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Abstract

With the large-scale penetration of wind and solar energies in the power system, the ran-
domness of this renewable energy increases the non-linear characteristics and uncertainty
of the system, which causes a mismatch between renewable energy generation and load
demand and it will badly affect the bus voltage control of distribution network. In this
context, this study applies pumped storage hydroelectric (PSH) which tracks the load vari-
ation rapidly, operate flexibly and reliably to balance the power of the system to minimize
the bus voltage deviation. Moreover, to obtain the optimal control policy of PSH, a deep-
reinforcement-learning algorithm, that is, deep deterministic policy gradient, is utilized to
train the agent to address the continuous transformation of the pumped storage hydro-
wind-solar (PSHWS) system. The performance of a well-trained agent was evaluated on the
IEEE 30-bus power system. Simulation results show that the proposed method achieves
an improvement of 21.8% in cumulative deviation per month, which implies that it can
keep the system operating in a safe voltage range more effectively.

1 INTRODUCTION

To address global climate change, the development and utiliza-
tion of renewable energy sources (RESs) have become a con-
sensus to replace fossil-based energy worldwide. In particular,
because of their clean, widely distributed, and large-scale charac-
teristics, wind and solar energies are of general interest [1], and
governments around the world have formulated various poli-
cies to support their development [2]. Over the past decade,
wind power (WP) and solar power capacities increased rapidly.
By the end of 2020, the global installed capacities of WP and
solar power have surged to 742.69 GW [3] and 716.15 GW [4],
respectively.

However, WP and solar power generation are affected by
climate change, and the characteristics of uncertainty, random-
ness, and uncontrollability challenge the stability of the systems
through aspects such as frequency stability [5], small signal sta-
bility [6], and voltage stability [7]. In particular, the voltage over-
run problem is particularly serious. It limits the utilization rate
of photovoltaic (PV) power generation, and reduces the power
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quality and reliability of power systems [8]. Therefore, the volt-
age problem has become an urgent problem to be solved, cur-
rently receiving widespread attention.

In fact, voltage problem was completed by reasonably balanc-
ing the reactive power flow of the system. Various model-based
optimization strategies have been developed in order to imple-
ment reactive power dispatch. In [9], a time-series power flow
(TSPF) method was proposed to capture the reactive power dis-
patch of a doubly fed induction generator (DFIG) wind farm at
the worst-case point, which was used to evaluate the impact of
WP generation on power system voltage stability. However, the
TSPF method depends on the prediction accuracy of the worst-
case point model, prediction errors have a significant influence
on the evaluation result. In [10], the reactive power capabil-
ity of the inverter of the dispatching photovoltaic system is
used to alleviate voltage fluctuation. In [11], a distributed opti-
mal active and reactive power control (DARPC) strategy based
on the alternating direction method of multipliers (ADMM) is
applied for wind farms (WFs). In [12], both active and reactive
power management methods which known as dynamic voltage
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support (DVS) was adopted to improve the short-term voltage
stability. Although the reactive power compensation methods
mentioned in [9–12] contribute to stabilizing the system volt-
age. DFIG, PV inverter or WF provide reactive power, which
are suitable for large wind farms or photovoltaic power plants,
the above methods were model-based optimization, the mod-
elling process is cumbersome and complex with certain errors,
and the compensation cost is expensive. However, the com-
pensation equipment need to have the characteristics of high
energy storage capability, fast start-up, and low power gener-
ation cost. Pumped storage hydroelectric (PSH) power gener-
ation not merely meet basic requirement, it can also be used
as power generation or load. These advantages were usually
applied for peak modulation, frequency regulation, load standby,
and accident standby. Hence, this study proposes to solve the
voltage problem through the reactive power management of
PSH units.

In recent years, some studies successfully focused on improv-
ing the voltage control ability of the power system by com-
pensating RE generation through PSH dispatching. In pre-
vious studies, heuristic algorithms, including fuzzy evolution-
ary programming [13], improved differential evolution [14],
multi-objective particle swarm optimization [15], and improved
cuckoo search algorithm [16], were applied for the dispatch-
ing schedule of PSH. In [17], the nuclear density method was
adopted to estimate the prediction error distribution of wind
and solar energies, and the linear programming (LP) method
was utilized to resolve the PSH peak regulation model to mini-
mize the peak-valley difference of residual loads. In [18], a novel
reference-point-based non-dominated sorting GA (NSGA-III)
algorithm using a constraint violation criterion was introduced
to solve the multi-objective scheduling problem under multi-
complex constraints. In [19], the optimal operation scheduling
of a hybrid hydro-thermal-wind system, peaking, and reduction
of carbon dioxide emissions were achieved. In [20], a remote
integrated transmission mode between a wind farm (WF) and a
pumped storage power station was proposed, and piecewise lin-
ear approximation technology was used to transform the model
into mixed integer linear programming (MILP) to mitigate the
negative impact of WP fluctuations and increase profits. In
[21], an ant-lion optimization algorithm was utilized to solve
the combined hydro-thermal dispatching problem with multi-
ple reservoirs and multiple targets (such as cost). Various emis-
sions and losses were optimized simultaneously. In [22], the load
and WP were predicted by a scenario-based stochastic method,
and hydroelectric power scheduling was optimized to minimize
the total generation cost and combustion emission in the short
term. In [23], in order to reduce the operation cost of the inte-
grated hybrid system, a new energy management method was
used to find the operation strategy of the hybrid system. In
[24], an adaptive differential evolution algorithm was adopted
to solve the optimal power flow. In [25], a modified bacterial
foraging algorithm (MBFA) was utilized to obtain the optimal
power generation scheme of the hydro-thermal-wind system to
maintain the voltage stability of the system. In [26], a multi-
time-scale coordination method, that is, stochastic program-
ming (SP), was adopted to control reactive power equipment to

eliminate voltage fluctuations and deviations. Other algorithms,
including simulated annealing (SA) [27], LP [28], genetic algo-
rithm (GA) [29] are also commonly used for early scheduling
optimization. The above algorithms achieved some results, but
there are also evident deficiencies. For example, PSO can com-
plete a task in a fixed scene but cannot perform well in a vari-
able environment. The SA algorithm has strong robustness and
is usually employed to address non-linear optimization prob-
lems, but its convergence is slow and can easily fall into local
optimization. GA has a good global searching ability and does
not fall into local optimization, but it cannot solve large-scale
high-dimensional computing problems. It is a high-dimensional
and non-linear optimization process to solve the voltage prob-
lem through the reactive power management of PSH units. In
conclusion, SA and GA algorithms are not suitable for dynamic
scheduling strategy in uncertain environment. Therefore, it is
urgent to find a real-time intelligent scheduling method that
can adapt to the characteristics of renewable energy power gen-
eration. Inspired by behaviourist psychology, the combination
of artificial intelligence (AI) and data-driven technology is pro-
foundly affecting and changing the global power and energy
industry, and playing a great potential in the smart grid. Arti-
ficial intelligence focuses on the cumulative return of individu-
als in the process of interacting with dynamic random environ-
ment. In power system, reward can be expressed as the opera-
tion index of the system, such as minimum voltage fluctuation
and minimum frequency fluctuation. With the emergence of
AlphaGo [30], deep reinforcement learning, as a representative
of artificial intelligence, has made gratifying progress in improv-
ing training speed. At present, artificial intelligence algorithm is
widely used in high-dimensional non-linear optimization prob-
lems in smart grid, and has made gratifying progress. Therefore,
this study proposes to apply artificial intelligence algorithm to
voltage control problem.

Many studies have applied AI to smart dispatching. Deep
learning (DL) [31] can extract high-order data features in high-
dimensional continuous spaces. Reinforcement learning (RL)
[32, 33] is adopted to settle decision problems and repeatedly
detecting targets in dynamic uncertain environments. DRL
combines the advantages of DL and RL. After successive
evolution and renewal, from Q-learning [34] value-based
updates, to Deep Q Network (DQN) [35] off policy-based
updates, to deep deterministic policy gradient (DDPG) valued-
based and policy-based updates. DRL algorithm [36, 37] has
brought new ideas for complex control tasks owing to their
strong adaptability to dynamic and uncertain environments.
Q-learning is a decision algorithm in reinforcement learning.
The Q-learning output action is discrete. When there are
multiple states, Q-learning lists the Q table in the form of table,
so the search and storage need a lot of time and space, which
cannot solve high-dimensional continuous state action space
in uncertain environment. Although DQN solves the problem
of high-dimensional observation space, it can only deal with
discrete action space. Deep reinforcement learning uses the
powerful representation ability of neural network to fit the Q
table or direct fitting strategy to solve the continuous state
action space problem when solve the decision-making problem.
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It is a non-linear and complex problem to balance the uncertain
output of renewable energy and realize voltage stability by dis-
patching pumped storage hydropower. The dynamic scheduling
of pumped storage under the conditions of renewable energy
output and load fluctuation is an optimal control problem
under uncertain scenarios. Due to its strong decision-making
ability, deep reinforcement learning is very suitable to solve
this problem. In the solution process of deep reinforcement
learning, deep neural network is used to fit some functions. As
a representative algorithm of deep reinforcement learning, deep
deterministic strategy gradient is widely used in decision-making
of non-linear complex problems with its advantage of contin-
uous action state space. Some research has already done. In
[38], an optimal voltage control scheme based on security DRL
was proposed. In [39], based on a networked microgrid system,
an energy storage system was dynamically scheduled online
by deep deterministic policy gradient (DDPG) to support the
standby dispatching scheme in case of an emergency when the
dispatching centre was unavailable or the day-ahead plan was
infeasible.

Inspired by the above studies, DDPG was applied in this
study to solve the problems of bus voltage over limit. Specif-
ically, in the environment of WP, PV variable in real time, the
DDPG algorithm is employed to establish a data-driven model
in a high-dimensional state space, and the optimal decision is
obtained through repeated exploration and training of an agent.
Through the experience of interacting with the environment,
agent can integrate some aspects of the environment into its
internal state, form its own understanding of specific behaviour
applications, and make good decisions in response to environ-
mental changes. After training, the agent learns the optimal
control policy to control the active and reactive power outputs
of the PSH to ensure high-quality operation of the power
system.

The contributions of this study are as follows:

1. The voltage management problem of a pumped storage
hydro-wind-solar (PSHWS) system is transformed into a
Markov decision process (MDP), and the DDPG algorithm
is adopted to train an agent to solve the reactive power
scheduling of PSH units in an uncertain environment. After
the off-policy training process, an optimal dynamic control
strategy is obtained.

2. The proposed method is a data-driven method, and histor-
ical data are used to train the agent, so that this method
not merely less affected by model errors, higher correctness
and fast training speed when it solves high-dimensional state
space problems.

3. SP and DQN algorithms are introduced as comparison
examples, and the results of the three algorithms are anal-
ysed to prove the effectiveness of the proposed method.

The remainder of this paper is organized as follows: Section
2 describes the RE power model. Section 3 introduces the prob-
lem formulation. Section 4 introduces the optimization algo-
rithm. Section 5 describes a case study. Finally, Section 6 con-
cludes this paper.

FIGURE 1 Schematic diagram of hybrid system

2 RE GENERATION MODEL AND
LOAD MODEL

This work applies DRL to PSHWS hybrid system, see in Fig-
ure 1. Which contains different electrical device. Such as WTs,
PVs, and PSHs. With the penetration of renewable energy into
the power system, the output of wind power generation and
photovoltaic power generation is easily affected by environmen-
tal factors such as wind speed, illumination and temperature,
so it has strong intermittence and uncertainty. The volatility of
the distributed generator output and load are considered. The
DRL algorithm is utilized to solve voltage problem and obtain
a dynamic scheduling PSH unit policy. Each device of PSHWS
is modelled separately according to its characteristics, which is
described in detail in the following sections.

2.1 Wind turbine model

When the wind speed is between the cut-in wind and the rated
wind speeds, the output of the wind turbine (WT) is affected
by the randomness of the wind speed, air density, wind energy
utilization coefficient, and swept area [40], as expressed in the
following equation:

PW = 0.5𝜌CP𝜋R2v3 (1)

where 𝜌 is the air density, CP is the wind energy utilization coef-
ficient, and R is the turbine rotor.

According to the WT factory regulations, the output power of
the WT is related to vc,i , vr and vc,o as expressed in the following
equation:

PW =

⎧⎪⎪⎨⎪⎪⎩

0 0 ≤ v < vc,i

a + bv3 vc,i ≤ v < vr

pr vr ≤ v < vc,o

0 vc,o ≤ v

a =
Pr v3

c,i

v3
c,i − v3

r

b =
Pr

v3
r − v3

c,i

⎫⎪⎪⎬⎪⎪⎭
(2)

where Pr is the rated power of the WT, and vc,i , vr , vc,o are the
cut-in, rated, and cut-out wind speeds, respectively. If the WT is
controlled by a constant power factor, the reactive power output
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FIGURE 2 PV converter in PSHWS hybrid system

is expressed as follows:

QW = PW tan 𝜆w (3)

where Qw is the reactive power of the WT, and 𝜆w is the power
factor angle of the WT.

2.2 PV model

PV generation is affected by light intensity and angle. Light
intensity has strong correlations with climate, season, and
region. PV operates at the maximum power point tracking
(MPPT) [41], as expressed in the following equations:

PPV = PPV ,STC

GT

1000
[1 − 𝛾(Tj − 25)] (4)

Tj = Ta +
GT

800
(NOCT − 20) (5)

where PPV is the output power at MPPT, PPV ,STC is the rated
power at MPPT under standard test conditions, GT is the irra-
diance level under standard test conditions, γ is the temperature
coefficient, Tj is the PV unit temperature, Ta is the air tempera-
ture, and NOCT is the nominal operating cell temperature.

PV is a DC power supply. IEEE-30 is an AC system, so
inverter (see in Figure 2) is required between photovoltaic and
power grid [42]. This paper introduces a two-stage grid con-
nected photovoltaic power interface, which includes PV array,
photovoltaic front-end converter (PVFEC) for dc/dc conver-
sion, intermediate DC link (IDCL), AC filter and grid side con-
verter (GSC) for dc/ac conversion.

2.3 Pumped storage hydro model

Pumped storage hydroelectric (PSH) is related to hydroturbine
conversion efficiency, water flow rate, and water height. The
output of the PSH unit [43] is expressed as follows:

Ph = K𝜂 j Q j h j (6)

where Ph is the output of the PSH, K is the hydroturbine con-
version efficiency, 𝜂 j is the efficiency of the PSH station, Q j is
the water flow rate passing through the turbine j, and h j is the
net water height of the power station.

2.4 Load model

The ZIP (constant impedance (Z), constant current (I), and con-
stant power (P)) load model describes the relationship between
the load and voltage amplitude [44] as follows:

PL = P0

(
ZP

(
V

VN

)2

+ IP

(
V

VN

)
+ PP

)
(7)

QL = Q0

(
ZQ

(
V

VN

)2

+ IQ

(
V

VN

)
+ PQ

)
(8)

where PL and QL are the active and reactive powers of the load
when the voltage deviates from the rating, respectively; ZP , IP ,
and PP are the constant impedance, constant current, and con-
stant power coefficient of active power, respectively; P0 and Q0
are the active and reactive loads under nominal voltage, respec-
tively; V is the voltage amplitude; and VN is the nominal volt-
age.

3 PROBLEM FORMULATION OF
VOLTAGE CONTROL FOR PSHWS SYSTEM

The objective of this study was to minimize the voltage devi-
ation of a PSHWS system when implementing the generation
plan of PSH units. This generation plan ensures that the load
demand can be met under safe and stable operating conditions
of the system. On this basis, a cooperative operation model that
considers the uncertainty of WP and PV power generation is
established. Let us assume a system with a WP unit, PV power
unit, a PSH unit, and B nodes.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ΔP1

ΔQ1

⋮

ΔPB

ΔQB

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕P1

𝜕𝜃1

𝜕P1|𝜕V1| … 𝜕P1

𝜕𝜃B

𝜕P1|𝜕VB|
𝜕Q1

𝜕𝜃1

𝜕Q1|𝜕V1| … 𝜕Q1

𝜕𝜃B

𝜕Q1|𝜕VB|
⋮ ⋮ ⋮ ⋮ ⋮

𝜕PB

𝜕𝜃1

𝜕PB|𝜕V1| … … …

𝜕PB

𝜕𝜃1

𝜕QB|𝜕V1| … … …

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Δ𝜃1

ΔV1

⋮

Δ𝜃B

ΔVB

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(9)

|V | = [V2 … VB]T , 𝜃 =
[
𝜃2 …𝜃B]

T
(10)
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Minimize ||VBi
−Vre f ||2 i = 1, 2, … ,B (11)

where B is the number of bus nodes. ΔPi and ΔQi represent the
active and reactive power imbalances of the i-th node, respec-
tively, and ΔVi , Δ𝜃i represent the voltage and angle imbalances
of the i-th node, respectively, VBi

is the voltage of bus i, Vre f is
the voltage reference value.

The equality constraints include the active and reactive power
constraints of the power system. These two constraints ensure
the stability of the system’s frequency and voltage. Inequality
constraints include the upper and lower limits of the active and
reactive power, voltage, and transformer.

Active power balance means that the output power of all gen-
erators is consumed by all loads except the grid loss and plant
power load. Reactive power balance means that the reactive
power supplied by the generators and compensation equipment
afford the reactive power consumed by the load and lost in the
switch. The reactive power to high or low can lead to a voltage
over limit, and the power balance relations are as follows:

PGi
− PDi

−Vi

N∑
j=1

Vj [Gi j cos(𝛿i − 𝛿 j ) + Bi j sin(𝛿i − 𝛿 j )] = 0

i = 1, 2, … ,B (12)

QGi
− QDi

−Vi

N∑
j=1

Vj [Gi j cos(𝛿i − 𝛿 j ) + Bi j sin(𝛿i − 𝛿 j )] = 0

i = 1, 2, … ,B (13)

where PGi
and QGi

are the active power and reactive power of
the i-th bus, respectively; PDi

and QDi
are the active and reactive

loads of the i-th bus, respectively; Vi and Vj are the voltages of
the i-th and j-th buses, respectively; Gi j and Bi j are the conduc-
tance and susceptance between bus i and j, respectively; and 𝛿i

is the voltage angle of the i-th bus.
The inequality constraints are shown in Equations (14)–(19)

below, including the upper and lower limits of the PSH output,
the output power, the voltage, and the transformer, which are
the preconditions for safe operation of the PSHWS system.

∙ PSH constraints:

Pmin
hi

≤ Phi
≤ Pmax

hi
i = 1, 2, … ,H (14)

where H is the quantity of the pumped storage hydro genera-
tor, and Phi

is limited to values between the lower limit (Pmin
hi

)
and upper limit (Pmax

hi
).

∙ Power constraints:

Pmin
Gi

≤ PGi
≤ Pmax

Gi
i = 1, 2, … ,G (15)

Qmin
Gi

≤ QGi
≤ Qmax

Gi
i = 1, 2, … ,G (16)

where G is the quantity of the generator, and PGi
and QGi

are
limited to values between lower limits (Pmin

Gi
, Qmin

Gi
) and upper

limits (Pmax
Gi

, Qmax
Gi

).

∙ Voltage constraints:

V min
Gi

≤ VGi
≤ V max

Gi
i = 1, 2, … ,G (17)

V min
Bi

≤ VBi
≤ V max

Bi
i = 1, 2, … ,B (18)

where VG and VB are limited to values between the lower
limits (V min

Gi
, V min

Bi
) and upper limits (V max

Gi
, V max

Bi
).

∙ Transformer constraint:

T min
ki

≤ Tki
≤ T max

ki
i = 1, 2, … , T (19)

where T is the number of transformers, and Tki
is limited to

values between the lower limit (T min
ki

) and upper limit (T max
ki

).

4 ALGORITHM

In fact, the system voltage control problem is modelled as a dis-
crete horizon MDP, it is an optimal decision-making problem
for the reactive power management of PSH units under stochas-
tic environment. Then, the DDPG algorithm is employed to
train an agent and solve the MDP.

4.1 Formulation of the voltage control
problem as a Markov decision process

The above PSH dispatching process to solve the voltage man-
agement problem can be established as a discrete-time MDP
with a continuous state and an action space. MDP is an effec-
tive approach to establish a DRL model, indicating that the
next state is only related to the current state and current
actions (see in Figure 5). The environment is described by
four tuples: <S, A, P, R>. Among them, S is an all-state set,
A is a set with all actions, transfer function P is defined as
S × A × S→[0,1], and R is the reward function, defined as
S × A × S→R.

∙ S is the state set; the state (st ∈ S ) is defined as
(PW −1(t ), … , PW −N (t ); Ps−1(t ), … , Ps−M (t ); PLoad−1(t ), … ,
PLoad−L (t )); N, M, L represent the number of WT, PV, and
load, respectively; PW −i (t ), Ps−i (t ), PLoad−i (t ) represent the
power of WT, PV, and load, respectively.

∙ A is the action set of control variables; the action
(at ∈ A) is defined as (QH−1(t ), … ,QH−K (t )); the neu-
ral network selects action at by policy π; K repre-
sents the number of hydroturbine; QH−i (t ) represent
the active power and reactive power of hydroturbine,
respectively.
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FIGURE 3 MDP processing of PSHWS system

∙ P is the state transition probability, (st+1 ≈ P (st , at )) repre-
sent the state st+1 that is obtained by the state st that executes
actionat .

∙ R is the reward set; the reward (rt ≈ R(st , at )) is returned by
the external environment after the state st executes action at .

The key components contained in this MDP, discrete time t,
action a (𝜆t ,n), state s (Et ,n, et ,n), and reward r (r (et ,n|Et ,n, 𝜆t ,n )),
see in Figure 3.

∙ 𝜆t ,n is a reactive power of PSH units that P choose at time t.
∙ Et ,n represents the last state before it receives the reactive

power of PSH units signal from P, and et ,n represents the volt-
age deviation after it receives the reactive power of PSH units
signal from P.

One episode of the MDP is formed as: 1, E1,n, 𝜆1,n, e1,n,
r (e1,n|E1,n, 𝜆1,n ); 2, E2,n, 𝜆2,n, e2,n, r (e2,n|E2,n, 𝜆2,n ); t, Et ,n, 𝜆t ,n,
et ,n, r (et ,n|Et ,n, 𝜆t ,n ); T, ET ,n, 𝜆T ,n, eT ,n, r (eT ,n|ET ,n, 𝜆T ,n ).

According to the transition process of the uncertain environ-
ment, the transition to the next state st+1 is not only related
to the previous state st , but also to previous states st−1, st−2
etc. The resulting transition model is complex and difficult
to model. Therefore, the model is simplified by assuming the
Markov property of state transition, such that the probability of
transition to the next state st+1 is only related to the previous
state st , as follows:

Pst st+1
= E (St+1 = st+1|St = st ,At = at ) (20)

The value-based function also depends only on the current
state, so the cumulative reward value [45] from time step t is
calculated as follows:

Rt = rt+1 + 𝛾rt+2 + 𝛾2rt+3 =

S∑
k=0

rt+1+k (21)

where 𝛾 is the discounting rate (𝛾 ∼ [0, 1]), which reflects the
impact of the reward returned in the future on the current
action.

The above value-based function does not consider the impact
of the action. To this end, the action-value function following
policy π, which maps the state-action pair to the reward, is intro-
duced. It can also be described by the Bellman expectation equa-
tion [45]:

Q𝜋 (st , at ) = 𝔼𝜋[Rt+1 + 𝛾Eat+1
[Q𝜋 (st+1, at+1)]] (22)

The Bellman equation indicates that the value of a state is
composed of the reward of that state and the subsequent value
according to a certain attenuation ratio.

4.2 Adoption of DDPG to solve MDP

The DDPG adopts an actor-critic architecture, and two neural
networks are used to approximate them. The actor network is
responsible for selecting the current action a according to the
current state s, and interacting with the environment to gen-
erate the next state s’ and reward value R. The critic network
is responsible for calculating the current Q(st , at |𝜃w ) value and
target Q value yt .

Concerning the critic network, the objective is to minimize
the difference between the Q value calculated in the current state
and the target Q value, which can be updated by the loss func-
tion as follows [45]:

yt = r (st , at ) + 𝛾Q
(
st+1, u

(
st+1

) |𝜃𝜔 ) (23)

L (𝜃𝜔 ) = 𝔼𝜔′
[

(Q (st , at |𝜃𝜔 ) − yt )2
]

(24)

𝜔t+1 = 𝜔t + nc∇𝜇L (𝜃𝜔 ) (25)

where nc is the learning rate of the critic network. In fact, the
meaning of critic network training is to minimize the difference
between yt and Q(st , at |𝜃w ).

Regarding the actor network, the function J [45] is utilized
to output a deterministic value through a deterministic strategy
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gradient, as expressed in the following equations:

∇𝜃𝜇 J = 𝔼st≈𝜌u

[
∇𝜃𝜇Q (s, a |𝜃𝜔 ) |||s=si ,a=𝜇(si )

]
= 𝔼st≈𝜌u

[
∇aQ (s, a |𝜃𝜔 ) |||s=si ,a=𝜇(si ) ⋅ ∇𝜃𝜇𝜇 (s |𝜃𝜔 ) |||s=si

]
(26)

𝜇t+1 = 𝜇t + na∇𝜃w J (27)

where na is the learning rate of the actor network. The purpose
of actor network training is to maximize Q(s, a).

To make the training process more stable and reliable, DDPG
additionally uses two target actor-critic networks (the number of
neurons in the target and actor-critic networks is the same). The
parameters of the target network are updated by a soft update
process, as defined in the following expression:{

𝜃𝜔
′
← 𝜏𝜃𝜔 + (1 − 𝜏) 𝜃𝜔

′

𝜃𝜇
′
← 𝜏𝜃𝜇 + (1 − 𝜏) 𝜃𝜇

′
(28)

where the target actor-critic network is parameterized by μ’ and
ω’, respectively, and τ is the update rate.

The introduced registers, in accordance with the experience
replay, e = (st , at , rt , st+1), for each step are deposited in an
M-size experience replay buffer D = (e1, e2, … , eM ). The expe-
rience replay is similar to a brain to store memory in reg-
isters. When the capacity of D is exceeded, the new expe-
rience overwrites the old one. In each step, a mini-batch
of experiences is sampled to calculate the gradients. Subse-
quently, the networks are updated by the gradients. Suppose
the extraction of a mini-batch of experience {e1, e2, … , eN }, e =

(st , at , rt , st+1), i = 1,2, ⋯, N to calculate the minimum loss as
follows:

L (𝜔) =
1
N

N∑
i=1

[yi − Q(si , ai |𝜃𝜔 )]2 (29)

𝜔i+1 = 𝜔i + nc∇𝜇L (𝜃𝜔 ) (30)

where yi = ri + 𝛾Qw′ (si+1, 𝜇(st
′ )) is the target action value

obtained by the target critic network. The parameter is updated
by the policy gradient, and the determined value is output by
the deterministic strategy gradient, as expressed in the follow-
ing equations:

∇𝜃𝜇 J =
1
N

N∑
i=1

[
∇𝜃𝜇Q (s, a |𝜃𝜔 ) |||s=si ,a=𝜇(si )

]

=
1
N

N∑
i=1

[
∇aQ (s, a |𝜃𝜔 ) |||s=si ,a=𝜇(si ) ⋅ ∇𝜃𝜇𝜇 (s |𝜃𝜔 ) |||s=si

]
(31)

ALGORITHM 1 DRL-based optimization method

Input: State of the generation system:
PW −1(t ), PW −2(t ); Ps−1(t ); PLoad−1(t )… , PLoad−21(t )

Output: State of the PSH unit: QH−1(t ),QH−2(t )

1: Randomly initialize critic network w and actor network μ
2: Initialize target network w′ and 𝜇′ with weight w′ ← w, 𝜇′ ← 𝜇

3: Initialize memory replay D

4: for episode = 1 to max episode, M do

5: Initialize a random process N for action exploration

6: Receive initial observation state s1

7: for step = 1 to max step, T do

8: Select action at = 𝜇(st ) + Nt according to the current policy and
exploration noise

9: Equations (9)–(13), execute power flow calculation of hybrid system

10: Equations (14)–(19), inequality constraints are applied to the power
flow calculation results

11: Execute action at and obtain reward 𝛾t (calculated by Equation (21))
and new state st+1

12: Set st+1=st , at , 𝛾t

13: Store transition (st , at , 𝛾t , st+1) in D

14: If the D is full

15: Sample random mini batch of N transitions (st , at , 𝛾t , st+1) from D

16: Update critic network according to Equation (30)

17: Update the actor policy according to Equation (32)

18: Update the target networks according to Equation (28)

19: end for

20: end for

𝜇i+1 = 𝜇i + na∇𝜃w J (32)

Taking advantage of DQN, the parameters in the actor-
critic network are stored back to the target actor-critic network
through the gradient back propagation update. During training,
the target network synchronizes the weight of the critic network
at an update rate τ in each training iteration. Here, Qw′ (s, a)
is utilized to denote the target critic network, and w′ is the
weight; Q𝜇′ (s, a) is utilized to denote the target actor network,
and 𝜇′ is the weight. The DDPG algorithm flow is shown in
Algorithm 1. The flowchart of DDPG to train an agent see in
Figure 4.

The overall scheme of DDPG is shown in Figure 5. Specif-
ically, during the training process, the current state of the WT,
PV, and load obtained from the environment is computed by the
actor–critic network. Then, some state-action pairs are extracted
from the memory bank to calculate the Q value, and actions are
finally output with the reactive PSH to the environment through
the policy gradient. The parameters of actor DNN, critic DNN,
target actor DNN, target critic DNN are 𝜇, w, 𝜇′ and w′, respec-
tively. t represents current episode; s represents the state, a
represents the action; Q and Q’ are the output value of critic
DNN and target critic DNN, respectively; 𝜃 is current optimal
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FIGURE 4 Flowchart of DDPG to train an agent

network parameters. The simulation is realized on MAT-
LAB 2018b and Python 3.6 on a 64-bit Windows-based com-
puter with 4 GB of RAM and Intel Core i5 processor clocking
at 2.7 GHz.

5 CASE STUDY

5.1 IEEE 30-bus power system

For further investigation of the effectiveness of the proposed
method, nodes 1 are slack-bus. The rest of the bus nodes, loads,
and other parameters are described in Table 1.

Specifically, there are six power nodes in IEEE 30 sys-
tem. How to connect the three energy sources of WT,
PV and PSH is tested according to the configuration in
Table 2.

After comparing the three renewable energy access modes.
According to Figure 6, the configuration 3 is finally selected to
access the IEEE30 system and simulated. the improved IEEE

TABLE 1 IEEE 30-bus system

Unit Quantity Details

Bus 30 [14]

Slack 1 Bus 1(G1)

Load 21 [14]

AC line 41 [14]

Bus voltage — [0.95–1.05] p u

30-bus-based combined RE was used as a test system (see Fig-
ure 7).

Information on RE connected to the PSHWS system is
shown in Table 3. This includes two WFs, one including 30 WTs
with a total capacity of 2.5 MW, and the other containing 25
WTs. The PV power plants have a capacity of 25 MW, and the
two PSH units have a capacity of 160 MW.

A simulation was conducted on the PSHWS system. Table 4
shows the bus-voltage simulation results. The bold bus indicates
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FIGURE 5 DDPG-based agent training diagram

TABLE 2 Renewable energy distribution

Unit Configuration 1 Configuration 2 Configuration 3

WF Bus 2(G2), Bus 8(G4) Bus 11(G5), Bus 13(G6) Bus 5(G3), Bus 11(G5)

PV Bus 5(G3) Bus 2(G2) Bus 13(G6)

PSH Bus 11(G5), Bus 13(G6) Bus 5(G3), Bus 8(G4) Bus 2(G2), Bus 8(G4)

that the absolute value of the bus-voltage deviation is greater
than 5%, and the buses reach voltages over limit. To solve this
problem, the DDPG introduced in Section 4.2 is applied to the
voltage control problem.

The main hyperparameters that affect the final training results
are discount factor (γ) and soft update coefficient (τ). The larger
the discount factor, the more difficult it is for the agent to learn,

so two test values of 0.9 and 0.95 are set for the discount factor.
Then, the larger the soft update coefficient, the more unstable
the agent is. Two test values are set for the soft update coef-
ficient, which are 0.001 and 0.0001 respectively. The parame-
ters of the DDPG algorithm are listed in Table 5. The differ-
ent hyperparameters are selected to train three agent. The test
results confirm that the bigger the discount factor γ, the harder

FIGURE 6 Three RE access configurations. (a) Voltage amplitude; (b) Reactive power of two generators
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FIGURE 7 PSHWS system based on IEEE 30-bus

TABLE 3 Parameter setting for the generators

Unit Value Connected

WT 25*2.5 MW Node 5

30*2.5 MW Node 11

PV 25 MW Node 13

PSHP 160 MW, 74 MVAR Node 2

160 MW, 74 MVAR Node 8

the agent is to learn (see in Figure 8, Agent 2), after 100 points,
there is an obvious learning effect on Agent 1 and Agent 3, while
agent 2 has about 500 points. Otherwise, the bigger the soft
update coefficient τ, the more unstable the learning effect of
the agent (see in Figure 8, Agent 1). Finally, the convergence of
Agent 2 and Agent 3 are very stable, and the convergence result

TABLE 4 Optimized previous voltage amplitudes

Bus name

Voltage

amplitude (p u) Bus name

Voltage

amplitude (p u)

1 1.00000 16 0.93642

2 0.97603 17 0.92390

3 0.96883 18 0.91659

4 0.96141 19 0.91102

5 0.94055 20 0.91417

6 0.95411 21 0.91468

7 0.94857 22 0.91572

8 0.95513 23 0.91780

9 0.94010 24 0.90848

10 0.92733 25 0.92587

11 0.98500 26 0.90633

12 0.95809 27 0.95115

13 0.99075 28 0.95891

14 0.94011 29 0.94657

15 0.93208 30 0.93213

TABLE 5 Parameters of the DDPG algorithm

DDPG Agent 1 Agent 2 Agent 3

Active power action value [0, 1.6] [0, 1.6] [0, 1.6]

Reactive power action value [0, 0.74] [0, 0.74] [0, 0.74]

Experience replay memory capacity 8000 8000 8000

Step size of each episode 10 10 10

Mini-batch size 40 40 40

Learning rate for actor network (na) 0.001 0.001 0.001

Learning rate for critic network (nc) 0.002 0.002 0.002

Discount factor (γ) 0.9 0.95 0.9

Soft update coefficient (τ) 0.001 0.0001 0.0001

FIGURE 8 Cumulative reward for iterative process

of agent 1 fluctuates more than that of the other two agents.
Therefore, after comparison, the well-trained agent 3 is finally
selected for testing.

5.2 The training process of deep
deterministic policy gradient

In this study, the DDPG algorithm described in Section 4 was
applied to train an agent to solve the voltage control prob-
lem. The training process is shown in Figure 8. The curve rep-
resents the trend of cumulative rewards in the training pro-
cess. Note that, initially, the cumulative reward of the agent
(see Equation (9)) is small. This is because the agent cannot
perform good action at this initial stage. With the increase in
training episodes, the agent interacts with the environment to
learn experiences and obtain a larger cumulative reward. After
approximately 2000 episodes, the cumulative reward converges
to a satisfactory range, which means that the agent learns the
optimal or near-optimal control policy, and it can carry out opti-
mal actions.
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FIGURE 9 Data collected throughout 24 h for testing: (a) WF output power; (b) PV output power; (c) Total load

FIGURE 10 Data collected throughout 30 day for testing: (a) WF1 output power; (b) WF2 output power; (c) PV output power; (d) Total load

5.3 Testing the well-trained agent

Then, the above well-trained agent would provide reactive
power dynamic dispatch schemes for the PSH units to com-
pensate for the voltage problem. To verify the effectiveness
of the dispatch scheme provided by the agent, data collected
throughout 24-h were selected as test data, as shown in Figure 9.

And a month simulation data were also selected as test data (see
in Figure 10). The output power of WFs and PV power plants
adopts the actual data [46]; the load is collected by a Gaussian
process [47].

First, to verify the effectiveness of the reactive power
dynamic dispatch scheme provided by the agent, we compared
it with a traditional reactive power control scheme [48]. The
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FIGURE 11 24-h simulation comparison: (a) Voltage amplitude; (b) Reactive power of two generators

FIGURE 12 Voltage amplitude of all bus node

simulation results are shown in Figure 11a. To compare the
voltage control effect of these two reactive power schemes, the

variation in the Bus-6 voltage amplitude with different reactive
power schemes is shown in Figure 11b. Note that the proposed
reactive power control schemes can make the bus voltage closer
to the rated voltage than the traditional reactive power con-
trol scheme. This means that the proposed method can show a
better voltage control effect in comparison with the traditional
method.

Then, the voltage amplitude of all bus nodes within 24-
h which optimized by DDPG algorithm is seen in Fig-
ure 12. It shows that the voltage amplitude are limited in
[0.97, 1.03].

5.4 Testing the robustness of DDPG
algorithm

Then, three well-trained agents by DDPG algorithm, and test-
ing in the same wind, PV and load data, see in Figure 13. In the
Bus-6, the performance of different agents are variant. But the
voltage amplitude are also limited in [0.97, 1.03].

FIGURE 13 24-h simulation compare in three agents. (a) Voltage amplitude; (b) Reactive power of two generators
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FIGURE 14 24-h simulation compare with previous methods. (a) Voltage amplitude; (b) Reactive power of two generators

FIGURE 15 24-h comparison in SP, DQN, and DDPG: (a) Voltage amplitude; (b) Reactive power of two generators

5.5 Comparison with two previous methods

Then, two previous methods [22, 23] are selected for compari-
son. According to Figure 14, the method 1 obtain a fine effect,
and the method 2 obtain an unsatisfactory results. But the result
of the proposed method is better than the two previous method.
Otherwise, the proposed method uses one year of WT, PV and
load data training, so the well-trained neural network can give
the optimal decision immediately in the face of any test data.
The previous method can only give one day’s data in the train-
ing process, and the training results can only be used for the
decision-making of the current training data. Each training will
take up too much time and space.

5.6 Comparison with SP and DQN

For further investigation of the advantages of the proposed
method, both the SP and DQN methods were also employed as
comparison examples. The detailed settings of these two meth-
ods are listed in Table 6 [49]. Figure 15 shows the comparisons

TABLE 6 Parameters of SP and DQN algorithms

Algorithm Parameter Value

SP Active power action value [0, 1.6]

Reactive power action value [0, 0.74]

Iterations 2000

DQN Active power action value [0, 0.3, 0.6, 0.9, 1.2, 1.5]

Reactive power action value [0, 0.148, 0.296, 0.444,
0.592, 0.74]

Discount factor (γ) 0.9

Soft update coefficient (τ) 0.0001

Experience replay memory
capacity

8000

Step size of each episode 10

Learning rate for actor
network (na)

0.001

Learning rate for critic
network (nc)

0.002

Mini-batch size 40
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FIGURE 16 One-month simulation comparison in SP, DQN, and
DDPG

TABLE 7 Comparison of the three methods for a month

Method

Total

deviation (p u) Improvement

Simulation

time (h)

SP 428.9 0 0 3.55

DQN 378.58 −50.35 11.7% 3.03

DDPG 335.25 −93.65 21.8% 2.95

of the voltage amplitudes and reactive power in SP, DQN, and
DDPG. Note that DDPG optimizes the voltage amplitude to
[0.97, 1.03] p u, while SP is [0.93, 1.02] p u and DQN is [0.94,
1.02] p u. This means that the proposed method achieves a bet-
ter voltage control effect than the other two methods.

Moreover, one month’s data were also selected for further
comparison. The change in total deviation (cumulative voltage
deviation) with SP, DQN, and DDPG is shown in Figure 16.
The proposed method clearly reduces the obtained total devia-
tion for each day. For quantitative comparison of the different
methods, the sum of the total deviation for one month was cal-
culated; it is listed in Table 7. Note from Table 7 that the total
deviation of DQN (11.7%) is less than that of SP, and the value
of DDPG (21.8%) is less than that of SP. The above analysis
shows that DDPG achieves a better performance than SP and
DQN.

6 CONCLUSION

In this study, the reactive power of pumped storage hydroelec-
tric units was employed as a dynamic dispatch to compensate
for voltage fluctuations. The problem of voltage fluctuation was
solved by utilizing an AI algorithm, that is, deep deterministic
policy gradient. After renewable energy is connected, the uncer-
tain fluctuation of WT, PV and load makes the system voltage
fluctuate between [0.9, 1.1] p u. Through testing on an IEEE

30-bus power system, deep deterministic policy gradient solves
the problem of voltage deviation and controls the voltage of
30 nodes within a permitted range. At the same time, through
the robustness experiment, three agents are training to optimize
the target, it shows brilliant stability of deep deterministic pol-
icy gradient, and the optimization effect is satisfactory. In the
same environment, stochastic programming and deep Q net-
work were introduced to perform a comparative analysis. The
results of deep Q network in voltage deviation control are [0.94,
1.02] p u, whereas the stochastic programming optimization
results are [0.93, 1.02] p u. Moreover, the cumulative deviation
of deep deterministic policy gradient per month is 21.8% less
than that of stochastic programming. In conclusion, for com-
plex problems with high dimensionality, the optimization effect
of deep deterministic policy gradient is clearly better than that
of deep Q network and stochastic programming, and the pro-
posed solution to address voltage fluctuations was successfully
demonstrated.
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