
 

  

 

Aalborg Universitet

Highly non-linear and wide-band mmWave active array OTA linearisation using neural
network

Jalili, Feridoon; Zhang, Yufeng; Hintsala, Markku; Jensen, Ole Kiel; Chen, Qingyue; Shen,
Ming; Pedersen, Gert Frølund
Published in:
IET Microwaves, Antennas and Propagation

DOI (link to publication from Publisher):
10.1049/mia2.12220

Creative Commons License
CC BY 4.0

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Jalili, F., Zhang, Y., Hintsala, M., Jensen, O. K., Chen, Q., Shen, M., & Pedersen, G. F. (2022). Highly non-linear
and wide-band mmWave active array OTA linearisation using neural network. IET Microwaves, Antennas and
Propagation, 16(1), 62-77. https://doi.org/10.1049/mia2.12220

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1049/mia2.12220
https://vbn.aau.dk/en/publications/3018deb4-88ac-462e-b4ba-764bbd8ef3c8
https://doi.org/10.1049/mia2.12220


Received: 17 June 2021 - Revised: 25 October 2021 - Accepted: 25 November 2021 - IET Microwaves, Antennas & Propagation
DOI: 10.1049/mia2.12220

OR I G INAL RE SEARCH

Highly non‐linear and wide‐band mmWave active array OTA
linearisation using neural network

Feridoon Jalili1 | Yufeng Zhang1 | Markku Hintsala2 | Ole Kiel Jensen1 |
Qingyue Chen1 | Ming Shen1 | Gert Frølund Pedersen1

1Department of Electronic Systems, Aalborg
University, Aalborg, Denmark

2Rohde & Schwarz Finland Oy, OY, Finland

Correspondence

Feridoon Jalili, Department of Electronic Systems,
Aalborg University, Aalborg 9220, Denmark.
Email: fja@es.aau.dk and mish@es.aau.dk

Funding information

Innovationsfonden

Abstract
This paper proposes a neural network (NN)‐based over‐the‐air (OTA) linearisation
technique for a highly non‐linear and wide‐band mmWave active phased array (APA)
transmitter and compares it with the conventional memory polynomial model (MPM)‐
based technique. The proposed NN effectively learns the distinctive non‐linear distor-
tions, which may not easily fit to existing MPM solutions, and can, therefore, successfully
cope with the challenges introduced by the high non‐linearity and wide bandwidth. The
proposed technique has been evaluated using a state‐of‐the‐art 4 � 4 APA operating in
highly non‐linear regions at 28 GHz with a 100‐MHz‐wide 3GPP base‐station signal as
input. Experimental results show the pre‐distortion signal generated by the NN exhibits
the peak‐to‐average power ratio (PAPR) much lower than the one generated by MPM and
consequently superior linearisation performance in terms of adjacent channel leakage
ratio (ACLR) and error vector magnitude (EVM) for high non‐linearity cases. Using the
proposed NN‐based linearisation technique, an improvement of 5‐dB ACLR and 7%
points in EVM are achieved, which demonstrates the promising potential of this tech-
nique for emerging broadband communication systems such as 5G/6G and low Earth
orbit (LEO) satellite networks.

KEYWORD S
5G mobile communication, active antenna arrays, learning (artificial intelligence), linearisation techniques,
millimetre wave amplifiers, millimetre wave antenna arrays, satellite communication

1 | INTRODUCTION

Recent wireless communication systems operating at mmWave
are using active phased array (APA) transmitters together with
multi‐input multi‐output (MIMO) systems to improve the sys-
tem capacity and data rates of the wireless networks. The tradi-
tional linearisation techniques like digital pre‐distortion (DPD)
that are mainly based on the memory polynomial model (MPM)
are facing new challenges [1] such as the following.

� Highly integrated front‐ends and a large number of PA's do
not allow placement of feedback circuits for each branch so
a single‐input single‐output (SISO) over‐the‐air (OTA)
model is needed.

� mmWave frequencies and wide‐band linearisation must be
handled.

� The increasing desire for high power efficiency requires
linearisation of power‐efficient but highly non‐linear
APAs.

Several solutions using a SISO model and modified DPD
algorithms for linearisation have been proposed to combat the
above challenges [2–6]. A SISO modelling where the entire
transmitter is considered as a two‐port system has been pre-
sented in [7–10] using an observation receiver in far‐field
together with using an MPM‐based DPD technique for line-
arisation of the antenna array in the presence of crosstalk. In
[11], the potential mismatches between PAs have been

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.

© 2021 The Authors. IET Microwaves, Antennas & Propagation published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

62 - IET Microw. Antennas Propag. 2022;16:62–77. wileyonlinelibrary.com/journal/mia2

https://doi.org/10.1049/mia2.12220
https://orcid.org/0000-0002-3645-3728
mailto:fja@es.aau.dk
mailto:mish@es.aau.dk
https://orcid.org/0000-0002-3645-3728
https://ietresearch.onlinelibrary.wiley.com/journal/17518733


compensated, so that they all exhibit the very same behaviour.
By doing so, it is possible to provide linearisation in all di-
rections with a single DPD, in contrast to linearising the main
beam only. However, compensating the mismatch requires
analogue circuits, which introduces complexity and delay for
large arrays and the potential changes in the PAs' behaviours
due to crosstalk. In the present work, the reference signal for
DPD learning was obtained through measurements from a far‐
field test receiver placed on the main beam direction and the
focus is on the challenges related to high bandwidth and high
non‐linearity.

For the cases where the enhanced power efficiency is
required such as Doherty PAs and envelope‐tracking‐based
transmitters, the amplifier exhibits different behaviour for
different power levels. A piecewise model based on a region
partition algorithm that takes the actual non‐linear character-
istics of the device into account was proposed in [10], which
gives significantly better linearisation than the general memory
polynomial models. However, memory modelling capabilities
may be compromised in piecewise models as the different sub‐
models operate independently, whereas memory effects may
involve samples belonging to different sub‐regions. A new
piecewise model for PAs based on the mixture‐of‐experts
(ME) approach, which builds on a probabilistic model that
allows the different sub‐models to cooperate, has been pre-
sented in [12]. It demonstrates a model that outperforms
previous piecewise modelling methods. The ME approach is a
promising technique and is a highly valid approach to be
compared with the neural network (NN) approach in future
work. The challenges as high bandwidth and high non‐linearity
lead to huge complexity and explosion of MPM‐based algo-
rithms. The Volterra series model approach, which is
commonly used in MPM approaches, is preferable if the order
of the non‐linearity is not too high (e.g. third or possibly fifth
order) [13]. With very high non‐linearity order, the MPM
approach is not practical because of the increased complexity
and consequent increase of the number of unknown kernel
coefficients in the model [14]. Neural networks (NNs) are well
known to be able to learn any arbitrary non‐linear function
according to the universal approximation theorem [15]. Several
state‐of‐the‐art linearisation techniques based on NN have
recently been introduced. A solution for performance imper-
fections such as crosstalk, power amplifier (PA) non‐linearities
along with modulator imperfections like in‐phase and quad-
rature (I/Q) imbalance and DC‐offset for a wide‐band direct‐
conversion transmitter has been recently introduced in [16, 17].
A similar approach, where only the magnitude of the input
signal undergoes a non‐linear operation and the phase infor-
mation is recovered with a linear weighting operation, has been
introduced in [18].

For wideband signals, in particular, the memory effects
have a significant impact [19, 20]. To take care of memory
effects, two dynamic neural structures have been proposed in
the NN literature [21]. In the first structure, recurrent neural
networks (RNNs) utilise feed‐forward and feedback signal
processing. In another structure, a real‐valued time‐delay

neural network (RVTDNN) combines I/Q processing with
input time‐delay lines to handle memory effects, whereas RNN
uses output‐to‐input time‐delay lines. Reference [22] indicates
that RVTDNNs offer superior performance and easy base-
band implementation when used for inverse modelling of PAs
with strong non‐linearities and memory effects. For the high
non‐linearity cases, the model needs a low learning rate during
training at the cost of the training time. In the present paper,
we are using the so‐called batch normalisation (BN) together
with the hidden layer in order to use a higher learning rate and
reduce the training time. Furthermore, the proposed
RVTDNN uses the rectified linear units (ReLU) activation
function, which is less computationally expensive than hyper-
bolic tangent (Tanh) and Sigmoid because it involves simpler
mathematical operations [23]. We are proposing an NN using
only one hidden layer and a minimum number of neurons to
make it comparable with conventional MPM. The proposed
RVTDNN is applied to linearise highly non‐linear multi‐PA
devices‐under‐test (DUTs) such as the active phased array.
We are using the proposed NN model for a 5G DUT that
includes complex interactions between the PAs in the array,
such as load‐modulation. Measurements quantifying this
impact are included in Section 6. Finally, for the first time, to
the best knowledge of the authors, a pre‐distortion scheme
based on the RVTDNN was validated using a real 5G test‐bed
environment with a minimum number of neurons and layers
together with the ReLU activation function to keep the cost
and size of the device during implementation as low as
possible.

Figure 1 illustrates the digital pre‐distortion concept for
the APA based on the equivalent SISO model using the
proposed neural network. The mapping relationship between
the order of memory depth, the number of hidden layers and
the number of neurons to the corresponding required linearity
have been analysed. The optimum levels for the parameters in
each block have been identified, verified through measure-
ments, and then, the performance and the complexity are
compared with the applied MPM‐based DPD using the same
laboratory setup.

This paper is organised as follows: Section 1 is the intro-
duction. Section 2 describes the MPM‐based approach.
Section 3 is about the NN linearisation technique. Section 4
explains the NN training and parameter tuning, Section 5 is an
investigation of complexity and Section 6 is about the mea-
surement results. A discussion on comparison between mea-
surements results of MPM and NN approaches is included in
Section 7, and finally, the conclusion of this work is presented
in Section 8.

2 | MPM‐BASED APPROACH

The classical approach to modelling the full behaviour of a
non‐linear device is by the Volterra series, Equation (1), which
describes the relation between the output and input signals in
discrete time:

JALILI ET AL. - 63



y½n� ¼
PK

k¼1

PM−1

m1¼0
…
PM−1

mk¼0
hk½m1;…;mk�∏

k

j¼1
x½n − mj�

¼
PM−1

m1¼0
h1½m1�x½n − m1�

þ
PM−1

m1¼0

PM−1

m2¼0
h2½m1;m2�x½n − m1�x½n − m2�

þ…

þ
PM−1

m1¼0
…

PM−1

mK¼0
hK ½m1;…;mK �∏

K

j¼1
x½n − mj�;

ð1Þ

where K is the order of the non‐linearity, M is the memory
depth and hk(m1, …, mk) are the parameters of the model,
which are often referred to as the ‘Volterra kernels’ in the
literature. The nth sample of the input signal x[n] is mixed with
the M − 1 preceding samples at each of the kth Volterra kernel.
In other words, the kth kernel includes all possible combina-
tions of k time shifts of the input signal, which includes all
types of memory effects. For this reason, the Volterra series is
considered as the most complete model, but the computational
complexity of the model is very high [24]. A much less com-
plex model is the MPM, which is widely used for linearisation.
Equation (2) represents the applied MPM that is a deviation of
the Hammerstein model and has been proven effective for
removing non‐linearity and memory effect [25]:

yðnÞ ¼
XK

k¼1

XM

m¼0
akmxðn − mÞjxðn − mÞjk−1

; ð2Þ

where akm is the 2‐D array of filters and power‐series co-
efficients of the active device, K is the non‐linearity order of
the memory polynomial model and M is the highest memory
depth. akm coefficients are the linear weighting of non‐linear
signals and these coefficients are calculated by using the
least‐squares type algorithm. The generalised memory poly-
nomial that combines the memory polynomial with cross

terms between the signal and lagging and/or leading expo-
nentiated envelope terms is presented in [25]. This model
shows a slightly improved linearisation effect but on the cost of
complexity that needs to be compared with a more complex
neural network model, that is, long short‐term memory
(LSTM) neural network techniques [26]. In this work, we
introduce the comparison between a MPM model based on
Equation (2) and a simple neural network model to relax the
overall complexity.

In [8], we have provided a detailed insight into the
linearisation mechanisms for an APA based on the MPM
model. A similar approach has been used for constructing
the pre‐distorted signals for the different non‐linearity cases
of the APA in actual work. The same captured input and
output I and Q samples are used for both MPM and NN
techniques.

3 | NN LINEARISATION TECHNIQUE

3.1 | NN model

The SISO model where the entire transmitter has been
considered as a two‐port system has been described in [8]. This
model uses only one external antenna for observing the
combined signal in the far field. Similarly, in the present work,
the entire OTA beam‐forming setup is considered as a SISO
model with the APA as the main source of non‐linearity. The
NN is used as an inverse system for such a model and it is
trained using the measured input and output data. Once the
training is completed, the inverse model is used as a pre‐
distorter for the SISO model, as seen in Figure 2. If the
output and the input of the SISO model are set to the I and Q
training data, y(t), and true values, x(t), respectively, then the
NN needs to be trained to capture the non‐linearity of the
model by generating the inverse of the non‐linearity function, h
(t), given in Equation (3):
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F I GURE 1 Concept illustration of the
digital pre‐distortion for active phased array
(APA) based on the equivalent single‐input
single‐output model using the neural network.
DNN, delay neural network
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yðtÞ ¼G ⋅ hðtÞ ⋅ xðtÞ; ð3Þ

where G is the constant gain.
The aim of the training is to calculate the weights such that

the NN gradually learns the non‐linearity of the SISO model
during the training procedure. When the cost is under the
specified threshold or no longer converges, then the training
step is finished.

After training, the functionality of the NN, denoted as u(t)
in Figure 2, is an optimal estimation of h−1(t). Ideally, using the
pre‐distorted signal, x(t) ⋅ h−1(t), as input to the SISO model,
the output will be a linearised function defined as G ⋅ x(t).

3.2 | NN training

The proposed NN shown in Figure 3 uses a feedforward fully
connected (FC) structure. Based on the interconnection
pattern or architecture, we can distinguish between feedfor-
ward networks (FNNs) and recurrent (or feedback) networks
(RNNs) [27]. The feedforward network is considered since it is
the most used NN and according to the universal approxi-
mation theorem, it can approximate any non‐linear function
with any desired error [28]. An FC structure in a densely
populated NN may increase requirements for hardware re-
sources, but in many applications, the weight of some in-
terconnections can be set to zero without loss of accuracy,
which results in sparsely connected layers [27]. The sparse

structure is out of the scope of this work. The input and output
data are separated as yI[n − M], yQ[n − M], x

̂
I ½n� and x

̂
Q½n�

where n is the number of the I and Q data used in the training.
The wide‐band memory effects are modelled by the delayed
replica up to memory depth of M. The weights, W(i), and
biases, B(i) for the vector expressing the relation between input
and output of each FC layer is defined as:

yðiÞ ¼WðiÞ ⋅ xðiÞ þ BðiÞ; ð4Þ

where i is the ith FC layer. For an input layer of L neurons and
output of P neurons, x(i) is an L � 1 vector, W(i) is a P � L
matrix and Bi is a P � 1 vector. Each dense layer, which is
defined as (a) in Figure 3, can be described using Equation (4).
The weights and biases of each FC layer are distinctive and are
optimised by back propagation. The optimisation algorithm
used in this work is the adaptive moment estimator (Adam)
[29]. It is based on a gradient descent algorithm that gets more
computationally efficient by using momentum and randomised
batches to avoid local minima. The batch size is the number of
training samples used for estimating the error gradient. A batch
size, for example, 50, means that 50 samples of the training
samples are used for estimating the error gradient before the
weights are updated. Another parameter, called training epoch,
shows how many passes have been done through the training
samples with a randomly selected group of batches. The
training procedure is summarised in Table 1.

3.3 | Accelerating NN training

For the models used in high non‐linearity cases, the training
needs a low learning rate, which, on the other hand, increases
the training time. Therefore, in each hidden layer, there is also
an accelerator, the so‐called BN layer, shown as block (b) in
Figure 3. The BN layer allows using much higher learning rates
that will accelerate the training and reduce the time cost
significantly [30].

The BN layer normalises the mean and variance of the
outputs of the dense layer to zero and one and introduces a
new mean and variance. The output of the BN layer ŷ ðiÞ is
expressed by:

ŷðiÞ ¼ γ
yðiÞ − E½yðiÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½yðiÞ� þ ϵ

q þ β; ð5Þ

where γ and β are the new learnable mean and variance pa-
rameters and ϵ is a constant parameter to prevent the equation
be infinite and is set to 0.001.

3.4 | Activation function

For the NN to be able to fit an arbitrary non‐linear function,
the non‐linearity is introduced in the form of an activation
function, which is shown as block (c) in Figure 3. Both Tanh

x(t)
u(t) G.h(t)

x(t).h-1(t) G.x(t)

G.h(t)
x(t) y(t)

DNN
u(t) = h-1(t)

G.h(t)G.GG..h(h(hh(t)h(t)(h(t)h(h(t)t)th(h(t)t)h(t)h(t)h(t)h(h(t)t)(h(t)h(h(t)t)h(h(t)t)h(t)h(t)h(t)(t))t)t)t

G.h(t)
G.

G.G.GG..h(hh(t)h(t)(h(t)h(t)th(t)h(t)(h(h(t)t)h(h(t)t)h(h(t)t)h(h(t)t)(t)t)t))t)t)t
G.G

F I GURE 2 Linearisation technique based on a neural network.
(a) Beam‐forming behavioural single‐input single‐output (SISO) model;
(b) neural network (NN) based on the equivalent SISO model where G is
the constant gain and h(t) is the non‐linear function; (c) Applying trained
NN in pre‐distortion and linearisation
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and ReLU are evaluated as activation functions in this work,
where ReLU has been chosen as the activation function due to
its performance, which is described in Section 4. ReLU in-
troduces a non‐linearity by deactivating negative inputs, adding
sparsity to the model, and accelerating convergence [31]. ReLU
is defined as:

fReLUðuÞ ¼maxð0; uÞ; ð6Þ

where u is the input to the activation function. In this way, the
output of a hidden layer can be expressed as Equation (7):

xðiþ1Þ ¼maxð0; ŷðiÞÞ; ð7Þ

where x(i+1) is the input of the next FC layer. With the
sequential structure, the inputs of the subsequent hidden layer
can be described in terms of the current hidden layer. This
procedure that goes from the first layer to the last layer is called
forward propagation.

3.5 | Cost function

There are different ways, based on the type of the problem, to
evaluate the difference between the real output and the esti-
mated output, the so‐called cost function. In this work, the

effects of two kinds of cost functions, Huber cost and mean‐
square‐error (MSE) cost have been investigated. In the Huber
cost function, instead of minimising the cost function,
jxi − x̂ij, the smooth cost function, L1, is used for regression
because it is robust against gross errors [32]. The smooth L1

cost function is defined as

L1ðx; x̂Þ ¼
1
B

XB

i¼1

εi; ð8Þ

where B is the batch size and ɛi is defined as a combination of
the squared error and absolute error

εi ¼
�

0:5ðxi − x̂iÞ2; if jxi − x̂ij < 1;
jxi − x̂ij − 0:5; otherwise:

ð9Þ

The corresponding MSE cost function is defined as:

MSEðx; x̂Þ ¼
1
B

XB

i¼1

ðxi − x̂iÞ2: ð10Þ

4 | NN TRAINING AND PARAMETER
TUNING

4.1 | Training process

The concept of the proposed application is illustrated in
Figure 1 and the configuration of the designed NN is shown
in Figure 3. As shown in Figure 1, the parameters of the NN
are updated step by step by reducing the losses between
outputs of the NN (i.e., predicted values) and the reference
inputs. The NN can gradually learn features hidden in
training data for classification or regression missions.
Generally, if the NN is trained as a classifier, the cross‐
entropy function is a commonly used cost function. For
linearisation of active circuits where the NN needs to learn

Input Layer Hidden Layer Output Layer

(a) (b) (c) (a)
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F I GURE 3 Structure of the neural network
architecture proposed in this paper. The hidden
layer consists of two dense layers, which are the
batch normalisation layer and the ReLU layer

TABLE 1 Algorithm used for NN training

Algorithm 1 NN Training process

i: Generate n samples of IQ data of x[n] and y[n]

ii: Update weights and biases given by Equation (4) using 70% of n samples

iii: Continue updating until finding the optimum u(t) = h−1(t)

iv: Validate the model using 30% of n samples

v: If the cost function of validation is ok, then freeze the model

vi: Construct the pre‐distorted signal, x(t)*h−1(t)

Abbreviation: NN, neural network.
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the distinctive non‐linear distortions, it is trained as the
regression model.

Considering the memory effect of the active array, the
memory depth, M, has a direct impact on the number of
neurons in the input layer. So, there is a trade‐off between the
size of M and the linearisation performance. Since the output
training data and the reference input data are complex values (I
and Q), the number of neurons of the input layer and output
layer is set to 2 M and 2, respectively.

Adjacent channel leakage ratio (ACLR) and error vector
magnitude (EVM) are used as metrics for choosing the desired
parameter values in each training step. The ACLR describes the
power of the leakage in the adjacent channel compared to the
in‐band channel power and is defined as:

ACLRdB ¼ 10log10

�
Padj

Pin‐band

�

; ð11Þ

where Padj and Pin‐band are the powers of the adjacent channel
and the main channel, respectively. In this way, the signal
integrity can be directly assessed in the frequency domain.
The left side of ACLR is used for evaluation through the
experiments in this paper. Since ACLR only measures the
distributed power in different channels, another metric for in‐
band signal quality, EVM, in terms of percentage, is
calculated as:

EVM% ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðin ‐ bandÞerror
Pðin ‐ bandÞref

s

⋅ 100%; ð12Þ

where P(in‐band)error and P(in‐band)ref are the powers of the
error vector and ideal signal vector in I and Q planes,
respectively.

All operations are realised using Python 3.8.4 on Visual
Studio Code. The NN is built and trained using Keras 2.3.0‐tf,
and the version of Tensorflow is 2.2.0.

4.2 | Parameter tuning

For parameter tuning, 100 k I and Q samples of input and
output of the active array are captured, where 70% of the data
was randomly chosen for training and the remaining 30% for
testing.

The memory depth, the number of neurons in each layer
and the number of hidden layers should be set appropriately.
If these numbers are too small, then NN cannot get the
right features for the non‐linearity model and there is a risk
of underfitting, the same is valid if these numbers are too
large, which results in overfitting. To avoid this, the memory
depth has been chosen to a low number, and then, the
other parameters have been initialised to get the best line-
arisation parameter in terms of ACLR and EVM. For
achieving faster tuning and for reducing the number of

multiplications in a real application, 1 hidden layer is chosen.
The optimisation was continued by tuning the memory
depth and keeping other parameters unchanged. Table 2
shows how the NN is configured together with the ACLR
and EVM results for the different number of memory
depths. The best performance is achieved by setting the
memory depth to five which results in the best ACLR
improvement.

Having memory depth fixed to five, the other optimisa-
tion parameters such as activation function, cost function,
batch size and the number of epochs have been tuned. The
results are listed in Table 3 and based on those parameters,
the ReLU and the MSE are chosen for the activation function
and the cost function, respectively. Further evaluation on the
number of epochs shows that approximately 25 epochs are
enough for the algorithm to reach its minimum cost of 1E −6
and the cost function will not improve further as shown in
Figure 4.

4.3 | NN simulation results

Figure 5 shows the simulation results of power spectral density
(PSD), amplitude‐to‐amplitude (AM‐AM) and amplitude‐to‐
phase (AM‐PM) distortions for the active array output. The
parameters used for simulation are based on the best tuning
parameters from Table 3.

Several sets of pre‐distorted signals have been trained
based on the final model and have been used for character-
ising the efficiency of the model versus the level of non‐
linearity in the active array. These results are discussed in
the next section.

TABLE 2 Configurations and training for optimising memory depth

Optimiser Adam

Activation function ReLU

Cost function Huber

Accelerator BN

Hidden layers 1

Neurons 100

Epoch 50

Batch size 100

Initial learning rate 0.1

Minimum cost 1E − 6

Training data 70%

Validation data 30%

Memory depth 3 4 5 6 7

ACLR improvement 6.2 dB 6.3 dB 6.5 dB 6.2 dB 5.5 dB

EVM improvement 7.4% 8% 8% 8.1% 8%

Abbreviations: ACLR, adjacent channel leakage ratio; EVM, error vector magnitude.
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5 | COMPLEXITY ANALYSIS

5.1 | MP pre‐distortion

Equation (2) models the behaviour of the PA, which means
that the APA output can be estimated from the inputs. For pre‐
distortion, the inverse model is needed, which means that the
input should be estimated based on the output that is imple-
mented by switching the input and outputs:

x½n� ¼
XM

m¼0

XK

k¼1

amky½n − m� ⋅ jy½n − m�jk−1
; ð13Þ

where x[n] is the estimated input to the APA. This can be
written as a vector‐vector product in the form:

x¼ rw; ð14Þ

where

r¼
�
y½n − 0� ⋅ jy½n − 0�j1−1 ⋯ y½n − M� ⋅ jy½n − M�jK−1

�

ð15Þ

Since the absolute value, |⋅|, requires three multiplications,
the complexity of finding r is thus:

Cr;complex ¼ ðM þ 1Þ ⋅ ð0þ 3þ 4þ 5þ⋯þ kþ 1Þ

¼
XKþ1

i¼3

i ⋅ ðM þ 1Þ
ð16Þ

The complexity of the vector‐vector product x[n] = rw is
simply:

CMul;MP;complex;vector ¼ ðM þ 1ÞK; ð17Þ

CAdd;MP;complex;vector ¼ ðM þ 1ÞK − 1: ð18Þ

where CMul,MP,complex, vector is the number of complex multi-
plications and CAdd,MP,complex, vector is the number of complex
additions. The total number of complex multiplications
becomes:

CMul;MP;complex; total ¼ ðM þ 1ÞK þ
XKþ1

i¼3

i ⋅ ðM þ 1Þ: ð19Þ

TABLE 3 NN parameter optimisation. Parameters include activation
function, cost function, batch size and epochs size

Memory depth = 5

Parameter optimisationa

Activation Cost Batch size Epochs ACLR improvement

ReLU MSE 100 50 7.03 dB

ReLU Huber 100 50 6.50 dB

ReLU MSE 20 50 6.04 dB

Tanh Huber 100 50 5.52 dB

ReLU MSE 1000 500 3.03 dB

ReLU MSE 1000 50 1.84 dB

Abbreviations: ACLR, adjacent channel leakage ratio; MSE, mean‐square error; NN,
neural network.
aSorted based on decreasing ACLR improvement.
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A complex multiplication takes four real multiplica-
tions and two real additions and a complex addition
involves two real additions. This means that the total

complexity of the MPM pre‐distortion in real
operations is:

CMul;MP ¼ 4 ⋅

"

ðM þ 1ÞK þ
XKþ1

i¼3

i ⋅ ðM þ 1Þ

#

ð20Þ

CAdd;MP ¼ 2 ⋅

 "

ðM þ 1ÞK þ
XKþ1

i¼3

i ⋅ ðM þ 1Þ

#

þ ½ðM þ 1ÞK − 1�

! ð21Þ

5.2 | NN pre‐distortion

The complexity analysis is made with a starting point in
Equation (4) with L as the number of outputs of the previous
layer, and P as the number of inputs to the next layer. If only
fully connected layers with equal amounts of neurons are
considered, the problem can be further reduced as P = L.
Between each fully connected layer, there are P2 multiplications
and P2 additions. The number of operations between the input
layer and the first hidden layer is 2MP multiplications and
additions, where M is the memory depth. Between the last
hidden layer and the output layer, there are 2P multiplications
and additions. Thus, the total amount of multiplications and
additions is:

CMul;NN ¼ CAdd;NN ¼ 2MP þ ðJ − 1ÞP2 þ 2P; ð22Þ

where J is the number of hidden layers. Equation (22) shows
that complexity scales quadratically with the number of
neurons if there is more than one hidden layer. The
complexity grows linearly with the number of neurons if only
a single hidden layer is used. According to the universal
approximation theorem, a single hidden layer can be used for
arbitrary function approximation, so for applications where
low complexity is required, a single hidden layer may be
desirable.

5.3 | Complexity comparison

For the MPM, the pre‐distorted signals based on Equation (2)
with various non‐linearity orders, K, and memory depths, M,
have been constructed and evaluated in the lab and the optimal
values ofK = 5 andM = 8 have been chosen. The NN is trained
to reach the minimum MSE of approximately 1E‐6 as an
example shown in Figure 4. By sweeping the NN parameters,
one hidden layer and 100 neurons and a memory depth of five
have been chosen. Table 4 shows the computational effort in
terms of multiplications and additions based on Equa-
tions (20)–(22). Although the number of multiplications is
higher in the case of NN compare to MPM, the absolute
number is still very low, and besides, NN has superior linear-
isation performance, which is shown in Section 6.

F I GURE 5 Simulated linearisation results with and without NN pre‐
distortion: (a) Power spectral density; (b) amplitude‐to‐amplitude (AM‐AM)
distortion; (c) amplitude‐to‐phase (AM‐PM) distortion
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6 | MEASUREMENT RESULTS

6.1 | OTA measurement setup

The block diagram of the measurement setup is shown in
Figure 6 and the actual laboratory measurement setup is
illustrated in Figure 7.

The R&S SMBV100 B Vector Signal Generator and its
arbitrary waveform generator function generate the TX input IF
signal, centred at 3 GHz, which is a 100MHz bandwidth 5GNR
signal. It is a 3GPP downlink OFDMmodulated waveformwith
64‐QAM sub‐carrier modulation, sub‐carrier spacing of 60 kHz
and 1584 active sub‐carriers. With an oversampling factor of 6,
the sample rate of the transmitter and receiver signals is
600 MHz. The peak‐to‐average power ratio (PAPR) of the input
signal, after capturing and loading to the generator, is 11.6 dB.
For up‐conversion and down‐conversion, an un‐modulated
signal of 12.5 GHz has been generated by an Agilent E3247 C
and frequency‐doubled to 25 GHz using a MITEQ‐
MAX2M200400 and fed into a power divider to be used as a
local oscillator (LO) signal. Two active mixers, KTX321840 and
KRX321840, operating in their highly linear region, are utilised
for up converting the IF signal to the 28‐GHz carrier frequency
and for down‐converting the signal back to IF. A 28‐GHz

band‐pass filter is used to select the up‐converted modulated
signal and suppress the LO leakage and image frequency signals.
The Ducommum APH‐26 063 325 is used as a pre‐amplifier.
The pre‐amplifier is a high‐power device and while operating
more than 10 dB below its compression point, the output is
linear and the power is sufficient to drive the 4 � 4 APA,
AAiPK428GC‐A0404 [33], close to its saturated region. The
APA includes four Anokiwave AWMF‐0158 [34] and integrates
16 branches of attenuators, phase shifters, PAs and 16 patch
antennas in a 4� 4 active phased array. TheAPA is designed for a
typical main beam power of +33 dBm.

The diagonal length of the active array antenna is
approximately 4 cm, which at 28 GHz results in a far‐field
distance of:

2D2

λ
¼ 30:5 cm; ð23Þ

where D is the diagonal length of the antenna and λ is the
wavelength. The main beam signal is captured by the obser-
vation horn antenna placed 55 cm away, which is well above
the far‐field distance of the device.

After down‐conversion to IF, the signal is captured by the
R&S FSW Signal and Spectrum Analyser and converted to the
base‐band. A host PC running inMatlab and using the R&SARB
Toolbox is used for capturing and uploading the I andQ samples.
The measurement setup is power calibrated in order to keep all
other components in their linear operating regions and the only
source of non‐linearity is related to the active phased array. For
controlling the main beam of the array, the code‐book and
software tools from Amotech [33] have been used. For MPM, 4
pre‐distorted signals, one for each power level, have been con-
structed based on amemory depth of 8 and a non‐linearity order

TABLE 4 Computational effort in terms of multiplications and
additions for MPM and NN

K M Layer Neurons Multiplications Additions

MPM 5 8 ‐ ‐ 828 502

NN ‐ 5 1 100 1200 1200

Abbreviations: MPM, memory polynomial model; NN, neural network.

F I GURE 6 The block diagram of the measurement setup for the 4 � 4 array
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of five. For NN, four corresponding pre‐distorted signals based
on the parameters in Table 3 have been constructed and used as
the input to the APA for the measurements.

6.2 | OTA measurement results

In this section, we present the experimental results of using the
NN‐based DPD and compare that with the MPM‐based DPD.
In both cases, we do the measurements on four different po-
wer levels where the APA is driven into compression. The
radiated power has been adjusted to get the ACLR slightly
worse than the limit for systems operating at FR2, which
is −28 dBc [35]. The main beam power of the APA is the sum
of the transmitter power and gain of the antenna array:

Pmain‐beamAPA ¼ PTXAPA þGAntAPA; ð24Þ

and is measured as the power at the observation horn antenna
placed 55 cm away, adding the propagation loss and subtracting
the gain of the observation horn antenna.

The pre‐distorted signals are fed as input to the APA and
the corresponding ACLRs and EVMs are measured for each
case and each technique.

The APA is driven in four different linearity cases with
main beam power to be 34, 33, 32 and 31 dBm for very high,
high‐, medium‐ and low‐power cases, respectively. Due to the
limited output power of the 4 � 4 APA, we are not able to
increase the main beam power further due to the risk of
damage to the device. However, with the main beam power of
34 dBm, the device is in the saturated region and the ACLR is
approximately 2 dB worse than the 3GPP limit and suitable for
our analysis. Measured OTA spectra with NN and MPM‐based
linearisation for four different cases are shown in Figure 8 and
the ACLR and EVM improvements are illustrated in Figure 9.
Here, we can see that for higher non‐linearities, the NN is
performing better than MPM. In the case of low non‐linearity,
the MPM performance is equal or slightly better, but it is worth
pointing out that linearisation is less meaningful for relatively
linear and less power‐efficient operations. The results

demonstrate that the proposed NN is capable of effectively
learning the distinctive highly non‐linear distortions, which
may not easily fit to existing MPM solutions.

6.3 | ACLR and total radiated power (TRP)

Even though an existing reference claims the distortion is
beam‐formed in the same direction as the intended signal with
a multi‐antenna transmitter in the single‐user case [4], quanti-
tative results are desired to evaluate if using main beam
Adjacent channel leakage ratio (ACLR) is a valid method for
characterising the linearisation performance of a beam steer-
able array. For evaluating this, we performed a total radiated
power (TRP) ACLR measurement and compared the results
with main beam direction measurements. The TRP is defined
from the integration of signal power over the angular domains.
The estimated TRP for a discrete set of measured directions is
defined as [35]:

TRPEstimate ¼
π

2NM

XN−1

n¼0

XM−1

m¼0
EIRPðϕn; θmÞ ⋅ sin θm; ð25Þ

where N and M are the number of azimuth angles, ϕn, and
elevation angles, θn, respectively, and EIRP(ϕn, θm) is the
radiated power in each angular case as a sum of both linear
polarisations. The TRP‐ACLR in a linear scale is calculated as
total radiated power of the adjacent channel divided by the
total radiated power of the in‐band channel:

TRP ‐ ACLR ¼

π
2NM

XN−1

n¼0

XM−1

m¼0
Padj:ch:ðϕn; θmÞ ⋅ sin θm

π
2NM

XN−1

n¼0

XM−1

m¼0
Pch:ðϕn; θmÞ ⋅ sin θm

¼

PN−1
n¼0
PM−1

m¼0Padj:ch:ðϕn; θmÞ ⋅ sin θm
PN−1

n¼0
PM−1

m¼0Pch:ðϕn; θmÞ ⋅ sin θm
ð26Þ

F I GURE 7 (a): Measurement setup in Lab; (b): AAiPK428GC‐A0404 evaluation board used for measurements [33]
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The block diagram and lab setup for the measurements are
shown in Figures 10 and 11. The following procedure is
applied for all specific angles θ and ϕ:

1. Place the APA at the positioner and align the coordinate
system.

2. Align the beam of the APA to the desired beam steering
angle.

3. Measure the main channel power and adjacent channel
power using a spectrum analyser.

4. Repeat steps 1‐3 for all directions in the TRP measurement
grid.

5. Calculate TRP‐ACLR according to Equation (26).

The steering angle of the APA is set to 0°. The position of
the APA is changed by θ from 0 to 180° in steps of 10° and for

each step, the ϕ angle is changed from −90 to 90° in 20 steps.
The in‐band channel power and the ACLR power for each
angular position have been measured and the TRP‐ACLR
level has been calculated according to Equation (26) to
be −35.0 dBc. For the same setup, the main‐beam‐only level of
ACLR is measured to be −33.3 dBc. In our work, we assume
the main beam pointing is maintained in communication.
Moreover, since the measured difference is less than 2 dB, the
main beam ACLR is chosen as the metric for experimental
validation in this work.

6.4 | ACLR and beam directions

Due to interactions between the PAs in the array, the linearised
beam is sensitive to the steering angle, so the impact of beam
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F I GURE 8 Measured over‐the‐air spectra with NN and memory polynomial model (MPM)‐based linearisation at different main beam power: (a) Very high
non‐linearity case (main beam power = +34 dBm); (b) High non‐linearity case (main beam power = +33 dBm); (c) Medium non‐linearity case (main beam
power = +32 dBm); (d) Low non‐linearity case (main beam power = +31 dBm). APA, active phased array; DNN, delay neural network; PSD, power spectral
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steering needs to be quantified. A single trained DPD is not
sufficient for maintaining a low distortion in a wide range of
steering angles. To maintain a low level of distortion across the
steering angle, a new training after some degrees shift (based
on the actual setup) of the main beam is required [8]. The same
investigation has been done in [3] with the same conclusion.
Furthermore, remarkable results in [36] show that the NN is
capable of modelling the correlation between the non‐linear
distortion characteristics among different beams. This allows
providing consistently good linearisation regardless of the
beamforming direction, thus avoiding the necessity of
executing continuous digital pre‐distortion parameter learning.
In this work, we have quantified the load modulation impact by
measuring on an over‐the‐air test setup in a compact antenna
test range (CATR). Figure 10 shows the setup used for
measuring the APA output over the air in the CATR. In this
experiment, 17 different values of the steering angle θ were
used in the range of −78 to +78° with a step of approximately
8°. The following procedure is applied firstly to capture the

non‐linear data for all angles and secondly the linearised data
for all angles. For all specific angles θ1 to θ17, the following
steps are used:

1. Adjust the steering angle to θi according to code‐book and
software tools.

2. Adjust the mechanical angle accordingly.
3. Measure input/output data for each steering angle.
4. Make the MPM and the NN pre‐distorters based on pre‐

distortion coefficients obtained from measurements of the
0° steering angle.

5. Use the pre‐distorter as input and repeat steps 1‐3.

The results are shown in Figure 12, as measured for the
same power level corresponding to the highly non‐linear use
case depicted in Figure 8b. The ACLR of the APA without
linearisation is varying with the steering angle due to changes in
radiation patterns and because of load modulation. Further-
more, the ACLR improvement rate for the linearised signals is

F I GURE 9 Comparison of neural network (NN) versus memory polynomial model (MPM): (a) adjacent channel leakage ratio (ACLR) comparison;
(b) error vector magnitude (EVM) comparison

F I GURE 1 0 Block diagram of the measurement setup for measuring active phased array (APA) in a compact antenna test range
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varying with the steering angle also as a result of load
modulation.

6.5 | Time‐domain comparison of NN and
MPM pre‐distortion signals

In this section, we compare the pre‐distorted signals of the NN
and MPM DPD to understand better what the NN does
differently. A possible explanation for this can be found by
inspecting the signals in the time domain. Figure 13 shows the
complex envelope of the reference input signal, the non‐linear
signal, the pre‐distorted signal and the response after pre‐
distortion for the two power levels, 31 and 34 dBm indicated
as low and high linearity cases, respectively. The gain is nor-
malised to 0 dB for comparison.

The pre‐distorted signal, as expected, has extra gain to
counteract the decreasing non‐linear gain at the points where
the non‐linear signal is in compression, which is illustrated as
the high peaks in the time domain. As a consequence when the
pre‐distorted signal is applied, the response of the pre‐
distorted signal should ideally end up on top of the reference
signal. This is exactly what happens in Figure 13a,b, where
there is almost no difference between the reference input signal
and the measured response after pre‐distortion. The case of
high non‐linearities can be seen in Figure 13c,d, where the
difference between the reference input signal and the response
after pre‐distortion can now be easily observed. It is clearly
seen from Fig. 13c that the MPM technique overcompensates
the compression. When comparing the NN approach with the
polynomial one, the polynomials have inherent local approxi-
mating properties in contrast to the global approximation
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F I GURE 1 1 Total radiated power measurement setup using compact range chamber. APA, active phased array

F I GURE 1 2 Measured adjacent channel leakage ratio (ACLR) performance of memory polynomial model (MPM) and neural network (NN)‐based digital
pre‐distortion versus steering angle using the over‐the‐air setup in a compact range chamber
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capability of NNs when modelling strongly non‐linear systems.
Therefore, NN may adapt better to extrapolating beyond the
zone exploited for parameter extraction [37].

Although this effect is still under the investigation, we see
clearly the impact of the pre‐distorted signal's PAPR on overall
linearisation and, as a consequence, the shortcoming of the
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F I GURE 1 3 Time‐domain representation of pre‐distorted signal: (a) memory polynomial model (MPM) low non‐linearity case; (b) neural network (NN)
low non‐linearity case; (c) MPM high non‐linearity case; (b) NN high non‐linearity case
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conventional and less complex MPM for linearising highly
non‐linear 5G modulated signals, whereas a less complex NN‐
based technique can do the job satisfactorily.

7 | DISCUSSION

The phenomenon of differences in the PAPR in MPM versus
NN DPD was observed for all measurements where the
output power of the APA in our setup is above +32 dBm.
During experiments, we kept the PAPR of the input signal as
defined in 3GPP, that is, 11.3 dB without providing any clip-
ping and filtering method to reduce the PAPR. The root cause
of the difference between MPM and NN approaches can be
explained as:

1. The MPM non‐linearity kernel is a polynomial. For high
non‐linearities high‐order polynomials are necessary. In our
MPM, we used a non‐linearity order equal to five and a
memory depth of eight. When trying to linearise a highly
compressed, deeply saturated PA characteristic, such a high‐
order polynomial non‐linear function, quickly explodes at
the upper side of the input amplitude range, thus causing
the peaks of the pre‐distorted signal to reach extremely high
values, and hence leading to a huge increase in the pre‐
distorted signal PAPR compared to the PAPR of the orig-
inal input‐modulated signal.

2. The non‐linear kernel of the NN does not contain inher-
ently such an ‘explosion’ effect for high amplitudes. It is
important to keep in mind that the proposed RVTDNN
structure is based on supervised learning. While we train the
NN, we are actually using low envelope fluctuations, that is,
the desired I and Q at the output layer in Figure 3, which
allows the NN to learn the characteristics for a signal with
low envelope fluctuations. This is also related to the fact
that the long‐term memory is built into the RVTDNN
through supervised learning. This kind of long‐term
memory can be used to simulate the slow dynamic
changes of non‐linear characteristics of the PA over time,
mentioned in [21].

8 | CONCLUSION

This paper presents how a neural network (NN)‐based line-
arisation technique behaves on the digital pre‐distortion
(DPD) of a highly non‐linear active phased array (APA) us-
ing a wideband 3GPP 5G mmWave base‐station transmitter
signal and compares it to the used memory polynomial model
(MPM) technique. The proposed design is implemented in a
state‐of‐the‐art 4 � 4 APA and a setup using up‐ and down‐
conversion from sub 6 to 28 GHz and having high non‐
linearity of the active phased array as the main impairment
factor. The NN is built and trained using a Python simulation
environment. The performance of the optimal NN pre‐
distorter was assessed with measurement results and
compared to the MPM‐based DPD technique. Measurement

results on the proposed NN technique show that in the case
of very high non‐linearity with an adjacent channel leakage
ratio (ACLR) of −26 dBc, the pre‐distortion signal generated
by the NN exhibits peak‐to‐average power ratio (PAPR) much
lower than the one generated by MPM and consequently is
still capable to linearise the APA where it is not possible for
the actual MPM technique. The proposed NN‐based DPD
technique applied on a highly non‐linear APA with an ACLR
of −28 dBc shows an improvement of error vector magnitude
(EVM) of 7.2% points and ACLR of 4.7 dB. For the same
setup, an MPM‐based DPD can only achieve an improvement
of EVM and ACLR of 4.4% points and 2.8 dB, respectively.
In the future, we may include an investigation of the
robustness of NN‐based linearisation due to the steering angle
and the impact of channel properties for the high non‐
linearity cases.
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