

Aalborg Universitet

A Bad IDEa: Weaponizing uncontrolled online-IDEs in availability attacks

Srinivasa, Shreyas; Georgoulias, Dimitrios; Pedersen, Jens Myrup; Vasilomanolakis,
Emmanouil
Published in:
IEEE European Symposium on Security and Privacy, Workshop on Attackers and Cyber-Crime Operations

DOI (link to publication from Publisher):
10.1109/EuroSPW55150.2022.00015

Publication date:
2022

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Srinivasa, S., Georgoulias, D., Pedersen, J. M., & Vasilomanolakis, E. (2022). A Bad IDEa: Weaponizing
uncontrolled online-IDEs in availability attacks. In IEEE European Symposium on Security and Privacy,
Workshop on Attackers and Cyber-Crime Operations (pp. 82-92). [9799405] IEEE. IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW) https://doi.org/10.1109/EuroSPW55150.2022.00015

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 19, 2022

https://doi.org/10.1109/EuroSPW55150.2022.00015
https://vbn.aau.dk/en/publications/e4e2c166-b254-4f83-b173-42274dbe8657
https://doi.org/10.1109/EuroSPW55150.2022.00015

A Bad IDEa: Weaponizing uncontrolled
online-IDEs in availability attacks

Shreyas Srinivasa§, Dimitrios Georgoulias§, Jens Myrup Pedersen and Emmanouil Vasilomanolakis
Aalborg University, Copenhagen, Denmark

Abstract—Botnets are an ongoing threat to the cyber world
and can be utilized to carry out DDoS attacks of high magni-
tude. From the botmaster’s perspective, there is a constant
need for deploying more effective botnets and discovering
new ways to bolster their bot ranks. Integrated Development
Environments (IDEs) have been essential for software devel-
opers to write and compile source code. The increasing need
for remote work and collaborative workspaces have led to
the IDE-as-a-service paradigm that offers online code editing
and compilation with multiple language support. In this
paper, we show that a multitude of online IDEs do not run
control checks on the user code and can be therefore lever-
aged by a botnet. We examine the concept of uncontrolled
execution environments and present a proof of concept to
show how uncontrolled online-IDEs can be weaponized to
perform large-scale attacks by a botnet. Overall, we detect a
total of 719 online-IDEs with uncontrolled execution environ-
ments and limited sandboxing. Lastly, as ethical disclosure,
we inform the IDE developers and service providers of the
vulnerabilities and propose countermeasures.

1. Introduction

Botnets malicious networks of infected systems re-
sponsible for high-impact cyber attacks like Distributed
Denial of Service (DDoS). They operate by leveraging
vulnerable devices connected to the Internet to execute
attacks and are managed through a command and control
system (C&C Server). Mirai-like malware has caused
high-impact attacks in the past, and infected vulnerable
IoT devices for performing DoS-like attacks [1]. More-
over, research studies indicate that browser-based bots are
more effective and economical than malware-based bots
[2]. The ENISA Threat Landscape Report 2021 states a
rise in newer malware used for Denial of Service attacks,
ransomware injection, and crypto mining. The report fur-
ther states that the number of attacks due to malware
is decreasing from previous years; however, the focus
of newer malware is reduced on quantity but possesses
increased quality [3]. This entails that bot developers are
exploring newer delivery methods that are more discreet
and effective [4].

Programmers have traditionally used IDEs (Integrated
Development Environment) for software development.
IDEs facilitate the compilation, debugging, and execu-
tion of language-specific source code. The leap in cloud
computing has aided the idea of online-IDE, and REPL
environments (read, eval, print, loop), that are offered as

§. Equal contribution

a service on the Internet [5]. Compared to traditional
local-IDEs, online-IDEs have no prerequisites like in-
stallation or setup. Like local-IDEs, online-IDEs provide
features like project creation, sharing, and version control
that further facilitate collaboration, remote work, training,
and interviewing possibilities. Moreover, many online-
IDEs offer multi-language support that includes diverse
programming and scripting styles. Online-IDEs are now
popular for many online learning platforms, collabora-
tive development services, and cloud-ready deployment
providers.

However, upon careful analysis of online-IDEs and
REPL platforms on the Internet, we observe that many do
not perform checks on the user code and can be therefore
leveraged to execute arbitrary code with malicious intent.
Furthermore, recent research shows deceptive source-code
attacks that appear different to the compiler and human
eye, can be used to deceive the compilers into performing
malicious operations [6]. In this work, we aim at checking
the uncontrolled behavior of IDEs by executing code that
leads to flooding requests on a target hosted in our lab
infrastructure. Furthermore, we implement a bot that can
perform Denial of Services attacks by exploiting several
such online-IDE environments. To the best of our knowl-
edge, there is no previous work which looks at leveraging
uncontrolled online IDE environments to perform attacks
on the Internet. Our contributions are summarized as
follows:

• We examine the concept and criteria for uncon-
trolled execution environments and find vulnerable
online-IDEs by searching the Internet.

• As a proof of concept, we implement a bot that
exploits the uncontrolled IDEs and performs a
flooding attack against a web server hosted at our
lab.

• We estimate the magnitude of the attacks possi-
ble from uncontrolled online IDEs by performing
multiple attack types.

The rest of the paper is structured as follows. In sec-
tion 2 we discuss the background and related work. Sec-
tion 3 gives an overview of online-IDEs and uncontrolled
execution environments. We discuss our methodology in
section 4 and section 5 provides an evaluation of our
approach. In section 6 we discuss the attack types and the
limitations. Section 7 describes the ethical considerations
followed in our methodology and disclosure. We discuss
the future work and conclude in section 8.

1

2. Background & Related Work

2.1. Online IDEs

Modern IDEs provide features that help in accelerat-
ing development with the use of Artificial Intelligence,
collaborative development, cloud deployments [7], and
additional features that include build automation tools,
class browsers, object browsers, and version control. On-
line IDEs provide most features of a local IDE with the
advantage of no installation required on the user system
and with the possibility of remote access. However, there
are some issues specific to online-IDEs, like running static
and dynamic program analysis on the user program [8].
The rise in demand for online platforms and cloud deploy-
ments, leads to an increase in online IDE services offered
for training, assessments, and development environments.
With this increase, there is also a risk of potential exploita-
tion of these platforms, wherein an adversary could use
them to spoof the attack source. Adversaries and botnet
campaigns can utilize uncontrolled online-IDEs to cause
varied attacks such as availability attacks, crypto mining,
and malware injection [9]. For example, PyCryptoMiner,
a Linux crypto-miner botnet, spreads through a compro-
mised SSH service and deploys a base64-encoded Python
script that connects to the command and control (C&C)
server to fetch and execute the crypto-mining Python code
[10]. The bot mines the Monero [11] crypto-currency,
which is the preferred mode of payment in the Darkweb
[12]. Furthermore, botnets like Mirai have caused avail-
ability attacks of high magnitude by infecting vulnerable
systems [1].

2.2. Uncontrolled execution environment

Although there is research towards enhancing the ca-
pabilities of IDEs through the inclusion of static and dy-
namic testing plugins, there is little work on control of ex-
ecution in online-IDEs. Wu et al. summarize the problems
in online-IDEs in regards to uncontrolled execution into (i)
wrong file operations, (ii) banned method calls, and (iii)
excessive resource consumption that can lead to arbitrary
code execution and resource depletion [13]. The authors
indicate that IDEs must offer partial file-based operations;
for example, deletion of a file on the platform must not
be permitted. Similarly, the authors specify the need for
banning specific methods and packages that facilitate a
compromise of the IDE infrastructure or remote systems.
The authors emphasize the need for timeouts that limit
resource consumption for the user program and present
techniques that can be used to handle the three risks using
a program behavior analysis and control model. The model
includes static and dynamic analysis techniques to analyze
the program behavior and control the code execution.

Arbitrary code execution (ACE) is an adversarial tech-
nique where the attacker can execute malicious code on
the target system [14]. The attackers leverage the vulnera-
bilities in the target system to gain access to an execution
environment. ACE is not uncommon in online-IDEs as
they offer users an open code execution environment.
While the main objective of these IDEs is to provide
an online execution environment, there is little focus on
controlling the environment for any malicious code (for

example, HTTP Flood requests). Kiransky et al. propose
program shepherding, a method for monitoring control
flow transfers during program execution to enforce a
security policy [14]. The authors provide three techniques
from program shepherding that act as building blocks
for security policies, including restricting execution privi-
leges, restricting control transfers, and sandboxing checks.
The authors further present a detailed approach to secu-
rity policies regarding program shepherding that ensures
malicious code detection through multiple techniques and
prevents execution. Program shepherding includes IDE
sandboxing, ensuring that malicious code execution does
not impact external systems.

The approach closest to our work is from Pellegrino
et al. [2], where the authors explore the idea of using
browser-based DDoS botnets and review ways attackers
can weaponize them. The authors present three ways of
using browser-based JavaScript to initiate thousands of
HTTP requests per second and evaluate the costs com-
pared to a traditional botnet. In our work, we specifically
search the Internet to find many online-IDEs that do not
have controlled execution environments and have limited
sandboxing capability. We demonstrate the impact through
various attack types originating from these vulnerable IDE
instances. To the best of our knowledge, our work is
the first to explore the area of uncontrolled execution
in online-IDEs and assess the impact of potential attacks
through measurement and estimation.

3. Uncontrolled execution environments
This section describes the generic architecture of

online-IDEs and the criteria for classifying the online-
IDEs into uncontrolled execution environments.

3.1. Generic architecture of online-IDEs

The architecture of online-IDEs can be broken down
into three components (i) frontend, (ii) backend, and (iii)
messaging service. Figure 1 shows the generic architecture
of online-IDEs. The frontend component provides a GUI
as a web application for the user to input the source
code, execute button, and a window to view the output
of the executed code, similar to that of local IDE. The
backend component contains the compiler and the file
system that compiles the user code. This component can
either share the host of the frontend or on a remote host for
scalability purposes. The messaging service is responsible
for transporting the user input (source code) from the
frontend to the backend and the output from the backend
to the frontend. In addition to the frontend, backend,
and message transport, some online-IDEs offer extensions
that provide collaboration, version control, build tools,
and other features. There exist opensource online-IDE
frameworks such as Eclipse Theia [5], ICEcoder [15],
Microsoft VSCode [16], Code-server [17] and AtheosIDE
[18] that follow similar architecture. However, we observe
from our reconnaissance that most online-IDEs have their
stack similar to the generic architecture.

3.2. Uncontrolled online-IDE environments

In order to classify an online-IDE as having an uncon-
trolled execution environment that can be exploited and

2

source-code
editor

Output window

Front-end
Web App

Back-end
(Local/Remote)

Compiler

source-code

ouputM
es

sa
ge

 T
ra

sp
or

t M
essage Trasport

Online-IDE

Figure 1. Generic architecture of online IDEs

weaponized to carry out flooding attacks, we adopt and
extend the criteria defined by Wu et al. [13].

3.2.1. Unrestricted file operations. File operations such
as read, write and modify are facilitated through the
default packages in many programming languages. The
file operations facilitate data import from files and export
of output. Most online-IDEs support the import of source-
code through files, which we observe are not validated
for malware. Furthermore, it is crucial to restrict access
to the file system on the hosting system. Unrestricted
file operations on the online-IDEs can lead to malware
injection, installation of malicious libraries, and corruption
of the file system that can compromise the availability of
the service.

3.2.2. Unrestricted package/module import. Program-
ming languages depend on modules or packages for spe-
cific operations like creating HTTP requests or file han-
dling. Developers import/include these packages into their
source code to support such operations. We observe that
an adversary can leverage unrestricted package imports for
malicious purposes like creating HTTP floods or malware
injection.

3.2.3. Unbounded resource consumption. It is crucial to
prevent or limit the execution of a program that consumes
resources as this may entail resource depletion and eventu-
ally cause the online-IDE to crash. However, many online-
IDEs run on scalable cloud platforms. Bots can leverage
such online-IDEs to carry out high magnitude attacks or
inject crypto-mining malware. An adversary can further
leverage the elastic resources offered by the IDE to run
malicious code that exploits remote systems.

3.2.4. Non-sandboxed environments. Sandboxing is a
mechanism in which an instance is isolated to prevent any
spread of vulnerabilities or infections to other machines in
the network. Furthermore, sandboxed environments offer
controlled use of underlying resources and are ideal for
executing untested code. Non-sandboxed environments are
risky, allow for access to networked systems, and can be
used to exploit remote systems. Non-sandboxed online-
IDEs in particular are ideal for malware spreading. Botnets
can inject malware or execute malicious code to cause a
flood on remote systems and further allow communication
between the infected system and the control server.

3.2.5. Stateless runtime sessions. Web servers maintain
sessions to maintain the current user’s data for a period.
Online-IDEs can use sessions to track the use and the
requests from the current user to limit them to a specific
period. Moreover, online-IDEs can use sessions to track
the user’s state and stop the program execution when the
user state is idle or disconnected. In stateless sessions,
the online-IDEs do not keep track of the user sessions,
which can be exploited by a user running arbitrary code
and terminating the session while the online-IDE is still
executing the user code. The user can create multiple
sessions, run arbitrary code and close the sessions while
saving system resources. Furthermore, an online IDE must
also restrict the number of sessions per user for controlled
resource usage.

4. Methodology

This section presents our methodology for finding
online IDEs, checking for uncontrolled execution, and
leveraging them in our botnet for performing a Denial
of Service attack.

4.1. Reconnaissance

We use Google Dorking to find IDEs on the Internet
using. Google Dorking is the process of finding specific
web pages on the Internet by using search parameters with
keywords [19]. For example, intext:”online IDE” returns
a list of online IDEs. The search parameters can be nar-
rowed to find language-specific IDEs, like intext:”online
python compiler”. The keyword search in the dork pro-
cess of our approach has specific keywords, for example,
“Python Online IDE” that provide language-specific re-
sults. However, some online-IDEs support execution of
multiple languages. In this case, we manually determine
the languages supported by the IDEs to check for multi-
language support. This work limits the proof of concept to
include online-IDEs that support Python language execu-
tion. Moreover, we leverage datasets from Internet-wide
scanning services like Censys [20] and Shodan [21] for
searching for online-IDE instances using keywords like
“online IDE”, “online REPL”, and further filtering the
results using common labels contained in the HTML of
code-editors like the Ace editor [22] (e.g. JavaScript editor
syntax like ace.edit).

Google Dorking
+

Shodan & Censys
Search

IDE-1

IDE-2
IDE-3

IDE-n

.

.

. Execute
Test Script

Recon automator

Figure 2. Reconnaissance-phase automation

The overall reconnaissance process is illustrated in
Figure 2. After the Google Dorking process, we use
language-specific scripts to check if the IDEs from the
search results support uncontrolled code execution and

3

group them based on language in our database. The IDEs
are further checked for uncontrolled execution parameters
by execution of custom language-specific scripts. The
output of the scripts is posted to a remote server repository
as a json document embedded in an HTTP post request.
The server repository contains a list of all the IDEs
with an uncontrolled execution environment, the language
supported by the IDE, and additional metadata about rate
limiting. The reconnaissance process is performed weekly
to find new IDE environments and check if the existing
IDEs in the list are still unpatched.

To check for the uncontrolled execution parameters
defined in Section 3.2 we use the following approaches in
our proof of concept script:

• Unrestricted-file operations: To check for re-
stricted file read and write operations, we try
accessing the environment variables from the host.
The access to environment variables further helps
determine if the IDE is operating in container
mode. We use the checks os.environget() to read
the HOME variable and os.environ[’FOO’]=’1’ to
create a new variable in our proof of concept
script. To check for delete operations, we remove
the environment variable created during the test
write operation. We set flags to determine the suc-
cessful operation. In addition to the above checks,
we check for access to some critical file system
paths.

• Unrestricted package/module import: We import
packages from python default libraries such as
sockets, threading, and os that can be used for
our proof of concept. The successful import of the
packages is determined by implementing checks in
the proof of concept script.

• Unbounded resource consumption: By importing
the threading package from the previous check,
we implement a function that can create a large
number of HTTP requests over time. In this way,
we check for both unbounded resource consump-
tion and network rate limiting.

• Non-sandboxed environments: To check if the
python code is executing under a container mode,
we read the “/proc/self/cgroup” and check if the
field “docker” exists. In addition to the container
check, we check for Internet access through the
IDE host by executing a simple HTTP request
through the sockets package.

• Stateless runtime-sessions - To check if an online-
IDE environment supports stateless runtime ses-
sions, we execute multiple HTTP requests to our
test webserver for a specific period (i.e., 5 seconds)
and close the IDE session. We measure the number
of requests received and the period to check the
total execution time from the first request received.

4.2. Botnet architecture

In order to explore the magnitude of the discovered
vulnerability, we decided to develop an application that
would, to some extent, simulate the operation of a real-
world bot, part of a botnet architecture. This translates into
the botmaster having control over the bots and utilizing

them to carry out attacks at will. Additionally, in this
particular case, the botmaster does not have to worry
about propagating the bot malware to infect new hosts and
increase the size of their network, and also the availability
of the bots/IDE instances is very high since they are
running on active websites.

Overall, there are only two requirements for the botnet
to be functional, namely discovering the IDEs (see Section
4.1) and then including them in the botmaster application.

4.2.1. Botmaster application. The basis for the vulner-
ability’s exploitation lies within the arbitrary execution
of code on the IDEs. In our implementation, which was
developed in Java, for this task we use the Selenium web
browser automation software and a Chrome WebDriver.
Locating the XPaths of the elements of interest in the
HTML of each website allowed for the interaction through
Selenium, which runs locally in our code editor. The most
vital elements in common in all IDEs were the code
editor text-area, the programming language option, and
the run/execute button. These XPaths were hardcoded into
the application, and since they differed in each platform,
the entire process had to be repeated uniquely for each
IDE. Lastly, to provide ease and simplicity to our exper-
iments, as part of the botmaster application, we included
an interface that can be used to navigate through the list
of available IDEs and to orchestrate attacks by “tailoring”
the Bot Attack Code (see Section 4.2.2) which can be
deployed on the IDE, through a Start Attack button.

4.2.2. Bot attack code. The bot attack code is an HTTP
flood attack; it was found publicly available on a GitHub
repository 1 and is a part of the botmaster application. It
is written in Python, and it was slightly altered in order
to match the requirements of our experiments. The attack
revolves around 4 discrete variables, the target, the attack
duration, the number of utilized IDEs, and the sessions
per IDE. After inserting the values of these variables
in the botmaster interface, the attack code runs on the
chosen IDEs. At this point, we noticed that a large number
of IDEs would have an issue providing the expected
indentation in the code using the carriage return \r and
new line \n whitespace characters. Hence, the solution
was to create two separate attack classes, one that would
use the whitespace characters and one that would use
Selenium keyboard commands such as ENTER, HOME,
and BACKSPACE, to achieve the desired outcome.

4.3. Experimental setup

We leverage 18 online-IDEs supporting the Python
program execution discovered during the reconnaissance
process. To ethically involve these IDEs in our experiment,
we ask for consent from the environments that provide
contact information about the owner. The experimental
setup is described in Figure 3. We deploy an Nginx web
server in our lab to target the attacks from the IDEs. We
set up the Zeek-IDS on the host of the webserver to log
all the ingress traffic on the webserver.

To visualize the logs from the Zeek-IDS and monitor
the resources on the host, we use the Kibana visualization

1. https://anonymous.4open.science/r/Bad-IDEa-1078

4

https://anonymous.4open.science/r/Bad-IDEa-1078

dashboard. All ingress traffic towards the server is logged.
The web server and Zeek are set up on a host with
a quad-core Intel Xeon processor and a memory of 32
gigabytes. The Nginx web server listens on the HTTP
port 4444 and is deployed with the default configuration.
The Elastic search database and the Kibana dashboard
run on a remote host, and the Zeek logs are shipped
using an Elastic agent. The bot developed for the proof
of concept runs on a remote client in our lab. The bot
client has a quad-core Intel Xeon processor of 2.4 GHz
and 32 gigabytes of memory. The web server is publicly
accessible via the Internet through an unfiltered network
in the lab environment.

Google Dork

Censys
+

Shodan

Reconnaissance
Phase

Lab environment

Target Web server host

Elastic Agent

Zeek Logs

Botmaster Application

IDE-1

IDE-3

IDE-2

IDE-n

Botnet Architecture

AttacksAttack Code

Figure 3. Methodology overview

4.4. Exploitation

Before we use the uncontrolled online-IDEs in our
experiment, we ethically disclose the vulnerabilities to the
service owners and developers. Furthermore, we ask for
consent from the owners to use the IDEs in our experiment
and test our bot. We request consent for testing from 50,
but end up having consent from 18 IDE owners and test
the exploit by performing an HTTP-flood for five seconds
from each online IDE. Furthermore, we create multiple
instances of the online-IDEs to increase the magnitude
of requests. All traffic to the webserver is logged and
monitored with Zeek IDS. We limit the exploitation to
IDEs that support the Python language. The IDEs are
listed in the bot as described in section 4.2 and the HTTP
flood code that targets our web server is executed. All
incoming traffic is measured per IDE and time. Evaluating
the maximum traffic capability of these individual IDEs
is ethically challenging without compromising the avail-
ability of the underlying host and the network. Therefore,
we perform a controlled execution of the experiments to
ensure that the host’s availability and the network are not
compromised. Furthermore, we evaluate our approach and
estimate the impact of the attacks.

5. Evaluation

5.1. Reconnaissance

This section summarizes our findings from the search
for uncontrolled online-IDEs.

5.1.1. IDEs found. We search the Internet through our
reconnaissance approach specified in Section 4.1 to find a
total of 2269 online-IDEs of which 719 had uncontrolled
execution. Most of the IDEs from the results supported
more than one programming language. Figure 4 shows the
total number of IDEs classified based on their language
support. As mentioned in the methodology, the IDEs
were found through the reconnaissance process. We also
observed that most of the IDEs used multiple hosts for
their backend based on the language chosen by the user,
and some of them did not have any login or authentication
from the user before program execution.

Figure 4. Classification by language support

5.1.2. Classification by use-type. Most of the online
IDEs are development purpose-driven, where the user
can set up a collaborative development workspace. We
further classify the uncontrolled online-IDEs that we find
in our reconnaissance based on their user type into an
interview (24%), skill-training (22%), practice (23%), and
collaborative development (31%) environments. We also
find online-IDEs used as notebooks, where the user has an
interactive environment with the possibility of importing
datasets. Lastly, we find IDEs used by educational and
training platforms that offer programming courses as a
service.

5.1.3. Classification by uncontrolled-criteria. We define
criteria for uncontrolled online-IDE in section 3.2 and
classify the IDEs found during the reconnaissance phase.
Figure 5 shows the percentage of IDEs classified based
on the criteria of uncontrolled execution of online-IDEs.
We observe that most of the IDEs run on non-sandboxed
environments, followed by unrestricted file operations and
package imports. Furthermore, we find that 719 online-
IDEs from the total of 2269 from our reconnaissance

5

process satisfy all the criteria for uncontrolled execution.
We consider this a base for evaluating our experiment
further on uncontrolled online-IDEs in availability attacks.

Figure 5. Classification by criteria for uncontrolled environment

5.2. Attacks & impact

We evaluate the possibility of leveraging the uncon-
trolled environments by performing controlled flood re-
quests through the online-IDEs to target the webserver
hosted at our lab facility. We used 18 of the total un-
controlled IDEs detected from our reconnaissance and
performed code injection through the bot explained in
section 4.2. The online-IDE environments that were used
in our experiment did not have any user authentication or
registration. Although we wanted to use as many IDEs
identified in our search, we limited the number based on
the consent we received for experimentation and did not
cause any compromise in the availability of intermediary
networking systems. Furthermore, we identified a range of
17 instances of uncontrolled online-IDEs from a reputed
database provider during the reconnaissance process. As
the number of instances was high, we immediately con-
tacted the service owners about the potential misuse.
Similarly, we disclosed the vulnerability to many critical
operators so that the systems could be patched as quickly
as possible and could not be used in our evaluation. In the
following sections, we summarize the estimation, attacks,
and impact of the requests sent from the uncontrolled
IDEs.

5.2.1. Estimation. Performing DDoS attacks ethically
over the Internet is challenging. To address this challenge,
we follow an estimation-based approach to determine the
impact of the attacks sourced from the IDEs. While there
is existing work on mathematical modeling of DDoS
attacks to predict the probability of resource depletion and
bandwidth, to estimate the impact of the attacks from the
IDEs, we refer to the method proposed by Balarezo et al.
[23] for traffic-based models and specifically the Queu-
ing Model. The Queuing Model uses a multidimensional
approach that provides the probabilities for bandwidth,
CPU, and memory exhaustion based on how networking
elements process traffic. The ingress traffic measurements
are carried out at periodic intervals of five seconds, and
the values for the bandwidth, CPU, and memory are noted.

With the aim of developing a formula able to estimate
the average attack magnitude of the architecture described
in Section 4.2, we performed controlled HTTP-flood re-
quests from the IDEs to our web server with a duration of

5 seconds, to avoid any potential disruption of the service.
The experiment resulted in an average of 103 requests
per IDE session, throughout all of the 32 IDEs, which
proved vital in the formulation process. Figure 6 shows
the average number of requests from a single session of an
IDE over time up to 60 seconds, calculated using Formula
1. The figure also represents the estimated average number
of requests possible from two (n=2) instances of an IDE
running in parallel.

The variables taken into account when estimating the
average total number of requests that can be achieved over
a specific time interval are the number of IDEs used in
the attack (I), the number of sessions per IDEs (S), the
total duration of the attack in seconds (D), and the number
of average requests per second for each IDE session (r).
Combining all of these variables, we developed Formula
1:

RAvg = I ∗ S ∗D ∗ r (1)

Figure 6. Estimated average requests per IDE instance by second

Figure 7. Estimated average requests received from multiple IDEs (I)
and sessions (S)

5.2.2. Attack requests received on multiple IDE in-
stances over time. We further estimate the number of
requests possible from multiple IDEs with multiple in-
stances running in parallel. Figure 7 depicts the estimated

6

0

500

1,000

1,500

2,000

2,500

3,000

3,500 #Requests

XHR-Chrome[2] XHR-Firefox[2] Python-IDE Java-IDE JavaScript-IDE Go-IDE C#-IDE

1886

1359

1622.5

2892

1456

2174

3269

515

1921

3167

561

1875

3058

444

1965

3098

552

1867

3079

489

1632

C#-IDE

Go-IDE

Java-IDE

JavaScript-IDE

Python-IDE

XHR-Chrome[2]

XHR-Firefox[2]

Environment

Test environment

#
R
eq

u
es

ts

Figure 8. Average number of requests received from IDE-environments and a comparison with [2]

average number of requests from multiple IDEs denoted
by I and the number of instances of each IDE denoted
by S. The experiment is performed using 18 IDEs from
which we received consent. We estimate an average of 6
million requests possible with 32 IDEs with 32 instances
over a minute using Formula 1. The program that performs
the HTTP floods is controlled by the number of threads
performing the requests. We limit the number of threads
to avert resource exhaustion on the IDEs.

5.2.3. Language-specific comparison. We compare the
number of requests received from different languages
supported by IDEs. The number of requests are obtained
based on similar experiments that we carry out on Python-
based IDEs. For the other languages, we perform the
experiment with 6 multi-language IDEs that we received
consent for experimentation. Figure 8 shows the number
of requests received from different language supporting
IDEs. We observe the highest number of requests from
the Python supporting IDEs, in comparison with the other
languages. To get a better understanding of the number
of requests, we place the number of requests received
from the Javascript program by Pellegrino et al. in the
figure [2]. Note that this is not a direct comparison as
the number of requests from the IDEs in our experiments
were carried out for a period of 5 seconds and the method
from Pellegrino et al. was recorded per second. However,
we believe that by increasing the number of threads in our
program can lead to similar results. In terms of economics,
Pellegrino et al. use advertisements as a medium for
executing the malicious embedded JavaScript on clicks,
and hence incurs some costs. In our approach, we leverage
accessible, open IDE execution environments with higher
resources and negligible costs (zero) to execute the at-
tacks.

Note that while in this evaluation, we evaluate the pos-

sibility of using IDEs that support the Python language,
it is possible to achieve a higher number of requests by
combining multiple IDEs that support other languages.
While large botnets targeting DDoS attacks like the Meris
Botnet have a significantly higher number of requests per
second in comparison to our experiment, we believe that
bots could employ vulnerable IDE instances armed with
diverse attack types to increase the attack magnitude [24].
We further discuss the attack types and the impacts in the
following section.

6. Discussion

Uncontrolled-IDE environments provide a degree of
flexibility where the users can try performing varied attack
types. Our experiments reveal that unfiltered networks
of the IDEs allow different attack types. This section
discusses some of the attack types that we try and describe
the results.

6.1. Attack types

6.1.1. HTTP-Flood. We first evaluate our approach with
HTTP-flood attacks from the IDEs. We execute the Single
Session HTTP Flood to send a large number of requests
from limited HTTP sessions. We observe that the CPU and
memory of the victim (web server in our lab) are signifi-
cantly depleted over the bandwidth of attacks received. A
similar result was observed by performing Single Request
HTTP Flood where multiple HTTP requests were made
using a single session, masking them in a single packet.
Programming languages offer multiple ways of creating
HTTP requests. For example, the Python language offers
the requests, urllib and sockets packages from which
HTTP requests can be made. We experiment with all
three variations of the packages and find approximately

7

the same results with the maximum number of requests.
However, we preferred to use the sockets package as it
offered multiple options for setting the payload, and the
max number of requests was achieved through controlled
threading.

Figure 9. Estimated bandwidth comparison between HTTP and UDP
flood

6.1.2. UDP-Flood. We try performing a controlled UDP-
flood attack through the IDEs and find that some IDEs
block UDP-based traffic. However, we were able to run
UDP-based flood attacks from 18 IDEs in our exper-
iment. We run the UDP-flood for a limited period of
five seconds and observe the attack bandwidth ranging
up to 1320 Mb/s with the CPU load steadily increasing
to an average of 22% per second. Figure 9 shows the
estimated bandwidth of attacks received over time from
HTTP and UDP requests. The estimation is based on the
attacks received during our controlled experiment. We find
that UDP-based attacks caused a higher impact on the
victim’s resources, leading to quicker service disruption
than the HTTP requests. Note that the attack bandwidth
could be higher as we used a controlled test script in
our experiment, and the requests originated from a single
online-IDE instance.

6.1.3. Multi-vector attacks. Multi-vector attacks in-
volve using multiple flood-type attacks to achieve max-
imum bandwidth. While multi-vector attacks are ideal
for achieving higher bandwidth by weaponizing, the sup-
porting IDEs are a high-risk environment. We try the
possibility of combining the HTTP and UDP-flood attacks
from the IDEs. Our experiment shows that almost 55% of
the IDEs are vulnerable to multi-vector attacks.

6.1.4. Text-encoding attacks. Boucher et al. [6] recently
proposed a new type of attack in which the source code
is maliciously encoded to appear different to a compiler
than to a human. The authors present a proof of concept
in multiple languages: Python, Java, JavaScript, Go, C#,
C++, and Rust. We try the exploits with the IDEs to see
if they support text-encoding standards like Unicode to
manipulate the compiler-view. Our experiment revealed
that 98% of the online-IDEs were vulnerable to the at-
tack. We consider such vulnerabilities as potential discrete
techniques for exploits. However, this is out of the scope

of this work as we emphasize to availability rather than
integrity attacks.

6.1.5. Other findings. We performed our experiment with
the online-IDEs that support Python language scripting.
Other than the unrestricted package imports, we also
found unpatched versions of systems that are vulnerable
to CVEs CVE-2020-14422, CVE-2020-8492, CVE-2019-
9674, CVE-2013-1753 that can lead to Denial of Service
attacks [25]. Furthermore, as some IDEs allowed the
OS and system packages, we could obtain information
about the host operating systems and the other packages.
We further check for vulnerabilities using the version
information we obtain and inform the owners about the
vulnerabilities. Furthermore, we find user-authenticated
IDE environments, which require user-signup, equally vul-
nerable as non-authenticated ones, though we exclusively
consider the unauthenticated platforms in our experiment.

6.2. Comparison with amplification attacks

Amplification attacks involve an amplification factor
that enhances the original attack vector to multiply the
initial attack. While these attacks are known to amplify
over UDP-based protocols like DNS, more recently, there
is research where TCP-based protocols can be leveraged
[26]. In this work, we use vulnerable IDE instances to
contribute to an existing attack process by potentially
weaponizing uncontrolled online-IDE environments. Al-
though the IDEs can contribute more attack requests, it
is not similar to an amplification factor. Our approach
implies that the attacks can be magnified in numbers by
spawning multiple IDE instances and threads on the go
without compromising the system or injection of malware.
However, similar to DoS attacks, the attacker’s identity
remains hidden as the source of the attacks traced back to
the IDEs.

6.3. Implications

Our work suggests that uncontrolled online-IDEs can
be leveraged as an open system for availability attacks
by botnets. Through our observation, we find that many
online-IDEs possess high, scalable resources that can be
exploited for carrying out attacks on the Internet and
for crypto mining purposes. Although the number of
uncontrolled online-IDEs is not as significantly high as
the number of vulnerable devices employed by massive
botnets, we believe that uncontrolled online-IDEs can be
used as a magnitude factor since they are an accessible
resource. While there is no evidence of bots using such
environments for attacks, we proactively identify the vul-
nerabilities and ethically disclose them to the owners to
prevent such exploitation by adversaries. Furthermore, the
primary reason for uncontrolled execution is a result of
misconfigured environments. As online-IDEs are consid-
ered as a platform for learning, many security implications
are overlooked in order to achieve similarity to that of
local IDE environments.

Using uncontrolled IDEs provide attackers with dis-
crete ways of launching availability attacks. In compari-
son to other vectors used for attacks, uncontrolled IDEs

8

provide the following advantages: (i) uncontrolled online-
IDEs provide direct execution environments without any
compromise steps to be undertaken by the attackers, (ii),
online-IDEs are equipped with reasonable resources that
can facilitate attacks, (iii) multiple sessions of online-IDEs
can be created to increase the magnitude of the attacks in
case of ephemeral instances, (iv) uncontrolled online IDE
environments are simpler to find on the Internet and do
not require aggressive probing to find vulnerabilities, (v)
since we observe no CAPTCHA checks in the IDEs on our
findings, attackers can avoid any bypassing mechanisms
that limit the botnets.

6.4. Limitations

Our approach utilizes online-IDEs on the Internet for
availability attacks. As these IDEs are hosted on private
infrastructure, evaluating availability attacks is ethically
challenging. To address the ethical challenges, the evalu-
ation of our approach involves some limitations. Firstly,
we use a limited number of identified IDE instances to
evaluate our methodology. This limits the full potential
of the possible impact of the attacks. Second, we use
rate-limiting in our test code to not cause any possible
disruptions in the IDE service. This limits the use of
the resources on the online-IDEs infrastructure. Third,
we use an estimation-based approach to predict the pos-
sible number of attack requests per second achieved by
multiple IDE instances running in parallel, which does
not provide enough accuracy in the calculations and may
have a high error rate. Lastly, we acknowledge packet
drops occurring at intermediary devices in some of our
experimental trials and discard environments that affect
the overall throughput. Through this work, we intend to
disclose the impact of running such environments to the
owners and proactively prevent misuse of resources. It is
a challenge to measure the impact of our approach in an
ethical manner. We extrapolate the measurements received
on a limited time-based experiment to accommodate the
impacts to the IDE owners. We further acknowledge that
many unknown factors may influence the values in our
experiments. Our method is an honest attempt to identify
uncontrolled IDE environments and prevent their misuse.

7. Ethical considerations & countermeasures

It is challenging to test our methodology as it involves
sending high traffic from the Internet that may disrupt
availability. We follow several precautions to avoid such
a scenario. In this section, we discuss the ethical consid-
erations followed in our approach.

7.1. Attack testing

We follow multiple steps in our attack testing approach
to ensure that the availability of the online-IDEs or the
intermediary networking systems are not compromised.
The ethical measures we follow in our methodology are
summarized below.

7.1.1. Informed consent. We take consent from the
online-IDE owners to perform our experiment. We obtain

consent from 18 IDE owners to perform our experiments.
We assure the IDE owners of non-malicious experiments
and measures to prevent resource exhaustion. Further-
more, we test a limited number of IDEs in our experiment,
although we find many vulnerable uncontrolled online-
IDEs.

7.1.2. Limited threads (rate-limiting). We run an HTTP-
flood program to test the possibility of achieving max-
imum requests from the IDEs. However, we limit the
number of threads in our program to prevent resource
exhaustion. We use an estimation-based approach to ethi-
cally predict the number of requests that can be achieved
from the IDEs.

7.1.3. Lab infrastructure for testing. We set up a web
server in our lab infrastructure to target all the requests
from the IDEs. However, we understand that this does not
fully comply with the challenge of reducing the disruption
in the network due to the traffic from the IDEs. We
try to reduce the disruption by limiting the number of
threads and the runtime of the experiment. The website
used for measuring the HTTP flood requests received from
the IDEs contained the necessary information about our
experiment.

7.2. Responsible disclosure

We perform responsible disclosure to all the owners
of identified uncontrolled online-IDE execution environ-
ments. The disclosure informs the owners of the impor-
tance, criteria, vulnerabilities, and proof of concept to test
the environments independently. Furthermore, we perform
an early disclosure to certain critical service providers
(for example, a leading database service) that have a high
possibility of traffic, even if this entailed the possibility
of not using these environments for testing our approach.
Additionally, we ask for IDE owners’ consent to experi-
ment on uncontrolled environments before they patch their
systems. Until the time of submission of this paper, we
hope that most of the uncontrolled IDE environments are
patched.

7.3. Countermeasures

In this section we propose and discuss countermea-
sures against the criteria defined for uncontrolled execu-
tion environments.

7.3.1. Restricted file operations. File operations are es-
sential for the import and export of data. However, it is
crucial to restrict the operations and limit access to critical
paths of the file system by simply employing containerized
environments. Many online-IDEs use file operations for
importing the source files; it is also essential to perform
validation to scan for potential malware. An adversary
can leverage unrestricted operations to either download
malware or spread the malware to external systems.

7.3.2. Limited package support. Adversaries can use
packages to perform malicious operations on the host
machine, like downloading malware, accessing the host’s
file system, and scanning the network. Developers use

9

packages to support additional operations or import ex-
ternal libraries not part of the default package list. It is
also crucial to limit the features of default libraries (for
example, the sockets package) to restrict access to the
network and limit the import of external libraries. While
we acknowledge that limiting the functionality of libraries
is a hard problem, we suggest to limit the attacks that
leverage packages, by configuring network rate limiting
in addition to memory and CPU resource limiting. Linux
environments provide default tools for limiting the system
resources per process. Administrators can further use con-
tainerization of individual user sessions to limit resource
usage.

7.3.3. Bounded resource consumption. Limiting the
resources per user and program is required. Unlimited
resources can lead to disruptive operations on the host
and be leveraged as an attack source. Also, limiting the
number of threads that can be created ensures controlled
resource usage. Furthermore, the use of timeouts that re-
strict the execution period ensures that a program does not
run for extended periods and prevents flood-type attacks.

7.3.4. Sandboxed environments. Sandboxed environ-
ments ensure no access to external systems, and the user
sessions are isolated from the other sessions running on
the online-IDE. Each user has a dedicated isolated en-
vironment that is purged after the user session expires.
Online-IDEs can leverage containerized environments to
achieve sandboxing of individual user sessions and purge
them after the end of the session.

7.3.5. Stateful user sessions. Online-IDEs run over a web
service and can be configured to maintain stateful user
sessions to track idle or disconnected users for stopping
the program execution. This prevents bots from spawning
multiple IDE instances to inject malicious code and exit
the session to save resources on the bot client. Maintaining
stateful user sessions can also help limit the number of
sessions per user and limit resource usage.

7.3.6. Other measures. We accessed the IDEs through
the Tor network and found that 98% of the online-IDEs
identified allowed access. To limit suspicious events, we
suggest the use of CAPTCHAs to verify the source of
traffic and also limit the execution of suspicious code. We
further suggest online-IDEs to integrate CAPTCHAs for
validating each user session irrespective of the network to
limit the bot activity. Moreover, we strongly recommend
that all the online-IDEs have user authenticated sessions
to prevent unnecessary resource usage. Lastly, to defend
against text-encoding attacks, we recommend following
the countermeasures suggested by Boucher et al. [6] to
prohibit the support for text directionality control char-
acters both in language specifications and in compilers
implementing these languages.

8. Conclusion

This work identifies online-IDEs that offer uncon-
trolled execution environments that can be leveraged to
perform availability attacks. We perform an Internet-wide
search for online-IDEs and filter them by executing a

test script that satisfies the uncontrolled execution crite-
ria. Furthermore, we perform experiments to verify the
possibility of availability attacks through the online-IDEs
by informed consent. The estimated impact of the attacks
is calculated by measuring the requests obtained from
the experiments. We emphasize the consequences of hav-
ing uncontrolled execution environments and proactively
conduct experiments to assess the impact through this
work. Lastly, we perform immediate ethical disclosure to
the IDE owners to prevent misuse of the environment.
As future work, we plan to generate scripts that can be
used for checking uncontrolled execution of online-IDE
environments such as permissions set for code execution,
maximum file size that can be written, paths accessed, and
max network bandwidth to help the administrators.

Acknowledgment

As part of the open-report model followed by
the Workshop on Attackers & CyberCrime Operations
(WACCO), all the reviews for this paper are publicly
available at https://github.com/wacco-workshop/WACCO/
tree/main/WACCO-2022

This research was supported as part of COM3, an
Interreg project supported by the North Sea Programme
of the European Regional Development Fund of the Euro-
pean Union. We would like to thank Reinholdt W. Jorck og
Hustrus Fond and Otto Mønsteds Fond for facilitating the
research. Lastly we thank the reviewers for their valuable
comments.

References

[1] M. Antonakakis, T. April, M. Bailey, M. Bernhard,
E. Bursztein, J. Cochran, Z. Durumeric, J. A. Halderman,
L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever, Z. Ma,
J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas,
and Y. Zhou, “Understanding the mirai botnet,” in
26th USENIX Security Symposium (USENIX Security 17).
Vancouver, BC: USENIX Association, Aug. 2017, pp. 1093–
1110. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/antonakakis

[2] G. Pellegrino, C. Rossow, F. J. Ryba, T. C. Schmidt, and
M. Wählisch, “Cashing out the great cannon? on Browser-Based
DDoS attacks and economics,” in 9th USENIX Workshop on
Offensive Technologies (WOOT 15). Washington, D.C.: USENIX
Association, Aug. 2015. [Online]. Available: https://www.usenix.
org/conference/woot15/workshop-program/presentation/pellegrino

[3] L. Ifigeneia, T. Marianthi, and M. Apostolos, “Enisa
threat landscape 2021,” ENISA, vol. ETL2021, pp. 46–
50, 2021. [Online]. Available: https://www.enisa.europa.eu/
publications/enisa-threat-landscape-2021

[4] P. Wainwright and H. Kettani, “An analysis of botnet models,” in
Proceedings of the 2019 3rd International Conference on Compute
and Data Analysis, 2019, pp. 116–121.

[5] R. Saini, S. Bali, and G. Mussbacher, “Towards web collaborative
modelling for the user requirements notation using eclipse che and
theia ide,” in 2019 IEEE/ACM 11th International Workshop on
Modelling in Software Engineering (MiSE), 2019, pp. 15–18.

[6] N. Boucher and R. Anderson, “Trojan Source: Invisible
Vulnerabilities,” Preprint, 2021. [Online]. Available: https://arxiv.
org/abs/2111.00169

[7] Z. Alizadehsani, E. G. Gomez, H. Ghaemi, S. R. González,
J. Jordan, A. Fernández, and B. Pérez-Lancho, “Modern integrated
development environment (ides),” in Sustainable Smart Cities and
Territories, J. M. Corchado and S. Trabelsi, Eds. Cham: Springer
International Publishing, 2022, pp. 274–288.

10

 https://github.com/wacco-workshop/WACCO/tree/main/WACCO-2022
 https://github.com/wacco-workshop/WACCO/tree/main/WACCO-2022
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/woot15/workshop-program/presentation/pellegrino
https://www.usenix.org/conference/woot15/workshop-program/presentation/pellegrino
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2021
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2021
https://arxiv.org/abs/2111.00169
https://arxiv.org/abs/2111.00169

[8] L. Wu, G. Liang, S. Kui, and Q. Wang, “Ceclipse: An online ide
for programing in the cloud,” in 2011 IEEE World Congress on
Services. IEEE, 2011, pp. 45–52.

[9] P. Chinprutthiwong, R. Vardhan, G. Yang, Y. Zhang, and G. Gu,
“The service worker hiding in your browser: The next web
attack target?” in 24th International Symposium on Research in
Attacks, Intrusions and Defenses, ser. RAID ’21. New York, NY,
USA: Association for Computing Machinery, 2021, p. 312–323.
[Online]. Available: https://doi.org/10.1145/3471621.3471845

[10] J. Liu, Z. Zhao, X. Cui, Z. Wang, and Q. Liu, “A novel approach
for detecting browser-based silent miner,” in 2018 IEEE Third
International Conference on Data Science in Cyberspace (DSC).
IEEE, 2018, pp. 490–497.

[11] J. Rüth, T. Zimmermann, K. Wolsing, and O. Hohlfeld, “Digging
into browser-based crypto mining,” in Proceedings of the Internet
Measurement Conference 2018, ser. IMC ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 70–76.
[Online]. Available: https://doi.org/10.1145/3278532.3278539

[12] D. Georgoulias, J. M. Pedersen, M. Falch, and E. Vasilomanolakis,
“A qualitative mapping of darkweb marketplaces,” in Symposium
on Electronic Crime Research (eCrime). IEEE, 2021.

[13] L. Wu, G. Liang, and Q. Wang, “Program behavior analysis and
control for online ide,” in 2012 IEEE 36th Annual Computer
Software and Applications Conference Workshops, 2012, pp. 182–
187.

[14] V. Kiriansky, D. Bruening, and S. Amarasinghe, “Secure
execution via program shepherding,” in 11th USENIX Security
Symposium (USENIX Security 02). San Francisco, CA:
USENIX Association, Aug. 2002. [Online]. Available: https:
//www.usenix.org/conference/11th-usenix-security-symposium/
secure-execution-program-shepherding

[15] M. Pass. (2021) Icecoder. [Online]. Available: https://github.com/
icecoder/ICEcoder

[16] Microsoft. (2022) Visual studio code. [Online]. Available:
https://github.com/microsoft/vscode

[17] Coder. (2022) Code-server. [Online]. Available: https://github.com/
coder/code-server

[18] L. Siira. (2022) Atheoside. [Online]. Available: https://github.com/
Atheos/Atheos

[19] J. Zhang, J. Notani, and G. Gu, “Characterizing google hacking: A
first large-scale quantitative study,” in International Conference on
Security and Privacy in Communication Networks, J. Tian, J. Jing,
and M. Srivatsa, Eds. Cham: Springer International Publishing,
2015, pp. 602–622.

[20] Censys. (2021) Censys search. [Online]. Available: https:
//censys.io/

[21] SHODAN, “Shodan,” 2021. [Online]. Available: https://www.
shodan.io/

[22] A. B.V. (2022) Ace editor. [Online]. Available: https://github.com/
ajaxorg/ace

[23] J. F. Balarezo, S. Wang, K. G. Chavez, A. Al-Hourani, and
S. Kandeepan, “A survey on dos/ddos attacks mathematical
modelling for traditional, sdn and virtual networks,” Engineering
Science and Technology, an International Journal, vol. 31, p.
101065, 2022. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S2215098621001944

[24] CloudFlare, “Meris botnet,” 2021. [Online]. Available: https:
//blog.cloudflare.com/meris-botnet/

[25] C. Details, “Cve details,” 2021. [Online]. Available:
https://www.cvedetails.com/vulnerability-list/vendor id-10210/
product id-18230/year-2020/opdos-1/Python-Python.html

[26] M. Kührer, T. Hupperich, C. Rossow, and T. Holz, “Hell of
a handshake: Abusing TCP for reflective amplification DDoS
attacks,” in 8th USENIX Workshop on Offensive Technologies
(WOOT 14). San Diego, CA: USENIX Association, Aug. 2014.
[Online]. Available: https://www.usenix.org/conference/woot14/
workshop-program/presentation/kuhrer

11

https://doi.org/10.1145/3471621.3471845
https://doi.org/10.1145/3278532.3278539
https://www.usenix.org/conference/11th-usenix-security-symposium/secure-execution-program-shepherding
https://www.usenix.org/conference/11th-usenix-security-symposium/secure-execution-program-shepherding
https://www.usenix.org/conference/11th-usenix-security-symposium/secure-execution-program-shepherding
https://github.com/icecoder/ICEcoder
https://github.com/icecoder/ICEcoder
https://github.com/microsoft/vscode
https://github.com/coder/code-server
https://github.com/coder/code-server
https://github.com/Atheos/Atheos
https://github.com/Atheos/Atheos
https://censys.io/
https://censys.io/
https://www.shodan.io/
https://www.shodan.io/
https://github.com/ajaxorg/ace
https://github.com/ajaxorg/ace
https://www.sciencedirect.com/science/article/pii/S2215098621001944
https://www.sciencedirect.com/science/article/pii/S2215098621001944
https://blog.cloudflare.com/meris-botnet/
https://blog.cloudflare.com/meris-botnet/
https://www.cvedetails.com/vulnerability-list/vendor_id-10210/product_id-18230/year-2020/opdos-1/Python-Python.html
https://www.cvedetails.com/vulnerability-list/vendor_id-10210/product_id-18230/year-2020/opdos-1/Python-Python.html
https://www.usenix.org/conference/woot14/workshop-program/presentation/kuhrer
https://www.usenix.org/conference/woot14/workshop-program/presentation/kuhrer

	Introduction
	Background & Related Work
	Online IDEs
	Uncontrolled execution environment

	Uncontrolled execution environments
	Generic architecture of online-IDEs
	Uncontrolled online-IDE environments
	Unrestricted file operations
	Unrestricted package/module import
	Unbounded resource consumption
	Non-sandboxed environments
	Stateless runtime sessions

	Methodology
	Reconnaissance
	Botnet architecture
	Botmaster application
	Bot attack code

	Experimental setup
	Exploitation

	 Evaluation
	Reconnaissance
	IDEs found
	Classification by use-type
	Classification by uncontrolled-criteria

	Attacks & impact
	Estimation
	Attack requests received on multiple IDE instances over time
	Language-specific comparison

	Discussion
	Attack types
	HTTP-Flood
	UDP-Flood
	Multi-vector attacks
	Text-encoding attacks
	Other findings

	Comparison with amplification attacks
	Implications
	Limitations

	Ethical considerations & countermeasures
	Attack testing
	Informed consent
	Limited threads (rate-limiting)
	Lab infrastructure for testing

	Responsible disclosure
	Countermeasures
	Restricted file operations
	Limited package support
	Bounded resource consumption
	Sandboxed environments
	Stateful user sessions
	Other measures

	Conclusion
	References

