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Abstract
The insulated gate bipolar transistor (IGBT) is one of the most fragile components in
power electronics converters. In order to improve the reliability of IGBTs, various
measurements are taken according to the condition monitoring (CM) technique. Tradi-
tional CM techniques include the measurement and estimation of the device operation
conditions. Recently, emerging techniques have been developed, not only for the
detection and estimation but also for the prognostics of IGBTs with the condition data.
In this paper, a review is performed on the recent progress in the CM techniques for
IGBTs. First, some emerging electrical and thermal measurements are reviewed. Based on
the sensed data, the health indicator estimation techniques are summarised. Moreover, for
the emerging prognostics and health management applications, some remaining using
lifetime (RUL) prediction methods are reviewed. Finally, the research gaps and directions
are discussed for the CM in IGBT applications.

1 | INTRODUCTION

Power electronic converters are widely used in renewable po-
wer generation, high voltage direct current (HVDC) trans-
mission systems, high speed railways, electrical vehicles etc. In
these applications, the reliability of the power electronics
converter is one of the key research issues of the system [1].
The reliable operation of the power electronics converters will
ensure the security of a system and lower the maintenance cost
of the system operation during its whole lifetime.

Insulated gate bipolar transistors (IGBTs) with the advan-
tages of large power capability, low saturation voltage, and high
switching frequency are widely adopted in high‐voltage and
high‐power electronics converters [2]. However, the IGBT is
one of the most fragile components in the system. Some in-
dustrial survey reports show that 39% of the system failure of
power electronic converters can be attributed to the failure and
damage of the IGBT devices, and the failure of the IGBTand its
driver accounts for more than 50% of the system failure [3, 4].

Condition monitoring (CM) is an effective tool to improve
the reliability of IGBTs. It can be defined as the real‐time
measurement of the condition of a component [5, 6]. The
basic part of the CM is the sensors, which are used to detect
the voltage or current related to the IGBT. The voltage sensors
can be general operation amplifiers; however, in order to get a
comparable voltage result, some standard testing current
source (CS) should be provided [7]. Current sensors are also
widely used practically, such as the Hall sensors. Recently, more
magnetic sensors have been developed, which may achieve
higher performance [8–13]. Some emerging research studies
are also being carried out on the integrated sensors at the
device gate driver (GD). This technique would be promising
since the implementation would be simple [14, 15].

Based on the measured signals, more state indicators of
IGBT can be derived for the IGBT health management.
Various health state indicators are adopted for the IGBT di-
agnostics and prognostics, including but not limited to the
junction temperature, thermal impedance, on‐state resistance
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etc. An estimation process is adopted to generate the indicators
from the measured signals. A simple example can be the look‐
up table when deducing the junction temperature from the
voltage or current measurements, and the sensed voltage or
current is also known as the temperature sensitivity electrical
parameter (TSEP) [7, 16–24].

Other IGBT states, such as power loss, thermal impedance,
can be derived by physical models as well. Existing models are
developed in the literature [25–27]. But apparently, these off-
line models will suffer from challenges of accuracy or sensi-
tivity if the working condition is varying. In practice, additional
feedback control or model parameter extraction is usually
adopted using the online sensed signals. When proposing such
physical models, it is found that the states of IGBT are deeply
coupled. For instance, the junction temperature model and
power loss model parameters would vary when the working
temperature or degradation level is changed. The coupling
effects would be complex, and it would be hard to get
analytical results. Some artificial intelligent (AI)‐assisted opti-
misation and model feature extraction methods are proposed
[28, 29].

Moreover, the estimation can be model‐free and directly
deduced from data. It is possible to take the IGBT module as a
black box and extract the relationship between its input and
output by data‐driven methods [30, 31].

The remaining useful lifetime (RUL) is another critical
health state of IGBT. The prediction method is the key tech-
nique in the RUL analysis. Although some lifetime models are
proposed for RUL prediction [32–38], the data‐driven methods
are obviously advanced in dealing with this kind of problem
with huge historic data [39–44]. In recent years, the data‐driven
methods in condition estimation and prediction have devel-
oped very fast, thanks to the progress of AI and high per-
formance programing chips [45–51]. According to the sensed
data, the unexplored or uncertain states are generated by the
neural network or other deep learning tools.

Due to the requirement of high reliable power electronics
in modern power grids and electrical vehicles, CM techniques
are used in much broader aspects for the IGBT health man-
agement. The monitored signals are not only limited to the
electrical ones but also include power loss, temperature, RUL
etc. In this paper, the CM techniques for IGBT are summarised
into three catalogues, and the recent developed techniques can
be clearly classified. From the review, the bottleneck of the
IGBT CM is shown and the future directions are identified.
The main contribution of this paper lies in two aspects. Firstly,
this paper summarises and compares the existing CM methods
from the convenience and cost aspects, which has not been
studied before. It is helpful for practically choosing and
designing the detection circuit. Although there are couple of
review papers on condition monitoring published already, they
are mainly focusing on the bench marking of accuracy, sensi-
tivity, and effectiveness of these methods. However, it is un-
clear which of these methods is more practical useable,
especially considering the cost and convenience. Secondly,
since the IGBT CM is still challenging because some states are
hard to measure directly, possible research directions are

proposed based on the state of the art. Particularly, some
practical issues and possible technical solutions are proposed
for the HVDC applications from the authors' experience.

2 | DETECTION METHODS

To acquire the health state of the component in equipment,
sensing is an essential process. Sensing can be classified into
temperature, voltage and current sensing methods. However,
for online real‐time measurement, temperature sensing is hard
to achieve due to the IGBT package. At present, the voltage
and current sensing circuits are usually adopted. However,
accuracy, sensitivity and easy implementation are still chal-
lenging problems.

2.1 | Voltage detection

The collector–emitter on‐state voltage (Vce) is a key parameter
to represent the degradation of the IGBT module. The online
Vce measurement technique can be used to predict the wear‐
out status of IGBT modules during a normal converter
period. This method requires IGBT circuit connection. The
Vce measurement circuit in [7] uses a similar technique as the
desaturation protection. The Vce measurement circuit is shown
in Figure 1. Assuming that the two diodes are identical
(VD1 = VD2), Vce can be measured by subtracting the voltage
drop on diode D2 from Vb.

However, the voltage measurement circuit highly depends
on the architecture of the power converters in terms of to-
pology and control. To solve the problem, authors in [8]
propose a converter‐level method for measuring the on‐state
voltages of all power semi‐conductors in a single‐phase
inverter by using only a simple circuit. The proposed cir-
cuit has better accessibility because of converter‐level
implementation, and the isolation stage can be simplified
with it.

2.2 | Current detection

The principle of the current detection methods is to use Ohm's
law to convert the sensing voltage into current. This needs a
sampling resistor that is inserted into the power loop of the
device. According to the connection type of the resistor, these
kinds of methods can be further classified into extra resistor
type and integrated resistor type. However, these may cause
additional power loss and cost. Therefore, the sensors based
on the Hall effect or magnetoresistive effect are attracting
much attention. The main advantage of these methods is that
they can be non‐invasive.

Hall element is a mature sensing technique and is currently
one of the most widely used magnetic sensors in the industry.
A Hall sensor is capable of measuring DC, AC and complex
waveform currents with galvanic isolation. A closed‐loop Hall
sensor can improve measurement accuracy (linearity and
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gain drift) and bandwidth, and its current output is especially
useful for applications in a noisy environment [9].

Rogowski coil is a classic magnetic current detecting
method. It detects current using Faraday's law of electromag-
netic induction. Authors in [10] propose an output‐current
measurement method of a pulse width modulation (PWM)
inverter using a tiny printed circuit board (PCB) sensor that is
based on the Rogowski coil and can be integrated into an
IGBT module as shown in Figure 2, reproducing the output
current including its polarity using a single PCB sensor at the
low‐side switch per leg. Authors in [11] also designed a square
Rogowski coil, which can be used in chip current measurement
in press‐pack IGBTs. Compared with the traditional square
Rogowski coil with equidistant inter‐turn arrangement, it has
higher position accuracy and anti‐interference ability.
Compared with other methods, the cost of Rogowski coils is
relatively higher.

Other ways to measure current include magnetoresistive
sensors. Magnetoresistance refers to a type of element whose
resistance value changes with the surrounding magnetic field.
The reason for this phenomenon is that the electron spins and
generates a magnetic field. The external magnetic field can
adjust the direction of the electron spin in the device, and
different electron spin directions will affect the resistance of
the electron movement. Due to its small size and increasing
sensitivity, magnetoresistance is also regarded as a very
promising current sensor technology.

Magnetoresistance can be divided into anisotropic
magnetoresistance (AMR), giant magnetoresistance (GMR),
and tunnel magnetoresistance (TMR). Anisotropic magneto-
resistance has only one layer of magnetic resistance material.
When the magnetisation direction in the ferromagnetic film
changes from parallel to the current direction to perpendicular
to the current direction, the resistance value generally changes
by 2%–4% [12].

A lower resistance change rate means a lower signal‐to‐
noise ratio, which is also the main disadvantage of AMR. Gi-
ant magnetoresistance is proposed to increase the resistance
change rate of AMR. Giant magnetoresistance is composed of
two layers of ferromagnets wrapped with a layer of non‐
magnetic metal, and the resistance change is caused by elec-
tron spin scattering [13]. The resistance change rate of GMR is
approximately 12%–20%. Tunnel magnetoresistance further
improves the resistance change rate on the basis of GMR [14].
The schematic diagram of the structure of the TMR element is
shown in Figure 3, which is a sandwich structure. The upper
and lower layers are made of ferromagnetic materials.

In order to eliminate the electromagnetic interference
caused by high‐frequency switching, authors in [12] used a
differential structure composed of two TMR chips to measure
the current of the IGBT power terminal. The measurement
result has a better fit compared with the Rogowski coil. Using
the TMR devices, a fast current sensing can be achieved, and
the IGBT protection can act in 1.23 μs, which is much faster
than traditional methods.

2.3 | Smart gate driver with integrated
sensor

Integrating the sensor into the GD is a simple, cost‐effective way
to detect the IGBT state. In [14], a smart GD circuit, which can
monitor ageing‐related parameters such as the threshold voltage
(Vth), and on‐state saturation voltage drop (Vce,on) is designed.
The circuit is specifically designed to be easily embedded. Apart
from the GD components, the circuit has a CS to provide a small
test current; two diodes are included to protect the GD circuit
from the applied high voltage between the C‐E terminals during
off‐state and to provide isolation between the CS and GD. The
circuit can operate in the Vth measurement, the Vce,on mea-
surement, and the normal operation modes. The measurement
procedure takes less than 100 μs, which is feasible for most
practical applications.

A smart IGBT GD integrated circuit (IC) is presented in
[15] with an integrated collector current sensor and an on‐chip
digital processor. The proposed current sensing method uti-
lises the low‐voltage gate signal to indirectly predict the col-
lector current. With the on‐chip temperature compensation, an
accuracy of �0.5 A is achieved within the current range of
1–30 A for turn‐ON and 1–50 A for turn‐OFF from 25 to
75℃. The proposed smart GD IC is fabricated employing a
0.18 μm binary‐coded decimal process, and the chip is fitted
into a 5 � 5 mm pad frame. Apparently, this technique is
complicated but has the advantage of integrated design.
Meanwhile, the GD will become much smarter, and other
complex driving control can be achieved.

F I GURE 1 Vce measurement circuit [7]

F I GURE 2 Integrated Rogowski coil in an insulated gate bipolar
transistor module [10]
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The above methods are summarised in Table 1 in terms of
convenience and estimated cost from the seller (mouser.cn).
The cost is not accurate for particular designs, and it is only
listed for the comparison of different techniques.

3 | ESTIMATION METHODS

Some physical or non‐physical variables are required in the
analysis to represent the IGBT state or health condition. These
variables can be the directly sensed voltage or current or esti-
mated variables from the sensed data. For example, the power
loss and junction temperature is difficult to measure; however,
there are still some ways to estimate themusing sensed data. This
estimation process can be model‐driven and data‐driven.

3.1 | Model‐driven

The model‐driven CM method is suitable for systems with
constantly changing IGBT operating conditions. Theoretically,
the condition change of IGBT device depends on the internal
state of the device and the operating point. The model‐driven
method can be used to track the change of the operating point
of the system. The main idea is building a model between the
measured variables of the IGBT and its internal state by an
offline testing experiment and then using the real‐time online
monitoring data as the input of the model, to derive the output
of the IGBT state, as shown in Figure 4.

Junction temperature is a key state variable for IGBT
reliability evaluation and health management. The junction
temperature estimation based on temperature‐sensitive elec-
trical parameters is a typical estimation method and has
attracted much attention because there is no need to destroy
the IGBT module package. In [16], a model‐based active
junction temperature estimation method is described. The
estimation system consists of three parts: device model, loss
model and thermal model. Junction temperature Tj, bus
voltage Vdc, switching frequency fsw, collector current Ic and
case temperature Tc are chosen as inputs in the estimation
system. The junction temperature will be further iterated into
the estimation system to form a closed‐loop system for the
estimation of the junction temperature.

In [7, 17], an online estimation method of IGBT junction
temperature based on Vce measurement is proposed, which
designs a high‐precision on‐state voltage measurement circuit
and combines the regression problem solving method to find
the relationship model between on‐state saturation voltage
drop Vce,on, junction temperature Tj and collector current Ic,
and based on this model, the on‐line measurement of junction
temperature can be realised. This method can also be pop-
ularised in the complex system.

In [18], a new method for the online estimation of IGBT
junction temperature according to the gate plateau voltage
during the switching process is proposed. It is known through
experiments that the width of the Miller platform Tdifference in
the gate emitter voltage Vge curve changes with the tempera-
ture, which can be used to measure the junction temperature of
the IGBT. On this basis, the relationship between junction
temperature Tj, module‐rated voltage Vn, rated current In and
the width of the Miller platform Tdifference needs to be estab-
lished. This method does not require any modification to the
module, nor does it require the use of any complex thermal
model.

In [19], a method of junction temperature estimation based
on gate peak current is proposed. Since the internal gate
resistance RGint is temperature‐dependent and will change with
temperature, it can be used for junction temperature moni-
toring, but the resistance is often difficult to measure directly.
Therefore, the internal resistance RGin can be measured indi-
rectly to establish the relationship between the gate voltage
VGpos at turn‐on, the gate voltage VGneg before turn‐on, the
peak voltage Vpeak of the external resistance, and the internal
resistance RGint and then realise the junction temperature
estimation model building of the IGBT.

In [20], an on‐line estimation method of IGBT junction
temperature based on the turn‐on voltage drop is proposed,
which takes into account the influence of the temperature
change of the measurement circuit and the change of the
IGBT load current and makes the corresponding compensa-
tion based on the turn‐off phase of the IGBT. Experimental
analysis shows that there is a linear relationship between the
IGBT junction temperature and the on‐state voltage drop of
the IGBT, which can be used as a basis for junction temper-
ature estimation. Through experimental verification, the esti-
mation error of IGBT junction temperature is derived to be
less than 1.88% under various working conditions.

In [21], a new IGBT module junction temperature esti-
mation method is proposed to adapt to various working con-
ditions and improve calculation efficiency. First, based on the
superposition theorem, odd–even modal analysis and fre-
quency domain analysis, the effects of power loss, frequency
and thermal parameters on thermal coupling are studied.
Finally, experiments verify the effectiveness of this method to
measure junction temperature. In [22], an IGBT junction
temperature extraction method based on the inherent stray
inductance is proposed, and it expounds the fact that the
temperature‐sensitive electrical parameters can be extracted by
the induced voltage.

F I GURE 3 Basic structure of tunnel magnetoresistance

970 - HUANG ET AL.



In [23], an IGBT junction temperature extraction method
based on the maximum collector current drop rate is proposed,
and the inherent linear relationship between the maximum
collector current fall rate and the junction temperature is
studied. Based on the parasitic inductance LeE between the
IGBT module Kelvin and the power emitter terminals, the
maximum dIc/dt can be easily measured; this method has good
application prospect. In [24], an IGBT junction temperature
estimation method based on the turn‐off delay time tdoff is
proposed, and the inherent parasitic inductance LeE of the
IGBT module is used to extract the turn‐off delay time tdoff. In
addition, the dependence between junction temperature and
turn‐off delay time is studied. By monitoring the induced
voltage across LeE, the start and end points of the turn‐off
delay time can be determined. In [25], a thermal estimation
method is proposed for the transient process of IGBT under
current steps. An improved thermal resistance is added to the
thermal network of the IGBT package. Then, the transient
junction temperature rise of the device can be predicted.

In addition to the junction temperature, the thermal state
estimation of the IGBT is also very important, mainly related
to the estimation of loss Eloss, thermal resistance Rth and
thermal capacitance Cth of IGBT. In [26], a novel method of
IGBT loss estimation that combines the temperature‐
dependent IGBT model with the power loss model is pro-
posed, the IGBT‐diode electrical transient model is estab-
lished, and the non‐linear characteristics of the IGBT and the
reverse recovery characteristics of the diode are considered to
simulate the transient switching waveform. Based on the loss
model and actual monitored parameters such as junction

temperature, voltage, current etc., a loss model is established to
realise IGBT power loss estimation.

In [27], a method for estimating the thermal network
parameters of the IGBT modules is proposed, by using the
junction temperature cooling curve. It has two advantages: (1)
there is no need to know the power loss of the IGBT; (2)
there is no need to heat the IGBT to thermal steady state.
This method can directly obtain the thermal resistance ca-
pacity (RC) parameters of the fourth‐order Cauer‐type ther-
mal network by establishing the relationship between the RC
parameters and the time constant of the junction temperature
response curve. The above estimation methods are sum-
marised in Table 2.

Some numerical tools, such as the Kalman filter, are used
to estimate the model parameters by model iteration. In [28],
the on‐state voltage VCE(ON) obtained under high current
during the normal operation of the power converter is used as
a thermally sensitive electrical parameter to measure the
junction temperature. The change of IGBT junction temper-
ature is non‐linear. Therefore, the first two terms of the Taylor
series are used to approximate the non‐linear system linearly,
and then the Kalman filter method is used to estimate and
realise the adaptive junction temperature Tj estimation.
Kalman filter is suitable for the case where the system is linear
and the noise is Gaussian, but the system usually does not
always meet the above conditions. The particle method has
better estimation accuracy when the system is non‐linear or the
noise is non‐Gaussian [29].

In particular, the model‐based TSEP method is summar-
ised in terms of cost and complexity, as shown in Table 3. Also,
the estimated cost is listed from a commercial seller (mouser.
cn) for the comparison of different techniques. It can be seen
from Table 3 that both cost and complexity need to be
comprehensively evaluated. The TSEP method is beneficial to
analyse the thermal characteristics of semi‐conductor devices
under offline conditions. The measurement of the junction
temperature line is closely related to the sensor bandwidth,
measurement circuit and other factors, which has a great in-
fluence on the measurement accuracy.

TABLE 1 Detection method of IGBT health status

Approaches Convenience
Cost
comparison

Voltage detection Vce measurement Need to connect the measuring circuit to IGBT ∼30 RMB

On‐state voltage (OV)
measurement

Non‐invasive ∼60 RMB

Current detection Hall sensor Non‐invasive ∼20 RMB

Rogowski coil (PCB type) Non‐invasive ∼160 RMB

TMR Non‐invasive ∼50 RMB

Smart gate driver with integrated
sensor

Smart GD circuit Need to change gate driver circuit ∼30 RMB

Smart IGBT gate driver IC Integrate IGBT gate driver IC with a collector current sensing circuit, and
each chip needs a special order

∼120 RMB

Abbreviations: GD, gate driver; IC, integrated circuit; IGBT, insulated gate bipolar transistor; PCB, printed circuit board; TMR, tunnel magnetoresistance.

F I GURE 4 Steps of insulated gate bipolar transistor condition online
estimation
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3.2 | Data‐driven

The data‐driven method treats the IGBT power module as a
black box or half‐black box. In order to estimate the IGBT
characteristic parameter value, the sensed internal or external
signal of the IGBT power module is used as the input or
output mapping relationship. Data‐driven IGBT module CM
directly derives model monitoring data from conventionally
collected conditions instead of considering comprehensive
system physical model expertise so that it only requires a
certain amount of data without having a comprehensive un-
derstanding of the system [30, 31]. Intelligent algorithms can
be implemented faster and calculations are more efficient than
other technologies, so data‐driven methods are suitable for
complex systems.

In [32], the operating status of the full‐bridge rectifier based
on the IGBTmodule is analysed, and the static neural network is
used for status monitoring. The operating status of the device is
diagnosed according to the deviation between the actual
measured value and the theoretical value. In [33], the least
squares support vector machine algorithm is used to diagnose
the open circuit fault of the power device IGBT. The results
show that the model has good accuracy and real‐time perfor-
mance. The intelligent algorithm for IGBT CM can usually be
divided into system parameter identification and data mining.

System parameter identification can be model‐free. The
model‐free method does not require prior knowledge of IGBT
devices. It is essentially a regression tool f(∙) using intelligent

algorithms to establish the functional relationship between
input and output [34]. In [35], a case temperature identification
method using genetic algorithm to optimise back propagation
neural network is proposed to monitor the state of IGBT, as
shown in Figure 5. This method takes electrical parameters as
input and case temperature as output. The predicted case
temperature value of the module is compared with the normal
value to realise the state evaluation of the device. The model‐
free method is very sensitive to external noise because there is
no system model. A common way to alleviate this problem is
to use large amounts of data, but the collection of data is time‐
consuming and expensive.

In [36], an extreme learning machine optimised by the
whale optimisation algorithm is used to evaluate the ageing
state of IGBT modules. First, the electrical and thermal
characteristics data of different ageing stages is used to divide
the ageing state of the IGBT into five stages, and the above
data is used to deal with the extreme learning machine
training optimised by the whale optimisation algorithm. The
ageing model establishment is then realised. Finally, the
electrical and thermal characteristics of the IGBT to be tested
are input into the ageing model to determine the ageing state
of the IGBT.

Data mining is to search the information hidden in a
large amount of raw data through algorithms to achieve the
task of monitoring the status of IGBTs. In [37], the k‐
Nearest Neighbour anomaly detection algorithm is applied
to the current, voltage and temperature data, and the fault is
detected before the IGBT enters the failure region. In [38], a
self‐organising map‐based method for identifying the health
status of IGBTs is proposed. This is basically a clustering
method, which uses the ‘distance’ between the input
measured values (including collector current Ic, collector‐
emitter voltage Vce and case temperature Tc) and the
normal value to divide the state of IGBT devices into healthy
state, partially degraded state, severely degraded state and
fault state. Although the strategy is simple, the data mining
algorithm helps to determine the health state from the big
raw data automatically.

Obtaining IGBT characteristic parameter values based on
data‐driven methods usually requires offline training of the
network model using a certain number of samples and then
combining the signals detected at a certain time in the future
with the trained model to obtain the current state of the IGBT.
As the IGBT is in the process of performance degradation, the
degradation trend and evolution law of its characteristic pa-
rameters may change over time. Therefore, in order to accu-
rately estimate the IGBT state within the full life cycle range, it
is necessary to continuously introduce enough new sample data
to retrain the network to update the network model parame-
ters. On the other hand, the presence of noise in the mea-
surement data will affect the accuracy of the evaluation and
prediction. Therefore, in order to eliminate the impact of such
measurement errors, researchers usually need to obtain as
much feature parameter data as possible. However, obtaining a
large amount of data becomes a difficult point, which needs to
be further discussed.

TABLE 2 Model‐driven estimation method for IGBT

Input Mathematical model Output

Tj, Vdc, fsw, ic, Tc [16] Vce ¼ f ðic;TjÞ

E¼ f ðic;Vdc;TjÞ

Pcond ¼ f ðic;Vce;TjÞ

Psw ¼ f ðf sw;Eon;Eof f ;TjÞ

Tj ¼ f ðPloss;Zthjc;TcÞ

Tj

Vce(on), Ic [7, 17, 20] VceðonÞ ¼ f ðTj; icÞ

Tdifference, In, Vn [18, 20] Tdif f erence ¼ f ðTj; In;VnÞ

VGpo, Gneg, Vpeak [19]
RGint ¼

Vgpos − VGneg

ðVpeak=RGextÞ

− RGext ¼ f ðTjÞ

tdoff, IL [22, 24]
Tj ¼ f ðtdof f ; ILÞ

Ic, VeEmax [23] VeEmax ¼ −LeE ⋅
dIc
dt
|max

¼f ðTj; IcÞ

Vce, Ic [21] TjðtÞ ¼ f ½VceðtÞ ⋅ IcðtÞ�

Vce, Ic [26] Eloss ¼ f ðVce; icÞ Eloss

Vce [27] TjðtÞ ¼ f ðVcesatÞ

TvjðtÞ ¼ TjðtÞ − Ta

¼ ∑
4

n¼1
αne−t=τn ¼ f ðRth;CthÞ

Rth, Cth

Abbreviation: IGBT, insulated gate bipolar transistor.
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4 | PREDICTION METHODS

As an important aspect of IGBT CM and health management,
the remaining using lifetime (RUL) prediction predicts the
remaining life of the in‐service device based on sensed data
[30]. The monitored result is the time left for the IGBT device.

The general prediction process of IGBT RUL is shown in
Figure 6. In order to predict the RUL of an IGBT device, the
following three problems need to be solved: (1) How to
establish the life model of the power device? (2) How to
determine the current condition of the in‐service device? (3)

How to choose an appropriate prediction method? The con-
tent of question 2 is briefly summarised in Section 3.2 above.
For question 1, the literature is reviewed as the model‐driven
method, and once the model is established, the RUL predic-
tion result is easily found. For question 3, the prediction
method is critical since the input is only raw data, and related
works are reviewed in the following data‐driven part.

4.1 | Model‐driven

Lifetime model technology can be used for the fatigue ageing
prediction of bonding wires and solder layers of IGBT mod-
ules. Model‐based methods are divided into physical model and
analytical model. The analytical model does not consider the
specific failure process of the IGBT, only the life model ob-
tained based on statistical principles, such as the Lesit model
[39], the Norris–Landzberg model, and the Bayerer model. In
[40], the Norris–Landzberg model is improved by using the
least squares method to fit the test data, and the lifetime model
is given as shown in Equation (1):

TABLE 3 Summary of different TSEPs

TSEP Cost evaluation Implementation complexity

On‐state voltage (VCEon)
(low current)

The measurement circuit needs to use a MOSFET of 70 RMB,
an operational amplifier of 50 RMB, and an FPGA control
board of 500 RMB (∼620 RMB).

The measurement circuits are relatively simple and easy to
implement.

On‐state voltage (VCEon)
(high current)

The measurement circuit needs to use four diodes of 200 RMB,
an op amp of 50 RMB, and a digital signal process (DSP)
controller of 250 RMB (∼500 RMB).

Peak gate current (IGpeak) The measurement circuit needs four resistors for 4 RMB, an op
amp for 50 RMB, and a DSP controller for 250 RMB
(∼304 RMB).

Gate threshold voltage (Vth) The measurement circuit needs to use 12 resistors of 12 RMB, 2
diodes of 100 RMB, 5 capacitors of 1 RMB, 3 operational
amplifiers of 150 RMB, and a DSP controller of 250 RMB
(∼517 RMB).

During the measurement, the gate resistance easily causes
synchronisation jitter, which can cause significant
temperature measurement errors. The measurement circuit
is complicated.

Gate turn off miller plateau
length (Vge,off)

A complicated trigger circuit is required, which will cause
additional interference to the system. The measurement
circuit is complicated.

Saturation current (Isat) The measurement circuit needs to use a current transformer of
150 RMB and a DSP controller of 250 RMB (∼400 RMB).

Temperature correction is difficult.

Short circuit current (Isc) Thermal runaway is likely to occur during the short circuit
process, which will reduce the reliability of the power
module. Implementation is difficult.

Turn on delay time (tdon) The measurement circuit needs to use a time interval
measurement chip of 30 RMB, and a FPGA control board
of 500 RMB (∼530 RMB).

A complex circuit composed of a pulse signal sampler, a pulse
input signal shaping circuit, and a time interval measurement
circuit is required to accurately extract the time in the
switching process, which is difficult to implement.

Turn off delay time (tdoff)

Turn off time (toff)

Current change rate (dic/dt) The measurement circuit needs to use a current transformer of
150 RMB and a DSP controller of 250 RMB (∼400 RMB).

It is necessary to convert the voltage or current rate of change
into a suitable observable signal, which has high
requirements on the measurement circuit.

Voltage change rate (dvce/
dt)

The measurement circuit needs to use four diodes of 200 RMB,
an op‐amp of 50 RMB, and a DSP controller of 250 RMB
(∼500 RMB).

Abbreviations: DSP, digital signal process; MOFSET, metal‐oxide‐semiconductor field‐effect transistor; op‐amp, operation amplifier; TSEP, temperature sensitivity electrical parameter.

F I GURE 5 Diagram of state extraction by neural network [35] BP,
back propagation
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where R is the air constant, A, α, Q, M, and N are con-
stants, ist is the rated current, Tjmax is the rated maximum
junction temperature, i is the collector current, and ΔTj and
Tjm are the difference and average value of the maximum
junction temperature and the minimum junction tempera-
ture, respectively.

The physical of failure of the above bonding wires' and
solder layers' ageing process is clear. Therefore, the physical
model of IGBT is usually used to analyse the physical char-
acteristics of the device and explain the ageing of the device
from the physical mechanism.

The physical modelling process is more complicated but
has practical significance. The failure factors of power devices
are diverse, such as overstress, temperature, material properties
etc. The combined effect of these failure factors determines
the physical life model of the device.

Physical life models include Coffin–Manson–Basquin
model based on plastic deformation, Syed model based on
creep, Morrow model based on energy, and Stolkarts model
based on fatigue damage and their improved models. In [41],
the failure life of the IGBT module is defined according to the
deterioration of the collector‐emitter on‐resistance Rce. In this
paper, the self‐acceleration effect in the process of bonding
wire damage is considered, Rce is fed back to the power loss
model, and the degradation delay stage and the degradation
stage are proposed to describe the degradation process of the
collector‐emitter on‐resistance Rce,on. The degradation model
is used to predict the life of the IGBT. In [42], in order to solve
the influence of noise heteroscedasticity, a generalised auto‐
regressive conditional heteroscedasticity model is proposed.
It shows that with the increase of modelling data scale, the
matching degree of predicted RUL and actual ageing data gets
higher.

4.2 | Data‐driven

The lifetime analysis of both physical model and analytical
model is basically based on statistical law. The change of the
ageing characteristic parameters of the power device depends
on the internal state of the device as well as the operation state.
The model is used to track the change of the system operation
state and then the condition of the IGBT is analysed.

However, due to differences in manufacturing processes,
material properties, and operating conditions, the life of in‐
service IGBT devices has individual differences based on the
overall compliance with the life model law. Therefore, it is not
easy to predict the RUL of an in‐service device based on the
device CM information. The development of sensing tech-
nology and computing science provides an effective way for
RUL prediction, that is, a data‐driven prediction method.

Some recent methods are summarised in Table 4. The data‐
driven method does not require specific knowledge of the
IGBT device. The health condition information is extracted
from the historical data of the characteristic parameters of the
IGBT. The RUL prediction process with the intelligent algo-
rithm of IGBT is shown in Figure 7. The non‐linear regression
between the characteristic parameters of the IGBT and the
degradation information is processed by an intelligent algo-
rithm [43]. The regression model is used to predict the
degradation trend to determine the ageing degree of the device
and RUL of the IGBT is estimated.

The key issue in predicting RUL is the ability to quantify
uncertainty. Affected by system noise, measurement noise,
changes in actual operating conditions and different
manufacturing processes, RUL is actually a random variable [43].
Therefore, the quantification ability of the confidence interval is
very important to the accuracy of RUL prediction. The particle
filter and Gaussian regression process can calculate the proba-
bility density function of RUL. In [45], a particle filter method
including sequential importance sampling and sequential
importance resampling is used for IGBT RUL prediction. The
existence of random errors leads to large errors in RUL. In order
to reduce the RUL estimation error, the index of the sampled
particles is used as an auxiliary variable to increase the particle
dimension. This auxiliary particle filtering method can maintain
the diversity of samples and reduce the RUL estimation variance.
Other applications of particle filtering to predict RUL of IGBT
can be found in [44, 46]. Since VCE;on is a time series with
random non‐stationarity, the variable scale function of the
optimal scale Gaussian process (OSGP) regression model en-
ables it to deal with the randomness and non‐stationarity of the
time series. In [47], the ant lion optimiser model is used to find
the scale function and the corresponding scale of the OSGP
model, and the OSGP model with the optimal scale function and
the optimal scale is applied to the RUL prediction of the IGBT
power module. In addition, neural networks [49] and the
adaptive‐network‐based fuzzy inference systems [50] are applied
to the RUL estimation of IGBT.

Any abnormality of the IGBT, such as fatigue ageing,
will affect its characteristic parameters. These parameters

F I GURE 6 Remaining useful lifetime (RUL) prediction process.
IGBT, insulated gate bipolar transistor
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reflect the ageing state of the IGBT. In RUL prediction of
IGBT, there is usually a single potential failure precursor
parameter, as shown Table 4. The change of the precursor
parameters may be caused by the ageing of the IGBT, or
may be caused by the change of the environment and
operating conditions. Therefore, the information provided by
a single parameter is limited for IGBT RUL prediction. It
has become an inevitable trend to use multi‐parameter
compounding and the use of data‐information fusion tech-
nology to predict the RUL of power devices. This method
has already been applied in the RUL of SiC metal‐oxide‐
semiconductor field‐effect transistor and would be potential
in an IGBT RUL prediction [51].

In order to make RUL predictions more practical, the
following issues need to be considered: (1) The current RUL
prediction methods mostly use intelligent algorithms. These
algorithms regard IGBTs as black boxes or semi‐black boxes
without considering their physical characteristics and failure
mechanisms, which are not convincing to practitioners in
the industry. It is an urgent task to provide interpretable
intelligent algorithms and understand the operation

mechanism of intelligent algorithms. (2) Using intelligent
algorithms to predict IGBT RUL requires a large amount of
data sets for model training. Data collection experiments are
usually time‐consuming and expensive. Therefore, the
establishment of an ageing database of IGBTs is urgently
needed, which can help academia and industry develop RUL
prediction applications and improve the health assessment
system of IGBTs.

5 | DISCUSSION AND FUTURE
DIRECTIONS

As shown in the above sections, the results from CM in IGBTs
is quite useful to improve the power electronics system reli-
ability, especially under the harsh and varying working envi-
ronment. From the direct measurement data, the health
indicators, which are the IGBT characteristic parameters that
reveal the degradation progress, such as the on‐state resistance,
junction temperature swing etc., can be much more helpful for
determining the health stage of the devices.

With the in‐depth research of IGBT physical of failures
and the powerful data‐driven computing tools, the concept of
CM is broadening itself and there can be various output con-
ditions. It can be concluded that the measurement will lead to a
cost increase at hundred yuan, and even though the on voltage
and gate current are relatively simple to implement, it is still not
easy considering practical constraints like isolation. Moreover,
the accuracy of data‐driven methods needs improvement for
the practical applications.

Here, based on this review of recent progress, the chal-
lenges and future directions are provided from our point of
view. In practice, very few CM techniques are adopted in
commercial IGBTs, which might be cost sensitive. The chal-
lenges would lie in the following aspects:

(1) The physical measurement should be simple and accurate,
especially under the complex electromagnetic environ-
ment. Since the IGBTs work under high voltage and high
current states, how the detection or TSEP estimation

TABLE 4 Data‐driven prognostics approaches for IGBT

Approaches Errors Precursors Features

Statistical
methods

Monte‐Carlo simulation ‐ Vce Computationally efficient, relatively low accuracy

Particle filtering [44] 21% Vce or ICE Relatively low accuracy

Auxiliary particle filtering [45] 17.8% Vce Reduce particle and increase diversity in samples with low computation time, relatively
low accuracy

Artificial
intelligence

OSGP model [47] 0.99% Vce Higher prediction accuracy and can adapt to less training samples.

Time delay neural network
[48]

3.65% Vce Use normal distribution function to fit failure model, high accuracy

Feedforward neural network
[49]

‐ Vce Uses the time‐domain features to extract useful information, this method requires
initialisation

ANFIS [50] 1.76% Vce, Tj High accuracy, the algorithm is complex

Abbreviations: ANFIS, adaptive‐network‐based fuzzy inference systems; IGBT, insulated gate bipolar transistor; OSGP, optimal scale Gaussian process.

F I GURE 7 Flow chart of prediction Remaining useful lifetime (RUL)
with the intelligent algorithm [34]. IGBT, insulated gate bipolar transistor;
PDF, probability density function
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techniques can be easily implemented in the circuit is a
challenging aspect.

(2) For high voltage large capacity applications, like the
HVDC system, CM is challenging due to the isolation
rules. Therefore, some indirect detection methods can be
considered, such as the measurement in the valve control
system and cooling system. And the measurement sensi-
tivity is also critical since the voltage and current are over
kV and kA levels on the IGBTs.

(3) More joint health indicators can be developed to reflect a
full picture of the IGBT condition, and the real‐time on-
line CM requires a simple and fast prediction algorithm.

Therefore, with the application of IGBTs in power grids,
CM will play an important role for system security and main-
tenance. However, with the help of economic computing chips,
more accurate condition information can be derived from the
raw data. Some future directions will be as follows:

(1) Smart GDs for IGBT with sensing circuits and computing
chips in it;

(2) More accurate health indicators that can be used for IGBT
diagnostics and prognostics;

(3) Application of emerging edge AI for condition estimation
and prediction.

For the high voltage application in HVDC stations, there
are sensed signals from the existing valve control system and
cooling system. The valve control senses the DC voltage of
the submodule and the arm current at a frequency of several
kHz. Thus, there is huge amount of data, which should be
useful for the state estimation of the IGBT. It is possible to
calculate the power loss or conducting resistance of the
IGBTs. Meanwhile, direct temperature detection is possible
for the cooling system or even on the package of IGBTs.
Several fibre optic sensors can be placed along the cooling
water pipe to measure the temperature difference of the
water. This is also an effective way to acquire the internal
temperature and power loss of the IGBTs. With the above
power loss and temperature information, various effective
estimation methods can be adopted for such high voltage
applications.
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