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Incremental Degradation Estimation Method for
Online Assessment of Battery Operation Cost

Monika Sandelic Student Member, IEEE, Ariya Sangwongwanich, Member, IEEE, Frede Blaabjerg Fellow, IEEE

Abstract—To ensure optimal and economical battery oper-
ation, it is necessary to consider its lifetime-limiting aspects,
e.g., performance degradation and degradation costs. Battery
performance degradation is commonly assessed by offline lifetime
models. They are suitable for battery planning and performance
monitoring, but cannot be used in real-time operation. Therefore,
in this letter, an incremental degradation cost estimation method
for optimal battery real-time operation is proposed. It enables
battery degradation evaluation for any time resolution and set
of operating conditions during the real-time operation.

Index Terms—Battery, rainflow cycle counting, degradation,
operation cost, real-time operation.

I. INTRODUCTION

Key performance parameters of the battery, such as energy
capacity and power capability, are strongly affected by the
battery degradation. The degradation is an irreversible change
in the battery material, which is a consequence of the battery
usage. Several factors related to the operating condition, such
as cycle depth and discharge rate, can strongly influence the
degradation rate [1]. In order to plan an optimum operation
strategy, the battery degradation needs to be determined. This
is usually done by means of the offline lifetime estimation
models. The lifetime estimation models typically calculate
capacity fade for the input operating conditions, which are
defined as finite set of time series data [1].

Normally, the irregular set of operating conditions is trans-
lated into equivalent set of simple stress reversals using cycle
counting algorithms. Afterwards, the degradation model is
used to estimate the capacity fade for each stress level. The
physical degradation rate due to different operating conditions
can be represented through the degradation cost. This quantity
is used to compare the degradation with other performance
aspects in the economic domain. This process is suitable for
the battery planning and long-term performance monitoring
[2], but cannot be implemented for the real-time operation
(e.g., 5 minute intervals). The main limitation is that the
complete time-series stress profile is not available during
real-time operation. Therefore, the cycle counting algorithms
cannot estimate the set of stress reversals that contribute to
battery degradation.

One approach to overcome aforementioned limitations in-
cludes employment of machine learning-based models. For
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Fig. 1. Procedure for degradation cost assessment. The input is battery state-
of-charge SOC (mission profile), the output is battery degradation cost Cdeg .
Nc is the number of cycles for certain cycle depth ∆SOC and average
state-of-charge SOCavg . cfade is capacity fade, dcfade is increment in
degradation between two time instances, and Cdeg is degradation cost.

example, in [3], [4], a neural network-based approach is
used to determine the battery degradation for the predicted
operating conditions in the future. However, machine learning-
based models heavily rely on a set of historical data that cover
the most aspects of battery operation-induced degradation. If
data are not large enough or of a good quality, the predictions
of battery degradation can be biased and lead to untrue results.
An alternative approach is to simplify the degradation model
by making assumptions about the battery operation [5], [6].
For example, in [5], it is assumed that only one cycle per day
is made. Moreover, in [6], it is assumed that the hourly profile
consists of extrema, and the Rainflow cycle counting can
produce information about the degradation. In both cases, the
set of stress reversals that contribute to battery degradation can
be known in advance, as stress profiles are greatly simplified.
However, such assumptions about operating conditions cannot
be made in the majority of the battery applications.

Therefore, a new method for battery degradation estimation
is proposed in this letter. It overcomes the cycle counting lim-
itations of the conventional methods for real-time application.
In fact, it evaluates the increment in the degradation for any
two consecutive operating points and for any given operating
conditions. Hence, it can be used for variety of the battery
applications without restrictions of the operating conditions
even before the cycle is formed. Furthermore, the proposed
method can be used to find the optimum battery operation



in real-time, as it evaluates battery degradation cost at all
times. This can help to reduce the extra degradation, which is
normally result of battery operation without considered cost of
degradation. For example, certain operating conditions cause
accumulation of battery degradation, but result with minor
benefits for the users (e.g., performance, service provision,
economic) when battery is utilized [7]. Such operating condi-
tions can be avoided if battery operation is decided as the
optimum of the benefits it provides and the degradation it
causes. Hence, the proposed method can be used to extend
battery lifetime and increase its profitability in long-term.

II. CONVENTIONAL DEGRADATION COST ASSESSMENT

The conventional offline degradation cost estimation method
consists of three main parts, as shown in Fig. 1, and it is
elaborated in the following.

A. Cycle Counting

The input to the procedure is the state-of-charge SOC
profile. It is a dynamic finite set time series stress profile of
the battery, which is dependent on the operating conditions.
Rainflow counting is an example of the cycle counting algo-
rithm that is commonly used to determine the number of cycles
with certain cycle depth ∆SOC and average SOCavg [8]. Its
working principle is based on the evaluation of four successive
local extrema which define three consecutive ranges. If the
middle range is smaller than the first and the last range, a full
cycle is made. The two extrema defining the middle range are
discarded and the remaining local extrema are connected to
create a new range. Then, the next local extrema is added to the
newly created range. If the full cycle condition is not fulfilled,
the new extrema is considered and the evaluation procedure is
repeated. The process of counting the full cycles is terminated
once the last local extrema is reached. The remaining local
extrema define a half cycle [8]. Therefore, to obtain the
complete set of reversals, the starting and ending points are
necessary. In [9], a method to overcome this limitation is
presented. The algorithm provides information after each cycle
is formed. In that case, the time series data that define a single
cycle is sufficient. However, the main limitation is that the
degradation information is not available before or after a cycle
is formed. This limits its usage, as in certain applications, a
substantial time can pass before the two cycles are formed.

B. Capacity Fade Estimation

The capacity fade needs to be estimated for the character-
istic operating conditions of depth-of-discharge and average
state-of-charge (∆SOC, SOCavg). A model extensively tested
in [10] and employed in [11] on practical scenario is chosen. It
represents a degradation model for Lithium Manganese Cobalt
Oxide batteries defined as [11]:

cfade = acyc · (Neq(∆SOC, SOCavg))
bcyc (1)

where Neq is number of equivalent full cycles for given
∆SOC and SOCavg . acyc and bcyc are cycle ageing param-
eters, where acyc is a function of SOCavg and ∆SOC:

acyc =
1(

KSOCavg · aw ·∆SOCbw
)bcyc

(2)

where aw · ∆SOCbw represents the maximum theoretically
achievable number of cycles that can be determined by means
of Whöler function. KSOCavg is an acceleration factor which
accounts for increase in the physical degradation for SOCavg

values close to the upper and lower SOC boundary. Contrary
to acyc parameter which is depended of input SOC, bcyc is
a battery-specific constant which defines early ageing rate. It
value is between 0 and 1, where the values closer to 0, reflect
a more pronounced degradation at the beginning-of-life.

C. Degradation Cost Determination

The degradation cost Cdeg is defined as the percentage of the
battery capital cost Ccap, which is equivalent to the increment
in degradation dcfade [12]:

Cdeg = Ccap · dcfade (3)

The increment in degradation dcfade is a difference in the
capacity fade obtained with (1) at two time instances. For input
SOC mission profile, it represents the difference between the
initial capacity fade and the one that is a result of the operating
conditions for which the degradation is determined. In case of
Online Rainflow cycle counting [9], it represents the difference
between two consecutive cycles. In both cases, dcfade cannot
be known until at least one cycle is formed.
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Fig. 2. Working principle of the proposed Incremental degradation cost
estimation method. Cfade is capacity fade, Cdeg is degradation cost, SOC
is state-of-charge. ∆Sij is a range that is defined by the local extrema Si

and Sj , where i, j = {1, 2, 3, 4}.
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Fig. 3. Working principle of the memory stack shown on the example of
two consecutive time instances t and t+ 1 used in the proposed method for
incremental degradation cost assessment in case of: (a) No cycles counted,
(b) Half a cycle counted, and (c) Full cycle counted. ∆Sij is a range that is
defined by the local extrema Si and Sj , where i, j = {1, 2, 3, 4}.

III. INCREMENTAL DEGRADATION COST ASSESSMENT

A. Working Principle

The proposed method determines the degradation in the
incremental manner for any two successive points during
the real-time operation (e.g., 5 minute intervals). In fact, it
provides the information about the true battery degradation
cost at all times. The method is implemented as a two-step
procedure that is applied to two successive points SOCt

and SOCt+1 (input). The first point SOCt represents the
current SOC state. The second point SOCt+1 represents the
SOC state in the next time instance for which the cost of
degradation needs to be determined. In the first step, the
increment in degradation dcfade(∆t) for the two successive
points is determined, as shown in flow chart of the process
in Fig. 2. First, the capacity fade cfade(t + 1) is calculated
with (1)-(2) for the input ∆SOC = |SOCt+1 − SOCt| and
SOCavg = 0.5 · (SOCt+1 + SOCt). Then, the increment
in degradation dcfade(∆t) is determined by subtracting the
capacity fade cfade(t+ 1) and the known capacity fade from
the previous moment cfade(t). The output is degradation cost
Cdeg determined with (3) for the obtained dcfade(∆t).

To determine the increment in degradation, it is assumed
that the SOCt is the extremum of the range which forms a
half cycle. However, according to the Rainflow cycle counting
rules, this information becomes available after three consecu-
tive ranges are formed. The assumption is made, as in the real-
time operation, a substantial time can pass until information
about the three consecutive ranges is known. To minimize the
impact of this assumption on the accuracy of the results, a
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Fig. 4. Validation results: (a) Battery state-of-charge SOC profile, (b)
capacity fade cfade, and (c) Degradation cost Cdeg determined with the
Incremental degradation method and Online Rainflow cycle counting method.

second step is employed. In this step, the impact of SOCt

point on the formation of cycles is examined. This is done by
introducing memory stack, which stores the extrema and range
information. The memory stack operates on the base of cycle
counting rules. Once it identifies that a half or a full cycle is
formed, the actual capacity fade is calculated for a given cycle.
This value is then used as a basis for further calculations of the
capacity fade in the future. The memory stack considers four
cases for which the SOCt point has different influence on the
formation of cycles, as shown in Fig. 3. If the SOCt is a point
between two extrema, no information is stored in the memory
stack. If SOCt is extremum, three cases can be differentiated,
where either half or a full cycle are counted or no cycle is
formed. This is done by examining the ranges available in the
memory stack. In case of three active consecutive extrema, two
ranges ∆S12 and ∆S23 are considered. The Rainflow cycle
counting rules outlined in Section II are used to examine the
ranges available in the memory stack. If no decision about the
new cycle can be made, the information about the two ranges
is kept in the memory stack and the three local extrema remain
active. If a half cycle is counted, the range information are no
longer needed. The range ∆S12 is removed from the memory
stack, the local extremum S1 is deactivated, and the subsequent
local extremum S2 is indicated as the start of an active local
extremum. To count for a full cycle, three consecutive ranges
∆S12, ∆S23 and ∆S34 are needed. Once the full cycle is
identified, the degradation is determined for a ∆S23 range.
The information for the three ranges is replaced with a new
range ∆S14 and the degradation is added to the memory stack.
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B. Validation

To estimate the degradation with the proposed Incremental
degradation method and the Online Rainflow cycle counting
method from [9], a SOC profile shown in Fig. 4(a) is used.
The profile is obtained by using the battery performance model
developed in [13]. The cfade results (Fig. 4(b)) indicate the
accuracy of the proposed method, as it yields the same final
degradation as the Online Rainflow cycle counting method.
The main advantage of the Incremental degradation method
over the Online Rainflow cycle counting is that the information
about the change in the degradation is available at all times.
Therefore, Cdeg can be evaluated at each time instance, as

shown in Fig. 4(c). When the Online Rainflow cycle counting
is used, Cdeg is available at the discrete time instance that
corresponds to the time when a cycle is formed. In that case,
Cdeg is zero between cycles, which is not true in a real ap-
plication. Furthermore, the proposed Incremental degradation
method is used to determine the optimal battery operation. The
battery operation is decided based on its cost of degradation
and price of grid electricity Cgrid given in Fig. 5(a). This
operation is compared with the conventional method, where
battery degradation cost is not available at all times. The
conventional method minimizes the cost of electricity used
without considering the cost of battery degradation during the
real-time operation. The SOC and cfade profiles obtained
for the two operation strategies are shown in Fig. 5(b),(c).
A lower cfade is obtained with the proposed method, which
helps to reduce the extra stress by including the degradation
cost in an online decision making. On the contrary, when
the conventional method is used, the battery charges and dis-
charges more frequently as the grid electricity price changes.
This imposes additional degradation, which is not accounted
when the degradation cost is known during the operation.
Such operation in the long-term results with the accelerated
degradation and limits the battery lifetime.

C. Real-Time Implementation and Applications

To perform real-time degradation cost assessment, the pro-
posed method needs to be included in the control or en-
ergy management system. It can be used between each two
successive operation point updates, where a next operating
point is decided based on the evaluated degradation cost.
The method is suitable for real-time operation, as it provides
information about the degradation even before the cycles
are formed. This is illustrated in Fig. 6 on the example of
battery application in the internal load supply of photovoltaic
residential systems, participation in frequency regulation, and
reduction of electricity bill for large-scale units (e.g. data
centers). Furthermore, the method can be included with other
performance parameters in the optimization process. Hence, its
usage can be extended to other applications, where the decision
on battery operation is based on cost-benefit evaluation.

IV. CONCLUSION

This letter has proposed an incremental degradation cost
assessment method for a battery. The proposed method over-
comes the limitations of the conventional degradation methods
for application in the real-time operation. It enables evaluation
of the true cost of battery operation, i.e., degradation cost for
any chosen time interval. It can be effectively used to assess
a true cost of the battery operation at all times.
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