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Abstract: In this paper, a two-level Bayesian framework is proposed for the identification of
nonlinear hybrid systems from large data sets by embedding it in a four-stage procedure. At the
first stage, feature vector selection techniques are used to generate a reduced-size set from the
given training data set. The resulting data set then is used to identify the hybrid system using a
Bayesian method, where the objective is to assign each data point to a corresponding sub-mode
of the hybrid model. At the third stage, this data assignment is used to train a Bayesian classifier
to separate the original data set and determine the corresponding sub-mode for all the original
data points. Finally, once every data point is assigned to a sub-mode, a Bayesian estimator is
used to estimate a regressor for each sub-system independently. The proposed method tested
on three case studies.

Keywords: Nonlinear hybrid systems, Switched nonlinear ARX models, Bayesian inference,
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1. INTRODUCTION

Hybrid Systems (HSs) have gained considerable attention
in the past few years, since many of the present-day embed-
ded systems are in essence hybrid. Furthermore, HSs can
be used to model complex nonlinear system by represent-
ing them a collection of simpler linear sub-systems. In this
work, a HS is in the form of a Switched Auto-Regressive
Exogenous (SARX) system, and is defined as

𝑦𝑦i = 𝑓𝑓λi (𝑥𝑥i) + 𝑒𝑒i,

where 𝑥𝑥i = [𝑦𝑦i−1 ... 𝑦𝑦i−na
𝑢𝑢i−1−nk

... 𝑢𝑢i−nb−nk
] is

the continuous state composed of 𝑛𝑛b and 𝑛𝑛a samples of
lagged input 𝑢𝑢 and output 𝑦𝑦 respectively, 𝑛𝑛k is the number
of delayed samples, and 𝑒𝑒i is the measurement noise. Also,
𝜆𝜆i ∈ {1, ..., 𝑛𝑛} is an exogenous, time-dependent variable
that denotes the discrete mode and determines which of
the 𝑛𝑛 sub-systems 𝜆𝜆i is active at a specific time: the
corresponding dynamics are characterised by the terms
𝑓𝑓λi

. If the sub-systems 𝑓𝑓λi
are nonlinear, then the resulting

system is a Switched Nonlinear ARX system (SNARX),
which is assumed throughout this work.
The nonlinear sub-systems {𝑓𝑓j}nj=1 can be expressed as
a weighted summation of kernel functions. Assuming a
training data set 𝒮𝒮 = {(𝑥𝑥i, 𝑦𝑦i)}Ni=1, this summation takes
the following form, Lauer et al. (2010):

𝑓𝑓j(𝑥𝑥;𝛼𝛼j , 𝑏𝑏j) =

N∑︁
i=1

𝛼𝛼ij𝑘𝑘j (𝑥𝑥i,𝑥𝑥) + 𝑏𝑏j , (1)

where the weights 𝛼𝛼j = [𝛼𝛼1j ... 𝛼𝛼Nj ]
T and the bias

term 𝑏𝑏j are the parameters of 𝑗𝑗th sub-system and 𝑘𝑘j(·, ·)
is a kernel function that satisfies Mercer’s condition and
represents the model structure ℋj . It should be noted
that the parameters for each sub-system 𝑓𝑓j are 𝛼𝛼j and
𝑏𝑏j , while each model structure ℋj has one or more hyper-
parameters (e.g., the width of the Gaussian kernel).
The identification of nonlinear hybrid systems (NHS)
includes a joint estimation of the best parameters for the
nonlinear sub-systems {𝑓𝑓j}nj=1 and of the time-dependent
switching signal 𝜆𝜆i ∈ {1, ..., 𝑛𝑛}, from the training data set
𝒮𝒮. Therefore, this problem comprises of two sub-problems
that should be solved jointly: the identification of the
switching signal and the estimation of each sub-system.
This leads to the following optimization problem:

min
𝛼𝛼j ,𝑏𝑏j

⎛
⎝

n∑︁
j=1

1

𝑛𝑛
𝛼𝛼T

j 𝛼𝛼j +
𝐶𝐶

𝑁𝑁

N∑︁
i=1

min
j=1,...,n

(︁
𝑦𝑦i − 𝑓𝑓j(𝑥𝑥i)

)︁2

⎞
⎠ ,

(2)
where 𝐶𝐶 is a parameter (discussed below) and 𝑓𝑓j takes the
form of (1) and also encompass the parameters 𝑏𝑏j . This
optimization results in both the model parameters and the
modes 𝜆𝜆i estimation based on the nested minimisation.

Several methods have been proposed for the identification
of linear HSs (Paoletti et al. (2007)), while the identifica-
tion of NHSs has been much less researched.
Research in Lauer and Bloch (2008) adopted the rep-
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ing them a collection of simpler linear sub-systems. In this
work, a HS is in the form of a Switched Auto-Regressive
Exogenous (SARX) system, and is defined as

𝑦𝑦i = 𝑓𝑓λi (𝑥𝑥i) + 𝑒𝑒i,

where 𝑥𝑥i = [𝑦𝑦i−1 ... 𝑦𝑦i−na
𝑢𝑢i−1−nk

... 𝑢𝑢i−nb−nk
] is

the continuous state composed of 𝑛𝑛b and 𝑛𝑛a samples of
lagged input 𝑢𝑢 and output 𝑦𝑦 respectively, 𝑛𝑛k is the number
of delayed samples, and 𝑒𝑒i is the measurement noise. Also,
𝜆𝜆i ∈ {1, ..., 𝑛𝑛} is an exogenous, time-dependent variable
that denotes the discrete mode and determines which of
the 𝑛𝑛 sub-systems 𝜆𝜆i is active at a specific time: the
corresponding dynamics are characterised by the terms
𝑓𝑓λi

. If the sub-systems 𝑓𝑓λi
are nonlinear, then the resulting

system is a Switched Nonlinear ARX system (SNARX),
which is assumed throughout this work.
The nonlinear sub-systems {𝑓𝑓j}nj=1 can be expressed as
a weighted summation of kernel functions. Assuming a
training data set 𝒮𝒮 = {(𝑥𝑥i, 𝑦𝑦i)}Ni=1, this summation takes
the following form, Lauer et al. (2010):

𝑓𝑓j(𝑥𝑥;𝛼𝛼j , 𝑏𝑏j) =
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𝛼𝛼ij𝑘𝑘j (𝑥𝑥i,𝑥𝑥) + 𝑏𝑏j , (1)

where the weights 𝛼𝛼j = [𝛼𝛼1j ... 𝛼𝛼Nj ]
T and the bias

term 𝑏𝑏j are the parameters of 𝑗𝑗th sub-system and 𝑘𝑘j(·, ·)
is a kernel function that satisfies Mercer’s condition and
represents the model structure ℋj . It should be noted
that the parameters for each sub-system 𝑓𝑓j are 𝛼𝛼j and
𝑏𝑏j , while each model structure ℋj has one or more hyper-
parameters (e.g., the width of the Gaussian kernel).
The identification of nonlinear hybrid systems (NHS)
includes a joint estimation of the best parameters for the
nonlinear sub-systems {𝑓𝑓j}nj=1 and of the time-dependent
switching signal 𝜆𝜆i ∈ {1, ..., 𝑛𝑛}, from the training data set
𝒮𝒮. Therefore, this problem comprises of two sub-problems
that should be solved jointly: the identification of the
switching signal and the estimation of each sub-system.
This leads to the following optimization problem:
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where 𝐶𝐶 is a parameter (discussed below) and 𝑓𝑓j takes the
form of (1) and also encompass the parameters 𝑏𝑏j . This
optimization results in both the model parameters and the
modes 𝜆𝜆i estimation based on the nested minimisation.

Several methods have been proposed for the identification
of linear HSs (Paoletti et al. (2007)), while the identifica-
tion of NHSs has been much less researched.
Research in Lauer and Bloch (2008) adopted the rep-
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optimization results in both the model parameters and the
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Several methods have been proposed for the identification
of linear HSs (Paoletti et al. (2007)), while the identifica-
tion of NHSs has been much less researched.
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resentation (1) and proposed a “product of error (PE)”
estimation, which results in the following optimization
problem:

min
𝛼𝛼j ,𝑏𝑏j
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While this method possess good generalization, it suffers
from a clear setback: it has 𝑛𝑛(𝑁𝑁+1) variables that require
a considerable amount of time and memory to solve the
optimization for large data sets. Furthermore, its perfor-
mance deteriorates significantly and the optimization is
prone to assign nearly all the data points to only one of
the sub-systems due to parameter over-fitting. Besides, the
parameter 𝐶𝐶 that controls the trade off between model
complexity and data fitness should be determined by user.
Finally, the PE estimator is not an accurate estimation for
the minimum function, which reduces the performance of
the method. A Gaussian approach with stochastic simula-
tions is proposed in Scampicchio et al. (2018) to identify a
switched system consisting of one linear and one nonlinear
sub-system for a small data set. A sparse optimization
technique, based on ℓ0 − ℓ1 norms, is proposed in Bako
et al. (2010).

The identification of NHSs gets complicated when the
number of the data points increases. Bianchi et al. (2018)
models nonlinear systems as a linear combination of poly-
nomial functional expansions, and uses a randomized ap-
proach to assign each data point to a sub-model and to
select the model structure of the local models.

The Expectation Maximization (EM) framework is used
in Brusaferri et al. (2020) and Xiujun et al. (2020) to
identify a specific class of NHSs in the from of Switched
Markov Nonlinear ARX (SMNARX) systems and switched
nonlinear systems with multiple Hammerstein models,
respectively.

Bianchi et al. (2020) works with a large data set, by
modeling the nonlinear functions as finite-dimensional
parameterized polynomial expansions. Le et al. (2013)
applies sparse optimization techniques to NHSs by using
the kernel expansion form (1). A reduced-size kernels
technique is proposed in Lauer et al. (2010); Bloch et al.
(2011) to make the method developed in Lauer and Bloch
(2008) applicable to large data sets. The method uses a
pre-processing step to form a smaller data set based on
principal component analysis.

Considering the limitations of the polynomial expansions,
and the presence of many hyper-parameters and prior
knowledge required by the switching signal, we conclude
that the kernel expansion method presented in Lauer et al.
(2010); Bloch et al. (2011) possess better generalization,
fewer hyper-parameters, and less assumptions. Neverthe-
less, while the Lauer et al. (2010) is applicable to large data
sets, the other two issues are still in place: the accuracy of
the PE estimator and the best choice of the compromise
between data fitness and model complexity. The reason
is that in Lauer et al. (2010) the identified model using
the reduced data set makes the mode estimator to assign
all the data to their respective sub-system. In this regard,
having the optimal value for the trade-off coefficient, an
accurate estimation of the “minimum function” and an ac-

curate mode estimator is even more crucial for an accurate
identification.

In this paper, a multi-stage Bayesian framework is in-
troduced for the identification of NHSs. First, a subset
of data is generated from the complete data set through
feature vector selection techniques. Then, the reduced data
set is fed into a two-level Bayesian framework for an
initial identification. This framework employs a new and
accurate estimation that greatly improves the accuracy of
the procedure. Furthermore, the best values for the hyper-
parameters that control the model complexity and data fit-
ness are obtained automatically, which subsequently pro-
vides a model with the best trade-off between complexity
and data-fitness. The output of this stage is the mode
assignment for the data points in the reduced data set.
Instead of using a mode estimator based on minimum error
using the rough estimated model, a Bayesian classifier is
used to assign all the data points in the complete data set
to sub-systems, using the mode assignments from the pre-
identification step. Once all data points are assigned to
sub-systems, a Bayesian regressor is used to estimate each
sub-system. It is worth mentioning that unlike the existing
kernel expansion methods and randomized methods, the
predictions provided by the proposed method subsumes
the uncertainty in the model parameters and generates a
probability distribution: this can be later used for instance
in Markov chain Monte Carlo method to generate random
samples for further applications.

2. GENERATING THE REDUCED-SIZE DATA SET

Identification of NHSs with large data sets using kernel
expansion requires considerable resources (time and mem-
ory), since kernel expansion methods treat each points as a
variable. However, a kernel space can be spanned with only
a sub-set of the data points and this subset can be sufficient
to represent the entire data set. In this paper, a reduced-
size data set is constructed from the original data 𝒮𝒮 and is
used as the input to the proposed identification procedure
to estimate a HS and to assign the data points to their
respective sub-systems. To construct the reduced data set
𝒟𝒟 = {𝒟𝒟j}nj=1 from the complete data set 𝒮𝒮 = {𝑥𝑥i, 𝑦𝑦i}Ni=1,
where each 𝒟𝒟j = {𝑥𝑥i, 𝑦𝑦i}

Mj

i=1 is a sub-set of 𝑀𝑀j data
points corresponding to the ℋj kernel, the Feature Vector
Selection (FVS) method presented in Baudat and Anouar
(2003) is used. This method tries to find a relevant subset
from the given data and to form a basis in a feature space.
This way, the subset 𝒟𝒟 = {𝑥𝑥i, 𝑦𝑦i}Mi=1 contains 𝑀𝑀 data
points from the original data set, where 𝑀𝑀 =

∑︀n
j=1 𝑀𝑀j .

3. BAYESIAN SETUP

Identification problem for SNARX systems comprises es-
timating several sets of parameters and hyper-parameters.
In a Bayesian framework, this can be achieved by maxi-
mizing their respective posterior probabilities according to
Bayes’ rule in two levels of inference, where the evidence
of the first level is the likelihood of the next level. The
required parameters and hyper-parameters for this frame-
work are:

∙ The vector of the model parameters, 𝜃𝜃 = [𝛼𝛼, 𝑏𝑏]T ,
where 𝛼𝛼 is the vector of the model weights and 𝑏𝑏 is the
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resentation (1) and proposed a “product of error (PE)”
estimation, which results in the following optimization
problem:

min
𝛼𝛼j ,𝑏𝑏j

⎛
⎝

n∑︁
j=1

1

𝑛𝑛
𝛼𝛼T

j 𝛼𝛼j +
𝐶𝐶

𝑁𝑁

N∑︁
i=1

n∏︁
j=1

(︁
𝑦𝑦i − 𝑓𝑓j(𝑥𝑥i)

)︁2

⎞
⎠ .

While this method possess good generalization, it suffers
from a clear setback: it has 𝑛𝑛(𝑁𝑁+1) variables that require
a considerable amount of time and memory to solve the
optimization for large data sets. Furthermore, its perfor-
mance deteriorates significantly and the optimization is
prone to assign nearly all the data points to only one of
the sub-systems due to parameter over-fitting. Besides, the
parameter 𝐶𝐶 that controls the trade off between model
complexity and data fitness should be determined by user.
Finally, the PE estimator is not an accurate estimation for
the minimum function, which reduces the performance of
the method. A Gaussian approach with stochastic simula-
tions is proposed in Scampicchio et al. (2018) to identify a
switched system consisting of one linear and one nonlinear
sub-system for a small data set. A sparse optimization
technique, based on ℓ0 − ℓ1 norms, is proposed in Bako
et al. (2010).

The identification of NHSs gets complicated when the
number of the data points increases. Bianchi et al. (2018)
models nonlinear systems as a linear combination of poly-
nomial functional expansions, and uses a randomized ap-
proach to assign each data point to a sub-model and to
select the model structure of the local models.

The Expectation Maximization (EM) framework is used
in Brusaferri et al. (2020) and Xiujun et al. (2020) to
identify a specific class of NHSs in the from of Switched
Markov Nonlinear ARX (SMNARX) systems and switched
nonlinear systems with multiple Hammerstein models,
respectively.

Bianchi et al. (2020) works with a large data set, by
modeling the nonlinear functions as finite-dimensional
parameterized polynomial expansions. Le et al. (2013)
applies sparse optimization techniques to NHSs by using
the kernel expansion form (1). A reduced-size kernels
technique is proposed in Lauer et al. (2010); Bloch et al.
(2011) to make the method developed in Lauer and Bloch
(2008) applicable to large data sets. The method uses a
pre-processing step to form a smaller data set based on
principal component analysis.

Considering the limitations of the polynomial expansions,
and the presence of many hyper-parameters and prior
knowledge required by the switching signal, we conclude
that the kernel expansion method presented in Lauer et al.
(2010); Bloch et al. (2011) possess better generalization,
fewer hyper-parameters, and less assumptions. Neverthe-
less, while the Lauer et al. (2010) is applicable to large data
sets, the other two issues are still in place: the accuracy of
the PE estimator and the best choice of the compromise
between data fitness and model complexity. The reason
is that in Lauer et al. (2010) the identified model using
the reduced data set makes the mode estimator to assign
all the data to their respective sub-system. In this regard,
having the optimal value for the trade-off coefficient, an
accurate estimation of the “minimum function” and an ac-

curate mode estimator is even more crucial for an accurate
identification.

In this paper, a multi-stage Bayesian framework is in-
troduced for the identification of NHSs. First, a subset
of data is generated from the complete data set through
feature vector selection techniques. Then, the reduced data
set is fed into a two-level Bayesian framework for an
initial identification. This framework employs a new and
accurate estimation that greatly improves the accuracy of
the procedure. Furthermore, the best values for the hyper-
parameters that control the model complexity and data fit-
ness are obtained automatically, which subsequently pro-
vides a model with the best trade-off between complexity
and data-fitness. The output of this stage is the mode
assignment for the data points in the reduced data set.
Instead of using a mode estimator based on minimum error
using the rough estimated model, a Bayesian classifier is
used to assign all the data points in the complete data set
to sub-systems, using the mode assignments from the pre-
identification step. Once all data points are assigned to
sub-systems, a Bayesian regressor is used to estimate each
sub-system. It is worth mentioning that unlike the existing
kernel expansion methods and randomized methods, the
predictions provided by the proposed method subsumes
the uncertainty in the model parameters and generates a
probability distribution: this can be later used for instance
in Markov chain Monte Carlo method to generate random
samples for further applications.

2. GENERATING THE REDUCED-SIZE DATA SET

Identification of NHSs with large data sets using kernel
expansion requires considerable resources (time and mem-
ory), since kernel expansion methods treat each points as a
variable. However, a kernel space can be spanned with only
a sub-set of the data points and this subset can be sufficient
to represent the entire data set. In this paper, a reduced-
size data set is constructed from the original data 𝒮𝒮 and is
used as the input to the proposed identification procedure
to estimate a HS and to assign the data points to their
respective sub-systems. To construct the reduced data set
𝒟𝒟 = {𝒟𝒟j}nj=1 from the complete data set 𝒮𝒮 = {𝑥𝑥i, 𝑦𝑦i}Ni=1,
where each 𝒟𝒟j = {𝑥𝑥i, 𝑦𝑦i}

Mj

i=1 is a sub-set of 𝑀𝑀j data
points corresponding to the ℋj kernel, the Feature Vector
Selection (FVS) method presented in Baudat and Anouar
(2003) is used. This method tries to find a relevant subset
from the given data and to form a basis in a feature space.
This way, the subset 𝒟𝒟 = {𝑥𝑥i, 𝑦𝑦i}Mi=1 contains 𝑀𝑀 data
points from the original data set, where 𝑀𝑀 =

∑︀n
j=1 𝑀𝑀j .

3. BAYESIAN SETUP

Identification problem for SNARX systems comprises es-
timating several sets of parameters and hyper-parameters.
In a Bayesian framework, this can be achieved by maxi-
mizing their respective posterior probabilities according to
Bayes’ rule in two levels of inference, where the evidence
of the first level is the likelihood of the next level. The
required parameters and hyper-parameters for this frame-
work are:

∙ The vector of the model parameters, 𝜃𝜃 = [𝛼𝛼, 𝑏𝑏]T ,
where 𝛼𝛼 is the vector of the model weights and 𝑏𝑏 is the

2

vector of bias terms: 𝛼𝛼 = [𝛼𝛼1...𝛼𝛼n]
T , 𝑏𝑏 = [𝑏𝑏1...𝑏𝑏n]

T

(𝑛𝑛 is the number of sub-systems);
∙ The vector of the model hyper-parameters, 𝒳𝒳 =
[𝜇𝜇, 𝛽𝛽], which contains the variances for the prior
distributions of the weights and the estimated noise;

∙ The family of kernels ℋ = {ℋj |𝑗𝑗 = 1, ..., 𝑛𝑛}: this
is the family of the models with different structures
and/or different values for the parameters (e.g. the
width of the Gaussian kernel or the degree of the
polynomial kernel).

3.1 First level of inference: Model parameters

The first level of inference is dedicated to calculating the
vector of the model parameters through maximizing their
posterior probabilities. Assuming a reduced-size training
data set 𝒟𝒟 = {𝑥𝑥i, 𝑦𝑦i}Mi=1 consisting of 𝑀𝑀 data points, the
vector of hyper-parameters 𝒳𝒳 and the family of the kernels
ℋ, the conditional posterior probability of the model
parameters can be calculated according to the Bayes’ rule
where 𝑃𝑃 (𝜃𝜃|𝒳𝒳 ,ℋ) is the prior probability distribution of
the model parameters and 𝑃𝑃 (𝒟𝒟𝒟𝜃𝜃,𝒳𝒳 ,ℋ) is the likelihood
of the data points.

𝑃𝑃 (𝜃𝜃|𝒟𝒟,𝒳𝒳 ,ℋ) =
𝑃𝑃 (𝒟𝒟𝒟𝜃𝜃,𝒳𝒳 ,ℋ)𝑃𝑃 (𝜃𝜃|𝒳𝒳 ,ℋ)

𝑃𝑃 (𝒟𝒟𝒟𝒳𝒳 ,ℋ)
, (3)

The denominator of (3) is called the hyper-parameter
evidence and as it will be shown, it is not a function of
the model parameters. Therefore, it is usually ignored in
the calculation process of the model parameters MacKay
(1992). Assuming independence across sub-systems pa-
rameters, as well as independence of weights 𝛼𝛼j and bias
terms 𝑏𝑏j of sub-systems (cf. MacKay (1992, 1995)), one can
write the conditional probability of the prior distribution
over the model parameters as:

𝑃𝑃 (𝛼𝛼, 𝑏𝑏|𝒳𝒳 ,ℋ) =

n∏︁
j=1

𝑃𝑃 (𝛼𝛼j |𝒳𝒳 ,ℋ)𝑃𝑃 (𝑏𝑏j |𝒳𝒳 ,ℋ) . (4)

Next, a normal distribution with zero mean and covariance
matrix of 𝜇𝜇−1

j 𝐼𝐼M is assumed for the prior distribution of
the weights 𝛼𝛼j of the 𝑗𝑗th sub-system:

𝑃𝑃 (𝛼𝛼j |𝒳𝒳 ,ℋ) =
1

𝑍𝑍𝛼𝛼j

𝑒𝑒−
µj
2 𝛼𝛼T𝛼𝛼;𝑍𝑍𝛼𝛼j

=

(︂
2𝜋𝜋

𝜇𝜇j

)︂M
2

. (5)

In (5), 𝜇𝜇j shows how sure we are about the weights a
priori and is discussed further in Section 4. The second
term in (4) is the prior probability distribution on the
bias terms which due to the lack of prior information, is
usually considered to be uninformative, MacKay (1992).
The conditional distribution of 𝑃𝑃 (𝒟𝒟𝒟𝛼𝛼, 𝑏𝑏,𝒳𝒳 ,ℋ) is the
likelihood term. The complete likelihood can be written
after the data points are assigned to their respective
sub-systems. This can be achieved by using maximum
likelihood principle, Lauer and Bloch (2008) that tries to
assign each data point (𝑥𝑥i, 𝑦𝑦i) to the sub-system that most
likely generates the data point, i.e. the one that maximizes
the likelihood of the data with respect to the estimated
sub-system 𝑓𝑓j . This can be written as:

𝜆̂𝜆i = argmax
j=1,...,n

𝑃𝑃 (𝑦𝑦i|𝑥𝑥i, 𝑓𝑓j),

𝑃𝑃 (𝑦𝑦i|𝑥𝑥i, 𝑓𝑓j) =
𝑒𝑒−�(yi−f̂j(𝑥𝑥i))

𝑍𝑍δ
,

(6)

where ℓ(.) is a proper loss function and 𝑍𝑍δ is a normalizing
constant, while 𝑓𝑓j is the estimated model of the 𝑗𝑗th sub-
system. Here a Gaussian distribution with the variance
of 1/𝛽𝛽 is chosen as the likelihood function. The term
1/𝛽𝛽 represents our prior belief on the noise variance of
the system. Besides, 𝑦𝑦i − 𝑓𝑓j(𝑥𝑥i) is the prediction error
and 𝑃𝑃 (𝑦𝑦i|𝑥𝑥i, 𝑓𝑓j) is the probability density function of the
prediction errors, Ljung (1999). A standard assumption in
the system identification is that the prediction errors are
independent Ljung (1999): under this assumption, one can
write the the complete likelihood of the data as:

𝑃𝑃 (𝒟𝒟𝒟𝛼𝛼, 𝑏𝑏,𝒳𝒳 ,ℋ) =
M∏︁
i=1

1

𝑍𝑍δ
𝑒𝑒
argmax

j

− β
2 (yi−f̂j(𝑥𝑥i))

2

, (7)

where 𝑍𝑍δ = (
2𝜋𝜋

𝛽𝛽
). At this stage, the the prior distribution

of parameters and the complete likelihood of the data can
be combined to obtain the posterior probability of the
model parameters as:

𝑃𝑃 (𝛼𝛼, 𝑏𝑏|𝒟𝒟,𝒳𝒳 ,ℋ) =

∏︀M
i=1 𝑍𝑍

−1
δ

∏︀n
j=1 𝑍𝑍

−1
𝛼𝛼j

𝑒𝑒−J1(𝛼𝛼,𝑏𝑏)

𝑃𝑃 (𝒟𝒟𝒟𝒳𝒳 ,ℋ)
,

𝒥𝒥1(𝛼𝛼, 𝑏𝑏) =

n∑︁
j=1

𝜇𝜇j

2
𝛼𝛼T

j 𝛼𝛼j +
𝛽𝛽

2

M∑︁
i=1

argmin
j=1,...,n

(︁
𝑦𝑦i − 𝑓𝑓j(𝑥𝑥i)

)︁2

.

(8)
The normalizing term 𝑃𝑃 (𝒟𝒟𝒟𝒳𝒳 ,ℋ) in (8) is the evidence of
the hyper-parameters and will be used as the likelihood in
the next level of inference. To obtain the model parame-
ters, one should maximize the posterior probability distri-
bution. This results in maximum a posteriori estimation
of the parameters, designated as 𝛼𝛼MAP and 𝑏𝑏MAP . It is
more convenient to minimize the negative logarithm of the
posterior distribution, that is min

𝛼𝛼,𝑏𝑏
𝒥𝒥1. To circumvent the

obtained mixed optimization on both continuous and dis-
crete variables one can replace the min function on discrete
variables with a smooth approximation of it: Lauer et al.
(2009) proposes the PE estimator as such an estimation,
however it is not the best smooth approximation. In this
study, instead, the minimum of logarithm of Summation of
Exponential (MinLSE) function is proposed to replace the
min function. The MinLSE function is defined as follows.
Definition 1. The MinLSE function for a set of {𝑥𝑥j}nj=1
is defined as

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥1, ..., 𝑥𝑥n) = −𝜅𝜅−1 log

⎛
⎝

n∑︁
j=1

exp(−𝜅𝜅𝜅𝜅j)

⎞
⎠ ,

where 𝜅𝜅 𝜅 0 is a scale factor to further improve the
accuracy of the approximation.

Using the MinLSE function, the optimization problem (8)
is re-written as follows.

min
𝛼𝛼,𝑏𝑏

n∑︁
j=1

𝜇𝜇j

2
𝛼𝛼T

j 𝛼𝛼j +
𝛽𝛽

2

M∑︁
i=1

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
j=1,...,n

(︂(︁
𝑦𝑦i − 𝑓𝑓j(𝑥𝑥i)

)︁2
)︂
,

After calculating the optimal values for the sub-system
parameters, the estimated sub-systems 𝑓𝑓j is calculated
using 𝑓𝑓j(𝑥𝑥;𝛼𝛼j , 𝑏𝑏j) =

∑︀M
i=1 𝛼𝛼ij𝑘𝑘j (𝑥𝑥i,𝑥𝑥) + 𝑏𝑏j . At this

stage, since the estimated sub-systems are known, the
discrete mode of each data point can be calculated by
utilizing the maximum likelihood principle: the probability

3
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of each data point belonging to all the sub-system is
calculated. The data point belongs to the sub-system
with the highest probability. Substituting the optimal
values of the sub-system parameters obtained earlier in
the maximum likelihood estimation in (6) results in:

𝜆𝜆i = argmax
j=1,...,n

𝑃𝑃 (𝑦𝑦i|𝑥𝑥i, 𝑓𝑓j(.;𝛼𝛼
MAP , 𝑏𝑏MAP )), (9)

where 𝑖𝑖 = 1, ...,𝑀𝑀 . The posterior distribution of the model
parameters can be summarized using the calculated values
for 𝛼𝛼MAP , 𝑏𝑏MAP and the confidence interval on these max-
imum a-posteriori parameters. The confidence intervals are
calculated from the curvature of the posterior distribution
MacKay (1992). The posterior can be approximated lo-
cally with a Gaussian distribution as:

𝑃𝑃 (𝜃𝜃|𝒟𝒟,𝒳𝒳 ,ℋ) �

𝑃𝑃 (𝜃𝜃MAP |𝒟𝒟,𝒳𝒳 ,ℋ) exp

(︂
−1

2
△ 𝜃𝜃TΣ△ 𝜃𝜃

)︂
,

(10)

where 𝜃𝜃MAP = [𝛼𝛼MAP , 𝑏𝑏MAP ]T and △𝜃𝜃 = 𝜃𝜃 − 𝜃𝜃MAP .
In (10), Σ is the Hessian matrix, namely Σ = − ▽2

log𝑃𝑃 (𝛼𝛼, 𝑏𝑏|𝒟𝒟,𝒳𝒳 ,ℋ), and the covariance of 𝒥𝒥1 is equal
to Σ−1. The accuracy of this approximation depends on
the problem. For the quadratic term that is used in
this research, the approximation is exact MacKay (1992).
After the most probable values of parameters have been
obtained, the mode estimation will be done according to
(9) and values of 𝜆𝜆i are calculated for each data point. The
estimated modes can be encoded in a discrete variable 𝐵𝐵ij

that is defined as
𝐵𝐵ij ∈ {0, 1}, ∀𝑖𝑖 = 1, ...,𝑀𝑀 𝑀𝑀 = 1, ..., 𝑛𝑛𝑛

𝑠𝑠𝑠𝑠𝑠 𝑠𝑠ij = 1 iff 𝜆𝜆i = 𝑗𝑗 and
n∑︁

j=1

𝐵𝐵ij = 1,

which encodes each data point to a sub-system. Introduc-
ing this discrete variable into 𝒥𝒥1 in (8), it can be re-written
as

𝒥𝒥1 =

n∑︁
j=1

𝜇𝜇j

2
𝛼𝛼T

j 𝛼𝛼j +
𝛽𝛽

2

M∑︁
i=1

n∑︁
j=1

𝐵𝐵ij

(︁
𝑦𝑦i − 𝑓𝑓j(𝑥𝑥i)

)︁2

.

The first term in this equation is called regularization,
which expresses the kind of smoothness we expect from
resulting model MacKay (1992). The second term is the
data fitness.

3.2 Second level of inference: Hyper-parameters

The purpose of the second and third levels of inference is to
obtain the optimal values for the model hyper-parameters.
It is important to obtain the optimal values for these hyper
parameters since the model parameters depend heavily on
the values of prior variances of the weights and noise, as
they can cause severe under-fitting or over-fitting MacKay
(1992, 1995) (depending on the values of model parameters
and the ratio 𝛽𝛽𝛽𝛽𝛽j). Furthermore, since the purpose is not
only to fit models on the data, but also to estimate the
switching sequence. Improper values for 𝜇𝜇j ,𝛽𝛽 and model
parameters may result in the wrong mode estimation.
The second level of inference is dedicated to maximizing
the posterior distribution of the hyper-parameters given
the data points and the model using Bayes formula. This
posterior probability distribution is expressed as

𝑃𝑃 (𝒳𝒳 |𝒟𝒟,ℋ) =
𝑃𝑃 (𝒟𝒟𝒟𝒳𝒳 ,ℋ)𝑃𝑃 (𝒳𝒳 |ℋ)

𝑃𝑃 (𝒟𝒟𝒟𝒟)
,

where 𝑃𝑃 (𝒳𝒳 |ℋ) is the prior distribution given the model set
ℋ and assumed to be flat over logarithmic scaleMacKay
(1995), since before the training, little information is
known about the optimum values of the hyper-parameters.
Besides, the evidence of the model is 𝑃𝑃 (𝒟𝒟𝒟𝒟).

3.3 Second level of inference: Likelihood

The likelihood of the training data given the model hyper-
parameters and model family ℋ is 𝑃𝑃 (𝒟𝒟𝒟𝒳𝒳 ,ℋ). According
to (3), this expression is the evidence of the first level of
inference. Assuming a uniform prior for hyper-parameters
one can maximize the likelihood of the second level to
maximize the posterior distribution. By marginalizing over
the model parameter using the following integral, the
evidence of the first level can be calculated, MacKay
(1992):

𝑃𝑃 (𝒟𝒟𝒟𝒳𝒳 ,ℋ) =

∫︁
𝑃𝑃 (𝒟𝒟𝒟𝜃𝜃,𝒳𝒳 ,ℋ)𝑃𝑃 (𝜃𝜃|𝒳𝒳 ,ℋ)𝑑𝑑𝜃𝜃. (11)

It is expected that this posterior has a peak around
the most probable values for the model parameters. By
exploring this, one can approximate the evidence integral
with the integrand’s peak and its width △𝜃𝜃, MacKay
(1995). One can locally approximate the integral (11) as a
Gaussian distribution with covariance matrix Σ, as follows:
𝑃𝑃 (𝒟𝒟𝒟𝒳𝒳 ,ℋ) =

n∏︁
j=1

𝑍𝑍−1
𝛼𝛼j

M∏︁
i=1

𝑍𝑍−1
δ 𝑒𝑒−J1(𝜃𝜃

MAP )(2𝜋𝜋)
n(M+1)

2 |Σ|− 1
2 ,

(12)

where 𝑍𝑍𝛼𝛼j
=

(︂
2𝜋𝜋

𝜇𝜇j

)︂M
2

, 𝑍𝑍δ =

(︂
2𝜋𝜋

𝛽𝛽

)︂ 1
2

and Σ is the Hessian

matrix of the first-level cost function. The complexity of
the model is controlled by the hyper-parameters 𝜇𝜇j . A
large value for 𝜇𝜇j means low variance on prior distribution
of weights. A model with such hyper-parameter will fits
data within smooth functions, while a model with small
𝜇𝜇j (large freedom on the prior range of possible 𝛼𝛼) fits the
data from possibly less smooth functions. The Occam’s
Razor principle states that this parameter should not be
too high or too low, Tipping (2003). One of the most com-
pelling aspects of the Bayesian approach is that it auto-
matically applies the Occam’s Razor principle by integrat-
ing out all the irrelevant variables. Namely, in the Bayesian
framework simple models that sufficiently explain the data
without unnecessary complexity are automatically the pre-
ferred choice Tipping (2003). This property holds even if
the prior probability is completely uninformative, MacKay
(1992). The most probable values of the hyper-parameters
𝜇𝜇MAP
j and 𝛽𝛽MAP , can be obtained by minimizing the

negative logarithm of the posterior probability. The output
of this stage is an assignment of each data point in the
reduced set 𝒟𝒟 to a sub-system, forming a set of labels
ℒ = {𝜆𝜆i}Mi=1, 𝜆𝜆i ∈ {1, ..., 𝑛𝑛} that will be used to train a
classifier to distinguish the data in the complete data set
𝒮𝒮.

4. MODE ASSIGNMENT AND SUB-MODEL
IDENTIFICATION

Having obtained the reduced-size sets of labels from the
previous section, it is now possible to train a Bayesian
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of each data point belonging to all the sub-system is
calculated. The data point belongs to the sub-system
with the highest probability. Substituting the optimal
values of the sub-system parameters obtained earlier in
the maximum likelihood estimation in (6) results in:

𝜆𝜆i = argmax
j=1,...,n

𝑃𝑃 (𝑦𝑦i|𝑥𝑥i, 𝑓𝑓j(.;𝛼𝛼
MAP , 𝑏𝑏MAP )), (9)

where 𝑖𝑖 = 1, ...,𝑀𝑀 . The posterior distribution of the model
parameters can be summarized using the calculated values
for 𝛼𝛼MAP , 𝑏𝑏MAP and the confidence interval on these max-
imum a-posteriori parameters. The confidence intervals are
calculated from the curvature of the posterior distribution
MacKay (1992). The posterior can be approximated lo-
cally with a Gaussian distribution as:

𝑃𝑃 (𝜃𝜃|𝒟𝒟,𝒳𝒳 ,ℋ) �

𝑃𝑃 (𝜃𝜃MAP |𝒟𝒟,𝒳𝒳 ,ℋ) exp

(︂
−1

2
△ 𝜃𝜃TΣ△ 𝜃𝜃

)︂
,

(10)

where 𝜃𝜃MAP = [𝛼𝛼MAP , 𝑏𝑏MAP ]T and △𝜃𝜃 = 𝜃𝜃 − 𝜃𝜃MAP .
In (10), Σ is the Hessian matrix, namely Σ = − ▽2

log𝑃𝑃 (𝛼𝛼, 𝑏𝑏|𝒟𝒟,𝒳𝒳 ,ℋ), and the covariance of 𝒥𝒥1 is equal
to Σ−1. The accuracy of this approximation depends on
the problem. For the quadratic term that is used in
this research, the approximation is exact MacKay (1992).
After the most probable values of parameters have been
obtained, the mode estimation will be done according to
(9) and values of 𝜆𝜆i are calculated for each data point. The
estimated modes can be encoded in a discrete variable 𝐵𝐵ij

that is defined as
𝐵𝐵ij ∈ {0, 1}, ∀𝑖𝑖 = 1, ...,𝑀𝑀 𝑀𝑀 = 1, ..., 𝑛𝑛𝑛

𝑠𝑠𝑠𝑠𝑠 𝑠𝑠ij = 1 iff 𝜆𝜆i = 𝑗𝑗 and
n∑︁

j=1

𝐵𝐵ij = 1,

which encodes each data point to a sub-system. Introduc-
ing this discrete variable into 𝒥𝒥1 in (8), it can be re-written
as

𝒥𝒥1 =

n∑︁
j=1

𝜇𝜇j

2
𝛼𝛼T

j 𝛼𝛼j +
𝛽𝛽

2

M∑︁
i=1

n∑︁
j=1

𝐵𝐵ij

(︁
𝑦𝑦i − 𝑓𝑓j(𝑥𝑥i)

)︁2

.

The first term in this equation is called regularization,
which expresses the kind of smoothness we expect from
resulting model MacKay (1992). The second term is the
data fitness.

3.2 Second level of inference: Hyper-parameters

The purpose of the second and third levels of inference is to
obtain the optimal values for the model hyper-parameters.
It is important to obtain the optimal values for these hyper
parameters since the model parameters depend heavily on
the values of prior variances of the weights and noise, as
they can cause severe under-fitting or over-fitting MacKay
(1992, 1995) (depending on the values of model parameters
and the ratio 𝛽𝛽𝛽𝛽𝛽j). Furthermore, since the purpose is not
only to fit models on the data, but also to estimate the
switching sequence. Improper values for 𝜇𝜇j ,𝛽𝛽 and model
parameters may result in the wrong mode estimation.
The second level of inference is dedicated to maximizing
the posterior distribution of the hyper-parameters given
the data points and the model using Bayes formula. This
posterior probability distribution is expressed as

𝑃𝑃 (𝒳𝒳 |𝒟𝒟,ℋ) =
𝑃𝑃 (𝒟𝒟𝒟𝒳𝒳 ,ℋ)𝑃𝑃 (𝒳𝒳 |ℋ)

𝑃𝑃 (𝒟𝒟𝒟𝒟)
,

where 𝑃𝑃 (𝒳𝒳 |ℋ) is the prior distribution given the model set
ℋ and assumed to be flat over logarithmic scaleMacKay
(1995), since before the training, little information is
known about the optimum values of the hyper-parameters.
Besides, the evidence of the model is 𝑃𝑃 (𝒟𝒟𝒟𝒟).

3.3 Second level of inference: Likelihood

The likelihood of the training data given the model hyper-
parameters and model family ℋ is 𝑃𝑃 (𝒟𝒟𝒟𝒳𝒳 ,ℋ). According
to (3), this expression is the evidence of the first level of
inference. Assuming a uniform prior for hyper-parameters
one can maximize the likelihood of the second level to
maximize the posterior distribution. By marginalizing over
the model parameter using the following integral, the
evidence of the first level can be calculated, MacKay
(1992):

𝑃𝑃 (𝒟𝒟𝒟𝒳𝒳 ,ℋ) =

∫︁
𝑃𝑃 (𝒟𝒟𝒟𝜃𝜃,𝒳𝒳 ,ℋ)𝑃𝑃 (𝜃𝜃|𝒳𝒳 ,ℋ)𝑑𝑑𝜃𝜃. (11)

It is expected that this posterior has a peak around
the most probable values for the model parameters. By
exploring this, one can approximate the evidence integral
with the integrand’s peak and its width △𝜃𝜃, MacKay
(1995). One can locally approximate the integral (11) as a
Gaussian distribution with covariance matrix Σ, as follows:
𝑃𝑃 (𝒟𝒟𝒟𝒳𝒳 ,ℋ) =

n∏︁
j=1

𝑍𝑍−1
𝛼𝛼j

M∏︁
i=1

𝑍𝑍−1
δ 𝑒𝑒−J1(𝜃𝜃

MAP )(2𝜋𝜋)
n(M+1)

2 |Σ|− 1
2 ,

(12)

where 𝑍𝑍𝛼𝛼j
=

(︂
2𝜋𝜋

𝜇𝜇j

)︂M
2

, 𝑍𝑍δ =

(︂
2𝜋𝜋

𝛽𝛽

)︂ 1
2

and Σ is the Hessian

matrix of the first-level cost function. The complexity of
the model is controlled by the hyper-parameters 𝜇𝜇j . A
large value for 𝜇𝜇j means low variance on prior distribution
of weights. A model with such hyper-parameter will fits
data within smooth functions, while a model with small
𝜇𝜇j (large freedom on the prior range of possible 𝛼𝛼) fits the
data from possibly less smooth functions. The Occam’s
Razor principle states that this parameter should not be
too high or too low, Tipping (2003). One of the most com-
pelling aspects of the Bayesian approach is that it auto-
matically applies the Occam’s Razor principle by integrat-
ing out all the irrelevant variables. Namely, in the Bayesian
framework simple models that sufficiently explain the data
without unnecessary complexity are automatically the pre-
ferred choice Tipping (2003). This property holds even if
the prior probability is completely uninformative, MacKay
(1992). The most probable values of the hyper-parameters
𝜇𝜇MAP
j and 𝛽𝛽MAP , can be obtained by minimizing the

negative logarithm of the posterior probability. The output
of this stage is an assignment of each data point in the
reduced set 𝒟𝒟 to a sub-system, forming a set of labels
ℒ = {𝜆𝜆i}Mi=1, 𝜆𝜆i ∈ {1, ..., 𝑛𝑛} that will be used to train a
classifier to distinguish the data in the complete data set
𝒮𝒮.

4. MODE ASSIGNMENT AND SUB-MODEL
IDENTIFICATION

Having obtained the reduced-size sets of labels from the
previous section, it is now possible to train a Bayesian

4

classifier to assign all the data points in 𝒮𝒮 to their cor-
responding sub-system. To achieve this goal, an RVM
classifier explained in Tipping et al. (2003) is used. This
classifier has several advantages, including the possibility
of choosing non-Mercer kernels, high sparsity, and proba-
bilistic prediction, Tipping et al. (2003). The training data
for the RVM classifier is called 𝒯𝒯 and consists of triples of
the input-output data in 𝒟𝒟 and sub-system labels from ℒ:
𝒯𝒯 = {𝑥𝑥i, 𝑦𝑦i, 𝜆𝜆i}Mi=1. To this stage, all the data points in 𝒮𝒮
are assigned to a sub-system using the trained classifier.
Now, it is possible to use an RVM estimator presented in
Tipping et al. (2003) to estimate each single sub-system
using the classified data. The following algorithm illus-
trates the proposed workflow of identification of a NHS
with large data set.

Algorithm 1 Identification of NHSs from large data sets
1: Collect 𝑁𝑁 data from the HS under study
2: Set up the data set in appropriate format 𝒮𝒮 =

{𝑥𝑥i, 𝑦𝑦i}Ni=1
3: Apply the feature vector algorithm proposed in Baudat

and Anouar (2003) to the raw data set 𝒮𝒮 to find the
reduced data set 𝒟𝒟 = {𝑥𝑥i, 𝑦𝑦i}Mi=1

4: Apply the preliminary two-stage identification algo-
rithm to the reduced data set 𝒟𝒟 to identify system
modes ℒ = {𝜆𝜆i}Mi=1, 𝜆𝜆i ∈ {1, ..., 𝑛𝑛}

5: Train a RVM classifier with the triples training set
𝒯𝒯 = {𝑥𝑥i, 𝑦𝑦i, 𝜆𝜆i}Mi=1

6: Apply a RVM classifier from previous stage to the
original data set 𝒮𝒮 to assign all data to sub-systems

7: Apply a RVM regressor to the data assigned to each
sub-system independently

5. CASE STUDIES

In this section, three numerical examples are used to
demonstrate the performance of the proposed method for
the identification of NHSs. The simulations are imple-
mented in Matlab R2019a and run on a laptop with Intel
Core i5 1.6GHz CPU and 8GB of memory. The optimiza-
tion problems are solved using the native Matlab fminunc
function.

5.1 Full-data set vs the reduced-data set identification

In this part, a comparison is made between the identifica-
tion based on the full and reduced data sets for a SNARX
system. Here 𝑁𝑁 = 4000 data points are generated from
the following model:

𝑦𝑦i =

⎧
⎨
⎩

𝑦𝑦i = −0.9𝑦𝑦i−1 + 0.5𝑢𝑢i−1 + 𝑒𝑒i 𝑖𝑖𝑖𝑖 𝑖𝑖i = 1
𝑦𝑦i = (0.8− 0.5𝑒𝑒𝑒𝑒𝑒𝑒(−𝑦𝑦2i−1))𝑦𝑦i−1

− 0.9𝑦𝑦2i−1 + 0.9𝑢𝑢i−1 + 𝑒𝑒i 𝑖𝑖𝑖𝑖 𝑖𝑖i = 2

(13)

The system starts from a random initial condition 𝑦𝑦0,
with a random input uniformly distributed in the range
𝑢𝑢i ∈ [0 4] and a Gaussian noise with zero mean and stan-
dard deviation equal to 0.1. Two kernels are employed to
identify this system: a linear kernel and a Gaussian kernel
with parameter set to 0.22. The identification initiates
from an initial hyper parameter 𝜇𝜇 = [1 1] and 𝛽𝛽 = 100.
This system is identified with a data set of various sizes
𝑁𝑁 = {100, 200, 400, 800, 1600, 3200}. The mode assign-
ment results are presented in Table 1. In this table, %Total,

%Sub-Sys1, and %Sub-Sys2 represent the percentage of
correct data assignment over the 𝑁𝑁 data points and for
sub-system 1 and 2, respectively.
As it can be seen, the full data set identification has
a very good performance when the number of the data
points is small. However, as 𝑁𝑁 increases its performance
deteriorates considerably and assigns almost all data to
only one sub-system. Although the reduced method has a
lower performance compared with the full identification,
it can handle larger data sets while maintaining a good
performance. Notice the stark improvement in the runtime
for the proposed method.

5.2 Comparison with existing methods

To perform a comparison against existing methods, a data
set 𝒮𝒮 with 𝑁𝑁 = 4000 points is generated from the system
from Bloch et al. (2011) with a uniformly distributed
random sequence of 𝜆𝜆i ∈ {1, 2}, starting form the initial
condition 𝑦𝑦0 = 𝑦𝑦1 = 0.1.

Table 1. Full/reduced data set identification

Type N %Total %Sub-Sys1 %Sub-Sys2 Time(s)
Full 100 99 97.619 100 5.01

Reduced 86 70 54.76 81.03 3.56
Full 200 95.5 97.139 92.941 16.39

Reduced 97 74.5 51.764 91.30 8.11
Full 400 58.75 98.253 5.847 24.38

Reduced 96 68.5 50.877 81.66 9.24
Full 800 57.125 99.562 0.583 110.12

Reduced 103 64.124 77.551 54.048 8.68
Full 1600 43.06 99.27 0.766 776.1

Reduced 107 69.18 67.46 92.11 8.05
Full 3200 57.28 99.945 0.0654 3671.02

Reduced 111 68.15 41.527 88.22 7.71

This data is disturbed by a Gaussian noise with zero-mean
and standard deviation 𝜎𝜎e = 0.1. This system is identified
using the method presented in Bloch et al. (2011) that is
based on the PE estimator, and the proposed MinLSE
estimator explained earlier in Section 2. The nonlinear
sub-system uses a Gaussian kernel with width 𝜎𝜎 = 0.3,
while the regularization trade-off is set to 𝐶𝐶 = 100. After
performing data reduction using the method introduced in
Section 3, the reduced data set 𝒟𝒟 contains 102 data points.
The average results for 100 trials are presented in Table 2.
It must be noted that although the method in Bloch et al.
(2011) does not have a classifier, but a minimum-error
mode estimator, in the table the term “Classifier” is used
for both methods and refers to the assignment of the data
points to sub-systems.

Table 2. Benchmark against Bloch et al. (2011)
Method

MinLSE PE
Correct mode assignment on S(%) 82.34 64.51
Classifier accuracy on S(%) 77.45 60.64
Classifier accuracy on D(%) 79.86 63.21
Time for data reduction 16.2 16.2
Time for identification 4.02 3.95
MSE 0.012 0.053

It can be seen that the proposed method (MinLSE) out-
performs the existing method (PE) both in terms of data
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assignment and estimation error. This is due to the higher
accuracy of the MinLSE estimator compared with the PE
one, and to the better performance of the Bayesian clas-
sifier compared with the minimum-error mode estimator
used in Bloch et al. (2011). Our proposed method has
performed identification on the reduced size data set 𝒟𝒟,
which has led to more correct data assignment to the
corresponding sub-systems, and a more accurate classifier
in terms of both model fitness (MSE).

5.3 Identification of a SNARX system

In this part, a SNARX system is identified using the pro-
posed method: we focus on a comparison between the iden-
tification using optimized hyper-parameters introduced in
Section 3.2, and using non-optimized values. This will
illustrate the importance of obtaining optimized hyper-
parameter and their influence on the pre-identification
and the initial mode assignment, as well as on the overall
performance of the identification procedure. We show that
this can be done with no substantial increase in com-
putational cost. System (13) from Section 5.1 is used,
with the same parameters, hyper-parameters and initial
conditions. The hyper-parameters have been optimized
using the second level of inference from Section 3.2: their
values have changed from 𝜇𝜇 = [1 1] and 𝛽𝛽 = 100 to
𝜇𝜇 = [44.0102 53.7600] and 𝛽𝛽 = 1414. The identification is
then repeated with these new optimized hyper-parameters,
and the results are reported in Table 3. It can be appre-
ciated that optimizing the hyper-parameters considerably
improves the performance of the initial mode assignment.
Since this initial mode assignment is used to train a
classifier to assign all the data points to sub-systems,
this improvement enhances the overall performance of the
procedure, both in terms of correct mode assignment and
of identification error.

Table 3. Identification of a SNARX system
Hyper-parameters

Not-optimized Optimized
Correct mode assignment on S(%) 81.34 98.34
Classifier accuracy on S(%) 75.45 84.25
Classifier accuracy on D(%) 79.32 91.56
Time for data reduction 16.6 16.6
Time for identification 3.72 4.35
MSE 0.044 0.023

6. CONCLUSIONS

In this paper, a multi-stage Bayesian framework has been
developed for the identification of NHSs with large data
sets. The method deals with the large data sets by using
feature vector selection methods to obtain a reduced-size
sub-set of the data and to assign these data to sub-systems.
Numerical simulations show that under same conditions,
the proposed method has better performance compared to
existing methods. Furthermore, it is shown that the ability
to produce optimized hyper-parameters greatly improve
the performance of the identification.
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