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ENGLISH SUMMARY 

Dysregulation of the human immune system may result in the systemic appearance of 

autoantibodies, adverse immune reactions, and the development of autoimmune 

diseases. The etiology of many autoimmune diseases remains largely unknown but 

multiple contributing factors that increase the risk of developing an autoimmune 

disease have been identified, such as genetics, obesity, infections, and smoking. 

Rheumatoid arthritis (RA) is one of the most prevalent autoimmune diseases 

worldwide. It is characterized by symmetrical inflammation of the joints, especially 

the small joints in the hands and feet, leading to pain, swelling, and bone erosions. A 

high number of RA patients produce anti-citrullinated protein antibodies (ACPAs), 

which are autoantibodies directed against neoepitopes in proteins that have undergone 

citrullination. ACPAs may be present years before clinical symptoms develop in RA 

patients, demonstrating their possible involvement in the early pathogenesis and their 

usefulness as an early biomarker for RA. Not all patients respond to or benefit from 

the same medical treatment even though the disease presentation may seem identical. 

As of now, no single serological or clinical test exists to determine if the patient will 

respond well to the treatment or not or if there is an increased risk of relapse. 

Therefore, we aimed to investigate the use of autoantibody profiling to further 

differentiate RA patients in order to improve prognostic and diagnostic outcomes. 

The possibility of subdifferentiating RA patients based on their autoantibody 

fingerprint was investigated through two studies. In the first study, we investigated 

autoantibodies from healthy and RA patient subgroups against proteins in their native 

configuration using a protein microarray consisting of more than 1600 protein targets. 

In our search for potentially important RA autoantigens, we identified several 

autoantigens shown to be present in synovial fluid. In the second study, we modified 

the protein microarray platform used in Study I using PAD enzymes and investigated 

autoantibodies against citrullinated proteins. We showed that on-array protein 

citrullination is possible and enables the detection and quantification of ACPAs in RA 

patients and we identified new potential autoantigens not previously associated with 

RA. 

In conclusion, these two exploratory studies show that we can measure and quantify 

the global autoantibody landscape in healthy and RA patients, both against native and 

modified proteins, and demonstrate differences in the autoantibody profiles of the two 

current subgroups of RA, ACPA-positive and ACPA-negative RA, using both native 

and citrullinated autoantigens. Further studies using individual RA patient samples 

incorporating leads from our studies combined with currently known autoantigen 

targets in RA are needed to shed light on individual autoantibody patterns and their 

links to treatment outcomes.  



DANSK RESUME 

Dysreguleringen af det menneskelige immunsystem kan resultere i systemisk 

tilstedeværelse af autoantistoffer, negative immunreaktioner og udviklingen af 

autoimmune sygdomme. Ætiologien for mange autoimmune sygdomme er stadig 

ukendt, men mange medvirkende faktorer, der øger risikoen for at udvikle en 

autoimmun sygdom, er blevet identificeret som f.eks. genetik, fedme, infektioner og 

rygning. Reumatoid arthritis (RA) er en af de mest prævalente autoimmune 

sygdomme i verden. RA er karakteriseret ved symmetrisk inflammation af leddene, 

specielt de små led i hænder og fødder, hvilket medfører smerte, hævelse og 

knogleerosioner. Mange RA-patienter producerer anti-citrullineret proteinantistoffer 

(ACPAs), som er autoantistoffer mod citrullinerede proteiner. ACPAs kan være til 

stede flere år før, der udvikles kliniske symptomer på RA, hvilket gør, at de muligvis 

er involveret i den tidlige patogenese samt er brugbare biomarkører for RA. Ikke alle 

patienter responderer lige godt på den behandling de får, på trods af sygdomsbilledet 

er ens. Der er lige nu ingen serologisk eller klinisk test, der kan vise, om en patient vil 

respondere godt på behandling eller ej. Derfor vil vi undersøge brugen af autoantistof-

profilering for at differentiere RA-patienter yderligere for derved at forbedre 

prognostiske og diagnostiske resultater. 

Muligheden for at subdifferentiere RA-patienter baseret på deres autoantistof-profil 

blev undersøgt gennem to studier. I det første studie undersøgte vi autoantistoffer fra 

raske og RA-patienter mod proteiner i deres native konfiguration ved brugen af 

protein mikroarrays, som består af mere end 1600 forskellige proteiner. Her kunne vi 

identificere adskillige autoantigener, som også er til stede i ledvæske. I det andet 

studie modificerede vi proteinerne på mikroarrayet ved brug af PAD-enzymer og 

derved undersøgte autoantistoffer mod citrullinerede proteiner. Dette studie viste, at 

vi kunne citrullinere direkte på mikroarrayet og derved muliggøre detektionen og 

kvantificeringen af ACPAs i RA patienter. Samtidig identificerede vi nye potentielle 

autoantigener, som ikke tidligere har været associeret med RA. 

Disse to eksplorative studier viser, at vi kan måle autoantistof-landskabet i RA 

patienter både mod native og modificerede proteiner og samtidig demonstrere 

forskelle i patienters autoantistof-profil hos ACPA-positive og ACPA-negative RA 

patienter ved brug af både native og citrullinerede autoantigener. Fremtidige studier, 

der benytter sig af individuelle RA patientprøver, der inkorporerer resultaterne fra 

disse studier og kombinerer dem med nuværende kendte autoantigener i RA, er 

nødvendige for at belyse de individuelle autoantistofmønstre og deres sammenhæng 

med behandlingsudfaldet. 
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CHAPTER 1. INTRODUCTION 

The human body is protected against external pathogens by the complex biological 

network known as the immune system. The first layer of defense consists of different 

surface barriers such as the skin and mucous membranes (e.g. lung and gut) that 

prevent pathogens from entering the body. If the pathogen successfully breaches these 

barriers, it encounters the innate immune system and the adaptive immune system. 

The innate immune system is fast-acting but non-specific, while the adaptive immune 

system is slower but specific and acquires immunological memory, allowing for a 

faster and stronger immune response the next time it encounters the same pathogen. 

The immune system may mistakenly identify the body’s own proteins (self-proteins) 

as foreign proteins (non-self-proteins), thus directing its immune response against 

otherwise healthy cells and tissue. This may initiate the production of antibodies 

against self-proteins (autoantibodies), consequently contributing to the development 

and detrimental effects of autoimmune diseases such as rheumatoid arthritis (RA). 

These autoantibodies are interesting as serological biomarkers due to their presence 

several years before disease presentation (1,2). 

This PhD thesis is centered around an initial idea of investigating the application of 

complex protein arrays for global and personalized profiling of autoantibodies in 

selected pathologies. Initially, I researched the options for global profiling of the 

repertoire of autoantibodies against native autoantigens in RA patients and healthy 

subjects. Next, the study was extended by developing a method to introduce post-

translational modifications (PTMs) on the protein arrays by creating citrullinated 

antigens for the detection of anti-citrullinated protein antibodies (ACPAs). Finally, a 

review focusing on the technology platforms available and the applications for protein 

microarrays, moving toward the use of companion diagnostics (CDx) in other diseases 

than the well-established oncology area, was conducted. The following chapter will 

introduce the autoimmune disease RA and the immunopathological triggers of 

autoimmunity, describe how treatment of RA is approached, highlight important 

autoantibody classes in RA, and describe the initial steps needed to investigate the 

potential of CDx implementation within rheumatology. 

1.1 RHEUMATOID ARTHRITIS 

Rheumatoid arthritis is a systemic inflammatory autoimmune disease characterized 

by chronic inflammation of the joints and synovial tissue, leading to swelling, pain, 

erosion of bone, and disability (3). Eventually, disease progression may reduce quality 

of life, lead to substantial medication costs and potentially lead to increased mortality 

(4). RA is estimated to affect 0.5-1% of the general population worldwide, with 

approximately 40 new cases each year (per 100,000 population) in the US and 

Northern European countries, and it predominantly affects women (twice as often as 

men) (5–8). RA primarily affects the synovial joints but extra-articular manifestations 
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such as vasculitis, accelerated atherosclerosis, and nodules, are also evident (9–11). 

Extra-articular manifestations, however, rarely accompany initial disease 

presentation. Early presentation of RA symptoms may include symmetric morning 

stiffness, swelling, and pain in the small joints of the hands and feet. Without proper 

treatment, RA can lead to irreversible structural joint damage, emphasizing the need 

for early diagnosis and treatment (12–15). 

Several risk factors have been identified for RA, such as smoking, vitamin D 

deficiency, obesity, silica exposure, the female gender, and several genetic variations 

(16–20). The possible link between smoking and RA development may lie in a 

potential increase in the expression of the peptidylarginine deiminases (PADs) 

enzymes due to smoking, thus facilitating protein citrullination and the generation of 

neoepitopes triggering the immune system (21). Another explanation involves 

epigenetic modulation, such as the DNA methylation seen in smokers developing RA 

(22). Both mechanisms, however, seem to be somewhat reversible upon quitting 

smoking (22,23). The etiology of RA, however, remains unknown. It is believed that 

a molecular trigger breaches the self-tolerance several years prior to the patient 

developing an RA phenotype, resulting in e.g. the production of autoantibodies 

escalating to higher levels and more targets. This is usually referred to as “the first 

hit” (24). It is speculated that environmental pollutants such as smoking or bacterial 

infections may initiate this initial breach (25–28). However, additional factors are 

needed as some healthy people produce ACPAs (2,29). This leads to the idea of a 

“second hit” (or multiple hits) that drives disease from healthy (or asymptomatic) 

ACPA-positive individuals to the onset of arthritis or early RA (30). Here, it is 

suggested that the major genetic risk factor, HLA-shared epitope (HLA-SE), plays a 

role in transforming the ACPA response toward established disease, while another 

genetic variation (HLA-DRB1*13) seems to exert a protective role against RA (31–

33). Furthermore, it is speculated that the second hit initiates several immunological 

mechanisms such as somatic hypermutation, epitope spreading, and class-switching, 

all contributing to evolving the ACPA immune response and driving the disease 

toward established RA (34–40). It should be noted that this is simply a hypothesis of 

how RA develops and even though the products of these mechanisms have been 

observed in the RA population, such as the rise in ACPA levels and the expansion of 

immunoglobulin isotypes, it is still not understood what exactly triggers these events 

and leads to RA (2,35,41,42). 
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Figure 1. Healthy and rheumatoid arthritis-affected joint. Schematic 

representation of a joint showing a healthy state and an RA-affected state, including 

degraded cartilage, bone erosion, and inflamed synovial membrane. The figure also 

shows examples of cell types involved in RA and their contribution to disease e.g. 

expression of cytokines and autoantibodies (43–52). Created with Biorender.com. 

The healthy synovial joint consists of the ends of two bones (termed epiphysis in long 

bones) covered by articular cartilage supported by the joint capsule (Figure 1). The 

joint capsule consists of two layers: the outer fibrous membrane and below it the inner 

synovial membrane (synovium). The fibrous layer connects the articulating bones and 

supports the synovium, which is responsible for secretion of synovial fluid to the joint 

cavity. In preclinical RA, there is no clear sign of infiltration or inflammation of the 

joints; however, autoantibodies, i.e. ACPAs or rheumatoid factor (RF), are produced 

at detectable levels. The presence of ACPAs has been shown to precede clinical 

symptoms of RA by up to a decade and coupled with the detection of pro-

inflammatory cytokines before clinical onset of RA it points toward an immune 

activation happening during the pre-clinical phase of RA (2,53). Today, ACPAs are 

used as both a diagnostic marker for seropositive RA and as a prognostic marker for 

disease severity (54–56). Transitioning from preclinical RA to early RA, mononuclear 

cells infiltrate the joint. marking the start of the development of articular 

inflammation. Additionally, an expansion of the autoantibody repertoire unfolds, 

leading to higher levels of already present autoantibodies such as ACPAs and RF but 

also several new targets such as type 2 collagen, proteoglycans, and nuclear antigens 

(48,57). In established RA, there is an activation of the synoviocytes lining the inner 

surface of the joint. Macrophage-like and fibroblast-like synoviocytes (MLS and FLS) 

produce pro-inflammatory cytokines (IL-1, IL-6, TNF-α) but especially the 

production of matrix metalloproteinases (MMPs) by FLS plays a dominant role in RA 

as the MMPs contribute to cartilage degradation (58). High infiltration of immune 

cells (e.g. CD4+ memory T-cells, B-cells, and plasma cells) to the synovial lining is 

also seen in this stage of RA (59,60). The constant activation of T- and B-cells acting 

on self-antigens, recruitment of immune cells to the joint, and activation of the 
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inflammatory response resulting in expression of destructive cytokines and MMPs are 

all contributors to the destruction of the joint seen in RA. 

RA patients can be clinically classified into two groups according to the serological 

presence or absence of ACPAs. These autoantibodies can be detected in patients 

several years before the clinical onset of symptoms and are highly specific for RA 

(37,61). The anti-cyclic citrullinated peptides (anti-CCP) test is used to identify 

autoantibodies against citrullinated peptides and classify patients as having anti-CCP 

positive RA or anti-CCP negative RA. These two patient groups can be considered as 

two different disease entities with differences in, among other things, risk factors, 

disease severity, and prognosis (62,63). Testing positive for anti-CCP usually 

indicates a more severe form of RA disease and it is suggested to treat it more 

aggressively compared to anti-CCP negative diagnosed RA (64–66). However, RA 

cannot be diagnosed based on the anti-CCP test alone: a combination of several other 

clinical features and tests is needed. The American College of Rheumatology (ACR) 

and the European League Against Rheumatism (EULAR) created a set of 

classification criteria based on a scoring system to evaluate the possibility of a patient 

suffering from RA (56). These classification criteria consider the number of swollen 

or tender joints, serology status (both ACPA and RF), acute-phase reactants (CRP and 

erythrocyte sedimentation rate), and the duration of symptoms. 

1.1.1 PROTEIN CITRULLINATION AS A TRIGGER IN RHEUMATOID 
ARTHRITIS 

The non-standard amino acid citrulline is a product of a post-translational 

modification known as citrullination or deimination created by converting the amino 

acid arginine into citrulline. Citrulline was first isolated from watermelon in 1914 

(without naming the amino acid) but it was not until 1930 that its chemical formula 

and structure were determined, in addition to it being named citrulline, based on the 

Latin name for watermelon, Citrullus vulgaris (67–69). In the following decades, 

citrulline was demonstrated to be enzymatically generated by the enzyme family 

known as PADs by side-chain conversion of peptidylarginine to peptidylcitrulline in 

a calcium-dependent process (70–72). The process converts the primary ketimine 

group to a ketone group. This results in a charge net loss (from positively charged 

arginine to neutrally charged citrulline), altering protein conformation, function, and 

interactions (73,74). 
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Figure 2. Conversion of arginine to citrulline. Arginine is converted to citrulline in 

the reaction known as citrullination. Peptidylarginine deiminases are responsible for 

this by replacing the ketimine group with a ketone group, highlighted by the red circle. 

The process is calcium dependent, uses a water molecule, and yields ammonia. 

Created with Biorender.com. 

The interest in PAD enzymes in RA research began back in 1998 when citrullinated 

peptides were recognized by antibodies from RA patient sera (75). Today, these 

autoantibodies are known as ACPAs and serve as a hallmark in RA diagnosis. There 

exist five different PAD enzymes in humans (PAD1-4, -6), widely distributed 

throughout the body (76). Especially PAD2 and PAD4 are deemed to be interesting 

in RA due to their presence in macrophages and neutrophils in the RA-affected 

synovium (77,78). Today, it is still not fully understood how each PAD enzyme 

impacts RA and what differences they each contribute with; however, it seems both 

enzymes possess distinct citrullination specificities with some degree of overlap (79–

81). Both human PAD2 and PAD4 enzymes have also been identified as autoantigens 

in RA patients. Anti-PAD4 antibodies were identified in 2005 by Takizawa and 

colleagues and were later shown to be present in up to 45% of RA patients (82). 

Thirteen years later in 2018 antibodies against human PAD2 were reported (83). Anti-

PAD4 antibodies seem to correlate with ACPA positivity but have also been detected 

in some ACPA-negative RA patients (84–86). Furthermore, anti-PAD4 antibodies are 

associated with higher baseline joint damage in RA patients in several studies (87–

90). However, it is not clear if the presence of these antibodies is linked to the 

progression of radiographic joint damage over time (87). Studies of antibodies against 

human PAD2 are scarce but one study showed an association between anti-PAD2 

antibodies and less severe joint and lung disease in RA patients (83). 

1.1.2 TREATMENT APPROACHES IN RHEUMATOID ARTHRITIS 

The approach used to treat RA patients has changed dramatically in the last few 

decades and many therapeutic options are currently available. The improvement in 

treatment options has made it possible to aim for clinical remission in most patients if 

they are diagnosed and treated early (91). The improvement in RA outcomes may be 

credited to both the introduction of the highly effective biologic agents introduced in 

the late 90s and the implementation of a treat-to-target (T2T) approach in RA care in 

2010 (92,93). The principles of the T2T concept in RA set remission or low disease 

score as the end goal in treatment and include several steps for reaching this (93). 

After the decision on what the target of the treatment should be (e.g. remission), it is 

important to choose a way to achieve this. Examples of disease activity measures to 

use include the 28-joint disease activity score (DAS28), clinical disease activity index 

(CDAI), or the simplified disease activity index (SDAI). Next, it must be decided 

when and how often the disease needs to be accessed to identify any improvement or 

lack thereof in disease activity. This could be anywhere from a few weeks to several 

months depending on the severity of the disease. If the desired target has not been met 
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after the appropriate time, it is necessary to adjust treatment. Several options are 

available to the clinician when changing the treatment plan, including increasing the 

dosage of the drug, changing to another drug, or the addition of a second drug in 

combination with current treatment. Although the T2T approach was not formally 

implemented within the field of rheumatology until 2010, the first trial to investigate 

the main idea behind T2T was published around 10 years earlier in 1999 (93,94). A 

few years later in 2004 another trial compared intensive management of RA patients 

(T2T approach) with routine care and demonstrated that the T2T approach resulted in 

the best outcome (e.g. related to disease activity and progression) for the patients at 

no additional cost (95). A list of widely used drugs for treatment of RA can be found 

in Table 1. 

As mentioned above, the treatment options available for RA patients are numerous. 

There exist several different classes of drugs with different modes of action. Disease-

modifying antirheumatic drugs (DMARDs) are a class of drugs used for treating RA. 

Conventional synthetic DMARDs (csDMARDs) and targeted synthetic DMARDs 

(tsDMARDs) are two categories of chemically synthesized drugs while biological 

DMARDs (bDMARDs) are produced by genetic engineering in living organisms such 

as bacteria and yeast. Guidelines developed and recommended by EULAR describe 

the drug selection decisions at the start of clinical diagnosis of RA and which type of 

drug to use if improvements are not achieved after 3-6 months  (66). Here, DMARDs 

should be the first drug prescribed and they suggest the use of the csDMARD 

methotrexate (MTX) unless any contraindications are present, in which case they 

suggest the use of different csDMARDs: leflunomide or sulfasalazine. If there is an 

improvement 3 months after DMARD start and the target is achieved after 6 months, 

the treatment should continue until sustained remission is achieved. In the sustained 

remission stage (a minimum of 6 months remission according to the index-based 

remission or Boolean remission) dose reduction is suggested (96). Failure to achieve 

improvements or the treatment target for the patient results in changing from the first 

csDMARD used, e.g. MTX, to either a new csDMARD or a combination therapy of 

two csDMARDs. If any poor prognostic factors (high RF/ACPA, high disease 

activity, early joint damage, or failure of two or more csDMARDs) are present 

EULAR recommend adding a bDMARD or a tsDMARD (e.g. a Janus kinase (JAK) 

inhibitor). An evaluation of improvement in disease state and achieving the treatment 

goal is again carried out after 3 and 6 months, respectively. Finally, if the patient does 

not seem to benefit from the treatment it is advised to change the bDMARD or 

tsDMARD until the patient benefits from the treatment. 

Table 1. Examples of drugs used in RA treatment and their target. Most of these drugs 

are highlighted due to being recommended as first choices in their respective 

categories by the Danish Council for the Use of Expensive Hospital Medicines 
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(RADS) or EULAR recommendations. The year of approval is per the European 

Medicines Agency. 

Drug Target/mechanism Year approved 

for RA treatment 

in EU 

csDMARDs 

Methotrexate Inhibits purine metabolism 1980s or earlier 

Sulfasalazine IL-1 and TNF-alpha suppressor 1980s or earlier 

Leflunomide Inhibits pyrimidine synthesis 1999 

tsDMARDs 

Baricitinib Inhibits JAK1 and JAK2 2017 

Filgotinib JAK inhibitor 2020 

Tofacitinib JAK inhibitor 2017 

bDMARDs 

Abatacept Inhibits T-cell costimulatory 

signal 

2007 

Adalimumab TNF inhibitor 2003 

Etanercept Decoy TNF receptor 2000 

Rituximab Targets CD20 on B-cells

triggering cell death 

2006 

Tocilizumab IL-6 receptor blocking 2009 
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1.1.3 DRUG RESPONSES IN RHEUMATOID ARTHRITIS 

Despite the broad selection of drugs targeting different pathways in RA, no clear 

pattern seems to exist that shows which patient will benefit from which drug prior to 

administering the drug. Being able to predict treatment outcomes in patients will make 

it possible to treat patients both early on and effectively, which are both critical goals 

in managing RA and reaching remission without patients suffering from irreversible 

damage of the joints. The misuse of currently available drugs not only affects the 

wellbeing of the patient by prolonging the ineffective treatment period, thereby 

increasing the risk of irreversible damage; it also burdens the healthcare system 

economically due to the high cost of biologics (97,98). The following paragraphs will 

give short descriptions of how selected drugs with different mechanisms of action in 

RA treatment work and how well patients respond to them. 

1.1.3.1 Methotrexate 

MTX is categorized as a csDMARD and acts via multiple mechanisms that all 

contribute to the total therapeutic efficacy seen in treatment of RA. Inhibition of 

aminoimidazole-4-carboxamide ribonucleotide transformylase (ATIC) leads to 

increased levels of adenosine, which suppresses inflammation (99). Inhibition of the 

enzyme dihydrofolate reductase leads to increased reactive oxygen species (ROS) 

levels, ultimately resulting in increased sensitivity to apoptosis, as seen in e.g. T cells 

(100,101). Furthermore, MTX also inhibits TNF-stimulated nuclear factor-κB (NF-

κB) transcriptional activity, further contributing to MTXs anti-inflammatory effects 

(102). A recent study including more than 1000 RA patients from the UK 

demonstrated that more than 40% were non-responders to MTX (103). This is further 

supported by another study which showed that more than 50% of participants were 

non-responders in an RA cohort of more than 100 patients (104). 

1.1.3.2 Baricitinib 

Baricitinib is a new tsDMARD approved for use in RA treatment in 2017. It is a JAK 

inhibitor acting on JAK1 and JAK2 essential for cytokine signaling via the STAT 

pathway, resulting in inhibition of several proinflammatory cytokines such as IL-6, 

IL-12, and IFN-γ (105,106). Multiple studies including several hundred RA patients 

investigating baricitinib’s effect demonstrate that approximately 60-70% of patients 

achieved at least ACR20 improvement after 12 weeks of treatment (107–109). These 

studies were conducted on RA patients who had an inadequate treatment response to 

either csDMARDs or bDMARDs. 

1.1.3.3 Abatacept 

Abatacept is a modified antibody against CD80 and CD86 on antigen-presenting cells 

that blocks the co-stimulatory signal to immune cells. This prevents e.g. T-cells from 

being fully activated, thus stopping the subsequent proinflammatory cascade. The 

ACTION study published in 2014 studied among other things the effectiveness of 

abatacept in RA patients from both Europe and Canada (110). Including 



9 

CHAPTER 1. INTRODUCTION 

approximately 1000 patients in their study, the researchers demonstrated that just 

under 70% of patients administered abatacept demonstrated a good or moderate 

response according to EULAR response criteria after 6 months. A more recent study 

including 2700 patients demonstrated that 60% achieved good or moderate EULAR 

response after 12 months of abatacept treatment, while a third study demonstrated that 

approximately half of the included patients achieved remission (according to CDAI) 

after 6 months (111,112). 

1.1.3.4 Rituximab 

Rituximab (RTX) is another antibody drug targeting a surface protein on immune 

cells, namely CD20 expressed on B-cells. The function of CD20 remains unclear but 

the binding of rituximab to CD20 results in depletion of B-cells (113,114). The 

REFLEX study published in 2006 investigated response to RTX in approximately 500 

RA patients who had shown an inadequate response to at least one TNF inhibitor 

(115). The study demonstrated that 35% of the RA patients receiving RTX did not 

obtain a moderate or good response according to EULAR response criteria (116). This 

is further supported by other studies showing approximately 40% non-responders to 

RTX in patient cohorts of 20 and 500 (117,118). 

1.2 ANTIBODIES AND THEIR PRESENCE IN DISEASE 

One of the first mentions of what later became known as antibodies dates back to the 

late 19th century. In 1890 Behring and Kitasato showed that the transfer of serum from 

diphtheria-immunized animals could cure other animals suffering from the infection 

(119). Behring's work on serum therapy later won him the Nobel Prize in Physiology 

or Medicine in 1901. In 1891, the year after Behring and Kitasato’s study was 

published, another German scientist, Paul Ehrlich, published a paper about immunity 

and for the first time used the term antibody (Antikörper in German) (120). Today, 

we have expanded the knowledge about antibodies and how they function 

considerably. We know that antibodies consist of two identical heavy chains and two 

identical light chains. There exist five classes of antibodies in humans, denoted by 

their heavy chain type (alpha, gamma, delta, epsilon, and mu): IgA, IgD, IgE, IgG, 

and IgM. These antibody classes each serve different purposes, which are summarized 

in Table 2. The initial step in antibody production is the binding of a foreign substance, 

an antigen, to a naïve B-cell via its surface B-cell receptor (BCR), resulting in 

internalization of the bound antigen. The antigen is then presented to a CD4+ T-cell 

via MHC-II on the B-cell. This results in the production and secretion of lymphokines 

(e.g. IL-2 and GM-CSF) by the T-cell, which activates the B-cell (121,122). The 

activated B-cell proliferates to numerous clonal daughter cells that, followed by 

additional stimulation by T-cell cytokines, differentiate into B-memory cells and 

plasma cells (123). B-memory cells will quickly recognize the same antigen and act 

accordingly if exposed to it again, while the plasma cells secrete antibodies. Initially, 



INSIGHT INTO THE AUTOANTIBODY LANDSCAPE IN RHEUMATOID ARTHRITIS FOR COMPANION DIAGNOSTICS 

10 

the naïve B-cell expresses membrane-bound IgM and IgD (124,125). Upon activation 

(by presentation of an antigen), the B-cell can undergo genetic rearrangement of the 

immunoglobulin heavy chain locus, changing the class of antibody produced to IgG, 

IgA or IgE (126). Afterward, it may differentiate into a plasmablast (a stage between 

the B-cell and a mature plasma cell) or lastly into an antibody-secreting plasma cell 

(127). The change in immunoglobulin production is also known as class switching 

(128). Since the discovery of RF, an autoantibody against the Fc portion of IgG was 

found to be predominantly IgM mediated and ACPAs were found to be predominantly 

of the IgG isotype: these two antibody isotypes have been the main focus in 

autoantibody research in RA and both are examined in routine clinical tests (129–

131).  

Table 2. Immunoglobulin isotypes found in humans and their function, levels, and 

structure. 

Antibody 

class 

Function Percentage 

of total 

antibody 

serum levels 

Structure References 

IgA Involved in 

immune functions 

of mucous 

membranes. 

15% Dimer and 

monomer 

 (132–134) 

IgD Mostly found as 

membrane bound 

on B-cells. 

0.2% Monomer  (135,136) 

IgE Mainly serves as a 

defense against 

parasite infections 

and associated with 

hypersensitivity in 

e.g. allergic asthma.

<0.01% Monomer 

(133,136,137) 

IgG Binds many 

different 

pathogens. 

Predominantly 

involved in the 

75% Monomer 

(132,133,136) 
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secondary immune 

response. 

IgM First antibody 

produced in 

response to antigen. 

Binds complement 

C1 and activates the 

classical 

complement 

pathway. Found as 

membrane bound 

on B-cells. 

10% Monomer and 

pentamer (132,133,136) 

T- and B-cells that mistakenly identify self-proteins as foreign are known as

autoreactive cells and are constantly produced in the human body. Luckily, there exist

processes early in cell development to clear these cells to avoid them causing any

harm, namely central and peripheral tolerance. Central tolerance takes place in the

thymus and bone marrow for T- and B-cells, respectively, while peripheral tolerance

takes place in the immune periphery when the cells exit the primary lymphoid organs

(138). In the thymus, T-cells are presented with self-peptides by thymic epithelial cells

(139). If the T-cell receptor (TCR) successfully recognizes and binds to the MHC-

presented self-peptide, the T-cell will receive a survival signal, begin differentiation

into a CD4+ or CD8+ T cell and leave the thymus (positive selection) (140). If the

TCR and MHC do not bind, the T-cell will die by neglect, while if the TCR-MHC

binding is too strong the cell can undergo anergy, receptor editing to delete

autoreactive receptors and develop new non-autoreactive receptors, clonal diversion

(development into regulatory T-cells) or clonal deletion (apoptosis) (140). This is

known as negative selection. Similar mechanisms exist for B-cell development in the

bone marrow i.e. positive selection resulting in B-cell maturation and migration to

secondary lymphoid organs, receptor editing, or apoptosis (141). However, self-

reactive B- and T-cells may escape the protective mechanisms of central tolerance in

the bone marrow and thymus. Therefore, additional selection occurs in the periphery,

also known as peripheral tolerance. Here, clonal deletion, development into or

suppression by regulatory T-cells, or induction of anergy due to the absence of

costimulatory signals keeps the population of escaped self-reactive lymphocytes in

check (142,143). Failure of these two branches of immunological tolerance leads to

the escape of autoreactive B- and T-cells that may populate the body with

autoantibodies, laying the foundation for autoimmune diseases.
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1.2.1 RELEVANCE OF AUTOANTIBODY FAMILIES IN RHEUMATOID 
ARTHRITIS 

Several autoantibody classes or families are present in the circulation of RA patients 

(144). ACPAs and anti-carbamylated protein (anti-carP) antibodies target citrullinated 

and carbamylated epitopes, respectively, and their presence in RA patients has been 

known for many years. More recently, anti-acetylated protein antibodies targeting 

acetylated epitopes have also been found in RA patients (145). However, antibodies 

against unmodified epitopes have also been identified, including but not limited to 

vimentin, keratin, aggrecan, and RA33 (146–148). The following paragraphs will give 

a short introduction to the most well-known autoantibody classes in RA. 

1.2.1.1 Antibodies against unmodified epitopes 

Native or unmodified epitopes have not been a major focus in RA research since the 

important discovery of ACPAs. While it may seem logical to credit any reactivity 

toward native epitopes to cross-reactivity from their citrullinated counterpart this may 

not necessarily be the case. IgG antibodies against native peptides in seropositive RA 

patients were found against peptides not containing arginine or lysine; thus, it seems 

unlikely that the reactivity identified may be credited to cross-reactivity against 

citrulline (ACPA) or homocitrulline (anti-carP) (149). It has also been proposed that 

native epitopes are mostly targeted in early RA with low radiographic erosion, while 

citrullinated epitopes are identified later in the disease course (148). A subset of 

patients presenting with intermediate severity of RA showed reactivity toward both 

native and citrullinated epitopes. Thus, this may represent a transitioning from 

early/mild RA associated with antibodies against the native epitope to a more 

advanced RA disease state associated with antibodies against the citrullinated epitope. 

However, this was only demonstrated using a single autoantigen, namely RA33. 

Nevertheless, it is still likely that the citrullinated antigen is responsible for breaking 

self-tolerance, thus leading to antibody reactivity against native sites due to i.e. 

epitope spreading (150). For now, it is still unknown what exactly the role of native 

autoantigens is in RA, and if the break of immune tolerance can be contributed to 

citrullination only; this knowledge gap alone warrants continuing research into 

autoantibodies against unmodified epitopes. 

1.2.1.2 Antibodies against modified epitopes 

ACPAs are probably the most researched family of autoantibodies in RA. The 

significant level of interest in citrullination and ACPAs in RA began when 

Schellekens et al. (1998) demonstrated that citrulline was the antigenic constituent 

that was recognized by autoantibodies in RA patients (75). Several decades prior to 

this, autoantibody reactivity from RA sera was shown to bind to granules in buccal 

mucosa cells (151). The antigenic target was later identified as citrullinated filaggrin 

(152–155). The presence of ACPAs several years prior to clinical manifestation of 

arthritis alone makes them highly interesting; however, as already mentioned, a 

second trigger seems to be needed since not everyone with ACPAs develops RA. 
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Furthermore, the pathogenic role of ACPAs has been studied extensively and it has 

been shown that ACPAs were able to activate macrophages in vitro and point the 

macrophage toward the M1 proinflammatory phenotype (156–158). Several other 

properties of ACPAs related to pathogenic effects seen in RA have also been 

identified, such as macrophage and osteoclast activation, modulation of synovial 

fibroblasts, and exacerbation of arthritis in combination with other triggers such as 

lipopolysaccharide (159–164).  

Similar to ACPAs, anti-carP antibodies seem to be present several years before 

patients develop any clinical signs of RA (165). Anti-carP antibodies have been shown 

to be present in both ACPA-positive and ACPA-negative RA patients and may be 

associated with a more severe disease course (166,167). Anti-carP antibodies targets 

carbamylated epitopes which is created by the conversion of lysine to homocitrulline 

by cyanate (167,168). Smoking has been shown to induce carbamylation, most likely 

by indirectly increasing the amount of cyanate by increasing thiocyanate, which can 

be oxidized to cyanate by myeloperoxidase in neutrophils, which are highly present 

in synovial fluid (169–172). Recently, it was shown that autoantibodies in RA patients 

recognize acetylated vimentin (145). Not much is known about the role of acetylation 

in RA yet; however, an intriguing proposal has been voiced concerning the ability of 

bacteria to acetylate host proteins (24,173,174). This provides a link between bacteria 

and the breach of immune tolerance against modified self-proteins in RA, which is 

something that is still unclear. 

1.2.2 FROM AUTOANTIBODY DISCOVERY TO COMPANION 
DIAGNOSTICS 

It is well established by now that levels of certain autoantibody classes (e.g. ACPAs) 

rise several years prior to clinical manifestation of RA (1,2). Utilizing this knowledge, 

we have been able to detect RA disease in patients earlier than was previously possible 

and with a higher degree of confidence. The idea of identifying patterns in this early 

stage of autoantibody reactivity and be able to correlate it to treatment outcome or the 

like is intriguing. Succeeding in this regard will increase the likelihood to introduce 

CDx assays to the field of rheumatology. Initially, to pursue this idea, establishing a 

platform and method to screen many autoantibodies simultaneously is critical. 

Currently, numerous technologies able to detect the presence of autoantibodies exist, 

and recently, we described the introduction of CDx assays within protein array-based 

platforms that can do so (175). For now, protein microarrays may not be suited for 

point-of-care devices, as described in Review I; however, they seem ideal for the 

initial discovery phase. Applying the potential identified biomarker findings to a 

simpler and cheaper device may ensure easier implementation in clinical settings. 



INSIGHT INTO THE AUTOANTIBODY LANDSCAPE IN RHEUMATOID ARTHRITIS FOR COMPANION DIAGNOSTICS 

14 

CHAPTER 2. OBJECTIVES 

The reason why patients suffering from the same disease respond differently to the 

same type of medication is unknown. Autoantibodies are present many years prior to 

any clinical sign of RA, thus their potential use in diagnostics but also in predicting 

treatment outcome prior to administering any drug is intriguing. Therefore, this PhD 

thesis aimed to investigate the autoantibody repertoire in RA patients using high-

density protein microarrays. This was done by first investigating native autoantigens 

in both RA patients and healthy donors in Study I. Next, we wanted to investigate the 

presence of ACPAs in RA patients, which we did in Study II. The potential of using 

complex protein microarrays in early biomarker discovery phases and transitioning to 

a simpler setup compliant with a clinical setting was examined in Review I. 

Study I: In this study, we investigated the presence of autoantibodies from anti-CCP 

positive and anti-CCP negative RA plasma pools and healthy donors against native 

(non-modified) proteins. 

Study II: In this study, we introduced the post-translational modification, 

citrullination, to a microarray platform and investigated the presence of autoantibodies 

from anti-CCP positive and anti-CCP negative RA plasma pools against citrullinated 

proteins. 

Review I: Here, we presented different technical platforms available for CDx-focused 

protein array platforms and discussed current predictive biomarkers within a range of 

different disease areas, including RA. We also touched on the implementation of such 

an assay in a clinical setting or as a point-of-care test. 
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CHAPTER 3. RESULTS 

3.1 STUDY I 

Identification of novel native autoantigens in rheumatoid arthritis 

Thomas B. G. Poulsen1,2, Dres Damgaard3, Malene Møller Jørgensen4a, Ladislav 

Senolt5, Jonathan M. Blackburn6,7, Claus H. Nielsen3, Allan Stensballe1 

1Department of Health Science and Technology, Aalborg University, Aalborg, 

Denmark. 2Sino-Danish Center for Education and Research, University of Chinese 

Academy of Sciences, China. 3Institute for Inflammation Research, Center for 

Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, 

Copenhagen, Denmark. 4Department of Clinical Immunology, Aalborg University 

Hospital, Aalborg, Denmark a)Department of Clinical Medicine, Aalborg University, 

Aalborg, Denmark. 5Institute of Rheumatology and Department of Rheumatology, 

1st Faculty of Medicine, Charles University, Prague, Czech Republic. 6Department 

of Integrative Biomedical Sciences & Institute of Infectious Disease and Molecular 

Medicine, University of Cape Town, Cape Town, South Africa. 7Sengenics 

Corporation Pte Ltd., Singapore. 

Manuscript published in Biomedicines, May 29, 2020. 

Main findings 

In response to the growing evidence of autoantibodies' importance within RA, we 

investigated the repertoire of autoantibodies in RA patient plasma against non-

modified epitopes. We identified 102 proteins bound by autoantibodies of the IgG 

isotype. 86 of these were targeted by autoantibodies from seropositive RA patients, 

while 76 were targeted by autoantibodies from seronegative RA patients. Cross-

referencing the new targets with synovial fluid proteome datasets, we found 24 of the 

102 proteins had previously been identified in synovial fluid. 



CHAPTER 3. RESULTS 

17 

3.2 STUDY II 

Identification of potential autoantigens in anti-CCP-positive and anti-CCP-

negative rheumatoid arthritis using citrulline-specific protein arrays 

Thomas B. G. Poulsen1,2, Dres Damgaard3, Malene Møller Jørgensen4,5, Ladislav 

Senolt6, Jonathan M. Blackburn7, Claus H. Nielsen3,8, Allan Stensballe1,8

1Department of Health Science and Technology, Aalborg University, Aalborg, 

Denmark. 2Sino-Danish Center for Education and Research, University of Chinese 

Academy of Sciences, China. 3Institute for Inflammation Research, Center for 

Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, 

Copenhagen, Denmark. 4Department of Clinical Immunology, Aalborg University 

Hospital, Aalborg, Denmark. 5Department of Clinical Medicine, Aalborg University, 

Aalborg, Denmark. 6Institute of Rheumatology and Department of Rheumatology, 

1st Faculty of Medicine, Charles University, Prague, Czech Republic. 7Department 

of Integrative Biomedical Sciences & Institute of Infectious Disease and Molecular 

Medicine, University of Cape Town, Cape Town, South Africa. 8Contributed equally. 

Manuscript published in Scientific Reports, August 27, 2021. 

Main findings 

In this study, we present 844 citrullinated proteins recognized by ACPAs. 

Furthermore, we identified high-intensity binding of autoantibodies from seropositive 

RA plasma to 87 and 99 proteins citrullinated by PAD2 and PAD4, respectively, 

compared to the corresponding non-modified proteins. The corresponding numbers 

for seronegative RA plasma were 29 and 26 proteins. Four proteins showed higher 

binding to PAD2-citrullinated proteins compared to PAD4, while autoantibodies 

against one protein preferred citrullination by PAD4. We demonstrate that PAD2 and 

PAD4 are equally efficient in generating citrullinated epitopes capable of ACPA 

binding. Lastly, we demonstrate a method for introducing citrullination on-slide to 

formerly native proteins. 
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3.3 REVIEW I 

Protein array-based companion diagnostics in precision medicine 

Thomas B. G. Poulsen1,2, Azra Karamehmedovic1,2, Christopher Aboo1,2, Malene 

Møller Jørgensen3,4, Xiaobo Yu5, Xiangdong Fang2,6, Jonathan M. Blackburn7,8, Claus 

H. Nielsen9, Tue W. Kragstrup10,11, Allan Stensballe1.

1Department of Health Science and Technology, Aalborg University, Aalborg, 

Denmark. 2Sino-Danish Center for Education and Research, University of Chinese 

Academy of Sciences, China. 3Department of Clinical Immunology, Aalborg 

University Hospital, Aalborg, Denmark. 4Department of Clinical Medicine, Aalborg 

University, Aalborg, Denmark. 5State Key Laboratory of Proteomics, Beijing 

Proteome Research Center, National Center for Protein Sciences - Beijing 

(PHOENIX Center), Beijing Institute of Lifeomics, Beijing China. 6CAS Key 

Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, 

Chinese Academy of Sciences, China. 7Department of Integrative Biomedical 

Sciences & Institute of Infectious Disease and Molecular Medicine, University of 

Cape Town, Cape Town, South Africa. 8Sengenics Corporation Pte Ltd., Singapore. 
9Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, 

Copenhagen University Hospital Rigshospitalet, Copenhagen. 10Department of 

Biomedicine, Aarhus University, Aarhus, Denmark. 11Department of Rheumatology, 

Aarhus University Hospital, Aarhus, Denmark. 

Manuscript published in Expert Review of Molecular Diagnostics, November 26, 

2020. 

Main findings 

In this review, we investigated the role of protein microarrays in CDx assays. For 

this purpose, we examined studies investigating new potential predictive biomarkers 

within different diseases, including RA, and discussed the technology platforms 

available within protein microarrays. CDx-focused research is increasing in several 

disease areas and is not limited to oncology. High density and complex protein 

microarrays seem more suited for initial biomarker discovery phases than for 

implementation in the clinic as a finalized CDx assay.  
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CHAPTER 4.  DISCUSSION 

The initial aim of this PhD thesis was to investigate the potential of a protein 

microarray platform to expand the repertoire of disease-associated autoantibodies in 

autoimmune diseases focusing on RA. Furthermore, using this high throughput 

analytical platform to elucidate potential patterns in autoantibody reactivity for future 

multiplex biomarkers was also something we wanted to look into. This discussion will 

first focus on the technical aspects of the data analysis and results before touching 

upon the PAD enzymes and their differences in RA. 

With the increasing improvements in sensitivity and throughput of technological 

platforms available for serological screening of autoantibodies, it has become even 

more important to discuss appropriate statistical approaches for presenting valid data. 

We need to process and filter the abundance of data we generate for optimal selection 

of prognostic disease biomarkers. More precisely, how we define specific reactivity 

against potential antigens is important, as is whether a high reactivity is required 

before we consider the specific interaction to be of interest in comparison to e.g. low 

binding.  

In Study I and Study II we established a processing pipeline incorporating several 

different statistical cut-offs to ensure high-quality data (176,177). Besides using 

different quality controls such as the coefficient of variation to ensure a high degree 

of reproducibility between replicates, we decided to incorporate a Z-score cut-off to 

efficiently filter our protein array data. This filtration removed the autoantibody-

antigen bindings with the lowest reactivity. It could be speculated that the low 

reactivities measured may be due to cross-reactivity of ACPAs in the RA plasma pool 

used in studies I and II or due to the pooling of multiple individual biofluid samples 

(178,179). Furthermore, one could speculate that potential autoantigens may 

demonstrate a strong binding and high concentration, and thus exhibit a high reactivity 

toward their target. It has been postulated that low-affinity natural IgM antibodies 

exert and maintain immune homeostasis by clearing e.g. cell debris, thereby 

preventing potential immune activation toward self-proteins, while high-affinity IgG 

antibodies serve a more pathological role (179–183). Thus, at least in the search for 

pathological autoantibodies, it may seem reasonable to disregard low reactivity 

interactions. When investigating a potential pattern in autoantibody reactivity that 

correlates with e.g. treatment outcome or a specific disease course, high reactivity 

(and potentially pathological) bindings may not be the only relevant interactions to 

investigate. Low reactivity autoantibody targets or the absence of activity toward a 

specific target may reflect an important marker in disease just as well as high reactivity 

(184). It should be noted, however, that even healthy individuals show some sort of 

baseline reactivity toward self-antigens (185–187). This has been shown numerous 

times and current literature suggests that at least for IgG antibodies the level of 

reactivity is consistent over time (186). This knowledge should be taken into 
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consideration when interpreting future results and perhaps also when deciding how to 

filter the generated data. 

We performed on-slide citrullination of a protein microarray consisting of unmodified 

proteins immobilized on the Immunome slides in Study II. Using the protein array 

complexity of 1631 proteins resulted in the binding of ACPAs to 844 modified 

proteins on the slide. However, successful citrullination was not verified but solely 

assumed due to a change in IgG reactivity compared to unmodified proteins. Since it 

was not investigated whether citrullination was successful on a protein level and 

epitope level, it could be speculated that the observed change in reactivity could be 

the result of something else e.g. the denaturation process. However, the unmodified 

arrays used underwent the same procedure as the modified arrays except for the 

addition of the PAD enzymes (176,177). Thus, the change in reactivity observed must 

be the result of the enzymes responsible for citrullination, PAD2 or PAD4. One way 

to verify successful citrullination could be to use an antibody against the amino acid 

citrulline. This would also validate if every protein on the array is capable of 

undergoing citrullination or not. Another aspect to consider is that not every target we 

identified is necessarily an autoantigen involved in RA in vivo. Just because the 

proposed protein acts as an autoantigen ex vivo following citrullination, does not mean 

that this is the case in vivo. For these proteins to be citrullinated they need to be in 

physical contact with the human PAD enzymes, which themselves then again require 

a strict environment to facilitate citrullination, such as high calcium concentration, 

which is not found under normal physiological intracellular conditions (188). 

Increased calcium availability can be achieved by several events such as cell death or 

membrane disintegration in general, e.g. the bacterial pore-forming leukotoxin, 

leukotoxin A, the pore-forming protein perforin found in NK- and T-cells, or the 

membrane attack complex which is part of the complement system (189–193). 

Additionally, a subset of autoantibodies against PAD4 was found to lower the 

requirement of calcium for PAD4 activation, thus, enhancing its citrullination activity 

and creating a loop in which autoantibody binding results in the generation of 

potentially new autoantigens (194,195). Assuming these conditions are met in vivo, 

one could speculate that for the autoantigens to be of interest for the pathology of RA 

they must be present at the site of disease. Therefore, in Study I, we cross-referenced 

the identified potential autoantigens with publicly available synovial fluid proteome 

datasets and identified 24 out of 102 targets of IgG autoantibodies to be present in the 

RA joint. 

Shortly after it was shown that antibodies from RA patients’ sera recognized 

citrullinated peptides, the interest in PAD enzymes in RA research increased. PAD2 

and PAD4 were shown to be expressed in the RA synovium; as a result, focus in RA 

research has been on these two PAD isoforms (77,78). Several proteins have been 

shown to be targets of citrullination in RA, such as vimentin, alpha-enolase, and 

fibrinogen (196). However, the individual roles of PAD2 and PAD4 in RA and in 

generating citrullinated epitopes that ACPAs can bind to are still not well understood 
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and conflicting results exist on these areas. One study found PAD2 citrullinated more 

arginine sites in fibrinogen compared to PAD4, while another study found that a 

similar number of citrullinated sites were created by the two enzymes (197,198). A 

third study demonstrates that PAD2 and PAD4 are equally efficient in generating 

citrullinated epitopes that ACPAs can bind to in both fibrinogen and alpha-enolase, 

while histone H3 autoantibody binding was higher after PAD4 citrullination (150). 

Interestingly, it was found that the antibody titer plays a role in the preferential binding 

of antibodies to citrullinated epitopes (199). Here, they found high dilution of RA 

plasma- (1:250 and 1:1000) bound fibrinogen citrullinated by PAD4 to a higher 

degree compared to PAD2 citrullinated fibrinogen, while they found no difference at 

lower titers. These observations are somewhat in accordance with our results 

presented in Study II where PAD2 and PAD4 generated a comparable number of IgG 

ACPA-binding sites using 1:200 plasma dilution (177). Another study investigated 

PAD substrates from different cell lines and synthetic peptides (81). The researchers 

found PAD4 to be more restrictive in its substrate selection compared to PAD2, while 

both enzymes seemed to prefer glycine and tyrosine 1 and 3 amino acids from the 

citrullinated arginine, respectively. Unique for PAD4, they showed several preferred 

amino acids in position -4 to +4 from the citrullinated arginine. The influence of amino 

acid compositions on PAD efficiency is difficult to elucidate in our studies since we 

did not have strict control of the degree to which the proteins were citrullinated or to 

which epitopes were modified. 

Recently, a new interesting take on the development of the ACPA response in RA 

involving PAD enzymes was published (200,201). The researchers speculate that 

when citrullination occurs and the responsible PAD enzyme (PAD2 or PAD4) binds 

to its substrate, e.g. fibrinogen, B-cells targeting the PAD enzyme might internalize 

both PAD and the bound substrate. They propose that the PAD enzyme acts as the 

carrier while the bound substrate behaves as a hapten. Thus, the reactivity toward 

citrullinated proteins is a result of the internalization of a complex consisting of PAD4 

and the bound citrullinated protein. They first showed the development of 

autoantibodies against citrullinated fibrinogen in healthy mice after immunization 

with PAD (200). Later, they showed antibody and T-cell response to PAD4 in ACPA-

positive RA patients and proposed that this is further evidence of their hypothesis 

(201). This is quite interesting; however, much of it is still highly speculative. The 

results demonstrated do not contradict the hypothesis; however, the results do not 

definitive prove the existence of the proposed model either. 
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CHAPTER 5.  CONCLUSION 

The research on which this PhD dissertation is based sought to investigate the 

presence of different autoantibody reactivities in RA and explore potential patterns in 

expression that could benefit patients. Furthermore, we wanted to shed light on the 

role of the two RA-relevant citrullinating enzymes, PAD2 and PAD4, in the 

generation of ACPA-binding epitopes. 

In Study I, we demonstrated IgG autoantibody reactivity against unmodified proteins 

from pooled RA plasma. Furthermore, we provided a list of autoantigens that could 

be pathologically relevant due to their presence in the joint. As expected, we also 

demonstrated an overall low reactivity from healthy donor plasma against unmodified 

proteins. In Study II, we showed that it is possible to introduce citrullination on the 

protein array platform and identified more than 800 ACPA-binding proteins. 

Furthermore, we demonstrated that PAD2 and PAD4 are equally efficient in 

generating epitopes to which ACPAs can bind. Lastly, we narrowed the identified 

targets down to 100 potential autoantigens in RA based on their high reactivity. In 

Review I, we highlighted technical platforms available for high-density protein 

biomarker identification and how we can apply these findings to suitable CDx assays 

that will benefit patients. In summary, we expanded the known repertoire of both 

unmodified and citrullinated targets of autoantibodies from RA patients and 

demonstrated that PAD enzymes are not restrictive in creating autoantibody-binding 

epitopes. 

5.1 PERSPECTIVES 

The studies presented in this dissertation provide grounds for additional research and 

tackling the following points will be a natural next step when building on these results. 

Performing the experiments using individualized samples instead of pooled samples 

will elucidate if it is possible to correlate specific autoantibody reactivity patterns with 

e.g. treatment response or the development of side effects. This could potentially

subdifferentiate the heterogenous but grouped RA patients further. It should be noted

that treatment may influence the autoantibody reactivity patterns, which should be

taken into consideration when including patients in a future study. When following

up on future leads, the focus should be on designing smaller arrays with only relevant

targets spotted to minimize cost. If it succeeds to identify a correlation between a

specific autoantibody reactivity pattern and the treatment effect, the foundation for a

future CDx device will be laid and the platform used should be carefully considered

in light of whether it can be easily implemented in the clinic.
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