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Intelligent Multi-Agent Resource Allocation in 6G
in-X Subnetworks with Limited Sensing Information

Ramoni Adeogun, Gilberto Berardinelli

Abstract—In this letter, we investigate dynamic resource selec-
tion in dense deployments of a recent 6G mobile in-X subnet-
works (inXSs). We cast resource selection in inXSs as a multi-
objective optimization problem involving maximization of per
inXS sum capacities. Since inXSs are expected to be autonomous,
selection decisions are made by each inXS based on its local
information without signalling from other inXSs. A multi-agent
Q-learning (MAQL) method based on limited sensing information
(SI) is then developed resulting in significant reduction in the
overhead associated with intra-subnetwork SI exchanges. We
perform simulations with focus on two similar but distinct
resource allocation problems: joint channel and transmit power
selection and channel selection with aggregation. The results
indicate that: 1) appropriate settings of Q-learning parameters
leads to fast convergence of the MAQL method even with 1-bit
quantization of the SI; 2) the proposed MAQL approach offer
similar performance and is more robust to sensing delays than
the best baseline heuristic with full SI.

Index Terms—6G; reinforcement learning; in-X subnetworks;
resource allocation, Q-learning

I. INTRODUCTION

Short-range low-power in-X subnetworks (inXSs) [1]–[3]
are receiving attention as potential radio concepts for sup-
porting extreme communication requirements, e.g., reliability
above 99.99999, up to 10 Gbps data rate and latencies below
100 µs. Similar extreme connectivity requirements have also
appeared in recent works on visions for 6th generation (6G)
networks [4], [5]. InXSs are expected to provide seamless
support for applications such as industrial control at the
sensor-actuator level, intra-vehicle control, in-body networks
and intra-avionics communications even in the absence of
connectivity from traditional cellular network [2]. Clearly,
these applications represent life critical use-cases necessitating
the need to guarantee specified communication requirements
everywhere. Such use-cases can also lead to dense scenarios
(e.g., inXSs inside a large number of vehicles at a road
intersection) leading to potentially high interference levels
and hence, the need for efficient interference management
mechanisms.

Interference management via dynamic allocation (DA) of
shared radio resources has been at the forefront of wire-
less communication research for several years, see e.g., [6],
[7]. Although several techniques for resource allocation have
been studied, the extreme latency requirement as well as
the expected ultra-dense deployments of inXSs makes the
interference problem more challenging. This has resulted in
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a number of published works on resource allocation for wire-
less networks with uncoordinated deployment of short range
subnetworks [8], [9]. In [8], distributed heuristic algorithms
were evaluated and compared with a centralized graph coloring
(CGC) baseline in dense deployments of inXSs. In [9], a
supervised learning method for distributed channel allocation
is proposed for inXSs. The works so far focus on only channel
selection making their applicability to other resource selection
problems such as the joint channel and power, and channel
aggregation considered in this letter non-trivial. Moreover, the
reliance on full sensing information (SI) by these methods im-
poses significant overhead on required device capabilities (and
hence, cost) as well as radio resources for intra-subnetwork
signalling.

To overcome these limitations, we conjecture that reinforce-
ment learning (RL) methods [10], [11] can be developed to
perform resource selection, with potential performance im-
provement over existing approaches even with only quantized
information. Moreover, a RL based method will eliminate the
offline data generation requirement for the method in [9].

The main contributions of this letter are as follows:
• We cast the resource selection task into a non-convex

multi-objective optimization problem involving maxi-
mization of the sum capacity at each inXS subject to
power and transmission bandwidth constraints.

• We develop a multi-agent Q-learning (MAQL) solution to
solve the problem in a fully distributed manner. To limit
the overhead associated with intra-subnetwork signalling,
we adopt a two-level quantization of the SI.

• We apply the MAQL learning to two related but distinct
resource selection problems viz: joint channel and trans-
mit power selection, and channel aggregation. We per-
form simulations in typical industrial factory settings to
evaluate performance gains relative to baseline heuristics
with full information.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the downlink (DL) of a wireless network
with N independent and mobile inXSs each serving one or
more devices (including sensors and actuators). The set of all
inXSs in the network and the Mn devices in the nth inXS
are denoted as N = {1, · · · , N} and Mn = {1, · · · ,Mn},
respectively. Each inXS is equipped with an access point (AP)
which coordinates transmissions with all associated devices.
The cells move following a specified mobility pattern which
is determined by the application. At any instant, transmissions
within each cell is performed over one (or more) of K
(K << N ) shared orthogonal frequency channels denoted
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as K = {1, · · · ,K} with a transmit power level within the
range, κmin ≤ κtx ≤ κmax. To simplify the problem, we
restrict the possible transmit power to a set of Z discrete levels,
κ = {κ1, · · · , κZ}. We assume that transmissions within each
inXS are orthogonal and hence, there is no intra-subnetwork
interference. This assumption is reasonable since the APs can
be designed to allocate orthogonal time-frequency resources
to its own devices and has also been made in [1], [2].

A. Channel Model and Rate Expression

The channel between the APs and devices in the network
is characterized by three components: large scale fading, i.e.,
path-loss and shadowing and the small-scale effects. The path-
loss on a link from node A to node B with distance, dAB is
defined as LAB = c2d−αAB /16π2f2, where c ≈ 3×108 ms−1 is
the speed of light, f is the carrier frequency and α denotes the
path-loss exponent. A correlated log-normal shadowing model
based on a 2D Gaussian random field is considered [12]. We
compute the shadowing on the link from A to B using

XAB = ln

 1− e
(
− dAB

dc

)
√

2

√
1 + e

(
− dAB

dc

) (S (A) + S (B))

 , (1)

where S is a two-dimensional Gaussian random process with
exponential covariance function and dc denotes the correlation
distance. The small scale fading, h is assumed to be Rayleigh
distributed. The Jake’s Doppler model is utilized to capture
temporal correlation of h. [13].

At a given transmission instant, t, the received (or interfer-
ence) power on the link between any two nodes, e.g., from A
to B is computed as:

PAB(κA(t)) = κA(t)LAB(t)XAB(t)|hAB(t)|2, (2)

where κA(t) denotes the transmit power (in linear scale) of
node A at time t. Assuming that the nth inXS operates over
frequency channel, ck : k ∈ K at time t, the received signal
to interference and noise ratio (SINR) can be expressed as

γnm(ck,κ
k(t)) =

Pnm(ck, κ
k
n(t))∑

i∈Ik(t) Pni(ck, κ
k
i (t)) + σ2

nm(t)
, (3)

where Ik(t) and κk(t) denotes the set all devices (or APs)
transmitting on channel ck at time t and their transmit powers,
respectively. The term σ2

nm(t) is the receiver noise power
calculated as σ2

nm(t) = 10(−174+NF+10 log10(Wk)), where Wk

denotes the bandwidth of ck and NF is the receiver noise
figure. Relying on the Shannon approximation, the achieved
capacity can be written as

ζnm(ck, t) ≈Wk log2(1 + γnm(ck,κ
k(t))). (4)

B. Problem Formulation

In this letter, we consider two similar, but distinct re-
source selection problems: I) distributed joint channel and
power selection, and II) distributed channel selection with
aggregation. These problems can be defined as multi-objective
optimization tasks involving simultaneous maximization of N
objective functions, one for each inXS. Taking the objective

function as the lowest achieved capacity at each inXS (denoted
ζn = min({ζnm}Mn

m=1); ∀n ∈ N ), problem I can, formally, be
defined as:

P-I : max
c,κ

ζ1(c1(t), κ1(t)), · · · ,max
c,κ

ζN (cN (t), κN (t))

st: Pmin ≤ zn ≤ Pmax and BW(ck) = Wk ∀n, (5)

where c := {cn|n = 1, · · · , N} and κ := {κn|n = 1, · · · , N}
denotes the set of channel indices and transmit powers for
all inXSs, respectively. The term BW(ck) denotes bandwidth
of the bandwidth of channel, ck. The second problem is
defined analogous to (5) with ζn taken as the minimum total
capacity over all aggregated channels and the power levels set
to an equal value for all inXSs. The problem in (5) involves
joint optimization of multiple conflicting non-convex objective
functions and is typically difficult to solve. The independence
of the inXSs and the lack of communication coupled with the
desire to minimize overhead due to intra-subnetwork signalling
via quantization further aggravate the problem. We present a
Multi-agent Q-learning (MAQL) method with quantized SI for
solving these problems in section III.

III. RESOURCE SELECTION WITH 1-BIT INFORMATION

We cast the joint optimization problem in (5) as Multi-
Agent Markov Decision Process (MMDP) [14] described as
the tuple {S,A,P,R}, where S = S1 × · · · × SN is a set
of all possible states for all inXSs referred to as state space,
A = A1 × · · · × AN is the joint action space containing
all possible actions (i.e., the set of all possible combinations
of channels and power levels for problem I and all possible
combinations of aggregated channels for problem II), R de-
notes the reward signal and P : S × A × S → ∆ is the
transition function [14], where ∆ denotes the set of probability
distributions over S.

In the considered MMDP, the goal of the nth agent is to find
an optimal policy, π∗n based solely on its local state and action
information resulting in the so called Partially Observable
MMDP (POMMDP) [15]. Typically, π∗n is obtained as the
policy which maximizes the total reward function expressed
as [16]

π∗t (s) = max
πt(s)∈A

{
rt(st, πt(s)) + γ

∑
s′∈S

p(st, s
′)π∗t+1(s′)

}
,

(6)
where γ; 0 ≤ γ ≤ 1 denotes the discount factor. To allow
mapping for all possible state-action pairs, an alternative rep-
resentation, Q(s, a) referred to as the Q-function is commonly
used. The Q-function for the nth agent is given as [14]

Qn(s, a) = rn(s, a) + γmax
a′

Qn(s′, a′) (7)

Since each agent has access to only local information, solving
(7) results in a local maximum at each subnetwork. We assume
that the local maxima on each of the N agents’ Q-function is
equivalent to the global maximum on the joint Q-function for
the entire network, i.e.,

arg max
a

Qπ(s,a) =

 arg maxaQ
1(s, a)

...
arg maxaQ

N (s, a)

 . (8)
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Fig. 1: Illustration of the Multiagent RL scenario with N inXSs.

According to (8), solution to the resource selection problem
can now be obtained via local optimization at each inXS.
MAQL enables solution of the N objectives via simultaneous
interaction of all agents with the environment. The Q-function
is then iteratively estimated according to Bellman’s equation
as [17]

Qn(st, a) = (1− α)Qn(st, a) + α (r(st, a)+

γmax
a′

Qn
′
(st+1, a

′
;π)

)
∀n, (9)

where α denotes the learning rate and rn(st, a) is the in-
stantaneous reward received by the agent for selecting action,
a ∈ A at state st ∈ S. The policy, π(s, a) corresponds to the
conditional probability that action a is taken by an agent in
state, s and must therefore satisfy

∑
a∈A π(s, a) = 1.

A. MAQL Procedure for Dynamic Resource Selection

To find optimal estimates of the Q-functions in (9) via
MAQL, we need to define the environment, state space,
action space, reward signal, policy representation and training
method. As described in Section II, we consider a wireless
environment with N independent inXSs each with one or more
devices as illustrated in Fig. 1. The remaining components are
described below.

1) State and observation space: In the multi-agent scenario,
the state of the environment is defined by actions of all
inXSs. The achieved performance is also determined by both
the known local characteristics of each inXS - channel gain,
occupied frequency channel, transmit power level, etc, and
the unknown information about other inXSs. We assume that
each inXS has sensing capabilities for obtaining measurements
of the aggregate interference power on all channels. We
denote the SI at time t as Itn = [Itn,1, I

t
n,2, · · · , Itn,K ]T ∈

R(K×1). To account for the effect of channel condition within
each inXS, we propose state representation based on the
SINR over all channels denoted for the nth inXS as stn =
[stn,1, s

t
n,2, · · · , stn,K ]T , with sn,i = sd/(In,i + σ2), where sd

denote the received signal strength of the weakest link in the
inXS. To enable Q-learning which require discrete state spaces,
we perform a 2-level quantization on the SINR resulting in
a state dimension of |S| = 2K comprising of all possible
combinations of K channels each with two levels: 0 and 1.

Denoting the SINR quantization value as sth, channel, i is in
state 0 if sn,i < sth and in state 1 otherwise.

2) Action space: For the joint channel and power selection
task, the action selected by inXS n at time t is from a KZ-
dimensional action space comprising of all possible combina-
tions of channel and power levels, i.e. atn ∈ AI ; AI =
{{c1, p1}, {c1, p2}, · · · , {cK , pZ}}. In the case of channel
selection with aggregation, we consider transmission with
fixed power over a maximum of 2 channels by each inXS. The
action of the nth inXS at time t is then atn ∈ AII ; AII =
{{c1}, · · · , {cK}, {c1, c2}, · · · , {cK−1, cK}} with dimension
|AII | = K +

(
K
2

)
.

3) Reward signal: We assume that the communication
metric to be maximized is the capacity and use (4) as the
reward function. In the case of channel aggregation, the reward
is taken as the summation of capacity over all aggregated
channels.

4) Policy Representation: The policy at each inXS is repre-
sented by a 2K×|AI/II | lookup table containing the Q-values
for all state-action pairs.

5) Action Selection: Resource selection decision is made
by each agent via the ε-greedy strategy defined as

atn =

{
a random selection with probability, ε
arg maxa∈A(stn)

Qn(stn, a;θ), otherwise
,

(10)
where ε is the exploration probability, i.e., the probability
that the agent takes random action. During the training, ε is
decayed at each step according to

ε = max (εmin, (εmax − εmin)/εstep) , (11)

where εmin and εmax denote the minimum and maximum
exploration probability, respectively, and εstep is the number
of exploration steps.

6) Training Procedure: A fully distributed training in
which all inXSs simultaneously learn to optimized individual
Q-tables is adopted in this work. The procedure is described
in Algorithm 1.

IV. NUMERICAL ANALYSIS

We now train and evaluate the performance of the MAQL
approach and compare with fixed (i.e., random assignment at
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Algorithm 1 Multi-Agent Resource Allocation with quantized
SI: Training Procedure

1: Input: Simulation and environment parameters, learning rate, α,
discount factor, γ, number of episodes, T , number of steps per
episode, Ne, εmin, εmax

2: Start simulator, randomly drop cells and generate shadowing map
3: t = 1; ε = εmax

4: Initialize actions for all cells randomly and compute initial states,
{sn(1)}Nn=1

5: Initialize Q-tables, {Qn}Nn=1 with zeros
6: for t = 1 to T do
7: for i = 1 to Ne do
8: for n = 1 to N do
9: Obtain state from SI sn(t)

10: Subnetwork n select an(t) according to (10).
11: end for
12: The joint resource selection of all subnetworks gene-
13: rate transitions into next states, {sn(t+ 1)}Nn=1 and
14: immediate rewards, {rn(s(t),a)}Nn=1

15: Decay exploration probability as in (11).
16: for n = 1 to N do
17: Update Qn using (9)
18: end for
19: end for
20: end for
21: Output: Trained Q-tables, {Qn}Nn=1

initialization without dynamic updates), greedy channel selec-
tion and centralized graph coloring (CGC) using a snapshot
based procedure. We consider a network with N = 20 inXSs
each with a single controller serving as the AP for a sensor-
actuator pair in a 60 m × 60 m rectangular deployment area.
movements in the area follows the restricted random waypoint
mobility (RRWP) with a constant speed, v = 3 m/s. We assume
that a total bandwidth B = 25 MHz is available in the system
and that the bandwidth is partitioned into K = 5 channels. We
set the transmit power for all inXSs to 10 dBm for P-II and
consider a total of Z = 3 transmit power levels, [-10, 0, 10]
dBm for P-I, leading to a 15 × 1 action space in both cases.
Other simulation parameters are shown in Tab. I.

Fig. 2a shows the averaged reward over successive training
episodes for the joint power and channel selection problem.
The averaging is performed over all steps within each episode
as well as all inXSs. We benchmark the reward with those
obtained from 2 heuristic algorithms viz: random and greedy
channel selection. The maximum transmit power of 10 dBm
is used for all inXSs in the heuristic algorithms. The figure
shows that the proposed MAQL achieve convergence after
approximately 2400 episodes. Similar convergence rate was
noticed for the channel aggregation problem. At convergence,
the MAQL method has similar performance to greedy selection
with full SI [8]. To understand the actions of the Q-agents,
we show the learned Q-policy at convergence in Fig. 2b. The
policy comprises of the channel and transmit power pairs
with maximum Q-value at each of the 32 (25) states. The
figure shows that the Q-agents converge to a channel with
quantization level of 1 (i.e., with SINR ≥ ssh) for all states
except for state 1 which has no channel in level 1. As shown
in the figure, the power levels of 10 dBm and 0 dBm are
preferred by the agents in the ratio 27:5. The lowest power

TABLE I: Simulation parameters.

Deployment and system parameters

Parameter Value

Deployment area [m2] 60 × 60
Number of controllers/inXSs, N 20
Number of devices per inXS, M 1
Cell radius [m] 3.0
Velocity, v [m/s] 3.0
Mobility model RRWP
Number of channels, K 5

Propagation and radio parameters

Pathloss exponent, γ 2.2
Shadowing standard deviation, σs [dB] 5.0
De-correlation distance, dc [m] 2
Lowest frequency [GHz] 3
Transmit power levels [dBm] [-10 0 10]
Noise figure [dB] 10
Target rate [bps/Hz] 0.32 – 1.60
Per channel bandwidth [MHz] 5

Q-Table and simulation settings

Action/state space size, |A|/|S| 15/32
Discount factor, γ 0.90
Learning rate, α 0.80
Number of training episodes/Steps per episode 3000/200
Minimum/maximum exploration probability 0.01/0.99
Number of epsilon greedy steps 4.8× 105

Fig. 2: Averaged reward per training episode (a) and learned policy (b).

level of −10 dBm is never chosen with full exploitation.
The trained Q-tables are deployed for distributed resource

selection and performance compared with random and greedy
channel selection. We use the suffix ’- I’ (for joint channel
and power selection) and ’- II’ (for channel selection with
aggregation) with all algorithms to indicate the corresponding
problem. Thus, we have MAQL - I and MAQL - II as the
proposed solution for problems I and II, respectively, and the
corresponding baselines are denoted: 1). Random - I: assign
channels randomly at the start of a snapshot; 2). Greedy -
I: select the channel with minimum interference power; 3).
Random - II: randomly assign a single or two channels for
aggregation from the possible options; and 4.) Greedy - II:
select the 2 least interfered channels for aggregation.

Inspired by our initial results from the MAQL methods, we
further proposed a heuristic algorithm (denoted ’Q-Heuristic’)
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for resource selection based on similar quantized SI as the
MAQL method. In Q-heuristic, each inX chooses 2 channels
for aggregation as follows: select both channels randomly from
K if all are in level 0; select the channel in level 1 and 1
randomly if the state has a single 1 or both randomly from the
list of channel in level 1, otherwise. Except for MAQL - I, all
algorithms use a transmit power of 10 dBm per transmission.
Fig. 3 shows the empirical Cumulative Distribution Function
(CDF) of the achieved capacity per inXS with sensing-to-
action time (i.e., sensing delay) of a single time slot. The
proposed MAQL method performs better than simple random
selection but similar to greedy selection with full SI. Compared
to Q-heuristic, the proposed MAQL method offer slightly
better performance.

In Fig. 4, we study the sensitivity of the proposed methods
and greedy baseline to sensing delay, i.e., the time (in number
of slots) between sensing and action. While the proposed
methods with 1-bit information appear robust to delays, the
greedy scheme is rather quite sensitive. This indicates that the
proposed methods offer similar performance as the baseline
but provide significant overhead reduction for SI exchange
and robustness to sensing delays which may be inevitable in
practice. A similar study on sensitivity to quantization levels
showed very marginal difference in the achieved capacity by
the MAQL method with sth in the range 2 dB – 12 dB.

V. CONCLUSION

Multi-agent Q-learning agents for distributed dynamic re-
source selection with 1-bit quantized SI can achieve similar
performance to the best known heuristics (i.e., greedy selec-
tion) with full information in 6G in-X subnetworks. Simulation
results have shown that the proposed MAQL methods exhibit
fast convergence and are more robust to sensing delays than
greedy resource selection. The proposed method is also robust
to variations in SINR quantization thresholds.
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