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Abstract

We consider dynamic route planning for a fleet of Au-
tonomous Mobile Robots (AMRs) doing fetch and carry tasks
on a shared factory floor. In this paper, we propose Stochastic
Work Graphs (SWG) as a formalism for capturing the seman-
tics of such distributed and uncertain planning problems. We
encode SWGs in the form of a Euclidean Markov Decision
Process (EMDP) in the tool UPPAAL STRATEGO, which em-
ploys Q-Learning to synthesize near-optimal plans. Further-
more, we deploy the tool in an online and distributed fashion
to facilitate scalable, rapid replanning. While executing their
current plan, each AMR generates a new plan incorporat-
ing updated information about the other AMRs positions and
plans. We propose a two-layer Model Predictive Controller-
structure (waypoint and station planning), each individually
solved by the Q-learning-based solver. We demonstrate our
approach using ARGoS3 large-scale robot simulation, where
we simulate the AMR movement and observe an up to 27.5%
improvement in makespan over a greedy approach to plan-
ning. To do so, we have implemented the full software stack,
translating observations into SWGs and solving those with
our proposed method. In addition, we construct a benchmark
platform for comparing planning techniques on a reasonably
realistic physical simulation and provide this under the MIT
open-source license.

1 Introduction
In modern industrial production, robots are increasingly
working in close collaboration with humans in shared
workspaces. In recent years, agents such as automated
guided vehicles (AGV) and autonomous mobile robots
(AMR), among other approaches, have enabled increased
flexibility in manufacturing environments. AMR and AGV
systems have thus become paramount to modern production
paradigms where increased flexibility in logistics applica-
tions are enabled through such technologies (Fazlollahtabar
and Saidi-Mehrabad 2015). Nonetheless, fleet management
is still a significant challenge to solve and is highly de-
pendent on the particular problem. For example, the fleet
manager might need to allocate tasks, plan around resource
availability, malfunctioning agents, and avoid blocking each
other on paths or at stations.

Copyright © 2022, Association for the Advancement of Artificial
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In Multi-Agent Pickup and Delivery (Salzman and Stern
2021), a set of agents must complete tasks where they must
pick up an item to be placed at certain delivery stations. Such
methods can be done effectively and quickly if the agents
only have one job each. Even if there is a stream of tasks, it
can be solved in an online fashion (Ma et al. 2017), but the
agent only needs to pick up items from a single location be-
fore delivering. We consider agents that must visit multiple
stations before delivering the collected items.

In this paper, we consider complex planning of pickup and
delivery when the environment contains stochastic timing
information stemming from, e.g., noise in the location sys-
tem, other sensors, or through collaboration with humans.
We define in Section 3 the Stochastic Work Graph (SWG),
its associated global scheduling problem, and the seman-
tics as defined on a Euclidean Markov Decision Process
(EMDP). Later in Sections 4 and 5, we divide the global
(and intractable) problem into a two-level planning method-
ology, where we, on an abstract level, plan the sequence
in which to visit stations, and afterward the exact paths to
travel in the near future. The planning architecture is a dual
Model-Predictive Control (MPC) approach, with each MPC
problem solved by online Q-learning, using the tool UP-
PAAL STRATEGO (David et al. 2015). The Q-learning-based
solver synthesizes near-optimal plans for visiting stations
and waypoints. We consider a complex planning scenario
in Section 7 for concept evaluation that entails 10, 15, and
20 AMRs doing pickup and delivery tasks. Our simulation
architecture is based on the ARGoS3 framework (Pinciroli
et al. 2012) which simulates the physics of the AMRs. We
demonstrate that our approach can learn policies that out-
perform a greedy approach by up to 27.5% on average. A
secondary contribution of the paper is the developed simu-
lation platform. It is released as open-source under the MIT
license and can be used to compare different planning ap-
proaches against each other.

Motivational Case
As a motivational case, we consider a setup inspired by
a world-leading industrial company with many custom or-
ders apart from their primary production. Humans currently
hand-pick a series of components to fulfill a single order
with no restrictions on the collection sequence. They are
self-managed and rely on intuition to avoid congestion at



shelves with items in high demand. When all the items have
been picked up, they must be delivered to a delivery station.

2 Related Work
Optimal fleet management, and herein task planning and
replanning, is a fundamental challenge in multi-AMR sys-
tems. In recent years, artificial intelligence methodologies
have become prevalent in robotics research. We propose a
combined learning and Model-Predictive Control (MPC) ap-
proach to the challenge.

The problem of planning multiple agents’ paths through a
system has been investigated as the Multi-Agent Path Find-
ing (MAPF) problem (Salzman and Stern 2021). In MAPF,
a set of agents must travel from a source to a destination
where one-shot algorithms can compute such routes. On-
line (or lifelong) MAPF computes for a time window as the
agents execute a stream of tasks (Ma et al. 2017). Exten-
sions include Target Assignment and Path Finding (TAPF),
in which the authors investigate the optimal assignment of
tasks, and Multi-Agent Pickup Delivery (MAPD) (Li et al.
2020), where a task includes a location where to deliver
an item. Others have attempted to combine reinforcement
learning with MAPF approaches, such as (Ling, Gupta, and
Kumar 2020) who divide the graph into zones and include
aspects of uncertainty. Common for them all is that ei-
ther each agent needs to visit just one location, or the se-
quence is fixed. In our research, we investigate how a task
consisting of multiple locations followed by a delivery sta-
tion can be visited, which is inspired by Fetch and Carry
operations (Bøgh et al. 2014; Staal et al. 2020). In such
applications, the agent can visit multiple locations before
delivering. MAPF problems are in general formulated us-
ing discrete, unit time for movement and work, but (Hönig
et al. 2016, 2019) investigate time-varying and simulate with
higher-order dynamics. First, they defined MAPF-POST: a
process for post-processing a calculated MAPF plan. The
plan is updated to include kinematic constraints and define
dependencies between the different steps in the plan, but the
constraints are single intervals, such as the minimum and
maximum duration of traveling along an edge. The benefit
of this new plan is that it allows for better mapping to the
execution of the robots. Later, they present the idea of post-
processing in an online setting, where they also define work
as δ time units and not just a single unit, but their implemen-
tation is not made available.

Recent research has proposed a Deep Q-Network-based
approach to dispatch/navigation plans to serve randomly and
constantly incoming orders and reduce time consumption for
AGVs (Liu et al. 2021). Ridesharing platforms share many
of the same challenges to fleet management in industrial
AMR scenarios, e.g., how waiting time is reduced through
proactive dispatching strategies. Reinforcement Learning
has been applied to optimize dispatching strategies specif-
ically, hence learning policies under uncertainty in the envi-
ronment (Oda and Joe-Wong 2018). In this paper, we con-
sider a stream of incoming orders, each comprising a set
of items to collect from a factory floor. We assume that a
simple global algorithm solves the allocation of AMRs to
orders. The aim is to reduce the total completion time of

the order queue. We differ from (Liu et al. 2021; Oda and
Joe-Wong 2018) both in the method applied and by con-
sidering plans where multiple points have to be visited, re-
sulting in more choices for each individual AMR. In par-
ticular, we leverage recent advances in near-optimal synthe-
sis for Priced Timed Markov Decision Processes using UP-
PAAL STRATEGO (Jaeger et al. 2019). Our method automat-
ically incorporates rapid replanning, something we believe
will lead to faster response time to rare and unpredictable
events, situations that require special care when applying
Neural Network-based approaches (De Bruin et al. 2015;
Schiøler et al. 2018). We apply the tool UPPAAL STRATEGO
in the setting of MPC - a combination which has recently
seen encouraging performance in various domains (Larsen
et al. 2016; Eriksen et al. 2019; Goorden et al. 2021).

As the fleet of agents grows into large-scale systems, the
fleet management problem becomes increasingly challeng-
ing. Traffic congestion and transportation efficiency become
essential factors, which have been investigated through
multi-agent deep reinforcement learning methods (Lin et al.
2018). To combat scalability issues, we enable each AMR
to optimize its plan while taking the current plans of the
other AMRs into account. This allows the individual AMRs
to adapt locally to (temporal) congestion. An alternative ap-
proach is taken by (Gu et al. 2020), who rely on a centralized
computation of navigation plans, which leads to scalability
issues.

3 Problem Description
In our setting, a group of AMRs is expected to complete a
(multi-)set of tasks, where each task consists of a set of pick-
up stations to visit prior to delivering the collected items at a
delivery station. The goal of the AMRs is to complete the
collection of tasks as fast as possible in a given environ-
ment and under the assumption that an AMR can work on
at most one task at any given time and that tasks are non-
preemptable.

In order to capture the underlying properties of the en-
vironment the AMRs operate in, we abstract the real-world
into a Stochastic Work Graph.

Definition 1 (Stochastic Work Graph) A stochastic work-
graph G = (V,E,∆) is an undirected graph where:

• V is a set of vertices,
• E ⊆ V × V is a set of edges,
• ∆ : V ∪ E → (R≥0 → R≥0) denotes a stochastic dis-

tribution over the work time at vertices or travel time for
edges s.t. 1 =

∫∞
0

∆(l)(x)dx for any l ∈ V ∪ E.

Notice here that the distributions capture the uncertainty
in the environment as such to capture, e.g., human operators
of a work-station or expected interference from the environ-
ment (or other AMRs). The maps that we operate on are not
required to be well-formed infrastructures as defined in (Čáp
et al. 2015) implying that AMRs can block routes while per-
forming work.

Given an SWG, we can capture the entirety of the prob-
lem as a Scheduling Problem for SWG, formally defined as
follows.



Definition 2 (Scheduling Problem for SWG) An SPSWG
S = (R, I, T , G) with G = (V,E,∆) s.t.
• R is a set of names of AMRs,
• I : R→ V is the initial AMR placement,
• T ⊆ ℘(V ) is the (multi-)set of tasks, each being a set of

vertices to be visited, and
• G is an SWG.

The goal is to have the AMRs complete the set of tasks with
the shortest makespan possible.

We will, for simplicity henceforth, assume w.log. that T is a
set. Note that the tasks consist of a set of vertices an AMR
must visit prior to completing its task, i.e., the sequence of
the vertices is not given a priori. We can now define the ab-
stract state of an AMR as follows.

Definition 3 (State of an AMR) Let Ω = (V ∪ E) × B ×
R≥0 × ℘(V ) be the set of all states, then the (ℓ, b, x, t) ∈ Ω
is the state of an AMR s.t.
• ℓ ∈ (V ∪ E) is the location,
• b ∈ B = {tt ,ff } indicates activity (such as working),
• x ∈ R≥0 is the progress of the current operation (move-

ment along an edge, or operation at a station), and
• t ∈ ℘(V ) is the remaining set of locations to visit.

As a shorthand, we let Λ(r) ∈ Ω denote the state of the
AMR r in the global AMR state vector Λ. We further write
Λ[(ℓ, b, c, τ)/r] to update the state of r ∈ R.

Given the states Λ of all AMRs and the SWG G, we
need an encoding that specifies the behavior and progres-
sion of task execution. The semantics of such a system can
be aptly given as a Euclidean Markov Decision Process
(EMDP) (Jaeger et al. 2019, 2020) which we shall briefly
recall:
Definition 4 (Euclidean Markov Decision Process) An
Euclidean Markov Decision Process (EMDP) is defined as
a tupleM = (S,Act , sinit , T, C,G), where
• S ⊆ RK is a K-bounded and closed subset of an eu-

clidean space,
• Act is the set of actions,
• sinit is the initial state,
• T : S×Act → (S → R≥0) is the transition function that

yields a density function T (s, a) over S for each state s
and action a,

• C : S×Act ×S → R≥0 is the cost functions over state-
action-state triples, and

• G ⊆ S is the set of goal states.
A benefit of EMDP is the generation and execution of

strategies under such models, but we can also evaluate (or
estimate) the cost of strategies. Given an EMDP and a strat-
egy σ : S → (Act → [0, 1]), we can define the expected
cost of such a strategy as follows.

Definition 5 (Expected cost of a strategy) Let G be a set
of goal-states and let σ be a strategy. The expected cost of
reaching G starting in a state s – EM

σ (C, s) – is the solution
to the following system of equations1:

1We shall assume that the equation system has a solution for the
considered MDP and a goal set under any strategy.

EM
σ (G, s) =

∑
a∈Act

σ(s)(a)·∫
t∈S

T (s, a)(t) ·
(
C(s, a, t) + EM

σ (G, t)
)
dt

when s ̸∈ G and EM
σ (G, s) = 0 when s ∈ G.

In our case, we want to reduce the makespan of complet-
ing a task, such that a strategy’s cost will be its expected time
to complete the tasks. This leads to the optimization problem
for EMDPs, which asks to find a strategy σ s.t. EM

σ (C, sinit)
is minimized, which will be the makespan in the case of SP-
SWGs. We now encode the semantics of our SPSWG as an
EMDP:
Definition 6 (SPSWG as EMDP) Given a SPSWG S =
(R, I, T , G) with G = (V,E,∆), the induced EMDPM =
(S,Act , sinit , T, C,G), is given by
• S = ΩR×T is the global state consisting of the mapping

of AMR names to AMR states and the remaining tasks,
• Act is the set of actions,
• s0 = (Λ, T ) s.t. Λ(r) = (I(r),ff , 0, ∅) for all r ∈ R,
• T : S × Act ⇀ (S → R≥0) is a partial transition

function for the next state density function,
• C : S ×Act × S → R≥0 is the cost function, and
• G = {(Λ, ∅) ∈ S | for all r ∈ R we have (ℓ, b, x, ∅) =
Λ(r)}.

Thus, in goal states G, there are no more tasks left in the
task set T , and all AMRs have completed their assigned
tasks. We further define the set of actions Act as:

Act ={assignr,τ | r ∈ R, τ ∈ T } ∪
{mover,e | r ∈ R, e ∈ E} ∪
{workr,v | r ∈ R, v ∈ V } ∪
{δ}

where the four actions are assignment of a task to an AMR,
an AMR moving on an edge or working at a vertex, and an
abstract delay δ.

Now we can define the cost and transition functions com-
pleting the EMDP semantics of Definition 6. We denote a
transition as follows.

(Λ, T ) α−→d,D (Λ′, T ′)

Here, Λ is the state of the AMRs, T is the task set, α ∈ Act
is an action, d is the concrete amount of time elapsed, which
also denotes the cost, and D is the density of the transition.
As the delay is the cost, assigning tasks, starting work, or
initiating movement does not carry any direct cost and is
seen as instantaneous. Also, their effects are deterministic,
reflected by density 1.

Let us first define the transition-relation for the assign ,
work , and move operations.

(Λ, T )
assignr,τ−−−−−−→0,1 (Λ′, T ′) if Λ(r) = (v,ff , c, ∅) and

τ ∈ T and

T ′ = T \ {τ} and

Λ′ = Λ[(v,ff , c, τ)/r]



(Λ, T ) workr,v−−−−−→0,1 (Λ′, T ) if Λ(r) = (v,ff , c, τ) and
v ∈ τ and

∀r′ ∈ R it holds that

(v, tt , c′, τ ′) ̸= Λ(r′) and

Λ′ = Λ[(v, tt , 0, τ)/r]

(Λ, T ) mover,e−−−−−→0,1 (Λ′, T ) if Λ(r) = (v,ff , c, τ) and

e = (v, v′) and

Λ′ = Λ[(e, tt , 0, τ)/r]

For clarification, we make the following notes: for assign ,
an inactive AMR r having completed its (previous) task may
be assigned a new task; for work , an inactive AMR r may
start working at its current location vertex and will have its
clock reset. Note, no other AMR r′ must be active and oc-
cupying v when work is initiated at v. Finally, an inactive
AMR r may start to move along any edge from its current
location vertex.

Before defining the transition for the delay action δ, we
define two short-hand notations for conditional density and
probability. Let d, ϵ ∈ R≥0 and let D : R≥0 → R≥0 be
a density. Then D(d | ϵ) denotes the conditional density
of delaying additionally d assuming a delay of at least ϵ,
defined as follows.

D(d | ϵ) = D(ϵ+ d)∫∞
t=ϵ

D(t) dt
(1)

This allows us to define the D(≥ d | ϵ) shorthand, de-
noting the probability of delaying additionally d assuming a
delay of at least ϵ:

D(≥ d | ϵ) =
∫ ∞

t=d

D(t | ϵ) dt (2)

Before defining the delay (δ) transition, we first define the
set of active AMRs in a given state Λ.

ActiveΛ = {r ∈ R | Λ(r) = (ℓ, tt , c, τ)}

In short, ActiveΛ denotes the set of AMRs engaged in ei-
ther working at a vertex or moving along an edge of the
work graph. Given Λ, an active AMR r ∈ ActiveΛ with
(ℓ, tt , v, c) = Λ(r), we can now define the density that r
will be the first active AMR to complete its activity and will
do so after a delay of d:

Dr,d,Λ =

∆(w)(d | c) ·
∏

r′∈ActiveΛ and
r ̸=r′, (ℓ′,b′,c′,ℓ′)=Λ(r′)

∆(w′)(≥ d | c′)

Note, that ∆(w)(d | c) is the density of r completing after
additionally d time-units given that c has already elapsed,
and that the large product

∏
. . . is the probability that all

other active AMRs r′ will not complete their activity before
additionally d time units.

Now, finally, we may define the delay transition δ com-
pleting active AMRs either working at vertices v ∈ V or
moving along edges (v, v′) ∈ E of the underlying SWG:

(Λ, T ) δ−→d,Dr,d,Λ
(Λ′, T ) where

a) if (v, tt , c, τ) = Λ(r) s.t. v ∈ V then

Λ′(r′) =


Λ(r′) if r′ ̸∈ ActiveΛ
(v,ff , 0, τ \ {v}) if r′ = r

(w′, tt , c′ + d, τ ′) with
(w′, tt , c′, τ ′) = Λ(r′) otherwise

b) if ((v, v′), tt , c, t) = Λ(r) s.t. (v, v′) ∈ E then

Λ′(r′) =


Λ(r′) if r′ ̸∈ ActiveΛ
(v′,ff , 0, τ) if r′ = r

(w′, tt , c′ + d, τ ′) with
(w′, tt , c′, τ ′) = Λ(r′) otherwise

Again, the intuition behind the delay transition is that the
AMR r is the first of all active AMRs that complete current
work (case a)) or travel (case b)).

Now we have completed the definition of the EMDP that
models our scheduling problem, where tasks need to be as-
signed to AMRs that subsequently must visit the set of loca-
tions of the tasks. However, the definition of the semantics
of SPSGW comes with openness in the choice as to which
order the vertices of a task should be visited. In particular,
no restrictions are given as to which is the last station. To
better match our motivational case, we enforce that AMRs
visit a delivery station after having visited all other stations
in its task. To enforce a pick-up-and-delivery semantics, we
introduce a set of delivery vertices as a subset θ ⊆ V of the
vertices of the underlying SWG.

Definition 7 (Pick-up and Delivery Problem (PDP))
Let SPSWG S = (R, I, T , G) with G = (V,E,∆). Now
given a set of delivery stations θ ⊆ V , the induced EMDP
M = (S,Act , sinit , T, C,G) from Definition 6 is modified
as follows:

• for each t ∈ T , |t∩ θ| ≥ 1, i.e. each task has at least one
delivery station, and

• if (Λ, T ) workr,v−−−−−→0,1 (Λ′, T ) and v ∈ θ then
– for Λ(r) = (v, b, c, τ) we have τ ⊆ θ implying that

only delivery stations are left, and

• we modify (Λ, T ) δ−→d,D (Λ′, T ′) s.t. if Λ(r) =
(v, tt , c, τ) with τ ⊆ θ and v ∈ θ, then
– Λ′(r) = (v,ff , 0, ∅), implying that any delivery sta-

tion v of the task will suffice to complete it.

The objective remains to minimize the expected makespan of
all tasks.

Both Definitions 6 and 7 defines a global scheduling prob-
lem: how to assign tasks, where to move AMRs in the en-
vironment, and when and where to initiate work. In our
work, we leave optimal task assignments to future work and,
therefore, we assume a simple, deterministic allocation of
tasks in the experiments. This leaves us with the planning



of the movement of AMR – but conjecture that global plan-
ning is still infeasible, we thus focus on local (distributed),
near-future planning. We do so to avoid an explosion in
computation-time with a growing fleet of AMRs where the
global optimization problem, even for the fully controllable
setting, can be shown to be NP-complete (Garey, Johnson,
and Sethi 1976), implying an exponential growth in running-
time assuming P ̸= NP . We also note that the problem ap-
pears even less tractable, possibly undecidable in the face of
stochastic behavior (Kempf, Bozga, and Maler 2013; Geer-
aerts, Guha, and Raskin 2018). This leads us to select an
approach based on near-optimal plans obtained with ma-
chine learning techniques but also in dividing the problem
into smaller parts.

To overcome the state space explosion, we plan dis-
tributed for the individual AMRs, using two levels of ab-
straction: station planning for learning the sequence to visit
stations in and waypoint planning for finding the path to the
next station to visit. First, we develop the theoretical foun-
dation for local planning and, second, we define two-level
planning.

4 Local, Near-Future Re-Planning
The size of the state space to search correlated with the num-
ber of choices. One disadvantage of the global scheduling
problem is that several AMRs make choices simultaneously,
implying a large branching factor. If the goal is to reduce the
total makespan of a set of tasks, the effects of early choices
might be important but hard to learn. We, therefore, reduce
the problem to just minimizing the makespan of the cur-
rently assigned tasks, recomputing the plans whenever one
task is completed. However, this approach will still not scale
well with increasing numbers of AMRs. We remedy this by
planning locally, implying that each AMR plans its own ac-
tions given the current plans of the others, thus distributing
the planning process. To do so, we need a notion of partial
strategies as a plan is only learned for a subset of the actions
available in the EMDP. Intuitively, we desire to partition the
strategy synthesis s.t. each individual AMR is responsible
for its own actions. We, therefore, introduce partial strate-
gies and the partial synthesis problem.

We let ρ : S → (Act ′ → [0, 1]) define be a partial
strategy for Act ′ ⊆ Act and denote by Actρ = Act ′ the
supporting set of actions Act ′ of ρ. Given a set of par-
tial strategies P = {ρ1, . . . , ρn}, we say that P is well-
formed if Actρi ∩ Actρj = {δ} for all 1 ≤ i, j ≤ n. If
Act =

⋃
1≤i≤n Actρi we say that P is complete.

We say that a full strategy σ conforms to a well-formed
set of partial strategies P iff for all s ∈ S and α ̸= δ we
have the following.

σP (s)(α) =
1

|P |
∑
ρ∈P

ρ(s)(α)

We let σP (s)(δ) be defined in a similar manner only if P
is complete.

This intuitively implies that a uniform strategy resolves
any conflicting choice between partial strategies, and a

“residual” probability is available for the missing, partial
strategy. We can thus define the Partial Synthesis Problem.

Definition 8 (Partial Synthesis) Given an EMDP M =
(S,Act , sinit , T, C,G) and an incomplete and well-formed
set of partial strategies P = {ρ1, . . . , ρn} compute a full
strategy σP conforming to P s.t. EM

σP
(sinit) is minimized.

We denote by ρ = σP \ P the partial strategy s.t. σP =
σP∪{ρ}. Intuitively this denotes the constructed partial strat-
egy ρ s.t. if ρ is joint with P , it yields the found full strategy
for the partial synthesis problem σP .

We can now partition the action-space of our SPSWG as
follows; we let Actr = {workr,v ∈ Act | v ∈ V } ∪
{mover,e ∈ Act | e ∈ E} ∪ {δ} be the action-partitions
of AMRs with r ∈ R and let Actassign = {assignr,t ∈
Act | τ ∈ T , r ∈ R} ∪ {δ} be the action-partition of
the global task scheduler. Given assumptions of the be-
haviour on e.g. the scheduler ρassign and a set of AMRs
{r1, . . . , rn} = R \ {r}, we can find the optimal partial
strategy ρr when assuming P = {ρassign, ρ1, . . . , ρn}.

5 Two-Level Planning
To further reduce the complexity of the optimization prob-
lem, for a given task τ ∈ T , we separate the optimization
of each AMR into two parts: 1) deciding on the order of
visiting vertices in τ (station plan), and 2) deciding on the
exact path between the current position and the next task in
τ (waypoint plan).

Vertices in a graph can be partitioned into two types: sta-
tions we conduct work at (Vϕ) or vertices (waypoints) that
are there to help AMRs navigate around obstacles such as
corners (Vω). The waypoints are not locations where AMRs
work but are needed if the graph represents coordinates in a
factory setting. For a given SWG G = (V,E,∆), we thus
let Vϕ ∪ Vω = V .

We here re-use the framework for optimization on SP-
SWG and define two projections of an SPSWG S =
(R, I, T , G) into Sϕ and Sω as the station and waypoint
projection, respectively. This assumes a partition of V of
the underlying graph G = (V,E,∆) into Vϕ and Vω , and
furthermore, a definition of delivery stations θ ⊆ Vϕ. For
simplicity we assume that for all τ ∈ T we have τ ⊆ Vϕ

and that I(r) ∈ Vϕ for all r ∈ R.

Definition 9 (Waypoint SPSWG) Given an SPSWG S =
(R, I, T , G) with G = (V,E,∆) the graph Sω =
(R, I, {v}, G) is the corresponding waypoint SPSWG to
reach a vertice v ∈ V .

The station graph is more involved and abstracts away de-
tails about specific intermediate waypoints. To do so, we ab-
stract away the probability distributions over the traversal
times of the edges and abstract away potential congestion
problems. This allows us to generate a new graph-based on
all-pairs shortest paths between any stations in Sϕ. We there-
fore introduce an abstraction over the edge-distribution to
single-points, to allow for a shortest-path computation using
Dijkstras algorithm and let (∆1 ⊕ ∆2)(t) =

∫ t

ρ=0
∆1(ρ) ·

∆2(t − ρ)dρ denote the convolution of the distributions δ1



and δ2. Then, we abstract away the points between the sta-
tions by defining an Waypoint Abstracted SWG as follows.
Definition 10 (Waypoint Abstracted SWG) Let
G = (V,E,∆) be a SWG and let Sϕ be a set of sta-
tions, then Gϕ = (V ′, E′, δ′) is the induced waypoint
abstracted graph where
• V ′ = Sϕ,
• E′ = {(v1, vn) ∈ V ′ | if there exists a path v1, . . . , vn in
G s.t. vi ̸∈ V ′ for 1 < i < n, and

• ∆′ : V ′ ∪ E′ → (R≥0 → R≥0) s.t.
– for v ∈ V ′, then ∆′(v) = ∆(v), and
– for (v1, vn) ∈ E′ then ∆((v1, vn))(t) =
⊕1≤i≤n−1∆((vi, vi+1))(t) where v1, . . . , vn is the
shortest path in G where vi /∈ V ′ for all 1 < i < n
and using the expectation of each edge-distribution as
weight (

∫∞
t=0

∆(t)t dt).
This allows us to define the station SPSWG as follows.

Definition 11 (Station SPSWG) Given an SPSWG S =
(R, I, T , G) with G = (V,E,∆), then Sω = (R, I, T , Gϕ)
is the station SPSWG where the underlying SWG is replaced
by the waypoint abstracted equivalent.

For convenience, we will denote these two abstractions
directly on a given SPSWG S and simply write ω(S, v) and
ϕ(S) for the waypoint and the station SPSWG respectively,
which naturally yields the EMDPs Mω and Mϕ, respec-
tively. We now have the needed constructions to formally
introduce our distributed planning algorithm in Algorithm 1.
However, for simplicity, we shall make some simplifying as-
sumptions:
• a global, first-come-first-serve, deterministic planner
ρassign – leaving the optimization of this for future work,

• initially AMRs have the strategy ρ(s)(δ) = 1 for any s,
• the full task-list of the global planner is hidden, and
• the global state Λ is observable and has the projections
Λϕ and Λω into the station and waypoint EMDPs, re-
spectively.

6 Uppaal Stratego
The tool UPPAAL STRATEGO is a solver for Stochastic
Priced Timed Games (SPTG) (David et al. 2015), a formal-
ism which facilitates a natural encoding of the SPSWG prob-
lem. In particular, such SPTG (under certain restrictions) can
have their semantics given as EMDPs (Jaeger et al. 2019).

Optimization of SPTG is known to be undecidable as
it is undecidable even for the untimed fragment (Brihaye,
Bruyère, and Raskin 2005). UPPAAL STRATEGO therefore
repeatedly samples episodes from the system and utilizes Q-
learning converge to a near-optimal solution. What is par-
ticular for the Q-learning method employed by UPPAAL
STRATEGO is its ability to conduct partition/refinement of
the observed state variables (Jaeger et al. 2019). This al-
lows the tool to generalize the observations onto sets of
states, thereby extending the applicability of the Q-learning
methods to the continuous domain – which is required to
learn near-optimal plans for EMDPs. Examples of UPPAAL
STRATEGO models for the station and waypoint plans are
provided in the supplementary material.

Algorithm 1: Distributed Planning Algorithm
Data: The id of the AMR r ∈ R and the SPSWG

S = (R, I, ∅, G) with G = (V,E,∆)
1 Pr = {ρassign , . . . } is the initial strategies, excluding

one for r;
2 while /*loop forever*/ do
3 Receive a task τ from coordinator (according to

ρassign );
4 while τ ̸= ∅ do
5 Receive updates to P from other AMRs;
6 Make an observation Λ projected into Λϕ;
7 Assume w.log. that ρ′((T ,Λϕ))(δ) = 1 for

all ρ′ ∈ P ;
8 Compute σϕ

P for ϕ(S) starting in state Λϕ

with Λ(r) updated with task t;
9 Let v be the vertex picked by σϕ

P in Λϕ;
10 Send σϕ

P \ P to other AMRs;
11 while Λ(r) ̸= (v, b, c, τ) for any values of

b, c, τ do
12 Receive updates to P from other AMRs;
13 Make an observation Λ projected onto

Λω;
14 Assume w.log. that ρ′((T ,Λϕ))(δ) = 1

for all ρ′ ∈ P ;
15 Compute σω

P for ω(S, v) starting in state
Λω;

16 Send σω
P \ P to other AMRs;

17 Let w be the vertex picked by σω
P in Λω;

18 Send coordinates of w to low-level
navigation controls;

19 end
20 Execute work at v;
21 τ ← τ \ {v};
22 end
23 end

7 Experimental Setup & Results
To evaluate the proposed methods, we have implemented
a simulation architecture based on the ARGoS3 frame-
work (Pinciroli et al. 2012), which simulates a physical en-
vironment and offers the choice between a 3D visualization
and no visualization.2 For our results, the simulator has no
stochastic behavior but contains complex behavior, such as
collision avoidance and the bug-tangent algorithm for low-
level navigation. We thus use the stochastic nature of our
model to capture these imprecisions when translating obser-
vations in the simulation into the SPSWG instances. The ex-
perimental setup also ensures determinism of the simulation;
if the planners produce the same plans in two different exe-
cutions, the execution will be identical. Due to the stochas-
tic nature of UPPAAL STRATEGO, different executions may
lead to different plans, leading to different simulations. The
map used in all experiments is shown in Fig. 6.

2https://doi.org/10.5281/zenodo.6385690 contains the code, the
experiment data, and example Uppaal Models.



Figure 1: Uniform, 1000 episode budget. Figure 2: Uniform, 5000 episode budget.

Figure 3: Triangular, 1000 episode budget. Figure 4: Triangular, 5000 episode budget.

Figure 5: CPU time spent for synthesizing a single way-
point (W) or station (S) plan with a 1000 episode budget.

The experiments use two queues of 200 tasks, where all
tasks’ size is determined by uniformly sampling between 2
and 4 work stations plus 1 delivery station, and the AMR
needs to work for 30-time units in all the locations. We then
sample the specific n stations to visit using either a uniform
or a triangular distribution for the station allocation. When
using the triangular distribution, we sample station i with
the probability 2i

k(k+1) to be part of the task, assuming k

workstations indexed from 1 to k. The triangular distribu-
tion represents situations where certain items are requested
more often. We use the same queue of 200 tasks in the sim-
ulations for all experiments. The task allocator assigns tasks
according to a queue and allocates AMRs in a first-come-
first-serve manner.

For comparison, we use two greedy approaches for the
station and waypoint planning. The greedy station plan al-
ways moves towards the nearest working station relative to

Figure 6: Factory map used in the experiments, contain-
ing four static obstacles, 20 workstations (□), 16 waypoints
(⃝), and two drop-off stations (△). 20 AMRs are placed in
two groups to the left.

the current position in its current task. For the greedy way-
point planning, we use Dijkstra’s Shortest Path algorithm,
where the shortest path is based on edges’ euclidean dis-
tances. Both greedy planners are deterministic. Our baseline
for comparison will then be an AMR planner that uses the
greedy station planner and greedy waypoint planner. For a
fixed queue of tasks, this yields a deterministic simulation.



We compare the approaches by the total completion time,
makespan, for all tasks. In an experiment, all the AMRs on
the map will have the same combination of planners, such
as UPPAAL STRATEGO-based station planning and greedy
waypoint planner. We study changes to four parameters: 1)
the planner configuration, 2) the simulation budget for UP-
PAAL STRATEGO, 3) the number of AMRs on the map, and
4) the generated task queues. We experiment with fleets of
10, 15, and 20 AMRs and study all four waypoint and station
planners combinations. If one of the planning levels uses
UPPAAL STRATEGO, we repeat the experiment 100 times
to assess the stability, as the planner is stochastic in na-
ture. As a simplification, the communicated strategies are
not provided in full but simplified to only the most likely
sequence in which the stations or waypoints will be visited.
The makespans of these experiments will be compared to the
fully greedy planner, such that we report a relative improve-
ment of the planning configuration.

It is important to note that the logical time of the simu-
lation is paused whenever a plan is generated, emulating an
infinitely fast computer. This implies that the AMR gets a
plan instantly, seen from the point of view of the simulator,
which allows us to evaluate the effectiveness of the synthe-
sized plans directly. Nonetheless, we will discuss the impli-
cations of computation times. We ran the experiments on an
AMD EPYC 7642 running Ubuntu 20.04 with hyperthread-
ing and frequency-scaling disabled.

Relative Makespan of Configurations
First, we evaluate experiments by their effect on the rela-
tive makespan. In Figs. 1 to 4, the box plots are grouped
by the number of AMRs in the given simulation. Each
group contains simulations for greedy station planning
and UPPAAL STRATEGO waypoint planning (GSUW),
UPPAAL STRATEGO station planning, and greedy way-
point planning (USGW), and UPPAAL STRATEGO sta-
tion planning and UPPAAL STRATEGO waypoint planning
(USUW). The y-axis values are the simulations’ logi-
cal completion time relative to the fully greedy approach
with the same number of AMRs. The value reported is
simulated completion time/baseline, which give us the rel-
ative makespan.

Common for all experiments, we observe that the fleet
of size 10 experiences the smallest reduction of makespan
while a fleet of 20 AMRs results in a much more signifi-
cant improvement. The median improvement of USUW and
USGW is at least 25% better than our baseline. With a task
queue generated under a triangular distribution, the median
even has a 27.5% reduction in the makespan.

We observe that GSUW’s median performs worse for any
fleet size under any generated task queue. There can be two
causes for this: 1) the generated station plan makes it hard
to generate a good waypoint plan that also deviates from
the greedy approach, and 2) the chosen representation is not
well-formed for the waypoint planning. We leave it to future
work to further investigate this hypothesis.

The last aspect is that the increase of UPPAAL STRAT-
EGO’s budget only has a minor increase or even a decrease
on the relative makespan. An example is that USGW’s me-

dian decreases slightly from 25.0% to 24.8%, even though
the budget is five times larger. It is possible that a budget of
1000 and 5000 would converge to the same median.

Computation Time
The CPU time spent by UPPAAL STRATEGO on synthesiz-
ing the individual waypoint or station plan for an episode
budget of 1000 is shown in Fig. 5. We observe that the
CPU time for waypoint planning grows significantly faster
than the CPU time spent for station planning. This is detri-
mental to the USUW and GSUW approaches that rely on
the frequent replanning using the UPPAAL STRATEGO way-
point planner. We also note that the best performing com-
bination (USGW) utilizes the greedy waypoint planner and
thus avoids this particular runtime overhead. However, the
USGW planner still needs to compute the station plans.

Waypoint plans are computed at every node in the graph,
but the CPU time makes neither USUW nor GSUW feasi-
ble in a real environment. Having computation times about
10 seconds means that an AMR would need to stop at the
waypoint while computing, thus blocking other AMRs.

On the contrary, we see USGW as a feasible candidate
for deployment. We anticipate that station plans can be
computed simultaneously as background computation while
working at a station if the AMR can guess a global state,
i.e., 10 seconds from now. This strategy does not extend
to the waypoint planning as no movement idle-time can
be expected between two adjacent waypoints, and the non-
movement of an AMR could block other AMRs.

8 Conclusion
In this paper, we studied the problem of dynamic route plan-
ning for a fleet of Autonomous Mobile Robots (AMRs) per-
forming pickup and delivery tasks in the stochastic environ-
ment in which AMRs must visit several stations before de-
livery. This captures some real-world challenges that are not
handled by traditional MAPF and MAPD approaches. We
formalize the problem as a Scheduling Problem for Stochas-
tic Work Graphs (SPSWG).

We demonstrate how such planning problems can
be translated into Euclidean Markov Decision Processes
(EMDPs) and (approximately) solved by the tool UPPAAL
STRATEGO. To achieve scalability, we propose a distributed
architecture and further subdivide the planning problem into
two parts: 1) the sequence of workstations to visit, and 2) the
sequence of waypoints to visit between two workstations.

To establish a baseline, we introduce two naı̈ve planners
(one for each sub-planning problem) based on shortest path
algorithms and the Nearest Neighbor approach, which we
outperform with up to to 27.5%. Lastly, we argue for the
feasibility of deploying our method with the USGW config-
uration by studying the computation time.

We leave for further work the study of this approach in the
context of periodic human interference (e.g. by humans co-
inhabiting the working area of the AMRs). We also propose
as further work the study of our approach in the context of
battery-limitations, where charging cycles must be included
as part of the planning.
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