

Aalborg Universitet

Geolocating Traffic Signs using Large Imagery Datasets

Pedersen, Kasper F.; Torp, Kristian

Published in:
Proceedings of 17th International Symposium on Spatial and Temporal Databases, SSTD 2021

DOI (link to publication from Publisher):
10.1145/3469830.3470900

Creative Commons License
CC BY 4.0

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Pedersen, K. F., & Torp, K. (2021). Geolocating Traffic Signs using Large Imagery Datasets. In Proceedings of
17th International Symposium on Spatial and Temporal Databases, SSTD 2021 (pp. 34-43). Association for
Computing Machinery. https://doi.org/10.1145/3469830.3470900

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 19, 2022

https://doi.org/10.1145/3469830.3470900
https://vbn.aau.dk/en/publications/6c16cf7d-b156-4888-82f5-87251c4bcb3c
https://doi.org/10.1145/3469830.3470900

Geolocating Traffic Signs using Large Imagery Datasets
Kasper F. Pedersen
Aalborg University

Dept. of Computer Science
Aalborg, Denmark
kasperf@cs.aau.dk

Kristian Torp
Aalborg University

Dept. of Computer Science
Aalborg, Denmark
torp@cs.aau.dk

ABSTRACT
Maintaining a database with the type, location, and direction of traf-
fic signs is a labor-intensive part of assetmanagement formany road
authorities. Today there are high-quality cameras in cell-phones
that can add location (EXIF) metadata to the images. This makes it
efficient and cheap to collect large geo-located imagery datasets. De-
tecting traffic signs from imagery is also much simpler today due to
the availability of several high-quality open-source object-detection
solutions. In this paper, we use the detection of traffic signs to find
both the location and the direction of physical traffic signs. Five
approaches to cluster the detections are presented. An extensive
experimental evaluation shows that it is important to consider both
the location and the direction. The evaluation is done on a novel
dataset with 21,565 images that is available free for download. This
includes the ground-truth location of 277 traffic signs and all source
code. The conclusion is that traffic signs are detected with an F1
score of 0.8889, a location accuracy of 5.097-meter (MAE), and a
direction accuracy of ±11.375◦(MAE). Only data from two trips are
needed to get these results.

KEYWORDS
GPS, imagery, traffic sign, clustering
ACM Reference Format:
Kasper F. Pedersen and Kristian Torp. 2021. Geolocating Traffic Signs using
Large Imagery Datasets. In 17th International Symposium on Spatial and
Temporal Databases (SSTD ’21), August 23–25, 2021, virtual, USA. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3469830.3470900

1 INTRODUCTION
High-resolution cameras are available in many consumer products
such as cell phones and action cameras. Such devices make it simple
to collect very large imagery datasets while driving. Further, a num-
ber of open-source software products from major companies such
as Facebook, Microsoft, and Google have made general-purpose
object-detection networks [12, 16, 18] available to small organiza-
tions. This combination of hardware and software makes it possible
to detect traffic signs from an imagery dataset and use these de-
tections to annotate maps with new information. In this way, it
is possible to automate the labor-intensive process of keeping the
placement of traffic signs in a road network up-to-date.

This work is licensed under a Creative Commons Attribution International
4.0 License.

SSTD ’21, August 23–25, 2021, virtual, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8425-4/21/08.
https://doi.org/10.1145/3469830.3470900

E

NE

N

NW

W

SW

S

SE

0 100 200

(a) D15.3 in an Intersection

E

NE

N

NW

W

SW

S

SE

0 10 20

(b) D11.3 in a Roundabout
Figure 1: Location and Direction of Traffic Signs

To annotate a map with the placements of traffic signs these
have to be accurately detected, e.g., is it a speed limit or a yield
sign. Several papers have looked at this issue [3, 22, 24]. However,
it is also very important to know an accurate location of a traffic
sign and in which direction the traffic sign is pointing, e.g., are you
entering or leaving a 60 km/h zone. In this paper, we assume that
the traffic signs have been accurately detected and we focus on the
geolocation and direction of the traffic signs, both of which can be
derived from standardized EXIF metadata [4] available from most
cameras, e.g., a GPS location and a timestamp.

A major problem in geolocating traffic signs is that the quality
of the GPS location can vary significantly, e.g., due to poor GPS
signal quality or bad placement of the camera in the vehicle. This
also negatively affects the quality of the direction of travel as the
GPS signal is a component in computing it.

The accuracy of location and direction of traffic signs are par-
ticularly important in the parts of the road network where there
are many traffic signs of the same type. This is illustrated using
real-world data for an intersection in Figure 1a and a roundabout in
Figure 1b. In these figures, a dot represents the computed location
of a traffic sign from imageries. The wind roses show a count of the
direction of the traffic signs using a 10◦ resolution. As can be seen,
the traffic signs are detected in directions that are closely related to
the directions of the roads. Note that the distribution of directions
reflects the cars that have collected the imagery dataset not the
traffic in general.

In Figure 1a there are four physical traffic signs. Due to the
large number of detections, this is hard to determine from the
locations alone (the dots). Detections from different physical traffic
signs of the same type are naturally close due to the limited spatial
extent of an intersection. Adding the direction in the prediction of
the physical traffic signs can help significantly.

In this paper, we look at how to accurately determine the location
and the direction of traffic signs. For this purpose, we have collected

34

https://doi.org/10.1145/3469830.3470900
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3469830.3470900

SSTD ’21, August 23–25, 2021, virtual, USA Kasper F. Pedersen and Kristian Torp

a very large imagery dataset and created the ground truth for a
total of 277 traffic signs of 12 different types. The contributions of
the paper can be summarized as follows.

We cluster the traffic-sign detections using off-the-shelf clus-
tering algorithms and make a detailed comparison of a general
clustering algorithm (DBSCAN) [10] to a specialized clustering
algorithm (FCM4DD) [13].

We do an extensive experimental evaluation of five different
approaches to geolocate traffic signs. This evaluation is based on a
novel, large, real-world imagery dataset. We make a comparison to
the ground-truth location and direction provided.

We release the data used in this paper for other researchers to
freely download and use in their work to hopefully later improve
on the results presented [21].

The main conclusion is that we can cluster traffic-sign detec-
tions with an F1 score of 0.8889. The location of traffic signs can
be predicted with a 5.097-meter position accuracy (MAE) and a
direction accuracy of ±11.375◦ (MAE). It requires only data from
two trips to reach this accuracy (two trips one camera, or one trip
two cameras).

The remaining part of the paper is organized as follows. In Sec-
tion 2 related work is presented. This is followed by a description of
the data foundation in Section 3. The five clustering approaches are
described in Section 4. Results are presented in Section 5. Section 6
concludes the paper and points to directions of future research.

2 RELATEDWORK
Compass clustering [14] is a clustering method that relates existing
imagery found in web services like Flickr, to points-of-interests
(POIs) such as famous buildings or outdoor art. This method takes
advantage of the EXIF metadata found in imagery. Specifically,
metadata related to the location and the direction of the camera is
utilized. A critique raised in [14] concerns how existing approaches
neglect the camera direction and thereby base the relationship
solely on distances. A key contribution of [14] is therefore the
ability to utilize both a location and a direction to relate imagery
to POIs. A notable difference between compass clustering and the
work presented in this paper is the viewing angle of the POIs.
Attractions often have a 360◦ viewing angle where traffic signs are
limited to a 180◦ at most. Further, the location of the attraction
is known whereas we predict the location and direction of traffic
signs.

Fuzzy C-means for Directional Data (FCM4DD) [13] is an algo-
rithm that aims at clustering directional data. As the name suggests,
FCM4DD is based on the Fuzzy C-means (FCM) [9] clustering algo-
rithm. FCM4DD is capable of clustering spherical data as well as
object directions. As FCM, a predetermined c value (hyperparam-
eter) is required to determine the number of clusters that should
be created. The paper compares its contribution to two other direc-
tional clustering algorithms and finds similar accuracy, however,
FCM4DD has a better runtime performance. Because FCM4DD can
be used to cluster object directions, this paper explores if it an
algorithm also suitable for clustering traffic signs.

The paper [15] focuses on improving parking-slot detection with
a novel clustering algorithm called Directional-DBSCAN (D-DB-
SCAN). As the name suggests, D-DBSCAN is a customized version

of the DBSCAN clustering algorithm. Its objective is to group points
that collectively form a straight line. Points that do not form straight
lines are marked as noise. Similar to [15], we focus on clustering
data based on both locality and directionality using the DBSCAN
algorithm. However, we assume that each traffic-sign detection
(point) has a direction. Therefore, the concept of directionality
differ significantly from what is presented in [15] as they compute
a direction of the straight line constructed from multiple points.

Both [6] and [8] focus on traffic sign detection, classification, and
mapping, using Google Street View (GSV) imagery. As a result, the
papers have a broad system perspective involving computer vision
(object detection and object classification) clustering, and mapping.
We solely focus on the task of converting traffic sign detections into
traffic sign predictions using five different clustering approaches.
Further, we use data extracted from imagery captured by consumer-
grade hardware and do not rely on GSV imagery.

Similar to [6] and [8] GoMap [20] is a system that locates traffic
signs by utilizing road-level imagery. The road imagery is captured
by consumer-grade hardware such as smartphones and action cams.
Relevant metadata from the imagery is stored in a data warehouse.
For detecting traffic signs in the imagery GoMap uses a trained
RetinaNet [17] model. The traffic sign detections are clustered using
DBSCAN [10] such they can be visualized on a web frontend. In
general, GoMap consists of four major system components, namely
a data warehouse, object detector, clustering, and a web frontend.
The GoMap paper has a broad system perspective whereas this
paper focuses solely on the clustering aspect using the detections
computed by the system presented in the GoMap paper.

3 DATA FOUNDATION
This section presents how data is collected, processed, and utilized.
All the data presented including the imagery is freely available on
GitHub [21].

3.1 Imagery Foundation
The basic data foundation is a set of high-resolution images, mostly
12M pixels in a 4K×3K format. All images are captured by consumer-
hardware such as action cameras and cell phones that support the
standard EXIF format [5] for embedding metadata directly into the
images.

To automate the data collection, only time-lapse imagery from
trips is used, i.e., the driver only interacts with the hardware at trip
start/end and not while driving. Note that all images are collected
by drivers with another main purpose than data collection, e.g.,
driving to work. We measure the size of data collected on a specific
road by the number of trips on this road. These trip counts only
reflect the driving patterns of the vehicles collecting the imagery
and not the traffic in general. This can be seen in 1a where there are
more observations in the north-south direction than the east-west
direction. The latter is the main road.

3.2 Traffic-Sign Foundation
An existing approach is used to detect the traffic signs on the images.
Object detection is outside the scope of this paper, for details, please
see [20]. We focus on determining the location and the direction of

35

Geolocating Traffic Signs using Large Imagery Datasets SSTD ’21, August 23–25, 2021, virtual, USA

Sign
Direction

Sign
Direction

60
km/h

50
km/h

Figure 2: Direction of Vehicle and Traffic Sign

the traffic signs detected. Relevant EXIF tags are used for both of
these purposes.

The EXIF GPSLatitude tag and the EXIF GPSLongitude tag are
used to locate the camera. To get the location of the traffic sign,
the thin-lens model [11] is used. This model computes the distance
between the camera and the detected traffic sign. To compute these
distances we use the EXIF tags FocalLengthIn35mmFilm, ExifIm-
ageWidth, and ExifImageLength.

The GPSImgDirection EXIF tag can be used to compute the di-
rection of the detected traffic sign. Even though there is provided
support for the GPSImgDirection tag the cameras used for the data
collection do not always populate it. Therefore a camera direction
is approximated using the GPS trip data. Such an approximation
is well-suited if the camera is pointing in the same direction as
the vehicle is driving. In this study, cameras are always mounted
front-facing in the windscreen. This allows the image direction to
be computed from two consecutive GPS points.

The traffic-sign location is found by first computing the distance
between the camera and the traffic sign (the thin-lens model). This
distance is used as the radius in a circle that has the camera location
as its center. Then the traffic-sign location is computed by finding
the intersection between this circle and a line string (or vector)
from the circle center in the camera direction. For further details
see [20].

In the paper, we use 21,565 images distributed among 12 traffic-
sign types as shown in Table 1.

3.3 Ground-Truth Data
A ground-truth traffic-sign location is recorded manually using the
QField [19] app. In this app, a satellite map allows. e.g., intersections
and roundabouts to be used as reference points for locating the
traffic signs more accurately. A similar approach is used by the
Danish Road Directorate to map traffic-sign locations. In a manual
post-processing step, each ground truth location is annotated a
traffic sign direction. The direction is deduced using QGIS [1] and
the Azimuth Measurement plugin [23].

We define the direction of a traffic sign as the Azimuth angle
of the road segment of which the traffic sign is intended to be
observed from. This direction is relative to the imprinted side of the
traffic sign and thus in the opposite direction of which vehicles are
driving. The direction of the vehicle and the traffic-sign is illustrated
in Figure 2. When the vehicle is traveling West (270◦) it sees traffic
signs with the direction East (90◦)

Figure 3 shows the area of Aalborg that contains the ground-
truth data. In the right-hand corner of Figure 3 an up-close section
of the map is shown. The hardware used for the ground-truth data
collection is a Samsung Galaxy S20 Plus and a OnePlus 7 Pro. All

Figure 3: Map Showing Ground Truth

Figure 4: MBRs with Varying Accuracy

ground-truth traffic signs are mapped on-site and are assessed to be
within one meter of accuracy. In total 277 ground-truth traffic-signs
locations and directions are collected.

To evaluate the output accuracy of each clustering approach,
both ground truth and detection data must be available. This limits
the dataset to 21.565 traffic-sign detections. To avoid noisy data
produced by the traffic-sign detector we remove inaccurate traffic-
signs, i.e., all detections with a confidence score < 0.8 are removed.
Simple experiments showed that 0.8 is a reasonable threshold. A
total of 10.826 traffic-sign detections remains after the confidence
score filtration.

All traffic sign detections with a camera distance larger than 30-
meters are also removed. The reason for this is shown in Figure 4.
Here the green Minimum-Bounding Rectangle (MBR) is correct,
the orange MBR has a 2-pixel error, and the red MBR has a 4-pixel
error. As the distance between the camera and traffic sign increases
this influences the estimation of the traffic sign’s location.

Figure 5 quantifies the effect of pixel error with respect to dis-
tances for the thin-lens model. The x-axis is the distance between

36

SSTD ’21, August 23–25, 2021, virtual, USA Kasper F. Pedersen and Kristian Torp

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

Distance (meter)

D
ist
an
ce

Er
ro
r(
m
et
er
)

Pixel Error
1px
2px
3px
4px
5px

Figure 5: Absolute Error Increase with the Distance

Ground Truth Points
Sign Train Val. Test Train Val. Test

22 11 14 1,632 230 262
41 14 15 1,550 826 737
23 7 7 627 288 269
14 4 4 244 34 159
11 6 8 128 24 68
12 4 2 193 23 22
8 3 2 89 37 32
4 2 2 71 9 28
10 3 3 32 20 7
2 2 2 2 16 3
7 2 2 65 17 54
2 1 1 12 7 11

Total 156 59 62 4,645 1,531 1,652
Table 1: Train, Validation, and Test Split Distribution

the vehicle and the detected traffic sign. The y-axis shows the dis-
tance error in meters. The size of the pixel error varies from one to
five. As an example, a traffic sign detected from a 100-meters with
a 4-pixel error is placed with an inaccurate of up to 20-meters.

Figure 5 shows that a 30-meters distance threshold allows an
MBR error of up to 5 pixels while maintaining an accuracy within 5
meters. This is considered reasonable. This additional filter results
in 8,005 traffic sign detections.

Finally, through human inspection, 177 detections are removed
due to incorrect classification and 49 are reclassified. This leaves
7,828 traffic-sign detections distributed among the 12 classes shown
in Table 1. We do this manual filtering because the focus of this
paper is to geolocate traffic signs, the human inspection is intended
to remove noise that would not otherwise be present if using a
perfect object detector.

3.4 Dataset Splitting
Following good machine learning practices, the dataset is split into
training, validation, and testing sets. Mapping each traffic-sign
detection individually to the ground truth is a very labor-intensive
task. Instead, we split the dataset using the following rules.

(1) Domain: Data is split on a per-class basis

(2) Separation: A dataset split can only be performed when a
spatial separation between two or more clusters are apparent

(3) Relation: Ensure all truths relating to a cluster is represented
in the same type of set, i.e. training, validation, and testing

The splitting is still manually, However, the task is significantly
simplified because it uses spatial regions that contain many traffic-
sign detections and not the individual detections. The details of this
manual splitting are discussed in the following using the examples
shown in Figure 6

A cluster should represent only a single class (traffic-sign type).
Thus, clustering is performed once for each type in the dataset,
i.e., 12 times. Therefore, the domain rule can be enforced without
inducing any bias.

For assessing the clustering approaches accurately, it is important
to retain the complexity of the original dataset in the training,
validation, and testing sets. To retain this complexity the separation
rule is introduced. Figure 6a and 6b the detections are not well-
separated for the and signs. If the detections in these examples
are split into separate sets, it becomes easier for the clustering
approaches presented in Figure Section 4 because the clusters then
become well-separated in the experiments, even though this is not
the case for the real-world data. In these two cases all, detections
are put into the same set.

Figure 6c shows an example where spatial separation is good
in the real-world data, simply because the distance between the
physical traffic signs is bigger than it is in Figure 6a and Figure 6b.
In such cases, the three groupings of detections can be put into
each of sets: training, validation, or test.

In this study, clustering performance is evaluated by matching a
traffic sign prediction with a ground truth. This implies that a strong
relationship exists between clusters and their corresponding ground
truth. Obeying the relation rule means that no such relationship
is broken during the splitting process. As an example, we cannot
split any of the groupings of detections in 6c. All detections in a
single grouping must be put into the same set.

The aim is a 60:20:20 split ratio. However, with the splitting
rules imposed to avoid being biased, it is not possible to do the
splitting with exactly these ratios. The final split ratio ended up
being 56:21:23. Table 1 shows how the data is distributed between
the training, validation, and testing sets.

4 CLUSTERING TRAFFIC SIGNS
In this section, five approaches to clustering traffic-sign detections
are presented. The goal is to find the location and the direction of
the physical traffic sign with the highest accuracy. We first describe
what is common to all (or most) of the clustering approaches. Next,
each clustering approach is described in detail.

4.1 Overall Idea
All five approaches use off-the-shelf clustering algorithms to cluster
the detections. Four out of the five approaches cluster on both the
location and the direction. The fifth approach only uses location
and acts as a baseline.

The clustering is always done on a per traffic-sign type basis,
e.g., first we cluster , then , and so on. Note that the order of
traffic-sign type clustering does not matter.

37

Geolocating Traffic Signs using Large Imagery Datasets SSTD ’21, August 23–25, 2021, virtual, USA

(a) Testing Split (b) Validation Split (c) Validation Split
Figure 6: Dataset Split Examples with Ground Truth and Detections

Predictions
Angle-Metric DBSCAN
Angle-Balancing DBSCAN
Two-Step DBSCAN
DBSCAN with FCM4DD
DBSCAN

Ground Truth
D15.3

Detections
Detections

Figure 7: Finding a Traffic Sign Location

The approaches are applicable for directional-based locations
in general, i.e., where the data foundation is ⟨id , type , latitude ,
lonдitude ,direction⟩, where id is a unique ID for the detection, type
is the type of the traffic sign, (latitude ,lonдitude) give a location,
and direction is a compass direction.

The domain for direction is an angle from 0◦ to 359◦. Then this
domain wraps, i.e., 360◦ ≡ 0◦. Therefore, additional clustering
steps are needed to cluster detections on both the location and the
direction.

All five clustering approaches find a cluster center and a direc-
tion. This corresponds to the physical location of a traffic sign and
its direction, see Figure 2. The location is computed by finding the
geometric center (centroid) of the Multipoint enclosing the cluster
points. The centroid is used assuming the distribution of the com-
puted locations follows a normal distribution and then using the
central limit theorem.

Figure 7 is a concrete example of cluster centers produced by
each of the five approaches. The three approaches, Angle-Metric
DBSCAN, Angle-Balancing DBSCAN, and Two-Step DBSCAN all

produce the exact same cluster center, the cyan dot. DBSCAN and
DBSCAN with FCM4DD results in two clusters each. The reason
for this is explained in subsection 5.1.

The traffic-sign direction is computed by dividing the circle into
n equally sized sectors. In this study n = 36 such each sector spans
10◦, i.e, {[355◦, 5◦), [5◦, 15◦), ..., [345◦, 355◦)}. Simple experiments
showed this is a reasonable sector size.

Each detection is assigned to a sector based on its direction. The
sector containing the most detections is selected for estimating the
direction of the physical traffic sign. In the case multiple sectors
have the same count, the first is selected. From the sector selected,
the angle to the midpoint of the sector arc is used as the traffic
sign direction. As an example, if the sector [355◦, 5◦) has the most
detections, the traffic-sign direction is set to 0◦.

4.2 DBSCAN
Density-based spatial clustering of applications with noise (DB-
SCAN)[10] is a widely used and robust clustering algorithm for spa-
tial data. The algorithm takes two parameters Eps that is a threshold
for when a point is considered noise andMinPts that is theminimum
number of points allowed in a cluster.

DBSCAN clusters detections based on the Euclidean distance
between these. Asmentioned in subsection 4.1, the direction domain
wraps at 360◦. This domain can therefore not directly be used
with the DBSCAN algorithm. The direction domain needs to be
transformed before it can be used.

To examine if this transformation of the direction domain im-
proves the quality of the clustering, the first approach only uses
the two dimensions ⟨latitude, lonдitude⟩. The approach serves as
the baseline for the four other approaches.

4.3 Two-Step DBSCAN
Away to use the direction in the clustering of traffic-sign detections
is to split the clustering into two steps. The first step clusters the
data spatially, i.e., uses the location. The second step uses the output
from the first step to further cluster the detections with respect to
a maximum allowed angle difference, i.e., uses the direction.

38

SSTD ’21, August 23–25, 2021, virtual, USA Kasper F. Pedersen and Kristian Torp

The Two-Step DBSCAN approach uses the DBSCAN algorithm
for both steps. The two steps require three parameters: Eps, MinPts,
and Max. Angle. The first two parameters are the same as for the
DBSCAN approach. The latter is a threshold for when a point is
considered noise based on the direction. The MinPts parameter is
shared between invocations of the DBSCAN algorithm. The Two-
Step DBSCAN approach is described in Algorithm 1

Algorithm 1: Generic Two-Step DBSCAN
input :TS , Eps ,MinPts ,MaxAnдle , DistFunc
output :A set of clusters

1 Clusters ← �

2 SC ← DBSCAN(TS , Eps ,MinPts)
3 forall sc ∈ SC do
4 AC ← DBSCAN(sc ,MaxAnдle ,MinPts , DistFunc)
5 Clusters ← Clusters ∪AC

6 return Clusters

The input is a set of traffic-sign detections (TS), the three pa-
rameters discussed above, and a distance function (DistFunc). The
output is a set of clusters, a simple example of the output is shown
in Figure 7.

In line 2, a default Euclidean distance function is used with the
DBSCAN algorithm. This function only considers the location, i.e.,
latitude and longitude. This first step of the algorithm results in a
set of clusters (SC).

line 3 to line 5 loops of the clusters found. In line 4, the DBSCAN
algorithm uses the distance function DistFunc provided as part of
the input. DistFunc only considers angular data, i.e., directions. The
set of clusters found (AC) are added to the final output (Clusters)

In the Two-Step DBSCAN approach, DistFunc operates in Eu-
clidean space and does not wrap angles. We deal with this later.

The order of the two-step clustering in Algorithm 1 is important.
The first step must be clustering based on the location and the
second step the sub-clustering based on direction. The reason for
this is that detections can be spread over a wide spatial area. How-
ever, the direction is constrained to domain [0◦, 360◦). Experiments
showed that switching the two steps always gives worse results
than reported in Section 5.

4.4 Angle-Metric DBSCAN
The Angle-Metric DBSCAN approach is similar to the Two-Step
DBSCAN approach with the exception that the distance function
used for clustering in the second step. The pseudo-code presented
in Algorithm 1 is reused for the Angle-Metric DBSCAN approach.
However, the value for the parameter DistFunc. is changed to the
AnдleDist function shown below.

Algorithm 2: AnдleDist Function
input :anдle1, anдle2
output :A angular distance

1 return |(anдle2 − anдle1 + 180◦) mod 360◦ − 180◦ |

The AnдleDist function wraps the angle, e.g., AnдleDist (350◦,
10◦) is 20◦ and not 340◦.

4.5 DBSCAN with FCM4DD
This approach is significantly different from the four other ap-
proaches presented in this paper because it uses the specialized
FCM4DD algorithm [9] for clustering the direction.

As the name indicates, FCM4DD specializes in clustering angu-
lar data. Like the two previous approaches (Two-Step DBSCAN
and Angle-Metric DBSCAN) we retain the two-step approach to
clustering. However, in the second step, DBSCAN is swapped with
FCM4DD. The latter can be seen in line 4 of Algorithm 3.

FCM4DD takes four parameters, namely c which decides how
many clusters should be created,mwhich is the weighting fuzziness
parameter,MinImpr which defines a threshold for when an optimal
solution is found, and MaxIter , which defines a threshold for a
maximum number of iterations that should be performed to find
an optimal solution.

Algorithm 3: DBSCAN with FCM4DD
input :TS , Eps ,MinPts , c ,m,MaxIter ,MinImpr
output :A set of clusters

1 Clusters ← �

2 SC ← DBSCAN(TS , Eps ,MinPts)
3 forall sc ∈ SC do
4 AC ← FCM4DD(sc , c ,m,MaxIter ,MinImpr)
5 Clusters ← Clusters ∪AC

6 return Clusters

A difference between Algorithm 1 and Algorithm 3 is in the
input where the FCM4DD algorithm takes more parameters. Also,
line 4 is different. Here Algorithm 3 uses the FCM4DD algorithm.

4.6 Angle-Balancing DBSCAN
The three previous approaches that use both the location and the
direction of detections cluster all data twice due to the two-step
implementation. This section presents a single-step approach called
Angle-Balancing DBSCAN. To do single-step clustering requires a
different approach to handling directions (angles). This difference
is illustrated in Figure 8

Figure 8 shows the locations of three detections labeledA, B, and
C using dashed circles. The direction of each detection is shown
using arrows, e.g.,A to the East andC to the North. If the directions
are used to map the detections to a circle [0◦, 360◦) (the green arc)
we get the solid circles labeled A′, B′, and C ′ at 0◦, 45◦, and 90◦,
respectively.

Looking at Figure 8 A and C seem close. However, A and C are
only close from a location perspective. Seen from a direction per-
spective A′ and C ′ are far apart. We therefore need to go from
three dimensions (latitude, longitude, and direction) to four dimen-
sions: two dimensions from the location and two dimensions from
the converted direction, i.e., look at the direction as another (2D)
location.

Equation 1 defines how to calculate a location from a direction.
A′, B′, andC ′ are the output of Equation 1 given the locations A, B,
and C .

Now a distance can be calculated between any pair of A′, B′ and
C ′. Note how the arc length of A′B′ (π4) is half of the arc length of

39

Geolocating Traffic Signs using Large Imagery Datasets SSTD ’21, August 23–25, 2021, virtual, USA

0°
Point(1, 0)

90°
Point(0, 1)

C

B

A

C'

B'

A'

45°
Point(0.7071, 0.7071)

Figure 8: Chord and Arc Distance

A′C ′ (π2). This relation is not true for the chord lengths (Euclidean
distances)A′B′ (0.7654) andA′C ′ (

√
2). Therefore, the magnitude of

chord lengths cannot be directly compared to each other. However,
chord lengths can be compared in terms of =, < and >, as anything
>
√
2 is also > π

2 (90◦) and anything <
√
2 is also < π

2 (90◦).
In conclusion, DBSCAN can be used directly to cluster on four
dimensions using a Euclidean distance function.

Point = ⟨cos(direction), sin(direction)⟩ (1)

c2 = a2 + b2 − 2ab ∗ cos(C) (2)

c =
√
2 − 2 ∗ cos(C) (3)

One remaining problem is that the four dimensions longitude,
latitude, cos(direction) and sin(direction) do not have the same unit.
Therefore, the four dimensions are scaled such distances measured
between all four dimensions weigh in evenly.

Similar to Eps defining a maximum allowed distance from any
cluster point to its nearest neighbor, aMaxAnдle is needed to define
the maximum allowed directional difference from any direction to
its nearest directional neighbor. SuchMaxAnдle parameter needs to
be converted to a chord length to compare it with other calculated
chord lengths. For this conversion, The Law of Cosines Equation 2,
is used, where C is the MaxAnдle . Because we operate on a unit
circle Equation 2 can be simplified to Equation 3.

Angle-Balancing DBSCAN is described in Algorithm 4. Note that
the input is the same as in Algorithm 1 In line 2 the ScaleFactor is
calculated. This factor is used to balance the directional coordinates,
XDir and YDir in line 4 and line 5, respectively. In line 6 the four-
dimensional data points are created. These points are then clustered
using the DBSCAN algorithm in line 7 using a Euclidean distance
function.

5 RESULTS
All results are computed on a server with an Intel I9 Processor
(9900KF), 32GB 3.20GHz DDR4 RAM, 1 TB PCIe SSD hard drive,
and an RTX2080Ti graphics card with 11 GB GDDR6 RAM. The
graphics card is not used for clustering.

Algorithm 4: Angle-Balancing DBSCAN
input :TS , Eps ,MinPts ,MaxAnдle
output :A set of clusters

1 Data ← �

2 ScaleFactor ←
Eps

√
2−2∗cos(MaxAnдle)

3 forall ts ∈ TS do
4 XDir ← cos(ts .dir) ∗ scaleFactor
5 YDir ← sin(ts .dir) ∗ scaleFactor
6 Data ← Data ∪ {⟨ts .lnд, ts .lat , XDir , YDir ⟩}

7 return DBSCAN(Data, Eps ,MinPts)

5.1 Tuning Hyperparameters
As described in Section 3, the dataset is divided into training, vali-
dation, and test sets. The training set is used in conjunction with
Optuna [2] to tune the hyperparameters. Optuna’s built-in Tree-
structured Parzen Estimator (TPE) [7] sampler is used for the pa-
rameter tuning. This setup is used for each of the five clustering
approaches discussed in Section 4.

The hyperparameters are optimized with respect to the F1 score
as it describes both the recall and the precision. The objective of this
paper is to recall a high percentage of the traffic signs without too
many false positives, hence using the F1 score. The tuning process
is stopped when the validation loss has not improved for 1,000
iterations. In total, all five approaches are tuned within an hour.
Table 2 lists the hyperparameters yielding the best results on the
validation set. The maximum number of iterations varies from 3,168
for DBSCAN with FCM4DD to 3,648 for Angle-Metric DBSCAN.

DBSCAN has a significantly lower Eps value compared to the
four other approaches. The lower Eps value is assumed to be caused
by its inability to filter on the direction, and thereby leading to more
strict spatial separation. Such low Eps can induce undesirable spa-
tial separation. A concrete example of undesirable spatial separation
can be seen in Figure 7. Here the low Eps value separates the detec-
tions into two clusters. This results in the two incorrectly plotted
cluster centers for the DBSCAN approach.

As described in subsection 4.5 FCM4DD requires additional hy-
perparameters.MaxIter andMinImpr are both thresholds for im-
proving the runtime performance of the FCM4DD algorithm. How-
ever, during the hyperparameter optimization, there has been no
objectives to minimize these values. Therefore, lower values may
exist yielding similar results with better runtime performance. Fur-
ther, FCM4DD takes a parameter c that determines the number
of clusters that should be found. As seen in Table 3 a value two
has proven most desirable for such c parameter. However, Figure 7
illustrates that a predefined c value results in suboptimal solutions
if the true cluster count differs from the selected c value, in this
case, one instead of two.

5.2 Determining the Ground Truth
In order to calculate the metrics shown in Table 3, predictions need
to be mapped to their corresponding truths. Algorithm 5 shows
how a prediction of the location of a single, physical traffic sign is
mapped to a ground truth. In line 2 the location of a prediction is
buffered byMaxDist . Because a location is a point, the buffer creates

40

SSTD ’21, August 23–25, 2021, virtual, USA Kasper F. Pedersen and Kristian Torp

Name Eps MinPts MaxAngle c m MaxIter MinImpr
Angle-Metric DBSCAN 10.7 2 27.5 - - - -
Angle-Balancing DBSCAN 11.0 2 40.8 - - - -
Two-Step DBSCAN 13.5 2 34.2 - - - -
DBSCAN 3.9 2 - - - - -
DBSCAN with FCM4DD 10.5 2 - 2 8.3 180 0.4820

Table 2: Hyperparameters Settings

Algorithm 5: Find the Ground Truth
input :Prediction, Truths ,MaxDist
output :A truth or null

1 BC ← null

2 SS ← Bu f f er (Prediction.Loc,MaxDist)

3 C ← Truths .Query(SS)

4 forall c ∈ C do
5 if c .Visited then
6 continue

7 X ←
AnдleDist (Predict ion .Dir, c .Dir)

180
8 Y ← Dist(Predict ion, c)

MaxDist
9 c .Score ← X + Y

10 if BC = null ∨ c .Score < BC .Score then
11 BC ← c

12 if BC , null then
13 BC .Visited ← true

14 return BC

a circle with aMaxDist radius. This circle acts as the search space.
The Query in line 3 is a spatial range query that uses the search
space SS and returns a set of candidate truths C . All candidates in
C are considered possible truths for the prediction in question.

The task of finding the best candidate BC from the candidate set
is defined from line 4 to 11. Finally, if a candidate is found it gets
marked as visited on line 13. This ensures that each ground truth is
used at most one time.

5.3 The Ground Truth for Specific Scenarios
The result combining the estimated physical location of a traffic
sign and the ground-truth is shown in Figure 9 for four typical road-
network scenarios where the same traffic sign appears multiple
times in close in ground-truth data. The legend from Figure 7 is
reused. We focus mostly on the location as it is easy to illustrate,
direction is covered in detail in the next section. Please note that
the scale is the same for all four sub-figures.

Figure 9a shows that Angle-Balancing DBSCAN approach for
a round-about. The clusters are well-separated and the physical
locations are estimated well. The approach has problems if two
traffic signs of the same type (here) are placed on both sides of
the road near each other. More generally if multiple traffic signs of
the same type are close both in the location and the direction this
approach may miss one of the traffic signs.

Figure 9b shows the result for another common road-network
scenario using the DBSCAN with FCM4DD approach clustering

traffic signs. Due to the cluster-size hyperparameter (c) this
approach always finds two cluster centers. This gives the correct
result for the south leg of the intersection where there are two
physical traffic signs close together. In the other cases, it gives an
extra traffic sign with no ground truth. This is the opposite problem
of what is shown in Figure 9a.

Figure 9c shows a result using the Angle-Metric DBSCAN ap-
proach where there are multiple traffic signs of the same type (here
) along a road. The Angle-Metric DBSCAN approach finds the sign

close to the ground truth because the clusters are well-separated.
The area of the ground-truth is a medium-size city (Aalborg) and
suburban areas and the results shown in Figure 9c are typical for
this road-network scenario.

Figure 9d shows the result for the Two-Step DBSCAN approach
in a scenario similar to what is shown in Figure 9b. The locations of
the traffic signs (here) are estimated well. Note that this double
detection is not an error there are two traffic signs at the same
physical location but pointing in opposite directions. This shows
the benefit of using the direction in the clustering.

5.4 Location and Direction Accuracy
The results in the previous section are based on four specific sce-
narios. This section generalizes the results.

To avoid bias towards the validation set, the hyperparameters
presented in Table 2 are used on the test set resulting in Table 3.
The table is ordered by F1 score such the best performing approach
is listed first.

The four best approaches all take the direction into account
where the three best do not require a known cluster size (c value
in Table 2). Therefore, even though FCM4DD does handle angles,
it seems like there exists no single c value that will fit the entire
dataset well.

In general, the three best approaches have a low false-positive
rate with precision ranging from 0.89 to 0.92. Further, the mean
direction error is ±11.38◦ and the mean locational error is at most
5.12 meters.

5.5 Number of Trips Required
The imagery data foundation described in Section 3 is based on
trips driven by drivers with other main purposes than to collect
data. It is therefore relevant to look at how the five approaches
perform with a varying number of trips.

Figure 10 presents such an experiment and is conducted as fol-
lows for each of the five approaches.

41

Geolocating Traffic Signs using Large Imagery Datasets SSTD ’21, August 23–25, 2021, virtual, USA

(a) Angle-Balancing DBSCAN (b) DBSCAN with FCM4DD (c) Angle-Metric DBSCAN (d) Two-Step DBSCAN
Figure 9: Detections, Computed Locations, and Ground Truth for Four Road-Network Scenarios

Name F1 Recall Precision MAEang RMSEang MAEloc RMSEloc
Angle-Metric DBSCAN 0.8889 0.8571 0.9231 ±11.375◦ ±35.566◦ 5.097 m 5.895 m
Angle-Balancing DBSCAN 0.8889 0.8571 0.9291 ±11.375◦ ±35.566◦ 5.110 m 5.906 m
Two-Step DBSCAN 0.8727 0.8571 0.8889 ±11.375◦ ±35.566◦ 5.123 m 5.922 m
DBSCAN 0.8036 0.8036 0.8306 ±19.756◦ ±52.384◦ 5.878 m 6.840 m
DBSCAN with FCM4DD 0.7813 0.8929 0.6944 ±31.080◦ ±63.707◦ 6.138 m 7.112 m

Table 3: Location and Direction Accuracy

2 4 6 8 10

0.6

0.7

0.8

0.9

Max. Trips

𝐹
1

Angle-Metric DBSCAN
Angle-Balancing DBSCAN
Two-Step DBSCAN
DBSCAN with FCM4DD
DBSCAN

(a) F1 score relation to No. of Trips

10 20 30 40 50 60

10

20

30

Max. Trips

M
A
E a

ng

(b) MAEang relation to No. of Trips

10 20 30 40 50 60

5

5.5

6

6.5

Max. Trips

M
A
E l
oc

(c) MAEloc relation to No. of Trips
Figure 10: Effect of Number of Trips

(1) Find all detectable physical traffic signs, i.e.m clusters
(2) Set n equal to the maximum trips found in a cluster
(3) Remove the newest trip from clusters with more than n trips
(4) Calculate F1 score, MAEang, MAEloc, RMSEang and RMSEloc
(5) Subtract one from n and go to step 3 if n > 0

The legend found in Figure 10a applies to all three sub-figures
in Figure 10. Figure 10a shows that only two trips are needed to
get the results shown in Figure Table 3. The imagery from two trips
can be collected driving a single trip with two cameras. The optimal
number of trips is partly dataset dependent and may be higher than
two for a more dense dataset.

Therefore, locating traffic signs on a significant number of roads
using is highly practicable. It is worth noting that everything be-
yond two trips does not improve the F1 score significantly. For
illustration purposes, Figure 10a only shows up to 10 trips. How-
ever, tests have been done with up to 60 trips.

Figure 10b and Figure 10c show how the location and direction
accuracy changes with the number of trips being added. However,
both DBSCAN with FCM4DD and the unmodified DBSCAN have
variance in the accuracy depending on the number of trips. The
top three approaches and are more robust with respect to number
of trips required.

The difference between MAEang and RMSEang in Table 3 is
caused by a few outlies. For the sake of readability outliers have
been excluded from Figure 11. However, all percentiles are lower
than the MAEang supporting the few outlier argument. Therefore,
the MAEang is a robust measure of the angular accuracy.

6 CONCLUSION
In this paper, five approaches to cluster traffic-sign detections are
described, tuned, and evaluated. The approach uses the existing
DBSCAN and FCM4DD algorithms.

42

SSTD ’21, August 23–25, 2021, virtual, USA Kasper F. Pedersen and Kristian Torp

An
gle
-M
etr
ic D

BS
CA
N

An
gle
-Ba
lan
cin
g D

BS
CA
N

Tw
o-S
tep

DB
SC
AN

DB
SC
AN

wi
th
FC
M4
DD

DB
SC
AN

0

10

20

30
A
ng

le
Er
rr
or

Figure 11: Angle Errors

The three best approaches are all based on the DBSCAN algo-
rithm and produce very similar results. All five approaches reach
their upper bound F1 score with data from only two trips. Using
more than two trips has a limited impact on the F1 score.

Traffic signs can be placed with a locational accuracy of 5.097-
meter (MAE) and a directional accuracy of ± 11.375◦ (MAE). It
is important to consider both the location and direction of the
detections, particular in intersection and round-about where traffic
signs of the same type are close.

The specialized clustering algorithm FCM4DD performs worse
than the general DBSCAN algorithm. The Angle-Balancing DB-
SCAN is ranked second but only requires one-pass over the data.
The two-pass Angle-Metric DBSCAN is only marginally better. This
paper also shows how a large imagery dataset can be collected, split,
and used for finding both the location and the direction of traffic
signs. The dataset is handled in a cost effective manner and includes
imagery from both rural and urban areas.

All data used in this paper is available on GitHub. This includes
the imagery dataset, the object detections, and the ground truth data.
In addition, the source code for the clustering is made available.

Future work includes more advanced ways to place the cluster
center, i.e, the physical location of the traffic sign. This location typ-
ically follows patterns related to the road network, e.g., to the right
of the road, a few meters from where the roads in an intersection
meet. Another direction of future work is dealing with the multiple
traffic signs of the same type that are close both in location and
direction.

REFERENCES
[1] 2021. Welcome to the QGIS project! https://www.qgis.org/en/site [Online;

accessed 1. Jul. 2021].

[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. 2019. Optuna: A Next-generation Hyperparameter Optimization Frame-
work. In Proceedings of the 25rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining.

[3] Alvaro Arcos-Garcia, Juan A Alvarez-Garcia, and Luis M Soria-Morillo. 2018.
Evaluation of deep neural networks for traffic sign detection systems. Neurocom-
puting 316 (2018), 332–344.

[4] Camera & Imaging Products Association. 2019. Exchangeable image file format
for digital still cameras: Exif Version 2.32. Technical Report. Camera & Imaging
Products Association.

[5] Camera & Imaging Products Association. 2019. Exchangeable image file format
for digital still cameras: Exif Version 2.32. Technical Report.

[6] Vahid Balali, Armin Ashouri Rad, and Mani Golparvar-Fard. 2015. Detection,
classification, and mapping of US traffic signs using google street view images
for roadway inventory management. Visualization in Engineering 3, 1 (2015),
1–18.

[7] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Algorithms
for hyper-parameter optimization. In 25th annual conference on neural information
processing systems (NIPS 2011), Vol. 24. Neural Information Processing Systems
Foundation.

[8] Andrew Campbell, Alan Both, and Qian Chayn Sun. 2019. Detecting and map-
ping traffic signs from Google Street View images using deep learning and GIS.
Computers, Environment and Urban Systems 77 (2019), 101350.

[9] Joseph C Dunn. 1973. A fuzzy relative of the ISODATA process and its use in
detecting compact well-separated clusters. (1973).

[10] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-
based algorithm for discovering clusters in large spatial databases with noise.. In
Kdd, Vol. 96. 226–231.

[11] W. Fulton. 2020. Calculate Distance or Size of an Object in a Photo Image.
https://www.scantips.com/lights/subjectdistance.html.

[12] Ross Girshick. 2015. Fast r-cnn. In Proceedings of the IEEE international conference
on computer vision. 1440–1448.

[13] Orhan Kesemen, Özge Tezel, and Eda Özkul. 2016. Fuzzy c-means clustering
algorithm for directional data (FCM4DD). Expert systems with applications 58
(2016), 76–82.

[14] Yuri Almeida Lacerda, Robson Gonçalves Fechine Feitosa, Guilherme Álvaro Ro-
drigues Maia Esmeraldo, Cláudio de Souza Baptista, and Leandro Balby Marinho.
2012. Compass clustering: A new clustering method for detection of points of
interest using personal collections of georeferenced and oriented photographs. In
Proceedings of the 18th Brazilian symposium on Multimedia and the web. 281–288.

[15] Soomok Lee, Daejin Hyeon, Gikwang Park, Il-joo Baek, Seong-Woo Kim, and
Seung-Woo Seo. 2016. Directional-DBSCAN: Parking-slot detection using a
clustering method in around-view monitoring system. In 2016 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 349–354.

[16] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017.
Focal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision. 2980–2988.

[17] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017.
Focal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision. 2980–2988.

[18] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. 2016. Ssd: Single shot multibox detector.
In European conference on computer vision. Springer, 21–37.

[19] OPENGIS.ch. [n.d.]. About QField. https://qfield.org/
[20] Kasper F Pedersen and Kristian Torp. 2020. Geolocating Traffic Signs using

Crowd-Sourced Imagery. In Proceedings of the 28th International Conference on
Advances in Geographic Information Systems. 199–202.

[21] Kasper F. Pedersen and Kristian Torp. 2021. GomapClustering. https://github.
com/fromm1990/GomapClustering [Online; accessed 1. Jul. 2021].

[22] Domen Tabernik and Danijel Skočaj. 2019. Deep learning for large-scale traffic-
sign detection and recognition. IEEE transactions on intelligent transportation
systems 21, 4 (2019), 1427–1440.

[23] webgeodatavore. 2021. azimuth_measurement. https://github.com/
webgeodatavore/azimuth_measurement [Online; accessed 1. Jul. 2021].

[24] Jianming Zhang, Manting Huang, Xiaokang Jin, and Xudong Li. 2017. A real-time
chinese traffic sign detection algorithm based on modified YOLOv2. Algorithms
10, 4 (2017), 127.

43

https://github.com/fromm1990/GomapClustering
https://www.qgis.org/en/site
https://www.scantips.com/lights/subjectdistance.html
https://qfield.org/
https://github.com/fromm1990/GomapClustering
https://github.com/fromm1990/GomapClustering
https://github.com/webgeodatavore/azimuth_measurement
https://github.com/webgeodatavore/azimuth_measurement

	Abstract
	1 Introduction
	2 Related Work
	3 Data Foundation
	3.1 Imagery Foundation
	3.2 Traffic-Sign Foundation
	3.3 Ground-Truth Data
	3.4 Dataset Splitting

	4 Clustering Traffic Signs
	4.1 Overall Idea
	4.2 DBSCAN
	4.3 Two-Step DBSCAN
	4.4 Angle-Metric DBSCAN
	4.5 DBSCAN with FCM4DD
	4.6 Angle-Balancing DBSCAN

	5 Results
	5.1 Tuning Hyperparameters
	5.2 Determining the Ground Truth
	5.3 The Ground Truth for Specific Scenarios
	5.4 Location and Direction Accuracy
	5.5 Number of Trips Required

	6 Conclusion
	References

