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Full Length Article 
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A B S T R A C T   

Background: Hypophosphatasia (HPP) is an autosomal recessive or dominate disease affecting bone minerali-
zation, and adults with HPP are in risk to develop metatarsal stress fractures and femoral pseudofractures. Given 
to the scarce data on the bone quality and its association to the fracture risk in adults with HPP, this study aimed 
to evaluate bone turnover, bone strength and structure in adults with HPP. 
Methods: In this cross-sectional study, we included 14 adults with genetically verified HPP and 14 sex-, age-, BMI- 
, and menopausal status-matched reference individuals. We analyzed bone turnover markers, and measured bone 
material strength index (BMSi) by impact microindentation. Bone geometry, volumetric density and bone 
microarchitecture as well as failure load at the distal radius and tibia were evaluated using a second-generation 
high-resolution peripheral quantitative computed tomography system. 
Results: Bone turnover markers did not differ between patients with HPP and reference individuals. BMSi did not 
differ between the groups (67.90 [63.75–76.00] vs 65.45 [58.43–69.55], p = 0.149). Parameters of bone ge-
ometry and volumetric density did not differ between adults with HPP and the reference group. Patients with 
HPP had a tendency toward higher trabecular separation (0.664 [0.613–0.724] mm vs 0.620 [0.578–0.659] mm, 
p = 0.054) and inhomogeneity of trabecular network (0.253 [0.235–0.283] mm vs 0.229 [0.208–0.252] mm, p =
0.056) as well as lower trabecular bone volume fraction (18.8 [16.4–22.7] % vs 22.8 [20.6–24.7] %, p = 0.054) 
at the distal radius. In addition, compound heterozygous adults with HPP had a significantly higher cortical 
porosity at the distal radius than reference individuals (1.5 [0.9–2.2] % vs 0.7 [0.6–0.7] %, p = 0.041). 
Conclusions: BMSi is not reduced in adults with HPP. Increased cortical porosity may contribute to the occurrence 
of femoral pseudofractures in compound heterozygous adults with HPP. However, further studies investigating 

Abbreviations: ALP, alkaline phosphatase; ALPL, TNAP encoding gene; BALP, bone-specific alkaline phosphatase; BMD, bone mineral density; BMSi, bone material 
strength index; CHZ, compound heterozygous; Ct, cortical; Ct.Po, cortical porosity; Ct.Th, cortical thickness; CTX, carboxyterminal cross-linked telopeptide of type 1 
collagen; CVs, coefficients of variation; DXA, dual energy X-ray absorptiometry; FEA, micro-finite element analysis; FGF-23, fibroblast growth factor 23; FSH, follicle 
stimulating hormone; HbA1c, glycated hemoglobin; HPLC, high pressure liquid chromatography; HR-pQCT, high-resolution peripheral quantitative computed to-
mography; HPP, hypophosphatasia; HZ, heterozygous; IMI, impact microindentation; IQR, interquartile range; IVA, instant vertebral assessment; LH, luteinizing 
hormone; LP, likely pathogenic; OC, osteocalcin; P, pathogenic; PINP, N-terminal propeptide of type 1 procollagen; PLP, pyridoxal-5′-phosphate; PTH, parathyroid 
hormone; Tb, trabecular; Tb.BV/TV, trabecular bone volume fraction; Tb.N, trabecular number; Tb.Sp, trabecular separation; Tb.Th, trabecular thickness; Tb.1/N.SD, 
inhomogeneity of trabecular network; TNAP, tissue non-specific alkaline phosphatase; TRAcP5b, tartrate-resistant acid phosphatase 5b; TSH, thyroid-stimulating 
hormone; Tt, total; vBMD, volumet ric bone mineral density. 
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larger cohorts of adults with HPP using methods of bone histomorphometry are recommended to adequately 
assess the bone quality in adults with HPP.   

1. Introduction 

Hypophosphatasia (HPP) is a rare, autosomal recessive or dominant 
disorder caused by pathogenic variants in the tissue-nonspecific alkaline 
phosphatase (TNAP) encoding gene (ALPL) [1,2]. The disease is char-
acterized by reduced activity of TNAP, a key player in mineralization of 
hard tissues [3–5]. Impaired function of TNAP leads to pathological 
mineralization and reduced construction of hydroxyapatite crystals in 
the bone [6–11]. Persistently low levels of alkaline phosphate (ALP) and 
elevated pyridoxal-5΄-phosphate (PLP) in plasma are biochemical in-
dicators of HPP [3,12]. The clinical presentation and severity are highly 
variable, depending on the inheritance mechanism and genotype [13]. 
Adults with HPP can develop multisystemic clinical features including 
chronic musculoskeletal pain, impaired physical function, fragility 
fractures and dental abnormalities [14–20]. Fragility fractures can occur 
at different sites in the skeleton, while metatarsal stress fractures with 
delayed healing and incomplete femoral fractures with thickened peri-
osteum known as pseudofractures are well described clinical features in 
adults with HPP [16,19,21]. 

However, the bone phenotype in adults with HPP is complex and has 
not been well investigated. Previous studies have demonstrated variable 
bone mineral density (BMD) and T-scores assessed by dual energy X-ray 
absorptiometry (DXA) among adults with HPP [19,22,23]. In addition, 
lumbar spine T-scores tend to be high in adults with HPP and fractures 
[23,24]. Therefore, in contrast to bone diseases like osteoporosis, the 
evaluation of T-scores may not be a sensitive method to assess the 
fracture risk in HPP [22,23]. These findings suggest that additional 
factors contribute to altered bone strength in adults with HPP, including 
bone material properties as well as bone microarchitecture of trabecular 
and cortical compartments. 

Impact microindentation (IMI) is used to directly measure mechan-
ical characteristics of cortical bone on tissue level in vivo [25,26]. This 
technique assesses the resistance of bone to indentation, calculated as 
bone material strength index (BMSi) [25,27]. The IMI has been used in 
several studies, investigating the impact of bone material properties on 
fracture risk [26,28]. Moreover, it has been demonstrated that BMSi is 
decreased in individuals with low BMD and fragility fractures, inde-
pendently of BMD measurements [29,30]. Further, high-resolution pe-
ripheral quantitative computed tomography (HR-pQCT) is a well- 
established method to assess bone geometry, volumetric BMD (vBMD) 
and bone microarchitecture at the distal radius and tibia. A single study 
evaluated bone structural parameters in adult patients with HPP using 
HR-pQCT, indicating that altered microarchitectural parameters of 
trabecular and cortical bone associate with risk of fractures [19]. We 
hypothesize that adults with HPP have altered bone strength and 
microarchitecture. The aim of this study was to assess bone turnover 
markers, bone material strength using IMI as well as bone geometry, 
microstructure and finite element analysis by HR-pQCT in adults with 
HPP and healthy matched reference individuals. 

2. Methods 

2.1. Study design and population 

This cross-sectional study was conducted between October 2019 and 
September 2021. Patients with HPP were recruited from the De-
partments of Endocrinology at Copenhagen University Hospital Hvido-
vre and Aarhus University Hospital, the Departments of Clinical 
Genetics at Odense University Hospital and Vejle Hospital, and the 
Center for Inherited Metabolic Diseases Rigshospitalet, Denmark. 
Reference individuals were recruited trough online advertisement and 

from a population list including residents from the Capital Region and 
the Region Zealand of Denmark, randomly selected using the Danish 
Civil Registration System. 

Patients with HPP were ≥ 18 years of age, compound heterozygous 
(CHZ) or heterozygous (HZ) for a pathogenic variant in ALPL according 
to the ACMG guidelines [31], had persistently low ALP ≤ 35 U/L 
(reference range 35–105 U/L) and at least one of the following symp-
toms: (1) dental manifestations; (2) musculoskeletal pain; (3) history of 
fracture(s). At inclusion, reference individuals had to have no ALP 
measurements ≤45 U/L and ≥ 50% of all ALP measurements ≥55 U/L, 
normal parathyroid hormone (PTH) and PLP as well as no severe 
vitamin D deficiency (25-hydroxyvitamin D ≤ 25 nmol/L). 

Exclusion criteria for all participants included pregnancy, skin 
infection or severe skin affection in the measurement area of micro-
indentation, known allergy to lidocain, former or current medical 
treatment influencing bone metabolism (oral corticosteroid >12 weeks, 
former or current anti-osteoporosis treatment at any time (regardless 
drug holiday), all kind of sex steroids (excluding oral contraception), 
anticonvulsants) and current malignant disorders. In addition, reference 
individuals could not participate when they had a family history of ge-
netic metabolic bone disease (HPP, osteogenesis imperfecta), rickets in 
childhood, former or current osteoporosis or osteomalacia, known dia-
betes, chronic liver or gallbladder disease, former or current thyrotoxi-
cosis (T4 over normal range ≥ 6 months) or Cushing's disease. Fourteen 
adults with HPP were matched 1:1 by sex, age (±5 years), BMI (±3 kg/ 
m2), and the duration of menopause (±2 years) in postmenopausal 
women with reference individuals. Participants were barefoot, wearing 
indoor clothes, when body weight was assessed to the nearest 0.1 kg on a 
calibrated scale (Seca, Hamburg, Germany). Standing height was 
measured to the nearest 0.1 cm using a calibrated Harpeden stadiometer 
(Holtain Limited, Crymych, UK). 

Informed consent was provided by all participants and the study was 
performed in accordance with the Helsinki Declaration. The present 
study was registered at cliniclatrials.gov (NCT04181164) and was 
approved by the Ethics Committee (registration no.: H-19000730) and 
the Data Protection Agency (registration no.: VD-2019-102) for the 
Capital Region of Denmark. 

2.2. Biochemical analyses 

Blood samples were drawn after overnight fasting between 7:30 and 
10:00 am. All participants had to pause vitamin B6 and calcium sup-
plements for at least two weeks prior blood sampling. All analyses were 
done with serum (s-)/plasma (p-) as the sample material. For each assay 
the sample aliquots were kept frozen at − 80 degrees Celsius until the 
day of analysis. Samples for bone turnover marker measurements were 
analyzed using one single batch of each assay. Carboxyterminal cross- 
linked telopeptide of type 1 collagen (s-CTX) was measured using the 
IDS-iSYS CTX (CrossLaps®) assay (Immunodiagnostic Systems, plc, 
Tyne and Wear, UK), and propeptide of type 1 procollagen (s-PINP) was 
analyzed using the IDS-iSYS intact PINP assay (Immunodiagnostic Sys-
tems). The bone-specific alkaline phosphatase (s-BALP) was measured 
using the IDS-iSYS Ostase® BALP assay (Immunodiagnostic Systems). 
Osteocalcin (s-OC) and tartrate-resistant acid phosphatase 5b (p- 
TRAcP5b) were analyzed using the N-Mid Osteocalcin assay and the 
BoneTRAP® assay, respectively (Immunodiagnostic Systems) on the 
automated iSYS analyzer (Immunodiagnostic Systems). The p-sclerostin 
was measured using the TECOMedical Sclerostin HS EIA assay (Quidel 
Corporation, San Diego, CA) and determinations were made in dupli-
cate. Fibroblast growth factor 23 (p-FGF-23) was measured using the 
Liaison FGF-23 assay (Diasorin, Saluggia, Italy) on the automated 

N. Hepp et al.                                                                                                                                                                                                                                    

http://cliniclatrials.gov


Bone 160 (2022) 116420

3

Liaison XL analyzer (Diasorin). Assay performance was verified using 
the manufacturers' control specimens and patient pools. 

The p-vitamin B6/p-PLP was determined using the Chromsystems 
Vitamin B6 assay (Chromsystems, Munich, Germany) on a Dionex high 
pressure liquid chromatography (HPLC) system (Fischer Scientific, 
Roskilde, Denmark). The COBAS 8000 from Roche Diagnostics GmbH, 
Mannheim, Germany was used to analyze p-ALP, and all other 
biochemical parameters were measured by standard methods at the 
certified laboratory at Copenhagen University Hospital Hvidovre. 

The intermediary precisions expressed as coefficients of variation 
(CVs) for s-CTX were 5.3% (at s-CTX concentration 213 ng/L), 3.4% 
(869 ng/L), and 3.5% (2113 ng/L) for iSYS. For s-PINP the intermediary 
precisions were 5.4% (18.96 μg/L), 6.5% (48.48 μg/L), and 6.1% 
(122.10 μg/L) for iSYS, and for s-BALP the intermediary precisions were 
8.5%, 7.1%, 3.7%, and 6.3% at levels of 4.5, 13.2, 20.1, and 52.1 μg/L, 
respectively. In addition, CVs for s-OC were 3.0% (at an s-OC concen-
tration of 8.73 μg/L), 3.6% (27.6 μg/L), and 3.5% (68.7 μg/L) and for p- 
TRAcP5b the intermediary precision was 10.9% (3.2 U/L), 4.8% (6.2 U/ 
L), and 5.4% (9.0 U/L). For p-sclerostin, the intra-assay precision was 
<10% at both the 0.2 ng/mL and 1.9 ng/mL levels. Finally, for both p- 
FGF-23 and p-PLP the intermediary precision was <10% (all levels). 

2.3. Fracture assessment and DXA 

Information on fracture history in adults with HPP and reference 
individuals was obtained by a structured interview and from the elec-
tronical medical records as well as from documented radiographic test 
results. T-scores of the lumbar spine (L1-L4) and left hip were evaluated 
by DXA (Hologic Horizon™ QDR™ Series, Hologic, Inc., Bedford, MA, 
USA). Screening for vertebral fractures was performed by instant 
vertebral assessment (IVA) [32]. Fractures were categorized as low- 
(caused by fall from standing height or daily activities) and high-energy 
(related to a relevant trauma) fractures. 

2.4. Bone impact microindentation testing 

BMSi was assessed by IMI using a handheld indenter device 
(OsteoProbe® RUO, Active Live Scientific, Santa Barbara, CA, USA). 
Measurements were performed by two experienced physicians (LF, SM) 
at Odense University Hospital, Denmark. After skin disinfection and 
local analgesia with lidocaine (1%), the indenter device was used to 
create a microscopic indentation in the non-dominant mid-tibia bone by 
applying a dynamic impact. In brief, the 90-degree indenter device with 
a microscopic conic 10-μm edge was penetrated through the skin once 
and an initial preload of 10 N was applied to anchor the indenter into the 
bone and to ensure it had pierced the periosteum. Once the preload force 
had been reached, an impact with a peak force of 30 N was initiated to 
create the indentation. Ten accepted measurements in a defined radius 
(at least 2 mm away from previous site) were concluded. In addition, ten 
measurements were performed on a polymethylmethacrylate calibra-
tion phantom. Measurement stability was evaluated for bone tissue (<6 
= excellent, 6–8 = good, 8–10 = adequate, >10 = could be improved) 
and reference material (<1 = excellent, 1–1.5 = good, 1.5–1.0 =
adequate, 2–3 = could be improved, >3 = needs improvement). The 
system measures the indentation distance at peak force, translates it to a 
computerized unit and calculates an average value. Possible outliers 
were removed by the manufacturer's software. The indentation units, 
expressed as BMSi are defined as 100 times the ratio of the indentation 
distance from the impact into the calibration material, divided by the 
indentation distance from the impact into the bone [25,33]. 

2.5. High-resolution peripheral quantitative computed tomography 

Bone geometry, vBMD, microarchitecture and estimated bone 
strength were evaluated using a second-generation HR-pQCT system 
(Xtreme CT II, Sanco Medical AG, Brüttisellen, Switzerland) according to 

the manufacturer's standard protocol [34,35]. The non-dominant distal 
radius and tibia were scanned, unless previous fractures or metal from 
surgeries were present at these sites, otherwise the contralateral limbs 
were examined. All scans were performed using the same HR-pQCT 
system at Odense University Hospital, Denmark. The scan regions 
were selected by the relative offset distance method using an %-of- 
length offset of 4.0% at the distal radius and 7.0% at the distal radius in 
patients with HPP and reference individuals [35]. The image quality was 
evaluated for motion artefacts by a five-step scale (1 = best; 5 = worst) 
[36], and images graded >3 were not included to data analysis. 

Parameters of bone geometry including total, cortical and trabecular 
area (Tt.Area, Ct.Area and Tb.Area, respectively) were determined as 
mean cross-sectional area in all image slides [35,37]. Total, cortical and 
trabecular vBMD (Tt.vBMD, Ct.vBMD and Tb.vBMD, respectively) were 
calculated directly from grey scale image data and expressed as mg HA/ 
cm3 [35,37]. Microarchitectural parameters were assessed from the 
segmented bone structure in trabecular and cortical compartments 
applying direct 3D morphological measurement techniques. Trabecular 
number (Tb.N) was evaluated applying the ridge extraction technique, 
and trabecular thickness (Tb.Th) as well as trabecular separation (Tb.Sp) 
were measured using the distance transformation method [35]. In-
homogeneity of trabecular network (Tb.1/N.SD) was calculated as the 
standard deviation of the spacing between mid-axis (ridges) of the 
trabeculae [35]. Trabecular bone volume fraction (Tb.BV/TV) was 
calculated as the ratio of voxels in the mineralized bone segment to the 
total number of voxels in the trabecular section [35,38]. Cortical 
thickness (Ct.Th) was assessed by the distance transformation method, 
and cortical porosity (Ct.Po) was measured using automated dual 
threshold segmentation as described by others [39,40]. Threshold 
values for bone volume segmentation included 320 mg HA/cm3 for 
trabecular- and 450 mg HA/cm3 for cortical bone [35]. Failure load was 
estimated by a micro-finite element analysis (FEA) using the manufac-
turers software. Material properties of bone tissue included a Poisson's 
ratio of 0.3 and a Young modulus of 10 GPa [41], and failure load was 
estimated using the yield criterion of 0.7% critical strain and 2% critical 
volume [42]. Information on short term precision is important to 
interpret statistical differences between results. Precision error ranges of 
the second-generation HR-pQCT system has been assessed by Manske 
et al. [38]. The calculated root-mean-square coefficient of variation has 
ranged from 0.4% to 1.2% for geometrical areas and 0.4% to 2.4% for 
volumetric BMD [38,43]. Microarchitectural measurements has shown a 
variance from 0.8% to 2.7% for trabecular- and 1.3% to 13.7% for 
cortical parameters [38,43]. 

2.6. Statistical analysis 

Categorial variables were stated as numbers and continuous vari-
ables were expressed as median (interquartile range [IQR]), as data were 
not normally distributed (evaluated for normal distribution using his-
togram and quantile-quantile plots). Differences between the groups 
were calculated using the Wilcoxon's rank-sum test. The Spearman's 
correlation was applied for association analyses. P values <0.05 were 
considered as statistically significant. All analyses were done using the R 
studio statistical software (version 3.6.1) and GraphPad Prism 9 
(GraphPad Software Inc., CA, USA). 

3. Results 

3.1. Anthropometric, biochemical and clinical characteristics 

Ten adults with HPP were HZ for a pathogenic variant in ALPL and 
classified as adult-onset HPP, and four patients were CHZ and diagnosed 
in childhood (pediatric-onset HPP). Genotypes of adults with HPP are 
specified in Supplemental Table 1. Basic characteristics including age, 
BMI, body weight, standing height and the duration of menopause did 
not differ between adults with HPP and reference individuals (Table 1). 
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Biochemical results are presented in Table 2. Median p-ALP was 
lower and p-PLP higher in adults with HPP, which we had expected as 
reference individuals had to have normal p-ALP and p-PLP measure-
ments for inclusion. In addition, p-phosphate was significantly higher 
and s-BALP significantly lower in patients with HPP than reference in-
dividuals. Thyroid-stimulating hormone (p-TSH), p-PTH and p-25- 
hydroxyvitamin D did not differ statistically significant between the 
groups. All participants had normal kidney function and glycated he-
moglobin (HbA1c) as well as negative M-component. Included male 
subjects had normal follicle stimulating hormone (p-FSH) and luteiniz-
ing hormone (p-LH). Levels of p-FSH, p-LH and p-estrogen were in 
accordance with pre- or postmenopausal conditions among all female 
participants. 

Bone markers including s-PINP, s-CTX, s-OC, p-TRAcP5b and p- 
sclerostin did not differ between patients with HPP and reference in-
dividuals. Correlation analyses showed significantly positive associa-
tions between p-ALP and s-CTX (rho = 0.687, p = 0.007) as well as s- 

BALP and s-CTX (rho = 0.656, p = 0.011) in patients with HPP. Mea-
surements of p-ALP correlated with p-TRAcP5b (rho = 0.630, p = 0.016), 
and p-PLP with p-sclerostin (rho = 0.551, p = 0.041) in the HPP group. 
In the reference group, p-phosphate correlated significantly with s-PINP 
(rho = 0.631, p = 0.015) as well as s-CTX (rho = 0.847, p ≤0.001), and p- 
ALP correlated significantly with p-TRAcP5b (rho = 0.535, p = 0.049) 
and p-sclerostin (rho = 0.667, p = 0.009). Median p-FGF-23 was 
numerically lower among patients with HPP, though not statistically 
significant. Among patients with HPP and reference individuals, we did 
not observe significant correlations between p-phosphate and p-FGF-23. 
Spearman's correlations of bone markers and p-FGF-23 are shown in 
Supplementary Table 2. 

Results of fracture assessment are listed in Table 3. A history of 
fracture(s) was a possible inclusion criterion and a higher number of 
adults with HPP had non-vertebral, low-energy fractures as well as 
metatarsal fractures and fractures of toes compared with reference in-
dividuals. Two CHZ adults with HPP experienced bilateral femoral 
pseudofractures. Among all participants, no significant vertebral frac-
ture (> 20% decrease in height) was identified. 

3.2. Bone material strength 

Median BMSi did not differ between adults with HPP and the refer-
ence group (median [IQR]) (67.90 [63.75–76.00] vs. 65.45 
[58.43–69.55], p = 0.149). In addition, HZ and CHZ patients and 
reference individuals (HZR and CHZR) had similar BMSi: HZ vs. HZR 
(median [IQR]) (67.70 [61.65–75.63] vs. 63.75 [56.38–69.55], p =
0.190); CHZ vs. CHZR (median [IQR]) (70.85 [66.05–82.25] vs. 68.15 
[66.43–71.60], p = 0.886). Further, BMSi did not differ between pa-
tients with HPP and metatarsal fractures (Met) as well as HPP patients 
without metatarsal fractures (NonMet) and reference individuals (MetR 
and NonMetR): Met vs. MetR (median [IQR]) (70.85 [62.70–79.95] vs. 
67.30 [57.65–69.90], p = 0.393); NonMet vs. NonMetR (median [IQR]) 
(67.70 [63.50–73.75] vs. 64.45 [58.40–70.33], p = 0.382). Results of 
BMSi are visualized in Fig. 1. Measurements of BMSi did not correlate 
significantly with p-ALP, p-PLP, s-BALP, age, BMI, the number of non- 
vertebral fractures and non-vertebral, low-energy fractures, nor BMD 
at the lumbar spine or left hip (Table 4). 

3.3. HR-pQCT measurements of the distal radius and tibia 

Results of HR-pQCT measurements are shown in Table 5. Geomet-
rical parameters at the distal radius and tibia (Tt. Area, Ct.Area and Tb. 
Area) did not differ between adults with HPP and the reference group. 
Measurements of Tt.vBMD and Tb.vBMD at the distal radius were 
slightly lower in HPP patients than reference individuals, though not 
statistically significant. Patients with HPP had a tendency toward higher 
Tb.Sp and Tb.1/N.SD as well as lower TB.BV/TV at the distal radius, 
though not statistically significant compared with reference individuals. 

Table 1 
Basic characteristics.   

Adults with HPP (n =
14) 

Reference individuals (n 
= 14) 

Age (years) 44.5 (37.5–50.5) 46.00 (35.5–50.5) 
Sex (female/male) 12/2 12/2 
BMI (kg/m2) 23.5 (22.6–30.3) 24.4 (22.5–30.8) 
Body weight (kg) 65.0 (60.6–89.4) 67.5 (62.6–91.2) 
Standing height (cm) 168.2 (161.5–169.5) 165.0 (162.1–168.8) 
Menopause (post/pre) 3/9 3/9 
Duration of menopause 

(years) 
9.0 (5.0–17.0) 8.0 (4.5–19.0) 

Calcium supplements (yes/ 
no) 

3/11 5/9 

Vitamin D supplements 
(yes/no) 

8/6 10/4 

T-score lumbar spine − 0.2 (− 1.1–0.7) − 0.3 (− 0.9–0.2) 
T-score left hip − 0.3 (− 1.1–0.2) − 0.1 (− 0.8–0.8) 

Data er presented as median (IQR) or total numbers as appropriate. 

Table 2 
Biochemical parameters and bone markers.   

Adults with HPP 
(n = 14) 

Reference 
individuals (n = 14) 

p-Value 

p-Calcium ion 
(1.18–1.32 mmol/L) 

1.22 (1.20–1.24) 1.21 (1.20–1.22) 0.389 

p-Phosphate (0.76–1.41 
mmol/L) 

1.23 (1.12–1.33) 0.93 (0.88–0.98) 0.001* 

p-Magnesium 
(0.71–0.94 mmol/L) 

0.87 (0.83–0.92) 0.84 (0.80–0.87) 0.062 

p-Zinc (10–19 μmol/L) 11.0 (10.8–12.0) 13.0 (11.8–13.3) 0.073 
p-25-hydroxyvitamin D 

(≥ 50 nmol/L) 
68.0 (53.5–85.8) 81.5 (71.0–95.5) 0.085 

p-TSH (0.65–4.80 *10− 3 

IU/L) 
1.68 (1.19–2.11) 1.90 (1.33–2.41) 0.646 

p-PTH (1.1–7.1 pmol/L) 3.7 (3.1–4.3) 3.8 (3.6–5.0) 0.231 
p-PLP (15–73 nmol/L) 206 (107–874) 41 (34–60) – 
p-ALP (35–105 U/L) 22 (7–25) 65 (59–67) – 
s-BALP (μg/L) 5.3 (2.1–6.3) 14.7 (13.7–16.4) <0.001* 
s-PINP (μg/L) 53.0 (36.8–67.3) 45.5 (38.5–54.2) 0.667 
s-CTX (ng/L) 290.6 

(231.5–406.9) 
288.9 (259.4–463.1) 0.910 

s-Osteocalcin (μg/L) 16.8 (13.1–21.9) 13.25 (11.30–15.1) 0.081 
p-TRAcP5b (U/L) 3.4 (2.8–3.8) 3.4 (2.9–3.7) 0.890 
p-Sclerostin (ng/mL) 0.710 

(0.603–0.768) 
0.650 (0.623–0.703) 0.520 

p-FGF-23 (pg/mL) 31.8 (27.1–35.0) 43.7 (36.6–50.9) 0.055 

Values are median (IQR). Statistically significant results are marked with *. ALP 
= alkaline phosphatase; PLP = pyridoxal-5′-phosphate; PTH = parathyroid 
hormone; TSH = thyroid-stimulating hormone; BALP = bone specific alkaline 
phosphatase; CTX = C-terminal telopeptide of type 1 collagen; PINP = N-ter-
minal propeptide of type 1 collagen; PTH = parathyroid hormone; TRAcP5b =
tartrate-resistant acid phosphatase 5b; FGF-23 = fibroblast growth factor 23. 

Table 3 
Prevalence of non-vertebral fractures.   

Adults with HPP 
(n = 14) 

Reference individuals 
(n = 14) 

Any previous non-vertebral fracture 
(yes/no) 

12/2 7/7 

Any previous non-vertebral, low- 
energy fracture (yes/no) 

11/3 3/11 

Any previous non-vertebral, high- 
energy fracture (yes/no) 

6/8 6/8 

Fractures of the upper limps (yes/no) 6/8 4/10 
Femoral fractures (including 

pseudofractures) (yes/no) 
2/12 0/14 

Fractures of tibia and fibula (yes/no) 5/9 2/12 
Metatarsal fractures (yes/no) 6/8 0/14 
Fractures of toes (yes/no) 4/10 1/13 

Values are numbers of individuals with a certain type of fracture. 

N. Hepp et al.                                                                                                                                                                                                                                    



Bone 160 (2022) 116420

5

At both measured sites, Tb.N, Tb.Th, Ct.Th, Ct.Po and failure load did 
not differ between adults with HPP and reference individuals. Further, 
we performed subanalyses comparing HR-pQCT data between HZ as 
well as CHZ patients and matched reference individuals, respectively 
(Supplemental Tables 3 and 4). Parameters of bone geometry, vBMD and 
microarchitecture as well as failure load did not differ between HZ pa-
tients with HPP and reference individuals. The same observations were 
made when comparing these parameters between CHZ patients with 
HPP and reference individuals, with the exception that CHZ adults with 
HPP had significantly higher Ct.Po at the distal radius than reference 
individuals (median [IQR]) (1.5 [0.9–2.2] % vs 0.7 [0.6–0.7] %, p =
0.041). We performed correlation analyses between BMSi and all HR- 
pQCT measurements. In the HPP group, there were no significant cor-
relations between BMSi and geometrical parameters, volumetric BMD or 
microarchitectural parameters and failure load at the distal radius and 
tibia (data not included in the manuscript). In comparison, BMSi mea-
surements of reference individuals correlated significantly with Tt. 
vBMD (rho = 0.622, p = 0.020), Tb.vBMD (rho = 0.600, p = 0.023) and 
failure load (rho = 0.560, p = 0.040) at the distal tibia. Among reference 
individuals, all other parameters from HR-pQCT analyses did not 
correlate significantly with BMSi (data not included in the manuscript). 

4. Discussion 

In this study we assessed bone turnover markers, bone material 
strength and bone structural parameters in a cohort of adults with HPP 
and healthy matched reference individuals. In our cohort, a higher 
number of patients with HPP had non-vertebral, low-energy fractures, 
while bone turnover markers, BMSi as well as measurements of bone 
geometry and vBMD did not differ between the groups. However, our 

Fig. 1. Measurements of BMSi in HPP patients and reference individuals. BMSi 
was distinguished between adults with HPP (n = 14) and reference individuals 
(CHZR and HZR) (n = 14). In addition, BMSi of CHZ (n = 4) and HZ (n = 10) 
patients with HPP was compared with reference individuals (CHZR, n = 4; HZR, 
n = 10), respectively. Among patients with HPP, BMSi was distinguished be-
tween patients with metatarsal fractures (Met; n = 6) and reference individuals 
(MetR; n = 6) as well as between patients who did not have metatarsal fractures 
(NonMet; n = 8) and reference individuals (NonMetR; n = 8). Data are 
expressed as individual measurements, median and interquartile range. BMSi =
bone material strength index; ns = not significant. 
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results may indicate a tendency toward altered trabecular micro-
architecture in adults with HPP, and subanalyses revealed significantly 
increased Ct.Po in CHZ adults with HPP. 

Data on bone turnover makers in adults with HPP compared to a 
reference group are rare in the literature. In contrast to our results, 
Desborough et al. found significantly higher TRAcP5b and CTX in 20 
adults with HPP compared with controls of which 61.9% had received 
treatment suppressing bone turnover [22]. This may be explained by the 
different reference groups, as we only included reference individuals 
who did not receive medicine suppressing nor increasing bone turnover 
markers. In comparison, significantly lower levels of PINP and CTX were 
reported in a Spanish study comparing bone turnover markers between 
42 adults with low ALP activity (21 patients with pathogenic ALPL 
variant and 21 subjects with negative genetic screening) and a control 
group [44]. The inconsistent outcome compared to our study may be 
caused by the different selection of participants. The study from Spain 
identified patients through low levels of ALP, and half of the participants 
did not reveal pathogenic variants in ALPL, while we strictly included 
symptomatic adults with genetically verified HPP. Moreover, we spec-
ulate that diverse genotypes result in variable impairment of TNAP ac-
tivity and thus bone turnover may cause inconsistent outcomes between 
studies investigating different cohorts of adults with HPP. Fibroblast 
growth factor 23 regulates phosphate homeostasis by supressing phos-
phate reabsorption in the kidney [45]. Interestingly, we found signifi-
cantly higher p-phosphate levels, though lower p-FGF-23 values in 
patients with HPP than reference individuals. Possible explanations for 
this observation could be a dysfunction of FGF-23 synthesis in the bone 
or a disturbed feedback mechanism between p-phosphate concentra-
tions and FGF-23 expression in patients with HPP. 

This is the first study assessing BMSi in adult patients with HPP. BMSi 
has been demonstrated to be significantly lower in patients with low 
bone mass and fragility fractures than in non-fracture controls, regard-
less of BMD and fracture site [29,30]. A Norwegian case control study 
found significantly lower BMSi in 30 women with previous stress frac-
tures, compared with 30 controls [46]. Opposite to these studies, cor-
relations analyses showed a tendency that a higher number of fractures 
may associate with higher BMSi in adults with HPP. Interestingly, 
among reference individuals we observed a tendency that low BMSi may 
correlate with a higher number of fractures. Further, BMSi was signifi-
cantly related to Tt.vBMD and failure load in this group. In contrast, a 

significant association between BMSi and fractures was not observed in 
patients with acromegaly nor patients with chronic kidney disease 
[47,48]. Our results indicate that BMSi may not be characteristically 
reduced among adults with HPP and therefore, low BMSi may not 
explain the increased fracture risk in these patients. 

Bone structural parameters measured by HR-pQCT in adults with 
HPP were previously evaluated by Schmidt et al. [19]. In this study, 
patients with HPP and fractures (n = 8) had significantly lower Tt.BMD 
and Ct.Th at the right distal radius and the left distal tibia, compared 
with patients without fractures (n = 6) [19]. The same study has 
demonstrated significantly lower Tr.BMD and Tb.Th in adult HPP pa-
tients with fractures, though only at the right radius [19]. This study 
used another generation of HR-pQCT scanner than we did, and scanned 
the left tibia and right radius, as we examined the non-dominant limbs. 
On the other hand, a significant increase of Tb.N and a significant 
decrease of Tb.Sp as well as Tb.Th has been demonstrated in a study 
investigating bone histomorphometry by bone biopsies of the iliac crest 
from eight adult patients with HPP [49]. The method used in this study 
is a histological examination assessing bone structure on a quantitative 
level. In addition, this study used bone from the iliac crest and HR-pQCT 
analyses are performed at the distal radius and tibia. Consequently, re-
sults on bone microarchitecture in HPP are scarce and in parts incon-
sistent with our results, which may be explained by the different 
methods and reference populations used in our study and the studies 
described above. Furthermore, a murine study assessed trabecular and 
cortical parameters by quantitative nano computed tomography in bone 
marrow stroma cell collagen implants (ossicles) from both global TNAP 
knock out mice (ALPL− /− ) and ALPL+/+ controls, and found significantly 
decreased trabecular BMD, bone volume fraction, Tb.Th, Tb.N, as well as 
increased Tb.Sp in ALPL− /− mice [50]. 

This study does have strengths. To reduce bias, we matched adults 
with HPP by sex, age, BMI and menopausal status with healthy reference 
individuals, and only included subjects who did not receive medicine 
altering bone metabolism. In addition, the presence of diseases affecting 
bone health including thyroid- and parathyroid disorders, diabetes, 
hypogonadism and multiple myeloma was excluded by biochemical 
analyses. We examined symptomatic and genetic verified patients with 
HPP of which the majority experienced fractures. Nevertheless, the 
skeletal manifestations in the adults with HPP here may not be severe 
enough to prove significant differences when compared with healthy 

Table 5 
Bone geometry, volumetric density, microarchitecture and strength evaluated by HR-pQCT at the distal radius and tibia.   

Radius Tibia 

Adults with HPP (n = 14) Reference individuals (n = 14) p-value Adults with HPP (n = 14) Reference individuals (n = 14) p-Value 

Geometry (mm2) 
Tt.Area 372.3 (329.7–381.9) 345.0 (317.0–379.6) 0.370 727.5 (649.6–759.9) 735.4 (651.0–794.0) 0.603 
Ct.Area 47.05 (41.02–52.05) 46.50 (42.83–55.80) 0.701 108.9 (93.17–117.3) 121.5 (107.0–125.5) 0.135 
Tb.Area 328.1 (292.4–338.2) 291.6 (278.2–329.7) 0.291 613.2 (561.1–658.1) 630.9 (541.2–666.3) 0.667  

Volumetric density (mgHA/cm3) 
Tt.vBMD 212.7 (197.3–240.5) 248.0 (228.8–270.0) 0.085 258.5 (244.7–291.9) 296.6 (246.4–319.2) 0.491 
Ct.vBMD 801.2 (731.0–811.0) 790.8 (761.1–805.9) 0.982 878.2 (817.8–906.1) 893.6 (859.1–899.4) 0.730 
Tb.vBMD 138.2 (124.5–157.4) 161.3 (148.7–176.4) 0.081 158.2 (149.4–167.6) 181.2 (157.7–194.8) 0.190  

Microarchitecture 
Tb.N (1/mm) 1.460 (1.353–1.540) 1.536 (1.460–1.620) 0.085 1.405 (1.277–1.496) 1.409 (1.333–1.471) 0.769 
Tb.Sp (mm) 0.664 (0.613–0.724) 0.620 (0.578–0.659) 0.054 0.688 (0.642–0.763) 0.681 (0.627–0.726) 0.581 
Tb.Th (mm) 0.223 (0.218–0.227) 0.227 (0.216–0.236) 0.519 0.248 (0.235–0.265) 0.255 (0.238–0.274) 0.448 
Tb.1/N.SD (mm) 0.253 (0.235–0.283) 0.229 (0.208–0.252) 0.056 0.279 (0.246–0.325) 0.275 (0.244–0.294) 0.783 
Tb.BV/TV (%) 18.8 (16.4–22.7) 22.8 (20.6–24.7) 0.054 23.2 (22.3–24.8) 26.4 (23.3–28.6) 0.154 
Ct.Th (mm) 0.647 (0.587–0.703) 0.693 (0.597–0.745) 0.280 1.183 (1.039–1.364) 1.321 (1.190–1.465) 0.285 
Ct.Po (%) 0.8 (0.4–1.0) 0.7 (0.6–0.8) 0.710 2.3 (1.9–3.7) 2.2 (1.7–2.6) 0.433  

Bone strength (N) 
Failure load 2378 (1805–2886) 2810 (2509–3083) 0.210 8193 (7607–9203) 9686 (8394–10,937) 0.137 

Data are median (IQR). 
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individuals. Adults with HPP were, except for two participants not 
family related, which lessens bias such as similar environmental factors 
and genetic makeup, that can affect bone health. The main weakness of 
the current study is the small sample size of adults with HPP and 
reference individuals, which has reduced power of statistical analyses. 
HPP is a rare condition, and we were not able to recruit a higher number 
of adults with HPP nor reference individuals for the current study. To 
achieve a larger sample size of adults with HPP, international collabo-
rations would strengthen future studies. Further limitations include the 
lack of information on lifestyle factors such as smoking, alcohol con-
sumption, physical activity and differences of the amount of calcium, 
vitamin D and phosphate intake. However, our study provides important 
information to better understand the bone phenotype and its pathology 
in adult patients with HPP. 

5. Conclusions 

Bone turnover markers and BMSi are not altered in our cohort of 
adults with HPP when compared with reference individuals. In addition, 
low BMSi does not correlate with fracture prevalence in adults with HPP. 
Our results indicate that altered trabecular bone structural parameters 
may contribute to the fracture risk in adults with HPP and suggest that 
increased Ct.Po could play a role in the development of femoral pseu-
dofractures in CHZ HPP patients. Further studies assessing bone quality 
histologically and quantitatively by bone histomorphometry in larger 
cohorts of adults with HPP and reference individuals are required to 
explore the increased fracture risk in adults with HPP. 
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