyper-parameters on the validation
data by grid search. The number of layers is chosen from
L ∈ {1, 2, 3}, window size w ∈ {2, 3, 6}, number of proxies
p ∈ {1, 2, 3}, hidden representation d ∈ {16, 32}, stochastic
latent variable size k ∈ {4, 8, 16, 32}.

For H = 12 we have a default setting in which we stack 3
layers, with p = 1 and we set the window size S in the 1st,
2nd, and 3rd layers to be 3, 2, and 2, respectively. For H = 72
we use 3 layers with p = 2 and S = 6 across all layers.
We set the hidden representation d = 32. We initialize each
sensor’s stochastic latent variable z(i) as a k = 16 dimensional
Gaussian distribution using randomly initialized parameters
µ(i) and Σ(i). We use a 3 layer fully connected network
with 32 neurons and ReLU as the activation for the encoder
Eψ to generate a 16-dimensional Gaussian distribution z(i)t
parameterized by µ(i)

t and Σ
(i)
t . We enforce Σ(i) and Σ

(i)
t to be

diagonal matrices. We use a 3 layer fully-connected network
with 16, 32, and 5 neurons and ReLU as activation functions
for the first 2 layers as the decoder Dω . For the predictor
we use 2 fully connected layers, each with 512 neurons, and
ReLU as activation function. When computing the attentions,
to learn different types of relationships, we utilize multi-head
attention with a total of 8 heads.

We implement ST-WA and other baselines on Python 3.7.3
using PyTorch 1.7.0. The experiments are conducted on a
computer node on an internal cloud, running Ubuntu 16.04.6
LTS, with one Intel(R) Xeon(R) CPU @ 2.50GHz with one
Tesla V100 GPU card. The code is publicly available on
GitHub at https://github.com/razvanc92/ST-WA.

B. Experimental Results

Overall Accuracy. Table IV shows overall accuracy on the
default forecasting setup in which H = 12 and U = 12. First,

10

H = 12 H = 36 H = 120
STFGNN EnhanceNet AGCRN ST-WA STFGNN EnhanceNet AGCRN ST-WA STFGNN EnhanceNet AGCRN ST-WA

MAE 19.83 20.44 19.38 19.06 20.93 20.26 19.69 18.90 19.36 19.85 19.87 18.90
MAPE 13.02 13.58 12.89 12.52 13.74 13.29 12.91 12.43 13.20 13.53 13.59 12.92
RMSE 31.88 32.37 31.29 31.02 32.90 32.09 32.27 30.92 30.94 31.63 31.65 30.69

TABLE V: Impact of H , PEMS04

Baseline methods
STFGNN EnhanceNet AGCRN ST-WADataset Metric

PEMS03
N=358

MAE 24.08 23.42 22.17 20.87
MAPE 23.89 23.69 23.11 22.33
RMSE 39.91 38.99 37.10 35.53

PEMS04
N=307

MAE 25.79 28.72 57.41 23.54
MAPE 18.67 20.68 47.40 16.52
RMSE 39.87 45.20 86.02 36.87

PEMS07
N=883

MAE
OOM OOM

49.64 25.04
MAPE 23.43 10.85
RMSE 73.50 38.62

PEMS08
N=170

MAE 22.74 37.56 46.50 19.27
MAPE 15.59 23.31 19.05 13.30
RMSE 35.95 64.51 74.78 30.69

TABLE VI: Overall Accuracy, H = 72, U = 72.

Baseline methods
GRU GRU+S GRU+ST ATT ATT+S ATT+STDataset Metric

PEMS03
MAE 19.97 18.73 18.68 20.03 18.08 17.87

MAPE 19.62 20.67 17.61 20.01 17.10 17.00
RMSE 32.77 31.22 31.08 32.71 30.15 29.86

PEMS04
MAE 26.02 24.48 23.95 25.84 23.33 23.09

MAPE 17.23 17.11 15.59 17.18 16.13 15.57
RMSE 40.11 37.68 37.18 39.99 36.63 36.61

PEMS07
MAE 27.60 26.08 25.93 27.39 24.57 24.47

MAPE 12.41 11.55 11.34 12.05 10.99 10.72
RMSE 43.28 40.70 40.68 43.41 39.58 39.55

PEMS08
MAE 20.75 19.19 19.02 20.54 17.95 17.76

MAPE 13.20 12.44 12.40 14.11 11.92 11.85
RMSE 32.15 29.75 29.41 32.01 28.45 28.30

TABLE VII: Overall Accuracy of Enhanced versions of RNN and
ATT, H = 12, U = 12

we observe that temporal-aware model meta-LSTM performs
the worst. This is due to that it is the only baseline which does
not explicitly model the sensor correlations. Next, we observe
that the spatial-aware methods, i.e. EnhanceNet and AGCRN,
outperform most of the ST-agnostic baselines, confirming our
analysis that using a shared parameter space for time series
from different locations is not optimal when modeling spatial-
temporal dynamics. Furthermore our proposed method ST-WA
achieves the best accuracy on 10 out of 12 metrics over four
data sets, which justifies our design choices and highlights
the importance of explicitly modeling spatio-temporal model
parameters.

Next, to study the ability of forecasting long into the
future we move away from the classic 1h to 1h setting and
increase both H and U to 72 which represents 6 hours. The
results are shown in Table VI. We only compare ST-WA with
AGCRN, EnhanceNet and STFGNN, which are the top-3
baselines from the previous experiment. We can observe that
our proposed method significantly outperforms the baselines.
Furthermore we observe that EnhanceNet and STFGNN run
out of memory (shown as OOM in Table VI) when the number
of sensors N is big, e.g., 883 in the case of PEMS07. In
contrast, ST-WA still works well, suggesting its high memory
efficiency.

Model-Agnostic ST-Aware Model Parameter Generation.
In this experiment, we demonstrate that the proposed ST-
Aware Model Parameter Generation is model-agnostic, which
is able to be applied to different types of forecasting models
and consistently enhance their accuracy. We consider two types
of forecasting models—GRU and self-attention based Trans-
former ATT. We first compare the base GRU and ATT with
their enhanced versions +S denotes spatial-aware and +ST
stands for spatial-temporal aware variants. Table VII shows
the accuracy. We can see that +S offers clear improvements
and +ST further improves. This proves that our proposal is
model-agnostic and it can easily be integrated into existing

methods to further improve their accuracy.
Ablation Study. We perform an ablation study on the PEMS04
dataset by removing different components from the full model
ST-WA. First, S-WA is a model by removing the z(i)t from the
full model. This corresponds to a model where weight gen-
eration only generates location-specific but not time-varying
model parameters. Second, WA is stacked Window Attention
without ST-aware projection matrix generation. Third, WA-1
is Window Attention, by removing the stacked structures from
WA, i.e., a single layer of window attention. Third, we consider
SA that employs canonical self-attention, i.e., Transformers.

SA WA-1 WA S-WA ST-WA
MAE 23.31 19.56 19.38 19.25 19.06

MAPE 15.69 12.96 12.89 12.81 12.52
RMSE 36.76 31.55 31.29 31.37 31.02

Memory 23.94 3.03 4.44 8.02 8.14
Training 44.22 7.88 13.25 21.62 21.93
Para 393k 164k 490k 392k 396k

TABLE VIII: Ablation study on PEMS04

Table VIII shows the accuracy along with training time
(seconds per epoch), memory usage (GB), and number of
parameters to be learned. First, when comparing SA with
WA-1, WA-1 is more than 3x faster and requires 5x less
memory, suggesting the window attention is accurate and
efficient, compared to canonical self-attention. WA further
improves accuracy over WA-1, suggesting that the multi-
layer hierarchical structure is effective. S-WA and ST-WA
achieve a clear accuracy improvement, and ST-WA achieves
the highest accuracy, highlighting the need of having both
spatial and temporal aware model parameters. For run-time,
both models take longer time, while sill being comparable
with other baselines (c.f. Figure 10). We conclude that, when
training run-time is critical, we recommend the use of WA-1
or WA. Otherwise, ST-WA is the best choice.
Impact of Long Historical Window H: We systematically
increase H from 12 to 36 and 120. The results are shown in
Table V. ST-WA shows improvements with longer H while

11

(a) 2D Points of φ(i)
t vs. Input Time Series x(i)

t (b) 2D Points of z(i) (c) Sensor Locations.

Fig. 9: Justifying Design Choices with Visualization.

the other baselines does not improve significantly, some even
loosing accuracy. This suggests that the proposed model is able
to better capture long term dependencies while other baselines
struggle to do so.
Impact of Window Size S: To investigate the effect of
the window size S, we run multiple experiments in which
we change the window size and the total number of layers
of ST-WA. The results are shown in Table IX. We observe
that, when using the window size equal to the length of
the sequence S = H = 12, it performs the worst. This is
understandable, as it only uses 1 layer, the total number of
parameters is significantly smaller resulting in lower represen-
tation power. Next, we can see that when using 3 layers, there
are small variations among different window size settings,
suggesting the proposed method is insensitive to window sizes.

3 layers 2 layers 1 layer
S=3,2,2 S=2,3,2 S=2,2,3 S=4,3 S=6,2 S=12

MAE 19.06 19.10 19.13 19.62 19.69 22.05
MAPE 12.52 12.62 12.58 13.13 12.86 14.99
RMSE 31.02 31.05 31.15 31.51 31.81 35.35

TABLE IX: Effect of Window Sizes, PEMS04

Impact of the Regularizer: To further investigate the effect of
the KL based regularization term, we perform an experiment
in which we compare the full model ST-WA with and without
using the regularization term in the loss function. We can see
from Table X that removing the regularization term results in
a clear accuracy loss, which justifies our design choice.

With Without
MAE 19.06 19.23
MAPE 12.52 12.62
RMSE 31.02 31.37

TABLE X: Effect of the Regularization Term, PEMS04

Impact of Stochastic Latent Variables: We perform an
additional ablation study in which we compare the proposed
method ST-WA with a deterministic version in which we
replace the stochastic latent variables, z(i) and z(i)t , with
deterministic latent variables, i.e., 16-dimensional vectors. In
addition, we remove the KL based regularization from the
loss function, as it is no longer needed for deterministic latent
variables. We can see from Table XI that the stochastic version
constantly outperforms the deterministic version, which justi-

fies the effectiveness of our design choice on using stochastic
variables.

MAE MAPE RMSE
ST-WA 19.06 12.52 31.02

Deterministic ST-WA 19.32 12.72 31.41

TABLE XI: Effect of stochastic latent variables, PEMS04

Impact of Stochastic Latent Variables Size k: We study
the impact of the size of stochastic latent variable, i.e., k.
Recall that the stochastic latent variables follow a multivariate
Gaussian distribution in a k-dimensional space. We perform
an additional experiment in which we vary k, i.e., the size of
z(i) and z(i)t among {4, 8, 16, 32}. The results are shown in
Table XII. We can observe that when the latent variable size
is small, i.e. 4, there is a significant drop in performance, as
4-dimensional Gaussian distributions might not be sufficient
to fully capture the dynamics of the traffic conditions. When
the size is too large, i.e., 32, we see again a big drop in
performance which is due to over-fitting.

k MAE MAPE RMSE
4 19.42 12.62 31.02
8 19.37 12.58 31.15
16 19.06 12.52 31.02
32 19.42 12.96 31.09

TABLE XII: Effect of Latent Stochastic Variables Size k, PEMS04

Impact of Number of Proxies p: To study the impact of
number of proxies p we have conducted an additional ablation
study in which we vary p from 1, 2, to 3. The results are shown
in Table XIII. We can observe that the bigger the number
of proxies is, the better the accuracy is, but this accuracy
improvement comes by compromising on training efficiency
(s/epoch) and memory usage on the parameters.

p MAE MAPE RMSE Training # Para
1 23.93 16.48 37.44 69.15 606k
2 23.54 16.52 36.87 102.93 764k
3 23.48 16.50 36.70 128.25 922k

TABLE XIII: Effect of number of Proxies, PEMS04

Impact of Aggregation Function: To study the impact of
the aggregator function, we ran an additional experiment in
which we compare with a mean aggregator, where each proxy
within a window is weighted equally. We can observe from
Table XIV that when using a simple mean aggregator the

12

accuracy drops significantly, which justify our design choice
(cf. Equation 13).

MAE MAPE RMSE
Mean Aggregator 24.65 17.21 38.41
Our Aggregator 23.54 16.52 36.87

TABLE XIV: Effect of different Aggregation Functions, PEMS04

Run-time: To study the efficiency of our proposed method
we have reported the training run-time (seconds/epoch) by
systematically increasing the historical window H from 12 to
36 and 120, corresponding to 1, 3, and 12 hours respectively.
The results are shown in Figure 10. We can observe that
for short historical windows STFGNN, AGCRN and ST-WA
have similar run-time, while EnhanceNet takes significantly
longer to train. In addition we can see an exponential growth
in run-time w.r.t the sequence length for all baselines. In
contrast ST-WA is significantly more efficient which increases
its usability to applications where processing long-sequence
data is required.

Fig. 10: Runtime, PEMS04

C. Visualization of Learned Stochastic Variables

To investigate if the learned stochastic variables are able
to capture different patterns during different time windows,
we use t-SNE [54] to embed the projection matrices φ(i)t =

{Qt(i),K(i)
t ,V

(i)
t } during different time windows from a

specific time series to 2D points, because the projection
matrices are generated from the learned stochastic variables.
From Figure 9(a), we observe that the 2D points spread
over the space, indicating that different projection matrices
are utilized to capture different patterns during different time
windows. Next, we have selected two clusters of the 2D
points and show their input time series in the corresponding
windows. We observe that the red and purple point clusters
specialise in identifying up/down trends, respectively. This
provides evidence that the proposal is able to capture well
temporal dynamics.

We proceed to investigate if the learned location-specific
stochastic latent variable z(i) capture distinct, and the most
prominent patterns of time series from different locations. We
use t-SNE [54] to compress each time series’s z(i) to a 2D
space, which is show in Figure 9(b). We observe that the
points are spread over the space, indicating that time series
from different locations have their unique patterns. We use
four different colors to highlight four clusters of the 2D points.
Then, we show their physical locations of the deployed sensors

on a map in Figure 9(c). We observe that each cluster contains
sensors deployed along the same road. This is intuitive since
traffic patterns are expected to follow similar patterns along
the same street. In addition, we observe that green and purple
sensors are close in Figure 9(c) but their 2D points are far
in Figure 9(b). This is because the sensors in the purple
cluster are deployed on the road that goes from south to north,
where the sensors in the green cluster are on the opposite
direction. Two different directions on the same road may have
quite different patterns. These provide strong evidence that the
learned stochastic variables well reflect the patterns of time
series from different locations.

VI. CONCLUSION AND OUTLOOK

We propose a data-driven, model-agnostic method to turn
spatio-temporal agnostic models to spatio-temporal aware
models. In particular, we apply the method to enable spatio-
temporal aware attention that is capable of modeling complex
spatio-temporal dynamics in traffic time series. In addition, we
propose an efficient window attention with linear complexity,
thus ensuring competitive overall efficiency. Extensive exper-
iments on four datasets show that our proposal outperforms
other state-of-the-art methods. A limitation of our proposal
is that the learning is based on the assumption that the
latent stochastic variables follow Gaussian distributions. In
future research, it is of interest to explore methods such
as normalizing flows for to employ non-Gaussian stochastic
variables. It is also of interest to explore the parallelism of the
proposal [55].

ACKNOWLEDGEMENTS

This work was supported in part by Independent Research
Fund Denmark under agreements 8022-00246B and 8048-
00038B, the VILLUM FONDEN under agreements 34328
and 40567, Huawei Cloud Database Innovation Lab, and the
Innovation Fund Denmark centre, DIREC.

REFERENCES

[1] R.-G. Cirstea, B. Yang, C. Guo, T. Kieu, and S. Pan, “Towards spatio-
temporal aware traffic time series forecasting,” in ICDE, 2022.

[2] S. B. Yang, C. Guo, and B. Yang, “Context-aware path ranking in road
networks,” IEEE Trans. Knowl. Data Eng., 2020.

[3] T. Kieu, B. Yang, C. Guo, and C. S. Jensen, “Distinguishing trajectories
from different drivers using incompletely labeled trajectories,” in CIKM,
2018, pp. 863–872.

[4] S. B. Yang, C. Guo, J. Hu, J. Tang, and B. Yang, “Unsupervised path
representation learning with curriculum negative sampling,” in IJCAI,
2021, pp. 3286–3292.

[5] Y. Zheng, L. Capra, O. Wolfson, and H. Yang, “Urban computing:
concepts, methodologies, and applications,” TIST, vol. 5, no. 3, pp. 1–55,
2014.

[6] T. Kieu, B. Yang, and C. S. Jensen, “Outlier detection for multidimen-
sional time series using deep neural networks,” in MDM, 2018, pp. 125–
134.

[7] T. Kieu, B. Yang, C. Guo, R.-G. Cirstea, Y. Zhao, Y. Song, and C. S.
Jensen, “Anomaly detection in time series with robust variational quasi-
recurrent autoencoders,” in ICDE, 2022.

[8] D. Campos, T. Kieu, C. Guo, F. Huang, K. Zheng, B. Yang, and C. S.
Jensen, “Unsupervised time series outlier detection with diversity-driven
convolutional ensembles,” PVLDB, vol. 15, no. 3, pp. 611–623, 2022.

13

[9] T. Kieu, B. Yang, C. Guo, C. S. Jensen, Y. Zhao, F. Huang, and K. Zheng,
“Robust and explainable autoencoders for time series outlier detection,”
in ICDE, 2022.

[10] S. A. Pedersen, B. Yang, and C. S. Jensen, “Fast stochastic routing under
time-varying uncertainty,” VLDB J., vol. 29, no. 4, pp. 819–839, 2020.

[11] C. Guo, B. Yang, J. Hu, C. S. Jensen, and L. Chen, “Context-aware,
preference-based vehicle routing,” VLDB J., vol. 29, no. 5, pp. 1149–
1170, 2020.

[12] H. Liu, C. Jin, B. Yang, and A. Zhou, “Finding top-k optimal sequenced
routes,” in ICDE, 2018, pp. 569–580.

[13] S. A. Pedersen, B. Yang, and C. S. Jensen, “Anytime stochastic routing
with hybrid learning,” PVLDB, vol. 13, no. 9, pp. 1555–1567, 2020.

[14] S. B. Yang, C. Guo, J. Hu, B. Yang, J. Tang, and C. S. Jensen, “Tem-
poral path representation learning with weakly-supervised contrastive
curriculum learning,” in ICDE, 2022.

[15] D. Deng, C. Shahabi, U. Demiryurek, L. Zhu, R. Yu, and Y. Liu,
“Latent space model for road networks to predict time-varying traffic,”
in SIGKDD, 2016, pp. 1525–1534.

[16] L. Bai, L. Yao, S. S. Kanhere, Z. Yang, J. Chu, and X. Wang,
“Passenger demand forecasting with multi-task convolutional recurrent
neural networks,” in PAKDD, 2019, pp. 29–42.

[17] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting,” in ICLR, 2018, pp. 1–
16.

[18] L. Bai, L. Yao, C. Li, X. Wang, and C. Wang, “Adaptive graph
convolutional recurrent network for traffic forecasting,” in NeurIPS,
2020, pp. 1–16.

[19] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson, “Structured
sequence modeling with graph convolutional recurrent networks,” in
ICONIP, 2018, pp. 362–373.

[20] J. Hu, B. Yang, C. Guo, C. S. Jensen, and H. Xiong, “Stochastic origin-
destination matrix forecasting using dual-stage graph convolutional,
recurrent neural networks,” in ICDE, 2020, pp. 1417–1428.

[21] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in CVPR, 2015, pp. 3431–3440.

[22] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph wavenet for
deep spatial-temporal graph modeling,” in IJCAI, 2019, pp. 1907–1913.

[23] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional
networks: A deep learning framework for traffic forecasting,” in IJCAI,
2018, pp. 3634–3640.

[24] C. Zheng, X. Fan, C. Wang, and J. Qi, “Gman: A graph multi-attention
network for traffic prediction,” in AAAI, 2020, pp. 1234–1241.

[25] C. Park, C. Lee, H. Bahng, Y. Tae, S. Jin, K. Kim, S. Ko, and
J. Choo, “ST-GRAT: a novel spatio-temporal graph attention networks
for accurately forecasting dynamically changing road speed,” in CIKM,
2020, pp. 1215–1224.

[26] S. Li, X. Jin, Y. Xuan, X. Zhou, W. Chen, Y.-X. Wang, and X. Yan, “En-
hancing the locality and breaking the memory bottleneck of transformer
on time series forecasting,” NeurIPS, 2019.

[27] C. Zhuang and Q. Ma, “Dual graph convolutional networks for graph-
based semi-supervised classification,” WWW, pp. 499–508, 2018.

[28] M. Li and Z. Zhu, “Spatial-temporal fusion graph neural networks for
traffic flow forecasting,” in AAAI, 2021, pp. 1–7.

[29] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting,” in
AAAI, 2019, pp. 922–929.

[30] C. Song, Y. Lin, S. Guo, and H. Wan, “Spatial-temporal synchronous
graph convolutional networks: A new framework for spatial-temporal
network data forecasting,” in AAAI, 2020, pp. 914–921.

[31] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series
analysis: forecasting and control. John Wiley & Sons, 2015.

[32] R.-G. Cirstea, B. Yang, and C. Guo, “Graph attention recurrent neural
networks for correlated time series forecasting.” in MileTS19@KDD,
2019.

[33] S. Guo, Y. Lin, H. Wan, X. Li, and G. Cong, “Learning dynamics
and heterogeneity of spatial-temporal graph data for traffic forecasting,”
IEEE Transactions on Knowledge and Data Engineering, 2021.

[34] X. Wu, D. Zhang, C. Guo, C. He, B. Yang, and C. S. Jensen, “AutoCTS:
Automated correlated time series forecasting,” PVLDB, vol. 15, no. 4,
pp. 971–983, 2022.

[35] I. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The long-
document transformer,” arXiv preprint arXiv:2004.05150, 2020.

[36] P. Zhang, X. Dai, J. Yang, B. Xiao, L. Yuan, L. Zhang, and J. Gao,
“Multi-scale vision longformer: A new vision transformer for high-
resolution image encoding,” in Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 2021, pp. 2998–3008.

[37] M. Xu, W. Dai, C. Liu, X. Gao, W. Lin, G.-J. Qi, and H. Xiong,
“Spatial-temporal transformer networks for traffic flow forecasting,”
arXiv preprint arXiv:2001.02908, 2020.

[38] X. Geng, Y. Li, L. Wang, L. Zhang, Q. Yang, J. Ye, and Y. Liu, “Spa-
tiotemporal multi-graph convolution network for ride-hailing demand
forecasting,” in AAAI, 2019, pp. 3656–3663.

[39] J. Zhang, Y. Zheng, and D. Qi, “Deep spatio-temporal residual networks
for citywide crowd flows prediction,” in AAAI, 2017, pp. 1655–1661.

[40] X. Wang, Y. Ma, Y. Wang, W. Jin, X. Wang, J. Tang, C. Jia, and J. Yu,
“Traffic flow prediction via spatial temporal graph neural network,” in
WWW, 2020, pp. 1082–1092.

[41] L. Bai, L. Yao, S. Kanhere, X. Wang, Q. Sheng et al., “STG2Seq:
Spatial-temporal graph to sequence model for multi-step passenger
demand forecasting,” in AAAI, 2019, pp. 1981–1987.

[42] J. Chen, X. Qiu, P. Liu, and X. Huang, “Meta multi-task learning for
sequence modeling,” AAAI, 2018.

[43] Z. Pan, Y. Liang, W. Wang, Y. Yu, Y. Zheng, and J. Zhang, “Urban
traffic prediction from spatio-temporal data using deep meta learning,”
in SIGKDD, 2019, pp. 1720–1730.

[44] B. Yang, C. Guo, and C. S. Jensen, “Travel cost inference from sparse,
spatio-temporally correlated time series using markov models,” PVLDB,
vol. 6, no. 9, pp. 769–780, 2013.

[45] R.-G. Cirstea, T. Kieu, C. Guo, B. Yang, and S. J. Pan, “EnhanceNet:
Plugin neural networks for enhancing correlated time series forecasting,”
in ICDE. IEEE, 2021, pp. 1739–1750.

[46] Y. Chen, X. Dai, M. Liu, D. Chen, L. Yuan, and Z. Liu, “Dynamic
convolution: Attention over convolution kernels,” in CVPR, 2020, pp.
11 030–11 039.

[47] B. De Brabandere, X. Jia, T. Tuytelaars, and L. Van Gool, “Dynamic
filter networks,” in NeurIPS, 2016, pp. 667—-675.

[48] B. Yang, G. Bender, Q. V. Le, and J. Ngiam, “Condconv: Conditionally
parameterized convolutions for efficient inference,” in NeurIPS, 2019,
pp. 1307–1318.

[49] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” NeurIPS, 2017.

[50] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” ICLR,
2014.

[51] T. W. Anderson, “An introduction to multivariate statistical analysis,”
Wiley New York, Tech. Rep., 1962.

[52] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang, “Adversarially
regularized graph autoencoder for graph embedding,” arXiv preprint
arXiv:1802.04407, 2018.

[53] P. J. Huber, “Robust estimation of a location parameter,” in Break-
throughs in Statistics. Springer, 1992, pp. 492–518.

[54] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” JMLR,
vol. 9, no. Nov, pp. 2579–2605, 2008.

[55] P. Yuan, C. Sha, X. Wang, B. Yang, A. Zhou, and S. Yang, “XML
structural similarity search using mapreduce,” in WAIM, 2010, pp. 169–
181.

14

	I Introduction
	II Related Work
	III Preliminaries
	III-A Problem Definition
	III-B Spatio-temporal Agnostic Attention based Forecasting

	IV Methodology
	IV-A Spatio-Temporal Aware Modeling
	IV-A1 Design Considerations
	IV-A2 Learning Stochastic Latent Variables t(i)
	IV-A3 Decoding to Spatio-Temporal Aware Model Parameters

	IV-B Efficient Spatio-Temporal Aware Attention
	IV-C Sensor Correlation Attention
	IV-D Full Model
	IV-E Loss Function and Optimization

	V Experimental Studies
	V-A Experimental Setup
	V-B Experimental Results
	V-C Visualization of Learned Stochastic Variables

	VI Conclusion and Outlook
	References

