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Abstract

It is becoming increasingly clear that microbial symbionts influence key aspects of their

host’s fitness, and vice versa. This may fundamentally change our thinking about how

microbes and hosts interact in influencing fitness and adaptation to changing environments.

Here we explore how reductions in population size commonly experienced by threatened

species influence microbiome diversity. Consequences of such reductions are normally

interpreted in terms of a loss of genetic variation, increased inbreeding and associated

inbreeding depression. However, fitness effects of population bottlenecks might also be

mediated through microbiome diversity, such as through loss of functionally important

microbes. Here we utilise 50 Drosophila melanogaster lines with different histories of popu-

lation bottlenecks to explore these questions. The lines were phenotyped for egg-to-adult

viability and their genomes sequenced to estimate genetic variation. The bacterial 16S

rRNA gene was amplified in these lines to investigate microbial diversity. We found that 1)

host population bottlenecks constrained microbiome richness and diversity, 2) core micro-

biomes of hosts with low genetic variation were constituted from subsets of microbiomes

found in flies with higher genetic variation, 3) both microbiome diversity and host genetic var-

iation contributed to host population fitness, 4) connectivity and robustness of bacterial net-

works was low in the inbred lines regardless of host genetic variation, 5) reduced microbial

diversity was associated with weaker evolutionary responses of hosts in stressful environ-

ments, and 6) these effects were unrelated to Wolbachia density. These findings suggest

that population bottlenecks reduce hologenomic variation (combined host and microbial

genetic variation). Thus, while the current biodiversity crisis focuses on population sizes and

genetic variation of eukaryotes, an additional focal point should be the microbial diversity

carried by the eukaryotes, which in turn may influence host fitness and adaptability with con-

sequences for the persistence of populations.
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Author summary

It is becoming increasingly clear that organisms and the microbes that live on or in them–

their microbiome–affect each other in profound ways that we are just beginning to under-

stand. For instance, a diverse microbiome can help maintain metabolic functions or fight

pathogens causing diseases. A disrupted microbiome may be especially critical for animals

and plants that occur in low numbers because of threats from e.g. human exploitation or

climate change, as they may already suffer from genetic challenges such as inbreeding and

reduced evolutionary potential. The importance of such a reduction in population size,

called a bottleneck, on the microbial diversity and the potential interactive effects on host

health remains unexplored. Here we experimentally test these associations by investigat-

ing the microbiomes of 50 inbred or non-inbred populations of vinegar flies. We found

that restricting the population size constrain the host’s genetic variation and simulta-

neously decreases the diversity of the microbiome that they harbor, and that both effects

were detrimental to host fitness. The microbial communities in inbred host populations

were less robust than in their non-inbred counterparts, suggesting that we should increas-

ingly consider the microbiome diversity, which may ultimately influence the health and

persistence of threatened species.

Introduction

It is becoming increasingly clear that most eukaryotes live in intimate and complex relation-

ships with microbial communities both in their external environment and on or within their

body including their gut [1]. Numerous studies have documented how the presence and abun-

dance of certain microbes can influence key aspects of host fitness, such as lifespan, fecundity,

immune responses, metabolic health, behaviour, and thermal stress tolerance traits [2–8].

Conversely, the host can also control microbial composition to some extent, such as through

changing nutrient availability by diet choice or host metabolism [9,10], triggering immune fac-

tors [8,11], or controlling the gut mechanically such as through peristalsis [12]. The genetic

background of the host can also interact with the microbiome [13,14]. For instance, host genes

can affect the abundance of certain bacteria, allowing the microbial composition of hosts to be

treated as a quantitative trait in genetic analysis [15]. These interactions between the host and

its microbiota can in turn have a substantial impact on host fitness [16–18].

Because interactions between microbes and their hosts shape so many aspects of life, the

impact on core biological processes including evolutionary adaptation may need to be recon-

sidered [19–22]. The ‘holobiont’ concept reflects the idea that eukaryote individuals do not act

as autonomous units, but rather as networks consisting of the host and all its associated micro-

biota, and that their collective genomes–the ‘hologenome’–forms a cohesive unit of selection

[23–25]. Some experimental support for this idea is emerging. For instance, host selection for

thermal tolerance resulted in an altered microbial composition and modulated the microbes’

response to temperature [26]. While resident microbes respond to stressful environmental

conditions, they can also subsequently aid the response of the host to such conditions [7].

More generally, the microbial community may play a so-far underappreciated role in the

broader context of population persistence which is important for research areas like conserva-

tion biology [18,19,27,28].

These conjectures raise the issue of how microbes respond to changes in the host’s popula-

tion size. Populations that undergo repeated or persistent reductions in size frequently suffer

from inbreeding depression and genetic drift resulting in lowered fitness and reduced genetic
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variations, ultimately impeding evolutionary capacity and increasing the risk of extinction

[29–34]. These patterns have been investigated from the perspective of the nuclear genetic

background rather than the hologenome; for instance, inbreeding depression is normally

assumed to reflect the expression of deleterious alleles in their homozygotic form. However,

host population size decreases may also lead to microbial perturbations, with potential feed-

back effects on host fitness which could contribute to additional lowering of population size

[27,28,35]. These interacting effects of microbial diversity, genetic diversity and fitness have

not yet been widely tested.

Here we investigate microbial composition and abundance in 50 populations of Drosoph-
ila melanogaster that have experienced a variable number of generations of population bot-

tlenecks. These populations were subsequently phenotyped for fitness components and

sequenced to obtain a genome-wide molecular measure of genetic variation [33]. This set of

lines provides a unique resource to investigate associations between host genetic variation,

host fitness and microbial diversity (Fig 1). We consider two main questions. 1) How is

Fig 1. Hypothetical associations between host genetic variation, microbiome diversity and host fitness. Conceptual illustration of hypothetical associations

between host genetic variation, microbiome diversity and host fitness in the experimental set of lines. Host genomic variation was manipulated through exposing

populations to a variable number of bottlenecks which is assumed to have a causal effect on fitness and microbial diversity. The dark blue arrows represent

potential unidirectional effects, and light blue arrows represent potential bidirectional effects. In one line of causality, low genetic variation in the host constrains

the diversity (species richness and abundance) of the host-associated microbiome, which in turn affects host fitness directly, i.e. through supporting fewer host

genotype-microbial taxon-specific interactions that are functionally important, and/or indirectly through changing the composition and relative abundance of

beneficial or pathogenic microbes. In another line of causality, low host genetic variation directly affects host fitness which in turn leads to a less diverse

microbiome through physiological or metabolic changes in the host “environment”, or indirectly such as through a higher abundance of detrimental pathogenic

microbes resulting from a weakened immune response. Sources: Wikimedia Commons (Drosophila: Togopic, DNA: Kadumago), and authors’ own illustrations

(microbiota).

https://doi.org/10.1371/journal.pgen.1010206.g001
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microbiome richness and diversity associated with host genetic variation imposed by popu-

lation bottlenecks? 2) Are both host microbiome diversity and genetic variation associated

with host fitness, and if so, do they contribute independently? Answers to these questions

increase our understanding of the importance of microbiomes in conservation genetics and

evolutionary biology. We hypothesise that reduced host genetic variation provides a less

diverse environment for microbes leading to reduced microbial diversity through fewer

host genotype-microbial taxon-specific interactions (Fig 1). Evidence suggests that

increased microbiome diversity is adaptive for the host and that increased hologenome

genetic variation facilitates faster evolutionary responses to selection [22,25,36]. Our work

further highlights the importance of considering both host and microbiome diversity for

predicting evolutionary consequences of population bottlenecks in small and threatened

populations.

Results

We selected 50 lines for microbiome analysis, which represent a subset of 109 inbred lines that

have been through marked reductions in population size for a varying number of generations

as well as 10 outbred control lines kept at a large population size (for details see Ørsted et al.
2019 [33]). These original total 119 lines had been sequenced using Genotyping-By-Sequenc-

ing (GBS) to allow nucleotide diversity (π) to be estimated. In addition, the fitness component

egg-to-adult viability (hereafter just viability) was determined in each line (see Ørsted et al.
2019 [33] for details on genomic variation and phenotypes assessed). We found a positive cor-

relation between viability and π for these 119 lines (rs = 0.45; p< 0.001; Fig A in S1 Text) indi-

cating inbreeding depression for viability which is used here as a proxy for Darwinian fitness.

For the microbiome characterization, two groups each consisting of 25 lines were selected

based on measures of standardized viability and π (sum of Z-scores, see Materials and Meth-

ods). One group of 25 lines had low genetic variation and low viability, and another group of

25 lines had high genetic variation and high viability. The ‘high’ group included nine of the

outbred controls as the outbred lines generally had very high viability and nucleotide variabil-

ity (S1 Table). The inbreeding procedure resulted in varying degrees of nucleotide diversity in

the resulting lines, and as such the genetic variation of the outbred lines and the inbred lines in

the ‘high’ group did not significantly differ (Fig B in S1 Text). However, to distinguish

between effects of genetic variation within inbred lines from the effects of bottlenecks itself

(inbreeding/outbreeding), we separated lines into three categories: ‘low genetic variation’ and

‘high genetic variation’ inbred lines and ‘outbred’ (OB) control lines (Fig B in S1 Text). Six

lines evenly distributed among the genetic variation groups were removed due to a high rela-

tive abundance of the microbial endosymbiont Wolbachia, which might affect host fitness

and/or abundance of other microbial taxa, resulting in 44 lines being analysed (see Materials

and Methods for details).

Loss of host genomic variation decreases microbiome richness and

diversity

Loss of host genetic variation was associated with decreased microbiome richness and diver-

sity. The microbiomes from the outbred flies and the high genetic variation lines had a higher

level of community diversity than the microbiomes of flies from the low genetic variation

group (Fig 2). Generally, we observed an increase in microbiome diversity with increasing fly

host genetic variation and viability, regardless of which measure we used to quantify the

microbiome diversity. Richness indices, namely observed amplified sequence variant (ASV)

richness and chao1 estimated ASV richness (Fig 2A and 2B), showed a stronger trend than
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the diversity indices accounting for relative abundances (Shannon-Wiener and Simpson’s;

Fig 2C and 2D). Even at the class level, the microbiomes from the low genetic variation group

were less taxonomically heterogeneous than those from the high genetic variation and outbred

Fig 2. Host population bottlenecks decrease microbiome diversity. Boxplots of microbiome diversity in the three host genetic variation groups; low genetic

variation (Low; red), high genetic variation (High; green), and outbred (blue) measured as either richness indices (A. observed ASV richness (Alpha richness),

and B. estimated ASV richness (chao1 estimation)) or measured using indices accounting for individual ASV abundances as well (C. Shannon-Wiener Index,

and D. Simpson’s Index). In all panels, the p values of a Kruskal-Wallis test show a significant effect of group, while asterisks denote the results of pairwise

Wilcox’s t-tests between groups; ��� p< 0.001; �� p< 0.01; � p< 0.05; and ns: p> 0.05.

https://doi.org/10.1371/journal.pgen.1010206.g002
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groups (Fig C in S1 Text). Most bacteria in the D. melanogaster microbiomes belonged to the

Alphaprotoebacteria, Bacilli, and to a lesser extent Bacteroidia and Actinobacteria. The

increasing level of taxonomic diversity with increasing host genetic variation was further evi-

dent at the genus level, with the low genetic variation group harbouring the fewest number

of genera, while the outbred flies had the highest number (Fig D in S1 Text). Non-metric

multidimensional scaling (NMDS) analysis based on the weighted and unweighted UniFrac

distances (Fig 3) showed that the microbiomes differed depending on the fly host’s level of

genetic variation. Generally, there was better segregation of the fly groups when only the

microbiome membership (unweighted UniFrac) was considered (Fig 3C and 3D), with a

clear trend across the viability and nucleotide diversity gradient across the first dimension of

ordination space. Meanwhile the relative abundance patterns of the ASVs across the lines

created noise, notably among the high and outbred groups (Fig 3A and 3B). However, the

community membership was more similar among the outbred lines and more dispersed

within the inbred lines (Fig 3C and 3D), while the abundance patterns showed greater simi-

larity among the low genetic variation flies than the higher variation and outbred flies, due to

the high relative abundance of a few ASVs in common in the low variation flies (Fig 3A and

3B). PERMANOVA analysis showed that the fly groupings explained 22.8% and 43.0% of the

microbial community membership and structure (i.e. membership + relative abundance

using weighted UniFrac), respectively (p< 0.001). The host traits, nucleotide diversity and

viability were significantly associated with the microbiome community patterns (significant

envfit arrows, Fig 3). Viability explained a greater proportion of the microbiome composi-

tion than did nucleotide diversity, where nucleotide diversity and viability explained 15.9%

and 17.8% of the community membership, while explaining 27.7% and 35.3% of the commu-

nity structure.

Both host genetic variation and microbiome diversity contribute to host

fitness

To identify drivers of host fitness, we fitted generalized linear mixed effects models

(GLMMs) with viability as a function of host nucleotide diversity (π) and microbiome diver-

sity and their interaction (one model for each of the four different measures of microbiome

diversity; see Materials and Methods). For all microbiome diversity metrics, both π and

microbiome diversity contributed to host fitness, with π contributing to a greater extent (~2x

larger scaled effect sizes; Table 1 and Table A in S1 Text). For Alpha richness, we observed a

significant positive interaction between host genetic variation and microbial diversity on

host fitness, meaning that they did not act independently. In fact, the positive interaction

coefficients suggested synergism; i.e. in lines with high genetic variation, the effect of increas-

ing microbiome richness was greater than in lines with low genetic variation and vice versa
(Fig E in S1 Text), while for chao1 ASV richness, Shannon-Wiener and Simpson’s indices,

host genetic variation and microbial diversity contributed independently to host fitness

(Table A in S1 Text). In all cases, the full models had higher explanatory power than each

individual model (π or microbiome diversity alone), based on χ2 tests (Table 1 and Table A

in S1 Text). Using data from Ørsted et al. (2019) [33] for the set of lines used in the present

study, we also associated microbial diversity with evolutionary responses in two traits (dry

body mass and productivity measured as eggs per female per day) here defined as the slope

of an ordinary linear regression across 10 generations of rearing on a stressful medium.

Interestingly, we found an effect of microbial diversity on evolutionary responses for both

traits (Fig F in S1 Text). For details on assessment of these phenotypes, see Ørsted et al.
(2019) [33].
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Host genetic variation is associated with differential bacterial relative abundance

The subset of the bacterial taxa that were differentially more abundant in the outbred flies

were more diverse than in the inbred lines (i.e. the low and high genetic variation groups),

with as many as 54 ASVs belonging to five bacterial classes and 12 orders (S2 Table). In

Fig 3. Microbiome composition differ depending on the host’s level of genetic variation. Non-metric multidimensional scaling (NMDS) plots based on the

UniFrac distances (weighted; A-B, and unweighted; C-D) between the 44 D. melanogaster lines (low genetic variation (red), high genetic variation (green),

and outbred (blue). UniFrac distances account for the relative relatedness of community members, where weighted unifrac incorporates the abundance of

observed organisms, while unweighted unifrac only considers presence or absence. Isolines of associated covariates are shown for nucleotide diversity (A and

C) and egg-to-adult viability (B and D). Envfit values of significant drivers (p< 0.05) are shown as arrows (viability and nucleotide diversity, respectively).

https://doi.org/10.1371/journal.pgen.1010206.g003
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comparison, only one Acetobacter ASV was significantly more abundant in the bottlenecked

flies, i.e. the low and high genetic variation groups. More generally, at both the ASV and genus

levels, Acetobacter relative abundances were particularly high in the low genetic variation lines

compared to the lines with higher genetic variation (Fig 4A and 4C), with Acetobacter ASVs

making up the majority of the communities in the low genetic variation lines (median 94.0%

Table 1. Host genetic variation and microbiome richness interact synergistically on host fitness.

Microbiome diversity measure Fixed effects Estimate Std. Error z value p

Observed ASV Richness (ObsAlpha) Intercept 0.106 0.081 1.311 0.1899

R2
full model = 0.355 NuclDiv 0.784 0.088 8.883 6.49E-19���

ObsAlpha 0.499 0.087 5.740 9.49E-09�

NuclDiv�ObsAlpha 0.194 0.089 2.182 0.0291�

Random effects Std.Dev

Vial 0.683

Comparison with individual models χ2 df χ2 p

NuclDiv; ObsAlpha; Full model 2 70.322 5.37E-16 ���

Results of the general linear mixed model (GLMMs) of egg-to-adult viability as a function of nucleotide diversity (NuclDiv) and microbiome diversity (Alpha richness;

ObsAlpha) and their interaction as fixed effects. Both dependent and independent variables are scaled (Z-standardization) to allow direct comparison of effect sizes.

Replicate vial IDs were included as a random effect, as flies from the same vial are not considered independent. Conditional coefficients of determination of the GLMMs

ðR2

full modelÞ interpreted as the variance explained by the entire model, including both fixed and random effects, are shown. Asterisks denote the significance of individual

variables or interactions; ��� p< 0.001; �� p< 0.01; and � p< 0.05. The full model including both dependent variables and their interaction is compared with individual

models with either nucleotide diversity or alpha diversity with a χ2 test.

https://doi.org/10.1371/journal.pgen.1010206.t001

Fig 4. Host genetic variation is associated with differential abundance of microbial taxa. Relative abundance of differentially enriched bacterial

ASVs and genera A-C. Acetobacter ASVs and genus, D-E. Lactobacillus ASVs and genus, and F-G. Corynebacteriales ASVs in the three host genetic

variation groups; low genetic variation (Low), high genetic variation (High), and outbred. The abundance axes are not scaled the same for all of the

ASVs and genera because Acetobacter constitute the majority of the microbiome of the low genetic variation group. Letters denote significant

differences in relative abundance of ASVs or genera between fly groups (DESeq2 Wald test adjusted p< 0.05). The percent reads are relative to the

number to which all lines were initially rarefied (14,488 reads/sample).

https://doi.org/10.1371/journal.pgen.1010206.g004
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for ASVs 1+2 and 96.9% for the genus). In contrast, five ASVs belonging to Lactobacillus and

Enterococcus were significantly more abundant in the high genetic variation and outbred flies,

while at the genus level, Enterococcus but not Lactobacillus showed this same trend (Fig 4D

and 4F and S2 Table). In addition, certain ASVs displayed incremental increases in relative

abundances with increasing level of genetic variation and outbreeding, despite DESeq results

being non-significant (Fig 4F and 4H). Since relative abundances are used throughout the

present study, these differential abundances do not correspond to simple changes in diversity,

but actual changes in certain ASVs and genera shifting between genetic variation groups.

Core microbiomes of the low genetic variation lines are subsets of the high

genetic variation lines

The number of ASVs that were present in at least 80% of lines was defined as the core micro-

biome. The number of ASVs belonging to this core decreased with decreasing host genetic

diversity in the fly groups, with 48, 22, and 11 ASVs in outbred, high, and low genetic variation

flies respectively (Table 2). Eleven of these ASVs persisted as part of the core microbiome

across all of the fly groups, and belonged to the Acetobacter, Enterococcus, Lactobacillus, Leuco-
nostoc, and Bacilli. Meanwhile, nine ASVs belonging to the Corynebacterium, Empedobacter,
Nocardiaceae, Enterococcus, Mesorhizobium, and Lactobacillus, were only found in the core

microbiomes of the high and outbred flies. The core microbiome of the lower genetic variation

lines were subsets of those present in the higher genetic variation lines and outbreds, with 11/

11 low genetic variation line ASVs represented in the high genetic variation lines, and 20/22

high genetic variation line ASVs represented in the outbred lines (Fig 5 and Table 2).

Bacterial co-abundance networks decreased in complexity with host

inbreeding

In parallel to the DESeq analysis, which highlighted ASVs and genera, which were categorically

enriched in the different fly lines, co-abundance network analysis across the microbiome data-

set was performed to identify bacterial groups that were co-varying in relative abundance with

the host fitness traits of the lines and co-varying with each other (Fig 6). Fly viability and

nucleotide diversity co-varied with a large cluster of bacterial ASVs within the same modular

cluster (Fig 6A). Generally, viability co-varied with a larger group of bacterial ASVs than

nucleotide diversity, giving 40 and 13 associations, respectively, while 12 of these ASVs co-var-

ied with both viability and nucleotide diversity. Interestingly, most of the ASVs that co-varied

with viability were either differentially enriched in the outbred flies or in both the outbred and

high genetic variation flies (Fig 6B). The ASVs that were differentially enriched in both out-

bred and high genetic variation flies belonged to 24 different taxonomic groups (Fig 6B and

Fig 6G in S1 Text). In contrast, the two Acetobacter ASVs that were significantly enriched in

the low genetic variation flies belonged to separate modular clusters as highly prevalent nega-

tively correlated ASVs (Fig G in S1 Text). The smaller modules were often exclusively made

up of related ASVs, notably modules with Lactobacillus and Enterococcus species. The net-

works of each individual fly group (Fig 6C–6E) revealed that inbreeding the flies resulted in a

lower number of co-varying ASVs, and decreased the degree of connectivity (i.e. the number

of significant correlations) and overall complexity of the network, with the latter consisting of

only a few ASVs in a modular structure. Having a higher host genetic variation did not result

in a higher degree of covariation among ASVs among inbred lines. Host genetic variation was

both positively and negatively correlated with the abundance of bacteria in the outbred net-

work, while host genetic variation did not significantly co-vary with bacterial abundance in the

high and low genetic variation networks (at correlation adjusted p< 0.05). Moreover, the
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Table 2. Core microbiomes of the three host genetic variations groups.

ASVs Class Order Family Genus Species Low High OB

ASV1 Alphaproteobacteria Acetobacterales Acetobacteraceae Acetobacter sp. + + +

ASV2 Alphaproteobacteria Acetobacterales Acetobacteraceae Acetobacter sp. + + +

ASV4 Alphaproteobacteria Acetobacterales Acetobacteraceae Acetobacter sp. + + +

ASV5 Bacilli Lactobacillales Enterococcaceae Enterococcus sp. + + +

ASV7 Bacilli Lactobacillales Lactobacillaceae Lactobacillus plantarum + + +

ASV8 Bacilli Lactobacillales Enterococcaceae Enterococcus sp. - - +

ASV9 Bacilli Lactobacillales Leuconostocaceae Leuconostoc sp. + + +

ASV10 Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium sp. - + +

ASV11 Bacteroidia Flavobacteriales Weeksellaceae Empedobacter sp. - + +

ASV12 Bacilli Lactobacillales Lactobacillaceae Lactobacillus sp. + + +

ASV13 Actinobacteria Corynebacteriales Nocardiaceae g__ sp. - + +

ASV14 Actinobacteria Corynebacteriales f__ g__ sp. - + +

ASV15 Bacilli Lactobacillales Lactobacillaceae Lactobacillus sp. + + +

ASV16 Bacilli Lactobacillales Lactobacillaceae Lactobacillus plantarum + + +

ASV17 Actinobacteria Corynebacteriales Nocardiaceae g__ sp. - + +

ASV18 Bacilli Lactobacillales Enterococcaceae Enterococcus sp. - + +

ASV19 Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium sp. - - +

ASV21 Alphaproteobacteria Caulobacterales Caulobacteraceae Brevundimonas sp. - - +

ASV22 Bacteroidia Sphingobacteriales Sphingobacteriaceae Sphingobacterium mizutaii - - +

ASV23 Gammaproteobacteria Burkholderiales Alcaligenaceae Alcaligenes sp. - - +

ASV24 Bacteroidia Sphingobacteriales Sphingobacteriaceae Sphingobacterium mizutaii - - +

ASV25 Alphaproteobacteria Rhizobiales Rhizobiaceae Mesorhizobium sp. - + +

ASV27 Bacilli Lactobacillales Lactobacillaceae Lactobacillus brevis + + +

ASV28 Gammaproteobacteria Burkholderiales Alcaligenaceae Alcaligenes sp. - - +

ASV29 Actinobacteria Corynebacteriales Nocardiaceae Rhodococcus sp. - - +

ASV30 Actinobacteria Micrococcales Microbacteriaceae Leucobacter sp. - - +

ASV32 Alphaproteobacteria Rhizobiales Rhizobiaceae g__ sp. - - +

ASV36 Actinobacteria Micrococcales Micrococcaceae Glutamicibacter sp. - - +

ASV40 Actinobacteria Micrococcales Microbacteriaceae Microbacterium sp. - - +

ASV45 Alphaproteobacteria Caulobacterales Caulobacteraceae Brevundimonas sp. - - +

ASV46 Actinobacteria Micrococcales Brevibacteriaceae Brevibacterium Brevibacterium - - +

ASV48 Bacilli Bacillales Planococcaceae Lysinibacillus sp. - - +

ASV53 Bacilli Lactobacillales Enterococcaceae Enterococcus sp. - + +

ASV56 Bacilli Lactobacillales Lactobacillaceae Lactobacillus brevis - + +

ASV68 Bacilli Lactobacillales Enterococcaceae Enterococcus sp. - - +

ASV72 Alphaproteobacteria Rhizobiales Rhizobiaceae Mesorhizobium sp. - - +

ASV89 Bacilli Lactobacillales Enterococcaceae Enterococcus sp. - - +

ASV91 Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium flavescens - - +

ASV93 Bacilli Bacillales Planococcaceae Lysinibacillus sp. - - +

ASV94 Bacilli Lactobacillales Lactobacillaceae Lactobacillus sp. - + -

ASV105 Bacilli Bacillales Planococcaceae Lysinibacillus sp. - - +

ASV108 Bacilli Bacillales Planococcaceae Lysinibacillus sp. - - +

ASV110 Bacilli Bacillales Planococcaceae Lysinibacillus sp. - - +

ASV114 Bacilli Bacillales Planococcaceae Lysinibacillus sp. - - +

ASV115 Bacilli Bacillales Planococcaceae Lysinibacillus sp. - - +

ASV117 Bacilli Bacillales Planococcaceae Lysinibacillus sp. - - +

ASV152 Bacilli o__ f__ g__ sp. + + +

(Continued)
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ASVs belonging to the Acetobacter, that were significantly enriched in the low genetic variation

flies, displayed covariation only with Lactobacillus among the inbred flies, (Fig 6E), in contrast

to those ASVs in the outbred flies.

Discussion

In this study, we investigated the effects of host genetic variation on the microbiome diversity

in D. melanogaster lines with experimentally manipulated levels of genetic variation. Consis-

tent with a growing body of literature [2–8], we show that the microbial community of the

host is strongly linked to the fitness of the host, in our case the viability of offspring. In addi-

tion, we link reductions in host genetic variation with microbiome diversity and clearly show

that microbiome diversity is lower in lines with reduced genetic variation, regardless of

whether we use richness or relative abundance metrics (Fig 2). Only a few previous studies

have investigated the association between components of the microbiota and host genetics in

invertebrates, and those that did have mainly focused on genetic variability in the host’s ability

Table 2. (Continued)

ASVs Class Order Family Genus Species Low High OB

ASV189 Bacilli Lactobacillales Enterococcaceae Enterococcus sp. - - +

ASV193 c__ o__ f__ g__ sp. - - +

ASV383 Bacilli Lactobacillales Leuconostocaceae Leuconostoc sp. - + -

Core microbiome ASVs in each of the three host genetic variations groups: low genetic variation (Low), high genetic variation (High), and outbred (OB). The ASVs

belonging to the core microbiome for each fly group is represented by + (core) and–(not core). Here we define presence in the core microbiome if an ASV is present in

at least 80% of lines of a particular group. The lowest taxonomy level is listed (o__: order, f__: family, g__:genus).

https://doi.org/10.1371/journal.pgen.1010206.t002

Fig 5. Core microbiomes of the low genetic variation lines are subsets of the high genetic variation lines. Venn-

diagram showing that the core microbiomes of the low genetic variation lines (Low; red) are subsets of those present in

the higher genetic variation lines (High; green) and outbred lines (blue), with 11/11 low genetic variation group ASVs

represented in the high genetic variation group, and 20/22 high genetic variation group ASVs represented in the

outbred group. The taxonomy of individual ASVs can be seen in Table 2.

https://doi.org/10.1371/journal.pgen.1010206.g005
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to control the presence and/or abundance of specific endosymbionts, e.g. in [37–40]. Con-

versely, a few studies have investigated how endosymbionts can affect genetic variation in the

host by distorting sex-ratios, such as through endosymbiont induction of cytoplasmic incom-

patibility or parthenogenesis [41], potentially decreasing the effective population size and

increasing genetic drift [42,43] or by influencing population dynamics and dispersal possibly

affecting host genetic variation [44,45].

Despite recent calls for an integration of microbiome research in evolutionary and conser-

vation biology [18,21,22,27,28,36,46,47], little progress has been made on experimentally

Fig 6. Bacterial co-abundance networks decreases in complexity with lower host genetic variation. Co-abundance networks of the fly microbiome. ASVs

present in at least 30 reads in total and in at least three lines; correlations> 0.5 (or<-0.5) and fdr-corrected p-values< 0.05 are shown. The nodes are

individual ASVs and the host fitness traits, egg-to-adult viability (Viability) and nucleotide diversity (Nucl. diversity), while the edges represent positive and

negative correlations, and correlations linking host fitness traits and bacterial ASVs (which were positive correlations). The network containing lines from all of

the fly groups (A, B), the outbred (C), high genetic variation (D), and low genetic variation (E) groups are shown. In A, C, D, E, node sizes display the degree of

connectivity (relative within each figure) and colors mark the modularity structure (i.e. in which community, or cluster, the ASVs belong to based on the

Leiden algorithm). The orange and green edges connecting Viability and Nucleotide diversity were positive except for two instances in C where the negative

correlations are displayed with dotted lines. In B, node sizes display the number of lines within which the ASVs are present, and colors mark the major groups

in which the ASVs are differentially enriched. The taxonomic assignment of each node can be seen in Fig G in S1 Text.

https://doi.org/10.1371/journal.pgen.1010206.g006
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testing fundamental associations between population size, host genetic variation and microbial

diversity. Here we provide a novel demonstration that restricting host population size has a

profound impact on both the richness and the diversity of host-associated microbiomes, and

that effects of host genetic variation and microbial richness interact synergistically in affecting

host fitness. We also provide evidence that increased microbial diversity in the lines is associ-

ated with a stronger evolutionary response to stressful environments compared to responses

seen in lines with less microbial diversity (Fig F in S1 Text). Thus, we show that populations

with high host genomic variation harbor the most diverse microbial community, and vice
versa for populations with low genetic variation, and that these lines are the least resilient to

evolutionary pressure. According to the hologenome hypothesis, the holobiont constitutes a

single unit of selection, thus our results suggest that small and fragmented populations have a

reduced potential for responding to selection pressures not only due to reduced genetic varia-

tion and high rates of inbreeding but also due to reduced microbiome variation, effectively

reducing hologenomic variation. Maintaining a diverse microbiome community may there-

fore be crucial for a host’s responsiveness to environmental change [22–24,42].

Our study sheds light on the ‘inheritance’ of microbiomes and on hosts as ‘environments’

for the microbiota. While many animals, including a range of insects, have transovarial vertical

transmission of bacterial symbionts, i.e. via the egg to the embryo [1,48], the microbiome of

captive D. melanogaster, especially the gut bacteria, are mainly horizontally acquired [49], and

consist mostly of microbes from the diet and from microbes expelled into the immediate envi-

ronment by conspecifics or predecessors [50]. Interestingly, our results show that the ‘high

genetic variation’ bottlenecked populations had a markedly reduced diversity of microbes, low

numbers of co-varying bacteria, and lower fitness compared to the outbred control group,

despite there being no difference in genetic variation between the two groups. This could indi-

cate that a reduction in host population size during a population bottleneck constrains the

amount of microbial diversity available for random ‘sampling’ for the next generation, similar

to the effects of genetic drift on host genetic variation (see ref [33] for an elaborated discussion

of sampling of alleles during experimental bottlenecks). Indeed, the larger between-line varia-

tion in the microbiome community membership, i.e., unweighted UniFrac-based ordination,

among the inbred flies as compared to the outbred group strongly suggests a community shift

driven by repeated population bottlenecks (Fig 3). Similar to drift, these effects could be exac-

erbated in small populations, but unlike genetic drift, which is a stochastic process, the effects

of bottlenecks yield seemingly directional and predictable effects on microbiome diversity.

The trend of decreasing microbiome diversity with increasing host inbreeding has also

been found in inbred populations of Diannan small-ear pigs and tortoises [51,52]. This sup-

ports that a decreased ability of inbred hosts to harbor diverse and stable microbiomes could

be a general pattern, although these studies did not link microbial diversity and genetic varia-

tion to fitness effects or evolutionary responses. Previous experiments on Drosophila have

highlighted the impact of fly and larval density on microbial communities and how this can

impact fitness, producing a type of Allee effect [53]. Simultaneously, a reduction in fitness due

to the genetic effects of population bottlenecks could in turn result in flies that cannot harbor

some components of the bacterial community, which could be especially critical if microbes

with specific metabolic functions are lost [18]. We are unable to tease apart these effects in the

current study.

Despite this, we show that while host genetic variation has the strongest association with fit-

ness, the microbiome diversity also contributes synergistically to host effects. We envision that

increased homozygosity in hosts in a population provides a less optimal habitat for maintain-

ing stable and diverse microbial communities. In this respect, a number of studies have previ-

ously reported that hosts which are unhealthy and/or ill, harbor different and less diverse
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microbiomes compared to their healthier counterparts [16,54–57]. Moreover, host genotypes

have been found to profoundly affect the microbiome composition, as well as their stability

and beneficial effects on the host [58–60], while other studies have shown that microbiomes

affect host fitness, development, and even allele frequency and host evolution [25,61–63].

Given that flies from inbred lines with high nucleotide diversity in our study harbored less

diverse microbiomes and had lower fitness than flies from outbred lines which had similar

nucleotide diversity, we suggest that the microbiome is important in reducing fly fitness at

high levels of genetic variation typical in natural populations. On the other hand, lower nucleo-

tide diversity correlated with even lower microbial diversity and host fitness, suggesting that,

when inbreeding results in low host genetic variation, microbial diversity loss is primarily

caused by reduced host fitness. Perhaps the less optimal host ‘habitat’ for microbes in lines

with low genetic diversity results in less favorable growth conditions. It has been known for a

long time that productivity of Drosophila sp. can increase when there is high genetic heteroge-

neity in cultures, presumably because multiple genotypes can better utilize different aspects of

the environment [64,65]. The genetically diverse host populations could provide more variable

environments for microbes, allowing a greater diversity of microbes to persist, or support

greater microbiome diversity through a higher number of functionally important host geno-

type-microbial taxon-specific interactions. Tests of these ideas in the context of small popula-

tions with restricted genetic variation require further studies that might examine the impact of

e.g. antibiotics on host and microbe associations with fitness. Other possibilities for future

research in this area involve the transfer of beneficial microbiomes to see if these can “rescue”

low fitness populations or individuals suffering from disease. Such experiments have been sug-

gested in other contexts to improve robustness and productivity of livestock and agricultural

cultivars and for treating human diseases [4,66]. It remains unexplored whether such fitness

improvements by microbiome transfer can alleviate the negative impacts commonly associated

with low genetic variation like inbreeding depression.

The outbred lines investigated in our study have a much more complex network of co-vary-

ing, and interacting microbiomes compared to the low and high genetic variation groups (Fig

6). This suggests that outbred lines harbour healthier and more robust microbial ‘ecosystems’

than bottlenecked lines, where functional redundancy within the diverse microbial community

of outbred flies promotes community stability and subsequent host health. This means that

removal of individual microbial species is expected to have less impact compared to in low and

high genetic variation lines, where the removal of one key species may cause more dramatic

effects. The importance of functional redundancy in host-associated microbiome stability and

host health has been previously demonstrated in various hosts as well as in many other ecosys-

tems [67,68]. Notably, it is now widely acknowledged that taxonomically diverse microbiomes

harbor robust and stable functional redundancy, where disturbance in the environment is

countered, up to a point, by the resilience built upon functional redundancy and high taxo-

nomic diversity in a community [67,68]. The global co-variation network in our flies suggests

that microbial diversity shifts gradually across a continuum of host genetic variation. However,

co-variation results from individual fly lines with different levels of genetic diversity more

clearly show that the tipping point between community resilience and functional redundancy

and communities suffering from more stochastic microbe-microbe associations, and hence

reduced functional redundancy, relates more to bottleneck treatment effects than genetic vari-

ation within bottleneck treatment. This interpretation is affected by whether lines with high

relative abundance of Wolbachia was included or not, as Wolbachia can affect both host fitness

and the presence/abundances of other microbial taxa [40,69–71] (see also Fig H in S1 Text).

This bears some resemblance to ecological patterns observed in microbiomes of hosts living

in disturbed habitats [72–74]. For instance, howler monkeys inhabiting degraded, more
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homogenous forests has a less diverse gut microbiome compared to conspecifics in non-frag-

mented forests, and as a result has lost the microbial metabolic pathway to detoxify plant com-

pounds in the leaves of their diet [73]. In the same way in which diversity confers resilience in

macro-ecological systems [75,76], where species-rich communities are less susceptible to inva-

sion as more niches are occupied and limiting resources are used more efficiently, such pro-

cesses could be important for the robustness of microbial ecosystems within hosts [77,78]. A

high diversity of commensal microbes could mean functional redundancy [18,36], thus an

increased resilience towards shifts in functional diversity, and better protection against patho-

gens [20,79].

In conclusion, we demonstrate that restricting host population sizes and thereby genetic var-

iation is associated with a reduction in diversity of host-associated microbiomes. We observe

effects of both host genetic variation and microbial diversity in explaining host fitness, however

the patterns of causality remain unclear, i.e. we suggest that it is not an all-or-nothing effect, but

rather a continuum across nucleotide diversity where fitness and microbiome depletion become

relatively more important drivers. It is similarly difficult to establish whether fitness differences

are due to beneficial or potential pathogenic bacteria, partly because pathogenicity depends on

many factors including composition of the whole microbial community present [40], and age of

the host [80]. Despite this, we show clear effects of host population bottlenecks on the diversity

of the microbiome, similar to effects normally observed in sampling of genetic alleles during

genetic drift, and we show that both the reduction in microbiome diversity and genetic varia-

tion is tightly linked to host fitness and evolutionary potential. Therefore, microbial diversity in

e.g. whole insect, fecal or environmental samples could be a useful proxy for population fitness

and potentially adaptability. Lastly, our results open up multiple avenues for further studies,

such as transplantation of microbiomes as a means of ‘rescuing’ populations that suffer from

inbreeding depression, potentially relevant to species of conservation concern.

Materials and methods

Fly population bottlenecks

The D. melanogaster flies used in the study originated from 232 wild females caught at Oak-

ridge winery in the Yarra Valley, Victoria, Australia. These females contributed equally to a

mass bred population kept at a population size of approximately 1000 individuals. The flies

were maintained on a 12:12 h light:dark cycle at 19˚C on a standard laboratory food composed

of yeast, sucrose, oatmeal, and agar mixed with tap water. Nipagen and acetic acid were added

to prevent fungal growth (Table B in S1 Text). From the mass bred population, we created 40

lines of each of three different expected levels of inbreeding for a total of 120 lines, from which

we could obtain nucleotide diversity measures for 109 lines. This is described in detail in

Ørsted et al. (2019) [33]. In summary, lines from the three levels of inbreeding experienced 2,

3, and 5 consecutive generations of bottlenecks each consisting of two males and two females

(census size, N = 4) resulting in expected inbreeding coefficients of F = 0.125, 0.219 and 0.381,

respectively. After reaching the desired inbreeding level, we flushed the population sizes to 200

individuals. Simultaneously, we established 10 control lines that were assumed outbred and

maintained at minimum 500 individuals.

Fly lines selected for microbiome analysis

We obtained a measure of the realised genetic variation in all inbred and outbred lines using

genotyping-by-sequencing (GBS) to calculate nucleotide diversity (π) from genomic SNPs

(described in detail in Ørsted et al. (2019) [33]; average number of

SNPs ± sd = 26,877 ± 4,061). For the microbiome analysis, we aimed at comparing two groups
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of fly lines: one group with low genetic variation and overall low performance and one with

high genetic variation and high overall performance. For a quantitative selection of these

groups, we calculated a composite measure of performance as the sum of standardised values

of viability and nucleotide diversity (Z-score). We selected the 25 lowest ranking lines and the

25 highest ranking lines based on a summed Z-score (50 lines total; Fig A in S1 Text). Because

we selected lines regardless of their inbred/outbred status, nine of the ten outbred control lines

were included in the ‘high genetic variation’ lines due to their high Z-scores sum. In all analy-

sis, we differentiate between three groups of flies: ‘low’ and ‘high’ genetic variation lines within

the inbred lines and ‘outbred’ (OB) lines that have not been through population bottlenecks.

Following establishing the lines, population sizes were flushed to ca. 200 individuals per line,

and in the F1 generation egg-to-adult viability was assessed by distributing 15 eggs into each of

five vials per line and calculating the proportion of eggs developing successfully to the adult

stage [33]. Flies used for microbiome analysis consisted of male flies emerging from the egg-

to-adult viability assessment (merged across the 5 vials) that were snap frozen in liquid nitro-

gen at 2–3 days of age and subsequently stored at -80˚C.

16S rRNA gene sample preparation and sequencing

The whole fly genomic DNA was extracted following the same protocol as has been described

in Ørsted et al. (2019) [33]. In brief, 15 randomly collected male flies from each experimental

line was homogenized by bead beating at 2x6 s cycles and 6500 rpm using a Precellys mechani-

cal homogenizer (Bertin Techologies, Montigny le Bretonneux, France), and the DNA was

purified with the DNeasy Blood & Tissue kit (QIAGEN, Hilden, Germany) with modifications

specific for extracting insect tissues. The V1-V3 hypervariable regions of the bacterial 16S

rRNA gene was amplified and multiplexed for Illumina sequencing according to Albertsen

et al. (2015) [81], and the library pool was sequenced on a MiSeq sequencer using the MiSeq

Reagent kit v3, 2x300bp paired-end configuration, and 20% PhiX control spike-in. The raw

demultiplexed sequenced reads have been deposited under SRA Bioproject (accession number

PRJNA813140) at NCBI.

Microbiome analysis

The demultiplexed paired-end reads were quality filtered, assembled to make consensus ampli-

con reads, clustered into ASVs, and taxonomically assigned using a custom workflow Amp-

Proc version 5.1.0.beta2.11.1 (https://github.com/eyashiro/AmpProc), which relies on

USEARCH version 11.0.66_i86linux64 [82] sequenced reads processing and FastTree version

2.1.10 [83] for tree building. When present in insects, the endosymbiont Wolbachia can affect

host fitness and/or the presence/abundance of other microbial taxa, complicating interpreta-

tion of results [40,69–71]. Therefore, we removed six lines with a relative Wolbachia abun-

dance>85%. These six lines were evenly distributed among the genetic variation groups (Fig I

in S1 Text). This threshold was chosen to maintain a relatively high number of reads per line/

sample, i.e., at least 14,000 reads per sample, after Wolbachia reads were removed. Prior to fur-

ther analysis, we also tested whether removing Wolbachia from the frequency table would

skew our results and interpretations. There was no difference in relative abundance of Wolba-
chia between genetic variation groups (Kruskal-Wallis Rank Sum test; χ2 = 2.54, df = 2,

p = 0.28). Further, we found no significant correlations between Wolbachia abundance and

nucleotide diversity (rs = 0.24, t48 = 1.68, p = 0.10) or fitness (rs = 0.23, t48 = 1.67, p = 0.10), and

there was no significant difference between the six removed lines and the 44 remaining lines in

mean nucleotide diversity (Wilcoxon rank sum test; W = 110, p = 0.53) or mean fitness

(W = 116, p = 0.64). Thus, our main results namely that lines with low genetic variation and
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fitness harbor a less diverse microbiome were not affected by removing lines high in Wolba-
chia abundance. However, the prevalence of Wolbachia reads above 10% per sample distorted

the relative abundance of other bacterial taxonomic groups to a small extent (Fig I in S1 Text),

thereby leading to slightly different interpretations of the co-abundance networks (see Fig H

in S1 Text for details).

Next, QIIME version 1.9.1 [84] was used to rarefy all of the samples to the smallest accept-

able sample size i.e. 14,488 reads per sample (single_rarefaction.py), and to generate the

observed and estimated chao1 richness and Shannon-Wiener and Simpsons diversity values

for each sample (alpha_diversity.py), weighted and unweighted UniFrac matrices (beta_diver-

sity.py), and core microbiome groups (compute_core_microbiome.py). R version 3.5.0 was

used for downstream analysis and statistics. To assess the composition of core microbiomes,

we first normalized the dataset to eight lines per fly group (which is the number of outbred

lines in the study after filtering samples with low read counts and removing Wolbachia) by

randomly keeping three, two, and three lines from the high, medium, and low inbreeding lev-

els, respectively, from the high and low genetic variation groups [33], and all of the outbred

lines. Next, we considered an ASV as belonging to the core microbiome, the percentage to the

nearest tenth if we were to accept a prevalence of an ASV in 80% of the lines in each fly group.

Non-metric multidimensional plots based on the UniFrac matrices were generated with the

R-package ‘vegan’ (version 2.5–2 [85]). The effect of two host traits (nucleotide diversity, egg-

to-adult viability; [33]) were calculated with the envfit function and the significant envfit values

(p< 0.05) of the fly host traits were displayed as arrows and fly host trait gradients across the

ordination space as isolines using the ordisurf function. PERMANOVA analysis using vegan’s

adonis function was undertaken for the UniFrac matrices as a function of fly lines, nucleotide

diversity and viability. Differentially enriched ASVs were identified with DESeq2 (version

1.22.2 [86]) using the Wald test, contrasting across three levels (low and high genetic variation

and outbred fly groups), and accepting the enriched ASVs with adjusted p< 0.05. The same

approach was used on the genus-level frequency table. To test for differences in measures of

microbiome diversity between the genetic variation groups, we performed Kruskal-Wallis tests

and pairwise Wilcox’s t-tests between groups.

Generalised linear mixed models

To assess drivers of fitness measured as egg-to-adult viability, we fitted generalised linear

mixed effect models (GLMMs) in the R-package ‘lme4’ [87] assuming a binomial distribution

with logit link function. We fitted viability as a function of nucleotide diversity and micro-

biome diversity (four different measures as described above) and their interaction as fixed

effects; replicate vials were included as a random effect, as flies from the same vial are not inde-

pendent. The full models were compared with individual univariate models of either nucleo-

tide diversity or microbiome diversity by χ2 difference tests. We detected no over-dispersion

in any of the models (residuals to df ratio > 0.31; χ2 > 76.02; p> 0.99). Conditional coeffi-

cients of determination of the GLMMs interpreted as the variance explained by the entire

model, including both fixed and random effects, were calculated as R2

GLMMðcÞ ¼
s2
f þs

2
a

s2
f þs

2
aþs

2
ε
, where

s2
f ; s

2
a
; s2

ε are the variances of the fixed effect components, the random effects and the residual

variance, respectively (see ‘delta-method’ in Nakagawa et al. (2017) [88]).

Co-occurrence network analysis

For co-occurrence network analysis, the ASV table of all of the fly lines was used for the global

network, and the subset of ASV tables generated for the core microbiomes analysis for
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outbred, high genetic variation, and low genetic variation groups were used as the starting fre-

quency tables. In each of these ASV frequency tables, the fly nucleotide diversity and egg-to-

adult viability measurements were included. The ASVs present in fewer than three lines and

ASVs with less than 30 reads in the respective frequency tables were removed. The ‘Hmisc’ R-

package [89] was used to generate Spearman correlation matrices, and the upper triangle was

used to generate the network edge list. Only edges with FDR-corrected p< 0.05 and correla-

tion coefficients > 0.5 (or< -0.5) were kept. In Gephi version 0.9.2, the network was generated

with the Fruchterman Reingold algorithm and minor crossing of edges were corrected manu-

ally to improve the visualization of the clusters. From among Gephi’s built-in features, the Lei-

den algorithm was used to calculate the modularity structure using edge weights and default

settings, and the degree of connectivity was calculated as the number of nodes with which each

node is connected by an edge.
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S1 Table. ASV table, nucleotide diversity, fitness and microbiome diversity of fly lines. S1
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