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Abstract

Offshore wind industry is constantly developing and is economically com-
petitive with other renewable energy sources (nuclear, hydro, and solar) and
even with conventional energy sources (coal, oil and gas). In order to main-
tain such a development pace, the costs of offshore wind structures must be
driven even lower with a high focus on sustainability. We can achieve this by
developing new structures more optimally (cost-wise) and by operating the
existing ones longer. The design and operation methods are constantly being
improved to generate more sustainable structures, mostly by understanding
from where the conservatism inherent in design procedures comes and opti-
mizing design procedures accordingly. One way to obtain such insight is by
utilizing data from existing structures in a digital twin framework.

A digital twin is a virtual (digital) copy of a physical asset. A digital twin
is realized by combining numerical models and measurement data. Such
combination allows for establishing models that in an optimal way reflect in-
situ responses of a structure. Digital twins have been successfully applied in a
number of industries, resulting in improvements in the designs and operation
of various mechanical and civil structures. Digital twins can, for example, be
used to optimize the performance of an asset, to monitor its structural in-
tegrity, to plan repairs, and to manage risks. All these activities consequently
drive costs down and thereby provide more sustainable structures. A similar
potential can, in principle, be utilized for offshore wind structures. In fact,
digital twins, at least to some degree, are being applied for the mechanical
parts of wind turbines. However, applications of digital twins to structural
parts, especially for substructures, are limited.

This thesis investigates the application of a digital twin concept to offshore
wind jacket substructures. An existing state-of-the-art conceptual framework,
initially developed for the oil and gas application, is extended to the offshore
wind application. The theoretical and practical feasibility of the digital twin
framework is investigated, accounting for offshore wind-specific challenges
and limitations. Moreover, the thesis presents practical case studies exempli-
fying the benefit of digital twins for both existing and new substructures. The
contributions of this thesis consist of 1) defining procedures for establishing
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Abstract

a digital twin of offshore wind jacket substructures and, subsequently, 2) ap-
plying the established digital twins to improve decision models of existing
and new substructures.

The thesis presents numerical and experimental feasibility studies on how
a digital twin can be established for an operating offshore wind jacket sub-
structure. Specifically, practical feasibility studies covering the first two steps
of in the proposed digital twin framework, namely, system identification and
model updating, are provided. Subsequently, virtual sensing methods are
investigated to obtain full-field measurements based on a few measurements
in easy-access locations.

In the context of application of the digital twin concept, which is the sec-
ond main contribution of this thesis, a probabilistic framework for optimizing
decision models is proposed. In the framework, the established digital twins
can be applied in order to improve decision models for existing structures
(optimizing operation and maintenance) and for new structures (optimizing
design of new structures). The framework applies state-of-the-art probabilis-
tic methods, where the standard, generic-based uncertainties are substituted
with the uncertainties quantified for specific structures based on information
from digital twins. Subsequently, the structural reliability can be updated
to reflect accurate and precise information on the structural integrity, which
finally can be used to optimize decision models. The decision models can
be updated based on the Bayesian decision theory, applying posterior and
pre-posterior analyses for existing structures and pre-posterior analysis for
new structures.
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Resumé

Havvindenergi udvikler sig konstant og kan økonomisk konkurrere med an-
dre vedvarende energikilder (atomkraft, vandkraft og sol) og endda med
konventionelle energikilder (kul, olie og gas). For at opretholde et sådant
udviklingstempo skal omkostningerne for havvindkonstruktioner reduceres
endnu mere med et dedikeret fokus på bæredygtighed. Dette kan opnås ved
at udvikle kost-effektive innovative nye konstruktioner og benytte de eksis-
terende i længere tid. Design- og driftsmetoderne bør forbedres konstant
for at opnå mere bæredygtige og kost-effektive konstruktioner; primært ved
at forstå, hvor konservatismer kommer fra, og optimere designprocedurer i
overensstemmelse hermed. En måde, hvorpå en sådan indsigt kan opnås,
er ved at bruge data fra eksisterende konstruktioner i en digital tvilling-
formulering.

En digital tvilling er en virtuel (digital) kopi af et fysisk system. En
digital tvilling realiseres ved at kombinere numeriske modeller og måle-
data. En sådan kombination gør det muligt at etablere modeller, der på
en optimal måde afspejler opførslen af en konstruktion. Digitale tvillinger
er blevet anvendt med succes i en række industrier, hvilket har resulteret i
forbedringer i design og drift af forskellige mekaniske og civile konstruk-
tioner. Digitale tvillinger kan eksempelvis bruges til at optimere et sys-
tems ydeevne, overvåge strukturel integritet, planlægge reparationer og styre
risici. Alle disse aktiviteter driver omkostningerne ned og giver derved mere
bæredygtige konstruktioner. Et lignende potentiale kan i princippet udnyttes
for havvindkonstruktioner. Faktisk er digitale tvillinger, i det mindste til en
vis grad, allerede blevet anvendt for de mekaniske dele af vindmøller. Imi-
dlertid er anvendelsen af digitale tvillinger for konstruktionsdele, især for
jacket- og monopile-fundamenter, dog begrænset.

Denne afhandling undersøger anvendelsen af et digitalt tvillingekoncept
for havkonstruktioner til havvind. En eksisterende konceptuel ramme, der
oprindeligt blev udviklet til olie- og gasapplikationer, udvides til at omfatte
offshore-vindapplikationen. Den teoretiske og praktiske gennemførlighed af
den digitale tvilling-formulering undersøges, idet der tages højde for offshore-
vindspecifikke udfordringer og begrænsninger. Desuden præsenteres prak-
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Resumé

tiske casestudier, der eksemplificerer fordelene ved digitale tvillinger til både
eksisterende og nye konstruktioner. Bidragene i denne afhandling består
af 1) at definere procedurer for etablering af en digital tvilling og efter-
følgende 2) anvendelse af de etablerede digitale tvillinger til forbedring af
beslutningsmodeller for eksisterende og nye konstruktioner.

I afhandlingen præsenteres numeriske og eksperimentelle undersøgelser,
der dokumenterer, hvordan en digital tvilling kan etableres for en opererende
offshore-jacket-understruktur. Konkret leveres praktiske undersøgelser, der
dækker de to første trin i etableringen af en digital tvilling, nemlig sys-
temidentifikation og modelopdatering. Efterfølgende undersøges virtuelle
målemetoder for at opnå fuldstændige feltmålinger baseret på nogle få måle-
positioner, der er placeret på lettilgængelige steder.

I forbindelse med digital tvilling-applikationer, som er det andet hoved-
bidrag i denne afhandling, foreslås en probabilistisk procedure for etablering
af optimale beslutningsmodeller. De etablerede digitale tvillinger kan an-
vendes til at forbedre beslutningsmodeller for eksisterende konstruktioner
(optimering af drift og vedligeholdelse) og nye konstruktioner (optimering
af design af nye konstruktioner). Den foreslåede procedure anvender state-
of-the-art probabilistiske metoder, hvormed generiske usikkerheder erstat-
tes med usikkerhederne kvantificeret for specifikke konstruktioner baseret
på information fra digitale tvillinger. Efterfølgende kan den strukturelle
pålidelighed opdateres til at afspejle nøjagtige og præcise oplysninger om
den strukturelle integritet, som endelig kan bruges til at optimere beslut-
ningsmodeller. Beslutningsmodellerne kan opdateres baseret på Bayesiansk
beslutningsteori i forbindelse med posterior og pre-posterior analyser for ek-
sisterende konstruktioner og pre-posterior analyse for nye konstruktioner.
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Chapter 1

Introduction

The offshore wind industry plays a vital role in the energy transformation
that we are experiencing at the moment (U.S. Department of Energy, 2018).
The offshore wind leading role was made possible due to major cost reduc-
tions observed for the last years (Wind Europe, 2020). A large portion of this
cost reduction is attributed to maturing the technology, standardizing pro-
ductions, and gaining experience in developing offshore wind farms. As a
result, 5,402 offshore wind turbines were operating in 2020 in Europe alone
(Wind Europe, 2020). These structures will approach their design lifetime in
the next 10-15 years, see Fig. 1.1. For example, in 2030 approximately 1,000
structures will exceed 20 years in operation, which is a typical lifetime for
an offshore wind turbine. The number of structures older than 20 years is
growing rapidly and will reach 3,000 in 2035. Consequently, the wind farm
operators will have to develop methodologies to decide what to do with their
assets, thereby developing end-of-life strategies.

Assuming no additional actions are taken, a structure reaching its in-
tended lifetime must be decommissioned as its structural integrity, assessed
based on standard design practices, is compromised due to degradation phe-
nomena, such as corrosion, scour, and fatigue damage accumulation. Opera-
tors realized that there might be more cost-effective and sustainable solutions.
One potential avenue is to explore end-of-life strategies (Pakenham et al.,
2021; Velenturf, 2021). Instead of decommissioning, depending on the asset
condition, an operator can consider partial decommissioning, partial repow-
ering (exchanging some parts of the structure), full repowering (exchanging
a structure completely), or lifetime extension. The strategy not to decom-
mission is based on the premise that despite design predictions, there is still
some reserve in the structure that allows for operating it longer. This can be
the case if the structure has experienced, for example, less harsh loads during
its lifetime, less uncertainty than assumed at the design stage, or conserva-
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Fig. 1.1: Number of offshore wind turbines worldwide reaching (left) and exceeding (right) 20
years in operation. Data from (Global Wind Energy Council, 2020; Wind Europe, 2020).

tive design assumptions were made regarding, for example, a wind turbine
class. In fact, such case is not uncommon, as many measurement campaigns
indicate a large gap between the design predictions and the in-situ mea-
sured responses (Bom et al., 2020; Devriendt et al., 2013; Häckell and Rolfes,
2013). By understanding the origin of this gap, we can improve both the ex-
isting and new structures. The improvement of the former can be realized
by optimizing operation and maintenance, thereby reducing costs related to
the operation of structures (OPEX), or allowing for lifetime extension, and
thereby increasing the revenue. New structures can be optimized by using
knowledge gained from existing structures by indicating where the design
standards are conservative and by removing this conservatism at the design
stage, hence optimizing costs related to the commissioning of new structures
(CAPEX). No matter which optimization strategy is sought, an accurate and
precise estimation of the structural reliability (either relative or absolute) is
key in making an end-of-life decision. One possible technology that can be
utilized to gain such insight is a digital twin technology.

1.1 Motivation

The digital twin, in the context of structural dynamics, reliability assessment,
and decision-making can be defined as a virtual duplicate of a system built from a
fusion of models and data (Wagg et al., 2020). The key benefit in applying digital
twin technology is its improved predictive capabilities compared with state-
of-the-art numerical models developed based on the design standards. The
improvement is attributed to new information attained from measurement
data available in different format on different platforms that brings unique

2



1.1. Motivation

knowledge about a specific structure. This allows for online updating of
numerical models (physics-based or data-driven) to reflect in an optimal way
conditions of an in-situ structure (physical twin). The improved prediction
capacity is twofold; a digital twin is 1) more accurate (the mean value of
predictions based on a digital twin is closer to the measurements) and 2)
more precise (variance and thereby the uncertainty of digital twin predictions
is reduced). The first aspect is obvious; the more precise estimation we have,
the more optimal decisions we can make. However, the second one is not so
well investigated, despite its potential to be equally as valuable if combined
with appropriate methods, such as probabilistic, reliability-based methods.
The reduced (or at least quantified) uncertainty in prediction can be utilized
in a probabilistic context to update structural reliability, which is used to
determine the fatigue lifetime and extreme load effects of existing structures
and design parameters (structural dimensions) for new structures.

The paradigm of the digital twin as a tool to aid decision-making in asset
management is well-known and has been successfully applied in multiple
industries. The first application is attributed to the work of NASA in the
context of the Apollo program in 1970. Subsequently, applications in the
aerospace engineering, automotive, nuclear fusion, bridge engineering, and
offshore structures followed. The potential of the digital twin technology is
also being investigated for the offshore wind industry; although currently
studies mostly focus on feasibility and conceptual level.

To further mature the digital twin technology in the context of offshore
wind applications, some research projects have been proposed; for exam-
ple, in the context of structural health monitoring (Ye et al., 2020), and more
specifically in the wind turbine blades (Sayer et al., 2020) application. The
decision to investigate health of wind turbine blades is driven by the high
cost and probability of failure of this component. Hence, having a tool that
can predict damage and can be coupled for predictive maintenance is highly
valuable. However, especially for the remaining parts of the structure, re-
search effort is rather limited. This component requires further attention
due to its vital role in structural safety and the fact that it cannot be re-
placed without substantial cost involved. Consequently, support structures
have been given large reliability requirements, which in many cases result in
a conservative design, especially if varying reliability is assumed across the
structural components. As a result, we might end up in a situation where the
structural components like blades are designed to the limit, while the sup-
port structures are over-designed. To address this issue more interest in the
support structure should be dedicated and in the first place to investigate and
quantify the conservatism inherent in the current standards. Subsequently, a
decision can be made if we want to keep having (hidden) conservatism in the
standards, or if we decide to use it to optimize new structures. The outcome
is not straightforward, and will not be addressed in this thesis (as there are

3



Chapter 1. Introduction

different business cases and cost optimization, especially CAPEX/OPEX is
dependent on specific business cases and risk strategies taken by the opera-
tor). However, this thesis provides an investigation into establishing digital
twins and subsequently generating value from digital twins.

Digital twin concept

Offshore wind structures are designed to sustain external environmental
loads and operational loads induced by wind turbines. To make sure each
structure is designed optimally, a number of design checks are performed,
called limit states. Among others, an ultimate limit state and a fatigue limit
state are considered. The ultimate limit state considers structural response
to an extreme event (extreme loads with a low probability of occurrence),
for example, a storm, hurricane, or earthquake but also unexpected events
during operation, for example loss of electrical grid or failure of an elec-
trical component. In this limit state, the structural stability is confirmed,
including no buckling nor excessive yielding. The fatigue limit state is con-
sidered in the condition of normal operation, where loads of low to medium
magnitude are present with a high probability of occurrence. In this in-
stance, it is confirmed that a fatigue-induced crack does not exceed a critical
value when uncontrolled cracking is initiated hence jeopardizing structural
integrity. Other limit states, such as serviceability or accidental states, might
also be required. Even though all components must fulfill all limit states, typ-
ically some limit states are critical for particular structural components. For
example, the pile penetration length is typically determined based on the ex-
treme limit state where an emergency shut down occurs, creating maximum
compression loads in the piles. Joints (K/T joints in jackets or circumferential
welds in monopiles) are typically driven by fatigue limit state due to excessive
fatigue damage accumulation when a large number of cycles is accumulated
due to wave and wind action.

Typically, joints are the most critical parts of a jacket structure and their
fatigue design determines the lifetime of a structure. Hence, in this thesis,
focus is given on developing a digital twin aiming at accurate and precise es-
timation of fatigue damage accumulation for joints and other fatigue-driven
structural components. As a result we focus on normal production cases
where most of the fatigue damage is generated; extreme cases are not con-
sidered. Among a number of developed digital twin frameworks, one that
focuses specifically on the fatigue damage is the one initially proposed and
applied on a conceptual level to oil and gas structures (Tygesen et al., 2018,
2019). The framework has an additional benefit in the context of the offshore
wind application, as it was developed for oil and gas structures, which share
some similarities with offshore wind structures; for example, the presence
of wave loading. The framework has initially been investigated for offshore

4



1.1. Motivation

Fig. 1.2: Digital twin framework for improved decision models in an offshore oil and gas appli-
cation (Tygesen et al., 2018, 2019).

wind application (Augustyn et al., 2019) and positive conclusions regarding
its feasibility have been provided. Note that this framework, at least in the
main steps, is consistent with the generic digital twin framework provided
recently by (Wagg et al., 2020). Consequently, the (Tygesen et al., 2018, 2019)
framework is considered as a state-of-the-art digital twin in the oil and gas
context and will be further developed in this thesis for the offshore wind
application.

The framework (Tygesen et al., 2018, 2019) is visualized in Fig 1.2 and
briefly summarized in the following part of this section. The framework is
divided into two main parts: calibration and decision.

Calibration

Calibration aims at updating structural and load models to increase the cor-
relation between numerical predictions (digital twin) and in-situ measure-
ments (physical twin). The process of establishing a digital twin consists
of the following steps: 1) establishing a numerical model (FEM), 2) system
identification based on operational modal analysis (OMA), 3) finite element
(structural) model updating (FEMU) based on identified modal parameters,
4) expansion process to obtain structural responses in unmeasured locations,
and 5) finite element (wave load) model updating based on measured wave
input and expanded responses.

FEM A finite element model (FEM) consists of an initial numerical model
which might be based on some measurement data. The initial numerical
model reflects our best knowledge about the structural behavior of a physical
twin represented by mass, stiffness, and damping parameters combined with
a load model. Typically, the structural model and the load model are based
on design assumptions and knowledge acquired at this stage of the structural
life-cycle. After the structure is commissioned, new information becomes
available, for example, as-built geometry and in-situ installation parameters
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(exact pile penetration, secondary steel masses, and so forth). After some
time of operation, measurement data reflecting the operational response of a
structure can be collected, for example accelerations, strains, and inclinations.
All this information can be used as data input for developing a digital twin,
which is the subsequent step.

OMA System identification The process of establishing a digital twin pro-
gresses with estimating features describing an in-situ system. Among a num-
ber of possible features, modal parameters are used extensively for dynam-
ically sensitive structures. This choice is made due to the simplicity of ex-
tracting these parameters by means of system identification methods. Once
the modal parameters are estimated they can be compared to the numerical
predictions from the initial model.

FEMU To Modal Parameters Given a large discrepancy is identified be-
tween in-situ and model-estimated features, the parameters of the numerical
model are updated to minimize the discrepancy. In this step, only the param-
eters related to the structural model affecting the system’s mass, damping,
and stiffness are updated.

Expansion process Due to practical reasons, responses are recorded in a
few limited locations on the structure; typically in easy access locations above
water level. In order to be able to calibrate the load model representative
for all structural locations, we need to apply methods to estimate responses
in all unmeasured locations. Expansion methods can be applied to obtain
responses in unmeasured locations based on response measured in a few
locations.

FEMU To Wave Loading Load calibration aims at updating load models in
order to reflect in an optimal way structural responses due to external load
actions. For a typical oil and gas structure–for which the framework (Tygesen
et al., 2018, 2019) is developed–wave loading is the major source of external
loading, hence in this framework only the wave loading model is calibrated.
Once the load models and structural model are updated, the updated models
constitute the digital twin on level 3 according to (Wagg et al., 2020).

Decision

Based on the previous steps the decision model can be inferred. In the pro-
posed framework, a decision model related to fatigue damage accumulation
is considered.
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Quantification of uncertainties The uncertainties associated with fatigue
damage accumulation are modeled and quantified based on in-situ measure-
ments and numerical model predictions.

Risk based Inspection Planning After the uncertainties (including mean
value and variance) have been updated, a probabilistic model is used where
these uncertainties are included and the structural reliability related to the
fatigue limit state is updated. After the structural reliability is updated, it
serves as input to decision models, which are used to derive economically
optimal decisions for operation of existing structures. In the application to
the oil and gas structures, this includes risk based inspection planning.

Damage Detection The framework allows for including information ob-
tained from structural health algorithms to be incorporated in the risk based
inspection planning. Such information can be used as an alternative to (ex-
pensive) physical inspection.

Limitation

The framework (Tygesen et al., 2018, 2019) has been developed with oil and
gas structures in mind. This means that some parts of the framework should
be adjusted to optimally address offshore wind structures. In the context
of the offshore wind application, an obvious limitation of this framework is
the presence of a wind turbine structure. The wind turbine attracts signifi-
cantly more wind loading which must be taken into account. Additionally,
the wind turbine behave in a non-linear and time-variant manner due to a
wind turbine control system, which potentially leads to a need for extending
the existing methods applied in the existing framework. Finally, the decision
models proposed in the framework are adjusted to the oil and gas structures.
In the offshore wind application, the decision model can be different due to,
for example remote placing of the structures, increased cost of inspections,
reduced risk of human loss, or a different CAPEX/OPEX costs split. Conse-
quently, the mentioned limitations are considered in this thesis and offshore
wind specific adjustments are proposed.

1.2 Aim and scope

The aim of this thesis is to develop and apply a digital twin framework for
offshore wind substructures. The focus is on reviewing existing framework
and investigating the feasibility of one particular framework, best suited for
an offshore wind application. For that purpose, the conceptual digital twin
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Fig. 1.3: Digital twin framework for improved decision models in the offshore wind application.
The grey boxes indicate the state-of-the-art framework while the blue boxes indicate contribu-
tions developed in the course of this thesis. The new contributions are described in chapters 2-4
and papers A-D.

framework (Tygesen et al., 2018) initially developed for oil and gas struc-
tures is extended for the offshore wind substructures. The state-of-the-art
framework and extensions addressed in this thesis are depicted in Fig. 1.3.
The framework consists of a number of steps as initially indicated in (Tyge-
sen et al., 2018). The state-of-the-art steps are indicated in grey. The re-
quired wind-related modifications, which are investigated in this thesis, are
indicated in blue. Within each addressed step, a literature review is per-
formed in order to choose a candidate method that would be best suited for
an offshore wind application. Subsequently feasibility and limitations of the
chosen methods are investigated based on the papers enclosed in this the-
sis. Depending on the maturity of the research field considered, an in-situ
validation, numerical feasibility study, or theoretical development are con-
sidered. Wherever possible, the proposed digital twin framework applies
well-established methods and procedures. It is important to notice that the
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aim of this thesis is to investigate the feasibility of the digital twin technology
in order to provide practical value. Hence, the focus is on practical applica-
tions rather than on the theoretical developments. The proposed framework
is general for all types of substructures and other wind turbine components
driven by fatigue limit state, for example tower and blades. However, the
application studies are limited to jacket substructures. This type of substruc-
ture is chosen as it is widely applied in practice and can be expected to be
used even more in the future when sites with larger water depths will be con-
sidered. Moreover, the jackets substructures provides some unique practical
challenges, which have not yet been adequately addressed in the literature.

The following research questions and challenges are investigated in this
thesis:

• How to establish a digital twin of an offshore wind jacket substructure?

– Can existing system identification methods robustly and accurately
estimate modal responses of in-situ offshore wind turbines?

– How can structural model parameters be updated based on iden-
tified modal responses?

– Can existing virtual sensing methods accurately and precisely pre-
dict vibrations of an offshore wind jacket substructure?

– What is the impact of environmental and operational variability
on modal parameters of an operating offshore wind turbine?

– Can linear and time-invariant models approximate non-linear and
time-variant systems?

• How can an established digital twin be utilized to improve decision
models of existing wind turbine jacket substructures and optimize new
substructures?

– How to quantify uncertainty in fatigue damage accumulation from
a digital twin?

– How to update reliability estimates based on quantified uncer-
tainty?

– How to use information from a digital twin as a decision basis
for assessment of existing and design of new wind turbine jacket
substructures?

The research questions are investigated in the four papers summarized
and discussed in chapters 2 to 4. The papers and their relation to specific
boxes of the digital twin framework are indicated in Fig. 1.3. Specifically,
papers A to C are related to establishing a digital twin and addressing chal-
lenges related to system identification, model updating, and virtual sensing.
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Paper D introduces a framework on how the established digital twins can be
used to improve decision models in an offshore wind context. Below, a brief
summary of the four papers is provided with a focus on how these papers
aim at answering the research questions.

Paper A presents an application study of system identification and subse-
quent model updating of an operational offshore wind jacket substructure.
The effect of violating certain system identification assumptions (linear and
time-invariant approximation of a non-linear and time-variant system) on
the uncertainty of identified modal parameters is investigated. Subsequently,
the numerical model parameters are updated to better reflect the identified
modal parameters.

Paper B examines the theoretical feasibility of one particular virtual sensing
method, namely modal expansion, for an offshore wind jacket substructure.
The expansion of wave-induced vibrations is improved. The uncertainty re-
lated to model expansion—which forms an input to the study documented
in paper D—is quantified.

Paper C investigates the environmental and operational variability of cou-
pled wind turbines and substructures. The impact of such variability on
modal parameters is investigated. The study further explores the reduction
in expansion quality reported in paper B.

Paper D introduces a method to include established digital twins in a prob-
abilistic framework for structural reliability reassessment. A method to quan-
tify uncertainty based on digital twin information is proposed. The quanti-
fied uncertainty is subsequently used to update structural reliability which
can be used as input to updating decision models.

1.3 Outline

The remainder of the thesis consists of four chapters and four appendices
that contain the papers written during the course of this thesis. This section
offers a brief outline of the content in Chapters 2 to 5 and Appendices A to D.
The thesis is constructed in a way that aims at describing the whole process
of establishing a digital twin according to the framework presented in Fig.
1.3.

Chapter 2 presents the basic theory and principles of system identification
and model updating. The selected state-of-the-art method is applied. The
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method is exemplified based on data from an operating offshore wind tur-
bine. Paper A documents this work. Challenges and limitations associated
with the applied method are indicated, and a discussion on a potential miti-
gation of limitations is provided.

Chapter 3 presents a review of virtual sensing methods and an applica-
tion study. A particular method, namely modal expansion, is applied in the
context of an offshore wind turbine jacket substructure with different sen-
sor configurations considered. Particular limitations are addressed, namely
wave expansion and wind turbine-substructure coupling based on the work
described in papers B and C.

Chapter 4 introduces a framework where information from the established
digital twins can be used to optimize decision models. A probabilistic model
for reliability update of a fatigue-driven component is presented. A method is
proposed to quantify the portion of total uncertainty related to the structural
dynamics and load model. The chapter is based on the work presented in
Paper D.

Chapter 5 concludes the main body of the thesis with a summary and dis-
cussion of the material presented. The main results achieved in the project
are outlined, and suggestions for future work are provided.

Appendix A contains Paper A by Augustyn et al. (2020), titled: Data-driven
model updating of an offshore wind jacket substructure.

Appendix B contains Paper B by Augustyn et al. (2021), titled: Feasibility of
modal expansion for virtual sensing in offshore wind jacket substructures.

Appendix C contains Paper C by Augustyn et al. (2021), titled: On the in-
fluence of environmental and operational variability on modal parameters of offshore
wind support structures.

Appendix D contains Paper D by Augustyn et al. (2021), titled: Reliability
Updating of Offshore Wind Substructures by Use of Digital Twin Information.
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Fig. 2.1: Digital twin framework for improved decision models in the offshore wind application.
The blue boxes indicate the parts of the framework discussed in chapter 2.

This chapter describes parts of the digital twin framework related to sys-
tem identification and model updating as indicated in Fig. 2.1. In section 2.1,
the state-of-the-art system identification and model updating methods are re-
viewed, and challenges associated with existing methods in the context of an
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offshore wind application are provided. In section 2.2 an application study of
system identification and model updating based on in-situ measurements of
a particular jacket substructure is summarized based on the study described
in paper A. The chapter closes with a summary provided in section 2.3.

2.1 State-of-the-art

In the present section, state-of-the-art methods for system identification and
model updating are briefly described. The review merely aims at providing
a general overview of the existing methods including limitations and mer-
its for the particular offshore wind application. Based on that review, the
method with the largest merit in the offshore wind application is considered
for use in the digital twin framework. Limitations and challenges previously
mentioned in the literature are highlighted and a few selected ones, which
have not been addressed in the literature, are further investigated in section
2.2 based on the study described in paper A.

Regarding model updating, various methods have been validated for aerospace
and automotive applications (Patelli et al., 2017; , Schedlinski et al.), for wind
turbine blade structures (Luczak et al., 2014), and recently also for updat-
ing soil stiffness of a jacket substructure excluding a turbine superstructure
(Bom et al., 2020). However, to the author’s knowledge, no dedicated appli-
cation study has been presented for model updating of a complete, operating
offshore wind turbine jacket substructure.

The focus of this chapter is on investigating the feasibility of a selected
system identification method for estimating modal parameters of an oper-
ating offshore wind turbine structure. Subsequently, the identified modal
parameters are used as target features for model updating to improve the
precision of an initial numerical model.

2.1.1 System identification

System identification methods aim at inferring a mathematical model of a dy-
namical system based on measured data. The modal parameters are inferred
from the estimated parameters of the mathematical model. The system iden-
tification methods, for the purpose of this study, are categorized into three
levels which are briefly discussed in this subsection. The levels are distin-
guished based on availability of input signals (level 1), domain of operation
(level 2), and particular methods considered for offshore wind application
(level 3). The categories are depicted in Fig. 2.2. The review is confined to
identification of linear systems. For non-linear surveys, the reader is referred
to the studies by (Kerschen et al., 2006) or (Noël and Kerschen, 2017).
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Fig. 2.2: Overview of linear system identification methods for engineering structures. The blue
color indicates the approach/method applied in the digital twin framework.

Level 1: input signal

The system identification methods can be divided into three categories based
on the type of data used in the procedure:

• Experimental modal analysis (EMA). In this approach, the input (ex-
citation) and the output (response) of the system are measured. This
approach is interchangeably called the deterministic or input-output.

• Operational modal analysis (OMA). In this approach, only the output is
measured while for the input a statistical model with unknown param-
eters is assumed. This approach is called the stochastic (as unmeasured
input is modeled in a stochastic manner) or output-only.

• Operational modal analysis with exogenous inputs (OMAX). In this ap-
proach, both the input and the output is used. OMAX combines EMA
and OMA, where the excitation is measured and operational input is
assumed stochastic.

The main distinguishing factor between the three approaches is the modeling
of the input. An overview of input modeling for the three approaches is
presented in Fig. 2.3.
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Experimental modal analysis Historically, the EMA approach has been de-
veloped first. This approach typically offers high accuracy of estimation in
controlled, laboratory conditions. The EMA approach is, among others, used
for modal testing of mechanical structures where the excitation is provided
by, for example hammers or shakers with known input and where the re-
sponse is measured in a number of output locations. The most widely used
EMA approach is the frequency response function (FRF) method (Ewins,
2009), where the output in frequency domain is normalized by the input in
frequency domain. The modal parameters are estimated by fitting a numeri-
cal model to results from the FRF. Other well-known EMA methods include
the peak picking method (Bendat and Piersol, 1980), the circle fitting method
(Kennedy and Pancu, 1947), the eigensystem realization algorithm (ERA)
(Juang and Pappa, 1985), the extended Ibrahim method, and the polyref-
erence complex exponential (PRCE) method. For a broad review of EMA
methods, the interested reader is referred to (Heylen and Sas, 2005).

The main limitation of the EMA approach is related to a measured input;
the input that must be known. The vast majority of civil structures are excited
by uncontrolled ambient excitation, which is not straightforward to measure;
for example, excited by traffic, wind, or waves. To address this challenge, the
output-only approach has been developed.

Operational modal analysis The OMA approach, otherwise known as the
output-only approach, requires only the system’s output in natural (opera-
tional) conditions. The methods adhering to the OMA approach are well-
fitted for civil structures that cannot be excited by actuators and whene am-
bient loading cannot be neglected. The OMA approach assumes that the un-
measured, operational loading can be modeled by a stochastic process with
unknown (yet to be estimated) properties, following some known behavior,
for example, the white noise process. Among a number of output-only meth-
ods, the stochastic subspace identification (SSI) method is applied widely for
civil engineering applications. Other well-known OMA methods include the
natural excitation technique (NExT) and the auto-regression moving average
(ARMA) method.

The main limitation of OMA approach lays in the assumption of the na-
ture of the stochastic input. In many cases, the unmeasured, ambient ex-
citation does not adhere to the properties of, for example, the white noise
process. Consequently, not all of the modes can be excited, and the excited
ones will be estimated with increased variance. Hence, in recent years there
has been some research in combining the EMA and OMA approaches.

Operational modal analysis with exogenous input The OMAX approach
combines the unmeasured operational loading ever-present in civil struc-
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Fig. 2.3: Comparison of the EMA, OMA, and OMAX approaches to system identification (Reyn-
ders et al., 2010).

tures with artificial, measured excitation. One of the main advantages of
this approach over EMA is that the unmeasured operational loading is in-
cluded. The artificial excitation is included as known input, which is an ex-
tension compared to stochastic input in OMA methods. A few OMAX meth-
ods have been applied to civil structures, for example, the least-squares fre-
quency domain (CLSF-IO) method (Cauberghe et al., 2003) and the combined
deterministic-stochastic subspace identification (CSI) method (Reynders and
Roeck, 2008; Reynders et al., 2010).

Despite the obvious advantages, the OMAX approach is still in the re-
search phase. In the context of an offshore wind application, the main limita-
tions at the moment lay in the application of external actuators. In an attempt
to resolve this challenge, some researchers have recently started to explore
the feasibility of using pitch excitation as deterministic input (Schwarz-Wolf
et al., 2021; Ulriksen et al., 2021).

Discussion The OMA approach is chosen for the digital twin application.
Some discussion on the merit of the OMA method over the EMA and OMAX
methods for the digital twin application of offshore wind substructures is
presented below.

• It is impractical and expensive to measure external (ambient) loading or
apply artificial excitation. The EMA approach is difficult to implement
for large civil structures.

• OMA and OMAX estimate modal parameters for operational, in-situ
conditions. If modal parameters are prone to operational and environ-
mental variability the estimated modal parameters for a specific real-
ization of the environmental and operational parameters may reflect
such variability. This is, however, not the case for EMA, where the ex-
ternal (artificial) excitation is provided while the ambient excitation is
assumed insignificant.

• In the context of offshore wind applications, variation in soil stiffness
(load level dependent), damping (wind speed dependent), water level
variation, and mode shapes (wind turbine-substructure variation) can
be important.
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Level 2: domain of operation

The OMA methods can be further classified based on the domain in which a
particular method operates:

• frequency-domain

• time-domain

Frequency-domain The frequency-domain (FD) OMA approach converts
the measured temporal output into the frequency-domain, typically by using
some variation of the fast Fourier transformation (FFT). Among a multitude
of FD methods, the typical applications for civil structures are the complex
model indication function (CMIF) method (Shih et al., 1988) and the polyref-
erence least-squares complex frequency-domain (pLSCF) method—known
under its commercial name polyMAX (Peeters et al., 2004). The former can
be seen as an output-only version of the peak picking method. The latter
has been initially developed for a fast, first estimation of the computationally
demanding maximum-likelihood method. Some of the main limitations of
the FD methods, summarized by (Shokravi et al., 2020), include poor qual-
ity of estimates of low-frequency content (Liu et al., 2011) and inaccurate
damping estimates (Magalhães et al., 2007). The strive for improved accu-
racy compared to FD methods lead to the development of the time-domain
OMA approach.

Time-domain The time-domain (TD) OMA methods take advantage of the
fact that measurements include time-series of vibration responses of the struc-
ture. The response time-series are analyzed by applying an observer gain
matrix, a free decay function, or QR decomposition. The inputs to the system
can be estimated by using auto- or cross-correlation functions. The modal pa-
rameters of a system are estimated by applying, for example, singular value
decomposition, least-squares, QR decomposition, or eigenvector decomposi-
tion. The main advantage of the TD methods compared to the FD methods
lies in the direct processing of time-series, which is suited for continuous
monitoring.

Among the TD OMA methods, three major types of methods are typically
distinguished:

• Natural excitation technique (NExT)

• Auto-regressive moving average (ARMA)

• Stochastic Subspace identification (SSI)
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Discussion The time domain approach is chosen for the digital twin ap-
plication. A few points on choosing the time over the frequency domain
approach in the context of offshore wind applications are provided below.

• Measurements consist of time-series of vibrations (accelerations, strains,
inclinations).

• TD approaches use time-series directly.

• FD approaches require an additional pre-processing step to convert TD
output into FD.

• No benefit of using specific FD methods, as most of the successfully
applied FD methods have their TD equivalent.

• The time-domain approach extracts more complete sets of modal pa-
rameters, especially when a large number of modes exists in a wide
frequency range (Shokravi et al., 2020).

• On the contrary, one merit associated with FD approaches is the inter-
pretability.

Level 3: considered methods

Basd on the discussion provided above the following three methods are con-
sidered for application in the proposed digital twin framework.

Natural excitation technique The NExT method was developed to address
the issue of noisy signals in combination with EMA methods (Reynders,
2012). The method assumes that the output containing the response of the
structure to random excitation can be computed using correlation functions
and expressed as a summation of decaying sinusoids. The modal properties
of each sinusoid correspond to the modal parameters of an eigenmode of
the structural system. The NExt methods include the least-squares complex
exponential method (Vold et al., 1982), the polyreference complex exponen-
tial (PRCE) method, the eigensystem realization algorithm observer Kalman
filter identification (ERA-OKID) method (Juang, 1994), and the ouptut-only
observer Kalman filter identification (O3KID) method (Vicario et al., 2015).
Many of these methods are initially developed for the EMA approach, and
then they have been adapted to the OMA setting (with stochastic input) by
implementing correlation matrices. Successful applications of NExt methods
have been demonstrated for civil structures, including wind turbines (James
et al., 1993).

19



Chapter 2. System identification and model updating

Auto-regressive moving average The auto-regressive moving average (ARMA)
method is an example of the prediction-error method (PEM) where the model
parameters are estimated by minimizing the prediction error. The method
applies a non-parametric approach, where varying polynomials are applied.
The auto-regressive part of the model approximates the linear time-history
of the output, while the moving average captures the varying part of the re-
sponse. Depending on the level of sophistication of the used polynomials, the
ARMA method can be rather simple (representing a mass-spring system) or
complex (representing a multi-degree of freedom system). A number of ap-
plication studies have been documented (Bertha and Golinval, 2017; Bodeux
and Golinval, 2003; Huang, 2001). However, the method performs poorly
when large systems are analyzed. Moreover, the method suffers from nu-
merical instabilities due to non-linear optimization.

Stochastic subspace identification The stochastic subspace identification
(SSI) methods provides a framework for estimating modal parameters of a
dynamic system. The method makes use of a parametric framework, estimat-
ing parameters of a state-space model. The SSI methods are particularly effi-
cient in estimating parameters of multivariable systems (Gil et al., 2015). The
two most used SSI methods include the covariance-driven (SSI-cov) method
and the data-driven (SSI-data) method. The former is a two-step method
where the output time-series are used to estimate correlation functions (co-
variance of the unknown input), while the data-driven method is directly
from the measured outputs.

The main advantage of the SSI methods lay in its efficiency and accu-
racy, compared to the remaining TD OMA methods. On the other hand, SSI
methods require experience from a human operator to assess the appropri-
ate model order, which, if chosen improperly, can lead to imprecise results
(Magalhães et al., 2007).

Discussion The SSI TD method is considered for further implementation
and a brief discussion in comparison to the ARMA and NExT is provided
below.

• The SSI method is computationally robust and effective as it employs
well-established methods from linear algebra (RQ- and singular value
decomposition). The results are, under the method’s assumptions, un-
biased.

• Although no strict asymptotic optimum is guaranteed (as for maximum
likelihood methods), subspace methods yield precise results in practice
(Reynders, 2012).
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• Moreover, compared to other methods, the SSI TD method is rather
accurate and efficient. The methods, in specific conditions, provide a
more accurate estimate on damping compared to the ARMA method
(Ceravolo and Abbiati, 2013) and a more reliable estimate on mode
shapes compared to the NExT method (Moaveni et al., 2011)

• Several successful applications of the SSI method for onshore (Tcher-
niak et al., 2011; Zhao et al., 2020) and offshore wind turbine structures
(Devriendt et al., 2013; Dong et al., 2014; Häckell and Rolfes, 2013) are
presented in the literature.

System identification implementation

A number of system identification methods have been reviewed in this sec-
tion. The focus is put on their limitations and applicability towards off-
shore wind substructures. Based on this review, the SSI method is chosen
for further investigation. The basic theory of the SSI-cov method is briefly
described.

The basic problem of SSI methods can be summarized as (van Overschee
and de Moor, 1996):

• Given m output measurements and stochastic relations of the input,
estimate the state sequences and the order of the unknown model which
minimize the variance of the error of the state-space model outputs and
the measured output.

• From the estimated state sequence, estimate the state and output matri-
ces of the state-space system.

• Estimate modal parameters from the estimated state-space matrices.

Consider the state-space formulation of a stochastic LTI system (Augustyn
et al., 2020): [

xi+1
yi

]
=

[
A
C

]
xi +

[
wi
vi

]
, (2.1)

where xi ∈ Rn and yi ∈ Rm are the state and output vectors for time instance
ti. A ∈ Rn×n and C ∈ Rm×n are the state and output matrices, respectively.
The unknown (stochastic) input wi ∈ Rn and measurement noise vi ∈ Rm

are modeled as zero mean, white-Gausian discrete sequences; thus, wi ∼
N (0, ΣW) and vi ∼ N (0, Σv). Then the covariance matrices can be expressed
as:

E

[(
wp
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) (
wT

q vT
q

)]
=

[
Σw Σwv

Σwv
T Σv

]
δpq < 0, (2.2)
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where δpq is the Kronecker delta, Σw ∈ Rn×n, Σv ∈ Rm×m, and Σwv ∈ Rn×m.
Both noise contributions are assumed uncorrelated (spatially and tempo-
rally). The assumption is one of the main challenges when applying the SSI
method in practical applications, as the external, ambient loading is never
white-Gaussian. This challenge is discussed in the other part of this para-
graph.

The state matrices can be estimated based on a number of numerical al-
gorithms, for example, numerical algorithms for subspace state-space sys-
tem identification (N4SID) (Van Overschee and De Moor, 1994), multivari-
able output-error state space (MOESP) (Verhaegen, 1994), and canonical vari-
ate analysis (CVA) (Larimore, 1990). The algorithms differ in their weight-
ing matrices and algebraic ways to estimate the system matrices. Below a
widely-used N4SID algorithm is used to exemplify the SSI implementation
procedure (van Overschee and de Moor, 1996).

1. Calculate the oblique projections of future outputs

2. Calculate the singular value decomposition of the weighted oblique
projections. Here the algorithms differ by assuming varying formu-
lations of weighting matrices

3. Determine the system order. This step depends on the user. Some
heuristic way of choosing the system order can be implemented based
on stabilization diagrams (Rainieri and Fabbrocino, 2014)

4. Compute the observability matrix

5. Estimate the state sequence

6. Estimate the system matrices

For the full implementation, the reader can consult (van Overschee and
de Moor, 1996). Below, the selected steps are presented.

Let Yi|i ∈ Rm×j be the output block-Hankel matrix and X̂i ∈ Rn×j a state
sequence estimate. The state-space matrices can then be estimated as

[
Â
Ĉ

]
=

[
X̂i+1
Yi|i

]
X̂†

i , (2.3)

where superscript † denotes Moore-Penrose pseudo-inverse. From Â ∈ Rns×ns

and Ĉ ∈ Rm×ns , the eigenfrequencies, mode shapes, and damping ratios can
be extracted.
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Challenges related to system identification The challenges related to sys-
tem identification for offshore wind applications are discussed in paper A
Augustyn et al. (2020). In the present, the main assumptions related to the
SSI-cov method are summarized along with the validity of the assumptions
in the offshore wind application.

The SSI-cov method hinges on three main assumptions:

• The system is LTI.

• The input is ergodic, white-Gaussian, and spatially and temporally un-
correlated.

• Linear viscous damping model is used.

An LTI system is convenient from a numerical point of view. However,
each system exhibits some non-linear and time-variant characteristics. In the
context of the offshore wind application, the non-linear behavior is present
due to the turbine controller and partially due to non-linear soil characteris-
tics. Moreover, the turbine controller adjusts its properties (yaw and pitch) to
optimize power production as wind conditions vary over time. Consequently,
the system exhibits time-variant characteristics.

The SSI-cov method models the input as white-Gaussian, ergodic, and
uncorrelated both in time and space. The wind and wave properties change
from one sea state to another, hence the ergodic assumption is violated. In
addition, the frequency spectrum of both the wind and wave excitation does
not adhere to the white-noise Gaussian model due to the peak period in the
wave spectrum, rotating machinery, and the turbulence in the wind spectrum.

Finally, major assumptions are taken when modeling damping. In the
state-space formulation in Eq. 2.1, a linear viscous damping model is used.
The model is established on the classical distribution (Caughey and O’Kelly,
1965). Such a model is not suited for capturing all sources of damping present
in the offshore wind application, for example, aerodynamic damping, soil
damping, and hydrodynamic damping.

Despite the noted assumptions being violated for all practical applica-
tions, useful results have been documented when using the SSI-cov method
for wind turbine and oil and gas applications. For example, the method
was used to estimate modal parameters of onshore turbines (Tcherniak et al.,
2011), offshore wind monopile wind turbines (Devriendt et al., 2013), and
oil and gas offshore jacket platforms (Tygesen et al., 2018). Based on these
successful applications, this thesis explores the applicability of the SSI-cov
method for estimating modal parameters of an offshore wind turbine sup-
ported by a jacket substructure.
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2.1.2 Model updating

Numerical models are widely used in engineering. Accurate numerical mod-
els allow for designing robust and economically feasible structures. The suc-
cess of numerical model applications in engineering is based on the assump-
tion that the numerical model can accurately and precisely mimic the be-
havior of an in-situ structure. A number of studies indicate a considerable
discrepancy between predictions from numerical models and measurements
(Bom et al., 2020; Luczak et al., 2014). The discrepancy arises from a num-
ber of simplifications, idealizations, uncertainties, and decisions made in the
modeling phases. The sources of errors can be assigned into one of the three
classes (Mottershead et al., 2011):

1. Idealization errors introduced when idealizing a physical system with
a mechanical model, for example mass distribution, erroneous model-
ing of boundary conditions (especially soil-structure interaction) joint
modeling, and approximating non-linear system with a linear model.

2. Discretization errors inherent in finite-dimensional models, for example
mesh size.

3. Natural variation in physical parameters included in the model (aleatory
uncertainty), for example material properties (Young’s modulus, den-
sity), cross-section properties, stiffness, and added masses.

The first two classes of errors can lead to significant errors if poor assump-
tions regarding idealization and discretization are taken. Ewins and Imre-
gun (1988) documented large discrepancy in numerical model predictions
obtained independently by 12 engineers. Recently, a similar study has been
performed in the context of offshore wind modeling (Mühle et al., 2018), and
despite significant improvement in the fidelity of numerical models, some
variation has also been reported in the referred study.

Assuming the idealization and discretization errors are negligible, some
discrepancy can still be noticed due to parameter variation. Here, the model
updating approach can be used. Model updating methods aim at reduc-
ing the discrepancy between model predictions and in-situ estimates of a
given feature (vibration time-series, modal parameters, etc.). Historically,
a number of methods have been investigated for model updating, includ-
ing least-squares parameter estimation (Åström and Eykhoff, 1971) and the
maximum likelihood method (Åström, 1980). The model updating can be
achieved either by direct or indirect parameter estimation approach. The
former approach updates entries in a numerical model of a system directly,
for example, direct update of specific entries in a mass, stiffness, and/or
damping matrix in a finite element methods (Bernal et al., 2022). The latter
approach aims at updating a numerical model indirectly, through updating
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parameters of a numerical model, such as geometrical properties of elements,
local or global stiffness parameters, density, and so forth (Mottershead et al.,
2011). In the thesis, indirect model updating is considered due to a large
number of successful applications in engineering. In the context of engineer-
ing applications, (Collins et al., 1974) presented work that leads to two main
philosophies of model updating, which are briefly summarized below:

• Bayesian methods (Beck and Katafygiotis, 1998; Katafygiotis and Beck,
1998)

• sensitivity-based method (Mottershead et al., 2011)

Bayesian model updating

The Bayesian methods aim at deriving distributions of the updated parame-
ters, which results in a stochastic approach. The methods are based on Bayes’
rule (Yuen, 2010), where the updated (posterior) distributions are derived
based on the prior distributions (assumed or known) and measurement data
(likelihood). The posterior distribution is multi-dimensional in the parameter
space, which is difficult to sample from, and in many cases, a closed-form so-
lution is not available. Consequently, posterior distributions can be obtained
by approximate, numerical methods such as the Markov Chain Monte Carlo
(MCMC) method (Berg, 2004).

The Bayesian methods applied in the context of model updating gained
attention mainly due to the work of (Beck and Katafygiotis, 1998; Katafygi-
otis and Beck, 1998). Later, their work was revised by (Beck and Au, 2002)
who applied the methods to update a mass-spring-damper system by use of
the Adaptive Metropolis-Hastings algorithm (one of the MCMC methods).
Ching and Chen (2007) applied the transitional MCMC method to improve
efficiency in the sampling algorithm. Soize (2003) extended the method to
include estimation based on a non-parametric probabilistic approach. The
Bayesian methods are at least 20 years younger in application compared to
the sensitivity-based methods. The delay is most likely due to the large com-
putational resources required in the Bayesian methods, which was limited
in the early days of adaptation. To reduce the computational burden, surro-
gate models were investigated. Goller et al. (2011) applied artificial neural
networks for aerospace structures, McFarland et al. McFarland et al. (2008)
investigated Gaussian process emulators, and (Zhang et al., 2011) applied
polynomial chaos expansion theory to quantify modeling errors.

Sensitivity-based model updating

The sensitivity-based method aims at estimating model parameters in a de-
terministic sense. The parameters are found by using a sensitivity matrix—
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hence the name—which holds the relation between the parameters and the
responses. The relation, in a general case, is non-linear, which is typically
linearized. The parameters are found via an iterative procedure where the
residuals in measured and model-predicted responses are minimized in the
weighted least-squares sense.

The sensitivity-based method has been successfully applied in a wide
range of case studies over the past 50 years. The initial application is at-
tributed to Mares et al. (2006) who used a multivariate gradient regression
to investigate natural variability in the dynamics of nominally identical spec-
imens. Govers and Link (2010) extended the sensitivity-based method to
include estimation of not only the mean but also the covariance matrix of the
updated parameters.

Model updating implementation

The the discrepancies in responses, ∆Λ, defined as a difference between es-
timated responses, ΛS, and numerical predictions, ΛM(Θ), are minimized by
adjusting the model’s parameters, Θ. Typically, undamped eigenfrequencies
and eigenmodes are applied as responses. ∆Λ can be estimated by the linear
Taylor expansion (Mottershead et al., 2011)

∆Λ ≈ S∆Θ, (2.4)

where ∆Θ is the parameter update to be estimated and S is the sensitivity
matrix. The sensitivity matrix contains derivatives of the selected responses,
for example, eigenmodes and eigenfrequencies, with respect to the selected
parameters, thus

Sjk =

[
∂Λj

∂Θk

]
, (2.5)

where Λj is the j’th response and Θk is the k’th parameter. The sensitivity
matrix can be obtained via perturbations directly from the numerical model.
Alternatively, the terms in the sensitivity matrix can be computed using ana-
lytical methods by differentiation of the undamped eigenvalue equation (Fox
and Kapoor, 1968)

Sjk = ΦT
j

(
−λj

∂M
∂Θk

+
∂K
∂Θk

)
Φj, (2.6)

where λj and Φj are the j’th undamped eigenvalue and eigenmode respec-
tively, while M and K are mass and stiffness matrices, respectively, obtained
from the numerical model. The analytical method has merits when large
numerical models are considered. The derivatives of eigenmodes can be ob-
tained analogically, as described by (Fox and Kapoor, 1968).
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The optimal parameters are obtained by minimizing the discrepancy be-
tween the numerical predicted and in-situ estimated responses. The param-
eters are derived by minimizing (2.4) including response uncertainties, that
is,

J = ∆ΛTWΛ∆Λ, (2.7)

where WΛ = diag
(

σ2
Λj

)−1
is a diagonal weighting matrix with the variances

of the responses, σ2
Λj

, along the diagonal. Note that the derived parame-
ters do not reflect the true values of the physical system, but the system
that is identified by the system identification procedures. The difference be-
tween the true and estimated system stems from inherent uncertainties in
the system identification methods, which must be reflected in the estimation
procedure.

In a general case, a large number of parameters can be updated in the
model. These parameters are typically truncated to a subset of selected pa-
rameters. Depending on the number of parameters and responses, the opti-
mization problem to solve (2.7) can either result in a well- or ill-posed prob-
lem. The unique solution can be expected only if a well-posed setting is
obtained, meaning when the number of parameters is lower than the number
of responses. In such case, the optimal parameter set is obtained iteratively
by minimizing the objective function in Eq. 2.7,

arg min
∆Θ

J, (2.8)

hence
Θi+1 = Θi +

[
ST

i WΛSi

]†
ST

i WΛ∆Λi. (2.9)

Challenges related to model updating The main challenge with sensitivity-
based methods is the selection of responses and parameters to be updated,
as it will determine the uniqueness of the solution and therefore the quality
of the updated parameters’ sets. The challenge is well known and has been
addressed in the literature by use of, for example, a regularization proce-
dure. The prior selection of the model parameters and responses has been
addressed by (Friswell et al., 1998). These challenges are further investigated
in the offshore wind application in this thesis. Specifically, the reasoning of
how to choose a subset of parameters to be updated and how to establish
weighting matrices used in the regularization approach is discussed.
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2.2 System identification and model updating of
an offshore wind jacket substructure

Paper A further explores the challenges and limitations in system identifica-
tion mentioned in subsection 2.1.1 and model updating indicated in subsec-
tion 2.1.2. Specifically, the feasibly of the SSI-cov method for an offshore wind
jacket case study is investigated. The violation of the main assumptions is
considered. Moreover, the ill-posed optimization problem in the sensitivity-
based model updating context is discussed and addressed.

In paper A, see appendix A, the application of system identification and
model updating is presented for offshore wind jacket substructure exposed to
wide range of environmental and operational parameters. Therein, sensitivity-
based model updating is applied, employing a subset of experimentally es-
timated modal parameters as responses, to update physical parameters of a
model to more accurately reflect in-situ conditions. In the considered case
study the initial discrepancy in eigenfrequency (model-predicted vs. experi-
mentally estimated) is reduced from 30% to 1% after the update. The majority
of discrepancy is attributed to highly uncertain soil stiffness parameters.

System identification

In paper A, modal parameters of an operating offshore wind turbine struc-
ture have been estimated based on the SSI-cov method. The modal param-
eters are extracted based on approximately one month of monitoring data.
During that period of time, a wide range of wind speeds, yaw angles, and
operational turbine states were observed. In the range of interest (0-2.5 Hz in
this study), a large number of frequencies is identified. The identified modes
include structural eigenmodes, spurious modes related to loading conditions
(P-frequencies stemming from revolving rotor), and erroneous modes.

To distill the structural modes and minimize uncertainties stemming from
the violation of the SSI-cov assumptions, a multi-step selection algorithm is
developed as presented in Tab. 2.1. The idling cases are recommended to
be used for further model updating to minimize the white noise excitation
assumption and pitching/yawing of a turbine to comply with the LTI system
assumption. The assumptions regarding identified modes are related to the
particular sensor setup and are case study-specific, hence not relevant in the
general context. After the application of the proposed selection criteria, a
reduced subset of modal parameters is derived which is subsequently used
in the model updating procedure.
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substructure

Table 2.1: Selection criteria for model updating input (Augustyn et al., 2020).

Assumptions Criteria

LTI system no yawing or pitching
white-noise excitation idling/parked condition

1st and 2nd modes four eigenmodes identified
FA/SS symmetry planes perpendicular modes

Model updating

In a typical model updating application, the number of parameters to be up-
dated is greater than the number of identified responses from the physical
structure. In such a setting the model updating solution yield a non-unique
solution. To address this problem, a regularization scheme, originating from
Tikonov (Willoughby, 1979), is applied in paper A to penalize the objective
function. The formulation is extended with a regularization coefficient, α,
which minimizes the parameter change. The value of α provides a balance
between the measurements residual, ∆ΛTWΛ∆Λ, and the parameter change,
∆ΘTWΘ∆Θ (Mottershead et al., 2011). Link (1993) provides some guid-
ance on the choice of the regularization parameter, where he suggests that
α2 should range between 0 and 0.3. High values are recommended for highly
ill-posed cases with a large number of insensitive parameters. On the other
hand, a value close to 0 results in no regularization.

The objective function, extending (2.7) to account for the regularization,
is defined as

J = ∆ΛTWΛ∆Λ + α∆ΘTWΘ∆Θ, (2.10)

where WΘ = diag
(

σ2
Θk

)−1
is a diagonal weighting matrix expressing uncer-

tainties in the model parameters. The optimal parameter set is obtained iter-
atively by minimizing the objective function in Eq. 2.10, arg min∆Θ J, hence

Θi+1 = Θi +
[
ST

i WΛSi + αWΘ

]†
ST

i WΛ∆Λi. (2.11)

The main contribution of paper A in the context of sensitivity-based model
updating is an application study including a regularization term to alleviate
the ill-posed setting and provide more reasonable solutions based on the pa-
rameters’ uncertainties. The paper proposes candidate parameters for model
updating of a generic jacket substructure. The parameters are chosen based
on high sensitivity and uncertainty criterion. The sensitivity of the parame-
ters is estimated based on perturbations in the numerical model of the sub-
structure. The uncertainties are estimated based on a literature review sup-
plemented with engineering judgment in lieu of literature references.
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2.3 Summary

This chapter investigates system identification and model updating. It is
outlined how state-of-the-art methods can be applied in the context of the
offshore wind digital twin framework.

Paper A discusses the following thesis research question:

• Paper A directly addresses the first research question defined in section
1.2, namely: How to establish a digital twin of an offshore wind substructure?
Paper A provides an application study, in which the first two steps in
establishing a digital twin are presented. The study investigates the
practical feasibility of system identification and model updating of an
operating offshore wind turbine substructure.

Furthermore, the first two research sub-questions, addressing challenges in
the current state-of-the-art, are investigated:

• Can existing system identification methods robustly and accurately estimate
modal responses of in-situ offshore wind turbines? The chosen system iden-
tification method can robustly estimate modal parameters of an off-
shore wind turbine structure under some specific conditions. The idling
conditions are sufficiently close to the method’s assumptions and pro-
vide stable, high-quality results. The operational conditions violate
the method’s assumptions regarding the system being linear and time-
invariant. Hence, the system identification results for operational con-
ditions are disregarded.

• How can structural model parameters be updated based on identified modal
responses? Paper A outlines the updating scheme. The sensitivity-based
method is implemented to update numerical model parameters based
on the in-situ identified modal parameters. The challenge of an ill-
posed model updating setting is addressed by applying a regularization
approach. In this regard, the thesis contributes by providing practical
guidance on the uncertainty of the input parameters, used as a regular-
ization term.

The study presented in paper A is limited to:

• Estimating responses from idling states of the turbine. This limitation is
related to the chosen system identification method, which assumes the
external excitation to be white-Gaussian. Consequently, the operational
cases, that include rotor frequency and hence violate the excitation as-
sumption, are excluded.

• Using global modes of the structure as responses. This limitation is
a consequence of the particular sensor setup chosen independently of
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this study. The decision has been taken to include only sensors located
above the sea-water level; that is a popular decision due to practical
constraints. Such sensor setup only allows for identification of global
structural modes.

• Updating mean values of the physical parameters. In this study we
focus on updating mean values of the physical parameters. The uncer-
tainties associated with the mean value are not updated.

• Using simplified models of the transition piece and the turbine. No
detailed information about the transition piece geometry nor blades
was available due to confidential reasons, hence simplified models of
these components were used.
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Virtual sensing
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Fig. 3.1: Digital twin framework for improved decision models in the offshore wind application.
The blue boxes indicate the parts of the framework discussed in chapter 3.

This chapter describes the parts of the digital twin framework related
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to virtual sensing as indicated in Fig. 3.1. Section 3.1 holds review of the
state-of-the-art virtual sensing methods and presents the challenges associ-
ated with the existing methods in the context of offshore wind applications.
In section 3.2 where two feasibility studies addressing some of the vital chal-
lenges are summarized based on the study described in papers B and C. The
chapter closes with a summary provided in section 3.3.

3.1 State-of-the-art

Measurements and analysis of the response due to external loading are of
great importance in many engineering applications. Such measurements can
be used to monitor fatigue damage consumption, to assess the structural
integrity assessment after an extreme event, and to derive optimal control
strategies. In most practical applications, however, full-field measurements
are either impractical or expensive to attain. For example, monitoring all hot
spots in an offshore jacket substructure is expensive due to the large number
of joints, and measurements of subsoil locations are impossible after installa-
tion of a structure. To circumvent this challenge, virtual sensing methods are
typically used in practical applications.

Virtual sensing methods aim at estimating the full-field response based
on a few (physical) sensors and a mathematical model representing the struc-
tural system in question. In the context of the presented digital twin frame-
work, virtual sensing methods are used to obtain full-field stress measure-
ments. The virtual measurements are used to calibrate numerical load mod-
els and subsequently to quantify the uncertainty in the fatigue damage pre-
diction. This section provides a brief review of virtual sensing methods, with
a special focus on applicability for offshore wind substructures. Virtual sens-
ing methods can be categorized according to the graph presented in Fig. 3.2.
The review is limited to the offshore wind application. For a comprehensive
literature survey, the reader is referred to (Tarpø, 2020).

Filtering approach

Filtering techniques originate from control theory, where a state-space model
is applied to represent the physical system. These techniques aim at estimat-
ing the full state (displacements and velocities) of the system in an optimal
(probabilistic-wise) sense, including modeling error and process noise. The
techniques act as a low pass filter, hence the name of the family. The most
widely used are the Kalman filer (KF) methods. Among the multitude of
variations of Kalman filters (KF), it is worth noticing a few methods, which
are explored heavily in the literature: extended KF (Mariani and Corigliano,
2005), unscented KF (Chatzi and Smyth, 2009), particle filter (Ching et al.,
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Fig. 3.2: Overview of virtual sensing methods for engineering structures. The blue boxes indicate
methods considered in this thesis.

2006), augmented KF (Lourens et al., 2012b), and joint input-state estimation
(Lourens et al., 2012a).

Kalman filters in the field of virtual sensing were first applied in 2011 (Pa-
padimitriou et al., 2011) to estimate strains in a metallic body for fatigue esti-
mation. Lourens et al. (2012a) proposed an extended version of KF to remove
the assumption of white noise, zero-mean Gaussian excitation. The method,
however, required displacement or strain measurements, additional to accel-
eration measurements, to remove low-frequency drift. Chatzi and Fuggini
(2012) proposed adding an excitation to address the issue of low-pass drift,
and (Naets et al., 2015) further developed this idea. Palanisamy et al. (2015)
suggested multi-sensor fusion, including tilt sensor and accelerometers to
cope with non-zero mean excitation. Maes et al. (2016) compared KF (the
traditional and the joint input-state estimation algorithm) and modal expan-
sion techniques for dynamic strain estimation of an offshore wind monopile
substructure. They concluded that the two techniques for the considered ap-
plication deliver comparable results. Dertimanis et al. (2016a) combined dual
KF and unscented KF for fatigue prediction in an output-only setting. In the
same year, the same authors investigated the feasibility of unscented KF for
fatigue monitoring of a railway bridge (Dertimanis et al., 2016b).

The main advantages of filtering methods:

• The methods can be easily extended to a non-linear setting (to account
for a non-linear soil and a non-linear controller).

• No assumptions on damping modelling is required (which is advanta-
geous when multiple damping sources should be combined, for exam-
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ple, soil, hydrodynamic, aerodynamic, material).

• They have been validated for many structural applications

The drawbacks of filtering methods:

• They require prior knowledge on the state covariance, which is typically
not known.

• The filter results can be unstable if a recursive algorithm is imple-
mented.

Machine learning

It should be acknowledged that during the last decade machine learning tech-
niques have been widely applied in different engineering fields, including
virtual sensing. A general principle of machine learning includes training a
mathematical model based on a large amount of input (parameters) and out-
put (results) data to establish an input-output relation. Once such relation
is established, output data can be predicted solely based on measured input
data. The machine learning approach in the context of data reconstruction
in structural health monitoring is investigated by (Bao et al., 2020). Zaidan
et al. (2020) explore virtual sensing of air quality measurement using low-
cost sensors. The state-of-the-art in predictive modeling for offshore struc-
tures using a machine learning approach is investigated by (Tygesen et al.,
2018). Although this avenue is promising, further research proving practical
feasibility is required.

Modal decomposition and expansion

Modal decomposition and expansion (MDE) methods aim at reconstructing
full-field measurements in a two-step process: 1) the structural response is
decomposed into a number of modal responses and subsequently 2) the re-
sponses in unmeasured locations are reconstructed by using mode shapes
and modal participation factors. The main assumption of these methods
is that the physical system can be approximated with a linear and time-
invariant model and that the response can be sufficiently represented by a few
modes. A crucial part of the methods is determining the subspace of expan-
sion vectors included in the expansion matrix. Typically, the first few mode
shapes are included in the expansion matrix to reconstruct the measurements.
In case the response includes a significant portion of quasi-static vibrations,
the dynamic modes are not sufficient and quasi-static modes should be con-
sidered to account for quasi-static vibrations. The selected subspace vectors
must be able to cover the frequency content and spatial distribution of the
applied external loading. Moreover, the methods require solving an inverse
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problems, which might be ill-posed depending on the size and the rank of
the expansion matrix. To avoid such a situation, the number of sensor sig-
nals must be greater or equal to the number of included expansion vectors,
and the linear independence of the vectors should be maximized to avoid
an ill-conditioned matrix. Alternatively, response can be filtered into low-
frequency and high-frequency part and each part can be expanded using
different expansion matrix.

This paragraph provides a brief overview of the development and current
practice in the field of virtual sensing using MDE methods. Early versions
of MDE were developed by (Okubo and Yamaguchi, 1995) at the end of the
1990s. The authors applied a transformation matrix and pseudo-inverse to
transform displacements to strain. The first full-field strain estimation was
applied in a laboratory case study by (Hjelm et al., 2005) and (Graugaard-
Jensen et al., 2005). The latter study investigated modal expansion of a lattice
tower using a finite element model and operational modal analysis and doc-
umented satisfactory results. The same authors subsequently applied modal
expansion to fatigue monitoring and documented that by improving stress
predictions the number of inspections related to fatigue monitoring can be
reduced when combined with a risk-based inspection planning strategy. Lee
(2007) combined modal expansion and model updating and concluded that
strain estimation is improved after model updating is performed. Avitabile
and Pingle (2012) investigated the effect of the position and number of sen-
sors for modal expansion and concluded that the best results are obtained if
1) the mode shapes are able to reconstruct vibrations for a particular loading
pattern applied, 2) the inverse problem is overdetermined, and 3) the expan-
sion vectors are linearly independent. (Baqersad et al., 2015) applied modal
expansion to a wind turbine rotor in a laboratory setting and confirmed that
mode shape selection is a crucial step in MDE. Iliopoulos et al. (2016, 2017)
applied modal expansion to estimate the full-field strain response of an op-
erating offshore wind turbine. They addressed two challenges by application
of multi-band modal expansion: 1) issue of undetermined inverse problem
and 2) expansion of low-frequency wind-induced response. In their method,
the response signal is filtered into three frequency bands, and each band is
expanded using an optimal set of modes representative of the source of ex-
ternal loading. Following a similar premise of targeting specific sources of
loading with dedicated modes, (Skafte et al., 2017) applied Ritz vectors to ex-
pand wave-induced strains on a laboratory scale model of an offshore oil and
gas platform. Henkel et al. (2019) applied modal expansion to an offshore
wind application with successful results for selected elements and load case
scenarios.
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Experimental and analytical Modal decomposition and expansion meth-
ods can be subdivided into experimental and analytical. The classification is
based on how the vectors in the expansion basis are obtained.

The analytical methods derive vectors directly from a mathematical model.
The vectors are obtained by solving the eigenvalue problem to derive mode
shapes used to expand the dynamic part of the response. The static and
wave-deponent modes are derived as static deflection shapes where a repre-
sentative load vector is applied. For example, (Iliopoulos et al., 2017) apply a
unit force at the top of the offshore wind turbine tower to represent the static
wind thrust force. Skafte et al. (2017) apply Ritz vectors to represent wave
loading on an offshore oil and gas platform. The quality of the expansion
depends, among others, on how well the model-based vectors represent the
temporal and spatial characteristics of loading applied to the given physical
system.

The structural vibrations can be used to derive expansion vectors using
the experimental methods. For example, system identification methods can
be used to derive experimental mode shapes, and these can be used directly
in the expansion matrix. For the expansion of experimental modes, one can
use a system equivalent reduction expansion process (SEREP) (O’Callahan
et al., 1989) or a local correspondence principle (Brincker et al., 2014).

The advantage of experimental-based methods is that, under the assump-
tion of no measurement uncertainty, they provide more accurate estimates
of operational modes. However, the methods come with a disadvantage as
they are fitting-based and hence introduce additional errors. Tarpø et al.
(2020a) compared analytical and experimental methods and concluded that
analytical-based modes outperform experimental ones and recommended
that the latter should be used with care. In a general case, the choice be-
tween the two approaches boils down to uncertainty a particular application.
The experimental modes deliver the unbiased (if modes are derived based
on, for example, the SSI method) estimates on modes with some covariance.
On the other hand, the numerical model used to attain the analytical modes
delivers a biased estimate, as the numerical model inherently contains errors
due to simplifications and uncalibrated models. So the method that contains
less uncertainty in a specific case should be chosen.

In the context of this thesis, model updating prior to virtual sensing is
proposed. In such instance, the mode shapes derived based on the numerical
model are guaranteed to reflect the physical structure in an optimal way
according to the chosen objective function. Therefore, the MDE method based
on analytical modes is proposed to be used in the digital twin framework in
this thesis.

Discussion The main advantages of the MDE methods:
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• The methods are conceptually and numerically easy to implement.

• Given that the LTI assumption holds and that sensors are placed op-
timally (minimizing the condition number of the employed expansion
matrix), the expansion quality is high (Pedersen et al., 2019).

• The methods are not iterative, hence no stability issue arises.

• The methods have been documented to provide high-quality results
in many engineering applications, including offshore structures (Tarpø
et al., 2020b; Tygesen et al., 2018) and offshore wind structures, both for
monopiles (Iliopoulos et al., 2016, 2017; Maes et al., 2016) and jackets
for legs elements (Henkel et al., 2020).

• The MDE methods are output-only methods, hence they do not require
estimation of the input (external loading).

The drawbacks of the MDE methods:

• The methods cannot capture non-linear and time-variant responses.

• The sensor placement significantly affects expansion quality.

• The expansion basis must be selected carefully to deliver high-quality
results.

Virtual sensing implementation

A number of virtual sensing methods have been reviewed in this chapter.
The focus is put on their limitations and applicability towards offshore wind
substructures. Based on this review, the modal expansion is chosen for fur-
ther investigation. The basic theory of the modal expansion method is briefly
described.

The modal expansion method requires the structural system to be lin-
ear and time-invariant (LTI). Wind turbine structures (both onshore and off-
shore) violate this assumption due to environmental and operational variabil-
ity (EOV) (Hansen, 2007; Skjoldan and Hansen, 2012). Nevertheless, previous
modal expansion studies investigating offshore wind turbines resulted in, to
some extent, adequate results (Henkel et al., 2020; Iliopoulos et al., 2017; Maes
et al., 2016). Consequently, in this thesis, the modal expansion method is used
along with the LTI assumption, which implies that the structural system can
be described by

Mü(t) + Cu̇(t) + Ku(t) = f(t), (3.1)

where M, C, K ∈ Rna×na are the mass, damping, and stiffness matrices, na
is the number of degrees of freedom (dof), ü(t), u̇(t), u(t) ∈ Rna are the
acceleration, velocity, and displacement vectors, and f(t) ∈ Rna is the load
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vector. It is assumed that the system matrices are positive definite, M, C,
K � 0. Moreover, the damping in system (3.1) is assumed to be classically
distributed, which implies, as specified by (Caughey, 1960), that M−1K and
M−1C commute such the eigenvectors of system (3.1) equal the undamped
ones.

The output (displacements in this case, but the procedure can be applied
to velocities, and accelerations) can be partitioned into nm (measured) out-
puts, um(t) ∈ Rnm , and ne = na − nm (virtual, expanded) outputs, ue(t) ∈
Rne . Then,

u(t) =
[

um(t)
ue(t)

]
(3.2)

and ue(t) can be estimated based on um(t). Assuming u(t) is governed by nq
modes, it can be expressed by a (truncated) modal formulation

u(t) ≈ Φ(t)q(t) =
[

Φm(t)
Φe(t)

]
q(t), (3.3)

where q(t) ∈ Rnq contains the modal displacements (velocities or accel-
erations depending on physical output) associated with the nq governing
modes and Φ(t) ∈ Rna×nq is the expansion matrix, which is partitioned into
Φm(t) ∈ Rnm×nq and Φe(t) ∈ Rne×nq .

Assuming nm ≥ nq and rank(Φm(t)) = nq, an estimate on q(t) that mini-
mizes ‖Φm(t)q(t)− um(t)‖2 is given by

q̂(t) =
(

Φm(t)TΦm(t)
)−1

Φm(t)Tum(t) = Φm(t)†um(t), (3.4)

with overheadˆdenoting an estimate. Then, the virtual part of the output can
be estimated as

ûe(t) = Φe(t)q̂(t). (3.5)

Challenges related to virtual sensing In the context of offshore wind ap-
plications with jacket substructures, the main violations of an LTI system are
associated with non-linear response to the external loading (wind and wave),
non-linear soil stiffness, and non-linear and time-variant controller character-
istics. In this subsection, the impact of such violations on virtual sensing is
discussed.

The variability in controller parameters alters the modal parameters of the
given wind turbine system (Hansen, 2007; Skjoldan and Hansen, 2012). Such
variation cannot be captured with an LTI model and hence leads to reduced
expansion quality. Paper B investigates the effect of controller variability on
virtual sensing quality for a particular method, namely, the modal expansion
method.
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3.2. Virtual sensing of an offshore wind jacket substructure

The wave loading imposed on an offshore structure is non-linear as it
depends on the relative velocity between the incident wave and the struc-
tural response. However, for bottom-fixed structures, the response velocity is
limited and hence the non-linear effect can be neglected (DNVGL-RP-C205,
2010). Effectively, the non-linear behavior stemming from wave loading does
not introduce large errors when simplified with an LTI model. Similar con-
clusions can be applied to non-linearities stemming from the aerodynamic
coupling between the blades and air particle, assuming no large deforma-
tions or plasticity is introduced IEC-61400-1:2019 (2019).

The soil stiffness depends on the applied load level. Typically, a reduction
in soil stiffness is observed for increased load levels. Varying soil stiffness
affects support conditions of an offshore wind structure and hence results
in varying modal parameters, especially mode shapes and eigenfrequencies
Bom et al. (2020). However, for the majority of power production cases, a
modeling approach with an initial soil stiffness yields an accurate estimation
of soil stiffness (API-RP-2A, 2014). For extreme cases, alternative soil stiffness
should be assumed resulting in sea state-dependent soil stiffness and sea
state-dependent modal parameters.

3.2 Virtual sensing of an offshore wind jacket sub-
structure

This section presents two papers investigating virtual sensing of offshore
wind jacket substructure. Paper B studies the feasibility of virtual sensing
for offshore wind jacket substructures. The focus is on mitigating offshore
wind-specific challenges associated with expanding wave-induced vibrations
and accounting for the substructure and turbine interaction. Furthermore,
paper C investigates the extent to which offshore wind turbines behave non-
linearly and time-variant. An overview of when the LTI assumption is vio-
lated severely—and therefore when the MDE methods should be used with
care—is provided.

3.2.1 Feasibility of the modal expansion method

Paper B investigates the feasibility of modal expansion-based virtual sens-
ing in the context of offshore wind jacket substructures. Two different ex-
pansion setups, namely a basic and an extended one, are employed. The
basic setup resembles a typical sensor configuration investigated in various
studies (Henkel et al., 2020; Iliopoulos et al., 2017), where only easily ac-
cessible sensors above the water level are installed. The basic setup fails to
provide high-quality expansion results for idling conditions when vibrations
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Fig. 3.3: CoV values obtained using modified (with/without Ritz modes) basic and extended
setups for the idling load cases (Augustyn et al., 2021b).

are dominated by the wave loading. Moreover, low expansion quality is doc-
umented in brace elements for both the idling and operational conditions.
This is due to the fact the basic setup is not able to capture local vibrations
nor wave-induced vibrations.

In paper B, the noted shortcomings are suggested to be alleviated by ap-
plying the extended expansion setup. The setup includes sub-sea sensors and
a wave radar sensor. The sub-sea sensors allow for extracting mode shapes
beyond the first and second global bending modes, which are the only ones
typically included in a basic setup. By including additional local modes and
wave-related modes, local brace vibrations are captured. Including a wave
radar sensor adds information about local wave conditions, which allows for
precisely expanding wave-induced vibrations. Wave information, in terms
of wave direction and wave surface elevation, serves as input to derive Ritz
vectors for enhanced wave expansion. The inclusion of local brace and wave
modes in the expansion improves the expansion quality significantly as indi-
cated in Fig. 3.3. The quality of expansion is studied based on the coefficient
of variation (CoV) for two wind speeds and a turbine in idling conditions.
The basic setup yields the highest uncertainty. For idling cases, adding a
wave radar sensor improves the expansion quality more than adding sub-sea
sensors.

The expansion quality as a function of wind speed for two case studies,
with the control system active and inactive, is depicted in Fig. 3.4. A reduc-
tion in expansion quality can be observed when the control system is active.
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Fig. 3.4: Time response assurance criterion (TRAC) value as a function of wind speed obtained
for an inactive and active control system (Augustyn et al., 2021b).

Such a decrease arises because the control system introduces non-linear and
time-variant behavior, which is not accounted for in the employed expan-
sion method. Indeed, when the same case study was considered with the
controller inactive, the expansion quality was high and constant across the
analyzed wind speeds. This is due to the fact that when the controller is
inactive, the model adheres to the LTI assumption.

3.2.2 Environmental and operational variability

Paper C explores the effect of EOV on the modal parameters of offshore wind
substructures. A non-linear numerical model of a representative offshore
wind turbine supported by a jacket substructure is established and analyzed
under the exposure of EOV. In particular, the study investigates time-periodic
effects, non-classical aerodynamic damping, and operational variability im-
posed by the turbine controller. The same turbine and substructure model
as in paper B are considered to further investigate if the controller variation
can be a root-cause of the reduction in modal expansion quality. The study
is not only confined to investigating mode shape variability (specifically rel-
evant for modal expansion), but it also includes an investigation of damping
and eigenfrequencies. These parameters are used in other fields of research
where the LTI model is assumed, for example, in model updating (Motter-
shead et al., 2011; Ulriksen, 2018), structural health monitoring (Bernal and
Ulriksen, 2019; Martinez-Luengo et al., 2016), and control (Staino et al., 2012).

The modal parameters from different operational states are computed us-
ing linearized, time-periodic system formulations, and the variability in the
modal parameters is discussed. The results illustrate the variation of the
extracted modal parameters, which is found to be governed by two main
sources; namely, 1) the wind turbine control and 2) interaction of system
modes. The former explains the variation in modes that are highly affected
by modifications of the controller variables, while the latter explains the vari-
ation in the modes that become closely spaced and hence prone to mutual
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Fig. 3.5: Eigenfrequencies as functions of the wind speed (Augustyn et al., 2021a).

interaction. The former source is quantitatively correlated with the reduction
in expansion quality.

The variations in eigenfrequencies as a function of wind speed is found
to be limited as documented in Fig. 3.5. Worth noticing is the fact that
the variations in the first and second eigenfrequencies are negligible. The
small variations found in this numerical study is confirmed by the in-situ
system identification results documented in paper A. In conclusion, an LTI
system assumption for the identification of the first and second modes is
fair. However, the torsional modal frequency and mode shape is observed
to vary more than the first and second modes. It should be confirmed that
a similar variation can be observed in system identification results, as it can
significantly affect the modal expansion results when the torsional mode is
of importance.

The variation in mode shapes due to wind speed quantified by the modal
assurance criterion (MAC) is summarized in Fig. 3.6. A relatively larger
variation in mode shapes, compared to eigenfrequencies, is documented. Es-
pecially the second mode shape and the first torsional mode shape vary no-
ticeably. The reduction in MAC value for these modes follows qualitatively
the pattern of the reduction in expansion quality. That is due to the fact that
the expansion is based on mode shapes computed for a standing still turbine
model. Hence, the deviation of these modes (quantified by the MAC value
computed between the standing still and the wind-speed linearized modes)
will directly be transferred into a reduction in expansion quality. Note the
peculiar reduction of MAC value around rated wind speed (U = 11 ms−1 in
the second mode shape (mode 11 in Fig. 3.6). The reduction is due to closely
spaced modes, which for this EOV configuration lead to complex interaction
(merging of two modes). This pattern is not visible in the reduction of the
expansion quality. One potential explanation is that vibrations in this direc-
tion (perpendicular to the wind speed) do not contribute significantly to the
total vibrations of the considered location.

44



3.3. Summary

4 6 8 10 12 14 16 18 20 22 24

0.7

0.75

0.8

0.85

0.9

0.95

1

Mode 2 Mode 3 Mode 4 Mode 11 Mode 13

Fig. 3.6: MAC values as functions of the wind speed (Augustyn et al., 2021a).

3.3 Summary

This chapter investigates virtual sensing in the context of implementing it in
a digital twin framework for offshore wind turbine jacket substructure.

Papers B and C discuss the following thesis research question:

• Papers B and C directly address the first research question defined in
section 1.2, namely: How to establish a digital twin of an offshore wind
substructure? Paper B provides a feasibility study of the third step in
establishing a digital twin, namely, virtual sensing. The study considers
a particular virtual sensing method, namely, modal expansion, where
the offshore wind substructure is approximated with an LTI model.
Paper C investigates the validity of the widely adopted LTI assumption.

Furthermore, the last two research sub-questions, addressing challenges
in the current state-of-the-art, are investigated:

• Can existing virtual sensing methods accurately and precisely predict vibra-
tions of an offshore wind jacket substructure? Paper B investigates the fea-
sibility of modal expansion in the context of an offshore wind jacket
substructure. Modal expansion method assuming a typically suggested
sensor setup fails at delivering high quality results in the brace ele-
ments. After applying the recommendations from the paper B, namely,
higher order modes and wave-dependent Ritz vectors, the expansion
quality is improved. However, for high wind speed cases, the expan-
sion quality is systematically reduced. Paper C further investigates this
effect.

• What is the impact of environmental and operational variability on modal pa-
rameters of an operating offshore wind turbine? Paper C investigates the
EOV of a representative offshore wind turbine supported by a jacket
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substructure. It is documented that, among others, the mode shapes of
the substructure vary with both the environmental and operational pa-
rameters. This variation is neglected in modal expansion, that employs
an LTI model, which can potentially explain the observed reduction in
expansion quality for higher wind speeds.

• Can linear and time-invariant models approximate non-linear and time-variant
systems? One LTI model cannot accurately approximate modal param-
eters for all ranges of the analyzed environmental and operational vari-
ation. One potential mitigation to capture EOV is to include non-linear
expansion methods, for example, modification of filtering methods. Al-
ternatively, one can use modal expansion with mode shapes linearized
for particular environmental and operational conditions.

The studies presented in papers B and C are limited to:

• Paper B focuses on the theoretical feasibility of virtual sensing for off-
shore wind jacket substructure by investigating results from a numeri-
cal study. Consequently, a number of practical challenges are neglected.
The expansion is based on displacement signals, which, in practice, are
obtained from accelerations after double integration. The problem with
this approach is that the low-frequency content in the signals is lost
and the signal drifts. To capture low-frequency signal content, other
types of sensors can be considered such as strain gauges. The Ritz vec-
tors require wave forces as input. In this study, the wave forces are
obtained directly from the numerical model. However, in practice, the
wave forces should be reconstructed, for example, from measured wave
surface elevation time series. Obtaining such information in practice is
not straight forward due to practical issues with wave force reconstruc-
tion and the high costs associated with the required instrumentation.

• Paper C investigates EOV of one particular type of a substructure and
wind turbine model. It would be beneficial to investigate how suscep-
tible other types of structures are to mode interaction. In the context
of virtual sensing, it would be interesting to investigate if by applying
multiple linearized wind turbine models (instead of one LTI), the ex-
pansion quality is improved for the cases which deliver poor quality
for the LTI modal expansion.
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4.1 State-of-the-art

This chapter describes the parts of the digital twin framework related to un-
certainty quantification and reliability assessment as indicated in Fig. 4.1.
In section 4.1, the state-of-the-art methods for uncertainty quantification and
reliability assessment are briefly reviewed. A description of uncertainty mod-
eling in fatigue damage prediction of offshore wind structures is provided.
Subsequently, uncertainty quantification methods applied in the field of wind
engineering are presented. Finally, methods aiming at assessing structural
reliability are presented, including the described uncertainties. Section 4.2
presents the digital twin framework implementation case study based on the
study described in paper D. The chapter closes with a summary in section
4.3.

4.1.1 Uncertainty modeling and quantification

Uncertainty modeling

The uncertainties in engineering applications can generally be categorized
into aleatory and epistemic (ISO-2394:2015, 2015; Sørensen and Toft, 2010) un-
certainties. The former represents inherent variability in the physical param-
eters. For example, in the context of offshore wind applications (Dong et al.,
2012), aleatory uncertainty includes variation in met-ocean parameters (wind
speed, wave height, wave period, wind direction, wave direction), structural
strength, structural stiffness (soil, steel, etc.), and mass. These uncertainties
can be estimated by measuring the variation either in-situ (met-ocean, soil) or
in a laboratory (steel, mass). The uncertainties can be included in the design
procedure of a wind turbine substructure; either directly via probabilistic
methods (uncertainties included as stochastic variables) or via deterministic
methods (uncertainties included as characteristic values and safety factors).
The aleatory uncertainty, representing natural variability in physical quan-
tity, for example stiffness or wind speed, can be estimated, however, it can
not be controlled, nor reduced. The epistemic uncertainty represents a lack of
knowledge, insufficient data, and/or noise in the measurements. Insufficient
data represents too short measurements (for example, wind speed measured
over few weeks not capturing a sufficient amount of storms and year-to-
year variation) and is reflected in statistical uncertainty. In-situ measure-
ments are inherently contaminated with equipment noise which is modeled
as measurement uncertainty. The epistemic uncertainty is typically modeled
as model, statistical, and measurement uncertainty and can be reduced if
more advanced models are used and/or more data becomes available.

The uncertainty modeling related to fatigue damage accumulation is sum-
marized in Fig. 4.2. Model uncertainties in fatigue damage prediction of
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Fig. 4.2: Stochastic variables modeling uncertainty in fatigue damage accumulation (Augustyn
et al., 2021c). The light blue boxes indicate stochastic variables estimated based on generic,
design-based recommendations. The dark blue boxes indicate stochastic variables that can be
quantified and updated based on new information from a digital twin.

offshore wind structures reflect uncertainties in structural dynamics, load
modeling, stress concentrations, and fatigue damage calculation. In addition
to these model uncertainties statistical and measurement uncertainties may
be important to include. Often the statistical and measurement uncertainties
are included indirectly in the model uncertainties. This is also assumed in
the proposed model. The aleatory uncertainties are directly included by in-
vestigating a number of load cases with representative met-ocean parameters
and probabilities based on met-ocean distributions. In this thesis, the aim is
set to quantify and include the structural dynamics and loading uncertainties
based on information from digital twins. These uncertainties are highlighted
in blue in Fig. 4.2. For the remaining uncertainties, recommended (standard-
based) values are assumed. However, a brief discussion on how they could
be quantified is provided. A brief characteristic of each uncertainty source
and its modeling strategy is presented in the following part of the section.

Met-ocean model The joint probability distribution of the wind-wave cli-
mate is discretized by a finite number of short-term sea state simulations,
including random wind and wave seeds to model a stochastic process (IEC-
61400-1:2019, 2019). Met-ocean uncertainty is included in (4.6) by the yearly
probability of each sea state, denoted pi. The met-ocean uncertainty can
be quantified if long-term climate parameters are monitored (Hübler et al.,
2018; Mai et al., 2019). When quantified, the uncertainty can be modeled
by a stochastic variable of wind, wave, wind direction, wave direction, wave
period, and turbulence. On top of these physical uncertainties epistemic un-
certainties related to limited data available (statistical uncertainty) must be
included.

Loading Depending on the location of the wind turbine, the loading may
include the following exogenous sources and their inherent uncertainties:

• Hydrodynamic loading: uncertainty related to calculating wave loads
that stems from different wave theories (linear vs. non-linear), Mori-
son’s equation, stretching, and mass and drag coefficients.

• Aerodynamic loading: uncertainty related to calculating wind loads
that stems from wind turbulence, wake model, and shear coefficient.
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• Ice loading: uncertainty related to calculating ice loads, for example,
ice thickness, ice crushing strength, and ice failure regime.

• Earthquake loading: uncertainty related to calculating earthquake loads,
for example, earthquake acceleration profile, structural response, soil-
structure integration, and force transfer.

If the loading uncertainty is quantified based on information from digital
twins, the main part of the uncertainty is related to obtaining the structural
response due to external loading. This response is typically estimated based
on virtual sensing methods, which are associated with uncertainties (Au-
gustyn et al., 2021b; Iliopoulos et al., 2017). The loading uncertainty is in-
cluded in (4.6) through the stochastic variable Xl .

Structural dynamics Estimating dynamic system properties is associated
with uncertainties (Reynders et al., 2008). The uncertainties stem from EOV,
non-stationary sea states (fluctuating mean sea water level), time-variant struc-
tural conditions (corrosion, scour), output noise, and the formulation of the
structural model, including modeling of highly uncertain parameters such
as soil stiffness, joint stiffness, and damping. It should be noted that the
output noise relates to the noise in the acceleration and/or strain signals,
which is propagated through system identification procedures and results
in uncertainty of the updated structural model parameters (Reynders et al.,
2008). The structural dynamics uncertainty is included in (4.6) through the
stochastic variable Xd.

Stress concentration A fatigue design is typically performed based on SN
curves, which define a number of cycles required to initiate rapid crack
growth for specific hot spot stress ranges. Three different approaches are
proposed to calculate stresses: nominal, hot spot, and notch (Fricke, 2003).
Similar definition is adopted in design standards, for example (DNVGL-
RP-C203, 2016; DNVGL-ST-0126, 2016). The hot spot stresses include the
nominal stress (calculated in the member some distance from the weld) and
additional stresses from geometric effects, for example, weld toes and fabri-
cation tolerances. The ratio of hot spot stress to local nominal stress is called
the stress concentration factor (DNVGL-RP-C203, 2016). The hot spot stress
ranges can be estimated based on simplified parametric equations, for exam-
ple, (Efthymiou and Durkin, 1985) or detailed finite element models. In the
proposed framework, the hot spot stress method is included, and the stress
concentration factor uncertainty is included in (4.6) through the stochastic
variable Xs. The stress concentration uncertainty can be quantified if a de-
tailed FE model is used to establish hot spot stresses (Lee et al., 2010) or if
hot spot stresses are measured directly.
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SN curve The uncertainty in parameter estimation from the SN curve ap-
proach (DNVGL-RP-C203, 2016) is included in (4.6) through the stochastic
variable K and the deterministic parameter m. The stochastic models for fa-
tigue damage accumulation have originally been developed for reliability-
and risk-based inspection planning of offshore (Faber, 2002; Onoufriou, 1999;
Straub and Faber, 2005) and offshore wind (Rangel-Ramírez and Sørensen,
2012) structures. If a bi-linear SN curve is used, then stochastic variables are
used to model the two branches of the SN curve. The SN curve uncertainty
can be quantified if fatigue testing is performed, including parameter uncer-
tainty if a limited number of tests is performed (DNVGL-RP-C203, 2016).

Fatigue damage The uncertainty related to the fatigue damage accumu-
lation model (Miner’s rule (Miner, 2021)) and the crack propagation method
(Paris–Erdogan (Paris and Erdogan, 1963) or fracture mechanics) are included
in (4.6) by modeling the resistance, ∆, as a stochastic variable (DNVGL-RP-
C203, 2016). The fatigue damage accumulation model, including uncertainty
modeling is described in (Wirsching, 1984; Wirsching and Chen, 1988).

Uncertainty quantification

The uncertainty quantification methods, for the purpose of this thesis discus-
sion, are categorized as presented in Fig. 4.3. First the difference between
the backward and forward uncertainty quantification methods is provided,
followed by further review of the forward methods considered in this thesis.
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Backward uncertainty quantification methods Backward uncertainty prop-
agation methods aim at inferring distributions of the input parameters based
on output parameter distributions, see Fig. 4.4. The methods are typically
applied when measurements or data from high-fidelity models become avail-
able. Based on this data and an established model, one aims at obtaining
the most probable set of input parameters resulting in the measured out-
puts. In the literature (depending on the application goal), these methods
appear as calibration methods, model updating, or inverse problems. Some
of the established methods within the backward uncertainty quantification
family include the least-squares approach (Smith, 2013) and Bayesian calibra-
tion (Kennedy and O’Hagan, 2001). The former methods are well-established
and widely used, while the latter methods recently gained significant atten-
tion in various engineering applications, including offshore wind.

Chapter 2 describes the application and limitations of the backward uncer-
tainty quantification methods, in the context of optimal parameter estimation
(system identification and model updating). Note that paper A examines the
uncertainty in updated model parameters in the context of the digital twin
framework. Therein the distribution of the model parameters based on indi-
rect, sensitivity-based model updating methods was established. The main
prohibiting factor in backward uncertainty propagation application—in the
context of estimating fatigue damage uncertainty, which we target in this
thesis—is that we are not able to directly measure fatigue damage. However,
we are able to directly obtain other parameters, for example, the distributions
of the numerical model parameters. Given that the uncertainties in the input
parameters are quantified (via model calibration methods), they can be prop-
agated through the numerical model to obtain uncertainty in fatigue damage
predictions, based on the forward uncertainty quantification methods.

Forward uncertainty quantification methods Forward uncertainty quan-
tification methods aim at estimating uncertainty in the output parameters,
given the distribution of the input parameters is known and a model defin-
ing a relationship between the input and the output parameters is established.
Figure 4.4 depicts the main principle of the forward uncertainty propagation
methods. These methods, in the context of offshore wind energy, can be used
to estimate uncertainty in output parameters that are otherwise difficult or
impossible to measure directly (fatigue damage, probability of failure, en-
ergy production, and cost of energy). These methods are typically used as
preprocessors to risk assessment, design optimization, and decision-making.

Among a multitude of forward propagation methods, sampling-based are
widely used. The main principle is to sample from the distributions of the
input parameters, to evaluate output parameters from the sampled input
distributions, and repeat sampling a number of times. Consequently, one
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obtains a distribution of the output parameters from statistical properties
can be estimated, hence quantifying the uncertainty in the output parame-
ters. The Monte Carlo method (Metropolis and Ulam, 1949) is a versatile and
easy-to-implement method, which has been successfully applied in forward
propagating in various applications in wind energy. One of the limitations
of the Monte Carlo method is that a large number of samples is required
for the solution to converge. To address this issue, various sampling tech-
niques (differentiating from classical random sampling) have been applied.
For example, the Latin hypercube sampling (Helton and Davis, 2003) is one
of the widely applied methods. Instead of a (potentially) costly evaluation
of a full model for every sampled input parameter vector, one can consider
developing an approximation of the output via surrogate models. Some vari-
ations of surrogate modeling include polynomial chaos expansion (Blatman
and Sudret, 2011; Knio and Maître, 2006), stochastic collocation (Eldred and
Burkardt, 2009), and Gaussian regression (Kriging) (Lockwood and Anitescu,
2012). Surrogate modeling can also be used to evaluate sensitivity of the in-
put parameters onto the variance of output parameters. For example, Sudret
(2008) applies PCE to investigate global sensitivity of a mathematical model
using a well-established Sobol’ indices approach (Sobol, 2001). A comprehen-
sive computational framework for uncertainty quantification can be found in,
for example, UQLab software package (Marelli and Sudret, 2014).

Both surrogate and direct Monte Carlo sampling methods have been ap-
plied for forward uncertainty quantification in the context of wind energy.
Multiple studies have investigated the uncertainty in levelized cost of energy
(LCoE). Kwon (2010) quantified the uncertainty in the power curve due to
wind speed variation and uncertainty in surface roughness by using Monte
Carlo methods. (Witteveen and Iaccarino) applied stochastic collocation to
investigate the uncertainty in turbine response and sound pressure levels due
to blade geometry variation. Rinker (2016) applied surface response methods
to investigate the variation in turbine response due to uncertainty in turbu-
lent wind parameters. Polynomial chaos expansion (PCE) was applied in
(Murcia et al., 2015) to quantify the uncertainty in annual energy production
and LCoE. Liu et al. (2014) applied low-order PCE and compared the results
to coarse Monte Carlo simulations and reported good agreement between the
two methods. It should be expected that Monte Carlo simulations (for a con-
verged number of simulations) deliver more accurate results than surrogate
models. For the same computational effort, surrogate models should deliver
higher accuracy than Monte Carlo simulations.

Given that the considerations of the previously discussed methods, Monte
Carlo methods are proposed in this thesis for uncertainty propagation meth-
ods, as they are general, highly versatile methods. At the same time, their
limitations due to potentially prohibitive computational costs are noted. But
in this thesis we focus on investigating the feasibility of the proposed frame-
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Fig. 4.4: Comparison of backward and forward uncertainty quantification methods (reproduced
from (van deBos and Sanderse, 2017)).

work, and given it is applicable, the efficiency issue can subsequently be
studied by means of, for example, the mentioned surrogate models.

Monte Carlo methods

In the proposed framework, the uncertainty related to structural dynamics
and loading are quantified based on a two-step procedure applying Monte
Carlo methods. First, a stochastic model is formulated related to the struc-
tural and loading parameters in the digital twin. Next, realizations from
that model are simulated and a fatigue damage stochastic model is fitted
by the maximum likelihood method. By applying this two-step procedure,
the uncertainty of each numerical model parameter can be propagated into
the uncertainty in fatigue damage. The implementation of the procedure is
explained in details in section 4.2.

4.1.2 Reliability assessment

A key indicator when designing and operating engineering structures is
structural reliability, which is defined as the ability of a structure or structural
member to fulfil the specified requirements, during the working life, for which it
has been designed. (ISO-2394:2015, 2015). The structural reliability of every
structure must be confirmed to comply with a minimum reliability level, de-
pending on consequence of failure and relative cost of safety measure. The
minimum reliability level is incorporated in every standard accounting for
economical and human risk considerations. In order to estimate reliabil-
ity, we can apply structural reliability methods. In this subsection, a brief
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overview of structural reliability assessment methods is provided for use in
the proposed digital twin framework.

Structural reliability assessment is performed for every structure at the
design stage. ISO-2394:2015 (2015) defines three levels of design approaches:
semi-probabilistic, reliability based, and risk informed. The methods are cat-
egorized in Fig. 4.5.

Semi-probabilistic The semi-probabilistic method, called the partial fac-
tors format, is recommended for application in the majority of cases for
new structures under typical design conditions and matured design con-
cepts/technologies (ISO-2394:2015, 2015). The stochastic nature of the resis-
tance, loading effects on structures, and uncertainty are accounted for by ap-
plying characteristic values and accompanying safety factors. The character-
istic values and safety factors (under the assumption of particular probabilis-
tic models) result in a particular reliability level for the designed structures.
The main limitation of the semi-probabilistic method is that the representa-
tive uncertainty and target reliability level are assumed when calibrating the
safety factors. The assumed models might not reflect in-situ conditions of
a specific structure; consequently, the derived design might have higher or
lower reliability compared to the target reliability.

Reliability based The reliability based methods estimate the reliability of a
structure by probabilistic evaluation of appropriate limit states and relevant
stochastic variables including uncertainties. These methods are relevant in
case a new concept is considered in order to account for the lack of experience
in such a design. These methods are also used in case an unexpected event
occurs during the operation of a structure which put in question structural
reliability requirements, for example, an accident or repair event. When new
information (not present in the design stage) becomes available, the struc-
tural reliability can be updated to reflect the new knowledge. The updated
reliability level is compared to the required safety level, and no mitigation
actions are required given that the reliability is sufficient.

The new information can be understood very broadly as any piece of
evidence, which brings improved knowledge of the structural performance,
compared to the design predictions. Historically, in the oil and gas field, such
information was delivered by, for example, physical inspections and measure-
ments of wind and wave climate. However, as briefly indicated in section 1.1,
inspections are considered to be prohibitively expensive for offshore wind
applications. Hence, other sources of information are considered instead.
This thesis implements information from digital twins is implemented using
well-established reliability methods. The structural reliability is updated and
subsequently serves as a basis for updating decision models.
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Fig. 4.5: Overview of structural reliability assessment methods for engineering structures. The
blue boxes indicate methods considered in this thesis.

FORM/SORM In the context of offshore wind applications, the reliabil-
ity based methods can be divided into first-order reliability method (FORM)/second-
order reliability method (SORM) and simulation based, as indicated in Fig.
4.5.

The FORM/SORM methods aim at estimating reliability based on closed-
form analytical expressions. The most widely-applied methods include the
FORM (Ditlevsen and Madsen, 1996; Du, 2008; Low and Tang, 2007; Mad-
sen et al., 2006) and the SORM (Der Kiureghian and Dakessian, 1998). The
FORM/SORM methods provide an approximate solution to the closed-form
procedures by transforming input stochastic distributions and limit state
equations into normal distribution (u-)space. In the standard space, the de-
sign point is found as the point with the smallest distance between the fail-
ure zone (limit state equal to zero) and the origin of the space. The limit
state is approximated with the linear function (FORM) or quadratic function
(SORM). The probability of failure is estimated by integrating the area of the
(linearized) failure zone. The advantage of FORM/SORM methods is the nu-
merical efficiency and direct sensitivity analysis. The FORM/SORM methods
are limited to the limit states which can be approximated with (close to) lin-
ear failure zones, and non-multiple design points (ISO-2394:2015, 2015). In
the context of offshore wind, the FORM/SORM methods are widely applied
(Jiang et al., 2017).

Simulation based In case that the limit state function cannot be approx-
imated with FORM/SORM methods, simulation-based methods can be used.
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The Monte Carlo methods are based on simulations that draw random sam-
ples from the original stochastic variable space (unlike the FORM/SORM
methods, where additional transformation is required) and evaluate the limit
state function for a given realization vector. The probability of failure is es-
timated by a number of realizations resulting in failure normalized to the
total number of realizations. As the direct Monte Carlo methods sample ran-
domly, a large number of simulations is required to obtain a converged solu-
tion. Similarly, as for the uncertainty quantification methods, other sampling
methods can be applied to increase the numerical efficiency of Monte Carlo
methods, for example, the importance sampling method (ISM) (Grooteman,
2008), subset simulations (Au et al., 2007), Latin hypercube (Sheikholeslami
and Razavi, 2017), and asymptotic sampling (Bucher, 2009). The present the-
sis applies direct Monte Carlo methods to allow for a general limit state func-
tion and a large number of stochastic variables. Similarly as in the case of
uncertainty quantification, focus on the general feasibility of this method is
prioritized.

Risk informed Risk informed methods combine probability of failure (reli-
ability) and consequences of failure (risk). The main objective of these meth-
ods is to minimize the total expected risk. In the context of offshore struc-
tures, the risk methods are widely applied in two main aspects; namely, 1)
quantitative analyses and 2) qualitative analyses. The quantitative analyses
aim at, for example calibrating the required reliability level based on socio-
technical analyses. In case of no risk of human loss, the optimal reliability
level can be estimated based on cost optimization methods for new structures
(Sørensen and Tarp-Johansen, 2005) and for existing structures (Nielsen and
Sørensen, 2021). The qualitative analyses can be used to identify and miti-
gate various risks related to the design and operation of offshore structures.
Such analyses are typically applied in an early stage of a design, where lim-
ited information is available, hence no quantitative analyses can be applied.
Some risk informed methods include: failure mode and maintenance anal-
ysis (FMMA), failure mode and effect analysis (FMEA), threat matrix (Lu-
engo and Kolios, 2015), tree and graphical analysis (fault tree (FT), bow-tie
(BT)) (Ferdous et al., 2012), hazard analyses (hazard identification (HAZID)
(Mokhtari et al., 2011), and hazard and operability studies (HAZOP)).

Challenges related to reliability assessment Although fully physics-based
digital twins have not yet been applied to improve decision models for wind
turbines, some publications already indicate how measurement data can be
used to achieve such an improvement. Nielsen and Sørensen (2017) applied
dynamic Bayesian networks to calibrate a Markov deterioration model based
on past inspection data for wind turbine blades. Ziegler and Muskulus (2016)
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investigated the feasibility of lifetime extension for offshore wind monopile
substructures, with particular focus on identifying important parameters to
monitor during the operational phase of the turbines. Leser et al. (2020) pre-
sented a general framework for fatigue damage estimation based on in-situ
measurements. Mai et al. (2019) focused on prediction of the remaining use-
ful lifetime of wind turbine support structure joints using met-ocean in-situ
data. Augustyn et al. (2019) extended a conceptual framework for decision
model updating based on information from a digital twin, initially proposed
by (Tygesen et al., 2018), to be applied to offshore wind substructures. In the
framework, a digital twin is established with an updated structural model
and an updated load model, and then the digital twin is used to quantify
uncertainty and update the structural reliability. In paper D, the framework
by (Augustyn et al., 2019) is extended beyond its conceptual level where a
probabilistic method is proposed for updating the structural reliability of off-
shore wind turbine substructures based on new information obtained from
digital twins.

4.2 Reliability updating by use of digital twin in-
formation

A structural component must fulfill a number of structural checks, denoted
as limit states. A limit state, according to (ISO-2394:2015, 2015), is defined as
a state beyond which a structure no longer satisfies the design criteria. The limit
states can be related to structural failure in extreme scenarios (the ultimate
limit state), excessive vibrations or permanent deformations (the serviceabil-
ity limit state), or damage accumulation due to dynamic loading (the fatigue
limit state). In the proposed framework, the focus is placed on reliability up-
date of structural components that are driven by the fatigue limit state. Once
the structural reassessment for the fatigue limit state is confirmed, the other
limit state must be confirmed. However, in practice, the fatigue limit state
is typically driving for the majority of the critical structural components of
jacket type substructures, for example joints. The remaining components, like
piles, should typically be analyzed in terms of the ultimate limit state (given
no special conditions like an aggressive corrosion environment is present).

The reliability assessment framework proposed in this thesis is summa-
rized in Fig. 4.6. The framework consists of four steps. The first step is to
establish distributions of the parameters, αj, from numerical models that are
updated. The numerical models include structural models and load models.
The updated parameters can be, for example, soil stiffness, jacket stiffness,
transition piece stiffness, water added mass, rotor mass, flange mass, scour,
corrosion rate, inertia wave loading coefficient, drag wave loading coefficient.
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Fig. 4.6: Structural reliability updating framework based on information from a digital twin.
Updated parameters from digital twins are used to quantify uncertainty in fatigue damage ac-
cumulation. Subsequently, the structural reliability is updated that forms basis for decision
model updating (Augustyn et al., 2021c).

The distributions are obtained from the model updating and load calibration
steps, which are part of the process of establishing a digital twin, see Fig.
1.3. The second step is to propagate the uncertainty in the updated parame-
ters and obtain the distributions of the corresponding fatigue damage, D(αj)
due to a particular updated parameter, αj. The third step is to convert the
uncertainty in fatigue damage (bias and variance of the distribution) into un-
certainty in stress ranges, Xd, and Xl . The uncertainty in stress ranges, rather
than in fatigue damage is required to comply with the probabilistic model
for fatigue damage accumulation. The Xd uncertainty is calculated based on
parameters that affect structural dynamics, while the Xl uncertainty is calcu-
lated from the parameters affecting loading. Finally, in step four, the updated
reliability can be calculated using a probabilistic model where the updated
Xd and Xl uncertainty are overwriting the generic, standard-based values.
In the following part of this section more detailed description of proposed
framework is provided.

Assume the fatigue damage is modeled as a stochastic variable depending
on the uncertain parameters αj. The fatigue damage is normally distributed,

D(αj) ∼ N
(

µDj , σ2
Dj

)
, with mean value µDj and standard deviation σDj ).

The mean value and standard deviation can be found through the maximum
likelihood method, where the likelihood is defined as

L
(

µDj , σDj

)
=

n

∏
i=1

1√
2πσDj

exp


−1

2

(
Di − µDj

σDj

)2

 , (4.1)

with Di being the fatigue damage associated with the ith realization of αj
computed based on the updated structural model contained in the digital
twin.
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The log-likelihood function becomes

ln L
(

µDj , σDj

)
= −n ln

(√
2πσDj

)
−

n

∑
i=1

1
2

(
Di − µDj

σDj

)2

, (4.2)

and the optimal parameters are found as

argmax
µDj

, σDj

ln L
(

µDj , σDj

)
. (4.3)

The fatigue damage accumulation, D, is proportional to the stress ranges,
∆s, according to D ∝ ∆sm (assuming a linear SN curve), from which it follows
∆s ∝ D1/m. The stress range distribution parameters can be computed from
Monte Carlo simulations. Alternatively, assuming the damage distribution
function is normal, the stress range distribution’s mean, µ∆s, and coefficient
of variation (CoV), c∆s, can be approximated as

µ∆s = µ1/m
i , (4.4)

and
c∆s =

ci
m

, (4.5)

where µi and ci are the mean and CoV of the fatigue damage distribution
due to the uncertainty associated with αj.

Fatigue damage accumulation can be modeled by a linear SN curve and
Miner’s rule. In such instance, the fatigue limit state, g(t), at year t ∈ N for
a structural component can be expressed as (IEC-61400-1:2019, 2019; Velarde
et al., 2020)

g(t) = ∆−
l

∑
i=1

z

∑
j=1

Ni,j pit

K∆s−m
i,j

(XdXlXs)
m , (4.6)

where ∆ is the fatigue resistance and the double summation expresses the
accumulated fatigue damage. In particular, ∆ is a stochastic variable repre-
senting the limit value of the accumulated fatigue damage estimated using,
for example, SN curves, including the uncertainty related to the application
of Miner’s rule for linear fatigue damage accumulation. In the expression for
the fatigue damage, pi is the yearly probability of occurrence for sea state i
(including wind and wave parameters), Ni,j is the number of cycles for the
ith sea state and jth stress range ∆si,j, and K and m are the parameters re-
lated to the SN curve, with m being the Wöhler exponent (Szala and Ligaj,
2014). The uncertainty related to the SN curve approach is included by mod-
eling K as a stochastic variable. Xd, Xl , and Xs are stochastic variables that
reflects the uncertainties associated with the structural dynamics, load mod-
eling, and stress concentration according to models presented in (Sørensen
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and Toft, 2014). Note that the presented linear SN curve formulation can be
extended to a bi-linear one. Alternatively to the SN curve approach (linear
or bi-linear), the fracture mechanics approach can be implemented.

In paper D, a probabilistic framework for updating the structural reliabil-
ity of offshore wind turbine substructures based on digital twin information
is presented. The updated reliability can be used as input to optimize de-
cision models for the operation and maintenance of existing structures and
the design of new structures. We present two case studies to exemplify the
practical application of the framework by using information from previously
established digital twins in papers A and B.

The first case study presents an application of the framework to the life-
time extension of existing structures. We use information from paper A,
where a numerical model is updated, and use this updated model to investi-
gate the impact of updating on fatigue lifetime estimation. Furthermore, we
investigate the implication of load model updating, focusing on the impact
of virtual sensing uncertainty. The uncertainties related to virtual sensing,
quantified in paper B, are propagated to investigate their impact on fatigue
lifetime estimation.

The second case study focuses on optimizing new structures. In this appli-
cation, we assume that a digital twin will be established during the lifetime.
In the design process this information is used to optimize the new structure.
The application is based on Bayesian pre-posterior theory, which allows for
including future (yet to be realized) information already in the design stage.

The paper applies well-known uncertainty quantification and reliability
assessment methods. The uncertainty quantification is obtained by apply-
ing forward uncertainty propagation with subsequent maximum likelihood
quantification. The reliability assessment, including updated uncertainty, is
implemented by applying fatigue limit state. The uncertainty quantification
and reliability assessment are applied in a simulation-based setting by using
direct Monte Carlo methods. The main focus of the paper is on developing
a theoretical framework with a direct link between established digital twins
and decision models. Hence, together with the former steps described in this
thesis, a complete framework linking data and value creation by using digital
twin technology is delivered.

4.3 Summary

This chapter investigates uncertainty quantification and structural reliabil-
ity are investigated. It is discussed how the state-of-the-art methods within
uncertainty quantification and reliability assessment can be extended in the
context of the offshore wind digital twin framework.

Paper D discusses the following thesis research question:
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• Paper D directly addresses the second research question defined in sec-
tion 1.2, namely: How can an established digital twin be utilized to improve
decision models of existing structures and optimize new structures? The new
information from the established digital twins is used to quantify the
uncertainty in fatigue damage prediction. The quantified uncertainty
is subsequently used to update the structural reliability. With the up-
dated structural reliability, the decision models for existing and new
structures can be optimized.

Furthermore, three specific research sub-questions, addressing challenges
in the current state-of-the-art, are investigated:

• How to quantify uncertainty in fatigue damage accumulation from a digital
twin? Paper D proposes a simulation-based Monte Carlo uncertainty
propagation method. The distributions of the numerical parameters
(updated from digital twins) are propagated and result in structural
and loading uncertainty, which is quantified.

• How to update reliability estimates based on quantified uncertainty? A prob-
abilistic model for fatigue damage reliability estimation is established,
including uncertainty modeling. The structural and loading uncertain-
ties are explicitly included and, given that they are quantified based on
digital twin information, they substitute generic, standard-based val-
ues, hence allowing for updating the structural reliability. The struc-
tural reliability is updated based on the Monte Carlo method including
updated uncertainty values.

• How to use information from digital twins as decision basis for assessment of
existing and design of new offshore wind structures? Structural reliability
estimation forms a basis for a decision-making process. By updating the
structural reliability, for example, by using digital twins, the decision
models driving the lifetime of existing structures, and material usage
of new structures can be optimized. The updated reliability can be
applied in well-established reliability- or risk-based inspection planning
to optimize the lifetime of existing structures and the design of new
structures.

The study presented in paper D is limited to:

• The reliability update procedure presented in paper D focuses on up-
dating structural reliability of fatigue driven components. In principle,
the reliability regarding the remaining limit states (ultimate, service-
ability, accidental) should be fulfilled.

• In the proposed framework considering the fatigue limit state, only the
structural dynamics and loading uncertainties are quantified. These
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uncertainties are related to the loading side of the probabilistic model,
while the uncertainty related to the resistance side, for example, fatigue
damage accumulation and SN curve uncertainty, are not updated. If
more data and experiments for the resistance side are obtained, the
associated uncertainty can be updated and, together with the loading
side uncertainty, be used to update the reliability by using the pro-
posed method. Moreover, if other limit states are considered, uncer-
tainty modeling should be revisited.

• Paper D focuses on the feasibility of the framework and not on its im-
plementation efficiency. Consequently, application examples are pre-
sented where a limited number of parameters are considered at the
same time. If more parameters are included, numerically efficient Monte
Carlo methods suited for multidimensional space could be implemented,
for example, surrogate models.

• The updating procedure focuses on updating structural reliability. The
framework could be extended to include consequences of failure, hence
applying risk-based methods. The benefit of including the risk-based
framework is the possibility of including economical aspects directly
in the formulation by deriving, instead of assuming, optimal reliability
level.
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Chapter 5

Conclusions and future
perspective

This thesis investigates the practical feasibility of a digital twin concept in
the context of offshore wind turbine jacket substructures. The state-of-the-art
conceptual framework of digital twin developed for oil and gas application
is extended in this thesis to account for offshore wind-specific aspects. The
framework consists of a number of steps where each step is investigated
in a separate chapter of this thesis as repeatedly indicated for the reader’s
convenience in Fig. 5.1. In this final chapter of the thesis, section 5.1 provides
a summary and general conclusions based on the research described in the
main body of the thesis. The general conclusion section is followed by future
work suggestions in section 5.3, which could be considered to further mature
the proposed digital twin framework.

5.1 Summary and general conclusions

Based on the research documented in the main body of this thesis and the
appended papers, the following conclusions with regard to the investigated
research questions are formulated:

• How to establish a digital twin of an offshore wind substructure?

– A framework that allows establishing a digital twin of an off-
shore wind substructure is proposed. The system identification
and model updating steps of the digital twin framework are ex-
emplified with measurement data from operating offshore wind
substructures. The virtual sensing, uncertainty quantification, and
reliability update steps are exemplified by numerical studies.
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Fig. 5.1: Digital twin framework for improved decision models in the offshore wind applica-
tion. The grey boxes indicate the state-of-the-art framework and the blue boxes indicate the
contributions developed in the course of this thesis.

– This thesis contributes with novel full-scale validations and theo-
retical improvements of existing methods with a special focus on
the offshore wind application. Particularly, the system identifica-
tion and model updating steps are investigated based on measure-
ments. The virtual sensing step is investigated based on numerical
studies where improvements to the state-of-the-art methods are
proposed by addressing wind turbine-foundation dynamics cou-
pling and wave loading expansion.

• How can an established digital twin be utilized to improve decision models of
existing structures and optimize new structures?

– An established digital twin is used to update the structural re-
liability that forms the basis for optimization of reliability-based
decision models. The proposed probabilistic framework is appli-
cable to structural components in jacket substructures driven by
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fatigue damage. The framework is executed in two steps: 1) quan-
tification of uncertainty in fatigue damage estimation stemming
from structural dynamics and loading effects (the two main com-
ponents updated in the process of establishing a digital twin) and
2) reliability reassessment based on new, improved knowledge (in
the form of updated models and quantified uncertainty).

– The novel contributions of this work consist of establishing an in-
terface between digital twins and probabilistic procedures for re-
liability reassessment. Consequently, the information from digital
twins can be used to optimize decision models, as digital twins
bring superior information about structural conditions compared
to the information available in the design stage. The framework
is exemplified based on the digital twins established to address
the first research question. Two application studies are presented;
one that addresses lifetime extension of existing structures and one
that addresses design optimization of new structures.

The first research question (establishing a digital twin) is investigated
deeply. State-of-the-art methods for the digital twin steps have been applied
or adjusted, and either experimental or numerical validation studies have
been provided. The second question is investigated from a more fundamen-
tal research perspective. The use of the established digital twin is investigated
in a theoretical framework (though with practical case study examples) and,
as such, would benefit from further validation.

5.2 Industrial challenges

A successful industrial implementation of the digital twin concept requires
addressing not only technical but also industrial challenges. A few of these
industrial challenges—which have been identified but not fully addressed
during the course of the thesis—are summarized below.

• Data sharing policy. Data is key in establishing a digital twin. In order
to successfully develop and subsequently use a digital twin, various
types and sources of data are required. A numerical model of both
the foundation and the turbine is required. Typically, these models are
prepared by specialized companies which do not necessarily share the
detailed information required to establish the models. For example, a
foundation designer establishes detailed models of a substructure, in-
cluding modeling and calibration of soil stiffness, joint stiffness (in case
of a jacket substructure), and a high-fidelity model of a transition piece.
Even though information required to establish such models (geometry
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and input soil parameters) are documented in design reports, model-
ing requires a significant amount of time and expertise to convert such
information into high-quality numerical models. A wind turbine ven-
dor is responsible for preparing a numerical model of the wind turbine,
including detailed geometry of the blades, nacelle, and control system.
Typically, such information is confidential and not explicitly shared ex-
ternally. Consequently, high-quality numerical models of a turbine are
difficult to obtain for any party but a turbine producer, as described in
paper A. From a digital twin perspective, it would be beneficial to agree
on some level of data sharing and transparency. In fact, a similar prob-
lem has already been solved in the design process where a wind turbine
vendor and a foundation designer exchange information by means of
simplified, yet representative models, for example, super elements. A
similar approach can be explored for a digital twin application. Alter-
natively, a surrogate model of the turbine could be used in order to
perform relative comparisons as basis for decision making; in the same
way as site assessment for new turbines.

• Data continuity. In case the ownership of a wind turbine changes over
the lifetime of a turbine, data should be exchanged to allow a new
owner to benefit from information on past performance and incidents
regarding the structure. Such aspect is especially important if con-
tinuous monitoring is applied. In case full and detailed documenta-
tion regarding monitoring can be transferred, it can save costs when
(re)establishing a digital twin.

• Certification of new digital twin technology. A final goal of establish-
ing a digital twin is to perform better decisions regarding operation
and maintenance and design of structures. Considering the operational
phase, one avenue to explore is to extend the lifetime of the structure. In
order to confidently operate a structure beyond its lifetime, an operator
must document sufficient reliability beyond an initial lifetime. Typi-
cally, a certification body is involved in this process to confirm that the
used procedures are valid and sound. In case new procedures are used
(as will be the case at least at the beginning of digital twin applications),
extensive validation is required. This process can take some time and
additional cost, which should be taken into account when considering
the first digital twin applications.

• Business case. Current substructure design practices focus on provid-
ing a robust design that results in a structure that does not require any
inspections of the main load-bearing components (legs, piles, joints)
during the design lifetime. Consequently, a large portion of the costs
is associated with CAPEX, while the OPEX portion is minimized. Such
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design philosophy could be challenged, resulting in more optimized
designs and increasing requirements for in-service inspection. Histor-
ically, this possibility has not been pursued as the notion was that the
in-service inspections are expensive due to the offshore environment.
However, this argument can be challenged when physical inspections
can be substituted with digital twins based on remote measurements.
In paper D, an application study is provided where a digital twin can
be used to optimize new structures. Despite the theoretical readiness
of such application, further discussion should follow and modifications
to currently used business cases are required to fully benefit from this
possibility.

5.3 Future perspective

In the course of this thesis, a number of challenges have been addressed as
described in the previous section. Nevertheless, some points remain open
and new ones have been discovered. Below, suggestions for future work re-
lated to particular steps in the proposed digital twin framework are outlined.

• System identification. In the proposed framework, system identifica-
tion results were carefully selected in order to minimize uncertainties
stemming from the violation of the system identification assumptions.
Consequently, only a portion of the available data was used. It would
be interesting to investigate system identification uncertainty for both
idling and operational cases with the aim of including the operational
cases as well.

• Model updating. The inverse problem solved in the proposed sensitivity-
based updating scheme is typically ill-posed due to more parameters to
be updated compared to the identified responses. One way to address
this problem is the proposed regularization. Alternatively, one could
increase the number of responses. It could be done either directly by
identifying more responses/modes or indirectly by exploring a closed-
loop updating scheme. The former can be explored by extending sensor
setups and thereby allowing for identification of more physical modes.

• Virtual sensing. Within the modal expansion methods, one could fur-
ther investigate practical challenges in sensor techniques, for example,
signal drift due to acceleration integration, wave surface elevation re-
construction, and sensor fusion. To address the issue of non-linear sys-
tems (non-linear response stemming from the controller and soil stiff-
ness), one could investigate (conditional for particular environmental
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and operational parameters) linear approximations of non-linear sys-
tems for mildly non-linear conditions or techniques suited for non-
linear system identification. Alternatively to modal expansion, other
virtual sensing methods, for example, Kalman filters, could be investi-
gated.

• Load calibration. Although load calibration is an important part of the
framework, it is not addressed in this thesis due to data and time con-
straints encountered during the execution phase of the project. Hence,
it would be beneficial to first conduct a literature survey exploring the
feasibility of various load calibration methods in the context of offshore
wind applications. The literature is present for wind calibration for on-
shore wind turbines and wave calibration for offshore structures. These
studies form a good starting point for an extension to offshore wind
structures. The main challenge in this context lays in updating wind,
wave, and potentially other sources of loading at the same time.

• Uncertainty quantification. In the proposed framework, the uncertain-
ties in the input parameters are estimated and subsequently propagated
through the numerical model for fatigue damage estimation. Alterna-
tively, the Bayesian approach could be explored. This approach has
a strong merit in explicit and rigorous uncertainty quantification and
(more importantly for practical applications) the ability to build in prior
knowledge in terms of, for example, expert knowledge. The latter is es-
pecially valuable if poor or incomplete data is present, which still allows
for updating uncertainty, unlike in the classical uncertainty quantifica-
tion methods.

• Reliability update. The existing reliability-based methods aim at up-
dating the structural reliability, which can be used to update decision
models based on the probability of failure. The proposed framework
can benefit from extending the decision models with consequences of
failure, which potentially can change over time, especially if different
cost models are considered for various stages of the lifetime (design
vs. operation stages). This potential has been raised in recent studies
proposing varying target reliability levels for design and operating tur-
bines. By applying a risk based decision model, this effect could be
accounted for. Moreover, optimal (risk-wise) inspection planning could
be considered. For example, repair and control of the wind turbine
could be preformed when predicted fatigue damage is high and price
of electricity is low. The presented framework focuses on reliability as-
sessment for a particular component. Interaction between components
is not taken into account. The framework can be extended to account
for correlation between components and hence explore the reliability of
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5.3. Future perspective

a system as a whole instead of independent components. The system
approach can be beneficial to consider for structurally redundant sys-
tems, for example, jacket substructures, where the possibility for force
redistribution in case of failure is possible.
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A B S T R A C T
The present paper provides a model updating application study concerning the jacket substructure of an offshorewind turbine. The updating is resolved in a sensitivity-based parameter estimation setting, where a cost functionexpressing the discrepancy between experimentally obtained modal parameters and model-predicted ones isminimized. The modal parameters of the physical system are estimated through stochastic subspace identifi-cation (SSI) applied to vibration data captured for idling and operational states of the turbine. From a theoreticaloutset, the identification approach relies on the system being linear and time-invariant (LTI) and the input whitenoise random processes; criteria which are violated in this application due to sources such as operationalvariability, the turbine controller, and non-linear damping. Consequently, particular attention is given to assessthe feasibility of extracting modal parameters through SSI under the prevailing conditions and subsequentlyusing these parameters for model updating. On this basis, it is deemed necessary to disregard the operationalturbine states—which severely promote non-linear and time-variant structural behaviour and, as such, impreciseparameter estimation results—and conduct the model updating based on modal parameters extracted solely fromthe idling state. The uncertainties associated with the modal parameter estimates and the model parameters tobe updated are outlined and included in the updating procedure using weighting matrices in the sensitivity-based formulation. By conducting the model updating based on in-situ data harvested from the jacket sub-structure during idling conditions, the maximum eigenfrequency deviation between the experimental estimatesand the model-predicted ones is reduced from 30% to 1%.

1. Introduction
The offshore wind industry has experienced strong growth over thelast decade (U.S. Department of Energy, 2018). As a result, the cumu-lative capacity of installed offshore wind turbines has reached 23 GW in2018 with additional 40 GW planned to be operational within the next5 years (Global Wind Energy Council, 2018). Building upon a com-mercial success of this technology, more structures are being installedand instrumented with measurement equipment, thus allowing tocapture more operational information. In fact, some authorities, in-cluding the German certification body Federal Maritime and Hydro-graphic Agency, have already requested new structures to be equippedwith monitoring systems (BSH-7005, 2015).Access to information from monitoring systems can bring vital in-sight into a revised, more accurate estimate of the condition of thestructures. Given proper processing, such insight can be used to opti-mize the operation of existing structures and to improve design

procedures for structures to follow. A specific approach is to use theconcept of a digital twin (Grieves, 2019), where operational data is usedto calibrate numerical models to reflect, in the best possible way ac-cording to some performance measure, the behaviour of a physicalasset. The digital twin concept is well established and widely used inmany industries, i.a., aerospace engineering (Kritzinger et al., 2018)and the oil and gas industry (Tygesen et al., 2018). Recently, a digitaltwin has also been presented as a key element for establishing a data-driven conceptual framework for enhanced operation of offshore windstructures (Augustyn et al., 2019). Therein the model updating methodsare implemented to establish a digital twin, which is subsequently usedto perform lifetime extension, either 1) deterministically or 2) prob-abilistically, as illustrated in Fig. 1.To establish a digital twin, one normally starts with developing aninitial model based on a generic estimation of the physical parameters.Afterwards, operational data is collected and features extracted andcompared to model predictions. Typically, one compares a subset of
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modal parameters as it can be conveniently estimated from operationaldata by means of system identification methods. Some full scale vali-dations of system identification methods have been performed for on-shore wind structures (Tcherniak et al., 2011), offshore platforms(Tygesen et al., 2019), offshore wind tripod substructures (Hackell andRolfes, 2013), and offshore wind monopile substructures(Devriendt et al., 2014). However, limited publications exist that ex-plore the applicability of the system identification methods for offshorewind jacket substructures. The challenge for this type of substructureslies in the dynamic blade-substructure coupling (Popko et al., 2013)and in the non-linear behaviour of the controller.Once the discrepancy between a physical structure and its digitalcounterpart is quantified, model updating methods can be used to re-duce the difference by updating selected physical parameters of thenumerical model (Bernal and Ulriksen, 2018; Friswell and Mottershead,1995). Again, various methods have been validated for aerospace andautomotive applications (Patelli et al., 2017; Schedlinski et al., 2004)and for wind turbine blade structures (Luczak et al., 2014). However, tothe authors’ knowledge, no dedicated application study has been pre-sented for updating offshore wind turbine substructures.The present paper aims to address the above-mentioned researchgap by applying a model updating framework in the context of anoffshore wind jacket substructure. The contributions of this paper are;1) applying the model updating framework based on in-situ data (in-cluding system identification results) and 2) providing recommenda-tions on practical implementation of the framework.
2. Methodology

In this section, the theoretical background for the methods used inthe model updating framework is presented. Well-established proce-dures for both system identification and model updating are summar-ized, followed by a discussion on the validity of the main assumptionsin the context of offshore wind applications.
2.1. System identification

The covariance-based stochastic subspace identification (SSI-cov)method is used to estimate modal parameters of the wind turbine jacketsubstructure (van Overschee and de Moor, 1996). The merits of the SSI-cov method include its simplicity in implementation and numericalrobustness (van Overschee and de Moor, 1996). The former merit isespecially attractive from a user perspective as the method requiresonly a model order as input, while the remaining parameters can beestimated accordingly. The numerical robustness implies that no issueswith convergence arise, hence making the method applicable for largestructures and data sets. Consequently, this particular method is ex-tensively applied in the offshore wind and oil and gas industries(Devriendt et al., 2013; Hackell and Rolfes, 2013; Tcherniak et al.,2011; Tygesen et al., 2018).Consider the state-space formulation of a linear, time-invariant(LTI) system
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where superscript † denotes Moore-Penrose pseudo-inverse and ns is theselected model order. From ×Â n ns s and ×Ĉ ,m ns the eigen-frequencies, fi, damping ratios, ζi, and mode shapes, ϕi, can be esti-mated.The SSI-cov method hinges on a number of assumptions, including1) the system is LTI and 2) the input is ergodic, white, Gaussian, andspatially and temporally uncorrelated. The validity of the assumptionsfor offshore wind applications is briefly discussed below.In practice, the LTI assumption is always violated, as each systemchanges its properties with respect to both loading conditions and time.For offshore wind applications, the non-linear behaviour is mostly in-troduced due to the turbine controller, and to a lesser degree by the soilbehaviour. A turbine controller is constantly adjusting turbine proper-ties (pitch, yaw) to harvest the maximum amount of energy. Such ad-justments alter the dynamic properties of the system, which leads tovarying modal parameters.The SSI-cov method requires no prior knowledge on the input.Effectively it is assumed ergodic, white-noise Gaussian, and spatiallyand temporally uncorrelated. Assuming the input emulates the turbine’sexposition to environmental conditions it is evident that wind and waveproperties can change from one sea state to another, thus violating theergodicity property. Moreover, the frequency spectrum originatingfrom wind and wave excitation is far from being white-noise Gaussiandue to rotating machinery, the peak period in the wave spectrum, andbackground turbulence in the wind spectrum.Finally, some major assumptions are made with respect to damping.In Eq. (1), the damping is assumed to follow a linear viscous model,which is typically established on the premise of the distribution beingclassical. This is, by no means, a fully representative model of thedamping sources present in offshore wind applications, e.g., radiationsoil damping, hydrodynamic damping, and aerodynamic damping.The above-mentioned assumptions are, in principle, violated for allpractical applications. Nevertheless, useful results for estimating modal

Fig. 1. Application of a digital twin for lifetime extension (Augustyn et al., 2019). The dashed rectangle highlights the scope of this paper.
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parameters are reported for, e.g., offshore wind monopile turbines(Devriendt et al., 2013), onshore turbines (Tcherniak et al., 2011), andoffshore oil and gas jacket platforms (Tygesen et al., 2018). On thatbasis the applicability of the SSI-cov system identification method inthe context of an offshore wind jacket substructure is explored in thispaper.
2.2. Sensitivity-based model updating

Model updating techniques can be used to update a set of selectedphysical parameters of the model to better reflect the in-situ conditions.The sensitivity-based method, widely used in adjacent industries(Patelli et al., 2017), is implemented here. Below, key elements of thetheoretical framework are presented, followed by a discussion of theassumptions made. For a comprehensive derivation of the model up-dating method, the reader is referred to (Mottershead et al., 2011).We define the discrepancies in modal responses, ΔΛ, as a differencebetween estimated responses, ΛS, and numerical predictions, ( ). Inthis study, eigenmodes and eigenfrequencies are used as modal re-sponses. ΔΛ can be approximated by the linear Taylor expansion
S , (4)

where ΔΘ contains the parameter shifts to be estimated and S is thesensitivity/Jacobian matrix, thus
=S ,jk

j

k (5)
where Λj is the j’th response and Θk is the k’th parameter. The sensi-tivity matrix is obtained via perturbations directly from the numericalmodel.The measurements and response estimates are inherently corruptedwith uncertainties. These uncertainties are included in the updatingprocedure, as elaborated in Section 2.3. In many applications, thenumber of parameters to be updated is larger than the number of re-sponses identified from the physical structure. This poses a centralproblem for model updating in engineering applications, as the solutionobtained is non-unique. To address this problem, a regularizationscheme, originating from Tikonov (Willoughby, 1979), is applied in thepaper to add a penalty on the objective function. A regularizationcoefficient, α, is included in the formulation of the objective function tominimize the weighted parameter change.The objective function accounting for the above-mentioned exten-sions is defined as
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The regularization ensures that the parameter changes are mini-mized. It is assumed that parameter uncertainties are uncorrelated.Nevertheless, fully populated covariance matrices could easily be in-cluded, if correlation between parameters is deemed critical, e.g., cor-related mass or stiffness parameters.

2.3. Uncertainties included in the updating procedure
The main types of uncertainties related to the parameters, Θ, andmodal response estimations, Λs, are summarized below along with theirimplementation in the updating procedure. Quantification of the

uncertainties, based on engineering judgement, is provided inSection 5.Uncertainties in the context of modal updating can be divided intotwo categories: 1) aleatory, related to the natural variation in a physicalsystem (stiffness, mass, and damping), and 2) epistemic, related to lackof knowledge describing a system (modelling quality, statistical un-certainties, and measurement quality). Once the system is realized andsome measurands are captured, aleatory uncertainty can be reducedwith the expense of the additionally introduced (epistemic) un-certainties, e.g., stiffness/geometry becomes deterministic within theprecision of the measurement equipment. The premise of model up-dating for fatigue reassessment is that the gain in reducing aleatoryuncertainty is larger than the additional epistemic uncertainties, thusimproving the final model. Below, some examples of uncertainties in-troduced in the updating procedure are listed, following the uncertaintydefinition provided in Sørensen and Toft (2010). Aleatory uncertainty(for the context of this paper) stems from inherent variation in physicalparameters describing stiffness, damping, and, to a lesser degree, massof a system. These quantities are modelled by prior (generic) distribu-tion functions of the physical parameters assumed at the design stage.During the updating procedure, these distribution functions are sub-stituted with most likely mean values based on novel (in-situ) in-formation from the operational stage. The aleatory uncertainties areincluded in the updating procedure in the weighting matrix W as de-scribed in Sections 2.2 and 5.3.Epistemic uncertainties stem from data processing and are, in theframework of model updating, realized as measurement, statistical, andmodel uncertainties. Measurement uncertainties are governed by thequality of the sensor setup (sensor type and sensor placement). Theseuncertainties affect the number of dynamic modes that can be quanti-fied. Typically, a sensor setup is a balance between practical limitationsand the targeted quality of the information extracted. Moreover, thisuncertainty accounts for signal noise and various pre-processing steps.Statistical uncertainties are related to the amount of data captured. Adata set should be sufficiently large to capture a statistically soundestimation of the variation (uncertainties) in the modal parametersextracted. Model uncertainties are related to the method and algorithmused in the updating procedure, including the system identification. ForSSI, the associated uncertainties can be quantified as described in, e.g.,(Reynders et al., 2008). The summarized epistemic uncertainties areincluded in the updating procedure in the weighting matrix W as de-scribed in Sections 2.2 and 5.2.The updating procedure described in Section 2.2 aims at improvingthe accuracy of a numerical model by updating the mean values ofselected physical parameters in the presence of uncertainties. Thus, theuncertainties are not updated but merely serve as input to W and W .Updating of the uncertainties can be performed by, e.g., Bayesianmethods; however, this is outside of the scope of this paper.
3. Measurement campaign

The model updating framework is applied in the context of a mea-surement campaign within the 350 MW Wikinger wind farm. The farmconsists of 70 Adwen 5 MW wind turbines located in the German ex-clusive economic zone of the Baltic Sea. Measurements from one tur-bine are used to perform model updating. The chosen wind turbine isplaced on a 4-legged jacket substructure, see Fig 2. The hub height (A-A) of the wind turbine is approximately 90 m above the mean sea level(MSL). The interface level between the transition piece (TP) and thewind turbine tower is approximately 18 m above MSL (C-C), and thetower length is approximately 72 m. The water depth at the location ofthe instrumented wind turbine is approximately 38 m MSL, the jacketheight (including TP) is approximately 54 m, and the pile penetrationdepth is approximately 30 m beneath the sea bed. The soil is mainlyconsidered as clay.The measurement data used for model updating is composed of
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acceleration signals captured over a period of 1 month. The sensorsetup includes 4 triaxial accelerometers at the TP (section D-D, oneaccelerometer per leg), 1 biaxial accelerometer installed at the towerbottom (section C-C), 1 biaxial accelerometer in the tower,

approximately at 2/3 of the height (section B-B), and 1 biaxial accel-erometer at the tower top (section A-A). The approximate locations ofthe sensors are depicted in Fig. 2. The chosen configuration is primarilyaimed at identification of the first 5 global dynamic modes, including 2global bending modes (both in fore-aft and side-side direction) and atorsional mode. A sketch of the 1st and 2nd global bending modes ispresented in Fig. 3. Fig. 3a shows the 1st global bending mode in bothfore-aft and side-side directions, where major deformation is observedin the tower of the structure. These modes correspond to eigenmodes 1and 2 of the structure. Fig. 3b shows the 2nd global bending mode infore-aft and side-side directions, where major lateral deformation isobserved in the TP level. These modes correspond to eigenmodes 4 and5 of the structure. Note that eigenmode 3, which is the first torsionalmode, is not presented here.In addition to the acceleration signals, a subset of SCADA (super-visory control and data acquisition) data is also recorded. The turbinedata and ambient wind data are collected as 10-min statistics. In Fig. 4,some SCADA data are presented to visualize the wind speed and op-erational state of the turbine during the measurement campaign. The

Fig. 2. Wind turbine geometry and measurement setup.

Fig. 3. Global eigenmodes (fore-aft/side-side): a) 1st bending, b) 2nd bending.

Fig. 4. Wind speed and operational states of the turbine during the measure-ment campaign.
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recorded wind speeds span from 0 m/s to slightly above 20 m/s. Withinthis range, the turbine states are divided into 3 categories: 1) idling orparked state where aerodynamic and rotor forces are reduced, 2) op-erational state below the rated power with the blades pitching and therotor altering its angular velocity, and 3) operational state with theblades pitching to keep the angular velocity of the rotor and the poweroutput constant. The cut-in and rated wind speeds, i.e., =U 4c m/s and
=U 12r m/s, respectively, are depicted in Fig. 4 with dashed lines. Theturbine states are categorized based on the power output, which is moreprecise compared to relying solely on the wind speed. This can be no-ticed in Fig. 4, as in some cases the rated power is reached for windspeeds below 12 m/s. Moreover, in other cases, the wind turbine isidling despite the wind speed exceeding the cut-in value, which can bedue to, e.g., maintenance.

4. System identification of the wind turbine substructure
The input for the system identification analysis is the time seriesmeasured by the 7 accelerometers, resulting in =m 18 channels (4 × 3directions in the TP and 3 × 2 directions in the tower). For each day,successive 30 min. data blocks are processed, resulting in maximum 48time-frames per day. A separate system identification analysis is per-formed for each data block. The initial sampling frequency of 25 Hz isreduced to 5 Hz to focus on the global bending modes. A model order of20 is used in the SSI-cov algorithm. This model order is found appro-priate to capture the modes of interest.Fig. 5 presents frequencies estimated using the SSI-cov algorithm.One can observe that within the range of interest (up to approximately2.5 Hz) a large number of frequencies is identified. In order to identifypoles representing the structural modes of interest, a classifier algo-rithm based on the modal assurance criterion (MAC) (Allemang, 2003)and mode complexity estimate (Imregun and Ewins, 1995) has beenapplied. The algorithm calculates MAC values between the SSI-cov es-timated modes and the numerical modes of interest. SSI-cov modes withMAC values above 0.80 are classified as structural, while the remainingare disregarded. Fig. 6 presents a subset of frequencies classified asstructural eigenfrequencies after applying the classifier algorithm withonly the MAC criterion. Stable clusters of eigenfrequencies around0.3 HZ and 2.0 Hz can be observed. They contain the 1st and 2nd globalbending modes. The 1st torsional mode is not identified, which pre-sumably is due to the fact that the sensor setup was intended to captureglobal bending modes and not the torsional one (hence resulting in ahigh noise-to-signal ratio for the torsional mode). Consequently, onlythe global bending modes are considered in the remainder of the paper.As the classifier does not distinguish between the fore-aft and theside-side modes, the clusters potentially contain both directions.Moreover, in Fig. 6, one can also observe a large number of additionalfrequencies in the range of 0.3–0.7 Hz. These modes are correlated withSCADA data and have been identified as P-frequencies originating fromrotor revolution (1P), blades passing the tower (3P), and their

harmonics (6P). The dashed lines in Fig. 6 represent the upper bound ofthe P-frequencies based on the rated rotor velocity. The P-frequenciesare falsely classified as the 1st bending mode shape, as the mode shapesassociated with the P-frequencies are geometrically indistinguishable(with the current sensor setup) from the 1st bending mode shape basedon the MAC classifier only (variation in the wind pressure leads tovarying wind force translated to the tower top).To remove the P-frequencies from the results, the classifier algo-rithm is extended with the mode complexity criterion based on theArgand diagram (Imregun and Ewins, 1995). The assumption is that theP-frequencies introduce non-classical damping, which results in com-plex modes. The complexity of the modes is estimated based on theimaginary part of the mode shapes, as proposed in Olsen et al. (2013).Effectively, modes with high complexity around the expected P-fre-quency (estimated based on rotor revolution) are classified as P-fre-quencies and disregarded. Note that the P-frequencies are correlatedwith varying rotor revolution speed, hence the scatter between 1P and3P. This scatter can be correlated with the rotor revolution from SCADAdata and be used to further filter the P-frequencies. The complexitycriterion can also be applied to further improve the classification of theremaining structural modes assuming that the mode complexity ofthese modes is low.After applying the mode complexity criterion, a subset of identifiedeigenfrequencies including those of the 1st and 2nd global modes isobtained. Fig. 7 depicts the subset, and one can observe that the P-frequencies are successfully filtered and the scatter in the 2nd eigen-frequency is reduced due to the removal of highly complex and hencepotentially erroneous realizations. The mean values of the identifiedfrequencies are =f 0.321 Hz and =f 1.952 Hz, respectively. The resultsare derived based on both idling and operational states, covering allpossible yaw directions and varying wind speeds. The coefficient ofvariation (CoV) for the eigenfrequencies of the 1st and 2nd global

Fig. 5. Identified frequencies (no post-processing).

Fig. 6. Identified frequencies processed with MAC classifier.

Fig. 7. Identified eigenfrequencies after MAC classifier extended with com-plexity criterion.
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bending modes are CoV =f 0.0151 and CoV =f 0.017,2 respectively.
5. Model updating of the wind turbine substructure
5.1. Numerical model

The wind turbine structure and the jacket substructure are modelledusing Ramboll’s software ROSAP (Ramboll Offshore Structural AnalysisPackage), version 53 (Ramboll, 2018). ROSAP is a general-purpose fi-nite element package intended for both static and dynamic analysis ofoffshore structures. The jacket substructure is modelled with 3D Ber-noulli-Euler beam elements (Cook et al., 2001), including the addedmass of the surrounding water. The soil-structure interaction is mod-elled using a Winkler model (Cook et al., 2001) in which the steel pileelements are additionally supported by linearized springs representingthe surrounding soil. The soil springs are linearized according to the APImethod (API-RP-2A, 2014). The stiffness of the joints are modified toaccount for additional flexibility of the tubular joints according toBuitrago et al. (1993). The TP is modelled in a simplistic manner by arepresentative 3D Bernoulli-Euler beam system. The tower is modelledusing 3D Bernoulli-Euler beam elements, including added masses re-presenting internal secondary steel elements and flanges. The rotor-nacelle-assembly (RNA) comprising the nacelle, hub, and blades ismodelled as a two-point mass system, including a mass moment of in-ertia tensor to reflect the difference in properties in the fore-aft and theside-side direction of the RNA. The parameters used in the initial nu-merical model are based on the information available in the designstage of the structure.
5.2. Input for model updating

The numerical model is updated in a setting where the eigen-frequencies and mode shapes of the first two bending modes are utilizedas responses. The responses are estimated in the system identificationSection 4. To discard realizations that severely violate the systemidentification assumptions, the selection criteria presented in Table 1are employed. The first criterion excludes results with excessive yawingand pitching to comply with the LTI system assumption. The secondcriterion only includes results where the turbine is in idling or parkedconditions to minimize the presence of non-white excitation stemmingfrom wind and rotating machinery. Physical modes related to the fore-aft and side-side directions are expected to be perpendicular due to alarge stiffness disproportion in these directions. Therefore, similarproperties are expected from the identified modes (criteria 3 and 4).After applying the 4 criteria, 9 sets containing modal parameters areselected as input for model updating.The first criterion excludes results with excessive yawing andpitching to comply with the LTI system assumption. The second cri-terion only includes results where the turbine is in either the idling orthe parked condition to minimize the presence of non-white excitationstemming from wind and rotating machinery. Due to a large stiffnessdisproportion in fore-aft and side-side directions, physical modes re-lated to these directions are expected to be perpendicular. Therefore,similar properties are expected from the identified modes (criteria 3and 4). After applying the above-mentioned criteria, 9 sets containingmodal parameters are selected as input for model updating.

The uncertainties related to the selected modal parameter sets arequantified based on the eigenfrequencies’ CoVs and are included in theweighting matrix, W . CoV =f 0.0151 and CoV =f 0.0172 are assumedfor the 1st and 2nd bending eigenfrequencies, respectively. The un-certainties of the mode shapes are assumed to be tenfold of the re-spective eigenfrequencies CoVs, thus CoV =m 0.151 and CoV =m 0.172 .The additional uncertainty is primarily attributed to the fact the un-certainties on both the state matrix and the output matrix are propa-gated to the mode shape estimates when using the SSI-cov method(Reynders et al., 2008). The uncertainty estimations applied here onlyaccount for a portion of the measurement and statistical uncertaintiesrelated to these quantities. However, as mentioned in Section 2.3, thescope of the paper is to update the mean values of the parameters, thussuch level of details is deemed sufficient.
5.3. Physical parameters to be updated

The number of physical parameters included in a numerical modelcan become large and updating all of them can, for many practicalapplications, result in an ill-posed optimization problem. Thus, somecriteria for selecting a subset of parameters to be updated must beimplemented. Below, such an attempt is presented based on the prin-ciple of Fisher information (sensitivity vs. uncertainty) supplementedwith engineering judgment. The assumption is to update parametersthat are highly uncertain and, in the same time, affect the chosen modalparameters (frequencies and modes).To select which model parameters should be updated, their sensi-tivities to modal parameters are quantified. This study involves mod-ifying each model parameter in the numerical model independently andextracting the shifted modal parameters. Model parameters whose al-terations result in high shifts in the modal parameters are assigned ahigh sensitivity metric, while model parameters whose alterations donot yield a substantial modal parameter shift are assigned a low sen-sitivity metric. Subsequently, the uncertainties of the parameters aredetermined in a separate study. Highly uncertain parameters are as-signed a high uncertainty metric (e.g., CoV, assuming no bias), whileparameters believed to be estimated with high precision are assigned alow uncertainty metric. Such analysis has been performed and the re-sults are presented in Table 2. A large set of parameters is initiallyscreened to select potential candidates for model updating. The para-meters with medium or high sensitivity towards global modes are soilstiffness, corrosion, marine growth, hub mass, turbine stiffness, and TPstiffness. The most uncertain parameters (metric 2 or 3) are expected tobe turbine stiffness, TP stiffness, joint stiffness, scour, corrosion, marinegrowth, added mass, and, especially, soil stiffness. By selecting highlyuncertain and/or highly sensitive parameters, 10 are considered forupdating. These are indicated by the asterisk in Table 2.The generic uncertainty metric from Table 2 is now supplementedwith CoV of the selected parameters. The uncertainties are estimatedbased on a literature review, supplemented with engineering judgementwhere no reference could be found. The jacket stiffness is assumed to bevaried via Young’s modulus of the material used. The CoV is well-de-scribed and found to be 0.05 (Sadowski et al., 2015). Therefore, thisvalue is used. The turbine stiffness represents the stiffness of thestructure above the interface including tower, RNA, and blades. As asimplified model is used for this superstructure large uncertainty of0.25 is assumed based on engineering judgement. The uncertainty as-sociated with the pile and TP stiffness is a combination of a Young’smodulus uncertainty and any modelling uncertainties due to simplifi-cations in the modelling approach, e.g., beam vs. shell elements and PYsoil curves vs. 3D soil model. Thus, the initial 0.05 value is increased to0.10 and 0.25 for the pile and TP elements, respectively. The increaseaccounts for uncertainty in modelling of a pile element with contribu-tion from the structural component (steel) and surrounding soil. Theuncertainty for the TP element is increased to account for the simplifiedbeam representation used.

Table 1Selection criteria for model updating input.
Assumptions Criteria

LTI system no yawing, pitchingwhite-noise excitation idling/parked condition1st and 2nd modes 4 eigenmodes identifiedFA/SS symmetry planes perpendicular modes
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The uncertainty on the hub mass is very low as the element isweighed prior to installation, thus a value of 0.02 is assumed based onthe available as-built weight reports (Confidential author, 2016). Theadded mass parameter represents the added mass contribution on thesubmerged part of the jacket substructure due to the surrounding water.It is modelled as a multiplication factor of the initially estimated addedmass. The added mass uncertainty depends on the shape of the struc-tural element and its orientation, which changes as waves pass. To re-flect these uncertainties, a value of 0.50 is chosen. The local jointflexibility representing the effective stiffness of a tubular joint is mod-elled via the simplified Buitrago equations (Buitrago et al., 1993). Thisapproach is known to be imprecise (Nielsen et al., 2019), so to accountfor this uncertainty, a value of 0.50 is chosen. The soil stiffness ismodified via correction parameters, py, tz, qw, which update the initialstiffness of the linearized API curves (API-RP-2A, 2014). The soil stiff-nesses are considered to be the most uncertain parameters, thus a CoVof 1.00 is assumed for these. The value is chosen based on literaturestudies regarding soil uncertainty estimation (Bertossa, 2015; Negroet al., 2014; Yeter et al., 2019).In this study, boundaries are imposed on the model parameters to beupdated to reflect physical limitations of the mass and stiffness, i.e.,only positive values are allowed. Other boundaries can also be adopted,e.g., the validity range of the parameters provided in guidelines/stan-dards.
5.4. Results

In this subsection, model updating results are presented. The updateis performed using the one modal parameter set which is the mostconsistent with the selection criteria defined in Section 5.2. The fre-quencies and MAC results for different stages of the update are pre-sented in Tables 3 and 4. The discrepancies between the initial (design)

model and the estimated eigenfrequencies are 6% and 30% for the 1stand 2nd global bending mode, respectively. The corresponding MACvalues are 0.96 and 0.85.The model updating is performed in two steps. The first step in-volves updating the parameters based on the as-built reports. Thesereports are normally available after the installation is completed. Theyinclude some information like the as-built weight of the structure andinformation from pile driving (e.g., pile stick-up). In this stage of theupdate, it is also assumed that no scour, corrosion, or marine growthhave developed. This assumption is based on the fact that the mea-surement campaign was performed 1 year after the installation, thus itis assumed that these processes did not have enough time to initiate inthe specific environment. After including this information, the fre-quency discrepancies are reduced to 3% and 20% for the 1st and 2ndglobal modes, with MAC values of 0.97 and 0.98. Finally, the modelupdating procedure based on measurement data is performed as de-scribed in Section 2.2. After the update, the discrepancy between themeasured and modelled 1st global frequency is reduced from the initial6% to 0.3%. The discrepancy in the 2nd global frequency is reducedfrom the initial 30% to 1.0%. The MAC value after the update is 0.96and 0.99 for the 1st and 2nd global mode, respectively.The parameter set obtained after the model updating is presented inTable 5. The jacket stiffness, kj, the structural pile stiffness, kp, the hubmass, mh, and the local joint flexibility, LJF, remain almost unchangedafter the update. Substantial updating is observed in the TP stiffness,kTP, with a reduction of 64%. The TP stiffness change is not surprising,as the simplified beam modelling strongly depends on the estimation ofthe representative stiffness, which can be difficult to assess without adetailed 3D model. A substantial update is also observed in the turbinestiffness, kt. The stiffness is increased by 83%. Large update of thisparameter can be explained by the fact that a low-fidelity turbine model(RNA and blades) is used. Its representative parameters are inferred

Table 2Sensitivity and uncertainty matrix for model parameters.
Parameter Uncertainty Sensitivity

Type Symbol Metric CoV Reference
Jacket stiffness* kj 1 0.05 Sadowski et al. (2015) 1Turbine stiffness* kt 2 0.25 ** 2TP stiffness* kTP 2 0.25 ** 2Piles stiffness* kp 1 0.10 ** 2Joint stiffness* LJF 2 0.50 Nielsen et al. (2019) 1Leg diameter Dl 0 – – 2Leg thickness tl 1 – – 1Brace diameter Db 0 – – 1Brace thickness tb 1 – – 0Scour* sc 2 – – 1Corrosion* corr 2 – – 2Marine growth* mg 2 – – 2added mass* am 2 0.50 ** 1hub mass* mh 1 0.02 Confidential author (2016) 3lateral soil stiffness* py 3 1.00 Negro et al. (2014); Yeter et al. (2019) 1axial soil stiffness* tz 3 1.00 Yeter et al. (2019) 2pile tip stiffness* qw 3 1.00 Bertossa (2015) 0

Metric (uncert./sensit.): 0– negligible, 1– low, 2– medium, 3– high * Parameters to be updated; Uncertainty estimation: ** Engineering judgement.

Table 3Estimated and model-predicted eigenfrequencies.
Configuration f1 [Hz] f2 [Hz]

FA SS FA SS
Estimated (measurements) 0.32 0.32 1.96 1.99Design (model) 0.30 0.30 1.37 1.40As-built (model) 0.31 0.31 1.57 1.63Updated (model) 0.32 0.32 1.94 2.00

Table 4Estimated and model-predicted MAC.
Configuration Mode 1 [−] Mode 2 [−]

FA SS FA SS
Estimated (measurements) 1.00 1.00 1.00 1.00Design (model) 0.96 0.98 0.85 0.93As-build (model) 0.97 0.99 0.98 0.99Updated (model) 0.96 0.98 0.99 0.99
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from implicit, confidential data (blade moments of inertia) and thusprone to imprecise estimation. Worth noting is the significant update ofthe soil parameters. While the py, tz, qw parameters are convenientfrom a modelling perspective, they are difficult to interpret on a phy-sical level. Thus, additional results have been extracted, namely, thepile head stiffness in the lateral and the axial direction, kxy and kz, re-spectively. The results are presented in Table 6. The soil stiffness isincreased by a factor of 4.7 and 6.0 for the lateral and axial directions,respectively. An elaborate discussion on the profound update of the TP,turbine, and soil stiffnesses is provided in Section 6.
5.5. Sensitivity of the updating procedure

As the estimated modal parameters exhibit some scatter (CoVf1 =0.015 and CoVf2 = 0.017), it is investigated how sensitive the updatedparameters are towards variation in the modal parameters. To in-vestigate this effect, the estimated modal parameters from 9 differentidling time-frames, see Section 5.2, are used to perform model up-dating. The model updating setup uses the same starting values for theparameters and the same weighting matrices, W and W ; effectivelyaltering only the input modal parameters. The scatter in the updatedmean values of the model parameters is presented in Table 7. Thescatter is reported as CoV on the updated mean values of the para-meters. The updated values for jacket stiffness and hub mass presentnegligible scatter (CoV < 0.01). The turbine stiffness, kt, TP stiffness,kTP, and added mass, am, exhibit low scatter, namely, CoV of 0.04, 0.06,and 0.05. Finally, the soil stiffness CoV are 0.12 and 0.11 for kxy and kz,

respectively. The mean value of the updated parameters based on 9modal parameter sets, see Table 7, are close to, yet not identical with,the updated parameters provided in Table 5.
6. Discussion

This section offers a discussion of the model updating procedure andappertaining results presented in Sections 4 and 5.4. Particular focus isassigned to the initial deviation in the 2nd bending eigenfrequency andthe profound update of selected model parameters.
6.1. On the initial eigenfrequency discrepancy

Based on the system identification results provided in Section 4 andthe corresponding model predictions presented in Section 5.1, a dis-crepancy of 30% was reported for the 2nd bending eigenfrequency. Partof that discrepancy can be explained by merely stating that the twoestimations aim to describe different stages of the same ageing struc-ture. The numerical model is based on the design parameters, which,according to the design recommendations (DNVGL-ST-0126, 2016), arerepresentative for the averaged conditions during the lifetime of thestructure, typically 25 years. However, the in-situ estimation is derivedbased on the structural condition 1 year after installation. This isespecially relevant in the context of phenomena accumulating overtime, e.g., corrosion and marine growth, as these affect the discussedeigenfrequency. After adjusting the numerical model to a representative1 year condition, the eigenfrequency discrepancy is reduced to 20%.The bulk of the remaining discrepancy can be attributed to the mis-prediction of the soil stiffness. It is commonly accepted in the industrythat the soil stiffness estimation is highly uncertain (Bertossa, 2015;Negro et al., 2014; Yeter et al., 2019) and different measures are cur-rently being explored to improve the accuracy of soil stiffness models(Byrne et al., 2019). As an example, a recent publication (Bom et al.,2020) investigated the effect of soil stiffness modelling uncertainty onthe eigenfrequencies of an offshore wind jacket substructure. The re-sults estimated based on a number of state-of-the-art procedures weresubsequently compared to the in-situ estimations, and discrepancies ofup to 40% were reported. In order to reduce the discrepancies, a sub-stantial soil stiffness update was proposed, which is in line with theupdating results documented in the present study.
6.2. On the update of the turbine, TP, and soil stiffnesses

In Section 5.4, the updated model parameters are stated, and it isfound that substantial updating of the turbine stiffness, TP stiffness, andsoil stiffness is required. Since the soil stiffness has been addressed inSection 6.1, the present subsection discusses the updated turbine andTP stiffnesses. As elaborated in Section 5.1, the numerical models of theturbine and the TP are simplified. The turbine’s two-point mass systemneglects the stiffness of the blades and their potential coupling to thesubstructure, especially to the brace elements. The simplified beammodel of the TP is calibrated to represent global bending stiffnessproperties of the structure, while neglecting local effects. Despite thementioned shortcomings, the simplified modelling approaches havebeen taken in this paper due to the following reasons; 1) state-of-the-artmodelling approaches are used and 2) high-fidelity models are often notavailable due to practical and confidentiality reasons. Below, a fewremarks on the high-fidelity models and the updated parameters areprovided.Worth noting is the fact that the turbine stiffness and the TP stiffnessare updated in opposite directions, i.e., a reduction of the TP stiffnessand an increase of the turbine stiffness. Since both of these parametersaffect the bending stiffness in the same direction, a positive correlationof the updated parameters could be expected. However, the initial valueof the parameters is derived independently. Consequently, dependingon the precision of the initial estimates, one can imagine a situation

Table 5Updated mean values of the selected model parameters.
Parameter Value

Type Symbol Unit Initial Updated Normalized
Jacket stiffness kj − 1.00e+0 9.95e−1 0.99Turbine stiffness kt − 1.00e+0 1.83e+0 1.83TP stiffness kTP − 1.00e+0 3.41e−1 0.36Pile stiffness kp − 1.00e+0 1.02e+0 1.02Added mass am − 1.00e+0 0.84e+0 0.84Hub mass mh kg 1.44e+5 1.47e+5 1.01lateral soil stiffness py − 1.00e+0 1.33e−1 0.13axial soil stiffness tz − 1.00e+0 6.96e−2 0.07pile tip stiffness qw − 1.00e+0 6.62e−1 0.66Joint stiffness LJF − 1.00e+0 1.02e+0 1.02

Table 6Pile head stiffness update.
Configuration kxy [kN/m] kz [kN/m]

Value Ratio Value Ratio
Design 2.8e+5 1.0 1.0e+6 1.0As-built 4.4e+5 1.6 1.3e+6 1.3Updated 1.3e+6 4.7 6.0e+6 6.0

Table 7Scatter in the updated mean values of the model parameters for varying sets ofmodal parameters.
Parameter Unit Mean CoV of mean value
kj − 9.95e−1 < 0.01kt − 1.92e+0 0.04kTP − 3.30e−1 0.06am − 8.59e+0 0.05mh kg 1.47e+5 < 0.01kxy kN/m 1.18e+6 0.12kz kN/m 5.50e+6 0.11LJF − 1.02e+0 0.02
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where the two parameters after the update can be positively correlated(given both initial stiffnesses are simultaneously either under- or over-estimated) or, as presented in this paper, where the parameters areupdated in the opposite directions (given the initial stiffnesses are over-and under-estimated).High-fidelity modelling of the TP using shell and/or solid finiteelements would result in a TP model of a size of at least an order ofmagnitude larger than the entire remaining model. Assuming eachelement would introduce two parameters to be updated (mass andstiffness), such a TP model would result in an infeasible number ofparameters to be updated. Modelling of the turbine, including an ex-plicit beam formulation of the blades, is possible in a number of com-mercial aeroelastic software, e.g., FAST (Jonkman and Buhl, 2005),Bladed (DNVGL, 2020), and FLEX (Øye, 2001). By using such software(in combination with access to turbine data) a high-fidelity turbinemodel can be obtained, where the coupling between the braces and theblades is included. However, access to such data is typically restrictedto wind turbine vendors. As a result, these models are not widelyavailable. Moreover, the brace-blade coupling is not expected to be ofcrucial importance for model updating when low-order, global bendingmodes are used as responses (note that the 1st bending mode is domi-nated by the tower top displacement, while the 2nd bending mode isdominated by lateral TP displacement). On the contrary, brace-bladecoupling can become critical if higher-order mode shapes dominated bythe local brace displacements are included. Consequently, it is deemedimpractical, at least in the presented framework and design procedures,to include high-fidelity TP and turbine models. Nevertheless, a resultingsubstantial update of the TP and turbine parameters might indicateinsufficient precision of the modelling approach implemented in thisstudy or imprecise initial estimation of the parameters related to thesimplified models.Alternatively, one can perform model updating of the substructurealone. The merit of this approach lays in removing the uncertaintiesrelated to the turbine modelling, consequently increasing sensitivity tothe remaining highly uncertain parameters, namely, those associatedwith the soil stiffness. However, this approach has two main limitations;1) it is only applicable to new structures instrumented prior to com-missioning and 2) it introduces an additional complication in the in-stallation schedule to obtain comprehensive measurement data.
7. Conclusions

This paper demonstrates the application of model updating in thecontext of an offshore wind jacket substructure exposed to both en-vironmental and operational variability. It is shown how the sensitivity-based model updating, employing a subset of experimentally estimatedmodal parameters as responses, enables updating of physical para-meters within the model to more accurately reflect in-situ conditions.For the considered example, the initial maximum eigenfrequency dis-crepancy of 30%, between the experimental findings and the model-predicted ones, is reduced to 1% after the update. The bulk of the initialdiscrepancy is attributed to a highly uncertain soil stiffness estimation.The present study is limited to 1) estimating responses from idlingstates of the turbine, 2) using global modes of the structure as re-sponses, 3) updating mean values of the physical parameters, and 4)using simplified models of the TP and the turbine. The first limitation isrelated to the chosen system identification method, the second is theconsequence of the given sensor setup, the third one is characteristic forthe sensitivity-based updating scheme, while the last one is due topractical/confidential reasons. Regardless of the mentioned limitations,the presented framework is general and its applicability for in-situ datais demonstrated in the paper.
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A B S T R A C T   

The present paper investigates the feasibility of modal expansion-based virtual sensing in the 
context of offshore wind jacket substructures. For this specific application, issues have been re-
ported when expanding wind-driven brace vibrations and wave-driven vibrations in the splash- 
zone based on a sensor network placed solely above the sea level. These limitations are 
addressed in this paper by extending the sensor network with sub-sea vibration sensors and a 
wave radar sensor, which allow for capturing local brace vibration modes and the wave-driven 
vibration response. The brace expansion is thus improved by including the local brace vibra-
tion modes in the expansion basis, while the representation of wave-driven vibrations is improved 
by including load-dependent Ritz vectors computed based on input from the wave radar sensor. 
The merit of the proposed extension is explored using a numerical model of an offshore wind 
turbine supported by a jacket substructure in a simulation setting with different operational and 
environmental conditions. It is documented that the extended setup provides an improvement in 
the expansion-based estimation of both wind- and wave-driven vibrations. The former 
improvement is particularly relevant for operational cases, while the latter is relevant for idling 
cases. Despite the documented improvements, a systematic reduction in the expansion quality is 
observed for higher wind speeds in operational cases for both the basic and the extended setup. It 
is contended that this phenomenon is due to the operational variability of the controller, which 
violates the fundamental assumption of the structural system being linear and time-invariant.   

1. Introduction 

Structural vibration response composes a pivotal part in many civil and mechanical engineering applications; i.a., structural 
monitoring (including fatigue estimation) [1,2] and control [3,4]. In practice, direct vibration measurements can be obtained from an 
installed sensor network, which covers a limited number of locations. The response at the remaining locations can subsequently be 
estimated using, e.g., virtual sensing methods [5–9], where the response at the unmeasured (virtual) locations is predicted based on the 
available measurements. 

Virtual sensing has been widely adopted for vibration estimation in offshore structures. Successful applications have been 
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demonstrated for offshore (oil and gas) jacket structures [10,11] and monopile substructures of offshore wind turbines [12,13]. A 
recent publication by Henkel et al. [14] investigates the feasibility of a particular virtual sensing method, namely, modal expansion, for 
application to offshore wind jacket substructures. These structures are different from the previous applications due to their lattice 
topology and the coupled wind-wave loading. Henkel et al. [14] report high accuracy of the expansion in the leg elements, while low 
expansion quality is obtained for the brace elements due to the inherent limitations of the employed setup. In particular, the findings 
suggest that the implemented sensor network, which only includes vibration sensors above the sea level, does not allow for an adequate 
representation of the local brace modes or the quasi-static contribution from the wave loading. In the literature, the latter issue has 
been addressed in the context of system reduction [15–17] and earthquake engineering [18–20] by applying load-dependent Ritz 
vectors. A similar approach is implemented in this paper and its feasibility in the context of virtual sensing of offshore wind jacket 
substructures is investigated. 

The present paper addresses the limitations that Henkel et al. [14] report on modal expansion for virtual sensing of wind turbine 
jacket substructures. More specifically, we examine an extended setup in which sub-sea vibration sensors and a wave radar sensor are 
added to capture both local brace modes and wave-governed modes, which are then included in the modal expansion basis. Two 
expansion scenarios—the basic one employed in Ref. [14] and the proposed extension incorporating sub-sea and wave sensors—are 
tested. The study is conducted using a numerical model of a 5 MW wind turbine with a jacket substructure in a simulation setting with 
different operational and environmental conditions. 

The remainder of the paper is organized as follows. In Sec. 2, we outline the modal expansion theory used for virtual sensing, Sec. 3 
establishes the setup of the numerical wind turbine case study, and Sec. 4 presents the appertaining virtual sensing results. The results 
are summarized in Sec. 4.3 and further discussed in Sec. 5, while the paper closes with some concluding remarks in Sec. 6. 

2. Modal expansion theory 

Modal expansion requires the structural system in question to be linear and time-invariant (LTI). Obviously, wind turbines violate 
this due to environmental and operational variability [21,22]. Yet, previous modal expansion studies concerning offshore wind tur-
bines have operated on the premise of LTI conditions and resulted in, to some extent, adequate results [12–14]. The premise of the 
present study is to apply the well-established modal expansion method and focus on improving the expansion quality in cases where 
low quality has been reported. Consequently, this study also adapts the LTI assumption, which implies that the structural system can be 
described by 

Mü(t)+Cu̇(t) + Ku(t) = f(t), (1)  

where M, C, K ∈ Rna×na are the mass, damping, and stiffness matrices, na is the number of degrees of freedom (dof), ü(t), u̇(t), u(t) ∈ Rna 

are the acceleration, velocity, and displacement vectors, and f(t) ∈ Rna is the load vector. It is assumed that the system matrices are 
positive definite, M, C, K ≻ 0, and that the damping in system (1) is classically distributed. The latter implies, as specified by Caughey 
[23], that M− 1K and M− 1C commute such the eigenvectors of system (1) equal the undamped ones. 

2.1. Modal expansion 

Let the output—here taken as displacements, but the same relations hold for velocities and accelerations—be partitioned into nm 
measured outputs, um(t) ∈ Rnm , and ne = na − nm virtual, expanded outputs, ue(t) ∈ Rne . Then, 

u(t) =
[

um(t)
ue(t)

]

, (2)  

and the aim of modal expansion is to estimate ue(t) based on um(t). If u(t) is governed by nq modes, a modally truncated approximation 
writes 

u(t) ≈Φ(t)q(t) =
[

Φm(t)
Φe(t)

]

q(t), (3)  

where q(t) ∈ Rnq contains the modal displacements associated with the nq governing modes and Φ(t) ∈ Rna×nq is the expansion matrix, 
which is partitioned into Φm(t) ∈ Rnm×nq and Φe(t) ∈ Rne×nq . Φ will be specified in Subsec. 2.2. 

Assuming nm ≥ nq and rank(Φm(t)) = nq, an estimate on q(t) that minimizes ||Φm(t)q(t) − um(t)||2 is given by 

q̃(t) =
(
Φm(t)T Φm(t)

)− 1Φm(t)T um(t)=Φm(t)†um(t), (4)  

with superscript † and overhead ∼ denoting, respectively, pseudo-inversion and an estimate. Thus, an estimate of the virtual part of 
the displacement output can be computed as 

ũe(t)=Φe(t)q̃(t). (5)  
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2.2. The expansion matrix 

The expansion matrix, which includes a mixture of dynamic and static modes, is given by 

Φ(t)=
[

Φ(d) Φ(s) Φ(R)(t)
]
, (6)  

where Φ(d) contains eigenvectors of system (1), while Φ(s) and Φ(R)(t) capture the static response due to, respectively, wind and wave 
loading. The modes are extracted for the dof corresponding to the measured, Φm(t), and virtual, Φe(t), locations. It is assumed that the 
static modes are calculated individually for specific sea states. The static wave modes, Φ(R)(t), are constructed based on input from a 
wave radar sensor. 

2.2.1. Dynamic modes 
The dynamic modes, Φ(d), contain a subset of the eigenvectors of system (1). The particular eigenvectors are selected such that the 

governing dynamics of the wind turbine system are adequately described. Compared to previous studies [12–14], where only the first 
few dynamic modes of the jacket/monopile substructure were considered, we include higher modes with significant local brace 
participation. 

In this study, both the measured and the virtual partition of Φ(d) are obtained from the numerical model of system (1). Alterna-
tively, the measured partition can be taken directly as the experimental mode shapes or as a combination of these and the model 
predictions using, e.g, the SEREP method [24] or the local correspondence principle [10,25]. 

2.2.2. Static wind modes 
The static displacement response to wind loading can be computed as 

Φ(s) =K− 1Fs, (7)  

in which Fs ∈ Rna×6 collects 6 linearly independent unit loads (3 translational and 3 rotational) that are applied to the top of the wind 
turbine tower. This procedure follows the approach suggested by Iliopoulos et al. [12] who, however, restrict it to lateral translation. 

2.2.3. Static wave modes 
The static displacement response to wave loading is—as done by Skafte et al. [11] for oil and gas structures—estimated as Ritz 

vectors [26], thus 

Φ(R)(t)=K− 1fR(t), (8)  

where fR(t) ∈ Rna is the wave load estimated for a given sea state. The wave loading can be reconstructed by using information from, e. 
g., a wave radar. The wave radar captures a time history of the wave surface elevation, which is subsequently used to estimate wave 
kinematics, using appropriate wave theory, e.g., Stokes fifth-order wave theory [27]. The wave kinematics are used to estimate the 
wave forces acting on individual structural members using the Morison equation [28]. A further discussion on estimating wave 
loading, with special focus on practical issues, is provided in Subsec. 5.4. 

2.3. Validity of LTI model for modal expansion 

In practice, the LTI assumption is always violated, as each system changes its properties with respect to both loading conditions 
(non-linear system) and time (time-variant system). In the context of an offshore wind jacket substructure, the system is non-linear and 
time-variant due to, i.a., non-linear wind loads, controller variability, non-linear wave forces, and soil. The impact of each violation on 
modal expansion is briefly discussed in this subsection. 

The non-linearities introduced due to wind forces stem from aero-dynamic coupling between the blades and air particles. Assuming 
no large deformation and/or plasticity are present in the substructure, and this assumption is valid for normal production cases [29], 
the non-linearities introduced from wind forces do not affect modal expansion in the substructure. 

The controller variability is known to alter the modal parameters (including mode shapes) of wind turbine structures [21,22]. Since 
each wind turbine structure is coupled to a substructure, any alternation of the mode shapes of the turbine affects the substructure 
dynamics as well. The effect of neglecting the controller variability, which has been reported as one of the sources of reduced 
expansion quality for higher wind speeds in Ref. [14], is further investigated in Subsec. 5.1 in the present paper. 

The wave forces are non-linear as they include the effect of the relative velocity between the wave and the structure, as typically 
modelled by use of the relative-velocity Morison equation [28]. For bottom-fixed offshore structures, the effect of relative velocity is 
small [28], and therefore the error introduced by neglecting it in this study with a bottom-fixed jacket substructure (to comply with the 
LTI assumption) is not critical. 

The soil stiffness is non-linear with respect to the applied load. Variable soil stiffness affects the mode shapes used to expand both 
the static and the dynamic part of the response. In the LTI model, the soil stiffness has to be linearized for representative conditions. 
Consequently, any variation in soil stiffness is neglected. For a typical offshore wind application, the soil stiffness is linearized ac-
cording to the initial stiffness [30], which is representative for power production cases where the majority of fatigue damage is 
generated. For extreme cases, a different linearization point could be selected to account for the modified soil stiffness. Consequently, 
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by deriving a number of modal expansion sets, representative for each loading condition and hence soil stiffness configuration, the soil 
stiffness variation can, indirectly, be accounted for. 

3. Case study setup 

The case study is based on synthetic displacement data obtained from a numerical model of a 5 MW wind turbine exposed to 
different load cases. The model is described in Subsec. 3.1. The displacement data are extracted from both physical output locations 
and virtual output locations. The former is used as input to the modal expansion, while the latter is used to validate the expanded, 
virtual results. The particular locations are specified in Subsec. 3.2 for the basic and extended sensor configurations. The load cases 
considered in this study are described in Subsec. 3.3. 

3.1. Modelling 

The jacket substructure and its appertaining wave loading are modelled using ROSAP (Ramboll Offshore Structural Analysis 
Package), version 53 [31]. The jacket substructure considered in this study, which is depicted in Fig. 1a, has a total height of 
approximately 50 m. The substructure comprises four legs, each with a diameter of approximately 2 m, and three brace bays, each with 
a diameter of approximately 0.5 m. The substructure model includes, i.a., soil-pile interaction, local joint flexibility, scour, marine 
growth, and appurtenance masses. The water depth is 40 m and the soil conditions are characterized as clay. The substructure includes 
30 m grouted piles. The soil-structure interaction is modelled by use of soil curves linearized according to the API method [30]. The 
substructure carries a representative 5 MW turbine modelled in LACflex aero-elastic code [32]. The turbine includes a 70 m tubular 
tower with a diameter ranging between 4 m and 6 m. Along the tower, three concentrated masses are assumed to emulate the effect of 
secondary-structures. The aero-elastic code employs a modal-based representation of the turbine (including the tower, rotor, and 
blades), while the substructure is represented as a Craig-Bampton superelement [33]. The structural damping is modelled according to 
the Rayleigh model [34] assuming 0.5% and 1% modal damping in the first and second bending modes, respectively. 

The aero-hydro-servo-elastic simulation is performed in a sequentially coupled manner as described by Nielsen et al. [35]. The key 
steps of the procedure are as follows. 1) the substructure model and corresponding wave loading are reduced to a superelement with 30 
internal modes accounting for internal substructure dynamics. A convergence study has been performed to ascertain that the reduced 
model (including 30 modes) adequately captures the relevant modal parameters of the non-reduced system. Subsequently, 2) the wind 
loading is computed through aero-elastic analyses, in which the synchronized wave loading and the substructure superelement are 
included. Finally, 3) the force-controlled recovery run outlined by Nielsen et al. [17] is performed, where the response of the sub-
structure is recovered and relevant measurements are extracted. 

3.2. Sensor layout 

The two employed sensor configurations are depicted in Fig. 1c and d. Each configuration consists of physical sensors, which are 
assumed installed on the structure to deliver the displacement measurements constituting um(t) in (2), and virtual sensors, which are 
placed at locations where the displacement response is estimated through modal expansion. In this study, the displacement 

Fig. 1. Instrumentation of the jacket substructure. a) sensor levels, b) substructure direction, c) basic sensor layout, and d) extended sensor layout.  
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measurements are obtained directly from the numerical model. In practice, the vibration sensors would be composed of accelerom-
eters, so the displacements would be obtained through double integration of the temporal acceleration signals and/or a linear 
transformation of the temporal strain signals. The basic configuration described in Subsec. 3.2.1 corresponds to the setup utilized by 
Henkel et al. [14], while the extended setup described in Subsec. 3.2.2 contains sub-sea vibration sensors and a wave radar sensor. 

3.2.1. Basic sensor configuration 
The basic sensor setup, which is depicted in Fig. 1c, contains 7 bi-axial vibration sensors (measuring displacements). The sensors 

are located in the nacelle, on the tower (at the bottom and at approximately 2/3 of the tower height), and at the top of each jacket leg. 
The measurements are expanded to the virtual locations indicated in Fig. 1c. These virtual locations include nodes in the K-joints and 
X-joints. The joints are named after the level at which they are positioned. The level numbering is indicated in Fig. 1a. 

3.2.2. Extended sensor configuration 
The extended sensor setup includes bi-axial sub-sea vibration sensors in the lower X-joints at level 15. The approximate locations of 

the sensors are indicated in Fig. 1d. In addition to the displacement sensors, a wave radar sensor is included to capture the wave surface 
elevation. Subsequently, the wave surface elevation is used to compute the static wave modes, as elaborated in Subsec. 2.2.3. 

3.3. Load cases 

Two turbine states are considered in the simulations; 1) operational where the control system is active and 2) idling where the 
control system is inactive and the blades are pitched 90◦ to minimize the wind loading. The load cases are defined in accordance with 
the IEC standard [36] from which load cases 1.2 and 6.4 are considered. These two load cases—which are further described in Subsecs. 
3.3.1 and 3.3.2 and summarized in Table 1—are assumed to be representative for the operational and idling turbine states. 

3.3.1. Operational 
The vibration response of the turbine and its jacket substructure is simulated for a wind speed range of U ∈ [4,29] m/s, which is 

where the turbine is assumed to generate power. The lower and upper limits of U = 4 m/s and U = 29 m/s are denoted the cut-in and 
cut-out wind speeds. While operating within these limits, the control system is activated to maximize the energy yield by altering the 
rotor’s angular velocity and the blades’ pitch angle up to the rated wind speed, which is approximately 12 m/s for this particular 
turbine. Above the rated wind speed and up to the cut-out wind speed, the control system stabilizes the rotor’s angular velocity and 
alters the blades’ pitch angle to produce the rated power and minimize the wind loads. A varying turbulence intensity is applied 
according to the IEC normal turbulence model [36]. Consequently, stochastic wind speed time-series (turbulent wind) are generated 
for each load case. Each time series has a duration of 800 s of which the first 200 s is neglected to avoid an initiation disturbance. 

In addition to the wind loads, wave loading is incorporated by applying irregular sea states characterized by the wave height, Hs, 
and the wave period, Tp. For these, we assume Hs ∈ [0.5, 5.5] m and Tp ∈ [0.4,6.4] s, which is a representative set for the substructure 
considered in this study. The irregular waves are generated based on the JONSWAP spectrum [37] with the peak-enhanced factor γ =

3.3, while the drag and mass coefficients are set to 0.65 and 2, respectively. The wind and wave loading is assumed to be fully aligned 
and approaching the structure from direction N, see Fig. 1b. Stationary conditions are assumed within each sea state. 

3.3.2. Idling 
The vibration response of the turbine and jacket substructure is simulated below the cut-in wind speed and above the cut-out wind 

speed. Under these conditions, the blades are pitched 90◦ to minimize the wind-induced loading, and the angular velocity of the rotor is 
negligible. As a result, the structural response is predominantly governed by the wave loading. 

The response of the structure is simulated for two wind speeds; U = 3 m/s, which is below the cut-in wind speed, and U = 35 m/s, 
which corresponds to the representative extreme wind speed [36]. The wave loading is, in analogy to the procedure for the operational 
cases, generated by applying irregular waves characterized by wave height and period. The wave parameters used in the two simu-
lations are Hs ∈ {0.4,6.4} m and Tp ∈ {3.7,6.7} s, corresponding to a representative set for the substructure considered in this study. 
The same loading direction and alignment as selected in the operational cases are used in the idling cases. 

3.4. Modal expansion performance indicators 

The quality of the conducted modal expansion is assessed based on four performance indicators. Let ui, ũi ∈ RN denote the 
measured and estimated displacement signals at sensor i, then the first performance indicator is the time response assurance criterion 
(TRAC) [38] defined by 

Table 1 
Load case definitions according to IEC [36] and representative site-specific parameters.  

Turbine state Wind speed, U [m/s] Turbulence, TI [− ] Wave height, Hs [m]  Wave period, Tp [s]  Direction 

Operational 4–29 0.21–0.09 0.5–5.5 3.8–6.6 N 
Idling 3 and 35 0.23 and 0.08 0.4 and 6.4 3.7 and 6.7 N  
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T =

(

uT
i ũi

)2

(uT
i ui)

(

ũT
i ũi

) ∈ [0, 1], (9)  

hence yielding a measure of the temporal correlation between the measured and estimated signals. T = 0 indicates no correlation, 
while T = 1 indicates full temporal correlation. 

Since the TRAC does not account for the amplitudes of the signals, the coefficient of determination (CoD), 

R2 = 1 −

E

[(

ui − ũi

)2
]

Var[ui]
∈ ( − ∞, 1), (10)  

is introduced to capture potential amplitude errors. Here, E[.] and Var[.] denote the expectation and variance operators. 
Two metrics related to estimation of the amplitude range uncertainty are employed, namely, bias and coefficient of variation (CoV). 

The bias is defined as the expected value of the cumulative amplitude range ratios of the displacement signal, thus 

b=E

⎡

⎣Δui

Δũi

⎤

⎦, (11)  

where Δui ∈ Nm is a cumulative rainflow count of the measured displacements over one time-series, Δũi ∈ Nm is a cumulative rainflow 
count of the predicted displacements, and m is the number of rainflow count bins. The CoV is defined as 

cv =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Var

⎡

⎣Δui

Δ̃ui

⎤

⎦

√
√
√
√
√

b
, (12)  

which is the standard deviation of the cumulative amplitude range ratios for all amplitude bins normalized to the bias. 

4. Case study results 

Modal expansion results are presented for the two sensor configurations described in Subsec. 3.2 and the load cases described in 
Subsec. 3.3. The expansion setups are summarized in Table 2, and a subset of the modes constituting the expansion matrix, Φ, is 
illustrated in Fig. 2. 

4.1. Basic expansion setup 

The basic setup includes sensors located above the seawater level with simple access. As a result, the captured dynamic response is 
dominated by the first 2 global bending modes and the first torsion mode, so 5 dynamic modes in total are included in Φ(d). Even 
though 14 signals are obtained in this setup (allowing to include up to 14 modes in the expansion basis), the frequency content of the 
signals is dominated by the first 5 modes. Consequently, there is no benefit of including more modes. With this basic setup, the local 
brace modes cannot be captured, hence local brace vibrations are neglected in this setup. The static wind modes included in Φ(s) are 
established in accordance with (7). The 6 static wind modes represent wind load applied at the top of the tower, i.e., 3 translations and 
3 rotations. Since no sub-sea sensors are available in the basic setup, the static wave modes are not included in Φ. The expansion 
matrix, Φ, contains 11 modes in total in the basic setup. 

4.1.1. Operational results 
Displacement time-series obtained at leg level 50 and brace level 15 for wind speed U = 6 m/s are presented in Fig. 3. Here, both 

the measured signals and the expansion-based estimates are shown, and it can be seen that the displacements in the leg element are 
expanded well, while the expansion for the brace element yields an underestimation of the amplitudes. 

Table 2 
Overview of sensors and modes included in the expansion setups.  

Setup Sensor location Expansion basis 

Above water Below water Dynamic Static 

Global Local Wind Wave 

Basic Yes No Yes No Yes No 
Extended Yes Yes Yes Yes Yes Yes  
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The TRAC and CoV results averaged for all operational load cases are presented in Fig. 4. Evidently, high TRAC values are obtained 
for the leg elements; with the highest value being 1 (observed at level 50) and the lowest being 0.90 (observed at level 10, which is 
close to the mudline). A general trend of reduced TRAC is observed for the leg elements in the lower part of the substructure. 

A large variation in TRAC values is observed for the brace elements. The brace element at level 55—which is the one closest to the 
transition piece—obtains a TRAC value of 1, the brace element at the intermediate level 25 a TRAC value of 0.75, and the brace 
element at the lowest level (i.e., number 15) a TRAC value of 0.50. In accordance with the leg element observations, the brace element 
expansion decreases in quality for the lower part of the substructure. The CoV ranges between 0.05 and 0.15 for the leg elements and 
0.05 and 0.50 for the brace elements. Generally, the lowest uncertainty is observed in the top part of the jacket, while the largest 
uncertainty is observed in the lowest brace level 15. 

To investigate the effect of the operational variability on the expansion quality, the TRAC value as a function of wind speed is 
presented in Fig. 5 for the different leg and brace elements. The highest TRAC values are generally obtained for the lowest wind speed, 

Fig. 2. A subset of modes included in the expansion matrix, Φ. a) 2nd global bending mode included in Φ(d), b) static wind mode due to unit 
translation included in Φ(s), c) local brace mode included in Φ(d), and d) static wave (Ritz) mode included in Φ(R)(t). 

Fig. 3. Measured (blue) and expanded (red) displacements using the basic setup. u23, leg level 50 (top) and u47, brace level 15 (bottom). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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while a gradual quality reduction is observed between U = 4 m/s and U = 12 m/s. The expansion quality stabilizes for U > 12 m/s, 
which is the rated wind speed. The impact of the operational variability is further discussed in Sec. 4.3. 

4.1.2. Idling results 
The average TRAC and CoV values for the idling cases are presented in Fig. 6. Evidently, we obtain TRAC values between 0.4 and 

0.8 and CoV values between 0.2 and 0.7, which are lower than the corresponding results for the operational cases. The reduced 
expansion quality is governed by the increased wave contribution, which is captured poorly in the basic expansion setup. 

4.2. Extended expansion setup 

The extended setup includes additional displacement sensors located sub-sea and a wave radar sensor. As a result, Φ can, compared 
to the configuration used for the basic setup, be extended with 7 local brace modes included in Φ(d) and 1 static wave Ritz mode 
included in Φ(R)(t). Thus, the expansion matrix, Φ, contains 19 modes in the extended setup. 

Fig. 4. Averaged expansion results for the operational load cases using the basic setup.  

Fig. 5. TRAC values as functions of the wind speed obtained using the basic setup; a) leg levels and b) braces levels.  
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4.2.1. Operational load case 
The measured and expanded displacements at leg level 50 and brace level 15 for U = 6 m/s are presented in Fig. 7. The average 

TRAC and CoV values for all the leg and brace levels are presented in Fig. 8. TRAC values close to 1 are observed across all the leg levels 
and at brace levels 55 and 15. The lowest TRAC value of 0.85 is observed at brace level 25. The CoV values for all the leg elements and 
the brace elements at levels 55 and 15 are below 0.05, while the CoV value is 0.15 for the brace element at level 25. 

The TRAC value as a function of wind speed is presented in Fig. 9 for the different leg and brace elements. Evidently, TRAC values of 
1 are obtained for all wind speeds at every level except brace level 25. Here, we observe an average TRAC value of 0.95 below rated 
wind speed and an average TRAC value of 0.80 above rated wind speed. This variation is further discussed in Subsec. 5.1. 

4.2.2. Idling load cases 
The average TRAC and CoV values for the idling cases are presented in Fig. 10. TRAC values close to 1 are observed across all the leg 

and brace levels, and the CoV values are below 0.05 for the leg elements and 0.10 for the brace elements. 

Fig. 6. Averaged expansion results for the idling load cases using the basic setup.  

Fig. 7. Measured (blue) and expanded (red) displacements using the extended setup. u23, leg level 50 (top) and u47, brace level 15 (bottom). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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4.3. Summary of the results 

The expansion quality gained by including vibration sensors below the water level and a wave radar sensor is summarized in this 
subsection. The operational and idling results are discussed in Subsec. 4.3.1 and Subsec. 4.3.2, respectively. 

The averaged expansion quality indicators for the basic and extended setups are presented in Table 3. The expansion quality across 
the considered load cases and virtual sensor locations is increased after implementing the extended setup. In particular, the average 
TRAC value is increased from 0.69 to 0.99, while the average CoV value is reduced from 0.26 to 0.05. The CoD is increased from − 3.70 
to 0.99, while the bias is reduced from 1.15 to 1.03. 

4.3.1. Operational results 
The expansion results, in terms of TRAC and CoV values, for the operational cases are presented in Figs. 11 and 12 for comparison 

purposes. Implementation of the extended expansion setup yields an increase in average TRAC value for all leg elements from 0.95 to 1, 
while the corresponding CoV value is reduced from 0.10 to 0.05. For the brace elements, the average TRAC value is increased from 0.70 

Fig. 8. Averaged expansion results for the operational load cases using the extended setup.  

Fig. 9. TRAC values as functions of the wind speed obtained using the extended setup; a) leg levels and b) braces levels.  
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to 0.95, and the CoV value is reduced from 0.25 to 0.05. 

4.3.2. Idling results 
The expansion improvement obtained by implementing the extended setup in the idling cases is indicated in Figs. 13 and 14. We 

observe an increase in average TRAC value for all leg elements from 0.50 to 1, while the corresponding CoV value is reduced from 0.30 

Fig. 10. Averaged expansion results for the idling load cases using the extended setup.  

Table 3 
Averaged quality indicators for the basic and extended expansion setups.  

Setup Load case TRAC (T )  CoD (R2)  Bias (b) CoV (cv)  

Legs Braces Legs Braces Legs Braces Legs Braces 

Basic Operational 0.95 0.70 0.90 0.75 1.05 2.00 0.10 0.25 
Idling 0.50 0.60 − 9.50 − 7.00 0.80 0.75 0.30 0.40 

Extended Operational 1.00 0.95 1.00 0.95 1.05 1.05 0.05 0 05 
Idling 1.00 1.00 1.00 1.00 1.00 1.00 0.05 0.05  

Fig. 11. TRAC values obtained using the basic (blue) and extended (orange) setup for the operational load cases. Legs (left) and braces (right). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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to 0.05. For the brace elements, the average TRAC value is increased from 0.60 to 1, and the CoV value is reduced from 0.40 to 0.05. 

5. Discussion 

This section offers a discussion on the presented results and some practical aspects of the implemented modal expansion method. 
The effect of operational variability on the expansion quality is discussed in Subsec. 5.1, followed by a discussion in Subsec. 5.2 on the 
importance of including higher-order dynamics and wave loading information in the expansion. An optimal sensor placement strategy 
is discussed in Subsec. 5.3, and the section closes by addressing the limitations and practical feasibility of modal expansion for offshore 
wind application in Subsec. 5.4. 

5.1. Effect of operational variability on the expansion quality 

The time-variant and non-linear effects in the substructure are negligible when the full system (wind turbine and substructure) 
operates under operational conditions. However, the wind turbine system exhibits time-variant and non-linear behaviour, which 
affects its dynamic properties. The non-linearities are promoted by, among other factors, large deflections of the blades and potential 
contact problems in the rotor, while the time-variant effects stem from the controller and environmental (temperature, humidity, etc.) 

Fig. 12. CoV values obtained using the basic (blue) and extended (orange) setup for the operational load cases. Legs (left) and braces (right). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 13. TRAC values obtained using basic (blue) and extended (orange) setup for the idling load cases. Legs (left) and braces (right). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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variation. As a result, the modal properties of the combined system (including the substructure mode shapes used in the expansion, 
Φ(d)), are time-variant, thus a reduced expansion quality is expected when, as done in the present study, operating with an LTI basis. 
The observations reported below support this proposition. 

A systematic reduction in the expansion quality is observed in Figs. 5 and 9 for higher wind speeds in operational cases. To 
investigate this effect, expansion results in the brace element at level 25 for two wind-only cases are presented in Fig. 15. The first case 
considers the turbine during operation with the control system activated and the second case an idling setting with the control system 
being inactive. Evidently, when the control system is active, the TRAC value decreases monotonically as the wind speed increases up to 
the rated wind speed, while the TRAC value remains more or less constant when the control system is inactive. As the controller 
parameters alter to optimize the power output, the modal parameters become time-variant. This time-variance cannot be captured in 
the LTI model, hence resulting in the noted expansion quality reduction for the case with an active controller. 

5.2. On the higher-order dynamics and wave loading 

The extended setup adds two additional sensor types (sub-sea vibration sensors and a wave sensor). The added value of each sensor 
type varies for different structures and operational conditions. In this subsection, the value of including the two sensor types separately 
is discussed in the context of typical offshore wind substructures and operational conditions. 

A wave sensor improves the expansion quality for structures whose response is driven by wave loading. In the context of offshore 
wind applications, such structures are 1) the ones carrying old turbines generating low wind loading compared to wave loading, 2) all 
turbines in idling cases, where wind forces are significantly reduced compared to operational cases, and 3) monopile structures, which 
attract more wave loading compared to, e.g., jacket substructures. To quantify the improvement in the expansion quality due to wave 
radars only, two additional sensor setups are defined. The first one corresponds to the basic setup with a wave radar, while the second 
one is the extended setup with the wave radar removed. For the sake of brevity, we present the results for the idling cases as these are 
wave-driven, and hence the effect of the wave radar is the most profound, although the same (qualitative-wise) conclusion holds for the 
operational cases. Results attained using the four setups (including the basic and the extended one) are presented in Figs. 16 and 17 for 
the TRAC and CoV values, respectively. The TRAC values are improved for both the leg and brace elements when the wave radar is 

Fig. 14. Uncertainties obtained using the basic (blue) and extended (orange) setup for the idling load cases. Legs (left) and braces (right). levels. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 15. TRAC value as a function of wind speed obtained for an inactive and active control system.  
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included, as indicated in Fig. 16. The largest improvement is observed for the basic setup for wind speed U = 3 m/s, where the TRAC 
value is increased from 0.3 to 0.95 for the brace elements by including only the wave radar. The improvement in the extended setup is 
less profound; with the TRAC value increasing from 0.65 to 1. A similar trend—namely, improvement of the expansion quality when 
the wave radar is included—is displayed by the CoV values presented in Fig. 17. 

The sub-sea vibration sensors improve the expansion quality for structures whose response is driven by high-frequency dynamic 
response. For a typical offshore wind turbine under power production conditions, the turbulent wind loading results in dynamic 
response of the blades, which is further transferred to the substructure due to blade-brace coupling [39]. Consequently, local brace 
modes are activated and therefore the expansion requires sub-sea sensors to accurately capture these vibrations. 

5.3. Optimal sensor placement 

The location and number of physical sensors affect the expansion quality. In general, increasing the number of installed sensors 
improves the expansion quality, as exemplified for the basic and extended sensor setup in Subsec. 4.3. Due to practical and economic 
constraints, a limited number of sensors can be installed in real-life applications, which necessitates a careful selection of the sensor 
locations. The modal expansion method delivers optimal (in an ℓ2-norm sense) modal displacements, which are subsequently used to 
expand for virtual sensing. The precision of the virtual sensing estimate depends on the linear dependence of the mode shapes in the 

Fig. 16. TRAC values obtained using modified (with/without Ritz modes) basic and extended setups for the idling load cases.  

Fig. 17. CoV values obtained using modified (with/without Ritz modes) basic and extended setups for the idling load cases.  
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expansion basis matrix [40]. The linear dependence can be reduced to increase the expansion quality by placing sensors according to, 
e.g., the effective independence (EI) method [41]. In this method, the optimal sensor placement is derived by maximizing some 
suitable norm of the Fisher information matrix, effectively minimizing linear dependence of the available mode shapes. The merit of 
placing sensors using the EI method in the context of modal expansion-based virtual sensing has been verified by Andersen et al. [40]. 

In this study, the sensor distribution is selected based on the EI method under the assumptions that; 1) all locations are accessible, 2) 
the cost of installation is immaterial, and 3) one level of bracing can be monitored as a sub-sea location. These engineering judgement 
criteria are chosen to increase the robustness of the sensor setup with respect to potential sensor failure during operation. Conse-
quently, brace level 15 is chosen, as the braces at this level are the longest and hence the most prone to excessive vibrations. Given 
other brace levels should be monitored instead, the expansion quality would be reduced. Recall that the chosen sensor setup and mode 
shapes in the expansion basis yield a high linear correlation between the dynamic modes (first bending) and the static wind modes 
(lateral deflection). Despite the large linear correlation between the two mode shapes, their strain energy differs [12]. Moreover, a 
large correlation is not problematic, as a full linear correlation resulting in a singular expansion matrix, and hence poor expansion, is 
not possible. 

5.4. Limitations and practical feasibility 

This paper investigates the theoretical feasibility of modal expansion based on data generated from a numerical model, without 
taking into account any of the associated practical challenges and issues. In this subsection, a brief discussion on the limitations and a 
few practical challenges related to modal expansion is provided. 

In this study, virtual sensing is applied based on displacements, according to Eqs. (4) and (5). In practice, displacements are rarely 
measured directly. For a typical offshore wind application, accelerations are preferred due to a better signal-to-noise ratio [12]. The 
accelerations are then double-integrated with respect to time to obtain a high-frequency part of the displacement response. The issue 
with this approach is that the low-frequency (quasi-static) content of the response is lost. Hence, it has to be augmented with infor-
mation from an additional sensor type, which is able to capture the quasi-static response, e.g., a strain gauge, inclinometer, or GPS 
sensor. Consequently, sensor fusion techniques [42] have to be applied to combine different types of sensors to reconstruct the 
displacement signals. Alternatively, the displacements can be obtained directly from acceleration signals by applying the Walsh 
Transform as proven in the context of a seismic application [43]. In the present study, the displacements captured in the physical 
sensors are directly obtained from the numerical model, hence circumventing the above-mentioned issues. 

The wave-induced displacements are expanded based on the Ritz vectors, as described in Subsec. 2.2.3. The Ritz vectors are derived 
based on the stiffness matrix and wave forces, see Eq. (8). In practice, the wave forces have to be estimated based on information from 
in-situ sensors, e.g., wave radars [44] or pressure transducers [45]. These sensors can be quite expensive and instrumenting each wind 
turbine in a park would require a substantial investment. Some researchers suggest instrumenting only a small number of structures, 
the so-called fleet leaders, and expanding/correlating this information to the remaining, lightly instrumented structures [46]. 
Moreover, even when a wave radar is directly installed on a structure, reconstructing wave forces is challenging because of the waves’ 
irregular nature, their high frequency content [47], and the wave-structure interaction [48]. In the present study, the wave forces are 
obtained directly from the numerical model using a generic theoretical framework as described in Subsec. 2.2.3, hence neglecting a 
number of potential practical issues. Consequently, further research is required to investigate the practical application of wave 
reconstruction in the context of modal expansion. 

6. Conclusions 

This paper investigates the feasibility of modal expansion-based virtual sensing in the context of offshore wind jacket substructures. 
Two different expansion setups, namely, a basic and an extended one, are employed. It is evidenced how the basic setup, which only 
includes sensors above the seawater level, fails to deliver high-quality expansion results during idling conditions, where the vibrations 
are governed solely by the wave loading. Additionally, low expansion quality is observed for the brace elements during both idling and 
operational conditions. The expansion quality in these cases is low because the modes included in the basic setup do not adequately 
represent the wave-induced vibrations or the local brace modes. 

To alleviate the noted shortcomings, the extended expansion setup is suggested in this paper. The setup includes sub-sea sensors 
and a wave radar sensor, which allow for extraction of, respectively, local sub-sea brace vibration modes and static wave modes. 
Inclusion of these modes in the expansion improves the expansion quality significantly. 

For both setups, a systematic reduction in expansion quality is observed for the brace elements when the wind speed increases. It is 
contended that this decrease arises because the control system renders the structural behaviour non-linear and time-variant, which is 
not accounted for in the employed expansion method. This will be addressed explicitly in a separate publication by the authors. 
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Abstract

The present paper explores the effect of environmental and operational variability (EOV) on the modal parameters of offshore wind

structures. A non-linear numerical model of a representative offshore wind turbine supported by a jacket substructure is established

and analyzed under the exposure of EOV. In particular, the study investigates time-periodic effects, non-classical aerodynamic

damping, and operational variability imposed by the turbine controller. The modal parameters of different operational states are

computed using linearized, time-periodic system formulations, and the variability in the modal parameters is discussed. The results

illustrate the variation of the extracted modal parameters, which is found to be governed by two main sources; namely, 1) controller

variability and 2) interaction of system modes. The former explains the variation in modes that are highly affected by modifications

of the controller parameters. The latter explains the variation in the modes that become closely spaced and hence prone to mutual

interaction.

Keywords: wind turbines, jacket substructures, environmental and operational variability, modal parameters, mode interaction,

time-periodic systems, Coleman transformation

1. Introduction

Modal parameters, i.e., eigenfrequencies, damping ratios, and mode shapes, compose vital input to a multitude of

offshore wind applications. The modal parameters are used extensively in, i.a., structural health monitoring [1, 2, 3],

model updating [4, 5, 6], fatigue monitoring [7, 8, 9], and control [10, 11, 12], which, obviously, calls for sufficiently

accurate and precise estimates of these parameters. However, obtaining such estimates is not a trivial task, as offshore

wind turbines are subjected to environmental and operational variability (EOV) [13, 14, 15] due to varying wind

speed. EOV results in, i.a., variation of the control system’s parameters, e.g., the pitch angle and angular velocity

of the rotor. Consequently, the stiffness and damping of offshore wind turbine systems are time-variant, yielding

time-variant modal parameters as observed in numerous studies [16, 14, 17, 18].

In many practical applications, such as those presented in [19, 20, 21, 22, 6], the modal parameters are inferred

through stochastic system identification with a linear, time-invariant model (LTI) due to the conceptual simplicity and

ease of numerical implementation. Consequently, the time-variant nature of the modal parameters is neglected, which

inherently introduces errors that may or may not be of significance in the subsequent applications. In the research

community, this has, at least to some degree, been addressed by quantifying the variation in modal parameters for

onshore wind turbines [23, 24, 25]; considering eigenfrequency and damping variability [26, 27, 28] and mode shape

∗Corresponding author. Ramboll Energy, Esbjerg, Denmark
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variability related to subparts of onshore wind turbines, e.g., blades [29], drive-trains [30], and tripod substructures

[14]. However, to the authors’ knowledge, there exist no studies that investigate the effect of EOV on the modal

parameters of offshore-based substructures. This particular application differs from the onshore-based configuration

due to the inherent coupling between the wind turbines and their support structures [31].

In the present paper, we investigate the effect of different sources of EOV on the modal parameters of offshore

wind turbine substructures. Specifically, the study is conducted on the basis of a non-linear numerical model of a

representative offshore wind turbine with a jacket foundation. The model is exposed to EOV representative for the

power production and idling states of the wind turbine, and we confine the study such that the environmental variability

is assumed governed by the wind speed, while the operational variability is assumed governed by the controller. The

novel contributions of this paper include the investigation of 1) rotor-induced time-periodic effects, 2) complex mode

shapes stemming from non-classical aerodynamic damping, and 3) environmental variability due to varying wind

speed and operational variability due to varying pitch angle.

The remainder of the paper is organized as follows. In Sec. 2, we present some governing wind turbine dynamics

and outline the theory related to the numerical modelling of an integrated wind turbine, including linearization of the

system. Sec. 3 establishes the numerical model, and Sec. 4 presents the appertaining EOV results. The results are

discussed in Sec. 5, and the paper closes with some concluding remarks in Sec. 6.

2. Theory

The dynamics of wind turbine systems are non-linear and time-variant. The non-linear effects stem from the

controller, multi-physics interaction, geometric non-linearity, and soil non-linearity, while the time-variant effects are

related to the controller, structural degradation (corrosion, scour), and environmental variability.

Consider a non-linear and time-variant system with input fs(t) ∈ Rr and output ys(t) ∈ Rm at time t ∈ R≥0. Then,

the system’s dynamics can be described by the first-order state-space formulation

ẋs(t) = G (xs(t), fs(t), t) , (1a)

ys(t) = H (xs(t), fs(t), t) , (1b)

where xs(t) ∈ Rn is the state vector with n ∈ 2N, while G : Rn × Rr × R≥0 → Rn andH : Rn × Rr × R≥0 → Rm are

non-linear and time-variant functions. Generally, different types of stable and non-stable solutions exist for system

(1), but in the present study we confine the solution set to the nominal, periodic steady-state trajectory defined by

(x0(t), f0(t), y0(t)). It is assumed in the subsequent developments that G andH are well-behaved in a neighborhood of

(x0(t), f0(t), y0(t)).

2.1. Linear, time-periodic system

The non-linear system (1) can be linearized from the outset of a small perturbation from the trajectory (x0(t), f0(t), y0(t)).

Define the perturbations x(t) , xs(t)− x0(t), f(t) , fs(t)− f0(t), and y(t) , ys(t)− y0(t), then system (1) can be written

as

ẋ0(t) + ẋ(t) = G (x0(t) + x(t), f0(t) + f(t), t) , (2a)

y0(t) + y(t) = H (x0(t) + x(t), f0(t) + f(t), t) . (2b)

Taylor series expansions of (2) about the nominal trajectory yield

ẋ(t) =

[
∂G
∂x

]

0

x(t) +

[
∂G
∂f

]

0

f(t) + H.O.T., (3a)

y(t) =

[
∂H
∂x

]

0

x(t) +

[
∂H
∂f

]

0

f(t) + H.O.T., (3b)

where [∂G/∂x]0 ∈ Rn×n, [∂G/∂f]0 ∈ Rn×r ,
[
∂H/∂x

]
0 ∈ Rm×n, and

[
∂H/∂f

]
0 ∈ Rm×r are the Jacobians evaluated at the

nominal trajectory.
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With A(t) , [∂G/∂x]0, B(t) , [∂G/∂f]0, P(t) , [∂H/∂x
]
0, and Q(t) , [∂H/∂f

]
0, the Jacobian linearization of

(3) is

ẋ(t) = A(t)x(t) + B(t)f(t), (4a)

y(t) = P(t)x(t) +Q(t)f(t), (4b)

which constitutes a linear, time-periodic approximation of the non-linear, time-variant system (1). In system (4), A(t)

is the state matrix, B(t) the input matrix, P(t) the output matrix, and Q(t) the transmission matrix.

2.2. Linear, time-invariant system

Formulation (4) contains time-variant quantities, which render both the eigenvectors and eigenvalues time-variant.

Assuming the wind turbine rotor is isotropic, the Coleman transformation [32] can be applied to approximate system

(4) by a linear, time-invariant system with state and output matrices [29, 33]

AC = T−1(t)A(t)T(t) − T−1(t)Ṫ(t), (5a)

PC = T−1(t)P(t)T(t), (5b)

where T(t) and Ṫ(t) are the Coleman transformation matrix and its time-derivative, respectively. For a three-bladed

isotropic rotor and with ci , cosψi and si , sinψi, where ψi = Ωt + 2π( j − 1)/3 is the mean azimuth angle of blade

number j = 1, 2, 3, Ω is rotation speed, T(t) is given by [29]

T(t) =



INb
INb

c1 INb
s1 0

INb
INb

c2 INb
s2 0

INb
INb

c3 INb
s3 0

0 0 0 INs


, (6)

where INb
and INs

are identity matrices of sizes Nb and Ns, with Nb and Ns being the number of blade and inertial

degrees-of-freedom (dof). The dof are defined in Sec. 3. The framework can easily be extended to include anisotropic

rotors by replacing the Coleman transformation with the Lyapunov-Floquet transformation [34].

2.2.1. Structural properties

The state matrix, AC, of the LTI system (5) is given by

AC =

[
0 I

−M−1K −M−1C

]
, (7)

where M, C, K ∈ R n
2
× n

2 are the mass, damping, and stiffness matrices. The stiffness matrix includes the centrifugal

and aerodynamic terms in addition to the elastic structural stiffness terms. The damping matrix includes gyroscopic

and aerodynamic terms in addition to the structural damping terms. The structural damping is assumed classically

distributed, i.e., M−1K and M−1C commute, as specified by Caughey [35]. The centrifugal and gyroscopic terms

originate from the revolving part of the turbine and the aeroelastic interaction.

2.2.2. Modal properties

The modal parameters of the LTI system with the state and output matrices given in (5) are computed by solving

the eigenvalue problem

(AC − λiI)φi = 0, (8)

where λi ∈ C and φi ∈ Cn are the eigenvalue and eigenvector of the ith mode. The mode shape, µi can be derived as

µi = PCφi. Assuming classical damping, the undamped eigenfrequency, ωi, and the associated modal damping ratio,

ζi, are computed as ωi = |λi| and ζi = −ℜ(λi)/|λi|, whereℜ denotes the real part.

3
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2.2.3. Closely spaced modes

The EOV may render a subset of modes closely spaced. In this instance, the assumption of classical damping

is invalid and the notion of damping ratios does no longer strictly apply. Furthermore, closely spaced modes have

wobbly eigenvectors and mode shapes, which can be appreciated from the developments by Nelson [36], who has

shown that the mode shape sensitivities of two closely spaced modes with respect to a structural parameter is inversely

proportional to the difference between the corresponding eigenvalues. From this outset, it is evident that when two

eigenvalues approach each other, the sensitivities of the two mode shapes approach infinity. In the limit, the associated

mode shapes do, as noted by Brincker [37], no longer exist as individual vectors. Instead, they span a subspace from

which linear combinations can be extracted.

3. Numerical model

The numerical analysis in Sec. 4 is based on the wind turbine and jacket substructure seen in Fig. 1a. The turbine

has three blades and the rated power of the turbine is 5 MW. The tower, which has a height of 75 m, comprises

cylindrical thin-walled elements and connecting flanges. The jacket has four legs and three brace bays, totalling

a height of 50 m, and the jacket substructure is connected with the soil through 30 m grouted piles. The soil is

characterised as clay, and the water depth is approximately 40 m.

Figure 1: Wind turbine and substructure model.

The numerical model consists of n
2
= 51 dof, which are gathered in

u =
[
uT

N
uT

B
uT

F

]T ∈ R n
2 , (9)

4
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Figure 2: Integrated wind turbine mode shapes of the reference model (blades and piles not shown). The first global bending modes (2,3), the first

torsional mode (4), and the second bending modes (11,13) are plotted. Black dashed line - undeformed structure, magenta full line - deformed

structure.

where uN contains the nacelle dof, uB the blade dof, and uF the foundation substructure (including the tower) dof, see

Fig. 1 for dof overview. The nacelle model is discretized with the nR = 3 dof

uN =
[
θy θt θr

]T ∈ RnR , (10)

which are defined in the inertial (time-invariant) frame of reference with θy being the yaw angle, θt the tilt angle, and

θr the rotor azimuth angle. Each blade is modally truncated to nb = 4 modes, hence totalling nB = 3nb = 12 blade dof

for the three-bladed rotor. Each blade is represented by two flap-wise and two edge-wise modes. The blade dof, as

indicated in Fig. 1c, are defined in the rotating (time-variant) frame of reference,

uB =
[
u1

1
u1

2
u1

3
· · · u

j

1
u

j

2
u

j

3

]T ∈ RnB , (11)

where u
j

i
indicates the jth dof of ith blade. The substructure, which is condensed into a superelement, is discretized

with nF = 36 dof,

uF =
[
uT

G
uT

CB

]T ∈ RnF , (12)

which are split between nG = 6 dof related to the static, Guyan partition of the superelement [38] and nCB = 30

dof related to the dynamic, Craig-Bampton partition of the superelement [39]. The superelement reduction of the

substructure is described in Subsec. 3.3.

3.1. Substructure model

The jacket substructure is modelled using Ramboll’s software ROSAP (Ramboll Offshore Structural Analysis

Package), version 53 [40]. ROSAP is a general-purpose finite element package intended for both static and dynamic

analysis of offshore structures. The jacket substructure is modelled with 3D Bernoulli-Euler beam elements [41],

including the added mass of the surrounding water. The soil-structure interaction is modelled using a Winkler model

[41] in which the steel pile elements are additionally supported by linearized springs representing the surrounding

soil. The soil springs are linearized according to the API method [42]. The stiffness of the joints are modified to

account for additional flexibility of the tubular joints according to Buitrago et al. [43]. The transition piece (TP) is

modelled in a simplistic manner by a representative 3D Bernoulli-Euler beam system. The tower is modelled using 3D

Bernoulli-Euler beam elements, including added masses representing internal secondary steel elements and flanges.

5
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Figure 3: Controller properties: the pitch angle and rotor speed as functions of the wind speed.

3.2. Turbine model

The wind turbine model (rotor and nacelle) is implemented in LACflex aeroelastic code [44]. The blades are

represented by few modal-based dof, while the nacelle is represented by physical (rotational) dof. The foundation

is represented by a Craig-Bampton superelement [39]. The cone angle (out of rotor plane deflection of the blades)

and tilt angle (angle between a shaft axis and the horizontal plane) are set to zero, and pitch and mass imbalances are

omitted to comply with the isotropic rotor assumption in the Coleman transformation, as elaborated in Sec. 2.2.

A collective pitch control system (all blades controlled in the same way) is implemented. The control system is

designed to balance the power output and wind forces acting on the structure. The target pitch angle and rotor speed as

functions of the wind speed are presented in Fig. 3. As the power production state is considered in this study, region

I (below the cut-in speed) is neglected. In region II, between the cut-in wind speed, Uci = 3 m/s, and the rated wind

speed, Ur = 11 m/s, the rotor speed increases up to the rated rotor speed while the pitch angle is constant. In region

III, above the rated wind speed and below the cut-out wind speed, Uco = 25 m/s, the rotor speed is stabilized to keep

the power output constant and minimize the wind force action. This is achieved by increasing the pitch angle from 0

deg to 28 deg. Above the cut-out wind speed, the turbine is assumed to switch into the parked state where production

of power is stopped and the wind forces are significantly reduced compared to the production state.

3.3. Substructure and turbine coupling

The substructure is reduced into a Craig-Bampton superelement with 36 dof of which 6 are attachment dof and

30 internal dynamic dof. The substructure superelement is coupled to the turbine model in the LACflex aeroelastic

code in accordance with the coupling procedures documented by Seidel [45] and Hald et al. [46]. The superelement

representation of the substructure is linear, thereby neglecting any non-linear effects in the foundation, e.g., soil-

structure interaction, wave-structure interaction, and plasticity.

4. Analysis and results

In this section, the analysis and key results illustrating the effect of EOV on modal parameters of offshore wind

support structures are presented. In the analysis, the eigenvalue problem for different model configurations is solved.

The corresponding modal parameters, in the form of eigenfrequencies, mode shapes, and damping ratios1, are ex-

tracted and analyzed. The mode shapes are compared by use of the modal assurance criterion (MAC) [47] computed

on the basis of the subset of dof related to the jacket substructure.

In the analysis, we consider the following three model configurations:

1Recall that a damping ratio is a notion for classically damped modes. In the present analysis, both classically and non-classically damped

modes are explored. In the non-classical setting, we merely use the “damping ratios” as qualitative measures to indicate the relative influence of

damping in each mode and to investigate the environmental variability of damping.
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Figure 4: Undamped eigenfrequencies of the reference model.

• Reference (R) – the undamped eigenvalue problem is solved for a standing-still turbine, i.e., without taking into

account any rotating part of the turbine nor damping. The pitch angle of the blades is 0 deg.

• Undamped operational (UO) – linearized state-space matrices of the system are extracted for constant wind

speed and steady-state conditions; the Coleman transformation is performed to include the effect of varying

azimuth; the undamped eigenvalue problem is solved—by setting C = 0 in (8)—and the corresponding modal

parameters are extracted.

• Damped operational (DO) – the same procedure as for the UO configuration is followed, with the only exception

being that the damping contribution is included, i.e., the damped eigenvalue problem (8) is solved.

The section is organized as follows. The reference (R) results are established in Subsec. 4.1. Subsequently,

the effect of EOV is investigated, with Subsec. 4.2 addressing the operational variability and 4.3 the environmental

variability. To confine the study, we focus on four sources of EOV, namely, the azimuth angle, pitch angle, damping,

and wind speed.

4.1. Reference results

The modal parameters of the turbine in the reference configuration (R) are considered in this subsection. An

azimuth angle of 0 deg is used, corresponding to the first blade pointing upward. The effect of the aeroelastic coupling,

rotating machinery, and damping is neglected.

The selected reference modal parameters (mode shapes and undamped frequencies) are presented in Fig. 2 and 4.

The first fifteen undamped eigenfrequencies of the reference system are presented in Fig. 4. The modes of interest

are indicated with color, while the remaining modes are indicated in grey. The first bending modes, Fig. 2a (mode 2)

and Fig. 2b (mode 3), are dominated by the bending stiffness of the tower with a maximum deflection at the tower

top. The eigenfrequency of these modes is approximately 0.31 Hz for both directions. The torsional mode (mode 4),

which has an eigenfrequency of 0.54 Hz, is driven by rotation around the vertical axis of the tower. The rotation can

clearly be noticed in the top part of the jacket substructure in Fig. 2c. Note, also, the lateral displacements of the

tower, which stem from the rotor-nacelle-assembly eccentricity with respect to the tower axis. The second bending

modes, Fig. 2d (mode 11) and Fig. 2e (mode 13), are dominated by lateral displacement around the TP level. The

eigenfrequencies in the fore-aft and side-side directions are 1.68 Hz and 1.64 Hz, respectively. Note that the order of

the fore-aft and side-side is shifted compared to the first bending mode set.

The correlation between mode shapes 2-15 of the turbine is presented in the auto-MAC matrix in Fig. 5. The

matrix presents MAC values of different modes from the reference model, MAC(i, j), where i and j are modes of the

reference model, with mode 1 (rigid body rotor revolution) being neglected. The diagonal values of the matrix are

equal to one, as they indicate the correlation of each mode with itself, while the off-diagonal values measure the linear

correlation between mode shapes of different modes. The first bending modes (mode 2 and 3) are close to orthogonal

7



D. Augustyn et al. 8

Figure 5: Auto-MAC of the reference model.
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Figure 6: Eigenfrequencies as functions of the pitch angle for the reference model.

to each other, hence, as expected, the MAC value is low, MAC(2, 3) = 0.05. Some linear correlation between the first

bending modes and intermediate modes can be observed, e.g., MAC(2, 6) = 0.93, and between the first and second

bending modes, e.g, MAC(2, 13)=0.69. The first torsional mode shape (mode 4) exhibits some correlation with the

blade-dominated mode shapes (modes 7 and 9) with, e.g., MAC(4, 7)=0.95. The mode shapes dominated by the lateral

deflection around the TP elevation, namely, the second bending modes (mode 11 and 13), are highly correlated with

a number of other modes. In particular, the fore-aft second bending mode (mode 13) exhibits high correlation with

modes 12 and 10, MAC(13, 12) = 0.98 and MAC(13, 10) = 0.98. The high correlation between different mode shapes

indicates interaction between the turbine and the substructure.

4.2. Operational variability

The operational variability is investigated by extracting modal parameters for the system with varying azimuth

angle and pitch angle. Subsec. 4.2.1 addresses the influence of the azimuth angle variation, while Subsec. 4.2.1

focuses on the pitch angle.

4.2.1. Pitch angle

Undamped modal parameters of the parked turbine are computed for varying pitch angle. The pitch angle, α,

varies in the range α ∈ [0, 90] deg, where α = 90 deg indicates that the blades are in a parked position. The results

are compared to the reference solution, where α = 0 deg is considered. Effectively, the only modification between the

reference model and the model considered here is the pitch angle of the blades.

The undamped eigenfrequencies as functions of the pitch angle are presented in Fig. 6, where the selected modes

of interest are indicated with a color, while the remainder of the first fifteen modes are indicated in grey. The first

and second bending modes (modes 2, 3, 11, and 13) exhibit low variation in frequency (<2%). The torsional mode

(mode 4) is affected more severely by the pitch angle variation, with a 20% increase in eigenfrequency for α > 30 deg.

This is caused by the increased in-plane rotor bending stiffness of the blades for higher pitch angle. Specifically, the

difference between the in-plane rotor blade stiffness changes from flap-wise (α = 0 deg) to edge-wise (α = 90 deg).

The latter stiffness is always higher, hence the increase in the torsional frequency.

The MAC values between the reference model with α = 0 and α ∈ [0, 90] deg are shown in Fig. 7. The MAC

values for the first bending modes (mode 2 and 3) vary significantly, with a monotonic decrease as the pitch angle

increases. This indicates that the orthogonality of the mode shapes is significantly reduced for large pitch angles. The

MAC value for the torsional mode shape (mode 4) is generally high within the analyzed pitch angle range; except

for values close to α = 84 deg. For this specific pitch angle, the MAC is close to zero, which is due to the increased

interaction with mode 5.
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Figure 7: MAC values as functions of the pitch angle.
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Figure 8: Eigenfrequencies as functions of the pitch angle.
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Figure 9: Normalized eigenfrequencies as functions of the azimuth angle.

To further investigate the noted interaction phenomenon, the eigenfrequencies of modes 4 and closely spaced

mode (mode 5) are presented in the left subfigure of Fig. 8. Initially, for α = 0 deg, the two modes are clearly

separated with an eigenfrequency difference of 15% ( f4 = 0.54 Hz and f5 = 0.62 Hz). The modes are, however,

becoming closely spaced for α = 84 deg, where the eigenfrequency difference is reduced to 1%. When two modes

become closely spaced in terms of their eigenvalues, the mode shapes start to interact with each other and the physical

notion of the individual mode shapes diminishes as elaborated in Subsec. 2.2.3. Instead, it is the subspace spanned

by the mode shapes of the closely spaced modes that bears physical significance, and in the case with our two closely

spaced modes, we can always make them comply with the orthogonality conditions that prevail for classically damped

modes. In order to convey the effect of the mode interaction phenomenon, we have, however, chosen not to do this,

and therefore the extensive MAC value drop is observed at α = 0.84. For α > 0.84, the frequencies become further

separated and, as a result, the MAC value for mode 4 returns to a value close to 1. The same phenomenon can be

observed for the second bending mode in the fore-aft direction (mode 13), which becomes closely spaced with mode

12 at α = 84 deg, as indicated in Fig. 8. Consequently, the MAC value for mode 13 is reduced substantially around

that pitch angle. Qualitatively, the same phenomenon elucidates the large variation in the MAC value for mode 11.

As indicated in Fig. 8, mode 11 interacts with mode 12 for α < 20 deg and modes 9 and 10 for α > 35 deg.

4.2.2. Azimuth angle

To investigate the variation in modal parameters due to changes in the azimuth angle, modal parameters of the

damped operational (DO) model are extracted for two full rotor revolutions; with 180 realizations per rotor revolution

such that a total of 360 sets of modal parameters are attained. The model is operating in steady state at the rated wind

speed, Ur = 11 m/s and the modal parameters are linearized for this wind speed.

The variations in damped eigenfrequencies due to a varying azimuth angle are presented in Fig. 9. The eigenfre-

quencies are normalized to those obtained for an azimuth angle of θr = 0 deg, which corresponds to the first blade

pointing upwards. The variations in eigenfrequencies are due to the varying mass distribution of the rotor (the posi-

tion of the blades). The varying mass results in 0.7% eigenfrequency variation in the torsional mode (mode 4) and

negligible eigenfrequency variation (< 0.03%) in the remaining modes. The eigenfrequency variation of the torsional

mode exhibits 120 deg periodicity, which is caused by the fact that the analyzed turbine has an isotropic rotor with

three blades. Moreover, the minimum eigenfrequency within each 120 deg period is observed for the azimuth angle

(a − 1)120 + 45 deg, where a ∈ N, while the maximum eigenfrequency is observed for (a − 1)120 + 90 deg. These

distinct peaks are located in positions where the mass distribution of the rotor leads to extreme moments of inertia.

The MAC values between the damped mode shapes attained for θr ∈ [0, 720] and those for θr = 0 deg are

computed. The MAC variations due to a varying azimuth angle are presented in Fig. 10. Evidently, the MAC

variations are negligible for the considered modes, albeit the 120 deg periodicity observed for the eigenfrequencies is

also present here.

The results presented in 9 and Fig. 10 imply that the variation of the modal parameters due to varying azimuth

angle is negligible when the turbine operates in steady state at the rated wind speed. Similar steady-state analyses at

other wind speeds show the same qualitative tendency.
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Figure 10: MAC values as functions of the azimuth angle.
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Figure 11: Mode shape (mode 2) extracted for 3 models (reference - magenta, undamped operational - green, and damped operational - black);

linearized for a) 3 m/s and b) 11 m/s.

4.3. Environmental variability

The study of the impact of environmental variability on the modal parameters is confined to address the effect of

two specific parameters, namely, damping and wind speed.

4.3.1. Damping

Given the damping is classical [35], the damped mode shapes are real-valued and identical to those associated

with the undamped system. The damping in any wind turbine system is non-classically distributed due to, e.g., the

aerodynamic contribution. Thus, the mode shapes are complex-valued. However, in many applications, the effect of

damping is neglected and undamped mode shapes are used. In this subsection, damped and undamped mode shapes

are compared to illustrate the influence of damping on the mode shapes. In addition, the variability of the damping

ratios due to varying wind speeds is presented and discussed.

The mode shape of mode 2 derived based on the three model configurations (R, UO, and DO) is presented in

Fig. 11. Among the three models, only the last one, DO, contains contributions from the non-classically distributed

damping. Consequently, the first two mode shapes are real-valued, while the last one is complex-valued, with the

imaginary part representing the non-classical damping contribution. The effect of damping is illustrated for two wind

speeds, Ui = 3 and Ui = 11 m/s. The real part of the mode shape is comparable for the three models for both wind

speeds. For low wind speeds, the imaginary part of the DO model is negligible. Hence, the three mode shapes are

comparable. However, when the wind speed increases, the aerodynamic damping increases as well, and therefore a

profound difference between the mode shapes is observed.

The damping ratios of the selected modes as functions of the wind speed are presented in Fig. 12. As can be

seen, the ratios are positive, hence implying that the considered modes are stable. The largest damping ratio variation
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Figure 12: Damping ratios as functions of the wind speed.
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Figure 13: Eigenfrequencies as functions of the wind speed.

is observed for modes 4, 13, and, to some degree, mode 2. The damping ratio of mode 4 is almost doubled in the

wind speed range Ui ∈ [6, 11] m/s. This can be attributed to the controller variability, which in this range doubles the

rotor speed, see Fig. 3. The damping ratios of the remaining modes (modes 3 and 11) are almost insensitive to the

wind speed variation. Based on the presented results, which are, qualitatively, in line with those obtained in similar

numerical studies [33], it can be concluded that modes 4 and 13 have the largest potential to be influenced by damping

variation.

4.3.2. Wind speed

As the variability of the damping ratios has been explored in the previous subsection, we focus on eigenfrequencies

and mode shapes. The modal parameters of the DO model are extracted for a range of wind speeds, Ui ∈ [3, 25] m/s,

where the turbine operates in the power production state.

The damped eigenfrequencies as functions of the wind speed are presented in Fig. 13. The largest eigenfrequency

variation is observed for mode 4, where the eigenfrequency is increased by 30%. Qualitatively, the variation pattern

for this mode is highly correlated with the variation of the controller parameters; specifically the rotor speed. The

remaining modes (modes 2, 3, 11, and 13) exhibit low variability, with eigenfrequency variations of less than 5%.

The MAC values are computed between the mode shapes derived for the cut-in wind speed, Uci = 3 m/s, and the

mode shapes extracted at varying wind speeds, Ui. The MAC values as functions of the wind speed are presented in

Fig. 14. The results are discriminated into three groups of modes with regards to the extent and pattern of the MAC

value variation; 1) negligible variation, 2) variation correlated with damping variability, and 3) remaining. 1) the MAC

13



D. Augustyn et al. 14

4 6 8 10 12 14 16 18 20 22 24
0.7

0.75

0.8

0.85

0.9

0.95

1

Mode 2 Mode 3 Mode 4 Mode 11 Mode 13

Figure 14: MAC values as functions of the wind speed.

value variations for modes 2 and 3 are deemed negligible (minimum MAC = 0.98) and are therefore not discussed

further. 2) the MAC value variations for modes 4 and 13 are, qualitatively, highly correlated with the damping variation

for these modes, see Fig. 12. For Ui < 8 m/s, the MAC values are close to 1, followed by a reduction of the MAC

values in the range Ui ∈ [8, 11] m/s. For Ui > 11 m/s, the MAC values are stabilized around 0.95. 3) the MAC values

for mode 11 exhibit the largest variation with a non-monotonic pattern. Overall, high MAC values are observed with

a global minimum of 0.72 reached for Ui = 11 m/s. For U > 11 m/s, a monotonic increase is observed up to the

MAC=0.95 for U = 25 m/s. The result groups 2 and 3 are further discussed in Sec. 5.

5. Discussion

This section offers a discussion of the results presented in Subsecs. 4.3.1 and 4.3.2. Particular attention is assigned

to potential sources of the observed MAC variations; 1) damping variation as discussed in Subsec. 5.1 and 2) mode

interaction as discussed in Subsec. 5.2.

5.1. On damping-driven variation

As discussed in Sec. 4.3.1, the damping ratios vary with respect to the wind speed. The source of this variation

is attributed to the controller variability; specifically the rotor speed. The mode shape variability results presented in

Subsec. 4.3.2 indicate a high correlation with the damping variation. Specifically, the result group 2 (modes 4 and

13) are, qualitatively, highly correlated with the damping variation (Fig. 12). Moreover, these specific modes are

highly damped, with damping ratios of an order of magnitude larger than the remaining considered modes. Based on

these two characteristics, the variations of modes 4 and 13 are denoted damping-driven. On a general note, the modes

whose damping ratios exhibit the above-mentioned characteristics—namely, 1) a significant damping contribution

(measured by the damping ratio relative to the other modes) and 2) a large damping ratio variation as a function of the

wind speed—are expected to be driven by variation in the damping.

5.2. On interaction-driven variation

The variation in mode shapes for the result group 3 (mode 11), presented in Subsec. 4.3.2, cannot be explained

by the damping variation. To further investigate the mode shape variation, the eigenfrequency variations for mode

11 and the neighboring modes are presented in Fig. 15. Two modes in close (frequency-wise) proximity of mode

11 are identified, namely, mode 12 and 13. For an undamped case, it is enough to inspect frequency proximity, as

confirmed for the pitch angle variation analysis in Subsec. 4.2.1. However, in the damped case, where the eigenvalues

are complex, both frequency proximity and damping proximity are required to trigger interaction. Therefore, in Fig.

16, the damping ratios of modes 11 and 12 are presented. The damping ratios of modes 11 and 12 are, just like the

eigenfrequencies, in close proximity. Consequently, these modes are prone to interaction. Note that the damping ratio
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(a) Mode 11 (b) Mode 12 (c) Mode 13

Figure 17: Mode shapes plotted for varying wind speeds; magenta - U = 3 m/s, green - U = 11 m/s, and black - U = 25 m/s.

of mode 13 (Fig. 12) is an order of magnitude larger than that of modes 11 and 12, hence interaction with mode 13 is

unlikely.

The MAC variations for modes 11 and 12 are, as presented in Fig. 14 (mode 12 indicated with grey color),

positively correlated, with a global minimum at Ui = 11 m/s where the damping ratios commute. To confirm that

modes 11 and 12 indeed do interact with each other, the mode shapes for three wind speeds, Ui ∈ {3, 11, 25} m/s,

are plotted in Fig. 17. Modes 11 and 12 geometrically represent the second bending mode in the side-side and

fore-aft directions, see Figs. 17a and 17b. For Ui = 3 and Ui = 25 m/s (high MAC values), the mode shapes

are close to orthogonal, as expected due to the turbine’s symmetry. However, for Ui = 11 m/s (minimum MAC), the

modes geometrically synchronize (the linear correlation of the modes increases), which confirms the mode interaction.

Consequently, the variation in mode 11 is denoted interaction-driven. In the general case, the modes which are prone

to the interaction-driven variation are the ones that belong to a subset of closely spaced modes.

6. Conclusions

This paper investigates the influence of EOV on the modal parameters of offshore wind support structures. A

non-linear and time-variant numerical model of a representative wind turbine supported by a jacket substructure is

exposed to different sources of EOV. The operational variability is studied by varying the turbine’s azimuth and

pitch angles, while the environmental variability is investigated by studying the effect of damping and varying wind

speeds. The analysis results demonstrate that the modal parameters vary due to both the environmental and operational

variability. The modal parameters related to the first torsional and the second bending modes appear as the most

sensitive to the emulated EOV. In general, two main sources of modal parameter variation have been identified; 1) the

controller variability and 2) the mode interaction. The former explains the variation in modes that are highly affected

by modifications of the controller parameters, while the latter explains the variation in the modes that become closely

spaced and hence prone to mutual interaction.
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[17] M. W. Häckell, R. Rolfes, Monitoring a 5mw offshore wind energy converter—condition parameters and triangula-

tion based extraction of modal parameters, Mechanical Systems and Signal Processing 40 (1) (2013) 322 – 343.

doi:https://doi.org/10.1016/j.ymssp.2013.04.004 .

[18] C. Devriendt, F. Magalhaes, W. Weijtjens, G. Sitter, A. Cunha, P. Guillaume, Structural health monitoring of offshore wind turbines using

automated operational modal analysis, Structural Health Monitoring 13 (6) (2014) 644–659. doi:10.1177/1475921714556568 .

[19] O. S. Salawu, Detection of structural damage through changes in frequency: a review, Engineering Structures 19 (9) (1997) 718–723.

doi:https://doi.org/10.1016/S0141-0296(96)00149-6 .

[20] K. Worden, G. Manson, D. Allman, An experimental appraisal of the strain energy damage location method, in: Dam-

age Assessment of Structures IV, Vol. 204 of Key Engineering Materials, Trans Tech Publications Ltd, 2001, pp. 35–46.

doi:10.4028/www.scientific.net/KEM.204-205.35 .

[21] M. D. Ulriksen, Damage localization for structural health monitoring: An exploration of three new vibration-based schemes, Doctoral disser-

tation, Aalborg University (2018).
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Abstract: This paper presents a probabilistic framework for updating the structural reliability of
offshore wind turbine substructures based on digital twin information. In particular, the information
obtained from digital twins is used to quantify and update the uncertainties associated with the
structural dynamics and load modeling parameters in fatigue damage accumulation. The updated
uncertainties are included in a probabilistic model for fatigue damage accumulation used to update
the structural reliability. The updated reliability can be used as input to optimize decision models for
operation and maintenance of existing structures and design of new structures. The framework is
exemplified based on two numerical case studies with a representative offshore wind turbine and
information acquired from previously established digital twins. In this context, the effect of updating
soil stiffness and wave loading, which constitute two highly uncertain and sensitive parameters, is
investigated. It is found that updating the soil stiffness significantly affects the reliability of the joints
close to the mudline, while updating the wave loading significantly affects the reliability of the joints
localized in the splash zone. The increased uncertainty related to virtual sensing, which is employed
to update wave loading, reduces structural reliability.

Keywords: offshore wind substructures; reliability updating; probabilistic fatigue assessment; digital
twins; uncertainty quantification

1. Introduction

The offshore wind industry has experienced significant growth over the last decade [1].
As a result, the number of offshore wind turbines operating in Europe has reached 5402
in 2020 [2], with much more planned to be installed worldwide in the close future [3].
The typical lifetime of an offshore wind turbine ranges between 20 and 25 years, which
means that over the coming years a large number of these structures reach their intended
lifetime, and operators will have to take actions regarding their assets. Potential actions,
denoted as decision models, can be to decommission, re-power, perform inspections, or
extend lifetime. An optimal decision depends on what specific business model the operator
pursues, but, regardless of the business aspect, an accurate and precise estimation of the
structural reliability is key in making such a decision [4].

A digital twin-defined as a digital replica of a physical asset [5,6]-can help us to assess
the structural integrity of existing structures more accurately and precisely compared to
predictions from generic design practices because consistent and updated information
of the structure is available. This has been successfully demonstrated in the oil and gas
industry [7,8], in aerospace engineering [9], and in the offshore wind industry as well [10].
In fact, a number of wind standardization committees, including Det Norske Veritas
(DNV) [11,12], International Electrotechnical Commission (IEC) [13], and Federal Maritime
and Hydrographic Agency (BSH) [14], are working on design recommendations on how to
use measurement data and inspection information to optimize decision models for existing
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wind turbines. Currently, a key missing aspect is how to use the improved structural
models contained in digital twins to subsequently improve the decision models.

Although fully physics-based digital twins have not yet been applied to improve
decision models for wind turbines, some publications already indicate how measurement
data can be used to achieve such an improvement. Nielsen and Sørensen [15] applied
dynamic Bayesian networks to calibrate a Markov deterioration model based on past in-
spection data of wind turbine blades. Ziegler and Muskulus [16] investigated the feasibility
of lifetime extension for offshore wind monopile substructures, with particular focus on
identifying important parameters to monitor during the operational phase of the turbines.
Leser et al. [17] presented a general framework for fatigue damage estimation based on in
situ measurements. Mai et al. [18] focused on prediction of the remaining useful lifetime
of wind turbine support structure joints using met-ocean in situ data. Augustyn et al. [19]
extended a conceptual framework for updating decision models based on information
from a digital twin, initially proposed by Tygesen et al. [7], to be applied to offshore wind
substructures. In the framework, a digital twin is established with an updated structural
and load model, and subsequently the digital twin is used to quantify uncertainty and
update the structural reliability.

In the present paper, we outline the framework by Augustyn et al. [19] beyond its
conceptual level and propose a probabilistic method for updating the structural reliability of
offshore wind turbine substructures based on new information obtained from digital twins.
Depending on the information type available, various methods for updating reliability
can be used [20]. If information on the structural integrity becomes available, for example,
by an inspection of joints to identify potential cracks, risk-based inspection methods can
be applied [21–24]. Even though the inspection planning methodology is matured and
well-proven in industrial applications [25], its feasibility for the majority of offshore wind
applications is questionable due to the profound inspection costs [26]. A more economically
feasible alternative, in the form of condition-based monitoring, is typically investigated
for offshore wind applications [27,28]. In this context, condition monitoring data can be
applied to identify structural damage, and then the resulting integrity information can
be employed for updating reliability [29]. Application studies have been presented for
mechanical components in turbine [30] and wind turbine blades [4]. However, in these
studies, the condition monitoring data merely provide structural integrity information at a
global level-that is, if damage is present or not. In the present study, we aim at enhancing
the spatial resolution of the integrity assessment and hereby provide information at a local
(joint) level. Consequently, this paper proposes a framework where condition monitoring
data are used to update structural models; these updated models are subsequently used to
update structural reliability, including uncertainty stemming from the updating procedure.

The contribution of this paper consists of: (1) proposing a method on how the un-
certainties related to the structural dynamics and load modeling in fatigue damage ac-
cumulation can be quantified and updated based on updated distribution functions of
model parameters, which can be acquired with the aid of a digital twin. Subsequently,
(2) we present a framework where the updated uncertainty is used to update the structural
reliability based on a well-established probabilistic model [31,32]. Generally, the framework
can be used for optimization of operation and maintenance of existing turbines and design
of new structures. The framework is exemplified based on two numerical case studies, in
which digital twins established in previous studies by the authors [33,34] are included.

The remainder of this paper is organized as follows. In Section 2, we outline the
concept of structural reliability estimation and convey the motivation for the proposed
structural reliability updating framework, which is presented in Section 3. The two fol-
lowing sections address the numerical case studies used to exemplify the framework for
existing and new substructures; Section 4 describes the setup of the case studies and
Section 5 presents the appertaining results. Finally, this paper closes with concluding
remarks in Section 6.
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2. Background and Problem Statement

A wind turbine consists of structural components, for which reliability analysis is
performed using structural reliability theory [35], and electrical/mechanical components,
for which classical reliability models can be used, with the main descriptor being the failure
rate or the mean time between failure (MTBF). Regardless of the component type being
addressed in the reliability analysis, a probabilistic model describing the component’s
integrity is required. The reliability of electrical/mechanical components is typically
modeled by a Weibull model for the time to failure and the components are assumed to
be statistically independent. Using, for example, failure tree analysis (FTA) and failure
mode and effect analysis (FMEA), system reliability models can be established and the
reliability update can be performed when new information becomes available [36–38]. In
the present paper, jacket-type steel wind turbine substructures are considered, so structural
reliability techniques are required to model loads, resistances, and model uncertainties and
to account for the correlation between the components. The fatigue damage is often design
driving for the structural components of offshore wind substructures, such as joints. In this
instance, fatigue damage accumulation can be expressed in terms of probability of failure
or, equivalently, by the reliability index [39].

Let g(t) be the fatigue limit state at year t ∈ N for an offshore wind substructure;
then [32,40],

g(t) = ∆−
l

∑
i=1

z

∑
j=1

Ni,j pit

K∆s−m
i,j

(XdXlXs)
m, (1)

where ∆ is the fatigue resistance and the double summation expresses the accumulated
fatigue damage. In particular, ∆ is a stochastic variable representing the limit value of
the accumulated fatigue damage estimated using, for example, SN curves, including the
uncertainty related to application of Miner’s rule for linear fatigue damage accumulation.
In the expression for the fatigue damage, pi is the yearly probability of occurrence for sea
state i (including wind and wave parameters), Ni,j is the number of cycles for the ith sea
state and jth stress range ∆si,j, and K and m are the parameters related to the SN curve,
with m being the Wöhler exponent [41]. The uncertainties related to the SN curve approach
are included by modeling K as a stochastic variable. Xd, Xl , and Xs are stochastic variables
that model the uncertainties associated with the structural dynamics, load modeling and
stress concentration.

If g(t) ≤ 0, the limit state is exceeded and the structure fails, while g(t) > 0 im-
plies that the structure is safe. The probability of fatigue failure in the time interval
t ∈ [0, T], Pf (t) = P(g(t) ≤ 0) can be estimated by first-order and second-order reliability
methods [39] or, as is the case in this paper, by Monte Carlo methods [42]. The corre-
sponding reliability index, β, can be computed as β(t) = −Φ−1

(
Pf (t)

)
, where Φ is the

standard normal distribution function. The annual reliability index, ∆β, can be calculated
analogically assuming a reference period of one year.

We note that (1) Xd and Xl may be correlated, and, in this instance, they should be
modeled by a joint probability density function with correlation coefficient ρ and (2) a
linear formulation of the limit state equation can be readily generalized for a bi-linear
formulation of the SN curve. The parameters in model (1) are elaborated in Section 2.1.

2.1. Uncertain Parameters and Their Modeling

The uncertainty modeling related to structural reliability due to fatigue damage is
summarized in Figure 1. In the framework proposed in Section 3, we focus on updating
stochastic variables related to structural dynamics and loading uncertainty, as schematically
indicated by the dark blue boxes in Figure 1. The remaining part of the uncertainty (the
light blue boxes in Figure 1) can be quantified based on experiments and data. This is not
considered in the proposed framework, but a brief discussion is provided in the present
subsection for the sake of completeness.
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Figure 1. Stochastic variables modeling uncertainty in fatigue damage accumulation. The stochastic variables from the
probabilistic model (1) are represented by separate boxes. The light blue boxes indicate stochastic variables estimated based
on generic, design-based recommendations. The dark blue boxes indicate stochastic variables that can be quantified and
updated based on new information from a digital twin.

2.1.1. Met-Ocean Model

The joint probability distributions of the wind-wave climate is discretized by a finite
number of short-term sea state simulations including random wind and wave seeds to
model a stochastic process [40]. Met-ocean uncertainty is included in (1) by the yearly
probability of each sea state, denoted pi. The met-ocean uncertainty can be quantified if
long-term climate parameters are monitored [18,43].

2.1.2. Structural Dynamics

Estimating dynamic system properties is associated with uncertainties [44]. The
uncertainties stem from environmental and operational variability, non-stationary sea
states (fluctuating mean sea water level), time-variant structural conditions (corrosion,
scour), output noise, and the formulation of the structural model, including modeling of
highly uncertain parameters such as soil stiffness, joint stiffness and damping. We note
that the output noise relates to the noise in the acceleration and/or strain signals, which
is propagated through system identification procedures and results in uncertainty of the
updated structural model parameters [44]. The structural dynamics uncertainty is included
in (1) through the stochastic variable Xd.

2.1.3. Loading

Depending on the location of the wind turbine, the loading may include the following
exogenous sources and their inherent uncertainties:

• Hydrodynamic loading-uncertainty related to calculating wave loads that stems from
different wave theories (linear vs. non-linear), Morison’s equation, stretching and
mass and drag coefficients.

• Aerodynamic loading-uncertainty related to calculating wind loads that stems from
wind turbulence, wake model, and shear coefficient.

• Ice loading-uncertainty related to calculating ice loads, for example, ice thickness, ice
crushing strength and ice failure regime.

• Earthquake loading-uncertainty related to calculating earthquake loads, for example,
earthquake acceleration profile, structural response, soil-structure integration, and
force transfer.

If loading uncertainty is quantified based on information from digital twins, the main
part of the uncertainty is related to obtaining the structural response due to external loading.
This response is typically estimated based on virtual sensing methods, which are associated
with uncertainties [34,45]. The loading uncertainty is included in (1) through the stochastic
variable Xl .

2.1.4. Stress Concentration

Stress ranges in specific locations can be estimated based on simplified parametric
equations, for example, Efthymiou [46] or detailed finite element (FE) models. The stress
concentration uncertainty is included in (1) through the stochastic variable Xs. The stress
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concentration uncertainty can be quantified if a detailed FE model is used to establish hot
spot stresses [47] or if hot spot stresses are measured directly.

2.1.5. SN Curve

The uncertainty in parameter estimation from the SN curve approach [48] is included
in (1) through the stochastic variable K and the deterministic parameter m. If a bi-linear SN
curve is used, then stochastic variables are used to model the two branches of the SN curve.
The SN curve uncertainty can be quantified if fatigue testing is performed [48].

2.1.6. Fatigue Damage

Uncertainties related to the accumulated fatigue damage model (Miner’s rule [49])
and the crack propagation method (Paris–Erdogan [50] or fracture mechanics) is included
in (1) by modeling the resistance, ∆, as a stochastic variable.

2.2. Current State-of-Practice for Reliability Updating

Design standards define a specific level of reliability that offshore wind substructures
must fulfill, for example, a target annual reliability index of ∆β = 3.3 in IEC 61400-1 [31,40].
Reliability levels indicated in standards assume a generic level of uncertainty representative
for all types of substructures and locations. Because the uncertainty is assumed to cover a
wide range of structures and locations, the resulting design is, in many cases, conservative.
The level of conservatism can be quantified when new information specific to a particular
structure becomes available. One way of obtaining such information is by means of
digital twins, which can be used to quantify the uncertainty and subsequently update the
structural reliability.

3. Structural Reliability Updating Framework

In this paper, we propose a probabilistic framework in which digital twin informa-
tion is used to update the uncertainties associated with the fatigue damage accumulation,
which are then used to update the structural reliability. In particular, we use the updated
parameters from the established digital twins to quantify the model uncertainties of the
structural dynamics, Xd, and load modeling, Xl . The updated uncertainties are quantified
based on a forward propagation method, which allows quantifying separate uncertainty
sources stemming from specific model parameters. Having updated the relevant uncer-
tainty contributions from the updated model parameters, the reliability is updated based
on the linear probabilistic limit state Equation (1). Finally, the updated reliability serves as
a decision basis for a decision model update. A schematic illustration of the framework is
seen in Figure 2, and steps one to six are described in Sections 3.1–3.6.

Data Value

1) Model updating 2) Input parameters 3) Uncertainty
propagation

4) Uncertainty
quantification 5) Reliability update 6) Decision model

αi D(αi) Xd, Xl ∆β(t)

Figure 2. Structural reliability updating framework based on information from a digital twin. Updated parameters from
the digital twin are used to quantify uncertainty in fatigue damage accumulation. Subsequently, the structural reliability
is updated.

3.1. Model Updating

It is assumed that an updated structural model (step one) is available, which can be
obtained based on well-established model formulation and updating procedures [51].
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3.2. Input Parameters

The distribution functions of the updated model parameters (available from step one)
are used in step two as input for the uncertainty quantification procedure. The stochastic
variables reflect both the aleatory and epistemic uncertainties, which constitute the updated
Xd and Xl uncertainties.

3.3. Uncertainty Propagation

The effect of the updated model parameters on the fatigue damage accumulation is
established by a Monte Carlo uncertainty propagation method [52], as indicated in step
three in Figure 2. Based on the uncertainty in the input parameters (i.e., the distribution
functions of the updated numerical model parameters), we obtain the distribution of
fatigue damage, hence quantifying the uncertainties in fatigue damage due to the updated
model parameters. The uncertainty quantification procedure is described next. The aim is
to express the uncertainty as a stochastic variable multiplied to the fatigue stress ranges.

The uncertainty in fatigue damage accumulation due to an uncertain parameter, αj ∈ α,
can be quantified by simulating n realizations from this parameter’s distribution function
and calculating the corresponding fatigue damage. When calculating fatigue damage, the
remaining parameters are assumed to be deterministic. Moreover, the fatigue damage is
calculated assuming one sea state parameter. In this way, the introduced uncertainty is
solely governed by the variability of αj, hence quantifying this parameter’s contribution
to the fatigue damage accumulation uncertainty. For example, a distribution function of
updated soil stiffness implies structural dynamics uncertainty, while a distribution function
of an updated inertia coefficient in Morison’s equation implies loading uncertainty.

Among a number of uncertainty quantification methods [53], a Bayesian framework [54]
is recommended by a number of standard committees, for example, IEC and Joint Com-
mittee on Structural Safety (JCSS), due to its sound theoretical basis and wide range of
applicability. However, a main challenge in the Bayesian framework is the requirement of a
prior distribution on the parameters to be quantified. In the context of offshore wind uncer-
tainties, information on prior distributions is not available in the background documents
for the above mentioned standards and committees. Consequently, in the proposed frame-
work, we implemented a simplified method where we start with the uncertainty modeling
consistent with the design standard of wind turbines [40], and subsequently we quantify
the uncertain parameters already included in (1) using the maximum likelihood method.

Assuming the fatigue damage, modeled as a stochastic variable depending on the
uncertain parameter αj, is normally distributed, D(αj) ∼ N

(
µDj , σ2

Dj

)
, the fatigue dam-

age distribution (mean value µDj and standard deviation σDj ) can be found through the
maximum likelihood method, where the likelihood is defined as

L
(

µDj , σDj

)
=

n

∏
i=1

1√
2πσDj

exp


−1

2

(
Di − µDj

σDj

)2

, (2)

with Di being the fatigue damage associated with the ith realization of αj computed based
on the updated structural model contained in the digital twin.

The log-likelihood function becomes

ln L
(

µDj , σDj

)
= −n ln

(√
2πσDj

)
−

n

∑
i=1

1
2

(
Di − µDj

σDj

)2

, (3)

and the optimal parameters are found to be

argmax
µDj

, σDj

ln L
(

µDj , σDj

)
. (4)
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3.4. Uncertainty Quantification

The procedure outlined in the previous subsection quantifies uncertainty in fatigue
damage accumulation. However, the probabilistic model (1) requires uncertainty in stress
ranges rather than in the fatigue damage. Therefore, it is now described how uncertainty
in fatigue damage can be transformed into uncertainty in stress ranges, as indicated in step
four in Figure 2.

The fatigue damage accumulation, D, is proportional to the stress ranges, ∆s, accord-
ing to D ∝ ∆sm (assuming a linear SN curve), from which it follows ∆s ∝ D1/m. The stress
range distribution parameters can be computed from Monte Carlo simulations. Alterna-
tively, assuming the damage distribution function is normal, the stress range distribution’s
mean, µ∆s, and coefficient of variation (CoV), c∆s, can be approximated as

µ∆s = µ1/m
i (5)

and
c∆s =

ci
m

, (6)

where µi and ci are the mean and CoV of the fatigue damage distribution due to the
uncertainty associated with αj.

3.5. Reliability Update

The quantified and updated uncertainties can be consistently included in the prob-
abilistic framework to update the reliability level. The probabilistic model (1) is used to
derive an annual reliability level, ∆β(t), given the updated uncertainties. This procedure is
indicated in the fifth step in Figure 2, where two reliability curves (with and without using
information from a digital twin) are schematically presented. The outcome of the reliabil-
ity update (increase or decrease) depends on the outcome of uncertainty quantification
(increased or decreased).

3.6. Decision Models

Given new information from digital twins becomes available (either during operation
or already in the design stage), the decision models can be updated as indicated by the last
step in Figure 2. The digital twin information can be included based on Bayesian decision
theory [24,55]. For existing structures, an operation and maintenance decision plan can be
optimized based on an updated reliability level, for example, an updated inspection plan or
lifetime reassessment. More specifically, a reliability-based inspection planning technique
can be implemented [56] and some of the inspections can be removed (if any were planned
during the lifetime of the structure in question) or new inspections can be included if the
structural integrity is compromised. For new structures, the expected outcome of a future
digital twin can be used to optimize structures already at the design stage (before the digital
twin information becomes available) by the use of Bayesian pre-posterior theory [54].

4. Case Study Setup

To demonstrate an application of the proposed framework, we consider an example
where information from a digital twin of an offshore wind jacket substructure is used
to update the structural reliability of the substructure. The numerical models of the
substructure and the turbine are described in Sections 4.1.1 and 4.1.2, followed by a
description of the analyzed load case scenarios in Section 4.1.3. Based on the simulation
results (in the form of stress range distributions), the structural reliability of selected
joints is calculated in Section 4.2.1 by assuming a generic level of uncertainty. The results
are nominal and are, in Section 5, compared with the results obtained by using digital
twin information.
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4.1. Modeling

We simulate a numerical model of a 7 MW jacket-supported turbine using the pro-
cedure outlined by Nielsen et al. [57] and applied by, e.g., Augustyn et al. [34]. The
simulation procedure consists of the following steps: (1) the substructure model and corre-
sponding wave loading are reduced to a Craig–Bampton superelement [58] with 30 internal
modes accounting for internal substructure dynamics. A convergence study has been
performed to ascertain that the reduced model (including 30 modes) adequately captures
the relevant modal parameters of the non-reduced system. Subsequently, (2) the wind
loading is computed through aero-elastic analyses, in which the substructure superelement
is included. Finally, (3) the force-controlled recovery run outlined by Nielsen et al. [59] is
performed, where the response of the substructure is recovered and relevant measurements
are extracted. The applied model is formulated using state-of-the-art modeling approaches
included in a typical design procedure for jacket substructures, and the model has been
validated to accurately and precisely represent the structural dynamics of a combined
substructure and wind turbine system [60,61].

4.1.1. Substructure

The jacket substructure and its appertaining wave loading were modeled using ROSAP
(Ramboll Offshore Structural Analysis Programs), version 53 [62]. The jacket substructure
considered in this study, which is depicted in Figure 3, has a total height of approximately
75 m. The substructure comprises three legs, each with a diameter ranging between 1.2
and 1.7 m, and four brace bays, each with a diameter ranging between 0.8 and 1.1 m. The
substructure model includes, i.a., soil-pile interaction, local joint flexibility, scour, marine
growth and appurtenance masses. The water depth is 55 m and the soil conditions are
characterized as clay. The substructure includes 50 m grouted piles. The soil-structure
interaction is modeled by the use of soil curves linearized according to the API method [63].
The structural damping was modeled according to a Rayleigh model [64] with 0.5% and
1% modal damping in the first and second bending modes, respectively.

Figure 3. Substructure model used in the case studies. (A) Side view, (B) side view with indication of
levels (blue circles indicate joints analyzed in the case studies) and (C) top view with indication of
directions, side and leg names. NB: a wind turbine model is not shown in the figure.

The locations of the selected joints considered in the case studies are indicated in
Figure 3B. The joint levels range between 13 (mudline) to 50 (top of the jacket). Results
for sides B and C of the jacket, see Figure 3C, are provided. The joints are named in the
following way: 50CL, where 50 indicates the level, C is the jacket side, and L indicates the
lower element in the joint.
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4.1.2. Wind Turbine

The substructure carries a representative 7 MW turbine, which is modeled in LACflex
aero-elastic code [65]. The turbine includes a 90 m tubular tower with a diameter ranging
between 4 and 6 m. Along the tower, three concentrated masses are assumed to emulate the
effect of secondary-structures. The aero-elastic code employs a modal-based representation
of the turbine (including the tower, rotor and blades). An aerodynamic damping contribu-
tion is included through the fluid-structure interaction when calculating aero-elastic forces.
The wind turbine model was originally developed for industrial purposes, where it was
applied in commercial projects. A rather similar model (albeit a 5 MW turbine instead of
7 MW), which adheres to the same modeling principles, has been applied in other studies
on structural dynamics of wind turbines [34,66].

4.1.3. Load Cases

In this study, we consider the fatigue failure mode in the normal operating condition
(design load case (DLC) 1.2 [40]). For a typical offshore wind jacket substructure, this DLC
accounts for most of the fatigue damage [67].

The met-ocean parameters applied in this study are derived based on measurements
from a representative North Sea site [68] and are summarized in Table 1. The wind speed
ranges between 4 and 31 ms−1, resulting in nb = 15 wind speed bins. For each wind speed
bin, representative wave parameters, i.e., the significant wave height and peak period,
are assigned. The significant wave height ranges from 0.1 to 7.9 m while the peak period
ranges from 3.0 to 9.6 s. The met-ocean parameters along with their yearly probability of
occurrence are derived from a site-specific joint probability distribution function, which
is a common design practice [40]. A total of nd = 12 wind directions are analyzed (wind
and waves are assumed fully aligned). For each wind speed, a total of nTI = 5 turbulence
intensity quantiles, namely, q ∈ [q10, q30, q50, q70, q90], are considered. The quantiles for
each wind speed are calculated based on the Weibull distribution according to the IEC
standard [40] for turbulence class B. The turbulence intensities for the given site ranges
from 0.09 to 0.31. The fatigue damage is scaled with the corresponding turbulence intensity
quantile probability, hence representing the target Weibull distribution. Every load case
(wind speed, wave height, peak period and turbulence intensity) is simulated with ns = 6
seeds. The total number of load cases analyzed is nt = nbndnTIns = 5400.

Table 1. Load case definitions according to IEC [40] and representative site-specific parameters.

Turbine State DLC Wind Speed, U (ms−1) Turbulence, TI (-) Wave Height, Hs (m) Wave Period, Tp (s) Direction (deg)

Operational 1.2 4–31 0.31–0.09 0.1–7.9 3.0–9.6 0–330

4.2. Nominal Results

The structural reliability of selected joints of the jacket substructure is evaluated based
on model (1) and the variables are summarized in Table 2. The stress ranges, ∆σ, and
number of cycles, N, were obtained from simulations. The SN curves for tubular joints
in air and in seawater with cathodic protection are used according to [48]. The SN curve
for the air environment are applied to the joint at level 50. For the remaining joints, the
SN curve for seawater with cathodic protection is applied. For tubular joints exposed
to seawater with cathodic protection, negative inverse slopes of m1 = 3 and m2 = 5 and
intercepts of log Kc1 = 12.18 and log Kc2 = 16.13 are assumed to calculate the characteristic
SN curve. For tubular joints in air environment, the following values can be used: log Ka1 =
12.48 and log Ka2 = 16.13, while assuming the same m values as for seawater environment.
The mean SN curve for the probabilistic analysis was calculated from the characteristic SN
curve’s intercepts assuming a standard deviation of 0.20 [48].
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Table 2. Variables used in the probabilistic model to estimate fatigue damage accumulation in the
nominal case [32].

Variable Distribution Mean CoV Std. Dev. Ref.

∆ N 1.00 0.30 N/A [69]
logKc1 N 12.58 N/A 0.20 [48]
logKc2 N 16.53 N/A 0.20 [48]
logKa1 N 12.88 N/A 0.20 [48]
logKa2 N 16.53 N/A 0.20 [48]

m1 D 3 N/A N/A [48]
m2 D 5 N/A N/A [48]
Xd LN 1.00 0.10 N/A [31]
Xl LN 1.00 0.10 N/A [70,71]
XS LN 1.00 0.05 N/A [70]

Distribution: N-normal, LN-logNormal, D-deterministic.

4.2.1. Annual Reliability

The annual reliability index as a function of time, ∆β(t), is calculated based on the
state-of-the-art probabilistic methods described in Section 2. The limit state Equation (1)
was applied using the standard-based variables provided in Table 2. The reliability indices
are presented in Figure 4 and Table 3 and are denoted as the nominal results. The results
represent the situation where no additional knowledge from a digital twin is available. The
results are provided for 10 selected joints, which are typically critical for a jacket design.

The structure is designed to have a fatigue lifetime of 25 years. The fatigue lifetime
ends when the annual reliability index reaches the target value ∆β = 3.3, which serves as
the basis for reliability-based calibration of safety factors in recognized design codes [31,40].
For the considered case study, the design driving joints are 13BU and 40CU with a lifetime
of 25 and 27 years. Joint 13BU is located close to the mudline, while joint 40CU is located
slightly below the splash zone. Joints 40CL, 40BL, 25BU and 25BL have a lifetime between
50 and 100 years, while the remaining joints have a lifetime above 100 years.

Table 3. Fatigue lifetime derived based on probabilistic model (1) and stochastic variables presented
in Table 2.

Joint Fatigue Lifetime (Years)

50CL >100
50BL >100
40CL 54
40BL 77
40CU >100
40BU 25
13CU 27
13BU >100
25BL 98
25BU 86
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Figure 4. Structural reliability as function of time for the nominal model.

5. Case Study Results

In this section, we exemplify how new information from digital twins can be included
in the proposed framework to quantify uncertainty and subsequently update structural
reliability for the particular case study. We use information from previously established
digital twins [33,34]. The effect of structural dynamics uncertainty, Xd, is investigated based
on a model updating study presented in [33], where the soil stiffness, ks, was calibrated
based on in situ measurements. The effect of loading uncertainty, Xl , is investigated based
on a virtual sensing study [34], where modal expansion was used to estimate unmeasured
field quantities. The results are presented and discussed based on two design driving joints,
namely, 13CU and 40BU.

5.1. Updating Structural Dynamics Uncertainty

In this subsection, we present the updated structural reliability based on an updated
structural dynamics uncertainty. First, we present a sensitivity study on updating soil
stiffness, followed by a case study based on in situ soil stiffness calibration [33].

5.1.1. Soil Stiffness Sensitivity

The effect of updating thesoil stiffness mean value, µks , for joint 13CU is presented in
Figure 5 and in Table 4. It is assumed that new information from a digital twin is obtained;
in this particular case, the mean value of uncertainty related to structural dynamics, µXd , is
updated. The results are derived by using the limit state Equation (1) with the standard-
based variables provided in Table 2 and updated values for µXd .

As seen in Figure 5, the soil stiffness has a significant impact on the fatigue lifetime.
Updating the soil stiffness by a factor of 0.5 (resulting in reducing the mudline pile stiffness
by half) results in a reduction in lifetime by a factor of 0.3. In contrast, increasing the soil
stiffness by a factor of 2.0 results in a lifetime increase by more than fourfold (>100 years).
The effect of updating soil stiffness on joint 40BU is negligible, as indicated in Figure 6.

Note that in Figures 5 and 6 (and the other figures describing structural reliability as a
function of time), the reliability generally decreases with time, albeit non-monotonically
in some cases. For example, consider the green curve in Figure 5, where a local increase
in reliability around year 20 is observed. This is due to a limited number of Monte Carlo
simulations, but we note that this limitation does not qualitatively affect the conclusions
drawn from the analyses.



Energies 2021, 14, 5859 12 of 22

Table 4. Fatigue lifetime derived for different distributions of Xd.

ks
13CU 40BU

µXd CoV Xd Lifetime µXd CoV Xd Lifetime

0.50 1.20 0.10 7 0.98 0.10 26
0.75 1.10 0.10 15 0.99 0.10 25
1.00 1.00 0.10 25 1.00 0.10 25
1.25 0.90 0.10 85 1.01 0.10 25
1.50 0.80 0.10 >100 1.02 0.10 24
2.00 0.70 0.10 >100 1.04 0.10 22
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Figure 5. Impact of updating soil stiffness on structural reliability-joint 13CU.
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Figure 6. Impact of updating soil stiffness on structural reliability-joint 40BU.

5.1.2. Reliability Update-Soil Stiffness

Based on the results presented in [33], we assume the soil stiffness distribution function
after the update can be approximated by a normal distribution with mean value of 4.7 and
CoV = 0.12, i.e., ks ∼ N

(
4.7, (4.7× 0.12)2). The soil stiffness uncertainty is propagated

through the numerical model, and the uncertainty on stress ranges was estimated according
to the method presented in Section 3.3. It was assumed, for illustrative purposes, that
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the soil stiffness is the only uncertain parameter affecting the Xd uncertainty, i.e., α = ks.
The Xd uncertainty is quantified and its updated value was applied together with the
nominal uncertainty values for the remaining stochastic variables in (1). The updated Xd
distribution (mean value and CoV) as a result of the soil updating is presented in Table 5.

The soil stiffness update results in a reduction in the mean value of Xd for all joints
except three joints in the splash zone (joints 40CL, 40BL and 40CU). The CoV of Xd is
reduced for all joints because the CoV of Xd is reduced from the initial value of 0.10 for
all joints. The structural reliability after the soil update is presented in Figure 7 alongside
the lifetime compared to the nominal model presented in Table 5. After the soil update,
we can observe an increase in fatigue life in four joints close to the mudline (13CU and
13BU) and in the lowest X-joint (25BL and 25BU). Compared to the nominal model, we can
conclude that for both critical joints (40BU and 13CU), the fatigue lifetime is increased after
the update. Note that the fatigue lifetime in joint 40BL is reduced despite a reduced CoV.
That is due to the fact that for this joint, two opposite effects of the soil update are merged;
namely, the positive effect of the reduced CoV (0.006 vs. 0.10) and the negative effect of the
increased mean value (1.07 vs. 1.00).

The general conclusion holds that if both the mean value and CoV are reduced, then
the fatigue lifetime is increased, while if both of the values are increased, then the opposite
result holds. If either mean or CoV is reduced while the other is increased, the fatigue
lifetime can either increase or decrease depending on the extent of the increase/decrease in
mean value and CoV.

Table 5. Effect of updating soil stiffness on fatigue lifetime.

Joint µXd CoV Xd Lifetime (Years) Compared to Table 3

50CL 0.98 0.004 >100 N/A
50BL 0.98 0.005 >100 N/A
40CL 1.04 0.004 62 +8
40BL 1.07 0.006 69 −8
40CU 1.05 0.003 >100 N/A
40BU 0.98 0.005 44 +19
13CU 0.65 0.058 >100 +
13BU 0.56 0.057 >100 N/A
25BL 0.90 0.013 >100 +
25BU 0.92 0.012 >100 +
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Figure 7. Structural reliability after the soil stiffness update. (ks update based on the study in [33]).
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5.2. Loading Uncertainty Update

In this subsection, we investigate the effect of updating loading uncertainty on the
structural reliability. First, we present a sensitivity study on wave loading calibration,
followed by updating the reliability based on load calibration using two virtual sensing
configurations. The virtual sensing study is presented based on uncertainty quantified
in [34]. In this subsection, the Xl uncertainty is updated based on an updated Cm parameter.
It is assumed, similarly as in Section 5.1, that only one uncertain parameter affects the
uncertainty modeling, i.e., α = Cm.

5.2.1. Wave Loading Sensitivity

The effect of updating the wave loading coefficient, Cm, on the structural reliability of
joint 13CU is presented in Figure 8 and in Table 6. The mean value of the wave loading
coefficient is modified by a factor of 0.8–1.2, which results in modifications of the loading
uncertainty. It is assumed that new information from the digital twin is obtained; in
this particular case, the mean value of uncertainty related to loading uncertainty, µXl , is
updated. The results are derived by using the limit state Equation (1) with the standard-
based variables provided in Table 2 and updated values for µXl .

The wave loading modification has a medium impact on the fatigue lifetime. Updating
the wave loading by a factor of 0.8 (reducing the inertia-induced wave loading by 20%)
results in an increased lifetime by a factor of 1.6. Increasing the wave loading by a factor of
1.2 results in reducing the lifetime by a factor of 0.7. The effect of updating wave loading
on joint 40BU is more pronounced, as indicated in Figure 9. For this joint, reducing the
wave loading by 20% results in a lifetime increase by more than fourfold (>100 years),
while a wave loading increase by 20% results in a lifetime reduction by a factor of 0.3.

0 20 40 60 80 100

2.5

3

3.5

4

4.5

5

+20%

+10%

Nominal model

-10%

-20%

Figure 8. Impact of updating wave loading on structural reliability-joint 13CU.

Table 6. Fatigue lifetime derived for different distributions of Xl .

Cm
13CU 40BU

µXl CoV Xl Lifetime µXl CoV Xl Lifetime

1.2 1.06 0.10 17 1.20 0.10 7
1.1 1.03 0.10 21 1.10 0.10 12
1.0 1.00 0.10 25 1.00 0.10 25
0.9 0.97 0.10 33 0.90 0.10 55
0.8 0.94 0.10 42 0.80 0.10 >100
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Figure 9. Fatigue lifetime derived for different distributions of Xl-joint 40BU.

5.2.2. Reliability Update-Virtual Sensing Uncertainty

The virtual sensing uncertainty quantified for two virtual sensing configurations are
considered based on results presented in [34]. The following virtual sensing uncertainty
configurations are used: (1) basic setup: CoV = 0.10 and (2) extended setup: CoV = 0.05,
while the mean value for both setups is assumed to be 1.00. The basic setup includes only
acceleration sensors above the water level, while the extended one, in addition, includes
sub-sea acceleration sensors and a wave radar sensor. It is assumed that the virtual sensing
uncertainty are combined with the nominal Xl uncertainty. Furthermore, it is assumed, for
illustrative purposes, that the mean value of Xl equals 0.9. The Xl distribution parameters
used in this study are summarized in Table 7 for joints 40CU and 13BU.

The results for joint 40BU are presented in Figure 10. As each model update configura-
tion results in the same mean value update so the only difference in the stochastic model is
the CoV, the higher the CoV, the shorter lifetime we should derive. This is confirmed in the
results as the direct sensing method (measuring directly), with CoV = 0.00 resulting in a
lifetime of 60 years, followed by the extended virtual sensing method (lifetime of 50 years
and CoV = 0.05), while the most uncertain method (basic virtual sensing with CoV = 0.10)
results in a fatigue lifetime of 40 years. In this case, each configuration derives a fatigue
lifetime larger than the nominal one, i.e., 25 years. However, this is not the case for joint
13CU, where the fatigue lifetime using the basic virtual sensing configuration is 22 years,
as depicted in Figure 11. Even though the mean value of the update results in reduced
fatigue damage (µXl = 0.97 for this case), the negative effect of increased uncertainty (CoV
Xl = 0.14) results in a fatigue lifetime reduction of 3 years.

Table 7. Fatigue lifetime updated based on various uncertain wave loading calibration methods. Xl
distribution is updated (mean and CoV).

Configuration
13CU 40BU

µXl CoV Xl Lifetime µXl CoV Xl Lifetime

Nominal 1.00 0.10 25 1.00 0.10 25
Basic 0.97 0.14 22 0.90 0.14 40

Extended 0.97 0.11 30 0.90 0.11 50
Direct sensing 0.97 0.10 35 0.90 0.10 60
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Figure 10. Impact of updating wave loading based on uncertain virtual sensing methods-40BU.
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Figure 11. Impact of updating wave loading based on uncertain virtual. sensing methods-13CU.

5.3. Uncertainty Correlation

In the previous subsections, the Xd and Xl uncertainties were investigated separately,
hence neglecting a potential correlation. In this subsection, we consider updating both
Xd and Xl with varying correlation coefficients. The correlation can stem from interaction
between the structural dynamics and loading parameters. For example, the loading param-
eters can be calibrated based on responses from a previously updated structural model.

We assume the structural and loading uncertainties are quantified based on new infor-
mation from a digital twin, resulting in updated mean values of structural and load uncer-
tainties: µXd = 0.80 and µXl = 0.97 and using the reference uncertainty level CoV = 0.10.
The updated uncertainty value corresponds to increasing the soil stiffness by 50%, ks = 1.5,
and reducing the wave loading coefficient by 10%, Cm = 0.9. The results are presented for
joint 13CU.

Three scenarios of correlation between Xd and Xl are investigated: (1) ρ = 0 (no
correlation), which can be the case if the load calibration was performed without using
information from the updated structural model, (2) ρ = 1 (full correlation), when, for
example, load calibration using mode shapes from an updated structural model and (3) an
intermediate case with ρ = 0.5, where both analytical and measured mode shapes were
used for load calibration.
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The structural reliability calculated for various scenarios is presented in Figure 12. The
nominal setup yields a fatigue lifetime of 25 years, while the updated uncertainty results in
a fatigue lifetime ranging between 23 and 48 years, where the difference stems solely from
varying correlations. The largest fatigue lifetime is obtained when assuming no correlation,
while the lowest lifetime is derived for full correlation. Note that despite reducing the
mean values of Xd and Xl , the fatigue lifetime is reduced compared to the nominal result
for the full correlation case. The results are in line with expectations, because positive
correlation increases the combined XdXl uncertainty.
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Nominal

 = 0

 = 0.50

 = 1.00

Figure 12. Impact of Xd and Xl correlation on structural reliability.

5.4. Application for New Structures

Assuming a number of digital twins for similar structures have been established in
the past, we can, by applying the proposed framework, obtain a distribution function of
XdXl , which indicates what is the expected outcome of updating the structural and load
model. This knowledge can be used at the design stage, resulting in an optimized design
given the expected model update is realized. However, the updated information may be
at a preliminary stage of validation and therefore subject to some degree of uncertainty,
i.e., the expected model update outcome only represents our (best) knowledge. Hence, we
must confirm our expectation by performing model updates during the structural lifetime
and consider all potential outcomes of the experiment (model update) in the design stage.
This is accounted for by preparing a decision rule, which for any outcome introduces
an action that guarantees that the wind turbine has a sufficient reliability level until the
intended lifetime is reached. The proposed application is based on Bayesian pre-posterior
decision theory [54] and has, in the offshore wind industry, been applied in, for example,
optimization of operation and maintenance of wind turbines [55].

In the following, an illustrative example is presented for this application to new
structures. Assume that, based on previous digital twins, we obtain a prior distribution
function of quantified uncertainties, X f = XdXl . This prior distribution can be regarded as
the future (yet to be realized) distribution of the updated uncertainties and can be used
already at the design stage.

For the sake of illustration, we assume that the future outcome of model updates can
be modeled as X f ∼ N

(
0.9, (0.9× 0.05)2), as depicted in Figure 13. The prior distribution

is used together with model (1) to design the optimized structure. This is obtained by
assuming that the generic structural dynamics and loading uncertainty are substituted
with the expected uncertainty quantified based on the future experiment, XdXl = X f . The
decision models are derived based on (1), where, depending on the outcome of the model
update, different values of X f are assumed. The X f values are summarized in Table 8. As a
result, we derive an optimized structure, which has sufficient reliability until the intended
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lifetime is reached. This is indicated in Figure 14 by the blue curve. In the design, we
have used the prior distribution of the updated uncertainty and assumed that updating the
model is performed during the operation of the structure to confirm our expectation (obtain
the posterior distribution). The point in time when updating the model must be performed
can be derived by applying model (1) with the nominal uncertainty from Table 2, as shown
in Figure 13 with the orange curve. Finally, we derive a point when the structure reaches
the target reliability level and some action is needed to confirm its structural reliability.
This is indicated by the orange curve in Figure 14.

When the model update time is reached, updating of the model is performed. As a
result of model update, we can obtain one of the three outcomes for X f , which will have
an impact on the decision models, as depicted in Figure 15. In particular, we have the
following potential outcomes:

• Most likely: the mean value of the derived model update is close to the mean value of
the prior distribution assumed in the design stage, µXdXl = µX f . In such a case, the
structure is fit for operation for the intended lifetime and no further action is required.
This scenario is indicated by the green line in Figure 15.

• Unlikely positive: the mean value is less than the value assumed in the design stage,
µXdXl < µX f . This results in a longer lifetime than expected and no further action is
required. This scenario is indicated by the yellow line in Figure 15.

• Unlikely negative: the mean value is greater than the value assumed in the design
stage, µXdXl > µX f . This results in a shorter lifetime than expected and action is
required to ensure a sufficient reliability during the intended lifetime of the structure.
This scenario is indicated by the dashed red line in Figure 15.

Given the expected or positive outcome of updating the model is realized, no further
action is required. However, if the outcome of updating the model is unexpectedly negative,
the following mitigation actions can be considered to ensure the required level of reliability
during the intended lifetime: (1) strengthening or (2) curtailing of the wind turbine (thereby
reducing fatigue damage) and operating until the end of the intended lifetime. If it is
economically infeasible to continue the operation of a particular turbine given the model
updating outcome, one can consider premature decommissioning. The reliability level
after the mitigation action is performed as indicated by the solid red line in Figure 15.

Table 8. Pre-posterior stochastic model.

Case µX f CoV X f Comment Information

Pre-posterior design 0.9 0.05 Prior knowledge on X f Generic design
Determine model update time 1.0 0.14 Using no extra information from digital twin Generic design

Model updating (expected outcome) 0.9 0.05 The same as prior knowledge, lifetime as expected, no
action

Digital twin

Model updating (positive outcome) 0.85 0.05 Positive outcome, longer lifetime than expected, potential
for lifetime extension

Digital twin

Model updating (negative outcome) 0.95 0.05 Negative outcome, shorter lifetime than expected Digital twin
Model updating (negative outcome + mitigation) 0.9 0.05 Mitigation (extra cost) required, after mitigation expected

(or longer) lifetime achieved
Digital twin + mitigation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

5

10

Prior

Nominal

Figure 13. Stochastic model for pre-posterior design.
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Figure 14. Benefit of including pre-posterior design (including prior knowledge on X f ).
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Figure 15. Pre-posterior design at inspection time.

6. Conclusions

In this paper, we propose a probabilistic framework for updating structural reliability
of offshore wind substructures based on new information from digital twins. The digital
twin information is consistently included in the framework by updating the uncertainty
related to structural dynamics and load modeling and propagating this uncertainty to the
fatigue damage accumulation. The resulting uncertainty is then converted into uncertainty
of the stress ranges, which is included in a probabilistic model on structural reliability.
The proposed framework is applicable to offshore wind substructures whose lifetimes are
governed by fatigue damage accumulation.

The framework is applied to two case studies, where the potential for improved
decision models for existing and new structures is demonstrated. In the former case, up-
dating soil stiffness and wave loading is considered to investigate the potential for lifetime
extension of fatigue critical joints. In the latter case, the framework is applied to optimize
new structures by using Bayesian pre-posterior theory for future wave load calibration.
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