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Abstract—This article rethinks the basic assumptions often used
in analytically modeling parasitic capacitance in inductors. These
assumptions are classified in two commonly-used physics-based
analysis methods: the lumped capacitor network method and
the energy conservation method. The lumped-capacitor network
method is not the proper solution for calculating the equivalent
parasitic capacitance in inductors at the first resonant frequency,
but rather represents the equivalent parasitic capacitance above the
last resonant frequency. The energy-conservation based method is
shown to be more accurate and a reasonable solution to model the
equivalent parasitic capacitance at the first resonant frequency.
Multiple case studies of inductors are used for verifying the theory.

Index Terms—Assumptions, inductors, modeling, parasitic
capacitance.

I. INTRODUCTION

THE PARASITIC parameters in passive components are
of growing importance [1]–[7] due to the exponentially

increasing use of wide band-gap devices in power electronic
converters to operate at higher frequencies with faster switching
transients [8]–[10]. Faster switching speed can result in larger
currents due to the parasitic capacitance in inductors [11], which
will cause extra losses in transistors [12] and EMI/EMC issues
[1], [13], and therefore, limit the potential performance of high-
frequency converters. In order to mitigate the effects of parasitic
capacitance in magnetic components, it is important to properly
model and analyze parasitic capacitance in inductors.
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Physics-based modeling methods are widely used to ana-
lytically predict the parasitic capacitance of inductors [14],
[15] since the value can be calculated from geometric val-
ues and material properties [16]–[18]. As opposed to finite-
element-based (FEA-based) modeling, physics-based modeling
more readily produces guidelines for designing and improving
components.

Generally, there are two state-of-the-art physics-based mod-
eling methods that can provide the explicit equations of the
equivalent capacitance at the first resonant frequency: 1) the
lumped capacitor network method [14], [19]–[21] and 2) energy
conservation method [15]–[18], [22]–[24]. Both methods repre-
sent the inductors with an equivalent circuit constructed from
multiple inductors and capacitors, with resistance usually ne-
glected. However, two different assumptions are further used in
these two modeling methods for simplifying the physics-based
models of parasitic capacitance at the first resonant frequency
in inductors.

In the lumped capacitor network method [14], [19]–[21], the
original equivalent circuit is simplified to a purely capacitive
network, where elementary inductors are completely neglected
since this method assumes that the impedance of elementary
inductors is negligibly high at the first resonant frequency. In
the energy-conservation based method [15]–[18], [22]–[24], the
effects of elementary inductors are considered by the voltage
drop between turns, where the voltage drop is assumed to be
distributed linearly at each turn. Then, the equivalent capacitance
between the two terminals of inductors is calculated by deriving
the total energy in the electric field between the turns and
matching it to the energy stored in the equivalent capacitance.

As mentioned, although both the lumped capacitor network
method and energy conservation method have been widely used
in calculating the equivalent capacitance of inductors at the
first resonant frequency, the similarities and differences of these
two methods are only partially elaborated. For example, [14]
indicates that the lumped capacitor network method is only
suitable for inductors with simple structure, i.e., the single-
layer inductor with ferrite core or air core since the pi-circuit
transformation used is only applicable in the equivalent circuit
with a simple geometrical structure. However, the description is
still not accurate and comprehensive. Most importantly, the key
limitation of the lumped-capacitor method is still not revealed
in prior publications.
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Fig. 1. Toroid inductor. (a) 3-D model. (b) 2-D equivalent circuit representa-
tion with neglected mutual inductive couplings and capacitive couplings between
nonadjacent turns.

In this article, the basic simplifying assumptions used in the
lumped capacitor network and the energy conservation methods
are reviewed. Then, a significant contradiction between the
lumped capacitor network method and the energy conservation
method is identified. Then, three theoretical comparisons
of these two methods at the circuit-level are elaborated and
validated in LTspice, where the limitations are addressed. The
comparisons show that the lumped capacitor network method
is improper for calculating the total equivalent capacitance
at the first resonant frequency of inductors, while the energy
conservation method is the proper solution. This article also
validates this conclusion with experimental measurements of
the parasitic capacitance of multiple prototype inductors.

II. PROBLEM FORMULATION

A single-layer toroid inductor with a ferrite core is used as an
example in this section, though we emphasize that the conclu-
sions apply to a broader class of components. Fig. 1(a) shows
the 3-D structure of the toroid-inductor, where multiple turns of
conductors are constructed as the winding. The high-frequency
equivalent circuit of the exampled toroid-inductor is given in
Fig. 1(b), where the resistance is neglected as usual.

The high-frequency equivalent circuit of the toroid inductor
is based on the following three assumptions.

1) Each turn can be simplified as a 2-D element, i.e., a circular
conductor running into the page. Therefore, the capacitive
coupling between two adjacent turns is simplified as a
single capacitor Ctt. The capacitive couplings between
each turn and core are simplified as the single capacitor
Ctc. Between two adjacent turns, there is an elementary
inductor Ltt.

2) The complicated coupling among all the turns is neglected
in favor of a simplified model with a series inductance
between each turn. Similarly, the capacitive coupling be-
tween nonadjacent turns is also neglected. Losses are also
neglected.

Fig. 2. Simplified equivalent circuit using the lumped capacitor network
method [11].

3) The core is assumed as a perfect conductor, as is com-
monly done. Even high-resistivity cores often have rela-
tively high permittivity [25], which has a similar effect
when modeling electric field distributions.

The rationality of these three assumptions has been deeply
elaborated in [11]–[21]. They are important for obtaining ex-
plicit expressions of parasitic capacitance in inductors (or trans-
formers) by making the analytic problem tractable. Both the
lumped capacitor network method and the energy conservation
method are based on the three above assumptions, with different
new assumptions further introduced for simplifying the model-
ing and calculations, which will be elaborated in the following
sections.

A. Lumped Capacitor Network Method

In [14] and [19]–[21], the lumped capacitor network method
has been used for solving the explicit expression of total equiv-
alent capacitance between Turn1 and Turn N.

The additional assumption made in the lumped capacitor
network method is to neglect elementary turn-to-turn induc-
tance shown as Ltt1–Ltt(N-1). The lumped capacitor network
method argues that the impedances of elementary turn-to-turn
inductances Ltt1–Ltt(N-1) are very high at the first resonant
frequency, and therefore could be considered as open circuits.
This assumption should immediately appear improbable as the
first resonance is by nature a magnetic–electric interaction.

Thus, the equivalent circuit is shown in Fig. 1(b) is simplified
to a purely capacitive network [14], as shown in Fig. 2. By using
the delta-to-star transformation, the total equivalent capacitance
Ctotal(N) of the inductor with a different number N of turns can
be calculated [19], which is given here as follows:

Ctotal(2) = Ctt +
Ctc

2

Ctotal(3) =
Ctt

2
+

Ctc

2

Ctotal(N) =
Ctotal(N − 2)× Ctt

2

Ctotal(N − 2) + Ctt

2

+
Ctc

2
, ifN> 3. (1)

According to (1), if N > 3, Ctotal(N) is an iterative sequence.
The authors in [14] and [19]–[21] found that the iterative se-
quence is convergent if N is large enough, which is given as an
analytical equation as follows:

Ctotal(∞) =
Ctt

4

(
α+

√
α2 + 4α

)
, α =

Ctc

Ctt
. (2)

For example, if α = 2 (approximately the case if the turn-to-
turn and turn-to-core spacing are set by wire insulation), then
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Fig. 3. Simplified equivalent circuit using the energy conservation method.

the total capacitance between Turn1 and Turn N is convergent
to 1.366Ctt when N is larger than about 10 [19]–[21]. Thus, the
lumped capacitor network method predicts that the equivalent
capacitance does not vary with the number of turns N so long as
N is large enough.

B. Energy Conservation Method

The energy conservation method has also been used for
calculating the explicit expressions of parasitic capacitance in
inductors [15]–[18], [22]–[24], using a different assumption
compared to the lumped capacitor network method.

The energy conservation method assumes that the voltage
potential is linearly distributed along the winding (Vturn =
Vtotal/(N − 1)) due to magnetic coupling between the turns. The
elementary inductors are not considered as open-circuit elements
in this method. Since the core is floating, the voltage potential
on the core is assumed to be Vtotal/2 according to [1], [3], and
[24].

For the equivalent circuit illustrated in Fig. 3, the total parasitic
capacitance between Turn 1 and Turn N can be obtained as (3),
based on the energy conservation law introduced in [15]

Ctotal(N) =

N∑
n=1

(
(N − n)Vtotal

N − 1
− Vtotal

2

)2
Ctc

V 2
total

+

N−1∑
n=1

(
Vtotal

N − 1

)2
Ctt

V 2
total

. (3)

Since the voltage potential is discrete in (3), the sum sequence
is used to represent the total equivalent capacitance. In the limit
of many turns, the sum can be approximated as an integral and
Ctotal(N) can be presented as (4)

Ctotal(N) = NCtc

12 + Ctt

N−1

Ctotal(∞) = ∞.
(4)

Thus, the total parasitic capacitance is unbounded as N grows.
This stands in contrast to the lumped capacitor network method,
which predicts that capacitance converges as N increases.

C. Contradictions

Although both methods are aiming to analytically calculate
the total equivalent capacitance of inductors at the first resonant
frequency, the results and conclusions of (2) and (4) are totally
different, especially as N becomes large.

The lumped capacitor network method claims that the total
equivalent capacitance of the inductor will be convergent with
increasing the number of turns, where the energy conservation

Fig. 4. Equivalent circuit for inductors before the first resonant frequency.

method claims that the total equivalent capacitance of induc-
tor will continue to grow with increasing number of turns.
Therefore, one or both methods are improper in solving the
total equivalent capacitance of the equivalent circuit at the first
resonant frequency.

The difference comes from the lumped capacitor network
assumption that the elementary inductors can be considered
as open circuits versus the energy conservation method’s as-
sumption of linear voltage distribution across turns owing to
magnetic coupling. In a way, each model makes the opposite
assumption–the lumped capacitor model assumes that magnetic
effects are irrelevant, while the energy-conservation approach
assumes that the voltage distribution between turns is entirely
determined by magnetic effects.

We will show that neither assumption is entirely accurate,
though the energy-conservation approach is much more accurate
and can be considered a reasonable solution for calculating the
parasitic capacitance and predicting the first resonant frequency.

III. EVALUATION OF MODEL ASSUMPTIONS

As mentioned, the lumped capacitor network method appears
improbable as it ignores magnetic effects while the first resonant
frequency is, by definition, a magnetic-electric interaction. This
section will prove that it is improper to consider the elementary
inductors as open circuits around the first resonant frequency
of inductors. We will further show that the energy conservation
method reasonably predicts the equivalent parasitic capacitance
around and below the first resonant frequency. In order to prove
it, multiple circuit simulations are applied in LTspice.

A. Impedance Measurement Evaluations

First, the original equivalent circuit shown in Fig. 1(b) is
established in LTspice, where the parameters are Ltt= 1 mH, Ctt

= 5 pF, Ctc = 10 pF, and N = 10. The impedance of the original
equivalent circuit, which includes every interturn inductance,
turn-to-turn capacitance, and turn-to-core capacitance, is mea-
sured and shown as the yellow curve in Fig. 4. Meanwhile, with
the known value of Ctt, Ctc, and N, the calculated total equivalent
capacitance of the network is calculated as 6.9 pF using the
lumped capacitor network method, and as 10.8 pF using the
energy conservation method. Therefore, for the behaviors of
inductors before the first resonant frequency, they could be
represented by the equivalent circuit shown in Fig. 4. Cp is the
total equivalent capacitance that needs to be modeled.

By paralleling (N−1) Ltt=9 mH inductance to the calculated
total equivalent capacitance, the equivalent circuit impedances



8284 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 37, NO. 7, JULY 2022

Fig. 5. Comparison of simulated impedance using LTspice and calculated
impedance using energy conservation method and lumped capacitor network
method (N = 10 is used in this case).

of each network are plotted in Fig. 5, which should be only
valid before the second resonant frequency due to the common
assumptions.

The measured impedance of the original circuit in LTspice,
can also be fitted near the first resonant frequency with Ltotal

= 9 mH and Ctotal = 11.9 pF. The lumped capacitor network
method has the largest error of around 42%, for the equivalent
capacitance at the first resonant frequency of the equivalent
circuit shown in Fig. 1(b), where the energy conservation method
has a smaller error of around 9%.

B. Voltage Potential Distribution Evaluations

Although the lumped capacitor network method shows huge
error when predicting the total equivalent parasitic capacitance,
it can match well with the measured impedance of the orig-
inal equivalent circuit after the last resonant frequency. This
makes sense, as the lumped-capacitor approach explicitly as-
sumes that the frequency is high enough to ignore any mag-
netic impedances, where the frequency after the last resonant
frequency point is high enough to consider the elementary turn-
to-turn inductance Ltt1–Ltt(N-1) as completely open-circuits.

In order to further elaborate the comparisons, the individual
voltage potentials versus frequencies of Turns 1–10 is simulated
and compared using LTspice. The magnitude of ac perturbations
is fixed at 1 V in LTspice. The simulated results of the original
equivalent circuit and lumped capacitor network are shown
in Fig. 6(a) and (b), respectively [the results for the energy
conservation method are constant by assumption, in Fig. 6(c)].

The voltage potential distribution at each turn in the original
equivalent circuit is not constant with respect to frequency. In
lumped capacitor network method, the voltage potential is con-
centrated at the first and last turn, where the results for the energy
conservation method are evenly distributed. By comparing the
results at the first resonant frequency in Fig. 5, the voltage

Fig. 6. Voltage potential distribution versus frequencies of Turns 1–10. (a)
Original equivalent circuit (simulated by LTspice). (b) Lumped capacitor net-
work method (simulated by LTspice). (c) Energy conservation method (accord-
ing to assumption).

potential of the lumped capacitor network method has a huge dif-
ference compared to the original equivalent circuit, which means
the assumption used in lumped capacitor network method fails to
represent the actual voltage potential distribution. Although the
voltage potential distribution is unevenly distributed at the first
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Fig. 7. Comparison of the calculated and simulated capacitance of the equiv-
alent circuit with the different number of turns.

resonant frequency in the original equivalent circuit, it is still
quite similar to the even voltage potential distribution, which
means the assumption made in the energy conservation method
is reasonable up to the first resonant frequency.

C. Equivalent Parasitic Capacitance Evaluations

In this section, the equivalent capacitances at the first resonant
frequency are calculated using both methods with different
numbers of turns and compared with the simulated value of the
original equivalent circuit using LTspice, as shown in Fig. 7.

In Fig. 7, the number of turns in the inductor is varied from
5 to 25 turns. The parasitic capacitance of energy conservation
method and LTspice simulation at the first resonant frequency
shows a positive correlation with the number of turns. The
errors between the energy conservation method and LTspice
simulation at the first resonant frequency can be explained by
the nonuniform voltage potential difference, which has been
elaborated in previous sections. The lumped capacitor network
method shows huge errors between the simulated capacitance at
the first resonant frequency, and the errors become larger with
an increased number of turns.

However, the calculated impedance using the lumped capaci-
tor network method shows good agreements with the simulated
equivalent capacitance after the last frequency, which still makes
sense since the lumped capacitor network method assumed the
frequency is high that the elementary turn-to-turn capacitance
could be considered as open-circuits.

D. Summary

According to the evaluations presented in this section, the en-
ergy conservation method can predict the equivalent capacitance
of network at the first resonant frequency, introducing some
acceptable errors due to the actual nonlinear voltage potential
distribution of winding. The lumped capacitor network method
predicts the equivalent capacitance in the limit of high frequency,
where previous research still used the method to calculate the

TABLE I
GEOMETRICAL AND MATERIAL PARAMETERS OF PROTOTYPE A

equivalent capacitance of inductors at the first resonant fre-
quency. Therefore, [14], [19]–[21] mis-state the valid frequency
range of the lumped capacitor network method.

IV. EXPERIMENTAL VERIFICATIONS

In order to verify the theory, three prototypes (inductors A,
B, C) are researched by comparing the results of theoretical
modeling methods and experimental measurements, where the
parasitic capacitance of inductors is calculated and measured
with the different number of turns.

The total equivalent capacitance of the inductors A–C under
the different number of turns is theoretically calculated using the
energy conservation method, where the voltage potential is as-
sumed to be linearly distributed within the winding. The parasitic
capacitance of the prototyping inductors A–C at the first resonant
frequency is also measured using Keysight E4990 impedance
analyzer and its adapter 16047E. The valid frequency range
of the Keysight E4990 impedance analyzer is up to 120 MHz,
and therefore it is not always possible to identify the equivalent
parasitic capacitance after the last resonant frequency, due to the
high-frequency limit. Therefore, only the equivalent capacitance
of the inductor at the first resonant frequency is fitted by using
the resonant method [24], according to the measured impedance.

The voltage potential distribution of inductors under different
frequencies is not verified by experiments in this article, since
the parasitic capacitance of probes and scopes can significantly
influence the measured voltage distribution [26]. Therefore,
the actual voltage potential distribution of inductors cannot be
obtained using voltage probes directly.

A. Prototype A: R50mm/30mm/20mm N30 Toroid Inductor

Prototype A is constructed by a toroid core, using N30 core
material from TDK [27]. The optimal frequency range of N30
material is below 0.4 MHz, where the measured frequency of
the first resonant frequency should also be below 0.4 MHz for
ensuring relatively constant permeability. Therefore, at least 51
turns are implemented in prototype A.

The rest parameters of Case A toroid inductor are listed in
Table I, and the prototyping Case A is shown in Fig. 8. The
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Fig. 8. Photograph of Prototype A: R50mm/30mm/20mm N30 toroid induc-
tor.

Fig. 9. Comparison among calculated equivalent capacitance (energy conser-
vation method), calculated equivalent capacitance (lumped capacitor network
method), and measured equivalent capacitance of Prototype A.

average distance between winding and core p2 is highly relevant
to predicting the parasitic capacitance of the inductor, and due
to the bending ratio of copper, the value could be varied by
the position of windings. In this case, the average distance is
estimated from 0.1 to 0.3 mm according to the measurement by
using a vernier caliper.

The calculations and measurements of parasitic capacitance
at the first resonant frequency in Prototype A are shown in
Fig. 9. The measured equivalent capacitance at the first resonant
frequency versus the different number of turns is shown as
the blue curve. The calculated capacitance versus the different
number of turns is shown as a region of possibilities to account
for the uncertainty in the average wire-to-core spacing p2. The
measured equivalent capacitance at the first resonant frequency
increases when the number of turns is increased. The energy
conservation method can predict the equivalent capacitance at
the first resonant frequency, by introducing some uncertain-
ties of geometrical errors. The calculated capacitance using
lumped-capacitor modeling method shows huge errors (mini-
mum 250%–600%) compared with the measured capacitance,
especially when the number of turns is large.

TABLE II
GEOMETRICAL AND MATERIAL PARAMETERS OF PROTOTYPE B

TABLE III
GEOMETRICAL AND MATERIAL PARAMETERS OF PROTOTYPE C

Fig. 10. Photograph of Prototype B: R102mm/65.8mm/15mm N87 toroid
inductor.

B. Prototype B: R102mm/65.8mm/15mm N87 Toroid Inductor

Prototype B is constructed by a toroid core, using N87 mate-
rial from TDK [28]. The parameters of the prototype are listed
in Table II . In order to guarantee a constant permeability that
the first resonant frequency of the inductor will be below the
optimal frequency range (0.5 MHz), a minimum number of turns
is selected as 66. The maximum number of turns is 148 in this
case. The photograph of Prototype B is shown in Fig. 10.
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Fig. 11. Comparison among calculated equivalent capacitance (energy con-
servation method), calculated equivalent capacitance (lumped capacitor network
method), and measured equivalent capacitance of Prototype B.

The calculations and measurements of parasitic capacitance at
the first resonant frequency in Prototype B, versus the different
number of turns, are compared in Fig. 11.

Using the lumped capacitor network method, the calculated
capacitance is always a constant value versus the number of
turns. However, the measured capacitance is increased when the
number of turns becomes larger. The minimum error between
lumped capacitor network method and measurement is between
500% and 1900%. According to Fig. 10, when p2 is between 0.1
and 0.3 mm, the energy conservation method predicts the mea-
sured equivalent capacitance at the first resonant frequency. The
calculated equivalent capacitance using the energy conservation
method keeps increasing when the number of turns is larger,
which is shown experimentally.

C. Prototype C: ETD 59mm/31mm/22mm N97 Inductor

The inductor in Prototype C is constructed by two E-type
cores, using core material N97 from TDK [29]. Similar to
before, the minimum turns are 30 for ensuring the first resonant
frequency within the optimal frequency range. The parameters of
the prototype are listed in Table III. The photograph of Prototype
C is shown in Fig. 12. The calculations and measurement of
parasitic capacitance at the first resonant frequency in Prototype
C, versus the different number of turns, are compared in Fig. 13.

Similar to Prototype A and B, the calculated capacitance using
lumped capacitor network method is always a constant value
under the different number of turns, where the minimum error is
calculated between 200% and 400%. The measured equivalent
capacitance at the first resonant frequency in Prototype C could
be predicted by using the energy conservation method, by esti-
mating the average distance of the airgap between the winding
and core from 0 and 0.05 mm. With a given value of the airgap
distance between winding and core, the calculated capacitance
at the first resonant frequency using the energy conservation

Fig. 12. Photograph of prototype C: ETD 59mm/31mm/22mm N97 E-core
inductor.

Fig. 13. Comparison among calculated equivalent capacitance (energy con-
servation method), calculated equivalent capacitance (lumped capacitor network
method), and measured equivalent capacitance of Prototype C.

method is increased when the number of turns is larger, which
is aligned with the experimental measurements.

D. Summary

The experimental results show that equivalent capacitance
should increase with a larger number of turns, as predicted by
the energy conservation method and not by the lumped capacitor
network method. Therefore, this experiment shows the predic-
tion of the lumped-capacitor method, namely that capacitance
should converge with increasing number of turns, is incorrect.

The equivalent parasitic capacitance at the first resonant fre-
quency is sensitive to the distance of airgap between core and
winding; therefore, this article introduces the range of the airgap
distance and predicts the equivalent capacitance using a region.
The experimental results for all three inductors always fell within
the range predicted by the energy conservation method.
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V. CONCLUSION

This article rethinks the methods of calculating the parasitic
capacitance of inductors. Two methods are explained, and their
assumptions are critiqued. According to technical comparisons,
the misunderstanding concepts and limits of these two methods
are classified.

1) The lumped capacitor network method assumes that only
capacitive impedance is significant. Therefore it predicts
the capacitance in the limit of high frequency and is im-
proper to predict the equivalent capacitance at the first res-
onant frequency, which is the more usual case of interest.

2) The energy conservation method assumes that the voltage
distribution between turns is uniform and is shown to
be more proper for analytically calculating the parasitic
capacitance at the first resonant frequency. However, the
voltage potential distribution of winding is shown to be
nonuniform at the first resonant frequency according to
the LTspice simulations of the equivalent circuit, though
by a relatively small amount, which can still introduce
some errors in predictions.

The two modeling methods are compared by experiments
using three prototypes. The lumped capacitor approach is con-
firmed to be inappropriate, while the errors of the energy con-
servation method are found to be tolerable based on both circuit
simulations and experiments.

The conclusions are not limited to the applications of in-
ductors, but can be extended to transformers since the physical
concepts behind them are the same.
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