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Design of a Pitch Controller for a Wind
Turbine Using Hybrid Mean-Variance

Mapping Optimization

Sasmita Behera1† and Subham Sahoo2 , Non-members

ABSTRACT
A variable-speed wind energy conversion system

(WECS) has the advantage of extracting more power
from the time-varying wind. To achieve this, the
pitch angle is controlled to maintain the speed of
the turbine and hence the generated power at a
constant level, while reducing mechanical stress on
the turbines. In this work, a proportional-integral
(PI) controller is used for pitch angle control. The
optimal PI control gains Kp and Ki are tuned
by the hybrid mean-variance mapping optimization
(MVMO-SH) technique, particle swarm optimization
(PSO), and a genetic algorithm (GA). Different fit-
ness evaluation criteria and optimization techniques
are compared, and the performances of optimal
controllers presented in the time domain. The results
reveal that MVMO-SH achieves the minimum error
criteria within a shorter time. The optimal controller
design gives an error of less than 10−6 in the region
for which it is tuned. The performance of the optimal
PI controller designed for one operating condition
is tested in different cases of wind gust, random
variation of wind, and disturbance from the grid side
to mitigate line to ground fault. The performance of
the controller is shown to be satisfactory in all the
cases studied.

Keywords: Pitch Control, Proportional-Integral,
Mean-Variance Mapping Optimization, Particle
Swarm Optimization, Genetic Algorithm, Doubly-
Fed Induction Generator, Wind Gust, Fault

1. INTRODUCTION
A decline in fossil fuel stocks and the ability to

meet power needs while considering the economic
and environmental aspects, has forced governments
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to turn their attention to wind energy conversion
as a renewable energy source. The doubly-fed
induction generator (DFIG) with a low-rated power
converter [1] is suitable for variable-speed operation
and captures more power than fixed-speed systems.
The frequency must match that of the grid when
connected to it. The speed is affixed mechanically
by pitching the blades on the turbine shaft. The
pitch control is initiated when the generator power or
angular speed of the wind turbine touches its rated
value to control the power delivered to the grid and
reduce mechanical stress during wind gusts [2]. For
below-rated wind speed, the torque is controlled to
maximize the power coefficient of the wind turbine
and the power captured from the wind.

Proportional-integral (PI) controllers are simple in
design and perform well with a low overshoot per-
centage and fewer maintenance costs when designed
optimally [3]. Specifically, the WECS proportional-
integral-derivative (PID) controller does not provide
any substantial improvement [4] in comparison to
the PI controller. Furthermore, the proportional
controller (P) alone cannot compensate for the effect
of constant disturbances [5]. Thus, to achieve the
requisite behavior of the control loop to tune the
pitch controller parameters, different optimization
techniques have been used in the DFIG such as
bacteria foraging optimization (BFO), particle swarm
optimization (PSO), the genetic algorithm (GA), and
differential evolution (DE) [1, 6–13]. Neural networks
(NNs) have been used for pitch angle control as
presented in [14], while three different controller
structures for pitch control have been reported in
[15]. The PSO, mean-variance optimization (MVO),
and NN techniques have been compared to testify
for DFIG with FACTS devices to provide a unified
controller parameter design [16]. Jauch et al.
represented a wind turbine as a second-order system
[17]. These researchers obtained a different set of
pitch controller gains for different operating regions
of wind speed and studied the effect using a realistic
model of the Northern European power system.

In [18] a PI pitch controller for a large wind
turbine generator was designed and analyzed. Fuzzy
logic for pitch control has also been demonstrated
in [19]. Switching between a fuzzy and PID
controller, depending on the region of operation,
has been reported in [20] but, the steady-state
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Fig. 1: Wind turbine power vs. turbine angular speed and regions of operation.

error is around 10%. However, swarm optimization
has furnished an agreeable controller performance.
Recently, a hybrid version of mean-variance map-
ping optimization (MVMO-SH) has been presented
[21]. Apart from being a swarm intelligence-based
procedure, it incorporates local search and multi-
parent crossover strategies to increase diversity thus
balancing exploration and exploitation. Mutation
via the mapping function and crossover are also
enhanced. Unlike existing swarm-based optimization
algorithms, MVMO-SH does not need a large pop-
ulation. Hence, a single particle approach may be
sufficient for less challenging optimization problems.
The performance of this algorithm has been tested
for many standard unimodal, multimodal, and mixed
functions and compared numerically with other
optimization techniques like the PSO, DE, and GA
[23]. A small archive size is required and this
can be adjusted, thereby adding to its advantages
over other techniques. The MVMO technique has
been successfully applied in model identification [22]
including online optimization-based control and the
optimization of transmission expansion planning [23]
and other tuning problems in power systems [24, 25].
However, this new technique has not been applied
to the pitch control of a DFIG, motivating further
research to be carried out.

The objectives of the presented work are:

• To tune the PI controller in the pitch angle
control loop using a hybrid (MVMO-SH) technique
to obtain the optimal PI control gains Kp and Ki for
a particular range of wind speed.

• To compare the achievement, i.e., the objective
function, based on errors such as the integral of
absolute error (IAE), integral of squared error (ISE),
integral time absolute error (ITAE), and integral time
squared error (ITSE), etc., defined in [27] for better
time-domain performance of pitch control.

• It has been reported that a set of optimal PI
controller gains obtained at a specific wind speed
above the rated level is not optimal for another [7].

Therefore, this current study aims to optimize the
controller gains to achieve a large step variation in
wind speed during simulation from below the rated
level to above it.

• To compare the performance of MVMO-SH
quantitatively with PSO and GA in terms of settling
time and peak overshoot to obtain a lower error level
for the same number of generations and swarm size
in a similar optimization framework.

• To test the performance of the optimal PI
controller design for one wind gust operation, random
wind variation in different operating regions, and line
to ground faults on the grid. In all the cases studied,
the controller design performs satisfactorily, with less
steady-state error, overshoot, and settling time.

Section 2 of this paper embodies an explanation
of the system and algorithm. In Section 3, the
optimizations are compared while the performance
of the optimal pitch controller design is discussed
in Section 4. Section 5 provides the concluding
remarks.

2. SYSTEM MODEL AND PITCH CON-
TROLLER

2.1 Regions of Wind Turbine Operation
The wind turbine operation is divided into three

regions, as indicated in Fig. 1.
In region I, the wind speed is below the cut-in

value and hence, no power is generated. In region
II, where the partial load is located, the wind speed
is more than the cut-in value but less than the rated
level. The prime control objective in this region is to
maximize the power generated by the wind turbine.
To achieve this, the power coefficient Cp should be
set to maximum Cp max, thus maximizing the torque.
BC is the locus of maximum power at different wind
speeds. At D with a power output of 1 pu, region
III begins, where the full load is located. From D
to E, or sometimes C to E, wind speed exceeds the
rated level but is lower than the cut-out value [2]. In
this region the generated power Pg is limited to its
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Fig. 2: Proportional-integral (PI) pitch controller.

rated value Pg,rated while the turbine rotor speed ωr

is set at 1.21 pu. This is attained by pitch control.
In this paper, the research is restricted primarily to
proposing an optimal PI pitch controller for region
III.

The phasor model of the DFIG based WECS
connected to the grid proposed in [26] is used in this
paper to design the pitch controller. The structure of
the pitch angle controller is shown in Fig. 2.

The turbine rotor speed ωr is provided by sensors.
The reference turbine speed_D at 1.21 pu is based
on that of the generator when the wind speed is
in region III. The maximum power extraction is
9MW from six identical WECS at a wind speed of
12m/s with an individual contribution of 1.5MW.
The wind speed is taken as a step signal from 8m/s
to 14m/s while the PI gains Kp and Ki are obtained
by running the optimization program linking the
model. The pitch control command is given from
the controller to the pitch drive which then sets the
pitch angle. Thus, the speed of the rotor in the wind
turbine system is controlled. The turbine rotor speed
response is observed in accordance with different error
criteria and optimization techniques. Some of the
mathematical relations of the pitch control dynamics
are presented under different subsections portraying
the model [2, 7].

2.1 .1 Aerodynamic model
The power transfer to the wind turbine shaft is

expressed as:

Pwindturbine = Cp · Pair = 1
2CpρAV

3
a = 1

2ρCpπR
2V 3

a

(1)
where Pair is the power available in wind (W), Cp is
the power coefficient which is f(λ, β), ρ is air density
(1.225 kg/m3 at 15◦C and normal pressure), A is the
area swept by blades (m2) = πR2, and Va is the wind
velocity (m/s).

The mechanical power at the shaft for any wind
speed can be expressed as,

P = 1
2ρCpπ

(
R5

λ3

)
ω3

r (2)

where the tip speed ratio,

λ = ωrR

Va
(3)

where ωr is the angular speed of the turbine shaft and
R is radius of blades in m.
Cp can be given by,

Cp(λ, β) = 0.5176 ·
(

116
λi
− 0.4β − 0.002β2.14 − 5

)
· exp

(
−21
λi

)
+ 0.0068λ (4)

and

1
λi

= 1
λ+ 0.08β −

0.035
β3 + 1

According to Eq. (2), the mechanical power of the
shaft varies with the cube of the rotor speed P ∝ ω3.
When the wind speed rises λ decreases and hence, P
increases as Cp depends on λ and the pitch angle β.
In order to limit the power delivered to the grid Pg to
a constant value Pg,rated, the pitch angle is increased
in region III (the full load region) which decreases Cp

and thus controls P .

2.1 .2 Drive train model
Power transmission from the wind turbine shaft

to the generator is performed by the drive train.
The drive train considered here is a one mass model
for simplicity. The mechanical equation of the rotor
motion is given as:

dωr

dt
= 1

2H (Tm − Te) (5)

where H is the equivalent inertia constant of the
wind turbine and generator rotor in s and Te is
the electrical torque. The mechanical torque Tm

expression developed by the turbine is,
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Tm = Pwindturbine
ωr

(6)

2.1 .3 Generator model
The DFIG is coupled to the wind turbine. The ro-

tor is interfaced with the grid through a back-to-back
voltage source converter (VSC) whereas the stator
is directly connected. All variables and equations
of the models in the three-phase ABC reference
frame are converted to the synchronously rotating
DQ0 or d-q reference frame. The control is easy
with the two orthogonal d (direct), q (quadrature)
components which behave as dc quantities. The
dynamic modeling equations of the DFIG with some
assumptions [5] are as follows:

Vds = −rsids + dλds

dt
− jωsλqs (7)

Vqs = −rsiqs + dλqs

dt
+ jωsλds (8)

Vdr = −rridr + dλdr

dt
− jsωsλqr (9)

Vqr = −rriqr + dλqr

dt
+ jsωsλdr (10)

and slip of the rotor (s),

s = ωs − ωr

ωs
(11)

where Vds and Vqs are the stator voltages in d-q
reference frame, Vdr and Vqr are the rotor voltages
in d-q reference frame, ids and iqs are the stator
currents in d-q reference frame, idr and iqr are
the rotor currents in d-q reference frame, rs is the
stator resistance, rr is the rotor resistance, ωs is
the rotational angular speed of the synchronously
rotating reference frame, λds and λqs are the flux
linkage of the stator in d-q axes, and λdr and λqr

are the flux linkage of the rotor in d-q axes.
The electromagnetic torque generated by the

DFIG is given as

Te = λdriqr − λqridr (12)

2.1 .4 Formulation of the control problem
The pitch drive is an electric or pneumatic device,

taking the control command and setting the blades
around their longitudinal axes at the desired pitch
angle. The collective pitch control (CPC) is set at
the same angle for all blades using a single drive. The
pitch control command is generated by a PI controller
from an error in the angular speed of the wind turbine
rotor. Since the blades are long, the pitch drive moves
them at a slow rate of 2◦ per second in order to reduce
vibration and actuator fatigue.

The error is given as:

e(t) = (speed_D − ωr) (13)

where speed_D is the desired turbine speed in pu =
1.21 pu.

The pitch control command u(t) is obtained from
the PI controller as:

u(t) = Kp · e(t) +Ki

∫
e(t)dt (14)

The feedback control system must swiftly nullify
the errors e(t), among variables and the desired
values. Thus, the controller design problem is caused
by minimization. Therefore, any criterion used to
measure the quality of system response must take into
account the variation over the whole range of time.
Four basic criteria are in common use [27]:
• Integral of absolute error

IAE =
∫
|e(t)| dt (15)

• Integral of squared error

ISE =
∫
e2(t)dt (16)

• Integral of time multiplied by absolute error

ITAE =
∫
t |e(t)|dt (17)

• Integral of time multiplied by squared error

ITSE =
∫
te2(t)dt (18)

In Eqs. (14) to (18), time t is the time taken
for the simulation. The integration is carried out
for the time the simulation model is run, namely
from 0 to t. These criteria are used here as fitness
functions and minimized to optimize the subsequent
gains of the controller with the search region Kp min ≤
Kp ≤ Kp max and Ki min ≤ Ki ≤ Ki max, where
Kp min, Ki min are lower and Kp max, Ki max are upper
boundaries of the gains.

The reduction in steady-state error using the above
criteria has been proven to satisfy other specifications
in the time domain such as peak overshoot, rise time,
settling time, and steady-state error in the output
of many optimization problems considered in the
literature [1, 6–13, 16, 23, 24, 28]. When addressing a
problem, one criterion may outperform another. The
ISE and ITAE criteria exhibit better performance
compared to IAE and ITSE [7, 28]. The ISE criterion
integrates the square of the error over time. It
picks large errors and penalizes them more than
smaller ones since the square of a large error will
be much greater. The control system designed by
the ISE acts fast, but small persistent errors remain,
imparting low amplitude oscillation. Whereas the
ITAE persistent weight errors are heavier than those
at the start of the response. The ITAE tuning
produces systems with faster settling than the ISE
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Fig. 3: Overall procedure for the hybrid MVMO [25], where K is particle counter, i is fitness evaluation
counter, FE is count of total fitness evaluations, and rand is random number in (0, 1).

tuning method. Nevertheless, the IAE and ITSE are
used by the researchers in [28]. Therefore, all the four
objective functions defined in Eqs. (15) to (18) have
been tested using this problem to verify performance.

2.2 Hybrid Mean-Variance Mapping Opti-
mization

The MVMO-SH technique [21] has been applied
to solve various real-world optimization problems
[22–25]. The algorithm starts with the initialization
of the total number of particles (NP). Next, the
variables are normalized to (0, 1). The mutation
operation via mapping then ensures non-violation
of the offspring beyond the search boundaries and
concentrates on the mean value. The mapping
operation is performed by adjusting the mean and
shape variables. The shape variables depend on the
variance. Search diversity is maintained by focusing

on the best local measurement obtained until the
required iteration. One significant feature of this
algorithm is that the memory space acquired is small
and the memory or archive size adjustable, without
losing any substantial search diversity. Prior to
fitness evaluation, the variables are de-normalized.
The remaining steps are presented in the flowchart
in Fig. 3.

After de-normalization, fitness evaluation is tested.
In this work, the objective fitness functions are
unconstrained as defined by Eqs. (15) to (18).

On successive iterations, each particle has continu-
ally updated the solution archive. The best offspring
are stored in a downward arrangement of fitness in the
archive. The archive is updated if the new solution is
found to be better.

The particles are segregated into good particles
(GP) and bad particles, NP-GP from the total
particles. Each particle is assessed twice and the local
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best is selected to be the parent of the next offspring.
For each bad particle, the parent is synthesized using
a multi-parent strategy.

The parent-child vector set is created using a
combination of the inherited particles from the parent
vector and a similar dimensional set (by selection)
to undergo mutation through mapping based on
the mean and variances designed from the solution
archive.

Each selected dimension value for the child vector
is calculated by

xr = hx + (1− h1 + h0) · x∗
r − ho (19)

where x∗
r is a randomly generated number with

uniform distribution between (0, 1) for the rth

variable searched for, where the values of h signify
the mapping transformation calculated as

h (xmean, s1, s2, x) =
xmean

(
1− e−x·s1

)
+ (1− xmean)e−(1−x)·s2 (20)

where hx, h1, and h0 are the mapping function
outputs accountable for hx = h (x = x∗

r), h0 =
h (x = 0), h1 = h (x = 1), hence, xr is in [0, 1].
sr is the shape factor with vr as variance and fs is

the shaping factor

sr = − ln (vr) · fs (21)
At first, the mean xmean corresponds to the initial

value of x, and variance is set to 1 which indicates
sr = 0. However, over the iterations, the solution
archive updates repeatedly, where the inputs and
outputs both lie [0, 1]. The search exploration can be
altered by changing the shape factors and the mean
since they affect the shape of the mapping function.
Furthermore, the shape parameters sr1 and sr2 are
updated by the steps given:

sr1 = sr2 = sr

if sr > 0 then
∆d = 1 + ∆d0 + 2 ·∆d0 · (rand− 0.5)
if sr > dr then

dr = dr ·∆d
else

dr = dr

∆d
end if
if rand ≥ 0.5 then

sr1 = sr; sr2 = dr

else
sr1 = dr; sr2 = sr

end if
end if

The above steps guarantee exploitation without
stagnation for an asymmetric characteristic of the
mapping function when diverse sr1 and sr2 are
taken, thereby enhancing the searching capability and

managing the zero variance. Initial values of the
factor dr are about 1–3 of the imparted improved
results [24].

The number of particles (NP) is empirically
initialized using NP = 20 · D particles, where D
is the dimension. But a fewer number of particles
can perform well to solve simple problems [21]. The
archive size can be adjusted as required.

The algorithm is performed with the probability
that the local search can be improved, given as γ =
(1.5 ·D) /100.

The proportion of GP is updated by:

GP = round
(
NP · g∗

p

)
(22)

g∗
p = g∗

pini
+ α

(
g∗

pfinal
− g∗

pini

)
(23)

α = i

ifinal
(24)

where α is the adaptive factor.
During the preliminary stage of the algorithm,

each particle is separately evaluated for at least
two function evaluations, and the best local solution
achieved so far (corresponding to the first position
in its specific solution archive) is designated as the
parent of the next offspring. The same best-based
local parent procedure is carried out on good
particles, whereas the multi-parent strategy for each
bad particle p, gives the parent xparent

p as follows:

xparent
p = xk + η(xi − xj) (25)

where xi, xj , and xk represent the first (global best),
last, and a randomly selected intermediate particle of
the good particle group, respectively.
η is calculated accordingly:

η = 2 (rand− shift) (26)
shift = 0.5

(
1− α2) (27)

where α has been defined earlier in Eq. (23).
The number m representing mutation is decreased

to reduce computational burden on convergence as

m = round(mfinal + rand(m∗ −mfinal)) (28)

where

m∗ = round(mini − α(mini −mfinal)) (29)

The mutation is guided by mini = round(D/2) + 1,
mfinal = 1.

The scaling factor fs is adjusted for accuracy as

fs = f∗
s (1 + rand) (30)

f∗
s = f∗

sini
+ α2

(
f∗

sfinal
− f∗

sini

)
(31)
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Table 1: Parameters of the wind turbine and DFIG.
Parameters Values
Installed capacity 1.5MW
Cut-in wind speed 5m/s
Rated wind speed 12m/s
Rated turbine speed 1.21 pu
Cut-out wind speed 25m/s
Maximum power coefficient 0.48
Extreme limit of pitch angle 45◦

Slope of pitch change 2◦/s
Frequency 60Hz
Number of generator poles 6
Terminal voltage of generator 575V
Equivalent inertia constant 5.04 s

Fig. 4: Turbine speed response without a controller.

In all the equations, rand represents random
numbers with uniform distribution in the range (0,
1).

The parameter tuning of the MVMO-SH algorithm
and choice of a particular value for each parameter is
presented in a logical way in Section 4 to address the
problem under study.

3. CASE STUDY
The optimization algorithms and model are run

using MATLAB® software version 2009b. The model
parameters adopted are shown in Table 1. The
performance of MVMO-SH is compared with PSO
and GA. The various parameters for MVMO-SH,
PSO, and GA applied to obtain the optimal controller
gains are deliberated in Table 2.

The search bounds for both Kp and Ki were
fixed after many trial runs. The wind speed
deviation initiated at 5 s from 8m/s to 14m/s. The
turbine speed response without any controller is
shown in Fig. 4. The speed ωr increases gradually,
demonstrating that the system is unstable without a
controller.

Hence, to achieve the desired good tracking speed
and fast response, a PI controller is used in this study.

3.1 Tuning the MVMO-SH Parameters
The MVMO-SH has several parameters that

should be chosen judiciously to address a specific

Table 2: Parameters of the optimization algorithms.
Algorithm Parameter Value

Data set size 10/12
No. of iterations 20/25
∆do 0.05

MVMO-SH g∗pini
0.75

g∗pfinal
0.25

f∗sini
1

f∗sfinal
15

Swarm size 10/12
Max. no. of generations 20/25

PSO c1 2.0
c2 2.0
wmax 0.9
wmin 0.4
Population size 10/12

GA Max. no. of generations 20/25
pcross 0.5
pmut 0.01

Search space Kp [400, 2000]
bounds [min,max] Ki [30, 50]

problem; the setting of which the implemented
algorithm performance depends. The specific control
parameters consist of the variable increment ∆do,
the initial proportion of good particles g∗

pini
,the final

proportion of good particles g∗
pfinal

, initial value of
scaling factor f∗

sini
, and final value of the scaling

factor f∗
sfinal

. A sequence of observations was used to
properly tune the MVMO-SH parameters to optimize
the PI parameters employing the ITAE objective
function. Table 3 presents a tabulation of the best
effect by varying the control parameters after 20
independent runs. It is evident from Table 2 that
the best settings are g∗

pini
= 0.75, g∗

pfinal
= 0.25,

f∗
sini

= 1, and f∗
sfinal

= 15 for the population = 10
and iterations = 25, depicted in bold font. After
tuning the parameters for N = 10 and iterations
= 25, the same procedure was performed for N =
12 and iterations = 25 which showed no change
in the values of parameters for MVMO-SH. The
variation in population size (NP) and iterations
were also observed but that part is excluded for a
concise presentation. Increasing the NP from 10
to 12 and iterations from 20 to 25 improves the
average, maximum, and standard deviation values
slightly at the expense of a significant increase in the
computation time as can be observed from Tables 4
and 5. A further increase would be unlikely to result
in any appreciable overall improvement.

3.2 Parameter Optimization of the PI Con-
troller

The controller gains Kp and Ki perform optimally
using various error-derived objective functions for a
wind speed deviation from 8 to 14m/s. The sim-
ulation model was run for 50 s during optimization.
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Table 3: Parameter tuning of the MVMO-SH.
Parameters Min. Avg. Max. S.D. Others

0.03 128.268 128.337 128.410 0.121 g∗pini
=0.7

0.04 128.193 128.279 128.328 0.118 g∗pfinal
=0.2

∆do 0.05 128.154 128.196 128.289 0.112 f∗sini
=2

0.06 128.183 128.265 128.306 0.115 f∗sfinal
=20

0.07 128.213 128.284 128.342 0.124
0.7 128.176 128.201 128.248 0.115 ∆do =0.05

0.75 128.149 128.194 128.236 0.109 g∗pfinal
=0.2

g∗pini
0.8 128.182 128.218 128.256 0.114 f∗sini

=2
0.85 128.187 128.226 128.274 0.118 f∗sfinal

=20
0.9 128.196 128.234 128.286 0.121
0.2 128.158 128.238 128.336 0.115 ∆do =0.05

0.25 128.138 128.198 128.274 0.105 g∗pini
=0.75

g∗pfinal
0.3 128.164 128.216 128.326 0.118 f∗sini

=2
0.35 128.176 128.260 128.358 0.123 f∗sfinal

=20
0.4 128.189 128.244 128.392 0.128
1 128.126 128.212 128.324 0.098 ∆do =0.05
1.5 128.139 128.222 128.342 0.104 g∗pini

=0.75
f∗sini

2 128.154 128.236 128.356 0.109 g∗pfinal
=0.25

2.5 128.173 128.249 128.374 0.114 f∗sfinal
=20

3 128.196 128.265 128.368 0.118
15 128.116 128.186 128.253 0.086 ∆do =0.05
16 128.123 128.184 128.265 0.092 g∗pini

=0.75
f∗sfinal

17 128.129 128.190 128.274 0.099 g∗pfinal
=0.25

18 128.135 128.217 128.287 0.102 f∗sini
=1

19 128.136 128.227 128.313 0.107
20 128.139 128.236 128.358 0.112

The program was executed 20 times since randomness
is inherent in each of the algorithms and the finest
gains are shown. The NP and maximum number
of iterations I were increased to observe their effect.
Tables 4 and 5 present a tabulated comparison of
the two cases of NP and I, for different objective
functions. The best response in terms of rise time
is obtained using ITAE as the objective function for
the MVMO-SH with NP = 12 and iterations = 25
in the final row of Table 5. The PSO and GA
techniques were also tested using a similar search
space, population, and generation to the MVMO-SH,
with the comparative results presented in Table 6 for
the second set of NP and I.

In Fig. 5, ωr the optimal gains are determined
using the MVMO-SH with different objective func-
tions. As in Table 5, these are plotted to compare
the step deviation in wind speed from 8 to 14m/s.
As can be observed, despite overshoot, the response
for optimized gains using the ITAE criteria exhibits
the least settling time. The error is in the range of
10−7 which, although well within the requirement,
is slightly more than that found in the ITSE error
criteria. For a set point of 1.21 pu, steady-state error
variation in the range of 10−7 is of little concern.
This optimal PI controller for pitch control with
Kp = 547.82 and Ki = 44.36 has been tested
under ten different dynamic conditions of wind speed

Table 4: Comparison of the different objective
functions NP = 10, I = 20.

Objective Kp Ki Value of Run Settling Steady-state
function objective time time error

function (s) (s)
ISE 610.34 42.14 4.1991 304.36 68.37 2.93×10−6

IAE 584.96 42.85 10.2458 302.74 67.64 1.77×10−6

ITSE 592.36 44.28 52.5279 294.74 67.55 1.53×10−6

ITAE 548.47 45.27 128.1209 296.25 67.49 4.85×10−7

Table 5: Comparison of the different objective
functions NP = 12, I = 25.

Objective Kp Ki Value of Run Settling Steady-state
function objective time time error

function (s) (s)
ISE 602.28 42.16 4.1973 503.48 68.17 2.98×10−6

IAE 587.89 42.72 10.2431 502.46 67.72 2.04×10−6

ITSE 591.47 44.23 52.3974 468.45 67.55 1.53×10−7

ITAE 547.82 44.36 128.1162 473.58 67.24 6.54×10−7

Fig. 5: Comparison of Turbine Speed Response for
Different Objective Functions with MVMO.

change and transients under grid fault to verify
robustness. The settling time and steady-state error
are summarized in Table 7.

3.3 Controller Performance Analysis under
Transient Conditions

Case 1: Random wind speed variation within
the range of 8 to 14 m/s

Although the controller has been optimized for
step deviation, the wind is intermittent in nature
and varies slowly. Therefore, the performance of the
controller was observed for random variation within
8 to 14m/s. The wind speed profile and the variation
in wind turbine speed response and time are shown
in Figs. 6 and 7, respectively. The settling time and
steady-state error are presented in Table 7.

Since the wind speed is taken at random, in every
run the steady-state error and settling time differ.
Two to three cases of random variation in this range
were studied and the steady-state error remained
within the range of 10−4.
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Table 6: Comparison of the different optimization algorithms.
Objective Optimization Kp Ki Value of Run Settling Steady-state
function Technique objective time time error

function (s) (s)
MVMO-SH 602.28 42.16 4.1973 503.48 68.17 2.98× 10−6

ISE PSO 631.42 42.83 4.2735 624.96 68.66 4.11× 10−6

GA 640.64 43.01 4.2831 642.64 68.84 4.56× 10−6

MVMO-SH 587.89 42.72 10.2431 502.46 67.72 2.04× 10−6

IAE PSO 622.91 42.83 10.6355 634.19 68.47 3.59× 10−6

GA 640.74 43.42 10.7253 672.04 68.70 4.17× 10−6

MVMO-SH 591.47 44.23 52.3974 468.45 67.55 1.53× 10−7

ITSE PSO 597.26 44.31 53.1841 579.04 67.61 1.66× 10−6

GA 598.34 44.15 53.1926 616.08 67.64 1.75× 10−6

MVMO-SH 547.82 44.36 128.1162 473.58 67.24 6.54× 10−7

ITAE PSO 571.71 46.18 129.1162 582.86 67.58 6.96× 10−7

GA 583.92 46.69 129.4283 608.52 67.58 7.77× 10−6

Fig. 6: Wind speed profile for random variation
within the range of 8 to 14m/s.

Fig. 7: Variation of wind turbine speed under
random wind variation within the range of 8 to
14m/s.

Case 2: Random wind speed in the range 8 to
24 m/s

In this case, since the wind speed crosses that of
the rated, the pitch controller controls the speed of
the wind turbine rotor and maintains it at 1.21 pu as
shown in Fig. 8. The steady-state error and settling
time are fairly good, as indicated in Table 7.

The results obtained for settling time and steady-
state error vary depending on the wind speed in
different runs. However, the variation in steady-state
error is within the range of 10−4.

Fig. 8: Variation in wind turbine speed under
random wind variation within the range of 8 to
24m/s.

Fig. 9: Wind gust from 8 to 18m/s at 5 s.

Case 3: Wind gust (8 to 18 m/s)

The wind gust is applied at 5 s from 8 to 18m/s to
study the effect of a sudden significant change in wind
speed beyond the rated level and the optimization
range. The gust finally settles at 14m/s as shown in
Fig. 9. The performance of the MVMO-SH, PSO,
and GA tuned controllers are compared for wind
gust. The variation in turbine speed response is
depicted in Fig. 10. As revealed in Table 6 (rows
10–12), the MVMO-SH settling time (2% band) is
less for a step change in wind speed with the ITAE
criterion. When the wind speed takes the form of
a wind gust, the corresponding settling time is still
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Fig. 10: Comparison of the wind turbine speed
response using different optimization techniques for
wind gust.

Fig. 11: Variation in wind turbine speed with time
under wind gust ranging from 14 to 20m/s.

Fig. 12: Wind speed with time under a wind gust of
8 to 18m/s with a random wind variation.

improved (changing to 64–65 s from an earlier range
of 67–68 s).

Therefore, the MVMO-SH can claim a better
performance than the other two techniques in settling
the angular speed of the turbine. In view of the
results presented in Table 6 and Fig. 10, although the
MVMO-SH demonstrates a marginal improvement in
performance, it is still better than the PSO and GA.

Case 4: Wind gust (14 to 20 m/s)
The speed range of a gust at 5 s is beyond the range

of wind speed for which the controller is tuned, i.e.,
14m/s. The initial steady-state generated using a
proportional controller with Kp = 500 gives a higher
error of 0.0015, as can be observed from Fig. 11. With
the optimized PI controller, the steady-state error
is considerably reduced and the response converges.
The peak overshoot with such an upsurge is also

Fig. 13: Variation in wind turbine speed under a
wind gust range of 8 to 18m/s with random wind
variation.

Fig. 14: Variation in wind turbine speed under a
wind gust range of 14 to 20m/s and random wind
variation.

1.2325 pu which is within 2% band of the steady-state
value.

Case 5: Wind gust (8 to 18 m/s) and a random
wind speed change

With both wind randomness and the occurrence
of a wind gust at 5 s, the performance is good, as
presented in Table 7. The wind speed and turbine
speed response can be observed in Figs. 12 and 13.
The response is quantified in Table 7.

Case 6: Wind gust (14 to 20 m/s) and random
wind speed change

In this case, the performance of the controller is
tested for a highly unpredictable wind speed beyond
the optimization range. The response of the wind
turbine speed is shown in Fig. 14.

In steady-state, the response settles well and is
quantified in Table 7.

Case 7: Wind gust (8 to 14 m/s) under a
random line to ground fault

Since the wind farm is connected to the grid, a
random change in wind speed with a gust occurring at
5 s at low wind speed is simulated followed by a line to
ground (LG) fault on “A” phase of the grid at 10 s for
nine cycles (0.15 s). This scenario is frequent during
a storm. The developed controller could accomplish
control as depicted in Table 7 while the wind turbine
speed plot is shown in Fig. 15.
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Fig. 15: Wind turbine speed under a wind gust in
the range of 8 to 14m/s, random wind variation and
an LG fault.

Fig. 16: Wind turbine speed under high wind gust,
random variation of wind, and LG fault.

Fig. 17: Wind turbine speed under low wind gust 8
to 14m/s and LG fault at 5 s with random variation
of wind.

Case 8: Wind gust (14 to 20 m/s) and a
random LG fault

With a gust occurring at 5 s at a high wind speed of
14 to 20m/s under random wind conditions, a line to
ground fault on the grid side for phase A was created
at 10 s, and the PI controller performance checked.
This situation enables the reliability of the power
supply to be evaluated as it occurs under stormy
weather conditions. The settling time was found to
be significantly reduced, as demonstrated in Table 7.
The response is shown in Fig. 16.

Case 9: Simultaneous wind gust (8 to 14 m/s)
and LG fault in presence of random variation
of wind speed

A case of wind speed random change with gust
stirring at 5 s and at the same time a line to ground

Fig. 18: Wind turbine speed under simultaneous
wind gust, LG fault with random variation of wind.

Table 7: Performance of optimal controller under
transient conditions.

Case Settling Steady-state
study time (s) error
1 – 2.67× 10−4

2 33.15 −1.13× 10−4

3 64.52 1.3× 10−7

4 0∗ −1.66× 10−6

5 51.88 2.92× 10−5

6 4.36 −4.71× 10−4

7 51.74 2.91× 10−5

8 4.36 −4.71× 10−4

9 51.64 3.17× 10−5

10 4.36 −4.71× 10−4

∗Does not exceed 2% band

fault on A phase of the grid is modeled. The potential
accomplishment of the controller design is shown in
Table 7 while the plot of the wind turbine speed is
depicted in Fig. 17.

Case 10: Simultaneous wind gust (14 to
20 m/s) and LG fault in presence of random
variation of wind speed

A case of wind gust and LG fault occurring
simultaneously at 5 s in presence of randomness of
wind is simulated. The result is tabulated, which
shows no deterioration of performance as compared
to occurrence of a disturbance at different instants of
time. The response is shown in Fig. 18.

4. RESULTS AND DISCUSSION

In this study, an optimal PI controller was
designed using a new optimization technique. When
comparing the overall response of a PI controller
optimized using a genetic algorithm (GA) as in [8]
and apply it to a different system specification, this
method gives a better steady-state error. Further-
more, the controller performance in the previous
study was not analyzed for different disturbances.
When comparing the response of the proportional
(P) controller in [5], it gives a steady-state error
without disturbance in the range of 10−4 whereas
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here it is 10−7 which indicates good tracking. It
can be observed from Table 6 that the MVMO-SH
is faster than the other two optimization techniques,
and gives a better steady-state error performance as
well as settling time. Thus, the optimal controller
designed using the MVMO-SH performs well under
the stochastic nature of wind. From the observations
in Table 6, it can be concluded that the designed
controller using the MVMO-SH for one operating
range of wind speed (8 to 14m/s) performs well for
different operating ranges of wind speed (8 to 18m/s
or 14 to 20m/s). The steady-state error is in the
range of 10−4 in the most critical condition during the
occurrence of simultaneous disturbances. However,
the peak overshoot is slightly high in some cases as
can be observed from the figures for wind turbine
speed response ωr with time. The settling time is
dependent on the occurrence of disturbance.

Bekakra et al. [12] optimized the PI controller
gains using PSO in a similar approach to that applied
here, but with the maximum power point tracking
(MPPT) control being confined to the cut-in at
below the rated wind speed level (region II) active
and reactive power control. An improvement in
the performance of the PSO optimized PI controller
compared to the manually tuned PI controller has
been demonstrated. Although the focus is different,
the findings reflect the better performance of the
optimization algorithm compared to the conventional
Ziegler Nichols (ZN) tuning method. This supports
our results.

In contrast to the previous study [12], the proposed
PI controller with the optimization algorithms can be
said to be simple and produces a better performance
by reducing mechanical fatigue under practical actua-
tor and wind speed conditions in region III. However,
due to the varying system configurations, the gains
are different and cannot be compared graphically.

5. CONCLUSION
In this study, a proportional-integral (PI) con-

troller in a pitch angle control loop has been tuned
through hybrid mean-variance mapping optimization
(MVMO-SH) technique to provide optimal PI control
gains Kp and Ki. Ziegler Nichols (ZN) tuning has
also been implemented for obtaining Kp and Ki

gains, although a detailed comparison is omitted
here for brevity. A comparative study has been
undertaken using different fitness evaluation criteria.
The performance of the designed optimal controller is
presented here in the time domain. The performance
of the optimal PI controller designed for one oper-
ating region was analyzed under different operating
conditions for wind gust, random wind variation, and
disturbance from the grid side using a line to ground
fault. In all the different operating conditions, the
controller design performed satisfactorily, with fewer
steady-state errors, whereas the controller designed

using the ZN tuning rule failed under wind gust and
random wind speed conditions in cases 8–10.
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