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Abstract. Security intelligence is widely used to solve cyber security
issues in computer and network systems, such as incident prevention,
detection, and response, by applying machine learning (ML) and other
data-driven methods. To this end, there is a large body of prior research
works aiming to solve security issues in specific scenarios, using specific
types of data or applying specific algorithms. However, by being specific
it has the drawback of becoming cumbersome to adjust existing solutions
to new use cases, data, or problems. Furthermore, all prior research, that
strives to be more generic, is either able to operate with complex relations
(graph-based), or to work with time varying intelligence (time series),
but rarely with both. In this paper, we present the reference architec-
ture of the SecDNS framework for representing the collected intelligence
data with a model based on a graph structure, which simultaneously
encompasses the time variance of these data and providing a modular
architecture for both the data model and the algorithms. In addition, we
leverage on the concept of belief propagation to infer the maliciousness of
an entity based on its relations with other malicious or benign entities or
events. This way, we offer a generic platform for processing dynamic and
heterogeneous security intelligence with an evolving collection of sources
and algorithms. Finally, to demonstrate the modus operandi of our pro-
posal, we implement a proof of concept of the platform, and we deploy
it in the use case of phishing email attack scenario.

* This research is carried out in the SecDNS project, funded by Innovation Fund
Denmark
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1 Introduction

As a rule of thumb, security intelligence deals with the collection, analysis and
presentation of data within a computational or network system with the purpose
to improve the security of that system [2]. There exists a plethora of information
and networking resources exposed to potential threats and involved in security
incidents, thus data from these sources can reveal the perpetrators’ modes of op-
eration and their intentions. Furthermore, the compilation and standardisation
of the intelligence data can contribute to cross-organisation intelligence sharing
and hence enhance the collaborative actions against the evildoers [19].

However, the diversity of intelligence sources, along with the variations of
the analysing methods, as well as the evolution of the cyber threats and the
emergence of new ones, renders the development of a universal solution challeng-
ing [10]. Usually, the related research focuses on specific application domains or
sources of data. On the contrary, the works aspiring to provide a more univer-
sal approach, typically they operate by expressing the relationships of the data
through complex graph structures, or they function with time varying data, but
they are usually ineffective to combine both approaches.

Although, there exist solutions to spatio-temporal problems in graph machine
learning (GML), they do not satisfy the requirements of 1) the heterogeneity of
nodes that are attributed, 2) the time-dependence of these nodes and their at-
tributes, 3) the time-dependence of their relationships, 4) scoring of the nodes,
and 5) expressing arbitrary interactions other than bipartite, like these of hy-
peredges. All these conditions are however required in the cybersecurity domain.
Attempts to combine graph and time-based approaches, such as spatio-temporal
graphs [20], take into account the space-time aspects of a problem but cannot
accommodate the heterogeneity of the graph. On the other hand, solutions, such
as GraphSAGE [7], that consider the heterogeneity of the nodes, they cannot
model the time-evolution of the node attributes or the edges. Furthermore, the
main shortcoming of GML lies in the fact that interactions between entities are
limited to bipartite relationships. This renders GML unsuitable for problems
where an interaction involves an arbitrary number of vertices with no particular
directionality.

In our work, we present the architecture of a novel security intelligence frame-
work based on a graph model for representing the intelligence data along with
their time variance. The main novelty of our proposal is that it capitalizes on
the belief propagation concept to deduce the maliciousness or trustworthiness
of the monitored entities as their status changes over time or are involved in
new emerging events. Furthermore, the framework is domain agnostic, namely
the structure of the graph does not depend on the specifics of the application
domain, but rather provides the generic relationships between events or, as we
call it, the formation of the entity-relationship diagram (ERD). In addition, it



consists of a modular architecture enabling the incorporation of both the data
model and the algorithms applied to these data. Finally, as a proof of concept, we
demonstrate the handling of the interactions between the various components
by applying the model to the use case scenario of the phishing email attack.
Bear in mind, that the framework defines the components of the model in an ab-
stract layer, while the actual designation of the entities is based on the expert’s
knowledge of the specific domain.

Our contribution is to offer a framework that advances the state of the art
for managing security intelligence by:

— providing a graph-based model for representing the intelligence data. This
model is also capable of capturing the evolution of the intelligence data over
time,

— utilizing the belief propagation to spread the impact of an observation to the
related instances,

— enabling modular changes to the data model, this way it is straightforward
to extend the entity and relationship types or add new ones on the fly, and

— enabling modular changes to the intelligence processing routines, namely it
is trivial to remove, add, or update functionalities on the fly.

The rest of the paper is structured as follows: Section 2 introduces the related
work. Section 3 details the architecture of the proposed framework and explains
its components. Section 4 describes the application of the framework to the use
case scenario of the phishing campaigns. Finally, section 5 concludes the paper
with a discussion and draws possible future directions.

2 Related work

Graph-based methods have been applied to cyber security intelligence, e.g., to in-
fer new appearing malicious domain from known malicious domains in a bipartite
client-domain graph [16]. Similar problems have been addressed with homoge-
neous graphs of domains and bipartite host-domain graphs [8,11]. For example,
ATIS is a generic framework for processing cyber threat intelligence similar to
our proposal, offering modularity and a heterogeneous graph as the data model,
but without the notion of time offered by our framework [12]. HinCTI applies
ML methods, namely Graph Convolutional Network (GCN), on a heterogeneous
graph, or Heterogeneous Information Network (HIN) as they refer it [4]. More-
over, Sun et al. [17] proposed to apply a spatial HIN model for domain names
and five related entity types. A GCN variant is applied, namely meta-path guided
short random walk (with six specified meta-paths), having intrinsic features for
domains, but not for entities in general. In addition to the graph-based methods,
there are also research works that rely on time-based analysis, e.g., to detect bot-
net infected clients [3] or malicious domain names [13]. On the other hand, Tran
et al. [18] proposed a graph mechanism that capitalizes on the belief propagation
to infer a domain’s reputation score based on the relationship between domain
names and [P addresses.
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Overall, there are ample of examples applying graph-based or time-based
methods, demonstrating how they can be used independently to solve security
problems. At the same time, there exist works that combine graph-based and
time-based methods, however, they deal with specific use case of threat intel-
ligence. For instance, Garcia-Lebron et al. [5], although, considered both the
graph-based and time-based aspects of the relations, their proposed framework
is tailored to the use case of detecting reconnaissance behaviour of cyber attacks
and may not be applicable to other scenarios. To the best of our knowledge, no
other work has explored the combination of graph-based and time-based meth-
ods in a generic framework that also prioritises modularity and the ability to
support general ML techniques. Put it differently, the novelty of the proposed
framework lies in its modularity and ability to generalize to virtually any use
case that consists of attributed entities with a score of maliciousness.

3 Method

In this section, we detail our framework by providing initially the preliminaries
that are essential for understanding the general overview of our proposal. Then,
we present the theoretical framework with a formal representation of the entities
and processes, while afterwards we describe and explain the system architecture,
before concluding with some considerations on implementation suggestions.

3.1 Preliminaries

Cyber security intelligence data, or simply intelligence, is any collection of data
useful for preventing, detecting, or responding to security incidents [15]. To be
suitable, intelligence must be related to the security of the use case of interest,
as in our paradigm to phishing. Namely, intelligence should contain one or more
specific instances of some entity types, and it must describe the entity (or en-
tities), either through attribute(s) or by their relationship. For example, it can
describe the knowledge that a client resides on the network of interest (iden-
tification of an instance, e.g., by an IP address), that the client is powered on
(an attribute characterising the state of the client), and that the client used the
Domain Name System (DNS) to resolve a domain name (interaction between
the client and DNS servers).

The complete corpus of all security intelligence is not practically available and
processable, however significant fragments of it can be monitored and analysed.
The types of intelligence incorporate also enriched observations, such as the
relation between a host’s IP address and the hostname obtained via reverse
DNS lookup on the IP. Either way, monitoring of data is one approach to collect
intelligence. Another option is to gather intelligence from third parties, via public
or private feeds, which are provided for free or under some commercial agreement.

Whether intelligence originates from controlled monitoring systems, third
parties, or other sources, the observation of new intelligence is expected to oc-
cur at specific points in time, because monitoring reveals events from observed



data, or as new data arrive from a feed. To capture this, we define an event as
a timestamped observation of intelligence data, where an observation may for
example be either a first time observation, an intermediate since last modifica-
tion or an affirmation that the previous intelligence data are still current. For
instance, a DNS query from a client is an event which encompass several pieces
of intelligence; there is a client on the network that has a certain IP address, it
is active, and it aims to connect to the domain name in question.

Intelligence may also be obtained from ML, heuristics, manual processing
and so forth. The common characteristic for all these processes is that they re-
ceive some intelligence as input and generate some new or updated intelligence
as output. This type of process is referred hereafter as a Map process. Essen-
tially, a map encapsulates the knowledge of a variety of domain experts into an
automated framework that enriches the intelligence. The mapping process is the
fundamental aspect of our proposed approach for providing security intelligence,
and is formalised in Section 3.2.

3.2 Theoretical framework

Problem domain We shall first present a data-centred—as opposed to system-
centred—overview of the components that are the building blocks of our scheme
for the generation and storage of intelligence. Our starting point is to acknowl-
edge that the cyberspace can be represented by an entity-relationship diagram
(ERD) that links a heterogeneous set of entity types, such as domain names,
IP addresses, e-mail addresses, executables, physical devices and so on. Each
entity is characterised by a set of intrinsic features. As an example, the entity
representing the domain example.com has as features the length of its string
with value 11 and its top-level domain, which is com. Such features are deemed
intrinsic as they are independent of any other entity or event. Cyberspace, how-
ever, is not simply build up from disjoint entities, but rather it is the scene of all
sorts of well-defined relationships between them. For example, sending an email
forms a relationship between the sender and one or more recipients, along with
one or more attached files. Likewise, a DNS request establishes a relationship
between the querying IP address of the end-user, the queried domain name, the
resolving IP address, and one or more name servers involved in the resolution.
These relationships, called hyperedges in the ERD, play an important role into
the feature space of the involved entities. The features resulting from interac-
tions shall be called extrinsic, since they depend on neighbouring entities. For
example, in the case of a domain, extrinsic features could be considered the reg-
istrant or the IP addresses hosting the domain and their respective geolocation.
A partial representation of the ERD for cyberspace is illustrated in Fig. 1, where
the nodes (notated as €) represent possible entities and the edges (notated as p)
constitute a subset of relationships among these entities. An exhaustive diagram
is heavily reliant on domain expertise and beyond the scope of this work.

The last component is the belief that an entity is involved in a given cyber
threat. These beliefs, which shall be quantified as probabilities, are the end
products of the intelligence generation pipeline in the sense that they are readily
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Fig.1. Subset of the ERD spanning cyberspace. The nodes are entities, whereas the
edges are relationships or part of them.

actionable. For example, access to a given domain can be blocked if it is believed
that it hosts a certain malware with a probability of say 60%.

The name of the game in intelligence generation is therefore to infer the
beliefs of out-of-sample entities with the best possible accuracy compared to
the (presumed) ground truth. Intuitively, this is achieved by monitoring events
and updating accordingly the beliefs of the involved entities using well-defined
computational modules, namely the maps as introduced in Section 3.1. Features
and beliefs shall be jointly referred to as intelligence throughout our research.?

Notation We shall denote each entity instance by 5,(3 ) where k is the unique

instance label and
j € € = {domain, IP address,registrant,ASN,---} (1)

is the entity type among the overall set of types £. To each entity, we shall
indicate its intrinsic features by ffj ), its extrinsic features as per a relationship

type ¢ by r,(g ’i), and its beliefs by bfcj ). Note that the elements of the belief vector
b are probabilities that span an ordered tuple of cyber threats®

B = (benign, botnet, phishing, - - - ). (2)

The concatenation®

a0 = me e

Sl <t>] 3)

of these three vectors shall be called the data vector of the entity Eg ) and encodes

all the known information about that entity at the time ¢. Note that the extrinsic

4 A rough, qualitative distinction can be made between features and beliefs in that the
former represent raw intelligence whereas the latter represent “business-grade™—i.e.,
actionable—intelligence.

5 Note that b need not add up to unity since the threats may overlap. Indeed, the
threats to be predicted fall into a taxonomy which is eminently domain-specific and
beyond the scope of this article.

5 The concatenation of vectors shall be represented by the symbol @ for the direct

sum.



features are themselves concatenated over all the relationship types ¢ that an
entity of type j can be involved in, i.e., 7 is drawn from the overall set

R = { DNS queried, e-mail sent,
domain registered, packet received,

file opened, ---} (4)

of possible relationship types. For example, a domain can be involved in a DNS
query (as the queried domain), or in an e-mail being sent (as the sender’s or
recipient’s domain), but cannot be involved in the opening of a file—at least not
directly.

Design matrices The cornerstone of the data storage architecture proposed
herein is the design matriz. The matrices are indexed in time, and express the
features and beliefs of all entity instances of a given type j.

DY (t) = d;ﬁ(t) : (5)

Thus, they encode a snapshot of the captured intelligence up to time ¢ of all
entities of that given type j.

Maps While the design matrices are the passive repositories of the intelligence,
the maps are the active operations on that intelligence. Namely, they ensure
that the design matrices are updated to reflect the latest events observed “in the
wild”, i.e., a map M is any read or write operation on the design matrices. Even
more, a map can run on historical data, i.e., on older snapshots of the design
matrices. More specifically, in addition to merely reading design matrices, a map
is able to perform updates to:

1. the intrinsic features,
2. the extrinsic features upon the instantiation of a relationship,
3. the beliefs.

In the most general sense, the maps can thus be formalised as an update of the
data vectors over a time increment dt between successive events, i.e.,

M : U{ (t— 6t} U{d,(j,")(t)}, (6)

i/
I?) E;J/ )

(4"

@) and €y, may or may not

where the sets of input and output entities,
overlap. Paradigms of maps could be:

— a DNS lookup of some domain instance k
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Mdig : d;gdomain) (t—ét) N T‘;I,P address, DNS query) (t), (7)
— a blacklisting of malicious domains k
Mblacklist : b;domain) (tfét) N b/(:omain) (t) (8)
— a detector of algorithmically-generated domains based on ML classifier

MML_D(;A . f’(fdomain) (t*(st) - b;@domain) (t), (9)

which would perform lexical analysis on the domain string f

Maps are therefore attuned to any change in the environment—e.g., instanti-
ations of relationships, or inputs from third-party intelligence—and thus govern
the appropriate data enrichment logic on the design matrices. This requires an
algorithm which can aggregate intelligence both in time (as per the history of
updates) and space (as per the topology of the ERD, see Fig. 1). A generic
architecture that deals with such aggregation is proposed in [9].

(domain)
P .

3.3 System architecture

Figure 2 illustrates the architecture of our framework, accompanied by the com-

ponents and data flows. In its conceptual essence, we propose a system comprised
of:

— A mechanism as a generic concept for distributing the occurring events, that
is the Data Platform,

— A storage mechanism that directly conceives the concept of design matrices,
that is the Intelligence Database,

— The concept of Maps that outline the subsystems responsible for querying
the intelligence database, consuming and producing events from the external
“world” and from internal events regarding data processing, and updating the
intelligence database, and finally

— The Graphical User Interface (GUI) that is connected to the data stream
and is in charge of visualising the statistics and other relevant information.

The core requirement of the system is to provide an architecture that sup-
ports execution of potentially large number of Maps. These Maps need access
to the historical data, i.e., on the older snapshots of the design matrices, hence
a database is required to efficiently preserve these historical data. We call this
database the Intelligence Database and, while in practice could be instantiated
by several distributed databases, conceptually operates as a single. To support
these two key components, we introduce the Data Platform that connects and
facilitates the data exchange between the Maps and the Intelligence Database.
The data exchange requires also data normalisation and the handling of time
properties. Finally, the GUI component is linked to the Data Platform to visu-
alize the important events, and to accommodate the user’s interactions to the
Intelligence Database and organisation of the Maps.
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Fig. 2. System architecture

3.4 Maps

To retrieve, enrich, refine, and expand the intelligence, some form of processing is
required. This capability is formally defined with Eq. (6), where the Maps process
a set of instances and produce new intelligence. By supporting the instances to
have historical data as property, we enable the processing of time-series data with
the Maps, and by recording their relations we enable graph-based processing.
The capability to maintain the Maps independently (including operations such
as adding, removing, updating, re-training, etc., of the Maps ) is accomplished by
considering each Map as a component on its own designated by the corresponding
domain expert.

At a high level, a map is essentially a “subsystem” with access to lookup/
query the intelligence database, as well as with the capability to monitor the flow
of “things happening”. Thus, each map is able to store data in the intelligence
database by triggering updates that allow the map to be responsible for dedicated
areas of the design matrices, namely a set of features (columns) of these matrices.
In other words, a Map can be considered as an API providing an answer to the
question “How likely is this entity involved in a (specific) malicious action”.
This process is expressed as a lookup to the intelligence database where specific
belief(s) generated by (an) other map(s) are resolving this query and returned
as response.

The flexibility, modularity, and scalability requirements adhere that multiple
Maps may produce intelligence data for their own feature/column in the design
matrix, while running in parallel. This will introduce typical consistency chal-
lenges for distributed data processing. One approach to resolve this issue could
be to let the collection of Maps maintain their own data, but this conflicts with
the goal of each Map being a simple and modular component. Therefore, the
task of managing and storing the data is delegated to the Intelligence Database
as discussed below. However, a Map may still store internally the state between
calculations, and may cache intelligence data whenever required.

The body of intelligence data is expected to be of significant size, as many
instances and long-term historical data are anticipated. This implies that the
volume of data transferred from the Intelligence Database to the Maps can cause
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stability issues. To mitigate this, the data transfers should be limited to include
only the design matrices for the relevant entity types, and sliced to the instances
(rows), features (columns) and time spans of relevance.

The Maps may have different implementations and functionalities, but the
general characteristics for generating intelligence are common across all of them.
However, throughout our research, we recognize two types of Maps according to
the input source they use:

— External Maps: these Maps receive intelligence feeds from external sources.
They rely on frameworks and tools outside the system, such as dig, and they
usually monitor for events and are invoked whenever new ones are raised.

— Internal Maps: these Maps are based on the aforementioned mathematical
framework for belief calculation. They are fed from the Intelligence Database
or from the output of other Maps. In essence, these Maps implement varia-
tions of Eq. (6) for specific use case entities.

3.5 Intelligence Database

Essentially, the Intelligence Database provides intelligence data to the Maps, and
in return receives events with new intelligence. Although that the Intelligence
Database seems as a static graph database at any given instant, it is actually
evolving through time and thus the intelligence data is treated as time-dependent
by our framework, as indicated by Eq. (6).

As already explained, the Intelligence Database is responsible for storing the
intelligence data. This scheme is illustrated by a set of entity types £ having at-
tributes features £(¢*) a set of relationships R determining relationship features
r() and beliefs B declaring the contents of the belief vector b(¢*). As moti-
vated from the aforementioned description of Maps, the data provided by the
Intelligence Database should be slice-able (i.e., the range of instances, features,
and time span can be chosen).

Being the single component that preserves the complete view of data in the
system, the Intelligence Database is also the central point in the architecture
where all changes in data, i.e., events, are observed. This makes it feasible, given
adequate knowledge on which Maps rely on what data, to determine the appro-
priate Maps to invoke. Therefore, the Intelligence Database also has an active
role in triggering the Maps when required, and thus it is not simply a passive
storage component. Section 3.8 delves into more details of the implementation
considerations, however we expect that an event-driven approach is promising.
Even more, an event-driven approach can possibly include timers that period-
ically schedule execution of Maps, when needed. This is appropriate for Maps
that rely on dynamic resources as input which however do not notify about the
changes, like in the case of DNS data or blacklisting of online resources. Never-
theless, the discussion of how to dispatch events to maps, e.g., by broadcasting
or by a publish-subscribe pattern, is deferred to future work.
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3.6 Data platform

The role of the Data Platform is decisive as it facilitates the data exchange among
the Intelligence Database, Maps and GUI. Key requirements, such as data nor-
malisation and time synchronisation across components, are also handled by the
Data Platform. A subscription/notification and request interaction pattern that
is flexible to support a high variety of information types and amount is required
as well.

The Intelligence Database is not limited to run on a single machine, but rather
may be composed of a distributed set of machines hosting different databases,
which in conjunction operate as the Intelligence Database. Therefore, it is critical
that the Data Platform also supports load balancing of not only the processing
capabilities, but also the storage and network resources to ensure that the indi-
vidual machines do not become bottlenecks.

3.7 Graphical User Interface (GUI)

Finally, the GUI component has the role of the Front-End of the framework. This

component is responsible for providing the interface to the external consumers,

i.e., systems and users, allowing them to retrieve the intelligence. In the simplest

form, the Front-End relays queries to the Intelligence Database. However, an

event-driven interface, e.g., using subscriptions, can also be supported.
Examples of relevant Front-End functionalities include:

— Functionality for users/domain experts to manually evaluate entities or their
beliefs.

— Functionality to retrieve real time updates, for example like a heat map
overlaid over an atlas of sinkhole activity.

— An API for specific domain’s data retrieval.

3.8 Implementation considerations

In this section, we elaborate into some practical issues regarding the distribution
of the events in the system. The execution of Maps requires some form of time
scheduling of the Map’s invocation, and this can be addressed by two different
approaches, viz. event-driven (Fig. 3) and periodic scheduling (Fig. 4).

Event driven: In an event-driven scheduling setup, events will be triggered spo-
radically from maps with external interface, and whenever internal maps have
produced new results. In both cases the events, are forwarded to the Intelligence
Database, as outlined in Section 3.5. In addition, the events are re-transmitted
to relevant Maps, i.e., to those that use the updated intelligence as input, and
therefore they need to be informed about the changes. After completing execu-
tion, each Map sends the results to the Intelligence Database, for storage and
re-transmission of this new relevant event.
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Fig. 3. Interaction diagram with events transmitted under an event-driven scheduling
approach. ¢ indicates external events triggering interactions in the system.

This is the quickest possible path from the producing Map through the In-
telligence Database to the consuming Map/GUI, as events are transmitted and
map execution is completed with the minimum delay from the inception of the
event to the propagation of its results. However, special care must be paid of
what triggers a message, i.e., if the intelligence changes constantly, then the data
platform will be flooded with event notifications. The event driven approach also
ensures that maps are only executed when their input, as aware by the Intelli-
gence Database, is modified, which is the least likely to introduce delays in the
overall process. However, an evident drawback of the event-driven scheduling ap-
proach combined with the feedback loop between the Intelligence Database and
the Maps (Fig. 2), is that it might lead to indefinitely propagation of events.
For instance, if the belief of an TP address is used as input, together with other
intelligence, to derive the belief of an email address being used for phishing, and
the belief of this email address is afterwards used to calculate a belief for the
same [P address, then this event would in turn be used to generate a belief for
the email address and so forth. This situation will potentially lead to an infinite
loop. To avoid such infinite loops, we can adopt for instance a Max Hop Counter,
in such way that an event may be forwarder a fixed number of loops before it is
ceased propagation.

Periodic scheduling: Periodic scheduling is an alternative approach where
Maps are executed at fixed time, so they produce events periodically. This ap-
proach has the benefit that the Intelligence Database does not need to trace to
which Maps a given event needs to be re-transmitted, and thus the aforemen-
tioned issue with the possible infinite loops is avoided. After the execution of the
periodic Maps, the events are stored in the Intelligence Database without any
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External Map Intelligence Internal Map
«Map» Database «Map»
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i ]

Fig. 4. Interaction diagram with events transmitted under a periodic scheduling ap-
proach. ¢ indicates external events triggering interactions in the system. ® indicates
internal periodic timers triggering interactions in the system.

further requirement for re-transmission. On the contrary, one apparent draw-
back is that occasional events might appear just after a period commenced. In
that case, the new intelligence is passed to the relevant maps only after the next
period, i.e., making this approach sensitive to the selection of the time interval
of the period. Furthermore, the propagation of intelligence can only happen for
one map per period, so if for instance three maps are chained one depending on
the other, it will take three periods for the propagation to complete and that is
the best - quickest - case, where the map execution completes within a period.
Another drawback is that without tracking by the Intelligence Database of data
changes and which Maps rely on that data, all maps have to be re-executed on
all the data on every period.

Lastly, recall that maps can use any part of the design matrices, including
historical data. Consequently, the periodic scheduling implies that all data have
to be transferred to all Maps, and all Maps have to be evaluated for each period.
This is expected to be cumbersome, given the anticipated amount of intelligence
data, let alone complicated to perform frequently enough in order to achieve
propagation that approaches near real-time.

4 Use case Scenario: Phishing attack

In a nutshell, phishing email attack is a well known cyber crime that seeks to
trick a victim into revealing personal data, credit cards, passwords and other
sensitive information [14]. Phishing can be performed in various ways, but typi-
cally evolves around deceiving an unsuspecting user to access a malicious website
under the control of the attacker. However, this website aims to mimic a trust-
worthy one. One main approach for detecting phishing campaigns is the analysis
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of domain names contained in potential phishing emails [6]. Since the resolu-
tion of a domain name to IP address takes place before the browser connects to
the phishing site, such an approach can protect a victim before they access the
website.

Following, we present the application of our framework to the use case of
phishing attack. Specifically, we construct a scenario to demonstrate the inter-
actions within our system, in the case a phishing email is spreading over the
Internet. The definition of the entities and maps is determined based on the
expert’s knowledge of the specific domain. For the specific attack scenario, we
implemented a proof of concept of our system that incorporates in total five
Maps:

— A Map to monitor the email exchanges.

— A Map to report the client’s DNS resolutions.

— A Map using an undefined ML classifier to calculate a belief of whether a
DNS request is about a malicious domain.

— A Map implementing the heuristic if a URL is hosting malicious content,
such as a phishing page or a malicious script.

— Finally, a Map inferring if an email is part of a phishing attack.

The interactions of the involved system components are depicted in Fig. 5
and constitute three major phases:

1. At the beginning, the Email Monitoring Agent reports an email containing a
URL. This event is transmitted to the Intelligence Database and propagated
to the Email is Phishing Map, which applies the heuristic whether a given
email is malicious. Then, the Email is Phishing Map triggers the URL 1is
Malicious Map, which derives a maliciousness score according to its internal
heuristic. The Email is Phishing then outputs a phishing score to the Intel-
ligence Database. If the URL is not considered malicious then the email does
not contain phishing contents. The relevant belief is thus set to 0.0.

2. Following, the DNS Resolver Agent reports that the client, which had pre-
viously received the email, resolves afterwards the domain evil.com. This
event is forwarded to the Domain is Malicious Map, where the domain is
determined as malicious, and the result is stored in the database.

3. After a while the Email Monitoring Agent reports a new email containing a
URL similar to the previous. The Intelligence Database triggers the Email
ts Phishing Map. In turn, this Map hands over the URL to URL s Mali-
cious and receives the maliciousness score of 1.0 for the URL. The Email is
Phishing Map then outputs Phishing Email:1.0 to the Intelligence Database.
Since, the user resolved a malicious domain (evil.com) right after receiving
an email containing this malicious URL, the heuristics of Email is Phishing
Map predicts that the email is phishing attack, and thus set the value of
that belief to 1.0.

This example scenario follows a belief propagation approach to spread the
impact of an event/interaction to the involved instances. In this case, the data
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Fig.5. Events propagation during the phishing email scenario. ¢ indicates external
events triggering interactions in the system. Arrows signify event transmission, with la-
bels informally summarising the new or updated intelligence (New rows for, or updates
to, the design matrices). The Maps rely on pulling additional data from the Intelligence
Database, but this is omitted here for brevity and simplicity.

related to instances involved in the event would be updated to reflect the dynamic
behaviour of that instance. In our use case scenario, the query for the domain
evil.com by the recipient of the email affects the maliciousness score of the email
and the URL of the subsequent events.

5 Conclusion

As the sophisticated techniques from the side of the evildoers are evolving with
the purpose to disguise their actions and deceive the end-users, more advanced
methodologies are also required for distinguishing between benign and mali-
cious resources and activities. The perpetrators behind malicious actions are
constantly in move, thus, making a static counteraction against the involved
entities unsuitable for such a dynamic environment. What can be considered
benign one day, it can turn malicious the next day, and vice versa on a later day.
By statically blacklisting and blocking the malicious sources of today’s cannot
provide protection in the long run. In this context, security intelligence aims to
uncover threats and threat actors, in order to prevent and mitigate their im-
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pact. However, traversing through all available intelligence requires automated
processes, making the belief propagation approach a necessity to meet require-
ments and expectations of end-users who anticipate a safer Internet.

To this end, we present the reference architecture of a framework that al-
lows the use of intelligence to provide beliefs in which degree specific entities
or resources may be involved in malicious activities. The framework is designed
on the basis to accommodate intelligence from various topics and applications,
so it will be generic, domain agnostic, and capable to incorporate a non-limited
number of sources and information types. Furthermore, to exemplify the frame-
work’s mode of operation, we provide as a proof of concept its deployment to
the use case of phishing attacks.

In essence, our framework is centred around a graph structure representation
of the intelligence data and leverages on the concept of belief propagation in
accordance with the trustworthiness of the events that it is related to. In ad-
dition, based on functionality of the Maps and their invocation as new threats
appear, the intelligence knowledge is updated and evolved. Over time, new types
of intelligence sources will be discovered or relation will be formulated. Hence,
the framework supports extensions to new maps, both for external and inter-
nal interactions. Furthermore, the design matrix approach enables a flexible and
extensible method to achieve this requirement.

The formulation of the data types and the operations on the intelligence data
depend on the expert’s knowledge of the specific domain. Therefore, as future
work, we plan to enhance our platform with a variety of use case scenarios related
with the domain of DNS security and how domain names are correlated with
malicious actions, like botnets, malware propagation and phishing campaigns
[1]. Finally, we intend to investigate the appropriate ML algorithms for the
accurate and timely calculation of the belief propagation in an event-driven
implementation of the proposed platform.
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