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Preface 
This thesis is intended for biostatisticians, health data scientists, and clinicians with a 
special interest in biostatistics and machine learning. This work was conducted at the 
Department of Clinical Medicine, Aalborg University, and the Department of 
Haematology, Aalborg University Hospital, between January 2019 and December 2021. 
It was affected, as nearly all activities across the world, by the SARS-CoV-2 pandemic 
that led to multiple lockdowns in 2020. This hindered the possibility of close 
collaboration and networking. However, this work was based on registry data that were 
readily available, which allowed me to conduct this work with limited disruption during 
this period, even allowing me to focus more on my work. This was also a good occasion 
to reflect on our busy lives. 
On a professional level, after 10 years in start-ups, I was close to innovation but far from 
science. Joining the Department of Haematology and starting this thesis was a great 
opportunity for me to dive into the academic world. A PhD is an often-solitary 
endeavour, but it is a great learning experience in terms of methods and mindset and 
brings a large panel of transferable skills. 
First and foremost, this work would not have been possible without Martin Bøgsted, 
who together with the late Hans E. Johnsen initially trusted me to be part of the research 
unit and later worked with Ursula G. Falkmer to define the scope of this PhD. His 
support and feedback have been invaluable throughout this journey. 
This work allowed me to dive into complex topics within health data science, notably 
machine techniques applied to health registry data. Alongside Martin Bøgsted, Rasmus 
F. Brøndum was a great support for the biostatistics and machine learning aspects, as 
well as a friendly companion.  
This work also gave me the occasion to better understand cancer and its intrinsic 
complexity. This understanding was made possible thanks to the precious input from 
Karen Dybkær based on her expertise in molecular biology and from Ursula G. Falkmer 
based on unique clinical experience. 
I would also like to thank all of my colleagues from the Department of Haematology and 
Department of Oncology for their support and help, as well as Chloé-Agathe Azencott 
and the members of her discussion group for our online collaboration. 
Finally, such a project also requires the support of one’s family; I would like to thank 
them from the bottom of my heart, especially my wife, Trine, for her love, support, and 
patience and my father for showing the way. I dedicate this work to my children, Sofia, 
Oscar, and Victor, as an ode to curiosity. 
 
 

Charles Vesteghem 
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English abstract 
Systemic anticancer therapies (SACTs) often have severe short- and long-term side 
effects. Some patients with limited remaining survival time will only experience the short-
term side effects with no clinical benefit. Therefore, SACTs should be avoided in these 
cases to limit the negative impact on their health-related quality of life near death. In 
Denmark, there are a variety of digital and national health registries that can be coupled 
and leveraged to monitor the last SACT administrations, including the Danish National 
Patient Registry (DNPR), which contains administrative data from all hospitals in 
Denmark (e.g., diagnosis and procedure codes), and clinical databases, such as the 
histopathological and laboratory registries.  
To quantify the frequency of late SACT administration, Earle et al. proposed two widely 
used indicators that consider the patients who died from cancer. However, these 
indicators are only applicable in hindsight, as they require information about the cause 
of death, which limits their clinical applicability. Another approach proposed by 
Wallington et al. looks at the 30-day mortality following SACT, but it is also conditioned 
on future events, as it only considers the last SACT within a predefined observation 
period. In Paper I, we proposed an adapted version based of Wallington et al. that avoids 
conditioning on future events. This approach allowed us to calculate risk factors more 
reliably and avoided the potential sampling bias that arises from conditioning on future 
events. We analysed the data from more than 10,000 cancer patients treated at the 
Department of Oncology, Aalborg University Hospital, during 2009-2019. We reported 
differences between malignancies and treatment intent, as well as a downward trend in 
the frequency of the 30-day mortality following SACT during the study period. 
To facilitate implementation of such a monitoring tool on a national level, the indicator 
must be easily and reliably calculated using available health data. One of the main data 
sources used in Paper I was the prescription database MedOnc used at the Department 
of Oncology, Aalborg University Hospital. This database contains information on drug 
administration to cancer patients, but it is not available nationally. However, the DNPR 
is available nationally and contains similar information, though, as it contains 
administrative data, its clinical validity could be questioned. To confirm the validity of 
this registry for SACTs, in Paper II, we conducted a validation study comparing the 
DNPR to MedOnc, confirming DNPR’s high validity and paving the way for the 
implementation of a national indicator. 
A strategy to limit the frequency of late SACT administration is to help clinicians better 
assess the risk of early mortality among cancer patients. In Paper III, we compared 
various machine learning techniques to dynamically predict the 30-day mortality of 
patients with advanced cancer. In line with other studies, tree-based models 
outperformed simpler or neural network-based models, and our results showed that most 
of the information for accurate prediction lies in the biochemical results. 
In this thesis, our aim was to tackle late SACT administration in cancer patients through 
better monitoring and machine learning approaches using extensive health data. We have 
proposed beneficial improvements that could be implemented nationally in tools for 



English abstract 

 vi 

monitoring and the dynamic prediction of 30-day mortality after these results are 
confirmed in prospective studies. 
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Dansk résumé 
Systemisk anticancerbehandling (SACT) har ofte alvorlige kort- og langtidsbivirkninger. 
Nogle patienter med begrænset resterende overlevelsestid vil derfor kun opleve 
bivirkninger uden at opnå en klinisk fordel. SACT bør derfor undgås i disse tilfælde for 
at begrænse negativ påvirkning af den sundhedsrelaterede livskvalitet tæt på livets 
afslutning. Der findes i Danmark en lang række nationale sundhedsregistre, som kan 
kobles sammen og udnyttes til at danne sig et overblik over SACT-administrationer, som 
er givet tæt på livets afslutning. Disse omfatter Landspatientregisteret (LPR), som 
indeholder administrative data fra alle sygehuse i Danmark såsom diagnose- og 
procedurekoder og kliniske databaser såsom patologi- og laboratoriedatabasen. 
For at kvantificere hyppigheden af sene SACT-administrationer har Earle et al. foreslået 
to populære kvalitetsindikatorer, som betragter patienter, der er døde af kræft. Disse 
indikatorer kan dog kun bruges retrospektivt, da de kræver information om dødsårsagen, 
hvilket begrænser deres kliniske anvendelighed. En anden tilgang, foreslået af Wallington 
et al., kigger på 30-dages dødeligheden efter SACT. Men denne indikator betinger også 
på fremtidige begivenheder, da den kun betragter den sidste SACT inden for et 
foruddefineret observationsvindue. I Artikel I foreslår vi en tilpasset version af 
Wallington et al., der undgår at betinge på fremtidige begivenheder. Denne tilgang giver 
os mulighed for at beregne risikofaktorer mere pålideligt og undgå den potentielle 
sampling bias, der opstår som følge af at betinge på fremtidige begivenheder. Vi har 
analyseret data fra mere end 10.000 kræftpatienter behandlet på Aalborg 
Universitetshospital i perioden 2009-2019. Vi fandt forskelle i administrationen af SACT 
tæt på livets afslutning mellem kræfttyper og behandlingsintentioner samt en 
nedadgående tendens hen over perioden. 
For at muliggøre implementeringen af en indikator på nationalt plan skal indikatoren 
kunne beregnes let og pålideligt ved hjælp af tilgængelige sundhedsdata. En af de vigtigste 
datakilder, der blev brugt i Artikel I, var ordinationsdatabasen MedOnc, der bliver brugt 
på Onkologisk Afdeling, Aalborg Universitetshospital. Denne database indeholder 
information om SACT-administration til kræftpatienter, men denne database er ikke 
tilgængelig nationalt. LPR er dog tilgængeligt nationalt og indeholder lignende 
oplysninger, men da LPR indeholder administrative data, kan man overveje LPR’s 
validitet. For at validere dette register mht. SACT har vi i Artikel II gennemført et 
valideringsstudie, der sammenligner LPR med MedOnc. Studiet bekræfter LPR’s høje 
validitet og baner derved vejen for implementeringen af en national indikator. 
En strategi til at begrænse hyppigheden af sen SACT-administration er at hjælpe 
klinikerne til bedre at vurdere risikoen for tidlig død efter SACT. I Artikel III 
sammenligner vi forskellige maskinlæringsteknikker til dynamisk forudsigelse af 30-dages 
dødeligheden for patienter med fremskreden cancer. Vores resultater viser, på linje med 
andre undersøgelser, at træbaserede modeller udkonkurrerer mere simple eller neurale 
netværk-baserede modeller og det meste af den prædiktive værdi ligger i de biokemiske 
resultater. 
I denne afhandling var det målet at kunne foreslå en forbedring af håndteringen af sen 
SACT-administration til kræftpatienter gennem bedre overvågnings- og 
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maskinlæringstilgange baseret på omfattende sundhedsdata. Vi mener at have foreslået 
gavnlige redskaber, der potentielt kan implementeres nationalt i værktøjer til overvågning 
og dynamisk forudsigelse af 30-dages dødeligheden efter SACT, efter disse resultater er 
blevet bekræftet i prospektive studier. 
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Résumé en français  
Les thérapies anticancéreuses systémiques (SACTs) sont connues pour avoir des effets 
secondaires souvent graves à court et long terme. Certains patients en fin de vie sont 
victimes de ces effets secondaires sans bénéfice clinique. Les SACTs doivent donc être 
évitées dans ces cas pour limiter leur impact négatif sur la qualité de vie liée à la santé de 
ces patients. Il existe au Danemark un grand nombre de registres nationaux contenant 
des données de santé numérisées qui peuvent être couplés, notamment pour analyser 
l’usage de SACT en fin de vie. Cela inclut le Registre National Danois des Patients 
(DNPR) qui contient des données administratives de tous les hôpitaux danois, telles que 
les codes pour les diagnostics et procédures et des bases de données cliniques contenant 
par exemple des résultats d’analyses anatomopathologiques ou biochimiques. 
Pour quantifier la fréquence d’administration SACT en fin de vie, Earle et al. ont proposé 
deux indicateurs fréquemment utilisés qui prennent en compte uniquement les patients 
ayant décédés par cancer. Ces indicateurs ne sont cependant applicables que de façon 
rétrospective car ils nécessitent des informations sur la cause du décès, ce qui limite leur 
applicabilité clinique. Une autre approche proposée par Wallington et al. examine la 
mortalité à 30 jours après une SACT. Mais cette approche nécessite aussi de conditionner 
sur des événements futurs, car il ne considère que la dernière SACT dans une fenêtre 
d'observation prédéfinie. Dans l'article I, nous proposons une version adaptée de 
Wallington et al. qui évite ce type de conditionnement. Cette approche nous permet de 
calculer les facteurs de risque de manière plus fiable et évite le biais d'échantillonnage 
potentiel du fait du conditionnement sur des événements futurs. Nous avons analysé les 
données de plus de 10 000 patients atteints de cancer traités au Département d'Oncologie 
de l'Hôpital Universitaire d'Aalborg au cours de la période 2009-2019. Nous avons 
identifié des différences entre types de cancer et selon l'intention du traitement ainsi 
qu'une tendance à la baisse au cours de la période d'étude. 
Pour faciliter la mise en place d'un outil de suivi au niveau national utilisant cette 
approche, l'indicateur correspondant doit pouvoir être calculé de manière simple et fiable 
à partir des données de santé facilement accessibles. L'une des principales sources de 
données utilisées dans l’article I était la base de données de prescription MedOnc utilisée 
au Département d'Oncologie de l'Hôpital Universitaire d'Aalborg. Cette base de données 
contient des informations sur l’usage de traitements anticancéreux, mais elle n'est pas 
disponible au niveau national. En revanche, le DNPR est disponible au niveau national 
et contient des informations similaires. Cependant, s’agissant d’un outil administratif, sa 
validité clinique pourrait être remise en question. Pour confirmer la validité de ce registre 
pour les SACTs, nous avons mené dans l'article II une étude de validation comparant le 
DNPR à MedOnc, confirmant la haute fiabilité du DNPR, ouvrant ainsi la voie à la mise 
en œuvre d'un outil de suivi national. 
Une stratégie pour limiter la fréquence d'administration de SACT en fin de vie est d'aider 
les médecins à mieux évaluer le risque de mortalité précoce des patients cancéreux. Dans 
l'article III, nous comparons diverses techniques d'apprentissage automatique pour 
prédire de manière dynamique la mortalité à 30 jours des patients atteints d'un cancer 
avancé. Nos résultats montrent, conformément à d'autres études, que les modèles basés 
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sur des arbres de décision surpassent les modèles plus simples ou basés sur des réseaux 
neuronaux et que la plupart des informations nécessaire à une bonne prédiction résident 
dans les résultats d’analyses biochimiques. 
Dans cette thèse, notre objectif était d’améliorer la gestion des SACTs chez les patients 
cancéreux en fin de vie grâce à un meilleur suivi et à des méthodes d’apprentissage 
automatique, en utilisant une large variété de données de santé. Nous avons proposé des 
solutions qui pourraient être mises en œuvre au niveau national dans des outils de suivi 
de la mortalité à 30 jours et d’aide à la décision, une fois ces résultats confirmés dans des 
études prospectives. 
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Introduction 
1. Background 

1.1. Cancer 
Cancer is currently one of the leading causes of death worldwide1, and the most common 
cause of death in people below 65 years of age in Europe2. Cancer includes a wide variety 
of disease types with uncontrolled multiplication and dissemination of neoplastic cells, 
creating tumours. Death is typically due to tumours developing in other organs, called 
metastases, which can impair the functioning of these organs. The organs affected by 
metastases are generally the liver, lungs, brain, and skeleton. Cancer is a genetic disease 
in the sense that it is primarily caused by alterations in the genetic material of the cells. 
The DNA contained in the nucleus of the cell is read by an enzyme, RNA polymerase, 
which generates messenger RNA from regions of the DNA marked by specific 
sequences of nucleotides. These regions are called genes (see Figure 1). The generated 
messenger RNA is used by the ribosome as instructions to produce a protein. This 
process was described in the Central Dogma of Molecular Biology by Francis Crick3. 
Once generated, the protein folds into a specific form based on the amino acids 
composing this protein. Once folded, the protein can play a role in transport/storage or 
as a structural component, messenger, enzyme, or antibody.  

 

 
Figure 1. Protein generation from DNA and impact of a mutation on the folding and, therefore, function of the 
protein. 
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A mutation in a gene can be passed along to the messenger RNA. This altered RNA can 
be used to produce a protein in which the composition and shape, and therefore 
function, is disrupted. The original protein could have been part of some control 
mechanism that is then affected by the mutation. Fortunately, many control mechanisms 
are present in the cell life cycle to avoid uncontrolled growth. 
To circumvent these mechanisms and become malignant, a cell must progressively 
incorporate changes in its DNA, typically induced by carcinogens. There are three types 
of carcinogens: physical, chemical, and biological. Physical carcinogens are ionising 
radiation, such as high-energy UV, which can lead to malignant melanoma. Benzene or 
arsenic are common examples of chemical carcinogens. Benzene, for example, increases 
the risk of developing leukaemia. Biological carcinogens are viruses, bacteria, and 
parasites, such as the human papillomavirus that leads to cervical cancer or the bacteria 
Helicobacter pylori that leads to stomach cancer. Most of these induced genetic alterations 
are corrected in normal cells, but, in rare occasions, slip through, especially in individuals 
with genetic predispositions to deficient DNA damage repair mechanisms. A natural 
selection process is initiated in which some mutations provide a competitive advantage 
for affected cells, such as by allowing easier and faster division through the disruption of 
control mechanisms. The required phenotypes of changes for a cell to become malignant 
were summarised in 10 hallmarks by Hanahan and Weinberg4 (see Figure 2). 
 

 
Figure 2. Updated hallmarks of cancer. The blue hallmarks are the major hallmarks as introduced in the first 
version of their categorisation. The red hallmarks are two emerging hallmarks, and the orange hallmarks are enabling 
traits. Based on Hanahan and Weinberg5. 
 
Major progress has been made in the last few decades in the treatment of malignancies, 
with drastic improvement in prognosis for certain diseases, including breast cancer. 
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However, even in Western countries, most patients will relapse and die from their cancer. 
Notably, patients with lung or pancreatic cancer have 5-year survival of less than 30%6.  

1.2. Systemic anticancer therapies 
Systemic anticancer therapies (SACTs) are treatments for malignancies that have a 
systemic effect on the patients (i.e., they affect the whole body) as opposed to local 
anticancer therapies, such as radiotherapy and surgery. SACTs have been used to treat 
patients for more than 50 years, with the first positive results in the 1940s for 
haematological malignancies7. For solid tumours, these therapies were not considered by 
most clinicians treating cancer until the 1960s, when they improved the remission rate in 
combination with local anticancer therapies. This was notably thanks to fluorouracil, 
which is still currently one of the most widely used drugs (see Table 1). 
SACTs rely on drugs that can be administered orally or injected into the patients. Oral 
drugs must be absorbed first via the digestive system before they can reach the 
bloodstream. They are also often metabolised in the liver. Once in the bloodstream, the 
drugs reach all cells in the body, affecting both normal and cancer cells. Notably, due to 
the brain-blood barrier, some drugs based on larger molecules cannot reach the 
intracerebral space, complicating the treatment of brain cancers. 
As normal cells are also exposed to the drugs used in SACTs, these drugs, depending on 
type and dose, can have severe short-term and long-term side effects, affecting the 
health-related quality of life (HRQoL) of patients. 

1.2.1. ATC classification 
Many different types of drugs for SACT have been developed and manufactured by 
various pharmaceutical companies under different commercial names. To facilitate the 
unique identification of drugs, an international classification was put in place by the 
WHO: the Anatomical Therapeutic Chemical Classification System8 (ATC). This system 
assigns a code to the active compound of a drug based primarily on its indication. SACT 
drugs can primarily be found in the antineoplastic agent category, coded L01. However, 
endocrine therapy (L02) is also used to treat specific cancer types, notably hormone-
sensitive breast cancer. Supportive drugs used to limit the side effects of the SACT drugs 
are often included in the SACT regimen, such as immunostimulants (L03), antiemetics, 
and antinauseants (A04). Most frequently used drugs in the “Antineoplastic and 
immunomodulating agents” category (ATC code L) at the Department of Oncology, 
Aalborg University Hospital, between 2008 and 2019 are presented in Table 1. 
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Table 1. Top 30 “L” drugs used at the Department of Oncology, Aalborg University Hospital, between 2008 
and 2019.  

Name ATC Records* Main indication(s) Type 

Fluorouracil L01BC02 24 583 Colorectal, Pancreatic, Breast Cytotoxic 

Paclitaxel L01CD01 19 499 Breast, Ovarian Cytotoxic 

Vinorelbine L01CA04 19 348 Lung, Breast Cytotoxic 

Carboplatin L01XA02 17 228 Lung, Ovarian Cytotoxic 

Trastuzumab L01XC03 16 025 Breast, Gastro-oesophageal Immunotherapy, active 

Irinotecan L01CE02 15 866 Colorectal, Brain Cytotoxic 

Bevacizumab L01XC07 14 504 Colorectal, Ovarian Cytotoxic 

Oxaliplatin L01XA03 13 899 Colorectal, Gastro-oesophageal Cytotoxic 

Capecitabine L01BC06 12 163 Colorectal, Breast Cytotoxic 

Docetaxel L01CD02 10 868 Breast, Prostatic Cytotoxic 

Gemcitabine L01BC05 10 211 Pancreatic, Urinary Cytotoxic 

Epirubicin L01DB03 8 968 Breast, Gastro-oesophageal Cytotoxic 

Cyclophosphamide L01AA01 6 924 Breast Cytotoxic 

Pegfilgrastim L03AA13 5 278 All Supportive (neutropenia) 

Cetuximab L01XC06 5 013 Colorectal Immunotherapy, active 

Etoposide L01CB01 4 848 Lung Cytotoxic 

Cisplatin L01XA01 4 233 Lung Cytotoxic 

Fulvestrant L02BA03 3 173 Breast Cytotoxic, targeted 

Letrozole L02BG04 2 962 Breast Cytotoxic, targeted 

Lipegfilgrastim L03AA14 2 876 All Supportive (neutropenia) 

Temozolomide L01AX03 2 622 Brain Cytotoxic 

Pemetrexed L01BA04 2 284 Lung Cytotoxic 

Pembrolizumab L01XC18 1 681 Lung, Urinary Immunotherapy, passive 

Nivolumab L01XC17 1 625 Lung Immunotherapy, passive 

Palbociclib L01EF01 1 591 Breast Cytotoxic, targeted 

Pertuzumab L01XC13 1 560 Breast Cytotoxic, targeted 

Eribulin L01XX41 1 475 Breast Cytotoxic 

Panitumumab L01XC08 1 364 Colorectal Cytotoxic, targeted 

Erlotinib L01EB02 1 354 Lung Cytotoxic, targeted 

Doxorubicin L01DB01 1 324 Ovarian, Endometrial Cytotoxic 

* The number of prescriptions of the corresponding drug as recorded in the prescription software MedOnc (see Datasets 
section). 
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1.2.2. Cytotoxic drugs 
1.2.2.1. Non-targeted drugs 

Different classes of drugs can be found among the antineoplastic agents (L01). 
Historically, the first SACTs to be introduced relied on drugs that were toxic to cells and, 
thus, are referred to as cytotoxic7. These drugs were initially non-targeted, affecting all 
growing cells in the body. They typically have a cytotoxic effect by blocking the cell cycle 
at different phases (see Figure 3). 
 

 
Figure 3. The cell cycle. During the multiplication process, the cell goes through four stages: G1, S, G2, and M. 
The cycle has two main outcomes: copying of the DNA (S) and cell division (M). Specific control mechanisms are 
activated at each checkpoint represented by a red line on the figure. 
 
The cell cycle is composed of four active phases and a resting phase (see Figure 2)9. The 
resting phase is called Gap 0 (G0). In this quiescent state, the cell cycle does not progress 
towards cell division. Instead, the cell waits for a stimulus to be reactivated, such as in 
the case of tissue-specific stem cells when an injury occurs or differentiates into a 
structural component (e.g., myoblasts). The Gap 1 (G1) phase corresponds to the growth 
phase when the cell prepares for DNA synthesis. Synthesis (S) is the phase in which 
DNA is replicated. The Gap 2 (G2) phase is a phase of cell growth after DNA synthesis 
when the cell prepares for mitosis. Mitosis is the phase in which the cell divides into two 
cells, which both then enter the G1 phase, continuing the cycle. Checkpoints are 
milestones in the cell cycle when some control mechanisms are activated to ensure the 
cell is ready to continue the cycle. For example, the G2/M checkpoint checks for errors 
in the DNA to prevent potential errors from being passed to daughter cells. It stops the 
cell cycle as long as the detected errors are not repaired10. 
Blockade of the cell cycle is typically achieved by preventing copying of the DNA (e.g., 
fluorouracil, gemcitabine, carboplatin), preventing cell division (e.g., paclitaxel, 
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vinorelbine, eribulin), or damaging the DNA with double-stranded DNA breaks, leading 
to cell death (e.g., irinotecan, topotecan)11–13. For example, fluorouracil inhibits the 
synthesis of a nucleotide, the pyrimidine thymidylate, which is needed for DNA 
replication, whereas paclitaxel prevents the destruction of microtubules, structures that 
are needed for mitosis but must be destroyed for mitosis to finish. 
Blocking the cell cycle has a major impact on the fast-dividing tumour cells. 
Unfortunately, many types of normal cells, such as epithelial cells in the gastrointestinal 
tract or blood stem cells, are also fast dividing. Therefore, they are also impacted, leading 
to potentially severe side effects, such as vomiting, diarrhoea, rashes, or acute peripheral 
neuropathy, as well as life-threatening conditions. As such, a major concern during 
treatment is infections due to neutropenia. In addition, cancer treatment drugs often 
induce long-term complications, including cardiac toxicity and an increased risk of 
secondary cancers. 

1.2.2.2. Targeted drugs 
To circumvent the drawbacks from non-targeted drugs, great effort has been made to 
develop drugs that more specifically affect cancerous cells. These drugs affect a specific 
hallmark of the cancer, stopping its growth or reducing the tumour size. These types of 
treatments have less of an impact on normal cells but are only usable in specific types of 
cancer depending on the targeted hallmark. They are typically protein kinase inhibitors 
(L01EF); protein kinases are enzymes that alter proteins and, thus, their function. 
Preventing this alteration can suppress the targeted hallmark, forcing cancer cells into a 
less malignant state. Examples of such drugs are palbociclib and erlotinib, which are 
primarily used to treat breast and lung cancer, respectively14,15. Nevertheless, they still 
have an effect on different normal cells that rely on these kinases for growth and, thus, 
also generate side effects. Alongside classical mild chemotherapy-related side effects 
(nausea, diarrhoea, headache…), they are often associated with more severe side effects, 
such as neutropenia and stroke.  
Another more recent strategy for targeted treatment is to use antibody-drug conjugates, 
such as trastuzumab emtansine (L01XC14). This type of treatment usually combines an 
antibody, trastuzumab in the mentioned example, with a cytotoxic compound. The role 
of the antibody is to preferentially bind a receptor on the cancer cells, triggering the 
internalisation of the cytotoxic compound and leading to cell death. Typical mild and 
severe chemotherapy-induced side effects are still present16. Notably, the antibody is also 
often used alone in active immunotherapy (see below). 
Endocrine therapies could also be considered as targeted cytotoxic drugs because they 
impact the growth and multiplication of cells in a targeted manner, but they typically have 
fewer as well as less severe side effects. 

1.2.3. Immunotherapy 
Immunotherapy relies on an indirect mechanism to treat cancer. As opposed to cytotoxic 
therapy, which directly hinders the growth and multiplication of cells, immunotherapy 
aims at mobilising the immune system against malignant cells. In normal conditions, the 
immune system recognises cancerous cells and destroys them. To evade the immune 
system, cancerous cells must either overload the immune system or stay invisible to it. 
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Thus, immunotherapy has the potential to cure even malignant metastatic disease by 
leveraging the patient’s own immune defences. 

1.2.3.1. Active immunotherapy 
There are currently two categories of immunotherapy: active and passive. Active 
immunotherapy forces the patient’s own immune system to attack the cancer, such as by 
using antibodies that bind to cancer cells and then flag these cells to be destroyed by the 
immune system. Examples of drugs following such a strategy are trastuzumab and 
cetuximab, which are monoclonal antibodies, highlighted by the “mab” ending in their 
name. This approach has been extended to molecules that can bind to two binding sites, 
for example on a T cell and on a cancer cell to force the T cell to attack the cancer cell. 
These drugs are called bispecific antibodies17. 
Other approaches for active immunotherapy are cancer vaccines, which help the immune 
system recognise cancer cells, and chimeric antigen receptor T cell (CAR-T cell) 
therapies. T cells are major components of the immune system. To implement the CAR-
T cell approach, T cells need to be extracted from the patient and modified to recognise 
and attack cancer cells before being reinjected into the patient. 

1.2.3.2. Passive immunotherapy 
Passive immunotherapy works by either stimulating the immune system (i.e., cytokines), 
or by disabling defence mechanisms in cancer cells. One such defence mechanism is the 
presence of programmed death-ligand 1 (PD-L1) at the surface of certain cancer cells.  
This ligand prevents lymphocytes from attacking the cell. Drugs such as pembrolizumab 
or nivolumab, as well as monoclonal antibodies, can block this mechanism by rendering 
lymphocytes insensitive to this ligand. 

1.2.3.3. Side effects 
Immunotherapies, passive immunotherapies in particular, come with side effects. By 
altering the general behaviour of the immune response, they can provoke potentially life-
threatening auto-immune reactions in patients. They also provoke more common side 
effects, such as nausea, diarrhoea, or fatigue. 

1.2.4. Dynamics of the side effects 
In conclusion, all SACTs come with a trade-off between antitumoral benefits and side 
effects. These side effects affect the HRQoL of patients and can even be linked in some 
cases to early mortality. Patients with a generalised tumour burden who respond poorly 
to the treatment and with degraded performance status are at high risk of short-term 
mortality with or without SACT administration. They will also still experience the short-
term side effects of the SACT if given, potentially further reducing their HRQoL (see 
Figure 4). 
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Figure 4. A model of health-related quality of life for a patient with limited survival. 
 
Therefore, late SACT administration should be avoided in some cases to limit the risk of 
negatively impacting the HRQoL of patients close to death. 

1.3. Aims of this work 
This work had two aims. The first aim was to characterise late SACT usage through a 
monitoring indicator, as described in Paper I, and investigate the validity of SACT 
reporting in a national registry to assess the feasibility of implementing this indicator 
nationally, as described in Paper II.  The second aim was to build and compare dynamic 
predictive models of 30-day mortality that could potentially be implemented in a decision 
support tool. This decision tool, once validated in a prospective study, would be intended 
to help clinicians prevent late SACT to limit the risk of harming patients near the end of 
life due to unnecessary SACT, as well as limit drug spending, as described in Paper III. 
 

2. Materials and methods 
2.1. Monitoring indicators for short-term mortality of cancer 

patients following SACT 
The first part of this work was to define late SACT administration and investigate its 
prevalence and associated risk factors, as described in Paper I. Different monitoring 
indicators using different definitions for late SACT administration have been proposed, 
leading to heterogenous results throughout the literature. 

2.1.1. Literature review 
To draw the landscape of the various monitoring indicators used in similar contexts, we 
conducted a literature review. We searched in PubMed for articles published between Jan 
01, 2010, and Dec 31, 2020, investigating short-term mortality after SACTs. We used the 
keywords (“30-day mortality” or “30 days mortality” or “early mortality” or “end of life”) 
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and (“anticancer” or “anti-cancer” or “chemotherapy”). From this search, we identified 
98 publications. After further filtering to remove duplicates (n=3), articles not focussed 
on solid tumours (n=18), that were not accessible (n=11), or reported qualitative results 
(n=26), we found 40 publications. 
The corresponding indicators differed mostly in three ways: the inclusion criteria, the 
time point of interest in the treatment before death, and the threshold of delay between 
the time point and death. Concerning the inclusion criteria, there were two main 
strategies: one considered only the dead patients, which was promoted by Earle et al.18, 
and the other included all patients treated during a period, typically a calendar year, 
regardless of whether they were dead19–26. The first strategy can be further subdivided 
into three subcategories based on the circumstances of death: patients who died from 
any cause, considering if they received a treatment close to death27,28,37,29–36, for example 
in the last 6 months, or not38,39,48,49,40–47; or patients who died from cancer, often in a 
palliative context50–54. For the second strategy, as defined by Wallington et al.23, patients 
can theoretically be included multiple times in different periods if they are treated over 
more than one period. 
Regarding the time point of interest in the treatment, most of the publications considered 
the last administration or start of the last cycle (36/40, see Table 2). A cycle was 
commonly a few days long, and these two time points led to similar results in terms of 
short-term mortality. Concerning the threshold on the delay between the time point and 
death, 30 days (or 1 month) was used most frequently (39/40).  
 
Table 2. Distribution of references per time point and delay used. 

Time point  All Last SACT administration Start of SACT 

Delay    

All 40 36 8 

14 days 20 20 3 

30 days 39 35 7 

Other 23 21 2 

 
The definition of SACT drugs can influence the time point, as it is based on drug 
administration or treatment start, and potentially also the cohort if only patients treated 
with these drugs are included. In some cases, a wide variety of drugs used in cancer 
treatment were considered, including supportive medications55, whereas other studies 
only considered cytotoxic drugs20. 

2.1.2. Conditioned on the future 
 When the time point and delay have been defined, the cases of late SACT are easily 
identified, but problems arise when trying to define the cohort for comparison. In other 
words, the goal is to define a ratio at which the number of late SACTs is the numerator 
but the denominator can be defined in different ways, as illustrated by the diversity of 
inclusion criteria found in the literature review. All reviewed articles included one record 
per patient, which is a common practice in medicine but leads to bias if the inclusion 
criteria rely on future events. 
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As introduced in Paper I, the main limitation of the approaches proposed by Earle et al. 
and Wallington et al. is that they are conditioned on future events. This is a kind of 
selection bias that can lead to improper assessment of risk factors. Defining a risk factor 
profile for a patient implies that this patient is evaluated when first seen and not when 
the outcome is known. In the case of Earle et al., because only patients who died from 
cancer are included, the risk factors are only applicable for patients who will die from 
cancer. However, when a patient starts a SACT, dramatically different outcomes are 
possible, from long-term remission to short-term death due to unsuccessful treatment. 
The clinician may be able to predict the outcome correctly from known risk factors and 
experience but cannot be sure of it. To define appropriate risk factors that are usable in 
a clinical context, all patients should be included. Not considering the patients for whom 
it went well will create bias toward non-responders.  
In addition, an increasing number of patients receive multiple treatments throughout the 
course of their disease and, using the Earle et al. approach, only the last one is considered. 
This means that the risk factors that are calculated will only be appropriate for the last 
treatment. The same limitation is present for Wallington et al.’s approach, as only the last 
SACT in a period is considered. Figure 5 illustrates different patient trajectories and 
which SACTs are considered in both cases. A bias toward later treatments is present in 
both. 
 

Figure 5. Examples of SACTs included in Earle et al. and Wallington et al.’s approaches. The black rectangle 
represents the treatments that each patient actually received. The red overline and blue underline indicate which 
SACTs would be taken into account in the calculation of Earle et al.’s and Wallington et al.’s indicators, 
respectively. 
 
A clinician wants to assess the risk profile of the individual patient before starting SACT 
to avoid late treatment, which means that each SACT should be considered, but this is 
not the case, as illustrated in Figure 5. 
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2.2. Datasets 
To characterise the prevalence of late SACT administration, evaluate corresponding risk 
factors, and build predictive models for the short-term mortality of cancer patients, 
retrospective data were obtained from a number of registries. In the last few decades, 
Denmark has invested in solutions to digitise health care data across the country. While 
some hurdles are still present, notably for clinical work with the lack of a national 
electronic patient journal, this investment has enabled unique research projects and put 
Denmark at the forefront of epidemiological studies56. The present work was based on 
registry data from five different sources. 

2.2.1. CPR dataset 
In Denmark, each citizen is given a number, their Danish civil registration number, which 
is systematically used across all administrative and health care systems. This number 
facilitates the coupling of datasets. The corresponding dataset from the Danish Civil 
Registration System (CPR dataset) also contains information on the individual’s sex, date 
of birth, and date of death, which were used in this work. To improve the security of this 
data, the CPR numbers were encrypted to enforce pseudo anonymisation in all datasets. 

2.2.2. PAS  
The five Danish regions manage the hospital system in Denmark. In the North Denmark 
Region, all interactions of patients at the hospitals are recorded in the Patients 
Administrative System (PAS). Such systems are in place in all regions and are primarily 
used to obtain funding from the government to finance the healthcare system. The 
structure of the PAS data can be decomposed into either in-patient or out-patient 
contacts and health care procedures. Each procedure is connected to a contact, which 
typically contains multiple procedures. A contact has associated data, notably the start 
and end dates and the associated diagnosis. A contact can potentially last for years, 
especially for chronic diseases. A procedure is defined by the start and end dates and a 
procedure code. Procedures can be diverse, such as treatment-related (e.g., surgery and 
chemotherapy) or clinical consultations. All codes used in PAS follow the Danish 
Healthcare Classification System57 (SKS). Diagnosis codes in the SKS are similar to codes 
from the ICD-10 classification58 developed by the WHO. These diagnosis codes can be 
used to infer comorbidities, side effects, and the patient’s cancer trajectory. 

2.2.3. MedOnc 
To prescribe, administer, and register the SACTs, clinicians at the Department of 
Oncology, Aalborg University Hospital, use the prescription software ARIA OIS for 
Medical Oncology v13.7 (Varian Medical Systems Inc., Palo Alto, CA, USA) (MedOnc). 
The data contained within this solution includes detailed information on the type of drug 
used, the frequency of administration, the dose administered, the PRN (Pro Re Nata = 
as needed) status, the corresponding regimen name, and cycle number. It also contains 
information on the height and weight used to calculate doses. Most of the information 
concerning drug administration was only available as text, including the commercial 
name of the product used with occasional misspellings and the frequency of 
administration. Reporting issues could also be detected in this dataset. Therefore, 
extensive data management was needed to extract usable data. 
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2.2.4. Patobank 

The Danish National Pathology Registry (Patobank) dataset contains data on 
histopathological results. These data inform on the cancer subtype based on topography, 
morphology, and/or biomarkers. The morphology coding is similar to the International 
Classification of Diseases for Oncology, 3rd Edition59 (ICD-O-3). Histopathological 
information, such as the subtype and biomarkers, can be used to select the appropriate 
treatment. Examples of biomarkers are PD-L1 expression in lung cancer and BRAF 
mutation in colorectal cancer. 

2.2.5. LABKA 
The results of biochemical analyses are collected in the Clinical Laboratory Information 
System (LABKA). This dataset primarily contains blood test results, such as blood cell 
counts or ion concentrations. To ensure comparability across Denmark, the 
Nomenclature, Properties, and Units60 (NPU) classification is used. Biochemical results 
are used to monitor the health status of the patients, notably to detect neutropenia or to 
monitor inflammation. 

2.2.6. The DNPR and its validation 
The Danish National Patient Registry (DNPR) is a national registry containing 
information from the patient administrative systems from all five regions in Denmark 
and, therefore, includes most of the data stored in PAS. All of the datasets that are used 
are available at the national level or at least in more than just the North Denmark Region 
apart from MedOnc. The PAS and DNPR contain some information on treatment as 
procedures, but MedOnc was considered a more reliable data source because it is used 
by medical personnel, where the DNPR is fed by administrative personnel. However, 
using MedOnc prevents implementation of the proposed indicator on the national scale. 
To investigate the validity of the DNPR data for SACTs, we conducted a validation study 
of this dataset in Paper II. 

2.3. Predictive modelling 
The main challenge in limiting late SACTs is the ability to accurately predict when it is 
“late” (i.e., how close to death the patient is). Clinicians tend to be overoptimistic 
concerning patient survival61. In Paper III, we built and compared dynamic predictive 
models for 30-day mortality in patients with advanced lung cancer with the intent to use 
these models in a decision support tool. Dynamic refers to the fact that these models 
should be able to predict the 30-day mortality at any time point in the patient’s trajectory. 
The corresponding outcome is binary (i.e., will the patient die within 30 days or not). The 
aim was to help clinicians better assess the short-term mortality of their patients at the 
individual level and make treatment decisions accordingly. 
Similar studies from the literature did not investigate the use of artificial neural network-
based approaches or used a limited set of covariates62–66. However, one similar study 
focussed on predicting 6-month mortality for another intent67. 
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2.3.1. Measure of performance 
When working with binary outcomes, a prediction can be either positive or negative and 
either true or false. Therefore, there are four possible cases: true-positives, true-negatives, 
false-positives, and false-negatives (see Figure 6). Performance is typically evaluated using 
functions of these numbers. The most commonly used metrics are the sensitivity, also 
called recall or the true-positive rate, and the specificity. In some contexts, the precision, 
also called the positive predictive value, is also used. The sensitivity is the ratio of true-
positives among positives and informs on how good the predictions are at identifying 
the positive cases. The specificity is the ratio of true-negatives among negatives and 
informs on how good the predictions were at avoiding false-positives. The precision is 
the ratio of true-positives among the cases predicted as positive (i.e., how likely is a 
positive prediction to be correct). The F1 score is the harmonic mean of the sensitivity 
and the precision and, thus, summarises these two metrics. 
 

 
Figure 6. Illustration of true-positives, false-positives, true-negatives, false-negatives, and associated popular metrics. 
 
In practice, predictive models for binary outcomes produce probabilities for being 
positive. The outcome is predicted to be positive if it is above an arbitrary threshold of 
this probability, and the predictions are used to compute the various performance 
metrics. To evaluate the overall performance of a model, a classical approach is to 
calculate the sensitivity and specificity for different values of the threshold and to plot 
them against each other. In practice, the sensitivity is plotted against 1-specificity, also 
called the false-positive rate (FPR). This results in a plot called the receiver operating 
characteristic (ROC) curve. The area under the ROC curve (ROC AUC) is a popular 
approach for evaluating the predictive power of such models (see Figure 7). One 
limitation of this approach is that it is sensitive to unbalanced datasets (i.e., if one 
outcome is much more frequent that the other). In the case of a frequent negative 
outcome, the model will tend to be very good at predicting true negatives.  
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Figure 7. Example of receiver operating characteristic and precision-recall curves. ROC AUC, area under the 
ROC curve; AP, average precision 
 
Therefore, adding more negatives will decrease the FPR for a given threshold while 
mostly maintaining the sensitivity, leading to an artificial increase in the ROC AUC and 
making results difficult to compare. To circumvent this limitation with unbalanced 
datasets, another metric has been proposed, the average precision (AP), which represents 
the area under the curve of the precision-recall curve68. This precision-recall plot displays 
the precision (or the positive predictive value) against the recall (or sensitivity) for various 
values of the threshold and calculates the area under the curve. In practice, the values of 
the threshold used to plot both the ROC and precision-recall curve are chosen based on 
predictions for each data point, to incrementally vary the sensitivity (or TPR or recall) 
and calculate the corresponding FPR or precision to plot a new point of the curve. 

2.3.2. General learning theory 
There are two approaches in statistical learning: supervised and unsupervised learning69. 
In supervised learning, the aim is to build a model capable of predicting an outcome 
given a number of covariates based on training data for which the covariates and 
outcome are known. The performance of the model is evaluated based on its ability to 
predict the outcome. In unsupervised learning, the model is expected to learn from the 
data without any outcome or label. This is typically used for clustering analyses, in which 
the model groups the data points into clusters based on a similarity metric. In this PhD 
study, we exclusively worked with supervised learning with a binary outcome, denoted 
as 0 or 1, where 0 is considered negative and 1 positive. 
The goal of a predictive model is to predict as accurately as possible the outcome !!  
based on a set of covariates, "!, for the #th, # = 	1,… ,) data point (e.g., a patient). The 
outcomes are collectively referred to as ! and the sets of covariates as	". This is done by 
formulating a predictive function *, taking "! as input and returning the outcome !!. 
The function is supposed to depend on a set of parameters, +, that need to be optimised 
to maximise the performance of the model. A loss function, ,, is defined that measures 
a distance between the predictions and the known outcomes. A classical function for the 
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loss function is the residual sum of squares (RSS) used to measure the distance between 
outcome !! and prediction !-!. The prediction !-! is a value of function * of the 
covariates ("!) and the model parameters (+). Letting ) denote the number of data 
points, this can be stated as: 
 

,(", !, +) = RSS(", !, +) = 	2(!! − !-!)"
#

!$%
=	24!! − *("! , +)5

"
#

!$%
. 

 
Optimisation is achieved by finding the +7 that minimises ,: 
 

+7 = 	 argmin&,(", !, +). 
 
A more general approach to calculating a loss function is based on maximising the 
likelihood function, where the likelihood function ℒ	is the density of getting the outcome 
! knowing the sets of covariates " and the set of parameters +, and ℓ is the likelihood 
for each datapoint. In the case of a binary outcome, it can be stated as: 
 

	ℒ(", !, +) =@ℓ("! , !! , +)
#

!$%
, 

where 
 

ℓ("! , !! , +) = A(!! = 1)Pr(!! = 1	|	+, "!) + 	A(!! = 0)Pr(!! = 0	|	+, "!). 
 
In practice, the log-likelihood is used, allowing us to work with a sum instead of a 
product. The log function is increasing, therefore maximising the log-likelihood is 
equivalent to maximising the likelihood. As the goal is to minimise the loss function, a 
negative sign is added:  
 

,(", !, +) = −log	(	ℒ(", !, +)) = 2−log	(
#

!$%
ℓ("! , !! , +)). 

 
2.3.3. Overfitting 

A key aspect in machine learning is the ability of the models to predict the outcome based 
on a new set of covariates. The models can become so specific to the training data used 
for learning, that it will perform poorly when presented with new data. This is called 
overfitting. 
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Figure 8. Illustration of overfitting with three different models. Se, sensitivity; Sp, specificity. 
 
In Figure 8, three different models were trained on the same data set, with different 
performances. The first and simplest model performed worst on the training data and 
the more complex model the best. However, when presented with new data, the first two 
models maintained their performance while the last model underperformed because it 
was too specific to the original training data (i.e., this model was not generalisable). 
Therefore, to properly evaluate the performance of a predictive model, the performance 
must be evaluated on different data. Typically, this is achieved by splitting the data into 
the training data and the test data, where only the training data is used for training and 
the performances are evaluated on the test data. 

2.3.4. Hyperparameter optimisation 
Most predictive models can be configured to limit overfitting, but this gives a risk of 
underfitting, with the model not learning sufficiently from the data. This configuration 
is done through hyperparameters, such as by using a coefficient to penalise the size of 
parameters used in the model through a loss function. The difference between 
hyperparameters and parameters is that the hyperparameters are set before the learning 
phase starts, whereas the parameters are optimised during the learning phase. To find the 
optimum values for the hyperparameters, the performance of the models for the tested 
hyperparameter combinations must be evaluated. The test set could be used, but this will 
also lead to overfitting because the hyperparameters are then optimised based on the 
same data set that will be used to evaluate the performance of the model. The final 
evaluation of the performance of the selected model should be made on a data set that 
was not used in either the learning phase or for the selection of the hyperparameters to 
achieve a better assessment of the generalisability of the model. Ideally, an external data 
set should be used, but this is not often available. To solve this problem, the test set can 
be split into a validation set and a final test set. The validation set is used to optimise the 
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hyperparameters, and the final performance of the model is assessed using the final test 
set. 
Different methods are available for finding the best hyperparameters. A naïve approach 
would be to systematically explore the hyperparameter space for the best combinations. 
This approach is called a grid search. A more sophisticated and effective approach is 
Bayesian optimisation, which is based on Bayes’ rule70. Bayes’ rule states how to update 
the current probability of proposition H, Pr(H), called the prior probability based on 
observed evidence I, leading to a new probability called the posterior probability, 
Pr(H|I).  
 

Pr(H|I) =
Pr(H) Pr(I|H)

Pr(I)  

 
This approach can be extended to a version of Bayes’ rule involving a prior distribution 
J on an unknown variable, K, leading to a posterior distribution on the unknown value 
z, given the set of observations o. 
 

J(K|L) =
J(K)ℒ(L|K)

∫(J(K)ℒ(L|K)NK
, 

 
where ℒ the likelihood of observing L given K. 
In Bayesian optimisation of hyperparameters, the first step is to define a prior 
distribution on the loss function by a Gaussian process (GP) on the hyperparameter 
space. In practice, a selection of points, ℎ!, # = 	1, . . . , P), is used as indices for the 
Gaussian process, where P) is the number of indexed points. For each indexed point, a 
Gaussian distribution of mean Q* and covariance function Σ* is initially defined. The 
mean Q* is typically a constant over the hyperparameters, and covariance function Σ* is 
assumed to be a smooth function of the distance between a pair of points in the 
hyperparameter space and zero for points where the loss function was observed. Using 
Bayes’ rule, a new GP is calculated on the indexed points as the posterior distribution on 
the loss function given all the observed losses. The approximate loss function, i.e., the 
mean function of the posterior GP, is called the surrogate function71. Next, we use the 
maximum of an acquisition function defined from the posterior GP to decide the set of 
hyperparameters for which the loss function should be evaluated. As an acquisition 
function, one could, for example, choose the variance function of the GP because this 
will push the point away from already explored areas. However, more sophisticated 
approaches exist based on the expected improvement or maximum entropies70. Once a 
new data point for the loss function is observed, an updated posterior is generated, 
leading to a new acquisition function and, therefore, a new set of hyperparameters for 
which the loss function should be evaluated. This process is repeated until a specific 
number of iterations is reached or when a convergence criterion is met (see Figure 9). 
This will eventually lead to a concentration of hyperparameters around the minimum 
value of the loss function. Compared to the grid search, which can realistically only 
handle a few dimensions, Bayesian optimisation is capable of handling higher 
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dimensional spaces, in practice up to 20ref70. This approach has been implemented in the 
Python library keras-tuner72. 

 
Figure 9. Example of an iteration in Bayesian optimisation of hyperparameters. Confidence intervals (CIs) describe 
typical realisations of the prior on the loss function and maximum variation. h is a value in the hyperparameter 
space. 
 

2.3.5. Predictive models 
In this work, we benchmarked five different machine learning techniques to build 
predictive models for the 30-day mortality. 

2.3.5.1. Logistic regression with elastic net regularisation 
Logistic regression is a regression technique in which the logit-function of the probability 
of getting the outcome 1 for the #+, data point is calculated as a linear combination of 
S covariates "&! , T	 = 1, . . . , S, with corresponding coefficients +& and +*, where  +* is 
an offset independent of covariates.  
 

logit4Pr(!! = 1	|	+, "!)5 = +* +	2+&"&!
-

&$%
, 

where 

logit(") = log V
"

1 − "W. 
 
 
The coefficient +7  used in the linear combination is selected to minimise the negative log-
likelihood function ,, which aims at maximising the probability of outcome ! given the 
coefficient + and sets of covariates ". 
 

+7 = argmin'(,(", !, +))) = argmin' X2−log	(
#

!$%
ℓ("! , !! , +))Y 

 
The main issues with this type of model are potential overfitting when many covariates 
are used and interpretability when correlated or multicollinear covariates are present. To 
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solve these problems, regularisation mechanisms have been proposed, such as ridge 
regression, addressing most instabilities due to correlation or multicollinearity, and the 
least absolute shrinkage and selection operator (LASSO), tackling the overfitting by 
enforcing covariate selection. The regularisation mechanism in the Ridge regression 
comes from a penalty added in the loss function , based on the sum of the squares of 
the values of the coefficients, with Z being the regularisation coefficient. 
 

[(", !, +, Z	) = −log	(,(", !, +)) + Z2+&
"

-

&$%
 

 
The regularisation in LASSO is achieved by applying a penalty proportional to the sum 
of the absolute values of the coefficient. 
 

[(", !, +, Z	) = −log	(,(", !, +)) + Z2|+&|
-

&$%
 

 
These two methods address two different issues and have been combined into one 
regularisation, the elastic net regularisation73. The corresponding hyperparameters are the 
regularisation strength, Z, and the elastic net mixing parameter between the Ridge 
regression and LASSO, \. 
 

[(", !, +, Z, \) = −log	(,(", !, +)) + Z X\2+&
"

-

&$%
+ (1 − \)2|+&|

-

&$%
Y 

 
2.3.5.2. Random forest classifier 

A classical approach in predictive modelling of binary outcomes is to use decision trees. 
The idea is to initially find the covariate and the corresponding threshold for continuous 
variables, or the value for categorical variables, that best separates the positives and 
negatives, and then repeat the process in each branch. This separation criteria can be 
stated as a question with a “Yes” or “No” answer; for example, “Is the value for the 
covariate age above 65?” or “Is the patient a male?” A tree is characterised by its depth, 
corresponding to how many times the splitting procedure is performed. The splitting 
procedure can be stopped at any time point based on the performance criteria. An 
example of a decision tree based on two covariates giving a probability of being positive 
is presented in Figure 8. Each covariate can be reused multiple times for splitting in the 
same tree. A decision tree for a binary outcome does not have to provide a binary 
prediction, but can also generate a probability of being positive or negative. 
As seen in Figure 10, the predictive function based on a decision tree, *, splits the 
covariate space into P. domains:  ]/ , ^ = 1, . . . , P. with a corresponding probability _/ 
of belonging to ]/ .  
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*("!) =2_/

0!

/$%
A("! ∈ ]/) 

 
Importantly, P., and therefore ]/ and _/ , depends on the hyperparameters used to build 
the tree, which are principally stopping criteria, such as the maximum tree depth. 

 
Figure 10. Example of a decision tree with two covariates, var1 and var2. In the covariate space on the left, the 
positive cases are represented by white circles and the negative cases by black circles. In the decision tree on the right, 
grey circles are decision nodes. The end nodes, also called leaves, are represented by white or black circles based on the 
probability of being positive using a 50% threshold. 
  
A problem with decision trees is that they tend to overfit if their depth is too large, but 
they learn very little with a low depth. To circumvent this limitation, ensemble 
approaches that create multiple trees and aggregate the results have been proposed (see 
Figure 11). 
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Figure 11. Example of the prediction process for a tree-based ensemble model with three trees and a maximum 
depth of 3. 
 
The prediction function for the whole model, *, is a function a, often the mean, of the 
outcomes of each tree, */ , ^ = 1, . . . , P1, where P1 is the number of trees. 
 

*("!) = a4*%("!), *"("!), … , *2("!)5 =
1
P1

2*/("!)
0"

/$%
 

 
One famous tree-based ensemble technique is called random forest (RF)74. A RF model 
generates an ensemble of trees, also known as a forest, for which covariates and records 
are randomly selected from the dataset to train each tree. This type of model is primarily 
optimised on the number of trees and the maximum depth of these trees. 

2.3.5.3. Gradient boosting classifier 
Another tree-based ensemble approach that has gained traction in recent years is tree-
based gradient boosting75 (GB). In contrast to the RF, covariates and data are not 
removed randomly; instead, this approach follows an iterative process in which the 
difference between the outcome and the predictions, called residuals, is used to build a 
new tree that will be included in the ensemble model (see Figure 12). 
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Figure 12. Iterative learning process for a tree-based gradient boosting classifier. 
 
The process is started by calculating the mean of the outcomes as the function for the 
first fitted model b*. From the previous model function, b/3%, residuals are calculated as 
the difference between the outcomes and the predictions. These residuals are used to fit 
a new tree with predictive function */ . After this new tree is fitted, a weighting coefficient, 
c/ , is calculated for */ to minimise the loss function, ,, on the function for the whole 
model, b/ , combining b/3% and */ . 
 

b/("!) = b/3%("!) +	c/*/("!)	 

with		c/ = argmin4 X2, V!& , b/3%("!) + c*/("!)W
#

!$%
Y 

 
Typically, the weighted residual predictions for each tree function, c/*/ , are further 
weighted by the learning rate, Z, before the new residuals are calculated to facilitate 
convergence.  
 

b/("!) = b/3%("!) + 	Zc/*/("!) 
 
where the predictive function, *, is the output of the last iteration, and P1 is the number 
of trees. 
 

*("!) = b0"("!) 
 
Like the RF, this type of model can primarily be optimised on the number of trees and 
the maximum depth of these trees, but also on the learning rate Z. The number of trees 
represents the number of times the iterative process is performed. 
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2.3.5.4. Multilayer perceptron 
Artificial neural network methods have gained considerable traction in the last decade 
due to exceptionally good results in the fields of image and voice recognition and natural 
language processing, which were made possible by improvements in processing speed. 
The corresponding models rely on programmatic neurons that apply a linear or non-
linear function to a linear combination of inputs to generate an output. This function, 
called an activation function, is often of a sigmoid type, such as the one used in the 
logistic regression:  
 

P564!/3%5 = fg+/!* + 2 +/!2

-#$%

2$%
!(/3%)2h = !/! , 

 
where ^ is the layer number, # the neuron number in the layer, P/! the output function 
for the corresponding neuron, f the activation function, S/ the number of neurons in 
layer ^, !/ the output vector of dimension S/ from layer ^ composed of the values !/!, 
+/!* the bias, and +/!2 the weight used in the corresponding neuron. These neurons are 
organised in layers, with each layer feeding into the next (see Figure 13).  
 
In predictive modelling with binary outcomes, the final layer contains only one neuron 
that outputs a probability (i.e., the predictive function *). The model learns by back-
propagation; the prediction is compared to the actual outcome and the weights and bias 
for each neuron updated going backwards in the network. This back-propagation is 
handled by an algorithm called the optimiser. Different versions of this algorithm are 
available76. The size of this update is regulated by the learning rate.  
A simple architecture for an artificial neural network model is multilayer perception 
(MLP) as shown in Figure 13. 
 

 
Figure 13. Example of a multilayer perception with three hidden layers with 4, 3, and, 3 neurons, respectively. 
 
These types of models contain many hyperparameters, including the number of layers, 
the number of neurons and activation method at each layer, the learning rate, and the 
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optimiser. In addition, a dropout step can be placed between each layer to randomly 
remove some covariates to avoid too much overfitting, adding an additional 
hyperparameter to regulate the number of covariates being removed. These 
hyperparameters can typically be determined by Bayesian optimisation. 

2.3.5.5. LSTM 
One of the main limitations of the MLP for natural language processing or voice 
recognition is their lack of memory. Understanding a text and recognising words in 
speech are typically dependent on the context and, thus, keeping track of the previous 
data (i.e., words in the case of natural language processing) can help dramatically improve 
performance. To tackle this issue, recurring neural networks have been developed in 
which the prediction is calculated from a sequence of data points, with the output at each 
data point in the sequence being dependant on the data for the new data point but also 
the output data at the previous data point. However, naïve implementation of such 
networks leads to instability in the fitting process. The long-short term memory (LSTM) 
model77 was proposed to limit this problem. It is based on the idea of an internal state 
that helps select the information to be kept while going through the sequence (see Figure 
14).  
The layers comprising this model are similar to the layers used in the MLP and, thus, lead 
to similar hyperparameters (i.e., the number of layers, the number of neurons, the 
activation method at each layer, the learning rate, and the optimiser). Dropout 
mechanisms can also be included. Furthermore, the output of the LSTM can be fed into 
an MLP, further complexifying the model. 
 

 
Figure 14. Example of an LSTM model. The red block is for the management of the internal state st and the 
green block is for the generation of the output yt, xt is the data for the event at time t in the sequence. 
 

2.3.6. Explainability 
In medical research, understanding how covariates affect predictions is of particular 
interest. Clinicians usually require understanding the reasons behind a clinical decision, 
and decision support tools should be able to provide that in some form78. Therefore, 
tree-based ensemble and artificial neural network models can be challenging to 
implement in a clinical context due to their lack of interpretability. An approach based 
on game theory aims to make the predictions from any model more interpretable. In 
game theory, Shapley values provide an estimate of the marginal contribution of each 
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player to a result so it can be allocated fairly to all players. The marginal contribution is 
the difference between the result with or without the considered player. This approach 
can be applied to a predictive model by considering covariates as players contributing to 
the outcome. 
This approach has been implemented in a Python library that calculates SHapley Additive 
exPlanation (SHAP) values79 for each covariate. SHAP values are local estimations of the 
marginal effect of each covariate on the prediction of each data point.  
 

 
 
Figure 15. Decomposition of the difference for one data point between the mean outcome and the prediction in 
contributions from each covariate in a predictive model with two covariates. 
 
One of the main advantages of this approach is that it is model agnostic (i.e., it can be 
applied to any predictive model). For a specific data point, it decomposes the difference 
between the mean outcome and the prediction in contributions from each covariate (see 
Figure 15). By calculating these SHAP values for all data points or a random sample of 
them, it is possible to estimate the overall contribution of each covariate. Though the 
SHAP approach is considered to be the standard, the explainability of machine learning 
models is a subject of ongoing research, with alternative strategies being developped78. 
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Description 
In this paper, we analysed the 30-day mortality following SACT using an adapted 
indicator, avoiding selection bias from arising by conditioning on future events present 
in similar studies. Conditioning on future events means that the inclusion criteria rely on 
data that are not available at the actual time of inclusion. Similar studies included patients 
conditioned on not getting subsequent SACT in a specific timeframe or before death. 
Our indicator considering each individual SACT circumvents this issue. We compared a 
large variety of malignancies over an 11-year period using both our adapted indicator and 
a reference indicator subject to selection bias. 
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1. Introduction 
Systemic anticancer therapies (SACTs) often require lengthy drug administration 
procedures at hospitals and frequently induce severe side effects1–4. Patients with limited 
residual life expectancy may not benefit from the treatment and only experience the 
short-term side effects, thus, reducing the patients’ quality of life5. SACT should be 
avoided in these cases6. 
To monitor the usage of SACT near the end of life, primarily two approaches have been 
used. One, proposed by Earle et al.7,  considers exclusively patients who die from cancer 
. While the criterion on the cause of death is not an issue for monitoring, it becomes a 
problem when calculating risk factors. Indeed, including only patients who died from 
cancer leads to a selection bias in the cohort definition by conditioning the inclusion on 
future events8. Conditioning on death from cancer will for example exclude long term 
survivors who died from other causes. 
Another approach was proposed by Wallington et al.9. It suggests examining 30-day 
mortality from the start of the last SACT cycle in a calendar year. Their indicator, referred 
to as Wallington’s indicator in the following, does not condition on death or its cause 
and, thus, allows for more prospective studies. As Wallington’s indicator only considers 
the last SACT given within a chosen observation interval for each patient, there is a 
selection bias towards inclusion of later lines. This selection bias may thus lead to 
unreliable calculation of risk factors for use in a clinical context. 
This study aimed to adapt the endpoint of Wallington’s indicator to improve the clinical 
applicability. A second aim was to compare risk factors found with both indicators in the 
same dataset. The final aim was to obtain standard values for 30-day mortality following 
SACT for the improved indicator, over the period 2009–2019 for the most common 
solid cancers in the North Denmark Region.  

2. Materials and methods 
2.1. The improved indicator 

SACT is defined as treatment including antineoplastic agents (i.e., Anatomical 
Therapeutic Chemical [ATC] classification10 code L01). A cycle is defined as a set of drug 
prescriptions given on consecutive days. A SACT regimen is defined as a treatment based 
on the drugs used and the administration protocol. Consecutive cycles with the same 
regimen were grouped as one SACT, if the interval between two consecutive cycles was 
less than 60 days. SACTs were characterized using the regimen names, e.g., FOLFOX, 
to obtain their intent, palliative, or curative. The line number represents the number of 
palliative SACTs administered to the patient. Some regimens can be chosen with either 
a curative or palliative intent and were referred to as multi-intent regimens. 
For each SACT, a dichotomous outcome is considered, describing whether the patient 
died within 30 days of the start of the last cycle of this SACT. Thus, the value for the 
improved indicator in a given observation interval is the average of the 30-day mortality 
outcomes for all SACTs that ended in this interval (see Figure 1). 
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Figure 1. An example of a calculation of the improved indicator compared to Wallington’s indicator using two 
different lengths for the observation interval on the same study period for 8 patients receiving 14 SACTs.  
The impact of the duration of the observation interval is illustrated in both cases using two interval lengths, the long 
observation interval length being twice the short observation interval one. The limits of the observation intervals are 
represented with vertical dashed lines. A SACT is considered for an observation interval if it ends in this interval. 
The last SACTs value represents the number of SACTs ended in an observation interval when considering for each 
patient only the last SACT. It is equal to the number of patients who ended a SACT in the considered observation 
interval. The difference between the values for the last SACTs and the SACTs illustrates the exclusion of some 
SACTs and therefore the selection bias. 
 

2.2. Study design and participants 
All patients from the North Denmark Region diagnosed with solid tumors before 
31/12/2019 and alive after 01/01/2009 (N=29,937) were screened using the Patients 
Administrative System (PAS) from the North Denmark Region based on the diagnosis 
codes. Among these patients, 24,496 had one of the included malignancies (see 
Supplementary Table 1). In the period 2009–2019, 10,672 patients received SACTs 
without being referred to other regions. Among these patients, 459 were excluded due 
to their participation in clinical trials. The final cohort of 10,213 patients received 16,622 
SACTs (see Supplementary figure 1). 
The clinical data were extracted from the PAS, and the treatment data were obtained 
from the prescription software ARIA OIS for Medical Oncology v13.7 (Varian Medical 
Systems Inc., Palo Alto, CA, USA) (MedOnc). The PAS data consisted of all diagnoses 
and procedures coded according to the Danish Disease Classification System11. This 
classification system is similar to the ICD-10 classification for diagnoses. Dates of death 
were obtained from the Danish Civil Registration System (CPR). Data for each SACT 

Death within 30 days 1 2
Last SACTs 5 5

SACTs 7 7
Wallington’s indicator 1/5 = 20% 2/5 = 40%

Improved indicator 1/7 = 14% 2 / 7 = 28%

Death within 30 days 0 1 1 1
Last SACTs 3 3 3 3

SACTs 4 3 4 3
Wallington’s indicator 0/3 = 0% 1/3 = 33% 1/3 = 33% 1/3 = 33%

Improved indicator 0/4 = 0% 1/3 = 33% 1/4 = 25% 1/3 = 33%

Study period

Long observation intervals
Short observation intervals

Patient A

Patient B

Patient C

Patient D

Patient E

Patient F

Patient G

Patient H
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SACT Cycles
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consisted of sex, age, comorbidities according to Charlson’s Comorbidity Index12 (CCI), 
current malignancy, treatment intent (curative or palliative), regimen, year at the start of 
treatment, line number, and death within 30 days of the start of the last cycle. The 
comorbidities were extracted from the diagnosis codes found in the PAS (see 
Supplementary Table 2) and updated at each SACT. 

2.3. Statistical methods 
The improved and Wallington’s indicators were both calculated over the 11-year period 
per diagnosis and treatment intent as well as for all diagnoses per year and treatment 
intent. Wallington’s indicator was calculated with an observation interval of one year, 
taking into consideration only the last cycle of the last SACT for each patient who ended 
a SACT in each interval. To estimate the effect of the observation interval, Wallington’s 
indicator was also calculated with an observation interval of a quarter and compared to 
the yearly values. Additionally, the improved indicator for palliative treatments was 
calculated over the 11-year period per line number and per drug combination. 
A multivariate logistic regression was performed for both indicators using period, age, 
sex, comorbidities, number of treatment lines, and type of malignancy as independent 
variables to identify potential risk factors. Death within 30 days of the start of the last 
cycle of either each SACT or last SACT in a given observation interval was used as the 
dependent variable for the improved and Wallington’s indicators, respectively. The 
corresponding effect estimates are presented as odds ratios (ORs). A threshold of 0.05 
was used to define the statistical significance of p-values, and 95% confidence intervals 
(CIs) were used for the ORs and survival estimates. 
30-day mortality per diagnosis, line number, and regimen were also calculated, for which 
only SACTs given in first or second line were considered. 
Data management and statistical analyses were performed using SAS Enterprise Guide 
8.3 (SAS Institute Inc., Cary, NC, USA) and Python 3.8 in Jupyter notebooks13. The 
Python library statsmodel v0.1114 was used for the regressions. 

3. Results 
3.1. Study population 

The characteristics of the study population are presented in Table 1. The majority of the 
10,213 patients included in this study were women (60%) due to the size of the female 
cancer cohorts (breast, ovarian, and uterine cancers, n = 3331). 
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Table 1. Study population characteristics (overall and based on the cancer diagnosis) and the improved and 
Wallington’s indicators per diagnosis and SACT intent. 
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N 10 213 403 2 563 2 556 532 565 2 081 507 268 450 288 

Males 
% 40 60 50 1 75 55 57 0 0 100 69 

Mean age at 
diagnosis 
years (range) 

64 
(19–94) 

60 
(20–84) 

68 
(33–93) 

57 
(25–89) 

65 
(32–84) 

67 
(39–87) 

66 
(19–94) 

67 
(19–88) 

64 
(21–89) 

71 
(48–87) 

68 
(37–89) 

Tx 16 622 907 4 030 3 979 922 809 3 506 1 108 395 580 386 

Palliative Tx 
n (%) 

10 006 
(62) 403 (44) 3 505 

(87) 
1 614 
(41) 490 (53) 712 (88) 1 855 

(54) 464 (57) 117 (57) 567 (98) 279 (72) 

Lines 
n (range) 

1.7 
(1–10) 

1.7 
(1–6) 

1.6 
(1–7) 

2.3 
(1–10) 

1.5 
(1–8) 

1.4 
(1–4) 

2.0 
(1–10) 

1.9 
(1–7) 

1.4 
(1–4) 

1.3 
(1–5) 

1.4 
(1–6) 

N, number of patients; Males, percentage of male patients; Age, average age at diagnosis in years; N-y survival. %, 
the overall survival percentage from diagnosis for patients treated with SACTs in N years, as in 2, 5, and 10 years; 
Tx, total number of SACTs given; Palliative Tx, number of SACTs given with palliative intent; Lines, the number 
of palliative SACTs given to patients treated with at least one palliative SACT. Values between parentheses show 
the range for the ‘Age’ and ‘Lines’ columns, the 95% confidence interval for the survival columns, and the proportion 
in the percent of palliative SACTs given among treatments with known intent for the ‘Palliative Tx’ column. 

 
Patients treated for advanced or metastatic disease received an average of 1.7 SACT lines. 
On average, prostate cancer patients received only 1.3 lines, while breast cancer patients 
were treated on average with 2.3 lines. For lung, pancreatic, and prostate cancer, patients 
were predominantly given palliative SACTs (87%, 88%, and 98%, respectively). In 
contrast, breast cancer patients mainly received curative SACTs (59%). 

3.2. The improved indicator compared to Wallington’s 
indicator 

3.2.1. Per diagnosis and intent 
As seen in Table 2, the 30-day mortality following SACT was higher for palliative SACTs 
than for curative SACTs across malignancies (10.3% vs 1.3% for the improved indicator, 
13.1% vs 1.5% for Wallington’s indicator). 
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Table 2. The improved and Wallington’s indicators per diagnosis and SACT intent. 
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30-day mortality - Improved indicator 

For curative 
Tx 
% (ratio) 

1.3 (75/ 
5944) 

5.5 (27/ 
491) 

1.2 
(6/511) 

0.2 (4/ 
2306) 

1.2 
(5/426) 

0.0 
(0/94) 

0.8 (12/ 
1562) 

5.4 (19/ 
350) 

0.0 
(0/88) 

7.7 
(1/13) 

1.0 
(1/103) 

For 
palliative Tx 
% (ratio) 

10.3 
(1004/ 
9760) 

8.6 (34/ 
394) 

14.3 
(486/ 
3410) 

6.7 
(106/ 
1577) 

15.0 
(71/ 
473) 

14.8 
(102/ 
689) 

6.7 
(123/ 
1832) 

6.2 (28/ 
450) 

6.9 
(8/116) 

3.6 (20/ 
550) 

9.7 (26/ 
269) 

For multi-
intent Tx 
% (ratio) 

2.1% 
(11/ 
532) 

0.0% 
(0/1) None 0.0% 

(0/12) 
0.0% 
(0/2) None 2.0% 

(1/49) 
2.4% 

(7/288) 
1.7% 

(3/179) None 0.0% 
(0/1) 

Overall 
% (ratio) 

6.7 
(1090/ 
16236) 

6.9 (61/ 
886) 

12.5 
(492/ 
3921) 

2.8 
(110/ 
3895) 

8.4 (76/ 
901) 

13.0 
(102/ 
783) 

4.0 
(136/ 
3443) 

5.0 (54/ 
1088) 

2.9 (11/ 
383) 

3.7 (21/ 
563) 

7.2 (27/ 
373) 

30-day mortality - Wallington’s indicator 

For curative 
Tx 
% (ratio) 

1.5 (74/ 
5021) 

8.8 (26/ 
296) 

1.3 
(6/471) 

0.2 (4/ 
2103) 

1.7 
(5/296) 

0.0 
(0/83) 

0.9 (12/ 
1376) 

8.8 (19/ 
215) 

0.0 
(0/72) 

9.1 
(1/11) 

1.0 
(1/98) 

For 
palliative Tx 
% (ratio) 

13.1 
(994/ 
7595) 

11.3 
(34/ 
302) 

17.8 
(481/ 
2706) 

9.4 
(106/11

30) 

18.9 
(70/ 
371) 

17.8 
(102/ 
574) 

9.0 
(121/ 
1349) 

8.1 (26/ 
322) 

7.8 
(8/102) 

3.9 (20/ 
510) 

11.4 
(26/ 
229) 

For multi-
intent Tx 
% (ratio) 

2.5% 
(11/ 
437) 

0.0% 
(0/1) None 0.0% 

(0/12) 
0.0% 
(0/2) None 3.6% 

(1/28) 
3.0% 

(7/236) 
1.9% 

(3/157) None 0.0% 
(0/1) 

Overall 
% (ratio) 

8.3 
(1079/ 
13053) 

10.0 
(60/ 
599) 

15.3 
(487/ 
3177) 

3.4 
(110/ 
3245) 

11.2 
(75/ 
669) 

15.5 
(102/ 
657) 

4.9 
(134/ 
2753) 

6.7 (52/ 
773) 

3.3 (11/ 
331) 

4.0 (21/ 
521) 

8.2 (27/ 
328) 

The values shown for the improved and Wallington’s indicators are in %. The ‘Multi-intent’ column contains the 
values for SACT regimens that can be used for both curative and palliative intents. The values between parentheses 
show the corresponding ratio. For the improved indicator, the numerator is the number of SACTs followed by the 
death of the patient within 30 days of the start of the last cycle, and the denominator is the total number of SACTs 
over the 11-year period. For Wallington’s indicator, the denominator is the total number of patients who ended a 
treatment in a year, and the numerator is the number of these patients who died within 30 days of the start of their 
last cycle in the same year. 
 
Considering all intents, there were large disparities between malignancies, ranging from 
below 3.5% for breast and uterine cancer SACTs (2.8% and 2.9% for the improved 
indicator, respectively and 3.4% and 3.3% for Wallington’s indicator, respectively) to 
above 12% in 30-day mortality for lung and pancreatic cancer SACTs (12.5% and 13% 
for the improved indicator, respectively, and 15.3% and 15.5% for Wallington’s 
indicator, respectively).  
For palliative SACTs, the 30-day mortality was above 14% for lung, gastroesophageal, 
and pancreatic cancers (14.3%, 15%, and 14.8% for the improved indicator, respectively 
and 17.8%, 18.9%, and 17.8% for Wallington’s indicator, respectively), while it was less 
than 4% for prostate cancer (3.6% for the improved indicator, 3.9% for Wallington’s 
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indicator). For curative SACTs, the 30-day mortality was less than 2%, except for brain, 
ovarian, and prostatic cancers (5.5%, 5.4%, and 7.7% for the improved indicator, 
respectively and 8.8%, 8.8%, and 9.1% for Wallington’s indicator, respectively). 
Overall, the 30-day mortality with Wallington’s indicator was consistently higher than 
with the improved indicator, especially for palliative SACTs given to gastroesophageal 
cancer patients (18.9% vs 15%). 

3.2.2. Per year and treatment intent 
Over time, the improved indicator showed an overall downward trend for the 30-day 
mortality from 8.0% in 2009 to 3.8% in 2019 (see Figure 2A). 
 

 
Figure 2. 30-day mortality per SACT intent and year (A) and the difference in 30-day mortality between the 
quarterly values and corresponding yearly values for palliative SACTs (B). The mean difference shows the mean of 
all differences between the quarterly and corresponding yearly values. 
 
This decline is notable for palliative SACTs, decreasing from 13.6% in 2009 to 5.7% in 
2019, while the 30-day mortality following curative SACTs remained low over the study 
period. A similar pattern was seen for Wallington’s indicator with a downward trend, 
especially for palliative SACTs, which ranged from 15.8% in 2009 to 7.2% in 2019. 
The mean difference between the quarterly and yearly 30-day mortalities for palliative 
SACTs was below 0.1% and above 2% for the improved and Wallington’s indicators, 
respectively (see Figure 2B). 

3.3. Logistic regressions 
Figure 3 shows the results of multivariate regressions for both the improved and 
Wallington’s indicators.  
No significant effect on 30-day mortality was found for comorbidities, sex, age group or 
line number in neither of the considered indicators. The period 2018–2019 is associated 
with a significant decrease in the 30-day mortality for both indicators compared to the 
period 2009–2011. A significant decrease was also found for the period 2015-2017 for 
the improved indicator. Lung, gastroesophageal, and pancreatic cancer diagnoses had a 
significantly worse 30-day mortality than breast cancer using the improved indicator. 
Inversely, prostate cancer had a significantly better 30-day mortality compared to breast 
cancer. 
Overall, no major difference could be found in terms of risk factors between the 
improved and Wallington’s indicators. A tentative difference was observed for the 75+ 
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years age group, with a borderline significantly lower 30-day mortality for Wallington’s 
indicator (OR: 0.84, CI: 0.70 to 1.01, p = 0.065), while it was far from significant for the 
adapted 30-day mortality indicator (OR: 0.93, CI: 0.77 to 1.11, p = 0.4). 
 

 
Figure 3. Logistic regression results for palliative SACTs for the improved and Wallington’s indicators. Year, 
year range at start of the SACT; Age, age range of the patient at start of the SACT. The comorbidities were defined 
as in Charlson’s Comorbidity Index, and the PAS codes used for each comorbidity are available in Supplementary 
Table 2. Only comorbidities with a prevalence of >1% in the cohort were considered. Note that using the line number 
with Wallington’s indicator is theoretically not appropriate but was included for comparison with the improved 
indicator. 
 

3.4. 30-day mortality following palliative SACTs per line number 
and drug combination 

The 30-day mortality using the improved indicator, shown for specific line number in 
Figure 4A, does not reveal any clear shared pattern across malignancies.  
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Figure 4. 30-day mortality following palliative SACTs per malignancy stratified by line number (A) and regimen 
(B). For each malignancy type, the width of the bar was proportional to the number of corresponding SACTs, 
normalized by the number of patients. For line number (A), the treatments after the 4th line were grouped in a ‘5+ 
line’ category. For regimen (B), only the two first lines are included, and the corresponding top four regimens are 
displayed individually alongside other regimens grouped in the ‘Others’ category. Capecitabine is considered equivalent 
to fluorouracil and has thus been grouped with it. The same was true for panitumumab with cetuximab. 
Abbreviations: Beva.: bevacizumab, Carb.: carboplatin, Cisp.: cisplatin, Doxo.: doxorobucin, Epir.: epirubicin, 
Etop.: etoposide, Fluo.: fluorouracil/capecitabine, Gemc.: gemcitabine, Irin.: irinotecan, Lomu.: lomustin, Oxal.: 
oxaliplatin, Pacl.: paclitaxel, Proc.: procarbazin, Tras.: trastuzumab, Vinc.: vincristine, Vino.: vinorelbin. See 
Supplementary Table 3 and Supplementary Table 4 for the raw values. 

 
For example, for colorectal and uterine cancers, the 30-day mortality is lower in the first 
line than in the second line. Conversely, for brain, prostate, and urinary cancers, the 30-
day mortality was lower in the second line than in the first line. For the remaining 
malignancies, the 30-day mortality remained mostly stable between the first and second 
lines. 
Large differences in 30-day mortality were observed for the four most frequently 
administered regimens by diagnosis group and line number (Figure 4B). Patients who 
received gemcitabine monotherapy tended to have high 30-day mortality (25.5% in the 
first line and 23.5% in the second line for pancreatic cancers, and 24.1% in the first line 
for urinary cancers). The highest 30-day mortality (27.1%) was seen for erlotinib, given 
to lung cancer patients, with similar values for the first and second lines (24.8% and 
27.9%, respectively). 
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4. Discussion 
4.1. Main findings 

We defined a quality indicator describing the 30-day mortality following the last cycle of 
SACT based on Wallington et al.’s approach. This indicator is adapted to the clinical 
context by avoiding selection bias and summarizes how often a SACT was followed by 
death within 30 days. Our proposed indicator allows for a more valid assessment of risk 
factors of the patients in a clinical context. However, limited differences were found 
between risk factors identified using the improved and Wallington’s indicators for the 
present dataset. 
Overall, we report a significant downward trend for the 30-day mortality following SACT 
using both indicators for palliative SACTs over an 11-year period. This decrease was not 
necessarily expected, despite the increased worldwide attention to close-to-death 
treatment of cancer patients. Recent advances in cancer treatment could have led to an 
increase in 30-day mortality. For example, in the case of protein kinase inhibitors, some 
patients benefit from continued treatment close to death15,16. This was illustrated in our 
study of erlotinib for lung cancer patients, which had the highest 30-day mortality. The 
fact that the 30-day mortality decreased over the period could be due to an increased 
attention of the clinicians towards earlier discontinuation of treatment. 
Our study also found large differences in 30-day mortality between malignancies and 
between treatment intent. Unsurprisingly, treatments administered to patients with 
metastatic or advanced cancer had the highest 30-day mortality compared to treatments 
given as curative SACTs. The 30-day mortality following curative SACTs was 2% for 
some years, which we consider unacceptably high, but the values in recent years have 
been consistently low.  
The groups with the highest 30-day mortality were those including patients with 
metastatic lung, gastroesophageal, and pancreatic cancers, all showing values above 14%. 
These values might partly be explained by widely spread tumor, several tumor-related 
symptoms, and poor performance status, notably among lung cancer patients17. 
Overall, the number of treatment lines did not seem to have a clear impact on 30-day 
mortality, with different patterns observed across malignancies. The 30-day mortality was 
expected to be higher in the second line than in the first line due to the progression of 
the disease. However, for brain, prostate, and urinary cancers, this was not the case. One 
explanation could be differences in toxicity profiles according to the type of malignancy 
and the line number. Another explanation could be that rapidly progressing disease may 
hinder the opportunity for second-line treatment, and only patients with less aggressively 
growing tumors are offered subsequent treatments. 
Among the regimens, gemcitabine monotherapy and erlotinib monotherapy had the 
highest 30-day mortalities. As mentioned above, the high 30-day mortality for erlotinib 
could be explained by the maintained clinical benefit close to death. Gemcitabine is 
predominantly administered to frail patients with advanced urinary and pancreatic 
cancers18, frailty that might not be taken well enough into consideration by clinicians, 
notably because this treatment might be the one and only option for these patients. 
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The considered comorbidities had no significant impact on 30-day mortality. This could 
be explained by their limited role in the 30-day mortality or by appropriate comorbidity 
adjustment in the clinical treatment decision making. 

4.2. Critical Assessment 
4.2.1. Study population 

The main strengths of this study are the population-based design, coverage of all the 
major cancer groups, and extension over a wide timeframe with a high level of detail 
from a single-center setting. The single-center setting could also be considered as a 
limitation. However, due to the homogeneity of the healthcare system and treatment 
guidelines in Denmark, we expect that the conclusions can be extrapolated to the entire 
Danish cancer patient cohort. Nevertheless, a national study is required to confirm this 
assumption. Additionally, pooling regimens of different types, for example cytotoxic and 
targeted, as well as cancer types with significantly different prognoses, such as small cell 
and non-small cell lung cancers, may lead to results that are not representative of any of 
the regimens or subtypes. Investigating the 30-day mortality for individual regimen types, 
cancer subtypes, or rare malignancies (e.g., head-and-neck cancers and sarcomas) would 
require access to a larger cohort. This could be achieved by extending the study to the 
entire Danish cancer patient cohort as done with another indicator by Mattsson et al.19. 

4.2.2. Using healthcare data registries 
In this study, the main data sources were electronic health records (EHRs) and 
administrative data, which we refer to as healthcare data registries (HDRs). Since such 
datasets are susceptible to biases like informed presence bias20,21, we only considered 
actively followed patients, whose data are less prone to these biases. 
One of the main advantages of using HDRs over quality databases is that they do not 
require additional reporting from clinicians. This makes it possible to build continuous 
quality monitoring tools. A disadvantage is the relative inaccessibility of some clinical 
parameters. For example, performance status, which is a known predictor of survival, is 
currently only recorded as text in patient journals. 
Nevertheless, an increasing amount of healthcare data is currently being digitalized, and 
the quality of the stored data has been reported to be good, particularly in Denmark22. 
This should facilitate the development of HDR-based and clinically applicable quality 
indicators. 

4.2.3. Using WHO ATC classification 
An international consensus on the definition of a SACT is warranted since differences in 
the definition can significantly affect the results and impede the comparison of studies. 
We therefore use the WHO ATC classification as reference. We only included 
antineoplastic agents as defined by this classification, that is, drugs with an ATC code 
starting with L01. The endocrine therapies (ATC code starting with L02) were primarily 
excluded due to: 

(1) their less severe toxicity profile 
(2) oral administration, which implies fewer visits to the hospital, impeding the 

assessment of treatment compliance and impair the reporting in HDRs. 
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Furthermore, while these treatments are often included in studies following Earle et al.’s 
approach, they were also excluded in Wallington et al.’s study. 

4.2.4. Characteristics of the indicator 
The “30-day mortality” endpoint is a common endpoint in healthcare systems, notably 
in surgery. This endpoint was used by Wallington et al., and we thus decided to use this 
approach as a reference to define 30-day mortality. The main strength of our improved 
30-day mortality indicator is that it can be used to evaluate risk factors for 30-day 
mortality following any SACT and can thus be used prospectively, i.e., to potentially 
adapt the quality of the treatment in the clinic. In contrast, risk factors calculated 
following Wallington et al.’s approach can only be used adequately for the last SACT, 
which is only known in hindsight. By considering every SACT, this indicator also allows 
us to investigate the effect of the line number and the type of treatment used on the risk 
of treating too close to death without conditioning on future events and thus avoids 
selection bias. It is nevertheless important to note that the risk factors are only usable 
once the SACT is started and thus cannot be used to decide to start a SACT or not. 
Instead, it is intended to help clinicians better assess the risk of early mortality to stop an 
already started treatment in time. 
An additional benefit of the adapted 30-day mortality indicator is that it, in contrast to 
Wallington’s indicator, remains unbiased across different choices of observation interval; 
for example, the 30-day mortality calculated for a quarter, or a month can be directly 
compared to the 30-day mortality calculated over a year or a decade (see Figure 2B). 

4.3. Comparison with other studies 
Older studies have reported an increase23,24 in late chemotherapy administration in cancer 
patients. However, in line with recent studies25,26, we report a decrease in 30-day mortality 
over time, notably for palliative SACTs. 
Compared to Wallington et al.’s original results, we found similar results for breast 
cancer, with values of 0.2% compared to 0.3% for curative SACTs and 9.4% compared 
to 7.5% for palliative SACTs. For lung cancer, we found larger differences, with values 
for 30-day mortality for Wallington’s indicator of 1.3% compared to 2.9% in Wallington 
et al.’s study for curative SACTs and 17.8% compared to 10.0% for palliative SACTs. 
This can be partially explained by the difference in the inclusion criteria. This could also 
be due to recent developments in the treatment of lung cancer patients, notably the 
introduction of protein kinase inhibitor treatments. 
Concerning other studies, the differences in inclusion criteria and endpoint definition 
limit the comparability with our study. This could explain the large variability in the 
results reported23,26 and illustrate the need for more standardized definitions, as proposed 
here. 

4.4. Perspectives 
The improved indicator can be used to properly identify risk factors for high 30-day 
mortalities, with the objective of potentially improving the quality of life near the end of 
life and better utilizing the available resources in the health care system. This indicator 
for 30-day mortality following SACT should ideally be more focused on specific cancer 
diagnoses and treatment regimens in order to define recommendations and potential 
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prognostic models to support the work of clinicians in daily clinical practice. More 
complex models allowing dynamic prediction and leveraging more extensive clinical data 
should also be built to help clinicians to decide when to stop an ongoing treatment. 

4.5. Conclusions 
We defined an improved quality indicator based on the approach followed by Wallington 
et al.9 to evaluate the 30-day mortality following SACT. This indicator can be used to 
identify clinical risk factors for increased 30-day mortality and stays consistent across 
different choices of observation intervals. Using this indicator, we noted a significant 
downward trend in 30-day mortality following palliative SACT over an 11-year period. 
A multicenter study should be performed to define a more reliable benchmark for this 
improved indicator. 
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Supplementary material 

 
Supplementary figure 1. Flow chart of patient inclusion in the study and the corresponding SACTs 
SACTs, the number of SACTs given to the corresponding patients; PAS, the Danish Patients Administrative 
System; CPR registry, the Danish Civil Registration System registry; L01 drugs, antineoplastic agents as defined 
by the Anatomical Therapeutic Chemical classification. “Treated with L01 drugs” refers to patients treated 
exclusively in the North Denmark Region with L01 drugs in the study period. 
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Supplementary Table 1. Malignancy grouping, inclusion status, and exclusion criteria 

ICD10 Malignancies Inclusion Reason for exclusion 

C00-C14, C30-C33 Head and neck No Relatively rare and not primarily treated with SACT 

C15-C16 Gastroesophageal Yes   

C17 Intestine No Rare 

C18-C20 Colorectal Yes   

C21 Anal No Rare 

C22-C24 Hepato-biliary No Referred to other hospitals 

C25 Pancreas Yes   

C26, C39, C57, C76, C80 Ill-defined No Ill-defined 

C34 Lung Yes   

C37-C38 Thoracic other than lung No Rare 

C40-C41 Bone and articular cartilage No Rare 

C43 Melanoma No Referred to other hospitals 

C44 Skin other than melanoma No Not treated with SACT 

C45-C49 Connective and soft tissue No Rare 

C50 Breast Yes   

C51-C52 Vulva and vagina No Rare 

C53-C55 Uterine Yes   

C56 Ovarian Yes   

C58 Placenta No Rare 

C61 Prostate Yes   

C64-C68 Urinary Yes   

C69-C70 Eye and meninges No Rare 

C71 Brain Yes   

C72 Nervous system No Rare 

C73-C75 Endocrine No Rare 

C77-C79 Secondary No Not primary 

C81-C96 Haematological No Not solid tumour 
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Supplementary Table 2. SKS codes for comorbidities 

Comorbidity SKS codes 

Myocardial infarction DI21, DI22, DI23 

Congestive heart failure (CHF) DI50, DI110, DI130, DI132 

Peripheral vascular disease DI70, DI71, DI72, DI73, DI74, DI77 

Cerebrovascular accident (CVA) or 
transient ischemic attack (TIA) 

DI60, DI61, DI62, DI63, DI64, DI65, DI66, DI67, DI68, DI69, DG45, DG46 

Dementia DF00, DF01, DF02, DF03, DF051, DG30 

Chronic obstructive pulmonary 
disease (COPD) 

DJ40, DJ41, DJ42, DJ43, DJ44, DJ45, DJ46, DJ47, DJ60, DJ61, DJ62, DJ63, DJ64, 
DJ65, DJ66, DJ67, DJ684, DJ701, DJ703, DJ841, DJ920, DJ961, DJ982, DJ983 

Connective tissue disease 
DM05, DM06, DM08, DM09, DM30, DM31, DM32, DM33, DM34, DM35, DM36, 
DD86 

Peptic ulcer disease DK221, DK25, DK26, DK27, DK28 

Liver disease – Mild DB18 K700, DK701, DK702, DK703, DK71, DK73, DK74, DK760 

Liver disease - Moderate to severe DB150, DB160, DB162, DB190, DK704, DK72, DK766, DI85 

Diabetes mellitus - Uncomplicated DE100, DE101, DE109, DE110, DE111, DE119 

Diabetes mellitus - End-organ 
damage 

DE102, DE103, DE104, DE105, DE106, DE107, DE108 

Hemiplegia DG81, DG82 

Moderate to severe chronic kidney 
disease 

DI12, DI13, DN00, DN01, DN02, DN03, DN04, DN05, DN07, DN11, DN14, 
DN17, DN18, DN19, DQ61 

Malignancy - Localized solid tumor DC00-DC75 not finishing with a 'M', except DC44 (non-melanoma skin cancer) 

Malignancy - Metastatic solid tumor DC76, DC77, DC78, DC79, DC80 or DC00-DC75 finishing with a 'M' 

Malignancy – Leukemia DC91, DC93, DC93, DC94, DC95 

Malignancy - Lymphoma DC81, DC82, DC83, DC84, DC85, DC88, DC90, DC96 

AIDS DB21, DB22, DB23, DB24 
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Supplementary Table 3. 30-day mortality following palliative SACTs per line number and diagnosis group 

  Line 1 Line 2 Line 3 Line 4 Line 5+ 

Brain 25/243 (10.3) 5/88 (5.7) 1/36 (2.8) 1/19 (5.3) 2/8 (25.0) 

Lung 302/2166 (13.9) 122/808 (15.1) 41/310 (13.2) 17/93 (18.3) 4/33 (12.1) 

Breast 41/727 (5.6) 26/389 (6.7) 19/220 (8.6) 7/126 (5.6) 13/115 (11.3) 

Gastroesophageal 54/323 (16.7) 16/99 (16.2) 1/34 (2.9) 0/13 (0.0) 0/4 (0.0) 

Pancreatic 76/494 (15.4) 21/156 (13.5) 5/34 (14.7) 0/5 (0.0) None 

Colorectal 59/985 (6.0) 44/459 (9.6) 14/222 (6.3) 5/97 (5.2) 1/69 (1.4) 

Ovarian 17/265 (6.4) 7/92 (7.6) 1/48 (2.1) 2/27 (7.4) 1/18 (5.6) 

Uterine 4/87 (4.6) 4/23 (17.4) 0/3 (0.0) 0/2 (0.0) 0/1 (0.0) 

Prostate 18/434 (4.1) 2/107 (1.9) 0/5 (0.0) 0/3 (0.0) 0/1 (0.0) 

Urinary 20/194 (10.3) 4/56 (7.1) 2/14 (14.3) 0/4 (0.0) 0/1 (0.0) 

The numerator is the number of SACTs followed by the death of the patient within 30 days of the last 
administration. The denominator is the total number of SACTs given. The value between parentheses is the 
corresponding 30-day mortality in percentage. 
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Supplementary Table 4. 30-day mortality following palliative SACTs with the top four regimens of each 
diagnosis group in the 1st and 2nd lines 

Brain 
Bevacizumab + 
Irinotecan 

Temozolomide 
Lomu. + Vinc. + 
Proc. 

Lomustine + 
Bevacizumab 

Others 

1. line 11/79 (13.9) 10/114 (8.8) 0/20 (0.0) 3/19 (15.8) 1/11 (9.1) 

2. line 3/49 (6.1) 0/4 (0.0) 1/10 (10.0) 0/8 (0.0) 1/17 (5.9) 

Lung 
Vinorelbine + 
Carboplatin 

Etoposide + 
Carboplatin 

Pemetrexed Erlotinib Others 

1. line 116/1014 (11.4) 124/703 (17.6) 5/27 (18.5) 28/113 (24.8) 29/309 (9.4) 

2. line 5/76 (6.6) 8/68 (11.8) 28/236 (11.9) 31/111 (27.9) 50/317 (15.8) 

Breast Paclitaxel Fluorouracil Docetaxel Palbociclib Others 

1. line 15/215 (7.0) 6/76 (7.9) 2/107 (1.9) 1/74 (1.4) 17/255 (6.7) 

2. line 2/34 (5.9) 5/75 (6.7) 0/5 (0.0) 2/30 (6.7) 17/245 (6.9) 

Gastroesophageal 
Fluorouracil + 
Oxaliplatin 

Fluo. + Epir. + 
Oxal. 

Fluo. + Oxal. + 
Tras. 

Paclitaxel Others 

1. line 27/133 (20.3) 9/62 (14.5) 5/33 (15.2) 5/15 (33.3) 8/80 (10.0) 

2. line 2/17 (11.8) 0/3 (0.0) 0/4 (0.0) 2/19 (10.5) 12/56 (21.4) 

Pancreatic Gemcitabine 
Fluo. + Oxal. + 
Irin. 

Gemcitabine + 
Paclitaxel 

Fluorouracil + 
Oxaliplatin 

Others 

1. line 61/239 (25.5) 7/138 (5.1) 4/58 (6.9) 3/16 (18.8) 1/43 (2.3) 

2. line 12/51 (23.5) 0/10 (0.0) 0/35 (0.0) 7/38 (18.4) 2/22 (9.1) 

Colorectal 
Fluo. + Beva. + 
Irin. 

Fluorouracil + 
Irinotecan 

Fluo. + Oxal. + 
Beva. 

Fluorouracil + 
Bevacizumab 

Others 

1. line 5/170 (2.9) 13/170 (7.6) 4/144 (2.8) 9/108 (8.3) 28/393 (7.1) 

2. line 3/64 (4.7) 4/54 (7.4) 5/39 (12.8) 3/54 (5.6) 29/248 (11.7) 

Ovarian 
Pacl. + Carb. + 
Beva. 

Doxorubicin 
Carboplatin + 
Bevacizumab 

Doxorubicin + 
Carboplatin 

Others 

1. line 2/63 (3.2) 5/34 (14.7) 1/36 (2.8) 0/33 (0.0) 9/99 (9.1) 

2. line 0/2 (0.0) 2/17 (11.8) 1/10 (10.0) 0/7 (0.0) 4/56 (7.1) 

Uterine Doxorubicin Carboplatin 
Doxorubicin + 
Carboplatin 

Epirubicin Others 

1. line 2/25 (8.0) 1/12 (8.3) 0/11 (0.0) 0/6 (0.0) 1/33 (3.0) 

2. line 1/3 (33.3) 0/1 (0.0) None 1/2 (50.0) 2/17 (11.8) 

Prostatic Docetaxel Cabazitaxel 
Etoposide + 
Carboplatin 

Topotecan Others 

1. line 17/415 (4.1) None 0/10 (0.0) 0/1 (0.0) 1/8 (12.5) 

2. line 0/2 (0.0) 1/96 (1.0) 1/1 (100.0) 0/2 (0.0) 0/6 (0.0) 

Urinary 
Gemcitabine + 
Cisplatin 

Gemcitabine 
Gemcitabine + 
Carboplatin 

Gemcitabine + 
Paclitaxel 

Others 

1. line 9/82 (11.0) 7/29 (24.1) 1/23 (4.3) 2/18 (11.1) 1/42 (2.4) 

2. line 0/3 (0.0) 1/10 (10.0) 1/8 (12.5) 0/3 (0.0) 2/32 (6.2) 

The numerator is the number of SACTs followed by the death of the patient within 30 days of the last 
administration. The denominator is the total number of SACTs given. The value between parentheses is the 
corresponding 30-day mortality in percentage. 
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'135�GDWD� LV� WKH�YDOLGLW\�RI� WKH� UHJLVWUDWLRQ��6RPH�ZRUN�
KDV� DOUHDG\� EHHQ� SXEOLVKHG� WR� DGGUHVV� WKLV� FRQFHUQ� IRU�
WKHVH� WUHDWPHQWV����� UHSRUWLQJ� KLJK� YDOLGLW\� LQ� WHUPV� RI�
SRVLWLYH�SUHGLFWLYH�YDOXH�DQG�VHQVLWLYLW\��EXW� WKHVH�VWXGLHV�
ZHUH�IRFXVHG�RQ�FRORUHFWDO�FDQFHUV�DQG�LQFOXGHG�OHVV�WKDQ�
����SDWLHQWV��7KXV��LW�UHPDLQV�XQNQRZQ�ZKHWKHU�WKLV�KLJK�
YDOLGLW\� FRXOG� EH� H[WUDSRODWHG� WR� RWKHU� VROLG� PDOLJQDQW�
WXPRU�W\SHV�

7KH� DLP� RI� WKLV� VWXG\�ZDV� WR� LQYHVWLJDWH� WKH� YDOLGLW\��
XVLQJ� WKH� VDPH�PHWULFV�� RI� V\VWHPLF� DQWLFDQFHU� WUHDWPHQW�
SURFHGXUH� UHJLVWUDWLRQ� RYHU� D� ZLGH� UDQJH� RI� VROLG� PDOLJ�
QDQFLHV�DQG�RYHU�D�ORQJ�SHULRG�RI�WLPH�

3DWLHQWV�DQG�0HWKRGV
$� UHWURVSHFWLYH� FRKRUW� VWXG\� ZDV� FRQGXFWHG� RQ� SDWLHQWV�
ZLWK�VROLG�PDOLJQDQW�WXPRUV�WUHDWHG�LQ�WKH�1RUWK�'HQPDUN�
5HJLRQ�

'DWD�6RXUFHV
7KH� '135� LV� HQFRGHG� XVLQJ� WKH� 'DQLVK� +HDOWK� &DUH�
&ODVVL¿FDWLRQ�6\VWHP��6.6��� DQG�ZDV�XVHG� WR�REWDLQ�SUL�
PDU\�GLDJQRVHV�DQG�SURFHGXUH�LQIRUPDWLRQ�IRU�ERWK�LQ��DQG�
RXWSDWLHQWV�FRQWDLQLQJ�WKH�SDWLHQW�LGHQWL¿HU�� WKH�DGPLVVLRQ�
DQG�GLVFKDUJH�GDWHV��DQG�WKH�GLDJQRVLV�RU�SURFHGXUH�FRGH��
)RU�FDWHJRU\�OHYHO�GLDJQRVHV�� WKH�6.6�HQFRGLQJ�LV�LGHQWL�
FDO�WR�WKH�,&'����FODVVL¿FDWLRQ���

7KH�VHFRQG�PDLQ�GDWD�VRXUFH�ZDV�WKH�GDWDEDVH�IURP�WKH�
$5,$� 2,6� IRU� 0HGLFDO� 2QFRORJ\� Y����� SUHVFULSWLRQ�
VRIWZDUH��� �0HG2QF��XVHG�DW�WKH�'HSDUWPHQW�RI�2QFRORJ\��
$DOERUJ� 8QLYHUVLW\� +RVSLWDO�� 7KH� FRUUHVSRQGLQJ� GDWD�

LQFOXGH� WKH� SDWLHQW� LGHQWL¿HU�� WKH� VWDUW� RI� WUHDWPHQW� GDWH��
WKH� GXUDWLRQ�� WKH� GUXJ� QDPH�� DQG� WKH� GRVH� JLYHQ� IRU� HDFK�
SUHVFULSWLRQ�DQG�DUH�RQO\�DYDLODEOH�IRU�SDWLHQWV�WUHDWHG�LQ�WKH�
5HJLRQ�1RUWK�'HQPDUN��7KH�0HG2QF�GDWDVHW�ZDV�XVHG�DV�
WKH� JROG� VWDQGDUG� WR� HYDOXDWH� WKH� YDOLGLW\� RI� WKH� '135�
GDWDVHW�

'DWD�([WUDFWLRQ
2XU� IRFXV� LV� RQ� DQWL�QHRSODVWLF� DJHQWV� DV� GH¿QHG� E\� WKH�
$QDWRPLFDO� 7KHUDSHXWLF� &KHPLFDO� �$7&�� FODVVL¿FDWLRQ����

LH�� GUXJV� ZLWK� DQ� $7&� FRGH� VWDUWLQJ� ZLWK� ³/��´�� 7KHVH�
GUXJV�DUH�UHIHUUHG�WR�KHUH�DV�/���GUXJV��7KH�FRUUHVSRQGLQJ�
GDWD� ZHUH� H[WUDFWHG� IURP� WKH� '135� XVLQJ� 6.6� FRGHV�
ORRNLQJ� DW� WKH� SURFHGXUHV�� ³6SHFLDO� PHGLFDO� WUHDWPHQWV�
DQG� WUHDWPHQW� SULQFLSOHV´� �FRGHV� VWDUWLQJ� ZLWK� ³%:+´��
DQG� ³7UHDWPHQW� ZLWK� DQWLERGLHV� DQG� LPPXQRPRGXODWRU\�
WKHUDS\´��FRGHV�VWDUWLQJ�ZLWK�³%2+-´���7KHVH�SURFHGXUHV�
ZHUH�PDSSHG� WR�$7&�FRGHV��3URFHGXUHV�FRUUHVSRQGLQJ�WR�
GUXJ�FRPELQDWLRQV�� LH��PXOWLSOH�$7&�FRGHV�� LQ� WKH�'135�
GDWD�ZHUH� VSOLW� LQWR� LQGLYLGXDO� GUXJ� HQWULHV�� 'UXJV� DGPL�
QLVWHUHG�RYHU�FRQVHFXWLYH�GD\V�ZHUH�JURXSHG�LQWR�RQH�GUXJ�
HQWU\�ZLWK�D�GXUDWLRQ�HTXDO� WR� WKH�QXPEHU�RI�FRQVHFXWLYH�
GD\V��7KHVH�GUXJ�HQWULHV�DUH�UHIHUUHG�WR�KHUH�DV�GUXJ�F\FOHV�
�VHH�)LJXUH����

)RU� 0HG2QF�� WKH� GUXJ� QDPHV� ZHUH� PDSSHG� WR� $7&�
FRGHV�� 7KH� 0HG2QF� SUHVFULSWLRQV� ZLWK� QR� GRVH� JLYHQ��
FRUUHVSRQGLQJ� WR� QRQ�DGPLQLVWHUHG� WUHDWPHQWV�� ZHUH�
UHPRYHG�IURP�WKH�GDWDVHW��7KH�GUXJ�HQWULHV�ZHUH�JURXSHG�
LQ�GUXJ�F\FOHV��ZKHUH�DSSOLFDEOH��LQ�D�VLPLODU�PDQQHU�WR�WKH�
'135�GDWDVHW�

Drug 1

N N+1 N+2 N+3 N+4 N+6N+5 N+7 N+8

Drug 2

Days

Drug cycle 1 for drug 1

Drug cycle 1 for drug 2

Drug cycle 2 for drug 1

Drug cycle 2 for drug 2

Start of drug cycle 2 for drug 1Entries of drug cycle 1 for drug 1

)LJXUH���*URXSLQJ�RI�GUXJ�HQWULHV�LQWR�GUXJ�F\FOHV�
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,QFOXVLRQ�&ULWHULD
7KH� SDWLHQWV� LQFOXGHG� LQ� WKLV� VWXG\�ZHUH� LGHQWL¿HG� XVLQJ�
WKH�FDQFHU�GLDJQRVLV�FRGHV��,&'����FRGHV�VWDUWLQJ�ZLWK�&��
IRXQG� LQ� WKH�'135�GDWD� DV� SULPDU\�GLDJQRVLV��7KH�GLDJ�
QRVHV� ZHUH� JURXSHG� LQWR� FRPPRQ� FDQFHU� W\SHV� �VHH�
6XSSOHPHQWDU\�7DEOH�����2QO\�SDWLHQWV�ZLWK�D�OLVWHG�FDQFHU�
W\SH� DQG� DW� OHDVW� RQH�/���GUXJ� F\FOH� UHFRUG� LQ� HLWKHU� WKH�
'135� RU� 0HG2QF� ZHUH� LQFOXGHG� �VHH� 6XSSOHPHQWDU\�
)LJXUH����

)RU� WKH� '135�� ZH� FRQVLGHUHG� RQO\� /��� GUXJ� F\FOHV�
IURP� SURFHGXUHV� SHUIRUPHG� DW� WKH� 'HSDUWPHQW� RI�
2QFRORJ\�� $DOERUJ� 8QLYHUVLW\� +RVSLWDO� EHWZHHQ� �����
DQG������ ����\HDUV���7KHVH�GDWD�FRYHU�DOO�V\VWHPLF�DQWLF�
DQFHU�WUHDWPHQWV�JLYHQ�LQ�WKH�1RUWK�'HQPDUN�5HJLRQ��)RU�
0HG2QF�� ZH� VLPLODUO\� RQO\� FRQVLGHUHG� /��� GUXJ� F\FOHV�
JLYHQ�RYHU�WKH�VDPH�SHULRG�

,Q� 'HQPDUN�� HDFK� FLWL]HQ� LV� DVVLJQHG� DQ� ,'� QXPEHU�
IURP�WKH�'DQLVK�&LYLO�5HJLVWUDWLRQ�6\VWHP����7KH�GDWD�VHWV�
ZHUH�SVHXGRQ\PL]HG�DQG�OLQNHG�DW� WKH�SDWLHQW� OHYHO�XVLQJ�
DQ�HQFRGHG�YHUVLRQ�RI�WKLV�QXPEHU�

$QDO\VLV
7KH�FRPSDULVRQV�RI�WKH�WZR�GDWDVHWV�ZHUH�SHUIRUPHG�ERWK�
IRU� SDWLHQWV� DQG� IRU� /��� GUXJ� F\FOHV�� )RU� WKH� SDWLHQWV��
PDWFKLQJ� ZDV� SHUIRUPHG� XVLQJ� WKH� SDWLHQW� LGHQWL¿HU� DQG�
WKH� DQDO\VHV� ZHUH� VWUDWL¿HG� E\� GLDJQRVLV�� )RU� /��� GUXJ�
F\FOHV�� WKH�$7&�FRGH�DQG�WKH�VWDUW�RI�WUHDWPHQW�GDWH�ZHUH�
DGGLWLRQDOO\� FRQVLGHUHG� IRU� PDWFKLQJ� DQG� WKH� DQDO\VHV�
ZHUH�VWUDWL¿HG�E\�GLDJQRVLV��\HDU��DQG�GUXJ�

)ROORZLQJ�DQ�DSSURDFK�VLPLODU� WR�%URH�HW�DO�� WKH�FRQ�
FRUGDQFH�RI� WKH�GDWDVHWV�ZDV�PHDVXUHG�XVLQJ� WKH�SRVLWLYH�
SUHGLFWLYH� YDOXH� �339�� DQG� WKH� VHQVLWLYLW\�� 7KH�0HG2QF�
GDWD�ZHUH�WKH�JROG�VWDQGDUG��DQG�WKH�'135�GDWDVHW�ZDV�WKH�
SUHGLFWLYH� GDWDVHW�� 339�ZDV� GH¿QHG� DV� WKH� UDWLR� RI� GUXJ�
F\FOHV�LQ�WKH�LQWHUVHFWLRQ�EHWZHHQ�ERWK�GDWDVHWV�DQG�LQ�WKH�
'135�GDWDVHW��DQG�WKH�VHQVLWLYLW\�ZDV�GH¿QHG�DV�WKH�UDWLR�
RI� GUXJ� F\FOHV� LQ� WKH� LQWHUVHFWLRQ� EHWZHHQ� ERWK� GDWDVHWV�
DQG� LQ� WKH� 0HG2QF� GDWDVHW�� $GGLWLRQDOO\�� WKH� )�� VFRUH��
GH¿QHG�DV� WKH�KDUPRQLF�PHDQ�RI� WKH�339�DQG�VHQVLWLYLW\��
ZDV�DOVR�XVHG�DV�DQ�RYHUDOO�PHWULF� IRU�FRQFRUGDQFH��$V�D�
VHQVLWLYLW\� DQDO\VLV��ZH� FRQVLGHUHG� D�PDUJLQ�RI� ��GD\� IRU�
PDWFKLQJ�RQ�WKH�VWDUW�GDWH��DV�XVHG�E\�%URH�HW�DO��

7KH� GDWD� PDQDJHPHQW� DQG� VWDWLVWLFDO� DQDO\VHV� ZHUH�
SHUIRUPHG� XVLQJ� 6$6� (QWHUSULVH� *XLGH� ���� �6$6�
,QVWLWXWH� ,QF���&DU\��1&��86$��DQG�3\WKRQ����� LQ� -XS\WHU�
QRWHERRNV���� UHVSHFWLYHO\�

(WKLFDO�$SSURYDO�DQG�6WXG\�5HJLVWUDWLRQ
$FFRUGLQJ� WR� 'DQLVK� OHJLVODWLRQ�� HWKLFDO� DSSURYDO� DQG�
SDWLHQW� FRQVHQW� IRU� SXUHO\� UHJLVWU\�EDVHG� SURMHFWV� LV� QRW�
UHTXLUHG�� RQO\� UHJLVWUDWLRQ� DW� WKH� GDWD� UHVSRQVLEOH� KRVW�
LQVWLWXWLRQ� LV� QHHGHG�� 7KH� VWXG\� SURWRFRO� ZDV� UHJLVWHUHG�
LQ�WKH�1RUWK�'HQPDUN�5HJLRQ¶V�UHVHDUFK�SURMHFW�LQYHQWRU\�
XQGHU� WKH� QXPEHU� ����±��� DQG� WKHUHE\� FRPSOLHV� ZLWK�
UHOHYDQW�GDWD�SURWHFWLRQ�DQG�SULYDF\�UHJXODWLRQV�

5HVXOWV
6WXG\�3RSXODWLRQ
7KLV� VWXG\� LQFOXGHG� SDWLHQWV�ZLWK� D� EURDG� UDQJH� RI� VROLG�
PDOLJQDQW� WXPRUV�� WKH� ODUJHVW� JURXSV� EHLQJ� OXQJ�� EUHDVW��
DQG� FRORUHFWDO� FDQFHUV�� UHSUHVHQWLQJ� WZR�WKLUGV� RI� WKH�
FRKRUW� �VHH� 7DEOH� ���� )HPDOH� SDWLHQWV� DFFRXQWHG� IRU� WKH�
PDMRULW\�RI�WKH�SDWLHQWV��������1LQHW\�WKUHH�SHUFHQW�RI�WKH�
SDWLHQWV�ZHUH�!���\HDUV�ROG�DW�GLDJQRVLV�

0DWFKLQJ�3DWLHQWV�DQG�'UXJ�&\FOHV
$OPRVW�DOO�SDWLHQWV�DUH�SUHVHQW�LQ�WKH�LQWHUVHFWLRQ�EHWZHHQ�
0HG2QF� DQG� WKH� '135�� ZKLFK� WUDQVODWHV� LQWR� D� ODUJH�
FRQFRUGDQFH� EHWZHHQ� WKH� WZR� GDWDVHWV� DW� WKH� SDWLHQW�
OHYHO��ZLWK� D� 339�DQG� D� VHQVLWLYLW\� RI� ������DQG� �������
UHVSHFWLYHO\��VHH�7DEOH�����+RZHYHU��WKH�PDWFKLQJ�RI�EUDLQ�
WXPRU�SDWLHQWV�OHG�WR�D�ORZHU�VHQVLWLYLW\�RI�����

7DEOH���6WXG\�3RSXODWLRQ�&KDUDFWHULVWLFV

&DWHJRU\ 9DULDEOH &RXQW 5DWLR

2YHUDOO 3DWLHQWV ������ ����

6H[ 0DOH ���� ���

)HPDOH ���� ���

$JH�DW�GLDJQRVLV ��²�� ��� ��
��²�� ���� ���

��²�� ���� ���

��� ���� ���

&DQFHU�'LDJQRVLV %UDLQ ��� ��

/XQJ ���� ���
%UHDVW ���� ���

*DVWUR�HVRSKDJHDO ��� ��

3DQFUHDWLF ��� ��
&RORUHFWDO ���� ���

2YDULDQ ��� ��

(QGRPHWULDO ��� ��
3URVWDWLF ��� ��

8ULQDU\ ��� ��

2WKHU ���� ��
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0DWFKLQJ�WKH�GUXJ�F\FOHV�XVLQJ�WKH�SDWLHQW� LGHQWL¿HU��WKH�
$7&�FRGH��DQG�WKH�VWDUW�RI�WUHDWPHQW�GDWH�JHQHUDWHG�D�339�DQG�
D� VHQVLWLYLW\� DERYH� ����� 7UHDWPHQWV� ZLWKLQ� DOO� GLDJQRVHV�
H[FHSW� EUDLQ�� RYDULDQ�� DQG� HQGRPHWULDO� FDQFHUV� KDYH� D�

VHQVLWLYLW\�DQG�D�339�DERYH������ZLWK�WUHDWPHQWV�IRU�SDQFUHD�
WLF�FDQFHU�DERYH������VHH�)LJXUH�����$GGLQJ�D���GD\�PDUJLQ�
IRU� WKH� VWDUW� GDWH� LPSURYHV� WKH� SHUIRUPDQFH�ZLWK� D� JDLQ� RI�
�����IRU�339�������IRU�VHQVLWLYLW\�DQG������IRU�)��VFRUH�

7DEOH���339��6HQVLWLYLW\��DQG�)��6FRUH�IRU�3DWLHQWV�DQG�/���'UXJ�&\FOHV�SHU�'LDJQRVLV

&DQFHU�'LDJQRVLV 7\SH 0HG2QF '135 ,QWHUVHFWLRQ 339 6HQVLWLYLW\ )��6FRUH

2YHUDOO 3DWLHQWV ������ ������ ������ ����� ����� �����
'UXJ�F\FOHV ������� ������� ������� ����� ����� �����

:LWK�D���GD\�PDUJLQ ������� ������� ������� ����� ����� �����

%UDLQ 3DWLHQWV ��� ��� ��� ����� ����� �����

'UXJ�F\FOHV ���� ���� ���� ����� ����� �����
:LWK�D���GD\�PDUJLQ ���� ���� ���� ����� ����� �����

/XQJ 3DWLHQWV ���� ���� ���� ����� ����� �����
'UXJ�F\FOHV ������ ������ ������ ����� ����� �����

:LWK�D���GD\�PDUJLQ ������ ������ ������ ����� ����� �����

%UHDVW 3DWLHQWV ���� ���� ���� ����� ����� �����

'UXJ�F\FOHV ������ ������ ������ ����� ����� �����

:LWK�D���GD\�PDUJLQ ������ ������ ������ ����� ����� �����

*DVWUR�RHVRSKDJHDO 3DWLHQWV ��� ��� ��� ����� ����� �����

'UXJ�F\FOHV ������ ������ ���� ����� ����� �����
:LWK�D���GD\�PDUJLQ ������ ������ ���� ����� ����� �����

3DQFUHDWLF 3DWLHQWV ��� ��� ��� ������ ����� �����
'UXJ�F\FOHV ������ ������ ������ ����� ����� �����

:LWK�D���GD\�PDUJLQ ������ ������ ������ ����� ����� �����

&RORUHFWDO 3DWLHQWV ���� ���� ���� ����� ����� �����

'UXJ�F\FOHV ������ ������ ������ ����� ����� �����

:LWK�D���GD\�PDUJLQ ������ ������ ������ ����� ����� �����

2YDULDQ 3DWLHQWV ��� ��� ��� ����� ����� �����

'UXJ�F\FOHV ������ ������ ������ ����� ����� �����
:LWK�D���GD\�PDUJLQ ������ ������ ������ ����� ����� �����

(QGRPHWULDO 3DWLHQWV ��� ��� ��� ����� ������ �����
'UXJ�F\FOHV ���� ���� ���� ����� ����� �����

:LWK�D���GD\�PDUJLQ ���� ���� ���� ����� ����� �����

3URVWDWLF 3DWLHQWV ��� ��� ��� ����� ����� �����

'UXJ�F\FOHV ���� ���� ���� ����� ����� �����

:LWK�D���GD\�PDUJLQ ���� ���� ���� ����� ����� �����

8ULQDU\ 3DWLHQWV ��� ��� ��� ����� ����� �����

'UXJ�F\FOHV ���� ���� ���� ����� ����� �����
:LWK�D���GD\�PDUJLQ ���� ���� ���� ����� ����� �����

2WKHU 3DWLHQWV ���� ��� ��� ����� ����� �����
'UXJ�F\FOHV ������ ������ ������ ����� ����� �����

:LWK�D���GD\�PDUJLQ ������ ������ ������ ����� ����� �����

1RWHV��3DWLHQWV�DUH�PDWFKHG�RQ�HQFU\SWHG�&35�QXPEHU��GUXJ�F\FOHV�RQ�VWDUW�GDWH�DQG�$7&�FRGH��7KH���GD\�PDUJLQ�LV�RQ�WKH�VWDUW�GDWH�IRU�GUXJ�F\FOHV�DOORZLQJ�DGGLWLRQDO�
PDWFKLQJ�LI�WKH�VWDUW�GDWHV�RI�XQPDWFKHG�GUXJ�F\FOHV�LQ�0HG2QF�DQG�WKH�'135�DUH���GD\�RU�OHVV�IURP�HDFK�RWKHU�
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(YROXWLRQ�2YHU�7LPH
7KH�YDOLGLW\�RI�WKH�UHJLVWHUHG�GUXJ�F\FOHV�LV�PRVWO\�VWDEOH�
RYHU� WKH� ����±����� SHULRG� ���� \HDUV�� �VHH� )LJXUH� ����
1HYHUWKHOHVV�� D� GURS� LQ� 339� FDQ� EH� VHHQ� IRU� ����� DQG�
������ 7KH� VHQVLWLYLW\� ZDV� DOVR� QHJDWLYHO\� LPSDFWHG� LQ�
�����DQG�������7KH�HIIHFW�RI�WKH���GD\�PDUJLQ��VKRZQ�DV�
OLJKWHU�VXUIDFHV�DERYH�ERWK�OLQHV� LQ�)LJXUH����VHHPV�WR�EH�
VWDEOH�RYHU�WKH�SHULRG�

9DOLGLW\�SHU�'UXJ
/RRNLQJ�DW�WKH�PRVW�IUHTXHQWO\�DGPLQLVWHUHG�GUXJV�WKHUH�LV�
D�PRUH�GHWDLOHG�SLFWXUH��ZLWK�PRVW�GUXJV�KDYLQJ�)��VFRUHV�
DERYH������VHH�7DEOH�����6RPH�GUXJV��ÀXRURXUDFLO��JHP�
FLWDELQH�� SHPHWUH[HG�� SHPEUROL]XPDE�� DQG� QLYROXPDE��
KDYH�KLJK�YDOLGLW\�ZLWK�)��VFRUHV�DERYH������ZKLOH�RWKHUV�
�WHPR]RORPLGH�� SHUWX]XPDE�� SDOERFLFOLE�� HUORWLQLE� DQG�
ODSDWLQLE��KDYH�)��VFRUHV�EHORZ������7KH�ORZ�YDOLGLW\� LV�
W\SLFDOO\�GXH�WR�D�ORZ�VHQVLWLYLW\�ZLWK�YDOXHV�EHORZ������
LH�� PDQ\� HQWULHV� LQ� 0HG2QF� FDQQRW� EH� PDWFKHG� ZLWK�
FRUUHVSRQGLQJ� GDWD� LQ� WKH� '135� �VHH� )LJXUH� ���� $V�

VKRZQ� LQ� 7DEOH� ��� WKHUH� LV� D� VWURQJ� FRUUHODWLRQ� EHWZHHQ�
GUXJV� DQG� GLDJQRVHV�� IRU� H[DPSOH� WHPR]RORPLGH� DQG�
F\FORSKRVSKDPLGH� DUH� DOPRVW� H[FOXVLYHO\� XVHG� IRU� EUDLQ�
DQG�EUHDVW�FDQFHU��UHVSHFWLYHO\�

'LVFXVVLRQ
0DLQ�5HVXOWV
7KH�'135�GDWD�FDQ�EH�XVHG�DV�D�JRRG�SUR[\�IRU�/���GUXJ�
F\FOHV�ZKHQ�PDWFKLQJ�WKH�$7&�FRGH�DQG�VWDUW�RI�WUHDWPHQW�
GDWH�� 7KH� UHSRUWLQJ� RI� GUXJ� F\FOHV� DSSHDUV� WR� EH� UHOLDEOH�
DFURVV� GLDJQRVHV�� HVSHFLDOO\� IRU� FRORUHFWDO� DQG� SDQFUHDWLF�
FDQFHUV��EXW�KLVWRULFDOO\�QRW�IRU�EUDLQ�FDQFHUV��HYHQ�WKRXJK�
LPSURYHPHQWV� KDYH� RFFXUUHG�� /RRNLQJ� DW� VSHFL¿F� GUXJV��
RQO\� D� IHZ� KDYH� OLPLWHG� YDOLGLW\� DPRQJ� IUHTXHQWO\� XVHG�
GUXJV��LQFOXGLQJ�WHPR]RORPLGH�

8VLQJ�WKH�6WDUW�RI�7UHDWPHQW�'DWH�2QO\
7KH�GXUDWLRQ�RI� WKH�F\FOH�ZDV�QRW�FRQVLGHUHG�EHFDXVH�WKH�
'135�GRHV�QRW�FRQWDLQ�WKLV�LQIRUPDWLRQ��+RZHYHU��LQ�WKH�
FRQWH[W� RI� D� VSHFL¿F� WUHDWPHQW� IRU� D� VSHFL¿F� FDQFHU� W\SH��

)LJXUH���3RVLWLYH�SUHGLFWLYH�YDOXH�YV�VHQVLWLYLW\�IRU�WKH�PDWFKLQJ�RI�GUXJ�F\FOHV�SHU�FDQFHU�GLDJQRVLV��7KH�DUHD�RI�WKH�FLUFOH�LV�SURSRUWLRQDO�WR�WKH�QXPEHU�RI�FRUUHVSRQGLQJ�
GUXJ�F\FOHV��7KH�OLJKWHU�FLUFOHV�LQ�WKH�EDFNJURXQG�FRUUHVSRQG�WR�WKH�SHUIRUPDQFHV�ZLWK�D���GD\�PDUJLQ�
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WKH� GXUDWLRQV� RI� F\FOHV� ZRXOG� EH� NQRZQ�� HVSHFLDOO\� IRU�
DGMXYDQW� DQG� QHRDGMXYDQW� WUHDWPHQWV� DQG�� WR� D� OHVVHU�
H[WHQW�� IRU� SDOOLDWLYH� WUHDWPHQWV�� 7KXV�� WKH� ZKROH� KLVWRU\�
RI� SDWLHQWV� FRXOG�EH� UHFRQVWUXFWHG�� DV� D� F\FOH� LV� W\SLFDOO\�
QRW� VWRSSHG� LQ� WKH� PLGGOH� EXW� LQVWHDG� FDQFHOOHG� RU� SRVW�
SRQHG�DOWRJHWKHU�LI�WKH�SDWLHQW�LV�QRW�¿W�IRU�LW�

7HPR]RORPLGH�DQG�%UDLQ�&DQFHU
7HPR]RORPLGH� F\FOHV� IURP� WKH�'135� KDYH� D� JRRG� 339�
EXW� D� ORZ� VHQVLWLYLW\�� LH�� D� VLJQL¿FDQW� SURSRUWLRQ� RI� WKHVH�
F\FOHV�GR�QRW� VHHP� WR�KDYH�EHHQ� UHJLVWHUHG� LQ� WKH�'135�
XS�WR�������VHH�)LJXUH�����7KLV�LV�GXH�WR�KLVWRULFDOO\�SRRU�
UHSRUWLQJ� LQ� WKH�'135�E\� DGPLQLVWUDWLYH� SHUVRQQHO�� 7KLV�
FRXOG� EH� H[SODLQHG� E\� WKH� FRPSOH[LW\� RI� WKH� WUHDWPHQW�
UHJLPHQ� XVHG� IRU� JOLREODVWRPD��� DQG� WKXV� SRLQW� WRZDUG�
UHSRUWLQJ�LVVXHV�DW�WKH�GLDJQRVLV�OHYHO��7KLV�SRRU�UHSRUWLQJ�
PHFKDQLFDOO\�LPSDFWV�WKH�FRQFRUGDQFH�DW�WKH�SDWLHQW�OHYHO��
DV�VHHQ�LQ�7DEOH���

5HFHQW�'UXJV
6LPLODU�WR�WHPR]RORPLGH��RWKHU�GUXJV��VXFK�DV�SHUWX]XPDE��
SDOERFLFOLE�� HUORWLQLE�� ODSDWLQLE�� DQG� SDQLWXPXPDE�� DOVR�
GLVSOD\� D� JRRG� 339� ZLWK� D� ORZ� VHQVLWLYLW\� EXW� IRU� D�
GLIIHUHQW� UHDVRQ�� ,QGHHG�� WKHVH� DUH� UHFHQWO\� LQWURGXFHG�
GUXJV� IRU�ZKLFK� VSHFL¿F� QDWLRQDO� UHJLVWU\� FRGHV�ZHUH� QRW�

DYDLODEOH�ZKHQ�¿UVW�XVHG��OHDGLQJ�WR�D�VXERSWLPDO�UHJLVWUD�
WLRQ�DW� WKH�GUXJ� OHYHO��)RU� H[DPSOH��SHUWX]XPDE�ZDV�¿UVW�
XVHG� LQ� ����� DFFRUGLQJ� WR� WKH� 0HG2QF� GDWDVHW� EXW� ZDV�
RQO\�UHJLVWHUHG�LQ�WKH�'135�ZLWK�D�VSHFL¿F�FRGH�LQ������

&\FORSKRVSKDPLGH�DQG�(SLUXELFLQ
&\FORSKRVSKDPLGH�DQG�HSLUXELFLQ�GLVSOD\�D�ORZ�339�EXW�D�
KLJK�VHQVLWLYLW\��7KLV� LV�GXH� WR�DQ�HUURU� LQ� WKH�UHJLVWUDWLRQ�
LQ� ����� DQG� ������ 7KHVH� WZR� GUXJV� DUH� DGPLQLVWHUHG� WR�
EUHDVW�FDQFHU�SDWLHQWV�LQ�DQ�DGMXYDQW�UHJLPHQ�FRPSRVHG�RI�
WKUHH�F\FOHV�RI�WKHVH�WZR�GUXJV�IROORZHG�E\�WKUHH�F\FOHV�RI�
GRFHWD[HO��7KH\�ZHUH�QHYHUWKHOHVV�UHJLVWHUHG�LQ�WKH�'135�
DV�JLYHQ� IRU� DOO� VL[� F\FOHV�XQWLO� WKH� UHJLVWUDWLRQ�HUURU�ZDV�
GLVFRYHUHG��7KLV�FDQ�DOVR�H[SODLQ�WKH�GURS�LQ�339�VHHQ�IRU�
WKHVH� \HDUV�� VLQFH� WKH\� DUH� IUHTXHQWO\� XVHG� GUXJV� WR� WUHDW�
EUHDVW�FDQFHUV�ZKLFK�LV�WKH�ODUJHVW�VXE�FRKRUW�RI�WKH�VWXG\�
DQG� WKXV� KDYH� D� VLJQL¿FDQW� LPSDFW� RQ� WKH� RYHUDOO� SHUIRU�
PDQFH��2XWVLGH�RI�WKHVH�\HDUV��WKH�SHUIRUPDQFHV�DUH�QHYHU�
WKHOHVV�JRRG�ZLWK�VHQVLWLYLWLHV�DQG�339V�DERYH�����

/LPLWDWLRQV�DQG�6WUHQJWKV
/LPLWDWLRQV
0HG2QF�ZDV�XVHG�DV�D� UHIHUHQFH��EXW� VRPH�PDQXDO�FXUD�
WLRQ�ZDV�QHYHUWKHOHVV� QHHGHG��:H�FRQVLGHUHG�0HG2QF� WR�

)LJXUH���(YROXWLRQ�RYHU�WLPH�RI�WKH�YDOLGLW\�RI�WKH�'135�UHJLVWUDWLRQV�IRU�/���GUXJ�F\FOHV�IRU�V\VWHPLF�DQWLFDQFHU�WUHDWPHQWV��7KH�OLJKWHU�VXUIDFH�DERYH�HDFK�OLQH�UHSUHVHQWV�
WKH�JDLQ�LQ�SHUIRUPDQFH�E\�DGGLQJ�D���GD\�PDUJLQ�
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EH�D�UHOLDEOH�VRXUFH�EHFDXVH�LW�LV�XVHG�LQ�FOLQLFDO�SUDFWLFH�WR�
SODQ�� SUHVFULEH�� DQG� DGPLQLVWHU� WUHDWPHQW�� WKHUHIRUH�� GDWD�
HQWU\� LV� H[SHFWHG� WR� EH� GRQH� E\� GRFWRUV� DQG� QXUVHV�ZLWK�
PXFK�PRUH�FDUH� WKDQ� LQ� WKH�'135��ZKLFK� LV�DQ�DGPLQLV�
WUDWLYH�WRRO�¿OOHG�LQ�E\�VHFUHWDULHV��+RZHYHU��WKH�'135�LV�
XVHG� IRU� UHLPEXUVHPHQW� RI� SURFHGXUHV� ZKLFK� LV� D� VWURQJ�
LQFHQWLYH� WR� DYRLG� XQGHUUHSRUWLQJ� LQ� WKLV� V\VWHP�� 7KH�
YDOLGLW\�RI�0HG2QF�FRPSDUHG� WR�SDWLHQW� MRXUQDOV� UHPDLQV�
XQNQRZQ�EXW�LV�H[SHFWHG�WR�EH�VLPLODU�

$OVR�� WKH� UHVXOWV� VKRZQ� KHUH�PLJKW� EH� VSHFL¿F� WR� WKH�
1RUWK�'HQPDUN�5HJLRQ�VLQFH�WKHUH�PLJKW�EH�VRPH�VSDWLDO�
DQG�WHPSRUDO�GLIIHUHQFHV�DFURVV�'HQPDUN�DQG�6FDQGLQDYLD�
LQ� WHUPV� RI� FOLQLFDO� WRROV� DQG� UHSRUWLQJ� SUDFWLFHV�� ,QGHHG��
%URH�HW�DO�KDYH�UHSRUWHG�VOLJKW�GLVFUHSDQFLHV�EHWZHHQ�XQL�
YHUVLW\� KRVSLWDOV� DQG� RWKHU� KRVSLWDOV��� EXW� WKLV� VWXG\�RQO\�
LQFOXGHG�GDWD�IURP�RQH�XQLYHUVLW\�KRVSLWDO�

:H� UHSRUW� LVVXHV� LQ� WKH� '135� GDWD�� +RZHYHU�� WKHVH�
LVVXHV�RQO\�DIIHFW�D� OLPLWHG�QXPEHU�RI�GUXJV�DQG�VHHP� WR�

)LJXUH���(YROXWLRQ�RYHU�WLPH�RI�WKH�YDOLGLW\�RI�WKH�'135�UHJLVWUDWLRQV�IRU�ERWWRP���SHUIRUPLQJ�/���GUXJV��2QO\�GUXJV�ZLWK�PRUH�WKDQ�����F\FOHV�ZHUH�FRQVLGHUHG��7KH�
OLJKWHU�VXUIDFH�DERYH�HDFK�OLQH�UHSUHVHQWV�WKH�JDLQ�LQ�SHUIRUPDQFH�E\�DGGLQJ�D���GD\�PDUJLQ�
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KDYH�EHHQ�UHVROYHG�LQ�UHFHQW�\HDUV��7KH�IDFW� WKDW� WKH\�DUH�
FRQVLVWHQW� ZLWK� SUHYLRXVO\� UHSRUWHG� UHVXOWV� VXJJHVWV� WKH�
JHQHUDOL]DELOLW\�RI�WKHVH�UHVXOWV�

6WUHQJWKV
7KH�PDLQ�VWUHQJWK�RI� WKLV�VWXG\�LV� LWV� ODUJH�WLPH�VSDQ�DQG�
EURDG�UDQJH�RI�FDQFHU�GLDJQRVHV�ZLWK�ORZ�YDULDELOLW\�LQ�WKH�
UHVXOWV��ZKLFK�VKRXOG�JXDUDQWHH�D�KLJK�OHYHO�RI�FRQVLVWHQF\�
LQ�WKH�GDWD�UHSRUWHG�LQ�WKH�'135�

&RPSDULVRQ�WR�2WKHU�6WXGLHV
2QO\� D� IHZ� DUWLFOHV���� DQDO\]LQJ� UHJLVWUDWLRQ� SUDFWLFHV� DUH�
DYDLODEOH��DQG�WKH\�IRFXV�H[FOXVLYHO\�RQ�FRORUHFWDO�FDQFHUV�
ZLWK�PXFK�VPDOOHU�FRKRUWV��%URH�HW�DO¶V�ZRUN�� LV�WKH�PRUH�
GLUHFWO\�FRPSDUDEOH�ZLWK�RXUV��)RU� LQGLYLGXDO�GUXJ�F\FOHV�
WR�FRORUHFWDO�FDQFHU�SDWLHQWV��ZH�UHSRUW�D�339�RI�����DQG�
D� VHQVLWLYLW\� RI� ���� FRPSDUHG� WR� D� 339�RI� ���� DQG� D�
VHQVLWLYLW\� RI� ���� LQ� %URH� HW� DO¶V� VWXG\�� LOOXVWUDWLQJ� WKH�
UHOLDELOLW\� RI� WKH� 0HG2QF� GDWDVHW�� /XQG� HW� DO¶V� VWXG\���

VLPLODUO\� WR� RXU�ZRUN�� UHSRUWV� KLJK�YDOLGLW\�RI� WKH�'135�
IRU�ÀXRURXUDFLO��R[DOLSODWLQ��DQG�EHYDFL]XPDE�

&RQFOXVLRQV
7KLV� VWXG\� FRQ¿UPV� WKH� YDOLGLW\� RI� WKH� UHJLVWUDWLRQ� RI�
'135�GUXJ�F\FOHV�IRU�D�ODUJH�YDULHW\�RI�FDQFHU�W\SHV�DQG�
DQWLQHRSODVWLF�GUXJV��ZLWK� VRPH� OLPLWDWLRQV� IRU�EUDLQ�FDQ�
FHU� DQG� UHFHQWO\� LQWURGXFHG� GUXJV�� ,GHQWL¿HG� UHSRUWLQJ�
LVVXHV��QRWDEO\�IRU� WHPR]RORPLGH��F\FORSKRVSKDPLGH��DQG�
HSLUXELFLQ�� VHHP� WR�KDYH�EHHQ�UHVROYHG� LQ� WKH� ODWWHU�\HDUV�
RI� WKH�VWXG\�SHULRG��7KHUHIRUH�� WKHVH�GDWD�FDQ�EH�XVHG�IRU�
UHWURVSHFWLYH� VWXGLHV� RQ� DQWLQHRSODVWLF� DJHQW� XVDJH� DFURVV�
WKH�FRXQWU\�

$FNQRZOHGJPHQWV
:H�ZRXOG�OLNH�WR�WKDQN�6\VWHP�$GPLQLVWUDWRU�RI�0HG2QF��
$QQHWWH� -XXO� 0DGVHQ� DQG� 6SHFLDO� &RQVXOWDQW� 7KRPDV�
0XOYDG�/DUVHQ�IRU�WKHLU�KHOS�LQ�REWDLQLQJ�DQG�XQGHUVWDQG�
LQJ�WKH�GDWD�QHHGHG�IRU�WKLV�VWXG\�

'LVFORVXUH
7KLV� ZRUN� ZDV� VXSSRUWHG� E\� JUDQWV� IURP� 'HSDUWPHQW� RI�
2QFRORJ\�� $DOERUJ� 8QLYHUVLW\� +RVSLWDO�� 7KH� 5HJLRQDO�
5HVHDUFK�)XQG�RI�1RUWK�'HQPDUN�5HJLRQ��DQG�IURP�³'HW�
2EHOVNH� )DPLOLH� )RQG´�� QR�� ������ WR� 8UVXOD� *� )DONPHU��
7KH� DXWKRUV� UHSRUW� QR� RWKHU� FRQÀLFWV� RI� LQWHUHVW� LQ� WKLV�
ZRUN�

5HIHUHQFHV
���)XUX�.��:HWWHUPDUN� %�� $QGHUVHQ�0��0DUWLNDLQHQ� -(�� $OPDUVGRWWLU�
$%��6¡UHQVHQ�+7��7KH�1RUGLF�FRXQWULHV�DV�D�FRKRUW�IRU�SKDUPDFRH�
SLGHPLRORJLFDO� UHVHDUFK�� %DVLF� &OLQ� 3KDUPDFRO� 7R[LFRO�� ���������
������±����GRL���������M����������������������[

���6FKPLGW�0��6FKPLGW�6$-��6DQGHJDDUG�-/��(KUHQVWHLQ�9��3HGHUVHQ�/��
6¡UHQVHQ� +7�� 7KH� 'DQLVK� 1DWLRQDO� SDWLHQW� UHJLVWU\�� D� UHYLHZ� RI�
FRQWHQW�� GDWD� TXDOLW\�� DQG� UHVHDUFK� SRWHQWLDO�� &OLQ� (SLGHPLRO��
����������±�����GRL���������&/(3�6�����

���7K\JHVHQ� 6.�� &KULVWLDQVHQ� &)�� /DVK� 7/�� &KULVWHQVHQ� 6�� 6¡UHQVHQ�
+7��3UHGLFWLYH�YDOXH�RI�FRGLQJ�RI�GLDJQRVHV� LQ� WKH�&KDUOVRQ�FRPRU�
ELGLW\�LQGH[�LQ�WKH�'DQLVK�QDWLRQDO�UHJLVWU\�RI�SDWLHQWV��%0&�0HG�5HV�
0HWKRGRO���������������±���GRL������������������������

���%HFN�0.��:HVWHUJDDUG�'��-HQVHQ�$%��*URRS�/��%UXQDN�6��7HPSRUDO�
RUGHU�RI�GLVHDVH�SDLUV�DIIHFWV�VXEVHTXHQW�GLVHDVH�WUDMHFWRULHV��WKH�FDVH�
RI� GLDEHWHV� DQG� VOHHS� DSQHD�� %LRFRPSXW�� �������������±�����
GRL����������������������B����

���%HFN�0.��-HQVHQ�$%��1LHOVHQ�$%��3HUQHU�$��0RVHOH\�3/��%UXQDN�6��
'LDJQRVLV�WUDMHFWRULHV�RI�SULRU�PXOWL�PRUELGLW\�SUHGLFW�VHSVLV�PRUWDO�
LW\��6FL�5HS���������-XO\���±���GRL���������VUHS�����

���6NDX� 5DVPXVVHQ� /�� 9LWWUXS� %�� /DGHNDUO� 0�� HW� DO�� 7KH� HIIHFW� RI�
SRVWRSHUDWLYH� JHPFLWDELQH� RQ� RYHUDOO� VXUYLYDO� LQ� SDWLHQWV� ZLWK�
UHVHFWHG� SDQFUHDWLF� FDQFHU�� D� QDWLRQZLGH� SRSXODWLRQ�EDVHG� 'DQLVK�
UHJLVWHU� VWXG\�� $FWD� 2QFRO�� ��������������±����� GRL����������
�������;�������������

���/XQG�-/��)U¡VOHY�7��'HOHXUDQ�7��HW�DO��9DOLGLW\�RI�WKH�'DQLVK�1DWLRQDO�
5HJLVWU\� RI� SDWLHQWV� IRU� FKHPRWKHUDS\� UHSRUWLQJ� DPRQJ� FRORUHFWDO�
FDQFHU� SDWLHQWV� LV� KLJK�� &OLQ� (SLGHPLRO�� �������������±�����
GRL���������&/(3�6�����
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Supplementary Material 
Supplementary table 1 - Cancer type grouping, inclusion status, and exclusion criteria. 

ICD10 Cancer type Specific group Reason 

C00-C14, C30-C33 Head and neck No 
Relatively rare and not primarily treated 

with systemic anticancer treatment 

C15-C16 Gastro-oesophageal Yes  

C17 Intestine No Rare 

C18-C20 Colo-rectal Yes  

C21 Anal No Rare 

C22-C24 Hepato-biliary No Referred to other hospitals 

C25 Pancreatic Yes  

C26, C39, C55, C57, C76, C80 Ill-defined No Ill-defined 

C34 Lung Yes  

C37-C38 Thoracic other than lung No Rare 

C40-C41 Bone and articular cartilage No Rare 

C43 Melanoma No Referred to other hospitals 

C44 Skin other than melanoma No 
Not treated with systemic anticancer 

treatment 

C45-C49 Connective and soft tissue No Rare 

C50 Breast Yes  

C51-C52 Vulva and vagina No Rare 

C53 Cervical No Referred to other hospitals 

C54 Endometrial Yes  

C56 Ovarian Yes  

C58 Placenta No Rare 

C61 Prostate Yes  

C64-C68 Urinary Yes  

C69-C70 Eye and meninges No Rare 

C71 Brain Yes  

C72 Nervous system No Rare 

C73-C75 Endocrine No Rare 

C77-C79 Secondary No Not primary 

“Specific group” refers to the fact that the corresponding diagnosis groups were considered individually, 

while other diagnoses were grouped into an “Other” group. 



 

 

 

Supplementary figure 1 – Inclusion flow chart. RN stands for North Denmark Region. L01 drugs refer to 

drugs whose codes, according to the ATC classification, start with L01, namely antineoplastic agents. 

RN Patients with solid tumours (2009-2019) 
n = 26.770

With L01 drug records in MedOnc only 
n = 12.014

With L01 drug records in the DNPR only 
n = 11.965

With L01 drug records in MedOnc or the DNPR 
n = 12.155
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Description 
The goal of this paper was to build a predictive model for dynamic risk prediction of 30-
day mortality for cancer patients using extensive health data. We decided to focus on 
patients with advanced lung cancer to obtain a more homogeneous cohort. To find the 
best suited approach, we compared five different machine learning methods: logistic 
regression with elastic net regularisation, random forest, gradient tree boosting, 
multilayer perceptron, and long short-term memory (LSTM) architecture. The LSTM 
architecture was considered for its ability to handle the sequence of events, as the 
trajectory of the patients could play a role in the short-term mortality of patients and 
summary variables may not capture all of the available information. 
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1. Abstract 
1.1. Background 

Administering systemic anticancer treatment (SACT) to patients near death can 
negatively impact their health-related quality of life, often with limited clinical benefits. 
Therefore, late SACT administrations should be avoided in these cases. The availability 
of extensive registry data suggests exploring machine learning techniques to build 
decision support tools for clinicians to limit late SACT administration. 

1.2. Material & methods 
Patients with advanced lung cancer who were treated at the Department of Oncology, 
Aalborg University Hospital and died between 2010 and 2019 were included (n=2368). 
Their diagnoses, treatments, biochemical data, and histopathological results were 
collected, and corresponding summary variables were generated. The data were used to 
train predictive models of 30-day mortality using five different machine learning 
approaches, logistic regression with elastic net penalty, random forest, gradient tree 
boosting, two artificial neural networks, a multilayer perceptron, and a long short-term 
memory network. The importance of the variables in each model was estimated using 
Shapley additive explanation values. Clinical utility was evaluated by estimating the 
number of preventable SACT administrations in the last 30 days while avoiding 
treatment cessation before 90 days of death. 

1.3. Results 
The random forest and gradient tree boosting models outperformed other models, while 
the artificial neural network models underperformed. Adding summary variables had a 
modest effect on performance with an increase in average precision from 0.500 to 0.505 
and from 0.498 to 0.509 for the gradient tree boosting and random forest models, 
respectively. Most of the top variables selected in each model were biochemical results, 
notably albumin, lactate dehydrogenase, leukocytes, neutrophils, and carbamide values. 
Biochemical results alone contained most of the information with a limited degradation 
of the performances when fitting models with only these variables. The average precision 
decreased from 0.509 to 0.493 and from 0.505 to 0.487 for the gradient tree boosting 
and random forest models, respectively. 
The utility analysis showed that by applying a simple threshold to the predicted risk of 
30-day mortality, 44% of late SACT administrations could have been prevented at the 
cost of 3% of patients stopping their treatment 90 days before death. 

1.4. Conclusion 
This study demonstrates the potential of a decision support tool to limit late SACT 
administration in cancer patients. Further work is warranted to refine the model, build 
an easy-to-use prototype, and conduct a prospective validation study.  
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2. Background 
Systemic anticancer therapy (SACT) includes chemotherapy, targeted therapy, 
immunotherapy, and hormonal therapy. SACT should only be considered in patients 
with an adequate benefit from the treatment since SACTs often have a short-term 
negative impact on health-related quality of life1–7. An accepted threshold for late SACT 
administration is 30 days before death8. However, clinicians’ experience in predicting the 
remaining lifetime of patients may be inadequate9, leading to prescription of SACT too 
late to achieve a clinical benefit8. Furthermore, death from advanced cancer often has a 
multifactorial background where acute complications, such as infections, venous 
thromboembolisms or myocardial infarctions, could lead to patient death. 
Lung cancer is a frequently occurring cancer type with poor prognosis and high mortality, 
particularly in advanced stages. Thus, patients with lung cancer are at higher risk of 
receiving SACT close to death than other cancer types with a better prognosis. 
There is a need for decision support tools to assist the work of clinicians to minimize the 
risk of decreasing health-related quality of life due to SACT of lung cancer patients 
receiving palliative treatment in advanced stages. Patient health might promptly 
deteriorate during treatment, requiring frequent use of dynamic predictive tools to assess 
their situation. To the best of our knowledge, existing studies addressing this issue 1) are 
based on a limited number of clinical variables, 2) do not consider artificial neural 
network-based models, 3) are based on different endpoints, for example, 6-month 
mortality, or 4) are not suitable for dynamic risk prediction10–17. 
The aim of this study was to investigate the potential use of machine learning approaches 
on electronic health registers and administrative data to limit late SACT by building 
dynamic predictive models for the 30-day mortality of patients with advanced lung 
cancer. It is based on the hypothesis that extensive medical data can improve the 
performances of the predictive models and on the hypothesis that artificial neural 
network-based machine learning techniques can outperform other methods. 

3. Materials and methods 
3.1. Data sources and data management 

This study was based on five data sources from the North Denmark Region (see Table 
1). The data were merged at the patient level in patients with advanced lung cancer treated 
at the Department of Oncology, Aalborg University Hospital between 2010 and 2019, 
with the Danish civil registration number and were subsequently pseudonymized. Data 
management and analysis followed a protocol similar to that proposed by Tomašev et 
al.18. For each patient, a sequence of records was generated. A record was defined as a 
day where a diagnosis, a procedure, a drug prescription, a result, or contact with the 
Department of Oncology, Aalborg University Hospital was made. All variables were 
present for each record (Table 1). All data available for a given day were grouped into 
one record, the latest value being retained in cases of multiple measurements on the same 
day. The dataset contained three different types of variables: baseline, cumulative, and 
status. Baseline variables represented information up to 30 days before diagnosis and 
were constant for each patient across the sequence of records (Figure 1).  
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Table 1. Datasets and corresponding variables 

Dataset Variable group  Inclusion criteria Variable type Variables Baseline Patients Events per patient 

CPR Sex, age  Baseline 2 (2) 2 2368 [2368-
2368] N/A 

 Date of death Died between 2010 
and 2019 Outcome 1 (1) N/A 2368 [2368-

2368] 1 [1-1] 

PAS Cancer diagnoses Lung cancer patients 
(advanced stage) 

Baseline and 
cumulative 10 (73) 5 307 [24-2368] 1.8 [1.1-3.7] 

 Comorbidities  Baseline and 
cumulative 8 (20) 11 107 [26-360] 1.6 [1.2-2.1] 

 Symptoms and 
side effects  Baseline and 

cumulative 9 (20) 6 180 [38-514] 1.3 [1.1-1.6] 

 Surgeries  Cumulative 10 (405) 0 96 [29-206] 1.1 [1.0-1.5] 

 Radiotherapies  Cumulative 2 (7) 0 824 [701-946] 12.2 [8.2-16.2] 

MedOnc Drug 
administrations 

Received palliative 
treatment Cumulative 25 (64) 0 394 [25-1890] 15.1 [1.8-161.2] 

 “If needed” drug 
prescriptions  Cumulative 3 (6) 0 838 [314-1857] 7.1 [1.5-11.9] 

 BMI  Status 1 (1) 0 1677 [1677-
1677] 4.7 [4.7-4.7] 

LABKA Biochemical data  Status 45 (62) 0 1648 [220-2367] 10.8 [2.2-31.6] 

Patobank Morphology and 
biomarkers  Status 56 (1170) 0 160 [22-929] 1.1 [1.0-1.5] 

For the “Variable type” column, “Baseline” indicates which variable groups were included as baseline variables, 

i.e., which variables were present before diagnosis (with a margin of 30 days). The “status” and “cumulative” types 

describe the method used for filling missing values (see paragraph 2.3). The “Variables” column indicates the number 

of variables included in each variable group, and the value in parentheses is the number of variables before filtering. 

The “Baseline” column informs on the number of variables included as baseline variables. The “Patients” column 

indicates the mean number of patients for each variable with at least one event for this variable. “Events per patient” 

is the mean number of events per patient with at least one event and per variable. For the last two columns, the 

values between brackets show the range across the variables of the group. 

 
The status and cumulative variables differed by the method used for filling missing 
values. For status variables, the last value was carried forward, while for the cumulative 
variables, empty values were designated with zeros. Status variables represented a 
potentially variable state, such as BMI, blood tests, diagnoses, or biomarkers. 
Cumulative variables included those that could be counted or summed and were 
treatment related, e.g., the number of a certain type of surgery or cumulative dose of a 
certain drug. The latest value for each variable was carried forward in both cases when 
working with models not handling sequences of records. If no value was still available, 
the mean value was used. Data management was performed using SAS Enterprise 
Guide 8.3 (SAS Institute Inc., Cary, NC, USA) and Python 3.8 with Jupyter19 
notebooks. 
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Figure 1. Example of records for a patient. The prediction time corresponds to the timepoint where the prediction 

is made, the prediction being whether the patient is dead or alive at the label time. Each dot on the figure represents 

a data point. 
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3.1.1. PAS 
The primary data source was the North Denmark Region’s Patients Administrative 
System (PAS). PAS includes all diagnoses and procedures from hospital inpatient and 
outpatient visits coded following the Danish Health care Classification System20 (SKS), 
which is similar to the ICD-10 classification21 for diagnoses. All other cancer diagnoses 
before or after the lung cancer diagnosis, comorbidity diagnoses according to the 
Charlson’s Comorbidity Index22 (CCI), symptom diagnoses, and side effect diagnoses 
(Supplementary Table 1) were considered. Diagnoses for the localization of metastases 
were included individually. These diagnostic variables were used to calculate 
corresponding baseline variables and were used directly as status variables containing 
binary values. 
PAS was also used to extract procedures for surgery (the SKS codes between KA and 
KQ) and radiotherapy (the SKS codes starting with BWG but not BWGA) performed 
in relation to a cancer diagnosis. These procedure variables were also used as cumulative 
variables with binary values. We excluded minor surgical procedures (SKS codes starting 
with KT), endoscopies, unknown operations, and procedures related to transplantation 
due to either dependency on local practice or lack of relevance in the study context. 

3.1.2. The CPR registry 
The Danish Civil Registration System (CPR) registry contains information on sex, date 
of birth, and date of death for patients in contact with the Department of Oncology 
between 01/01/2008 and 31/12/2019. This information was used to compute the “sex” 
and “age” baseline variables. Furthermore, the date of death was used to label the binary 
outcome variable, i.e., 30-day mortality from the record of which the prediction was 
made (Figure 1). 

3.1.3. MedOnc 
Data from the prescription software ARIA OIS for Medical Oncology v13.7 (Varian 
Medical Systems Inc., Palo Alto, CA, USA) (MedOnc), used at the Department of 
Oncology, contains information about drug prescriptions as well as body mass index 
(BMI). The drug prescriptions were characterized by date, Anatomical Therapeutic 
Chemical classification23 (ATC) code, dose in mg, and RN (Pro Re Nata, if needed) 
status. The dose for non-PRN drugs records whether the drug was given, with a dose 
equal to zero for non-administered drugs. Additionally, a regimen name variable was 
available to infer the intent of the treatment, i.e., neoadjuvant, adjuvant, or palliative. A 
cumulative variable containing information about the dose administered was created for 
each combination of ATC code and PRN status. The BMI was included as a status 
variable. 

3.1.4. Patobank 
The Danish National Pathology Registry (Patobank) contains histopathological data, 
including morphology, determining the subtype of lung cancer, and genetic biomarkers, 
such as the presence of significant mutations in the epidermal growth factor receptor 
gene or the programmed death ligand 1 protein expression level. These data were used 
as binary status variables. 
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3.1.5. LABKA 
Biochemical results data from the Clinical Laboratory Information System (LABKA) 
used at Aalborg University Hospital were included as status variables. This includes 
mostly biochemical tests. These data were coded using the Nomenclature, Properties, 
and Units24 (NPU) classification. 

3.1.6. Summary variables 
Variables generated from these five data sources are collectively referred to as base 
variables. To capture information on the trajectory of the patients for models that do not 
support time series, summary variables were created from the base variables. For each 
cumulative variable, two additional cumulative variables were created, one adding the 
values accumulated from diagnosis to the current record and one for the last 30 days 
before the current record as reported by Elfiky et al.17. 
Additionally, binary baseline variables were created for the cancer diagnoses, 
comorbidities, side effects, and symptoms from the PAS dataset based on the presence 
of corresponding diagnoses before the initial lung cancer diagnosis. 
For biochemical results and BMI data, mean values for the past records, including data 
before the start of the first palliative treatment, was computed. A differential variable was 
calculated as the difference between the value for the current record and the mean of the 
previous measures. 
For the machine learning model designed to handle the sequence of records (see Models 
section), datasets containing these variables were not included. 

3.1.7. Dataset generation and feature selection 
The overall dataset included records only after the start of the first palliative treatment 
or, if no palliative treatment was initiated, the first diagnosis of metastatic disease. Only 
records or sequences of records associated with contact with the Department of 
Oncology were retained. 
Two versions of the dataset were created, one with only the base variables, referred to as 
the base dataset, and one with both the base and summary variables. For both datasets, 
a nonspecific feature filtering step was performed to allow the convergence of all models. 
This consisted of filtering out variables found in less than 1% of patients and highly 
correlated or colinear variables with thresholds of 0.99 for Pearson’s correlation 
coefficient and 20 in variance inflation factor25 (VIF) for multicollinearity. In cases with 
a high correlation between two variables, the first variable alphabetically was removed. 
Variables with the highest VIF were removed first. The correlation was calculated using 
the pandas library26, and the VIF was calculated using linear regression. If a simple logistic 
regression could still not be trained, the VIF threshold was lowered by one unit until 
convergence was possible. Both the linear and logistic regressions were trained using the 
Python scikit-learn library27. 
In a second phase, an additional dataset, referred to as the biochemical results dataset, 
was generated keeping only the variables from the LABKA and CPR data sources to 
compare performance to the base dataset. Two versions of this dataset were also created 
and filtered as detailed above. 
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3.2. Study population 
Patients in contact with the Department of Oncology between 01/01/2008 and 
31/12/2019 and who died between 01/01/2010 and 31/12/2019 were identified from 
PAS (n=14,902). Among these patients, 3,856 were diagnosed with lung cancer. Only 
those who received SACT for advanced or metastatic lung cancer or who were diagnosed 
with metastatic lung cancer were included in the final dataset (n=2368, Supplementary 
Figure 1). The patients were split into three cohorts: the training cohort with patients 
who died between 2010 and 2017, the validation cohort with patients who died in 2018, 
and the test cohort for patients who died in 2019. Since only patients in contact with the 
Department of Oncology between 2008 and 2019 were accessible, including patients who 
died in the same period would exclude patients who died in this period but were in 
contact with the Department of Oncology only before 2008. To avoid missing this type 
of patient, only patients who died after 2010 were included. A 2-year margin was 
considered sufficient in this context. 

3.3. Models 
In addition to a logistic regression model without regularization, which was used as a 
baseline model, five popular machine learning models were considered in this study: a 
logistic regression with elastic net regularization28 (LRENR), a random forest classifier29 
(RF), a gradient tree boosting classifier30 (GB), a multilayer perceptron (MLP), and a 
long-short term memory model31 (LSTM), as proposed in the literature13,14,32. The 
architectures of the MLP and the LSTM are shown in Supplementary Figure 2. 
Hyperparameters were optimized using records from the training cohort, referred to as 
the training records, as the training set, and the records from the validation cohort, 
referred to as the validation records, as the validation set. In practical terms, the models 
were trained using the training set with various values for the hyperparameters, and the 
performance was evaluated on the validation set to select the best set of hyperparameters. 
To limit the complexity of the tree-based ensemble models (RF and GB), the lowest 
values among those resulting in performance within 1% of the best performance were 
selected. The 1% threshold was arbitrarily set. No cross-validation was performed to 
maintain the temporal structure of the data. Once the optimal hyperparameter values 
were found, the models were retrained with these values on the training and validation 
records combined. The final performance was evaluated on the records using the held-
out test cohort, referred to as the test records33. 
To assess the variability of the performance for all models, nine additional training sets 
of the same length were generated by bootstrapping the combined training and validation 
records. Using the optimal hyperparameters, the models were fitted using these ten sets. 
In each case, performance was evaluated on the test records. This process was also 
performed using the training records as the training set and the validation records as the 
validation set. 
LRENR, RF, and GB were fitted using the scikit-learn library, and hyperparameters were 
optimized using a grid search. The hyperparameters optimized for LRENR were the 
inverse of regularization strength and the elastic net mixing parameter with values 
between 10-5 and 10-2 and 0.1 and 1, respectively. For RF and GB, optimization was 
performed on the number of trees, with values between 1 and 2000 and the maximum 
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depth of these trees. This depth was set between 2 and 200 for RF and between 1 and 
50 for GB (Supplementary Figure 3). The two artificial neural network-based models 
were trained using the Python Keras library34, and their best hyperparameters were found 
by Bayesian optimization using the Python Keras-Tunner library35 (Supplementary Table 
2). 
The average precision (AP) and receiver operating characteristic area under the curve 
(ROC AUC), as calculated by scikit-learn, were used to evaluate model performance. The 
AP was the primary performance metric used as recommended for imbalanced datasets18. 
This metric is equivalent to the area under the precision-recall curve. 
The importance of each variable was estimated from their SHapley Additive exPlanation 
(SHAP) values36 on a random sample of 1000 records from the combined training and 
validation records. The SHAP approach was chosen due to its ability to generate 
comparable results between all models. To measure the overall importance of each 
variable, the effect of each variable was calculated by summing the absolute values of 
these effects across the sampled records. For models using summary variables, the effects 
of potential summary variables were added to the effect of the corresponding base 
variables at the record level before the summation of absolute values across records. 

3.4. Evaluation of utility 
To assess the usefulness of a predictive model, the potential effect of limiting late SACT 
administrations based on a simple rule was investigated. Given a threshold on the 30-day 
mortality risk, SACT should be administered if the predicted risk is below that threshold. 
Conversely, if the predicted risk is above the threshold, SACT should not be given. In 
cases where the risk is above the threshold at a given time point but becomes below the 
threshold at a later stage, SACT is considered administrable at that later timepoint and is 
therefore only considered delayed. An administration was considered preventable if the 
risk prediction at the time of administration, as well as for all subsequent contacts, were 
above the threshold (Supplementary Figure 4). 
To avoid stopping treatment too early, no administration should be considered 
preventable more than 90 days before death in more than 1% of the patients, putting a 
constraint on the value of the threshold. The threshold value was determined from a 
model trained on the training records and used to predict risks for each validation record. 
The lowest value for the 30-day mortality risk prediction fulfilling the above constraint 
was selected as the threshold. 
Risk was predicted for each test record using the best model with respect to AP trained 
on the combined training and validation records of the base dataset with summary 
variables. The threshold-based rule was applied to these predictions to identify 
preventable SACT administrations within 30 days, 90 days and more than 90 days from 
death and the corresponding number of patients. 
To compare utilities, the F1-score (harmonic mean of precision and recall) was calculated, 
where SACT administrations within 30 days of death were considered positive events 
and SACT administrations more than 90 days from death negative events. SACT 
administrations between 30 days and 90 days were not considered in the calculation. 
Preventable SACT administrations according to the threshold-based rule were 
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considered as predicted as positive, true positive events being preventable SACT 
administrations with 30 days of death. 

3.5. Ethical approval and registration 
According to Danish legislation, health registry projects do not require patient consent 
or ethical approval but should be registered by the legal entity responsible for the data. 
The study was registered at the North Denmark Region’s research project inventory (reg. 
number 2019-41). 

4. Results 
4.1. Study population 

The population characteristics are described in Table 2. The overall cohort was well 
balanced regarding sex (52% male and 48% female). A majority of patients (56%) died 
between the age of 60 and 74, and most patients (87%) received palliative SACT, among 
whom 65% died less than 12 months from the initiation of palliative treatment. The most 
prevalent histopathological subtype was adenocarcinoma (43%), followed by small cell 
carcinoma (25%). An increasing proportion of adenocarcinoma and decreasing incidence 
of small cell lung cancer were observed between the training, validation, and test cohorts. 
The number of patients surviving more than 12 months was increased in the test (50.5%) 
cohort compared to the training (32.6%) and validation cohorts (35.4%). 

4.2. Performances 
4.2.1. Comparing models 

The AP and ROC AUC of the five models were computed for all datasets (Figure 2). 
First, all values from the base dataset, with or without summary variables, were 
considered. There were limited differences in the validation set, with mean values for the 
AP varying between 0.486 and 0.544. The inclusion of summary variables had a beneficial 
effect on the performance. The differences were larger on the test set where values 
between 0.342 and 0.509 were observed, with the MLP and LSTM underperforming. 
The effect of the summary variables was beneficial on the performances of all applicable 
models except the MLP model but was modest for the GB and RF models, changing 
from 0.500 to 0.505 and from 0.498 to 0.509, respectively. 
Regarding performance variability, using the bootstrapped datasets, the LRENR model 
exhibited the least variability on the validation set. The variability increased for the 
LRENR and LSTM models on the test set and remained similar for the other models. 
The patterns were similar using the ROC AUC as a performance metric, with values 
between 0.794 and 0.846 in the validation set and between 0.766 and 0.868 in the test 
set, with the MLP and LSTM models performing poorly on the test set. For both AP 
and ROC AUC, the best-performing approaches remained the same on the validation 
and test sets, suggesting robust results. 
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Table 2. Study population characteristics 

 Training set Validation set Test set Overall 

Patients 1 819 (100.0%) 309 (100.0%) 240 (100.0%) 2 368 (100.0%) 

Sex     
Male 937 (51.5%) 168 (54.4%) 117 (48.8%) 1 222 (51.6%) 

Female 882 (48.5%) 141 (45.6%) 123 (51.3%) 1 146 (48.4%) 

Histopathology     
Adenocarcinoma 753 (41.4%) 143 (46.3%) 122 (50.8%) 1 018 (43.0%) 

Small cell carcinoma 493 (27.1%) 64 (20.7%) 43 (17.9%) 600 (25.3%) 

Large cell carcinoma 264 (14.5%) 30 (9.7%) 27 (11.3%) 321 (13.6%) 

Squamous cell carcinoma 223 (12.3%) 57 (18.4%) 40 (16.7%) 320 (13.5%) 

Other 86 (4.7%) 15 (4.9%) 8 (3.3%) 109 (4.6%) 

Age at death     
18-44 35 (1.9%) 3 (1.0%) 5 (2.1%) 43 (1.8%) 

45-59 416 (22.9%) 54 (17.5%) 47 (19.6%) 517 (21.8%) 

60-74 1 071 (58.9%) 165 (53.4%) 132 (55.0%) 1 368 (57.8%) 

75+ 297 (16.3%) 87 (28.2%) 56 (23.3%) 440 (18.6%) 

Palliative treatment     
Yes 1 657 (91.1%) 226 (73.1%) 194 (80.8%) 2 077 (87.7%) 

No 162 (8.9%) 83 (26.9%) 46 (19.2%) 291 (12.3%) 

Survival from start of palliative treatment     
0-1 months 105 (6.3%) 9 (4.0%) 9 (4.6%) 123 (5.9%) 

1-6 months 526 (31.7%) 70 (31.0%) 46 (23.7%) 642 (30.9%) 

6-12 months 486 (29.3%) 67 (29.6%) 41 (21.1%) 594 (28.6%) 

12+ months 540 (32.6%) 80 (35.4%) 98 (50.5%) 718 (34.6%) 

Contacts     
All contacts 68 876 (100.0%) 12 205 (100.0%) 12 209 

(100.0%) 
93 290 

(100.0%) 
Within 30 days of death 10 783 (15.7%) 2 190 (17.9%) 1 526 (12.5%) 14 499 (15.5%) 

The percentages in parentheses present the proportion of corresponding patients in the cohort, except for the survival 

data, where the value is the proportion of corresponding patients among patients who received palliative treatment, 

and the contact data, which represents the proportion of contacts. 
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Figure 2. Average precision and ROC AUC per model and dataset on the validation and test sets. The baseline 

values show the performance of a logistic regression without regularization. The horizontal lines represent the mean 

value of the corresponding metric. Each circle represents the performance on a bootstrapped dataset. 

 

4.2.2. Top variables 
For the complete dataset, most of the top variables by importance, without (Figure 3A) 
or with summary variables (Figure 3B), were the biochemical results across all models, 
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especially in the RF model (10 and 8 were in the top 10, respectively) and the GB model 
(8 were in the top 10 in both cases). In particular, albumin, leukocytes, carbamide, and 
lactate dehydrogenase were all in the top 10 for all models with or without summary 
variables, and albumin and leukocytes were in the top 4 variable for all models. 
Considering only the best performing models, RF and GB, with summary variables, 
creatinine and neutrophils were additionally in the top 10. Concerning nonbiochemical 
variables, treatment data were important only when summary variables were included 
with prednisolone and carboplatin in the top 10 for both the RF and GB models. 

4.2.3. Performances using only biochemical results 
As most of the important variables were biochemical results, the performance of models 
trained exclusively on these variables was investigated (Figure 2). This had a limited 
negative impact on the performance of RF and GB. The mean AP values between the 
base dataset and the biochemical results dataset, both with the summary variables, went 
from 0.509 to 0.493 and from 0.505 to 0.487 in the RF and GB models, respectively. 
Notably, the optimum performance for the GB model was obtained for the biochemical 
results dataset without the summary variables with a mean AP of 0.517. 

4.1. Utility 
The RF model was chosen as the best model in terms of AP on the base dataset with 
summary variables to assess the utility of a decision support tool in preventing late SACT 
administrations. 
In the test cohort of the 195 patients who received palliative SACT, 16% (n=32) received, 
on average, 3.2 (103/32) administrations within 30 days of death (Table 3). 
The threshold identified by the validation set was 34.9%. Using this threshold, 44% 
(14/32) of patients from the test cohort could have had preventable SACT 
administrations within 30 days of death, corresponding to 44% (44/103) of the late 
SACT administrations (see Figure 4). However, this threshold led to preventable SACT 
administrations before the 90-day landmark for 3% (6/195) of patients. The 44 
preventable late SACT administrations were primarily for osimertinib, etoposide, 
alectinib, and carboplatin. 
The F1-scores for the GB and RF models and all datasets were calculated both at the 
patient and administration levels in Table 4 with heterogeneous results. The best F1-score 
was observed for the RF model with the base dataset without summary variables, while 
for the GB model, the best F1-score was for the biochemical data without summary 
variables. 
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Figure 3. Top variables per importance for the full dataset with and without summary variables. “Bio.” stands for 

biochemical results, “Rx” for radiotherapy, “Drug” for drug administration, “SE” for side effects, “Comorb.” for 

comorbidities, “Patho.” for results from pathological analysis, and “Demo.” for demographic variables. The same 

LSTM model was compared to the other models both without and with summary variables. 
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Table 3. Utility evaluation for the prevention of SACT administration within 30 days of death in the RF model 

on the base dataset with summary variables. 

 Administered Preventable     

  Total Within 
30 days Total Within 

30 days 
Within 
90 days 

Before 
90 days Pr. Re. F1-

score 

Treated patients 195 32 
(16.4%) 

23 
(11.8%) 14 (7.2%) 6 (3.1%) 6 (3.1%) 0.7 0.4 0.5 

Administrations 4154 103 
(2.5%) 73 (1.8%) 44 (1.1%) 18 (0.4%) 11 (0.3%) 0.8 0.4 0.6 

Etoposide 500-1000 4% 3% 1% 1% 0% 0.8 0.3 0.4 

Vinorelbine 500-1000 1% 0% 0% 0% 0% 1.0 0.3 0.4 

Carboplatin 500-1000 3% 1% 1% 0% 0% 0.8 0.3 0.4 

Nivolumab 200-500 1% 0% 0% 0% 0% NA 0.0 NA 

Pemetrexed 200-500 2% 2% 0% 0% 1% 0.0 0.0 NA 

Osimertinib 200-500 8% 6% 6% 0% 0% 1.0 0.8 0.9 

Gemcitabine 50-200 0% 1% 0% 1% 1% 0.0 NA NA 

Docetaxel 50-200 2% 2% 1% 1% 0% 1.0 0.7 0.8 

Pembrolizumab 50-200 1% 3% 1% 0% 2% 0.4 1.0 0.6 

Topotecan 50-200 8% 3% 3% 0% 0% 1.0 0.4 0.6 

Alectinib 50-200 14% 14% 14% 0% 0% 1.0 1.0 1.0 

The “Administered” columns inform on the number of SACT administrations given. The corresponding “Within 

30 days” column informs on the number of SACT administrations given within 30 days of death. “Preventable” 

columns are for the numbers of SACT administrations that would have been prevented using the threshold as 

mentioned in Section 2.4. The corresponding “Within 30 days” informs on the number of SACT drug 

administrations that would have been preventable within 30 days of death. The “Within 90 days” column provides 

the number of SACT drug administrations that would have been preventable between 90 days and 30 days to death. 

The “Before 90 days” column informs on the number of SACT drug administrations that would have been 

preventable more than 90 days from death. The “Treated patients” row provides information on the number of 

corresponding patients for each column. For individual drugs, only the range of total administrations is shown, and 

the percentages shown are in relation to the total number of administrations or patients and are rounded to the closest 

percent for anonymisation. “Pr.”, “Re.” and “NA” stand for Precision, Recall and Non-applicable, respectively. 
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Figure 4. 30-day mortality risk predictions in the last 365 days before death for patients included in the test dataset 

using the RF model with summary variables. Each circle represents a SACT drug administration. The trajectories 

are not represented, and the days to death values have been randomly shifted within 2 days of the actual values for 

anonymisation. 

 
Table 4. Comparison of the RF and GB models on all 4 datasets in terms of F1-score for utility evaluation. 

  Patients    Admin.    

 Thres. Within 30 
days 

Within 
90 days 

Before 
90 days 

F1-
score 

Within 
30 days 

Within 
90 days 

Before 
90 days 

F1-
score 

RF          

Base dataset 39.5% 15 (7.7%) 7 (3.6%) 4 (2.1%) 0.59 47 (1.1%) 19 (0.5%) 10 (0.2%) 0.59 

With sum. 
variables 34.9% 14 (7.2%) 6 (3.1%) 6 (3.1%) 0.54 44 (1.1%) 18 (0.4%) 11 (0.3%) 0.56 

biochemical 
results dataset 35.8% 13 (6.7%) 7 (3.6%) 5 (2.6%) 0.52 43 (1.0%) 22 (0.5%) 10 (0.2%) 0.55 

With sum. 
variables (bio) 34.1% 14 (7.2%) 11 

(5.6%) 8 (4.1%) 0.52 49 (1.2%) 33 (0.8%) 18 (0.4%) 0.58 

GB          

Base dataset 65.8% 9 (4.6%) 5 (2.6%) 3 (1.5%) 0.41 25 (0.6%) 18 (0.4%) 7 (0.2%) 0.37 

With sum. 
variables 44.6% 11 (5.6%) 5 (2.6%) 4 (2.1%) 0.47 27 (0.6%) 9 (0.2%) 4 (0.1%) 0.40 

biochemical 
results dataset 42.9% 14 (7.2%) 8 (4.1%) 6 (3.1%) 0.54 47 (1.1%) 36 (0.9%) 13 (0.3%) 0.58 

With sum. 
variables (bio) 34.8% 14 (7.2%) 9 (4.6%) 5 (2.6%) 0.55 40 (1.0%) 31 (0.7%) 10 (0.2%) 0.52 

In the “Admin.” section referring to administrations, the “Thres.” column shows the value of the threshold used and 

the “Within 30 days” column informs on the number of preventable SACT administrations given within 30 days 

of death. The “Within 90 days” column provides the number of SACT drug administrations that would have been 

preventable between 90 days and 30 days to death. The “Before 90 days” column informs on the number of SACT 

drug administrations that would have been preventable more than 90 days from death. The value in parentheses is 

the percent of corresponding administrations among the total number of administrations (Table 3). In the “Patients” 

section, the presented values inform on the number of corresponding patients in relation to the drug administrations, 

and values in parentheses are the percentage of corresponding patients among treated patients. “sum.” stands for 

summary. 
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5. Discussion 
5.1. Main findings 

Five different machine learning models were compared for dynamic prediction of 30-day 
mortality in advanced and metastatic lung cancer patients, including two artificial neural 
network-based models and two tree-based ensemble models. The two tree-based 
ensemble models performed best and exhibited similar performances in terms of average 
precision. When used on the final test set, for the two models RF and GB, the ROC 
AUC increased, while the negative impact on AP was limited. 
The performances of all models were only marginally impacted, even increasing in some 
cases, when using only the biochemical results. Inclusion of summary variables had no 
clear benefit. 
A utility analysis was performed on the tree-based ensemble models, indicating that some 
late SACT administrations could be prevented by implementing the predictive model 
with a simple threshold-based rule while maintaining almost all treatments before the 90-
day landmark. 

5.2. Critical assessment 
5.2.1. Study population 

One of the main strengths of this study is the long inclusion timeframe of patients, 
allowing us to thoroughly investigate temporal performance of the models. 
Additionally, the single centre study guaranties a high level of consistency and allows us 
to access detailed clinical information. On the one hand, this leads to questions regarding 
the generalizability of these results outside this centre since treatment implementations 
might vary among hospitals. On the other hand, there is high homogeneity in the Danish 
health care system that should allow an extension of these results to the entire country. 

5.2.2. Biochemical results and generalizability 
Biochemical results are potentially highly variable and capture information that can 
change significantly between the periods before and after the 30-day threshold. The fact 
that using only biochemical results did not significantly alter the performance would tend 
to indicate that limited information for this outcome is contained in the rest of the data 
and that there is no strong interaction with other variables. A simpler model using only 
these data should therefore be encouraged. It also indicates that these results can be 
broadly extended because they are less dependent on local practices. Additionally, since 
the most important biochemical results were not specific to lung cancer, these results 
could also be extended to other diagnoses sharing the same type of progression, such as 
pancreatic cancer. This is consistent with many studies investigating the prediction of 
mortality in cancer patients that primarily use biochemical results in their models11,14,15,37. 
Another major advantage of the biochemical results is the objectivity of the 
corresponding values, as they do not depend on the interpretation of clinicians. 
Another key aspect is the validity of the model over time. Clinical practice changes over 
the years, notably with the introduction of new treatment options and better 
management of side effects so that a model fitted on old data might not be applicable to 
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current data in lung cancer patients. This was the reasoning for using patients who died 
in 2018 and 2019 as validation and test sets, respectively. For the tree-based ensemble 
models, AP was moderately impacted, while the ROC AUC was even improved. This 
improvement could be explained by more consistent data in recent years, i.e., on average, 
the 2010-2018 data were more similar to the 2019 data than the 2010-2017 data were to 
the 2018 data. The introduction of immune checkpoint inhibitors in Denmark between 
2015 and 2017 could explain, at least in part, this higher similarity even though most of 
the information seems to lie in biochemical results, notably albumin and leukocytes, that 
should not have been impacted by this change. Another explanation is that more data in 
the training set helped the model to better capture the information available to make 
better predictions. Additionally, one reason the ROC AUC improved could have been 
the decrease in the frequency of 30-day mortality in the 2019 data (Table 2), which tends 
to improve the ROC AUC by lowering the false-positive rate at a specific sensitivity. 
The stability of the prediction over time was also the reason behind the approach 
followed to evaluate the variability of the performance by bootstrapping the training set. 
Indeed, due to the changing nature of treatment procedures over time, we expect some 
variations in the training data as the predictive model is updated. Our goal was to avoid 
models whose performances are at risk of being largely impacted by small changes in the 
training dataset. 

5.2.3. Using health care data registries 
The primary interest in using electronic health records (EHRs) and administrative data 
is that they can be easily leveraged to build decision support tools. There are some issues 
using such data, notably informed presence bias38,39, but in the current study, the patients 
were actively followed, and thus, limited differences in data availability were expected. 
A potential limitation of using EHRs is the lack of reporting for potentially relevant data, 
i.e., data that cannot be used in the training phase. This was the case for performance 
status, which is a major resource in evaluating the survival time of patients in clinical 
practice. However, previous studies have shown that performance status is well 
correlated with certain biochemical results, such as C-reactive protein and albumin40. 
This correlation should nevertheless be confirmed in a more recent observational cohort 
study. 

5.2.4. Summary variables and overfitting 
Inclusion of summary variables to inform patient trajectories yielded mixed results. Some 
models benefitted from it, notably the RF model, while it had varying impact on other 
models, such as the GB model. Not including these variables could prevent overfitting 
in some cases. The same mechanism was potentially observed for nonbiochemical 
variables that could cause overfitting. An important aspect is how well these summary 
variables inform the trajectory of the patients. Indeed, each variable probably exhibits 
different dynamics near the end of life, which would require the design of specific 
summary variables. 

5.2.5. Feature engineering vs. architecture optimization 
The artificial neural network models did not perform well in this study, but it could be 
speculated that this was due to a poor choice of architecture, notably for the LSTM. 
While better performances could have likely been achieved by fine tuning the architecture 
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of the model, this was not realistic within the time constraints of this project. 
Furthermore, this extra tuning time could have also been used to perform much more 
extensive feature engineering for the other models, for example, by including 
interactions, designing specific summary variables that would better represent the 
trajectory of the patients, or optimizing other hyperparameters such as the learning rate 
for the GB model. Therefore, we decided to maintain relatively simple architectures for 
the LSTM and MLP to allow for a fair comparison to identify in which direction more 
effort should be placed. 

5.2.6. Explainability and usability 
SHAP values were used to assess the importance of each variable in the predictions from 
each model. However, the interpretability of these values is limited compared to that of 
the coefficient in a linear model such as LRENR. The explainability of nonlinear models 
such as tree-based models or artificial neural networks is the topic of ongoing research41. 
If explainability is of critical importance, LRENR should be prioritized. 
The primary aim of this study was to introduce a predictive model capable of supporting 
clinical decision-making to ordinate SACT and thus potentially limit the risk of 
unnecessary harm. The crucial aspect of the models is their utility in practice. As shown 
in Table 4, the thresholds found across models and datasets for the considered rule 
changed extensively from 34.1% to 65.8%, implying that providing only predictions 
would leave much room for subjective assessment and might thus be challenging for 
clinicians to use. Therefore, effort should be concentrated into making the results as 
comprehensive as possible. Nevertheless, this study demonstrates that using a simple rule 
alongside the predictive model could limit the amount of SACT given too close to death. 
The rule cannot be implemented as is in a clinical context but could guide oncologists in 
their decision-making. Indeed, many parameters should be considered, notably the type 
of SACT. For example, protein kinase inhibitors such as osimertinib and alectinib 
typically have milder side effects while potentially avoiding flaring of the tumour, limiting 
the interest of stopping the treatment, even close to death. Conversely, etoposide and 
carboplatin often have much more severe side effects; therefore, a predictive model 
could help limit their use too close to death. These drugs are at high risk of being given 
close to death since they are used to treat small cell lung cancer, which is a rapidly 
progressing form of lung cancer. They are frequently given even in patients with late 
diagnosis and poor performance status, as sensitivity to treatment is usually high, 
resulting in good symptom control and long-lasting palliation; therefore, better selection 
of patients could have tangible results. 

5.3. Comparison to other studies 
Concerning model selection, other studies have also reported the typically good 
performance of gradient boosting in a similar context, as well as the often poor 
performances of artificial neural network-based models using tabular data14,17,32,42. 
Indeed, artificial neural network models are difficult to tune due to the number of 
hyperparameters and the instability of the optimization procedure and rarely outperform 
other approaches on structured data. Additionally, tree-based ensemble models 
outperform linear models by handling potential interactions between variables. 
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With respect to mortality prediction in cancer patients, work has already been done but 
in different contexts and with different endpoints. This includes simpler models13,16 and 
more long-term endpoints, such as 6-month mortality14. Studies using 30-day mortality 
as endpoints typically take a more classical survival approach, i.e., predicting 30-day 
mortality from inclusion11–13,17. In the two studies implementing the RF approach and/or 
the GB approach14,17, only a few biochemical variables were selected as important 
variables, probably due to the difference in endpoint and time of prediction. As opposed 
to most of the aforementioned studies, age was not selected as an important variable. 
This could be explained by the short-term nature of the prediction, where age might be 
of less importance than age for the prediction of more long-term survival. 

5.4. Perspectives 
The goal of this study was to investigate the possibility of constructing a decision support 
tool to avoid administering unnecessary SACTs in lung cancer patients. Additional work 
is needed to develop a prototype applicable in a clinical context and to conduct a 
prospective validation study. In practice, we envision a web server with a live connection 
to the EHRs and administrative data with a user-friendly web interface where clinicians 
can acquire an assessment of the risk of individual patient 30-day mortality by explicitly 
providing an identifier. The most recent data would be automatically retrieved from the 
relevant registries and used by the predictive model with an evaluation of the most 
important variables in that specific case. Such a solution could also be validated by a two-
armed prospective validation study, randomized between active guidance of the where 
the clinician in the treatment arm will based on the predictive assessment of the patient 
compared and the control arm will be a standard decision without access to the data. 
Once the solution is validated, long-term support and maintenance will be required to 
retrain the model to maintain an acceptable level of performance. This might require 
additional validation studies but is considered reasonable in terms of the potential benefit 
for clinical practice. 

5.5. Conclusion 
Prediction of 30-day mortality in patients with advanced lung cancer was most accurate 
using tree-based machine learning models on EHRs and administrative data. Most of the 
information was contained in biochemical parameters, limiting the interest of using other 
datasets for the prediction, such as comorbidities, disease trajectories, or histopathology. 
Using predictive modelling may potentially help to limit late SACT, reducing the risk of 
causing unnecessary harm to patients in the late stage of life. 
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Supplementary materials 
Supplementary Table 1. SKS codes for comorbidities, symptoms, and side effects. 

Comorbidity SKS codes 

Myocardial infarction DI21, DI22, DI23 

Congestive Heart Failure (CHF) DI50, DI110, DI130, DI132 

Peripheral vascular disease DI70, DI71, DI72, DI73, DI74, DI77 

Cerebrovascular Accident (CVA) or 
Transient Ischaemic Attack (TIA) DI60, DI61, DI62, DI63, DI64, DI65, DI66, DI67, DI68, DI69, DG45, DG46 

Dementia DF00, DF01, DF02, DF03, DF051, DG30 

Chronic Obstructive Pulmonary Disease 
(COPD) 

DJ40, DJ41, DJ42, DJ43, DJ44, DJ45, DJ46, DJ47, DJ60, DJ61, DJ62, DJ63, DJ64, 
DJ65, DJ66, DJ67, DJ684, DJ701, DJ703, DJ841, DJ920, DJ961, DJ982, DJ983 

Connective tissue disease DM05, DM06, DM08, DM09, DM30, DM31, DM32, DM33, DM34, DM35, DM36, 
DD86 

Peptic ulcer disease DK221, DK25, DK26, DK27, DK28 

Liver disease - Mild DB18 K700, DK701, DK702, DK703, DK71, DK73, DK74, DK760 

Liver disease - Moderate to severe DB150, DB160, DB162, DB190, DK704, DK72, DK766, DI85 

Diabetes mellitus - Uncomplicated DE100, DE101, DE109, DE110, DE111, DE119 

Diabetes mellitus - End-organ damage DE102, DE103, DE104, DE105, DE106, DE107, DE108 

Hemiplegia DG81, DG82 

Moderate to severe chronic kidney 
disease (CKD) 

DI12, DI13, DN00, DN01, DN02, DN03, DN04, DN05, DN07, DN11, DN14, DN17, 
DN18, DN19, DQ61 

Malignancy - Localized solid tumour DC00-DC75 not finishing with a 'M', except DC44 (nonmelanoma skin cancer) 

Malignancy - Metastatic solid tumour DC76, DC77, DC78, DC79, DC80 or DC00-DC75 finishing with a 'M' 

Malignancy - Leukaemia DC91, DC93, DC93, DC94, DC95 

Malignancy - Lymphoma DC81, DC82, DC83, DC84, DC85, DC88, DC90, DC96 

AIDS DB21, DB22, DB23, DB24 

Symptoms and side effects SKS codes 

Anaemia Between DD50 and DD64 

Appetite Loss DR63, DF50 

Bleeding and Bruising 
(Thrombocytopenia) DD68, DD69 

Constipation DK590 

Delirium DF05 

Diarrhoea DK529, DK591 

Oedema (Swelling) DR60 

Fatigue DR53 
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Hair Loss (Alopecia) DL65 

Neutropenia DD70 

Bacterial infection Between DA00 and DA79 

Viral infection Between A80 and B34 

Lymphedema DI89 

Memory or Concentration Problems DR41 

Mouth and Throat Problems DR682, DR070 

Nausea and Vomiting DR11 

Nerve Problems (Peripheral 
Neuropathy) DG900 

Pain DR52 

Sexual Health Issues DF52 

Skin and Nail Changes Between DL58 and DL60, DL62 

Sleep Problems DG47 

Urinary and Bladder Problems DN32 

 
Supplementary Table 2. Hyperparameter tuning for the artificial neural network-based models and values for 

the best trial from the Bayesian optimization. 

Hyperparameter Domain Best trial 

MLP – Base dataset without summary variables   
Hidden layers with dropout 1 to 5 5 

Neurons per hidden layer 10 to 400 310 

Activation method for the hidden layers softmax or relu or tanh or hard_sigmoid tanh 

Dropout ratio 0 to 0.9 0.318 

Activation method for the result layer softmax or sigmoid or hard_sigmoid sigmoid 

Optimizer SGD or Adam or Adamax Adam 

Learning rate of the optimizer 10-6 to 10-2 9.4x10-5 

MLP – Base dataset with summary variables   

Hidden layers with dropout 1 to 5 1 

Neurons per hidden layer 10 to 400 290 

Activation method for the hidden layers softmax or relu or tanh or hard_sigmoid tanh 

Dropout ratio 0 to 0.9 0.305 

Activation method for the result layer softmax or sigmoid or hard_sigmoid sigmoid 
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Optimizer SGD or Adam or Adamax SGD 

Learning rate of the optimizer 10-6 to 10-2 1x10-2 

LSTM   
Neurons for the LSTM part 10 to 400 380 

Dropout for the LSTM part 0 to 0.9 0.0 

Activation method for the LSTM part tanh or softmax or relu or sigmoid or hard_sigmoid tanh 

Neurons for the hidden layer 10 to 400 250 

Dropout for the hidden layer 0 to 0.9 0.116 

Activation method for the hidden layer hard_sigmoid or softmax or relu or tanh tanh 

Activation method for the result layer softmax or sigmoid or hard_sigmoid or linear sigmoid 

Optimizer Adamax or SGD or Adam SGD 

Learning rate of the optimizer 10-6 to 10-2 1.05x10-3 

 

 
Supplementary Figure 1. Inclusion workflow. 
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Supplementary Figure 2. Architecture of the MLP and LSTM models. 
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Supplementary Figure 3. Grid search results for the logistic regression with elastic net regularization (LRENR), 

the gradient tree boosting classifier (GB), and the random forest classifier (RF) models using the validation set 

(2018) after fitting on the training set (2010-2017). The values in the grids show the average precision of the fitted 

model using the corresponding hyperparameters, and a higher average precision corresponds to better performance. 

The red square indicates which hyperparameters were selected. 
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Supplementary Figure 4. Method to determine when SACT administration is preventable. Contacts for SACT 

administration are represented with dashed lines ending in squares, while other contacts are represented with dashed 

lines ending in lines. Green contacts are for contacts below the threshold, orange contacts are for contacts above the 

threshold but followed by contacts below the threshold, and red contacts are above the threshold with no later contacts 

below the threshold. 
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