
 

  

 

Aalborg Universitet

Robust Deep Gaussian Process-based Probabilistic Electrical Load Forecasting
against Anomalous Events

Cao, Di; Zhao, Junbo; Hu, Weihao; Zhang, Yingchen; Liao, Qishu; Chen, Zhe; Blaabjerg,
Frede
Published in:
I E E E Transactions on Industrial Informatics

DOI (link to publication from Publisher):
10.1109/TII.2021.3081531

Publication date:
2022

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Cao, D., Zhao, J., Hu, W., Zhang, Y., Liao, Q., Chen, Z., & Blaabjerg, F. (2022). Robust Deep Gaussian
Process-based Probabilistic Electrical Load Forecasting against Anomalous Events. I E E E Transactions on
Industrial Informatics, 18(2), 1142-1153. [9435025]. https://doi.org/10.1109/TII.2021.3081531

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1109/TII.2021.3081531
https://vbn.aau.dk/en/publications/6d0c7a41-3949-458e-b27f-777386a6e262
https://doi.org/10.1109/TII.2021.3081531


1551-3203 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2021.3081531, IEEE
Transactions on Industrial Informatics

 1 

 

Abstract—The abnormal events, such as the unprecedented 

COVID-19 pandemic, can significantly change the load 

behaviors, leading to huge challenges for traditional short-

term forecasting methods. This paper proposes a robust 

deep Gaussian processes (DGP)-based probabilistic load 

forecasting method using a limited number of data. Since 

the proposed method only requires a limited number of 

training samples for load forecasting, it allows us to deal 

with extreme scenarios that cause short-term load behavior 

changes. In particular, the load forecasting at the beginning 

of abnormal event is cast as a regression problem with 

limited training samples and solved by double stochastic 

variational inference DGP. The mobility data are also 

utilized to deal with the uncertainties and pattern changes 

and enhance the flexibility of the forecasting model. The 

proposed method can quantify the uncertainties of load 

forecasting outcomes, which would be essential under 

uncertain inputs. Extensive comparison results with other 

state-of-the-art point and probabilistic forecasting methods 

show that our proposed approach can achieve high 

forecasting accuracies with only a limited number of data 

while maintaining excellent performance of capturing the 

forecasting uncertainties.   
Index Terms—Probabilistic load forecasting, limited data, 

anomalous events, deep Gaussian process regression, uncertainty 

quantification. 

I.  MOTIVATIONS AND CONTRIBUTIONS 

The abnormal events, such as the ongoing coronavirus 

disease 2019 (COVID-19) pandemic, can lead to a profound 

influence on power system operations [1]. It has been found that 

there are significant changes in electrical load consumption 

behaviors across the world during the pandemic [2]. Take the 

data of Northern Italy after the announcement of second phase 

containment measures for example, the electrical load demand 

of this zone during the third week of March 2019 and 2020 are 

displayed in Fig. 1 [3]. It can be observed that the load demand 

experienced significant drops during the pandemic compared 

with that in the same period of 2019. Moreover, the 

consumption pattern also changes. The changes in both 

magnitude and consumption patterns bring great challenges for 

the forecasting of load demand. During this week, the mean 

absolute percentage error (MAPE) and maximum MAPE of 
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day-ahead load forecasting provided by the system operator 

increase by 61% and 40% compared with those in the same 

period in 2019. Although the base load decreases sharply, the 

mean absolute error (MAE) of day-ahead prediction increases 

from 329.5 MW to 428.2 MW, increasing by 30% as compared 

to that in 2019. Moreover, the MAPE obtained by the 

generalized adaptive models utilized by the main French 

electricity operator during the first few weeks of  

 
Fig. 1. Load patterns of Northern Italy during the third week of March in 2019 
and 2020.  

lockdown is five times of that achieved under normal conditions, 

demonstrating the challenges for load forecasting caused by the 

pandemic [4]. The sharp decrease of forecasting accuracy is 

caused by two main reasons: 1) the short-term load prediction 

models typically depend on the relatively long-term patterns, 

and therefore they have large inertia against unprecedented 

change in peak demand and consumption pattern in a short term. 

The existing forecasting models are not flexible enough to adapt 

to these scenarios, 2) the dramatic changes happened in a 

relatively short time and no similar event has been ever 

observed in history. As a result, the volume of the recorded data 

is not enough to train an accurate forecasting model.  

The sharp decrease load forecasting accuracy during 

abnormal events may lead to the technical risks for the 

operation of power systems, the balance of which is maintained 

through the multi-stage power generation dispatches. Since the 

aim of the power generation dispatch is to meet the load demand, 

good forecasting results are required by the operator. For 

example, the load forecasting of 15-39 hours ahead is a basis 

for the scheduling of day-ahead generation. The occurrence of 

anomalous events may significantly decrease the accuracy of 

current electrical load forecasting tools, which brings great 

challenges for the balance of power system. This is even 

aggravated by the increasing proportion of intermittent 
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renewable generations due to their stochasticity [5]. In this 

context, more flexible margins and accurate probabilistic 

analysis are required to hedge against the uncertainty. This calls 

for a probabilistic load forecasting method to make effective 

inductive reasoning under anomalous conditions with limited 

data. 

Load forecasting has been widely investigated in the 

literature and various approaches have been proposed. However, 

previous works focus mainly on the load forecasting during the 

normal operation period and there are rare studies to deal with 

extreme events, such as the COVID-19. The statistical analysis 

techniques face huge challenges of providing accurate 

forecasting results when dealing with the complex nonlinear 

system. By contrast, the parametric methods like deep neural 

networks (DNN) require a large amount of data to find the 

precise patterns among samples [6]. Note that these methods are 

typically utilized for point forecasting, which cannot capture the 

uncertainties caused by the pandemic.  

Gaussian process (GP) regression, a non-parametric method 

based on the Bayesian theory, has advantages over 

parameterized methods in regression analysis with a limited 

number of training samples [7]. Furthermore, GP allows us to 

quantify the uncertainty of the forecasting values, which is very 

helpful for secure system planning and operation considering 

uncertainties. However, the selection of the covariance function 

of GP is cumbersome, requiring both hands-on tuning and a 

deep understanding of the data. This may not be possible if there 

are no prior knowledge of the specific problem to be solved. 

Note that the multilayer hierarchy models, such as DNN have 

structural advantages in modeling complex dynamic functional 

features by stacking multiple layers of NNs and sequentially 

warping the latent variables. A hierarchical generalization of 

GP leads to the development of deep GP. Specifically, by 

hierarchically warping and stretching the input space, a 

covariance function with “self-tuning” capability that can fit 

data without much human intervention can be formulated [8]. 

DGP integrates the flexibility of deep structure models and the 

uncertainty quantification and effective inductive reasoning 

ability of the GP method [9].  

This paper aims to develop DGP for the probabilistic load 

prediction that can deal with anomalous events with limited 

data. The main contributions are: 

1) The load prediction considering extreme events is 

formulated as a regression problem with limited training 

samples. It is further solved by the enhanced DGP method, 

i.e., double stochastic variational inference DGP 

considering the impacts of mobility data. The proposed 

approach can achieve effective inductive reasoning based 

on only a limited number of recorded data and thus can 

quickly adapt to the unprecedented changes. The utilization 

of mobility data further enhances its ability to address 

uncertainties.  

2) The proposed method can effectively quantify load 

forecasting uncertainties caused by multiple uncertainties 

during the anomalous events. This allows system planners 

and operators to make uncertainty-aware decisions. It 

distinguishes from typical point forecasting methods that 

may cause large deviations when facing high uncertainties. 

3) Comprehensive comparisons with other benchmark 

machine learning methods have been carried out using a 

series of datasets at both the city and country level. It shows 

that our proposed approach has a better capability of 

dealing with anomalous events with a limited number of 

data while being able to quantify the uncertainties of 

forecasts.  

 The remainder of this article is organized as follows: In 

Section Ⅱ, a literature review is provided, followed by the 

description of the proposed method in Section Ⅲ. Section Ⅳ 

shows and analyzes the simulation results. Finally, Section Ⅴ 

provides some conclusions of this paper. 

II.  LITERATURE REVIEW 

The electric load prediction can be classified into two main 

categories: statistical analysis method-based techniques and 

artificial intelligence algorithm-based ones. Statistical methods, 

such as multiple linear regression models (MLR) [10], 

exponential smoothing methods [11], autoregressive moving 

average (ARMA) methods [12] are widely used. MLR methods 

use multiple independent variables for the linear regression 

analysis. It does not lead to a good prediction accuracy in the 

face of a complex nonlinear system. ARMA type methods can 

make an accurate prediction for time series data with high 

stationarity and periodicity. When the load is affected by some 

complex factors and shows strong randomness and non-

stationary characteristics, the prediction precision significantly 

declines.  

Among artificial intelligence-based approaches, support 

vector regression (SVR) [13-14] and NN methods [15-17] are 

popular. SVR suffers from a high computational burden when 

dealing with a large amount of data. Various NN based 

approaches include back-propagation NN (BPNN) [15], 

recurrent NN (RNN) [16] and convolutional NN (CNN) [17]. 

BPNN can directly learn an affine rule from historical data 

without specifying an exact function form. For time-series data, 

such as electric load, the relationships between inputs contain 

valuable information. By taking inputs as the state values of the 

neuron of the previous time-step, RNN can learn the mapping 

between the inputs. Among them, the long-short term memory 

(LSTM) NN is the most popular one owing to the alleviation of 

gradient explosion. LSTM based approaches achieved 

promising results in load forecasting applications [17-18]. Note 

that NN based approaches are parametric methods, which 

typically require a large amount of data to learn the relative 

patterns from samples as they have many parameters to be 

optimized. Therefore, the direct application of NN is not 

appropriate as the data during the anomalous events are scarce.  

The aforementioned methods belong to the point forecasting 

model, which only predicts a deterministic value. In recent 

years, with the increasing penetration level of flexible demand, 

the uncertainty quantization of load forecasting becomes more 

and more important for many applications, such as optimal 

bidding in the electricity market, probabilistic optimal power 

flow, and reliability planning [19]. Various probabilistic load 

forecasting approaches have been proposed that can be divided 

into three categories [20]: post-processing of the point forecast 

results [21], probabilistic forecasting methods [22], and 

scenario-based methods [23]. However, most probabilistic 

forecasting methods require a relatively large amount of 

data for training and therefore are not suitable for load 

prediction during the anomalous events, where only a 
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handful of data can be utilized.  

     As a non-parametric method, GP can provide flexible 

function estimation considering uncertainties and thus is 

suitable for prediction tasks in safety-critical fields, such as 

power systems. Several studies have applied GP for the load 

prediction and it has been demonstrated that GP can produce 

better estimates than benchmark methods, like NN and SVR 

[24-27]. It is worth noting that when GP is utilized to solve the 

regression problem, the forecasting accuracy is sensitive to the 

selection of the covariance function. In [25], a covariance 

kernel is developed to incorporate daily/weekly patterns and 

weather conditions for the prediction of future loads. Three 

different kernels have been evaluated in [26]. The selection of 

covariance kernel function requires expert knowledge of the 

dataset, which is difficult to obtain when dealing with 

unforeseen scenarios, such as the COVID-19. This paper builds 

on the DGP and develops a new load forecasting method that 

can deal with anomalous events with limited recorded data. It is 

worth noting that DGP has not been investigated in the relevant 

power system applications. 
DGP

SGP SGP

1f Lf

Input
Weather information

Time 

Mobility data 

Output

Mean

Variance

Quantile regression

Probability density 

Probabilistic results

 
Fig. 2. Schematic of the proposed method. 

III.  PROPOSED DGP MODEL FOR LOAD FORECASTING 

In power systems, the load consumption data can be denoted 

as a time series { }ty . To forecast future load demand 
1ty 
, the 

historical load consumption data ,...,t H ty y
 and other related 

variables, such as weather data, are utilized for constructing the 

training set. In this paper, they are expressed as 
tx . Load 

forecasting aims to find a model ( )f   which maps from 
tx  to 

1ty 
 according to the gradient obtained by minimizing the pre-

determined loss functions.  

In general, parametric methods require a large amount of data 

to find relative patterns since those methods need to optimize 

many parameters. During the anomalous situations, such as the 

COVID-19 pandemic, the unprecedented changes in 

consumption patterns and the magnitude of load demand make 

it difficult to construct a good dataset that is sufficient for the 

training of parametric methods, especially at the beginning of 

the pandemic. Also, the parametric methods cannot be directly 

used for probabilistic forecasting.  

Instead of looking for a parameterized model, we model the 

distribution of function ( )f   based on Bayesian nonparametric 

methods. It allows us to deal with the uncertainties concerning 

new data. Motivated by that, this paper develops the DGP-based 

approach. In the sequel, GP modeling is first introduced. Then, 

the enhanced GP methods, i.e., sparse GP (SGP) and double 

stochastic variational inference DGP to improve the 

computational efficiency and generalizability to wide 

distributions are developed for probabilistic load prediction. 

The schematic of the proposed approach is shown in Fig. 2 and 

the detailed descriptions of the algorithms are shown below. 

A. Introduction of GP Regression 

Given a training data set 
1{( , )}N

n n nD x y  , where nx

represents the input of data-point n and ny is the associated 

output; 
1 2[ , ,..., ]T

nX x x x and 
1 2[ , ,..., ]T

nY y y y are the input 

and output sets. Assuming the state set of the stochastic process 

of input variables ( ) ( ( ))if X f x obey the n-dimensional joint 

Gaussian distribution, f is thus a GP. It is specified by the mean 

function ( )m x  and covariance function ( , )K X X  : 

( ) ~ ( ( ), ( , ))f X GP m X K X X                      (1) 

The GP regression model takes the mapping from X to Y as a 

GP. A standard GP regression model can be obtained by taking 

into account the homoscedastic Gaussian noise: 

 ( )Y f X     with 2~ (0, )nN I                    (2) 

where  is the homoscedastic Gaussian noise; 2

n is the 

variance; I is an identity matrix with appropriate dimensions. 

Since the noise is independent, y is also a GP: 
2~ ( ( ), ( , ) )nY GP m X K X X I                     (3) 

Then, the prior distribution of Y, i.e., Yp, can be obtained on the 

training set according to Bayesian theory: 
2~ (0, ( , ) )p

nY N K X X I                          (4) 

GP aims to forecast 
*f  given input 

*x . The joint distribution of 

training set output Y and the test output
*f  are 

2

*

* * * *

( , )   ( , )
~ (0, )

     ( , )         ( , )

n n
Y K X X I K X x

N
f K x X K x x

  
  

   

            (5) 

where ( , ) ( ( , ))i jK X X k x x represents the N N covariance 

matrix on inputs of training set D; ( , )i jk x x is the kernel function;

* *( , ) ( ( , ))iK X x k x x  represents the 1N  vector of 

covariance between the test point *x  and the training inputs in 

D; 
* * ( , )K x x is the covariance of the test points. The posterior 

distribution of 
*f  is given by  

* * * *( | , ) ~ ( ,cov( ))p y x D N f f                      (6) 

2 1

* *( , ) ( )Tf k x x K I y                             (7) 

2 1

* * * * * *cov( ) ( , ) ( , ) ( ) ( , )Tf k x x k x x K I k x x             (8) 

where 
* *f   and 

*

2

*cov( )f f  . The GP model can select 

different covariance functions, among which the Radial Basis 

Function (RBF) is the one that has been widely used: 

2 11
( , ) exp( ( ) ( ))

2

T

fk x x x x M x x                        (9) 

where 2

f represents the variance of time series; 2( )M diag l , 

where l is the variance scale. Both 2

f  and M are parameters to 

be optimized during the training. Since 2I  is typically 

together with the covariance matrix K, it is also treated as the 

learnable parameters. The parameters to be optimized can be 

defined as 2 2{ , , }fM   , which are updated by maximizing 

the following marginal likelihood function:  

ˆ arg max ( | )p D


                                 (10) 
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When the optimal parameters are obtained, the mean 
*  and 

variance 
*

2

f of the test point 
*x  can be calculated according to 

equations (7) and (8). The variance allows us to quantify the 

load forecasting uncertainties. 

B. Computationally Efficient Sparse GP Regression 

Since the training time complexity of GP is 3( )O N , it is not 

suitable for applications with a large number of training data. In 

this context, the SGP method is developed. By introducing M 

inducing points to approximate the original GP, the complexity 

can be reduced to 2( )O NM .  

Define a set of M inducing points with inputs 
1( ,..., )T

MZ z z

and their corresponding outputs 
1( ,..., )T

MU u u . Since U and f 

are generated by the same GP, we get 

( , | , ) ([ , ] | [0,0], ([ , ],[ , ]))p f u X Z N f u K X Z X Z               (11) 

( | ) ( | 0, ( , ))p u Z N u K Z Z                               (12) 

1 1( | ; , ) ( | , )nm mm nn nm mm mnp f u X Z N f K K u K K K K                (13) 

  Variational inference is introduced to reduce the 

computational burden. It aims to look for an approximated 

posterior ( , )q U f  through the minimization of Kullback Leibler 

divergence between the true posterior p and the variational 

posterior q. The minimization problem is equivalent to the 

maximization of the following lower bound [28]: 

( , )

( , , )
[log ]

( , )
q f U

p y f U
E

q f U
                            (14) 

The variational posterior is ( , ) ( | ) ( )q U f p f U q U and

( ) ( , )q U N   . When ( , ) ( , | )q U f p U f y  holds, the Gaussian 

marginal likelihood is formulated as 
1 1 1

2

( ) ( | ) ( ) ( | , ( ) )

         ( , )

nm mm nn nm mm mm mm mn

i i i

q f p f u q u du N f K K u K K K K K K

N m S

     







   

                                                                                              (15) 

According to [28], the lower bound can be simplified and 

formulated as  

( )1
log ( ) log ( | ) ( ( ) || ( ))

i

N

q f i ii
p y p y f KL q u p u


             (16) 

There are two sets of parameters to be optimized: the variational 

parameters     ( ) ( )

1 1
, ,

M M
n n

i n n
Z 

 
   and the parameters of 

the kernel 2 2{ , , }h fM   , both of which are optimized by 

maximizing the lower bound.  

C. Double Stochastic Variational Inference DGP Regression 

DGP is a hierarchical generalization of GP that integrates the 

uncertainty quantification ability of non-parametric methods 

and the power of the DNN structure. GP relies on a 

sophisticated definition of the covariance function, which is a 

laborious process and also requires the empirical knowledge of 

the dataset. DGP overcomes this limitation by adopting a 

multilayer hierarchy and successive warping and stretching the 

input space, leading to a covariance function with a self-tuning 

ability that can fit arbitrary data. The deep structure of GP is 

achieved through a feed-forward and fully-connected manner. 

This paper further extends the SGP with multiple layers and the 

double stochastic variational inference allows more general 

distribution types. 

For a DGP of depth L, each layer represents a GP to model 

function lF  that takes 1lF  and lF as inputs and outputs for 

1,...,l L . We consider the DGP model that stacks multiple-

layer SGP, and the inducing points with inputs  
1

0

L
l

l
Z





 and 

corresponding outputs  
1

L
l

l
U



 are introduced. The joint 

probability density function of DGP can be denoted as: 

  1 1 1

1 11
( , , ) ( | ) ( | ; , ) ( ; )

L N Ll l L l l l l l l

i ii ll
p Y F U p y f p F U F Z p U Z  

 
  (17) 

where 
0F X . In the DGP model, the marginal likelihood can 

also be obtained by the variational inference similar to the SGP. 

The inferred posterior is 

  1 1

11
( , ) ( | ; , ) ( )

L Ll l l l l l l

ll
q F U p F U F Z q U 


          (18) 

where ( ) ( , )l l lq U N   . Then, the marginal likelihood is  

 
11

1 1

1 1

( ) ( | ) ( )

                ( ; , ) ( | , )

L Ll l l l l

ll

L Ll l l l l l

l l

q F p F U q U dU

q F F Z N F m S



 

 



 

 

 

             (19) 

where 
1 1( ; , )l l lq F F Z 

 is formulated as: 

1 1 1 1 1( ; , ) ( | , ( ) )
nm mm nn nm mm mm mm mn

l l l l l l

l l l l l l l lq F F Z N F K K U K K K K K K         (20) 

and the marginal likelihood of the last layer is derived as: 
1 1 1

1
( ) ( ; , )

LL l l l l

i i i il
q f q f f Z df

  


                    (21) 

The evidence lower bound of the DGP is  

 

 

 1

1

( , )

1

( , , )

( , )
L

l l

l

L
l l

l
DGP L

l lq F U

l

p Y F U

q F U





 
  
 
 

               (22) 

which can be further simplified and formulated as [28]: 

( )
1 1

log ( | ) ( ) || ( )L
i

N L
L l l

DGP n nq f
i l

p y f KL q U p U
 

               (23) 

Then the parameters for inference functions 

    ( ) ( ) 1

01 1
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 
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, ,... ,

l
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h ard Q ll ll
    
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

 

are optimized by maximizing the lower bound. When the 

learnable parameters are fixed, the distribution of the test points 

can be obtained according to 
1 1 1

* * * * *1
( ) ( ; , )

LL l l l l

l
q f q f f Z df

  


              (24) 

The DGP model assumes that the posterior distribution to be 

Gaussian, which may not be true in practice. To this end, the 

sampling method is adopted. In particular, we sample 

(0, )l

i N I   first, after which we draw the sampled variables 

1 1ˆ ˆ~ ( ; , )l l l l

i i if q f f Z   for 1,..., 1l L   recursively as 

1

1

,

ˆ ˆ( )l l

l l l

i i iZ
f m f




  
1

1 1

,

ˆ ˆ( , )l l

l l

i iZ
S f f

 


        (25) 

where  is the elementwise operator and m and S are expressed 

as follows: 

1 1, ,
( ) [ ] ( , ) [ ]l l l l

l l l l l

i i i j ijZ Z
m f m S f f S

  
 ；         (26) 

After obtaining the marginal distribution of each layer ˆ( )l

iq f , 

the learnable parameters can be optimized by maximizing the 

evidence lower bound. During the test stage, the distribution of 

the test points can be obtained: 
1( ) 1

* * *

1

1
( ) ( ; , )

L
S

L L s L

s

q f q f f Z
S

 



 
              (27)  

 

The double stochastic variational inference DGP model 

includes two sources of stochasticity: i) the expectation is 
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approximated using samples from the variational posterior; ii) 

the model requires sub-sampling the data for scenarios with a 

large number of training data. 

D. Uncertainty Quantification and Algorithm Implementation 

  After the distribution of the test points is obtained from (27), 

n samples 
1{ ,..., }ns s are generated from that distribution. Then, 

the confidence interval of the prediction can be obtained via 

( / 2, 1)* ( / 2, 1)*
,  

t n t n
c s c s

n n

    
              (28) 

where c  and c represent the lower and upper bounds of the 

confidence interval, respectively; s and  represent the mean 

and variance for n samples; is the degree of confidence; ( )t 
is the t distribution, the value of which can be obtained by 

looking up the table. The implementations of the proposed 

method are shown in Algorithm Ⅰ. 

Algorithm 1 Implementation of the proposed method 

Training procedure 

Input: Training set { , }rT X Y  

Output: Parameters 
i  and kernel parameters

h  

Initialize: Randomly initialize all parameters  

    1: for epoch=1:stop_epoch do 

2: Samples a mini-batch size data from 
rT  

3: for iteration=1:stop_iteration do 

4: 
    Calculate variational distribution of each 

layer ( ) ( , )l l lq U N    

5: 
Calculate the marginal distribution of each 

layer ( )lq f  according to (20) and (21) 

6: Samples from marginal according to (25) 

7: Calculate 
DGP

according to (23) 

8: Update 
i  through 

ii i DGP    

9: Update 
h through 

hh h DGP    

10: end for 

     11: end for 

Test procedure 

Input: Test data points 
*T  

Output: Probabilistic forecasting result 

1: Load parameters 
i  and kernel parameters

h  

2: 
Calculate the marginal distribution of each 

layer 
,*( )l

iq f  

3: 
Sample from marginal of each layer according 

to (25) 

4: 
Calculate marginal distribution of output layer 

according to (27) 

5: Obtain interval prediction result via (28) 

IV.  RESULTS AND DISCUSSIONS 

In this section, tests are carried out on different real-world 

data sets to illustrate the effectiveness of the proposed approach. 

In particular, comparative tests among various point forecasting 

methods utilizing small-scale and middle-scale training 

samples are first illustrated. Then, comparative results for 

probabilistic forecasting are presented and analyzed.  

A.  Experimental Setup 

Hourly electricity load demand data of regions with different 

sizes are utilized: metropolitan-level data, including four cities 

in America (Boston, Seattle, Chicago, and Philadelphia) and 

country-level data, including two countries in Europe 

(Germany and France). The data are obtained from [29] and are 

publicly available. The metropolitan-level city data have 46-

dimensional features, including timing information, weather, 

and mobility data. The weather information includes 

temperature, humidity, cloud cover, precipitation, and air 

pressure. The timing features can encode information, such as 

month index, day index, hour index, and distinction features of 

weekday and holidays. Mobility data include six location-

specific metrics achieved from Google (parks, workplaces, 

residential, retail & recreation, workplaces, and grocery & 

pharmacy) and three mobility features from Apple (walking, 

driving, and transit). Since the weather and mobility data of 

several cities are concatenated to reflect patterns in the country-

level dataset, they contain 60 input features for each instance. 

All data are at a one-hour interval and range from February 15th 

to May, 15th in 2020. The data are split into training, validation, 

and test sets proportionally. The training set is used to train the 

load forecasting model, and the validation set is applied to 

select the model with the best forecasting accuracy, while the 

test set is utilized to evaluate the performance of the method. 

The simulations are conducted on a workstation with an Intel 

2.2 GHz Xeon E5-2630 CPU. The code is written in Python 

with TensorFlow and gpFlow. 

B.  Evaluation Metrics 

Comparative tests are carried out among various methods on 

both point and probabilistic forecasting. To evaluate the 

performances of those methods, two metrics are utilized: 

    1)  Metrics for point forecasting: The mean absolute 

percentage error (MAPE) is widely used metric by the power 

industry owing to its transparency and simplicity [18]. It 

calculates the absolute difference between the forecasting 

values and actual ones in %, and it is defined as: 

, 50

1

ˆ100%
= | |

n
i p i

i i

y y
MAPE

n y






                       (29) 

where 
iy  represents the actual load value; n is the number of 

instances of the test set; 
, 50

ˆ
i py 

represents the 50th percentile 

value of the forecasted load.  

    2)  Metrics for probabilistic forecasting: Reliability, 

sharpness, and resolution are three commonly used attributes 

for the evaluation of probabilistic forecasting. As an error 

measure for quantile prediction, Pinball loss is a comprehensive 

metric to measure the results of probabilistic forecasting, which 

is defined as [19]: 

, ,

,

, ,

ˆ ˆ( ) ,                    
ˆ( , , )

ˆ ˆ( )(1 ),  

i i q i q i

i q i

i q i i q i

y y q y y
Pinball y y q

y y q y y

 
 

  

    (30) 

where 
,

ˆ
i qy  represents the load forecasting value at the qth 

quantile. The pinball loss can be obtained by summing 

,
ˆ( , , )i q iPinball y y q  across all quantiles (q=0.01, 0.02, …, 0.99) 

over the prediction horizon. A lower score implies better 

performance.  
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C.  Point Forecasting Evaluations with Limited Data 

The first test is carried out among various methods when only 

three days’ data during the pandemic are used for training. This 

test is used to illustrate that the proposed method can learn a 

better forecasting model than other approaches with limited 

training data. The data are split into the training set (from 07-

May-2020 to 09-May-2020), validation set (from 10-May-2020 

to 12-May-2020), and test set (from 13-May-2020 to 15-May-

2020). The benchmark methods include: 1) support vector 

regression (SVR) [13]; 2) back-propagation NN (BPNN) [15]; 

3) SGP; 4) VAE-DGP [9]. The RBF is selected as the kernel 

function for SGP, VAE-DGP, and the proposed method. The 

hyper-parameters of these methods are tuned utilizing the 

validation set and the model with the best performance of each 

method is adopted. We would like to emphasize that SGP and 

VAE-DGP have not been applied for load forecasting in the 

literature and it is our effort to adopt them for this 

application. The MAPE of each method on the validation/test 

set is listed in Table Ⅰ. The best performance (test set) of each 

case is shown in a bold color. Note that the results are average 

values of five repeated tests. It can be observed that GP based 

approaches outperform BPNN methods by a large margin when 

only 3 days’ data are utilized for training. This may be because 

the BPNN is parametric method, which involves many 

parameters to be optimized. Therefore, they cannot find all 

hidden patterns among samples from relatively limited training 

data. Furthermore, since BPNN has too many parameters (the 

weights and bias of NN) to be optimized from comparatively 

few training samples, they are vulnerable to over-fitting issues, 

leading to an unstable performance on the test data. By contrast, 

the kernel function based SVR and Bayesian GP based 

approaches can achieve effective inductive reasoning based on 

only a limited number of training data. This characteristic 

makes them a suitable alternative for the load prediction during 

the anomalous events. Thanks to the “self-tuning” covariance 

function by hierarchically warping and stretching the input 

space, the proposed method outperforms the one-layer SGP 

method in 5 out of 6 cases, demonstrating its better flexibility 

to various scenarios. Since the proposed DGP method learns a 

representation non-parametrically with very few parameters to 

estimate, it avoids the overfitting problem faced by the 

parametric methods in the presence of increased number of 

layers. The integration of the flexibility of deep structure 

models and the effective inductive reasoning ability of GP 

method makes the proposed method a promising alternative for 

the electrical load forecasting against the extreme events. Both 

the proposed and SGP methods achieve better performance than 

the VAE-DGP based approach in most cases. It is worth noting 

that the gap between the MAPEs achieved by the BPNN on 

validation and test sets are larger than the non-parametric 

methods. The main reason for this phenomenon may be that the 

time index (e.g., the day index) of the validation set is not seen 

by the forecasting model during training. Parametric methods, 

such as the neural networks are prone to over-fit the training 

data, while the kernel function and Bayesian theory-based 

methods have better inference ability.   

The second test is carried out among various methods when 

middle-size samples are utilized to train the models. The data 

are split into the training set (from 15-Feb-2020 to 29-Apr-

2020), validation set (from 02-May-2020 to 08-May-2020), and 

test set (from 09-May-2020 to 15-May-2020). The MAPEs of 

various methods on the test set are displayed in Table Ⅱ. Since 

more data are utilized for training, the prediction accuracies of 

all methods are improved as compared to those in Test 1. In this 

test, the proposed method outperforms the SVR, BPNN, VAE-

DGP methods in all cases, and the SGP method in 5 cases, 

demonstrating that the proposed method can achieve high 

forecasting accuracy when both small-scale and middle-scale 

data are utilized for training. The gaps between the MAPEs 

achieved by the BPNN method on validation and test set are 

also reduced as compared to those in Test 1. This is because a 

good number of samples is used by the neural network during 

the training process. The forecasting results of various methods 

on test data of Seattle when middle-size data are utilized for 

training are shown in Fig. 3. It can be observed that the BPNN 

suffers from larger deviations from the actual load demand 

compared with GP based methods. The proposed approach gets 

closer to the actual load than the SGP and VAE-DGP methods. 

The results are consistent with those in Table Ⅱ. 

D.  Probabilistic Forecasting Evaluations with Limited Data 

The pinball losses achieved by various probabilistic 

forecasting methods on test data under different training data 

scales are shown in Table Ⅲ and Table Ⅳ. The pinball loss is 

a comprehensive measure for the evaluation of probabilistic 

forecasts. It can be observed from Table Ⅲ that when only three 

days’ data are utilized for training, the proposed method can 

achieve the best performance in most cases, demonstrating that 

the proposed method can better quantify the uncertainties than 

other methods utilizing a limited number of training samples. 

When the amount of training data is increased, the pinball loss 

of all the methods decrease. The pinball loss achieved by the 

proposed approach is at most 23.0% lower than that obtained 

by the SGP and VAE-DGP method. The probabilistic results 

are consistent with those in point forecasting tests.  

The probabilistic forecasting results of various methods on 

test data are shown in Fig. 4, where the results for BPNN and 

SVR are not shown as they are only point forecasting 

approaches. The actual load demand is represented by the red 

dot. The 70%, 80%, 90%, and 95% confidence intervals are 

represented by the gradually increasing depth values of blue 

color. It can be observed from Fig. 4 (c) that the 95% confidence 

interval of the proposed approach can cover most of the actual 

load demands. By contrast, there are many actual load points 

not covered by the 95% confidence intervals of the SGP and 

VAE-DGP, see t=50-70 in Fig. 4 (a) and t=1-25, t=60-65 in Fig. 

4 (b) for example. This demonstrates that the proposed 

approach can better capture the uncertainty of load forecasting. 

It is worth noting that the peak and valley values of the load 

demand, which are crucial for the operation and management 

of power systems, are well predicted by the proposed method, 

which is not the case for the SGP and VAE-DGP methods. 

The probability density curve and the point forecasting value 

of various methods of Seattle when the load demand is at curve 

peak and valley are plotted in Fig. 5 to further illustrate the 

uncertainty capture ability of the proposed approach. The 

prediction results at the peak (t=16:00 at 15th May) are shown 

in Fig. 5 (a). It can be observed that the deterministic methods 

do not provide accurate point forecasting outcomes due to the 
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Table Ⅰ. MAPE achieved by various methods on validation/test data when 3 days’ data are utilized for training 

 Boston Chicago Seattle Philadelphia Germany France 

SVR 4.1%/4.1% 5.6%/5.2% 6.97%/5.3% 4.8%/4.6% 13.5%/8.8% 10.8%/14.0% 

BPNN 7.9%/5.6% 10%/6.6% 20.1%/14.1% 7.1%/5.7% 12.4%/7.8% 14.5%/12.4% 

SGP 4.1%/4.5% 6.1%/4.3% 5.4%/4.3% 4.81%/3.8% 16.5%/12.7% 6.7%/9.0% 

VAE-DGP 4.3%/4.3% 6.5%/6.5% 7.1%/5.5% 7.0%/7.9% 16.5%/12.8% 12.4%/14.1% 

Proposed 4.0%/3.7% 5.6%/4.1% 5.7%/4.1% 4.35%/3.7% 14.3%/7.9% 7.2%/10.6% 
 

Table Ⅱ. MAPE achieved by various methods on validation/test data when 75 days’ data are utilized for training 

 Boston Chicago Seattle Philadelphia Germany France 

SVR 6.4%/5.6% 2.5%/4.6% 4.6%/5.6% 3.8%/4.8% 6.2%/6.9% 7.6%/8.4% 

BPNN 3.3%/3.2% 3.5%/5.3% 4.6%/6.4% 4.6%/5.4% 4.2%/4.3% 4.3%/6.9% 

SGP 3.0%/3.2% 2.7%/5.1% 4.6%/5.1% 3.7%/5.0% 3.2%/3.0% 3.99%/5.3% 

VAE-DGP 3.4%/2.9% 3.4%/4.5% 4.5%/6.9% 4.5%/4.6% 3.9%/4.1% 2.3%/6.5% 

Proposed 3.0%/2.8% 2.4%/4.1% 3.7%/4.5% 3.2%/4.2% 3.9%/3.4% 3.6%/5.1% 
 

 Table Ⅲ. Pinball loss achieved by various methods on validation/test data when 3 days’ data is utilized for training 

 Boston Chicago Seattle Philadelphia Germany France 

SGP 32.1/37.8 186.8/137.2 16.4/13.1 399.8/406.3 2796.2/2301.7 1001.4/1489.5 

VAE-DGP 32.2/33.8 189.4/203.5 19.6/15.6 574.1/742.4 2882.4/2394.1 2010.2/2598.3 

Proposed 33.3/31.2 181.7/132.7 16.9/12.9 390.4/396.5 2362.1/1529.5 1146.4/1891.1 

 
Table Ⅳ. Pinball loss achieved by various methods on validation/test data when 75 days’ data is utilized for training 

 Boston Chicago Seattle Philadelphia Germany France 

SGP 23.4/26.2 88.4/184.8 16.8/17.6 321.6/513.5 572.9/525.3 598.8/868.1 

VAE-DGP 25.9/22.1 104.4/162.3 15.2/22.9 381.7/497.2 724.0/770.8 326.9/1169.8 

Proposed 21.8/21.5 75.9/142.3 13.2/13.8 265.3/409.3 700.9/572.4 540.99/854.1 

 

 
Fig. 3. Forecasting results of various methods on test data of Seattle when 75 days’ data are utilized for training. 

 
(a) SGP 
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(b) VAE-DGP 

 
(c) Proposed method 

Fig. 4. Probabilistic load forecasting results of various methods for Seattle. 

uncertainty caused by the pandemic. By contrast, the GP based 

probabilistic methods can capture the uncertainties. Compared 

with the SGP and the VAE-DGP, the 50th percentile prediction 

results of the proposed method get closer to the actual electrical 

load demand. A similar phenomenon can be observed in Fig. 5 

(b) when the load demand is at the curve valley (t=3:00 at 16th 

May). It can also be observed that the probability density curve 

of the proposed method is less steep than SGP and VAE-DGP 

methods. This may be due to multiple uncertainties that can 

affect the load consumption behaviors, which make it difficult 

to accurately predict the peak and valley values. As a result, the 

proposed method learns a relatively conservative strategy, 

which would be good to make a conservative decision under 

larger uncertainties. 

  
(a) Results at curve peak. 

 
(b) Results at curve valley. 

Fig. 5. Probabilistic density curve and point forecasting results of various 

methods of Seattle on 5th May.  

E.  Tests on Northern Italy Data     

To further evaluate the performance of the proposed method, 

extensive tests are carried out on electrical load demand data of 

Northern Italy. The containment measures of Italy can be 

divided into two stages: 1) the first stage started from 23th 

February, including the closure of restaurants, bars, and schools 

after 6 p.m. Since the first stage containment measures had 

limited effects on the control of the pandemic, more restrictive 

measures take effects after 9th March in the whole country; 2) 

in the second stage, the government announced to shut down all 

the nonessential production activities. Strong decreases of 

electric demand in Northern Italy have been observed since the 

total lockdown is implemented. The electrical load demand in 

this period is utilized in this paper to evaluate the performance 
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of the proposed forecasting method. Hourly electrical load data 

of Northern Italy can be found from [3]. The input features 

include the historical electrical load demand data of the past 24 

hours. Two tests with different size of data are carried out to 

evaluate the performances of various methods: 1) the first test 

utilizes small-scale data during the pandemic to train the 

forecasting models. The data range from 20th April to 28th April, 

which are split into training set (20-Apr-2020 to 22-Apr-2020), 

validation set (23-Apr-2020 to 25-Apr-2020), and test set (26-

Apr-2020 to 28-Apr-2020); 2) The second test utilizes middle-

size data ranging from 11-Jan-2020 to 14-Apr-2020. The data 

are divided into three non-overlapping intervals representing 

the training set (11-Jan-2020 to 25-Mar-2020), validation set 

(26-Mar-2020 to 4-Apr-2020) and test set (5-Apr-2020 to 14-

Apr-2020), respectively.  

The comparison results by different methods when different 

sizes of data are utilized are listed in Tables Ⅴ and Ⅵ. It can be 

observed from Table Ⅴ that the proposed method can always 

obtain the lowest prediction error when small-scale and middle-

sale data are used for training. It achieves maximum 165% and 

495% improvements as compared to other methods under the 

two tests. 

Table Ⅴ. MAPE achieved by various methods on validation/test data when 3 

days’ data and 75 days’ data are utilized for training 

 Test 1 Test 2 

SVR 16.7%/17.4% 14.3%/14.5% 

BPNN 7.3%/6.2% 3.1%/3.5% 

SGP 6.3%/5.8% 2.6%/3.1% 

VAE-DGP 8.0%/6.9% 2.4%/3.0% 

Proposed 6.3%/5.2% 2.4%/2.8% 

Table Ⅵ. Pinball loss achieved by various methods on validation/test data 

when 3 days’ and 75 days’ data are utilized for training 

 Test 1 Test 2 

SGP 356.3/356.6 281.1/257.1 

VAE-DGP 404.7/381.0 271.5/242.2 

Proposed 355.6/345.6 276.9/253.8 

V.  CONCLUSIONS AND FUTURE WORKS 

This paper proposes a new probabilistic forecasting method 
for electric load prediction during abnormal event when only a 
limited number of data is utilized. The key idea is to cast the 
load forecasting as a regression problem and develop an 
advanced double stochastic variational inference DGP method. 
The mobility data that reflect the behavior pattern are also used 
as additional features to deal with the uncertainties caused by 
the stay-at-home order. The proposed method can learn the 
relative patterns from only a handful of training data and 
capture the uncertainties caused by the pandemic. Both point 
and probabilistic forecasting measures are used for the 
performance evaluation of the proposed method. Comparative 
tests on a series of datasets demonstrate that: 1) when only 
small-scale training data are used, the performance achieved by 
the proposed method significantly outperforms the parametric 
methods in most scenarios. Its performance also outperforms 
the kernel-based point forecasting method and Bayesian theory-
based probabilistic methods in most scenarios. The prediction 
error can be reduced by at most 70.9% via the proposed method 
when only three days’ data are utilized for training; 2) when 
more data are available and utilized for training, our proposed 

method outperforms both the parametric and Bayesian theory-
based methods in most scenarios. The prediction error can be 
reduced by 50.7% at most; 3) the proposed method can better 
capture the uncertainties than other probabilistic forecasting 
methods. The pinball loss obtained by the proposed method is 
at most 46.6% and 39.7% lower than other probabilistic 
forecasting methods when small-scale and middle-scale 
training data are utilized, respectively. Future works will be on 
extending the proposed method for other power system 
applications, where not too many data are available.  
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