

Aalborg Universitet

Aspects of Spatial Trajectory Data Management–Compression and Clustering

Li, Tianyi

DOI (link to publication from Publisher):
10.54337/aau466212155

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Li, T. (2021). Aspects of Spatial Trajectory Data Management–Compression and Clustering. Aalborg
Universitetsforlag. Ph.d.-serien for Det Tekniske Fakultet for IT og Design, Aalborg Universitet
https://doi.org/10.54337/aau466212155

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 19, 2022

https://doi.org/10.54337/aau466212155
https://vbn.aau.dk/en/publications/e874b720-cf6d-406d-95df-680545e09a58
https://doi.org/10.54337/aau466212155

TIA
N

YI LI
A

SPEC
TS O

F SPATIA
L TR

A
JEC

TO
R

Y D
ATA M

A
N

A
G

EM
EN

T– C
O

M
PR

ESSIO
N

 A
N

D
 C

LU
STER

IN
G

ASPECTS OF SPATIAL TRAJECTORY
DATA MANAGEMENT– COMPRESSION

AND CLUSTERING

BY
TIANYI LI

DISSERTATION SUBMITTED 2021

Aspects of Spatial Trajectory
Data Management–

Compression and Clustering

Ph.D. Dissertation
Tianyi Li

Dissertation submitted November 1, 2021

Dissertation submitted:	 November 1, 2021

PhD supervisor: 	 Prof. Christian S. Jensen
			 Aalborg University

PhD Co-supervisors: 	 Prof. Torben Bach Pedersen
			 Aalborg University

			 Prof. Lu Chen
			 Zhejiang University

PhD committee: 	 Associate Professor Gabriela Montoya (chair)
			 Aalborg University

			 Associate Professor Zhifeng Bao
			 RMIT University

			 Associate Professor Kyriakos Mouratidis
			 Singapore Management University

PhD Series:	 Technical Faculty of IT and Design, Aalborg University

Department:	 Department of Computer Science

ISSN (online): 2446-1628
ISBN (online): 978-87-7573-983-7

Published by:
Aalborg University Press
Kroghstræde 3
DK – 9220 Aalborg Ø
Phone: +45 99407140
aauf@forlag.aau.dk
forlag.aau.dk

© Copyright: Tianyi Li.
Author has obtained the right to include the published and accepted articles in the
thesis, with a condition that they are cited and/or copyright/credits are placed promi-
nently in the references.

Printed in Denmark by Rosendahls, 2021

Abstract

Large volumes of tracking data are being generated by GPS-enabled devices
and subsequently stored in data warehouses. This data contains rich mobility-
related information that may be utilized for discovering mobility patterns
and other mobility characteristics that may in turn contribute to enabling a
diverse range of services and applications such as aviation traffic monitoring
and social networking. However, the considerable growth in the volumes of
trajectory data presents difficulties in terms of efficient storage, and insufficient
data quality precludes trajectories from effectively providing multiple services.
As an example, in one specific setting, 2 billion trajectories are collected within
a month by an application, and the GPS records have an average user range
error of 7.8 meters with 95% probability.

The underlying characteristics of trajectory datasets enable the effec-
tive storage and analysis of trajectories. To be specific, trajectories or sub-
trajectories may be similar to each other if they co-move in the same region
during the same time of day. The resulting redundancy offers opportunities
for storing the data more efficiently. Further, as a type of streaming data,
movement trajectories represent gradual location changes, rather than abrupt
changes. This may be beneficial for identifying trajectory patterns. The thesis
provides methods that leverage these characteristics to enable the space effi-
cient storage and high-quality pattern mining of trajectories. In particular, we
focus on (i) trajectory compression and on (ii) trajectory clustering.

First, we propose a framework called UTCQ for uncertain trajectory com-
pression and querying in road networks. We exploit the similarity between
uncertain trajectory instances and provide a referential representation of tra-
jectories, in order to achieve compact formats. As part of this, we propose a
sample interval adaptive representation that compresses the temporal infor-
mation of trajectories by taking into account variations in sample intervals. We
also provide a reference selection algorithm based on a proposed Fine-grained
Jaccard Distance to efficiently select trajectory instances as references. Next,
a variable-length encoding scheme is presented for efficiently compressing
referentially represented trajectories. Finally, we propose an index and de-
velop filtering and validation techniques to support efficient queries over

iii

compressed uncertain trajectories.
Second, we propose a framework called TRACE that enables compression,

transmission, and querying of streaming trajectories in road networks in a fully
online fashion. The framework employs a compact two-stage representation
of streaming trajectories: a speed-based representation removes redundant
information by employing vehicle speeds and accumulative distances, and a
multiple-references based referential representation exploits subtrajectory sim-
ilarities. Further, we adopt k-mer matching to adapt referential representation
to online scenarios, and we extend it with reference selection, deletion, and
rewriting functions that further improve compression. Next, we provide an
efficient data transmission scheme for achieving low communication overhead.
Finally, we propose indexing and filtering techniques to support efficient
real-time range queries over compressed trajectories.

Third, we propose the notion of evolutionary clustering of streaming trajec-
tories, abbreviated ECO, that enhances streaming-trajectory clustering quality
via temporal smoothing that prevents abrupt changes in clusters across con-
secutive timestamps. Extending existing studies, we present new notions of
snapshot and historical trajectory costs. We integrate these to formalize ECO
and then formulate ECO as an optimization problem. Next, we prove that
ECO can be solved approximately in linear time, which eliminates the iterative
processes seen in previous studies. Further, we propose a minimal-group
structure and a seed point shifting strategy to facilitate temporal smooth-
ing. Finally, we present algorithms for each component of ECO along with
optimization techniques.

We evaluate the proposed frameworks and methods by utilizing three
real-life datasets and one synthetic dataset. The three real-life datasets are
from two countries, specifically, Denmark and China, and three cities, specifi-
cally, Aalborg, Chengdu, and Hangzhou. The synthetic dataset contains 50
million trajectories that are divided into groups according to the similarities
between each pair of trajectories. The experiments offer detailed insights into
the efficiency and effectiveness of the proposed frameworks and methods.
Specifically, UTCQ outperforms the state-of-the-art by a factor of more than
two in terms of compression ratio and by more than one order of magnitude
in terms of compression efficiency; TRACE improves the compression ratio
by 67% and reduces the transmission cost by an order of magnitude; ECO
outperforms the state-of-the-art in terms of both clustering quality and effi-
ciency. In future research, it is of interest to study multiple-order compression
to improve the compression ratio, to reduce the time delay and memory
cost without compromising the compression ratio and transmission cost for
real-time compression, and to utilize more information to improve clustering
quality.

Resumé

Mobile objekter, såsom køretøjer og personer, med tilknyttede GPS-enheder
genererer massive mængder af positionsdata, der beskriver objekternes bevæg-
elser. Sådanne bevægelsesdata er potentielt nyttige i en bred vifte af anven-
delser. De hastigt voksende mængder af data giver imidlertid udfordringer
relateret til effektiv lagring. Desuden er lav datakvalitet en udfordring i
forhold til mange anvendelser. Afhandlingen bidrager med kompressions-
metoder, der muliggør kompakt lagring af bevægelsesdata samt metoder til
identifikation af klynger af mobile objekter.

Først beskriver afhandlingen et løsning, kaldet UTCQ, der muliggør
komprimering af unøjagtige bevægelsesdata fra objekter, der bevæger sig
i vejnetværk. Løsningen udnytter ligheder blandt de forskellige mulige
bevægelser, som kan ligge til grund for de unøjagtige data, og repræsen-
terer mulige bevægelser som afvigelser fra udvalgte reference-bevægelser for
at opnå et kompakt format. Dernæst beskrives hvordan sådanne repræsenta-
tioner kan afbildes til kompakte bitstrenge. Endelig beskriver afhandlingen
teknikker til indicering og filtrering og validering, der muliggør effektive
forespørgsler direkte på de komprimerede data.

For det andet beskriver afhandlingen en løsning, kaldet TRACE, der under-
støtter såkaldt online komprimering, hvor bevægelsesdata komprimeres i takt
med, at de skabes og ankommer til systemet. Desuden muliggør TRACE, at
data komprimeres der, hvor de ankommer, og så sendes i kompakt form til der,
hvor de anvendes. Konkret tilpasses såkaldt k-mer matching til onlinescenarier,
og teknikker til udvælgelse, sletning og omskrivning af reference-bevægelser
introduceres med henblik på at opnå kompakte repræsentationer. Desuden
præsenterer afhandlingen teknikker til effektiv datatransmission. Endelig
beskriver den indicerings- og filtreringsteknikker, der understøtter effektive
todimensionelle interval-forespørgsler direkte på komprimerede data.

For det tredje beskriver afhandlingen en løsning, kaldet ECO, der muliggør
beregning af evolutionære klynger af mobile objekter i takt med at bevægelses-
data fra en population af objekter ankommer til systemet. For at forbedre
kvaliteten af de beregnede klynger, så introducerer ECO tidsmæssige ud-
jævningsteknikker, der forhindrer pludselige ændringer i klynger over kort

v

tid. Desuden defineres begreberne ”snapshot omkostninger” og ”historiske
omkostninger”, hvorefter de bruges til at formalisere det problem, som ECO
løser. Dernæst formuleres problemet som et optimeringsproblem, og det
bevises at problemet kan løses approksimativt i lineær tid. Dermed elimineres
tidligere studiers omkostningstunge iterative processer.

Vi evaluerer de foreslåede løsninger empirisk ved brug af tre virkelige
datasæt og et syntetisk datasæt. Evalueringerne giver detaljeret indsigt i
løsningernes egenskaber og viser bl.a., at løsningerne er i stand til at levere
bedre performance end de bedste eksisterende løsninger.

Acknowledgments

I would like to thank many people who have supported me during my Ph.D.
studies.

First of all, I would like to express my sincere gratitude to my supervisor
Prof. Christian S. Jensen. He has taught me so much; from writing skills to
scientific research methods, which laid a solid foundation for my research. I
also want to thank him for translating the Danish abstract of this thesis. I am
very impressed by his meticulousness towards academic excellence. Further,
his encouragement and support are great for my self-confidence. It is my
pleasure to be his Ph.D. student.

Secondly, I would like to express my appreciation to my co-supervisor Prof.
Torben Bach Pedersen. He has provided many unique ideas and insightful
comments for my papers. He also provided writing tips, which significantly
improved my papers. I learn a lot after every time I discuss with him. I’m
very thankful for the time that he spent instructing me.

Thirdly, I am especially grateful to my co-supervisor Prof. Lu Chen.
She provided guidance which allowed me to perform excellent research and
helps me avoiding detours. She devoted so much time revising my drafts. I
appreciate her dedication to my Ph.D project. Further, she provided a lot of
support in my daily life. It’s not an exaggeration to say that I would not have
been able to complete this challenging journey without her guidance.

I would like to thank all my colleagues at the Database, Programming and
Web Technologies group at Aalborg University for a fun filled and collegial
working environment. The life of a Ph.D. student is fulled with adversities
and solitude. It is a pleasure to have their accompany. Specifically, I would
like to thank Asst. Prof. Jilin Hu and Asst. Prof. Tung Kieu, who helped me
in many apsects in these past three years. I also thank the administrative staffs
at AAU, especially Helle Westmark, Helle Schroll, and Ulla Øland who have
made my Ph.D. life easier.

Lastly, I would like to express my gratitude for my husband who always
stands by me and believes in me; my family who raised me and constantly
encourages me; and my friends who play a positive role during my Ph.D.
period.

vii

Acknowledgements

viii

Contents

Abstract iii

Resumé v

Acknowledgements vii

Thesis Details xv

I Thesis Summary 1

1 Introduction 3
1 Background and Motivation . 3

1.1 Trajectory Compression 4
1.2 Trajectory Clustering . 6

2 Thesis structure . 8

2 Compression of Uncertain Trajectories in Road Networks 11
1 Problem Motivation and Statement 11
2 Preliminaries . 13

2.1 Data Model . 13
2.2 TED representation . 14

3 UTCQ Framework . 15
4 Representation . 15

4.1 Improved TED representation 16
4.2 Referential Representation 16
4.3 Reference Selection . 17

5 Compression . 19
6 Query Processing . 19

6.1 StIU Index . 20
6.2 Probabilistic Queries . 21

7 Experimental Evaluation . 22

ix

Contents

7.1 Experimental Design . 23
7.2 Experimental Results . 24

3 Compression of Streaming Trajectories in Road Networks 25
1 Problem Motivation and Statement 25
2 Preliminaries . 26
3 Framework . 28
4 Representation . 29

4.1 Speed-based Representation 29
4.2 Multiple-reference based Referential Representation . . 29
4.3 Reference Selection and Deletion 30
4.4 Reference Rewriting . 32

5 Compression . 33
5.1 Binary Encoding . 34
5.2 Data Transmission . 34

6 Query Processing . 34
7 Experimental Evaluation . 35

7.1 Experimental Design . 36
7.2 Experimental Results . 36

4 Evolutionary Clustering of Streaming Trajectories 39
1 Problem Motivation and Statement 39
2 Preliminaries . 41

2.1 Data Model . 41
2.2 DBSCAN . 42
2.3 Evolutionary Clustering 42

3 Problem Formulation . 43
3.1 Snapshot Cost . 43
3.2 Historical Cost . 44
3.3 Total Cost . 45

4 Computation of Adjustments . 46
4.1 Linear Time Solution . 46
4.2 Shifting of Seed Points . 48
4.3 Speed-based Pre-processing 48

5 Algorithm . 49
5.1 Grid Index . 49
5.2 Generating Minimal Groups 49
5.3 Evolutionary Clustering 49

6 Experimental Evaluation . 50
6.1 Experimental Design . 50
6.2 Experimental Results . 51

x

Contents

5 Conclusion and Future Work 53
1 Conclusion . 53
2 Future Work . 54

Bibliography 55
References . 55

II Papers 61

A Compression of Uncertain Trajectories in Road Networks 63
1 Introduction . 65
2 Preliminaries . 67

2.1 Probabilistic Map-Matching 68
2.2 TED Representation . 70
2.3 Compression with TED 72

3 Framework . 72
4 Representor and Compressor . 74

4.1 Improved TED Representation 75
4.2 Referential Representation 76
4.3 Reference Selection . 78
4.4 Compression . 81

5 Query Processor . 83
5.1 Time Flag Bit-string Decompression 83
5.2 StIU Index . 84
5.3 Probabilistic Queries . 86
5.4 Filtering and Validating Lemmas 87

6 Experiments . 89
6.1 Experimental Setting . 89
6.2 Performance of Compression 91
6.3 Query Performance . 93
6.4 Scalability . 94

7 Related Work . 95
7.1 Raw Data-oriented Compression 95
7.2 Road Network-embedded Compression 96

8 Conclusion . 97
References . 98

B TRACE: Real-time Compression of Streaming Trajectories in Road
Networks 103
1 Introduction . 105
2 Preliminaries . 107

2.1 Data Model . 107

xi

Contents

2.2 UTCQ Representation . 109
2.3 k-mer Matching . 111

3 TRACE framework . 112
4 Representation . 113

4.1 Speed-based Representation 113
4.2 Representation with Multiple-References 114
4.3 Reference Selection for E(Trn) 115
4.4 Reference Deletion for E(Trn) 117
4.5 Reference Rewriting for E(Trn) 118
4.6 Reference Selection and Deletion for V(Trn) 122

5 Compression . 122
5.1 Binary Encoding . 122
5.2 Transmission of Compressed Binary Codes 123

6 Query Processing . 124
6.1 Query Definition . 124
6.2 Index and Filtering Technique 124
6.3 Index Transmission . 125
6.4 Discussion . 126

7 Experimental Evaluation . 127
7.1 Experimental Setting . 127
7.2 Experimental Results . 129

8 Related Work . 133
8.1 Raw Data Compression 133
8.2 Network-constrained Compression 133

9 Conclusion and Future Work . 135
References . 136

C Evolutionary Clustering of Streaming Trajectories 141
1 Introduction . 143
2 Preliminaries . 146

2.1 Data Model . 146
2.2 DBSCAN . 148
2.3 Evolutionary Clustering 149

3 Problem Statement . 149
3.1 Observations . 149
3.2 Problem Definition . 150

4 Computation of Adjustments . 154
4.1 Linear Time Solution . 154
4.2 Shifting of Seed Points . 158
4.3 Speed-based Pre-processing 159

5 Algorithms . 160
5.1 Grid Index . 160
5.2 Generating Minimal Groups 162

xii

Contents

5.3 Evolutionary Clustering 162
6 Experiments . 164

6.1 Experimental Design . 165
6.2 Comparison and Parameter Study 166
6.3 Scalability . 169

7 Related Work . 170
7.1 Streaming Trajectory Clustering 170
7.2 Evolutionary Clustering 172

8 Conclusion and Future Work . 172
References . 174

xiii

Contents

xiv

Thesis Details

Thesis Title: Aspects of Spatial Trajectory Data Management–
Compression and Clustering

PhD Student: Tianyi Li
Aalborg University

PhD Supervisor: Prof. Christian S. Jensen
Aalborg University

PhD Co-supervisors: Prof. Torben Bach Pedersen
Aalborg University
Prof. Lu Chen
Zhejiang University

The main body of the thesis consists of the following papers.

(A) Tianyi Li, Ruikai Huang, Lu Chen, Christian S. Jensen, and Torben
Bach Pedersen "Compression of Uncertain Trajectories in Road Networks," in
PVLDB, pp. 1050–1063, 2020.

(B) Tianyi Li, Lu Chen, Christian S. Jensen, and Torben Bach Pedersen
"TRACE: Real-time Compression of Streaming Trajectories in Road Networks,"
in PVLDB, pp. 1175–1187, 2021.

(C) Tianyi Li, Lu Chen, Christian S. Jensen, and Torben Bach Pedersen, and
Jilin Hu "Evolutionary Clustering of Streaming Trajectories," (under review).

This thesis has been submitted for assessment in partial fulfillment of the Ph.D.
degree. The thesis is based on the submitted or published scientific papers
listed above. Parts of the content of the papers in the main body of the thesis
are used directly or indirectly in the extended summary part of the thesis. As
part of the assessment, co-author statements have been made available to the
assessment committee and are also available at the Faculty. The permission
for using the published and accepted articles in the thesis have been obtained
from the corresponding publishers with the condition that they are cited and
copyrights are placed prominently in the references.

xv

Thesis Details

xvi

Part I

Thesis Summary

1

Chapter 1

Introduction

1 Background and Motivation

Increased sophistication and deployment of computing, communication, and
positioning technologies has resulted in the collection of rapidly growing
volumes of mobility data [1]. For instance, Didi Chuxing ("DiDi"), a mobile
platform and transportation services company, provides a variety of services
to more than 550 million users all over the world1. DiDi’s platform is used
by tons of millions of drivers, car owners, and delivery service partners who
earn flexible incomes. This results in more than 10 billion trajectories being
generated a year2. As another example, Fitbit, a widely used type of wearable
devices for activity tracking and fitness monitoring, collects trajectory data
from its 23 million costumers at a high sampling rate3. Such trajectories
encode us detailed mobility information that may be useful in services and
applications in a variety of fields, e.g., traffic analysis [2], urban planing [3],
mobility data mining [4], vehicular networks [5], and location-based social
networks [6]. For example, identification of popular routes is beneficial for
route recommendation.

However, the rapid growth in the amounts of available trajectory data
leads to difficulties related to data storage. For example, if data is collected
every two seconds, we need around 1GB of storage to store the data from just
800 objects per day. The size of data also incurs high costs of data transmis-
sion. Specifically, the expense of transmitting data over remote networks is
excessively expensive, generally $5 – $7 per MB. Consequently, tracking 800
vehicles for a single day costs some $5,000 to $7,000 [7].

Further, although a trajectory can be conceptualized as a continuous time-

1https://www.didiglobal.com/science/brain
2https://www.businesswire.com
3http://expandedramblings.com/index.php/fitbit-statistics/

3

Chapter 1. Introduction

space function, it is collected by GPS-enabled devices as discrete sequences
of timestamped locations in practice [8]. GPS receivers often do not record
accurate data, due to sensor malfunctions, low signal strengths, interferences,
etc. Statistics show that they have an average user range error of 7.8 meters
with 95% probability [4]. Such errors may degrade the performance of location-
based services significantly. For example, inaccurate locations may result in
biased data prediction results and may compromise the training of models [9,
10].

Motivated by the above considerations, we study two problems in the
thesis: (i) trajectory compression that aims to mitigate the storage requirements
and (ii) trajectory clustering that enables the mining of high-quality results by
eliminating the adverse effect of noisy data.

1.1 Trajectory Compression

Trajectory compression aims to reduce the storage needed for storing trajecto-
ries and can be categorized into online compression and offline compression.
Offline compression assumes that the complete history of collected trajectories
is available. Usually, the best trade-off between compression quality and
ratio can be achieved at the expense of high computational costs in the case
of offline compression [11]. Online compression generally can only use the
most recently received data, stored in a local buffer near the GPS devices to
facilitate trajectory compression, and compressed trajectories are transferred
to a central storage location in a streaming fashion in real-time.

Trajectory compression methods can also be classified into road network-
based and simplification-based methods. Simplification-based methods com-
press raw trajectories that are made up by raw floating point value pairs
(longitude and latitude). Such methods exclude less important trajectory
points to achieve high compression ratios. However, simplification-based
compression may then also reduce the utility of the data for analysis purposes.
In contrast, road network-based compression is applied to trajectories that are
projected onto a road network using map-matching algorithms [12, 13], called
network-constrained trajectories [14]. A network-constrained trajectory can be
represented in concise formats with little information loss. Thus, for certain
types of data, typically data from network-constrained mobility, road network-
based compression enables better compression with little or no reduction in
quality [3].

Example 1.1
Figure 1.1a gives an example of a raw trajectory consisting of 8 GPS points
recorded by a taxi in Hangzhou, China, while Figure 1.1b gives an example of
a network-constrained trajectory, where each position in the raw trajectory in
Figure 1.1a is mapped to a road-network location.

4

1. Background and Motivation

(a) Raw trajectory (b) 1st trajectory instance

(c) 2nd trajectory instance (d) 3rd trajectory instance

Figure 1.1: Raw trajectory and network-constrained trajectories [14]

Motivated by the above analysis, we study road network-based trajectory
compression, in both offline and online modes. In doing so, we take into
account the following aspects:

• Uncertainty of trajectories: The uncertainty of trajectories is caused by
two characteristics, a low sampling rate and inaccurate GPS positions [4,
15]. A low sampling rate can make multiple routes between two map-
matched GPS positions possible, while position inaccuracy means that
a raw GPS position may be map-matched to multiple road-network
positions, e.g., by using probabilistic map-matching [12, 16].

Example 1.2
As shown in Figure 1.1a, all GPS points are off the road, and the sampling
interval between two green points exceeds 4 minutes. Figures 1.1b, 1.1c,
and 1.1d show trajectory instances generated from Figure 1.1a that are
similar to each other.

As suggested by Figure 1.1, probabilistic map-matching generally finds
several potential road-network locations for a raw trajectory point, which
generates a set of instances for a single uncertain trajectory and preserves
the original information of raw trajectories as much as possible. However,
storing multiple possible trajectory instances is costly, calling for effective
trajectory compression schemes.

• Effective storage reduction with high data usability: Existing studies
of network-based trajectory compression [17–22] have limited effect on
storage reduction or achieve high compression at the cost of omitting
useful information. First, most studies store auxiliary information, such

5

Chapter 1. Introduction

as frequent travel paths (FTP) and shortest travel paths (STP) [17–20] to
compress trajectories, which increases the storage cost. Second, some
studies discard useful information of trajectories, e.g., the timestamps
and the exact locations of trajectories, for achieving high compression,
reducing the data usability [21, 22].

• Effective querying of compressed data: Enabling effective querying
is key to location-based services (LBS) and is a desirable property
of compressed trajectories [22]. However, few studies take it into ac-
count [17, 20, 22]. Some studies [17, 20] need to perform full decompres-
sion before querying, which is very in-efficient. Although an existing
study [22] proposes a partial decompression scheme for querying, the
associated time cost is high because the proposed scheme is unable to
support fast search on the temporal information of compressed trajecto-
ries.

• Online compression without offline processing: Existing proposals for
online compression generally [23, 24] rely on offline training of predic-
tion models using historical data. They discard data that can be predicted
within a certain error bound during real-time compression. However,
movement patterns on even the same road vary across time [25, 26],
necessitating frequent re-training and incurring high transmission cost
for delivering re-trained models, which limits the usability in practice.

1.2 Trajectory Clustering

As a typical movement pattern discovery approach, trajectory clustering clus-
ters similar trajectories to produce representative paths or common movement
trends, which can serve as powerful tool to visualize mobility. Trajectory clus-
tering is relevant to real-life applications, e.g., object motion prediction [27]
and activity understanding [28]. For example, mining the common behaviors
of hurricanes can facilitate forecasting the landfall of hurricanes; and in animal
research, discovering common behaviors of animals may provide insight into
the underlying causes of animal migration [29].

An important observation is that the cluster to which the trajectory of
a moving object belongs may change over time, i.e., clustering result may
evolve as time goes by. For example, traffic in road networks can be highly
dynamic [29]. In order to consistently monitor the evolution of clusters and
support real-time decision-making over moving objects, many studies propose
different means of clustering trajectories in streaming settings [30–38].

Example 1.3
Figure 1.2 shows clustering results of trajectories from 717 taxis in Chengdu,
China, over four timestamps. The interval between each two timestamps is

6

1. Background and Motivation

10s. Different clusters are plotted with different colors, i.e., four clusters exist
at timestamp 1, 3, and 4, while five clusters exist at timestamp 2.

30.63030.625
Latitude

30.620

140.015

140.020

140.010

140.005

Lo
ng

itu
de

(a) Clustering results at timestamp 1

140.015

140.020

140.010

140.005
30.63030.625

Lo
ng

itu
de

Latitude
30.620

(b) Clustering results at timestamp 2

30.63030.625
Latitude

30.620

140.015

140.020

140.010

140.005

Lo
ng

itu
de

(c) Clustering results at timestamp 3

30.63030.625
Latitude

30.620

140.015

140.020

140.010

140.005

Lo
ng

itu
de

(d) Clustering results at timestamp 4

Figure 1.2: Evolving clustering results

Motivated by the above analysis, we study clustering of streaming trajec-
tories. The main target of existing studies of streaming trajectory clustering
is to efficiently update clusters continuously according to the most recent
data. However, they are generally not robust to short-term fluctuations in the
underlying trajectory data, which are caused by intermittent errors of GPS
devices and/or unusual behaviors of moving objects [39].

Example 1.4
As many large cities are experiencing increasing traffic, road traffic man-
agement systems (RTMS) have been developed that reduce congestion by
re-routing vehicles. Specifically, an RTMS re-routes vehicles from congested re-
gions to less congested regions by analyzing data collected in real-time [40, 41].
Continuing Example 1.3 and assuming that the current timestamp is 2, an
RTMS may determine to re-route vehicles from the space with the red cluster
to the more open region between the red and the pink cluster, as the clustering
result at timestamp 2 implies that few vehicles are located in this region. How-
ever, taking into account the smoothness of trajectory data and the clustering
results at timestamps 1, 3, and 4, the clustering result at the timestamp 2 is
likely to be wrong. In this case, the re-routing may be ineffective or even

7

Chapter 1. Introduction

lead to worse traffic. In addition, if the evolution of clusters in Figure 1.2
represents population migration, i.e., each cluster corresponds to a population,
researchers will observe a suddenly emerged population (the pink cluster) at
timestamp 2 and will find that it disappears at timestamp 3, which may be
difficult to explain.

Example 1.4 indicates that it is beneficial to eliminate short-term fluctua-
tions in clusters to achieve robustness to exceptional data. A naive approach
is to perform cleaning before clustering. However, studies of two real-life
datasets show that among the trajectories that cause mutations of clusters,
88.9% and 75.9% of the trajectories follow the speed constraint, while 97.8%
and 96.1% of them are categorized as inliers [42]. Moreover, in real-time
applications, it is impractical to correct previous clusters retroactively. Hence,
it is difficult for existing cleaning techniques to facilitate smoothly shifting
clustering sequences [43–45].

Research Topics

Trajectory compression

How to effectively compress

network-constrained

uncertain trajectories?

How to effectively compress

network-constrained

streaming trajectories?

Trajectory clustering

How to effectively achieve

high-quality clustering over

low-quality GPS data?

Paper B

Paper C

Paper AChallenge Ⅰ

Sheer volume of

trajectories

Challenge Ⅱ

 Noisy GPS data

Figure 1.3: Thesis structure

2 Thesis structure

Figure 1.3 shows the thesis structure. As illustrated in Section 1, the thesis is
motivated by two challenges: the sheer volume of trajectories and noisy GPS
data. Trajectory compression is an effective strategy to reduce storage needs.
As noisy GPS data yields uncertain trajectories, we first study compression
of network-constrained uncertain trajectories in offline settings, which is
the topic of Paper A. Then, we extend the study in Paper A to compress
network-constrained trajectories in online settings, which is the topic of Paper
B. Next, as low-quality GPS data degrades the performance of multiple pattern

8

2. Thesis structure

discovery approaches of trajectories, we study how to eliminate its adverse
effect on a typical pattern mining approach, namely clustering, which is the
topic of Paper C.

Chapter 2 presents a framework for network-constrained uncertain tra-
jectory compression and querying. Key aspects of the proposal include (i)
a reference selection algorithm based on the notion of Fine-grained Jaccard
Distance that is used to efficiently select trajectory instances as references;
(ii) referential representation schemes for the different types of information
contained in trajectories to achieve high compression ratios; and (iii) an index
together with filtering techniques to support efficient queries over compressed
uncertain trajectories.

Chapter 3 presents a framework that enables compression, transmission,
and querying of network-constrained streaming trajectories in a fully on-
line fashion. Specifically, the framework mainly encompasses (i) a compact
two-stage representation of streaming trajectories, i.e., a speed-based represen-
tation that eliminates redundant information and a multiple-references based
referential representation that exploits subtrajectory similarities; (ii) an online
referential representation scheme extended with reference selection, deletion,
and rewriting functions that further improves the compression performance;
(iii) efficient data transmission scheme for achieving low transmission over-
head; and (iv) an index and accompanying filtering techniques for supporting
real-time range queries.

Trajectory clustering is presented in the Chapter 4. In that chapter, we
define the concept of Evolutionary Clustering of streaming trajectOries (ECO)
that improves streaming-trajectory clustering quality by means of temporal
smoothing that prevents mutations in clusters across successive timestamps.
By exploiting proposed notions of snapshot and historical trajectory costs,
we formalize ECO and then formulate ECO as an optimization problem, and
we prove that ECO can be performed approximately in linear time, thus
eliminating the iterative processes employed in previous studies. In addition,
we propose a minimal-group structure and a seed point shifting strategy to
facilitate temporal smoothing. Finally, we present all algorithms supporting
each components of ECO along with a set of optimization techniques. The
recommended order to go through the thesis is Paper A then Paper B then Paper
C.

9

Chapter 1. Introduction

10

Chapter 2

Compression of Uncertain
Trajectories in Road
Networks

This chapter gives an overall introduction to Paper A [14]. It reuses content
from that paper when this was considered most effective.

1 Problem Motivation and Statement

As illustrated in Section 1.1, trajectories can be uncertain due to the limitations
of GPS-enabled devices. Probabilistic map-matching [46] has been developed
to project raw GPS trajectories onto a road network. It generally finds multiple
road-network locations for a raw trajectory point that preserve the original
information of raw trajectories as much as possible. As a result, very large
volumes of trajectory instances are generated for a single uncertain trajectory,
calling for effective trajectory compression schemes.

0.0

0.2

0.4

0.6

Fr
ac

tio
n

Edit distance within an uncertain trajectory

 DK CD HZ

[3,5] 9[6,8][0,2]

(a) Similarity between two trajectory instances

0 1 (1,50] (50,100] >100
0.0

0.3

0.6

0.9

Fr
ac

tio
n

Differences (sec)

 DK CD HZ

(b) Sample intervals

Figure 2.1: Statistics of real-life datasets [14]

11

Chapter 2. Compression of Uncertain Trajectories in Road Networks

In order to effectively compress uncertain trajectories in road networks, two
tasks must be accomplished. The first task is achieving a high compression ratio.
Figure 2.1a, that shows statistics on three real-life datasets, Denmark (DK),
Chengdu (CD), and Hangzhou (HZ), indicates the high similarity between
trajectory instances. This motivates us to employ a referential representation
for uncertain trajectories, which has been proven effective for compressing
highly similar genome sequences [47–49]. The second task is enabling efficient
querying of compressed uncertain trajectories. An existing study [22] develops an
index for querying accurate compressed trajectories. However, the study does
not consider the uncertainty of trajectories and is unsuitable for referentially
represented trajectory instances. Thus, we design a novel indexing technique
and associated query processing algorithms taking both into consideration.

We integrate the above contributions into a novel framework for Uncertain
Trajectory Compression and Querying (UTCQ). First, we propose a two-stage
representation, improved TED representation and referential representation.
The improved TED representation removes more redundancy on the basis of
the state-of-the-art TED model [22] and encompasses a novel SIAR scheme
for representing temporal information. The referential representation exploits
the similarities between trajectory instances to gain a more compact format on
top of the improved TED representation. For achieving high performance ref-
erential representation, we select high quality references by using a proposed
greedy reference selection algorithm. As part of this, we develop a Fine-
grained Jaccard Distance (FJD) to efficiently measure the similarity between
trajectory instances. Next, effective binary encoding schemes are presented for
compressing represented uncertain trajectories. Finally, we devise algorithms
to answer typical probabilistic queries over compressed uncertain trajecto-
ries. Specifically, an index structure with filtering and validation lemmas is
proposed, which supports partial decompression and effective querying.

In summary, our main contributions are as follows:

• We propose a novel framework to compress uncertain trajectories that
supports efficient probabilistic queries.

• We develop a representation that accommodates a novel encoding
scheme for the temporal information of trajectories, and we use a refer-
ential representation to compress uncertain trajectories in road networks.

• We design an effective indexing structure and filtering techniques to
facilitate query processing.

• We conduct extensive experimental evaluations on three real datasets to
gain insight into the performance of the proposed framework.

12

2. Preliminaries

1

(a) Tu
1

1

1

v1
l0

l1

l2
l3
l4l5l6

v2

2

4

v3 v4
v5

v6

v7v8

p00
p1

p2
p3

p4p5p6

2

1
2

2

4

1

ndistp0=(120.0692, 30.28622, 5:03:25)

p1=(120.0724, 30.28618, 5:07:25)

p2=(120.0757, 30.28621, 5:11:26)

p3=(120.0762, 30.28621, 5:15:26)

p4=(120.0772, 30.28620, 5:19:25)

p5=(120.0786, 30.28617, 5:23:25)

p6=(120.0796, 30.28498, 5:27:25)

(b) Tu (c) Tu
1

3

2

4

1

l2
l3
l4l5l6

2

2

l0 l1'1 1 1

1
2

4

1

l1

l2
l3
l4l5

2

2

l6'' 2

1 0 1 l0
v10

v9

2

1

2

Figure 2.2: Instances of the network-constrained uncertain trajectory Tu1 [14]

2 Preliminaries

In this section, we formally define uncertain trajectories in road networks
and introduce the TED representation [22]. The following definitions and
examples are reproduced from [14].

2.1 Data Model

A road network is modeled as a directed graph G = (V, E), where V is a
set of vertices v (x, y) denoting intersections or end points, and E is a set of
directed edges e (vi → vj). Here, (x, y) denotes the 2D location of a vertex.
For simplicity, we use v and (vi → vj) to denote a vertex and a directed edge
of a road network, respectively.

13

Chapter 2. Compression of Uncertain Trajectories in Road Networks

Definition 2.1
A mapped location l is a network-constrained location in a road network
G, represented as 〈(vs → ve), ndist, t〉, where ndist is the network distance
between vs and l on (vs → ve) and t is a timestamp.

We also denote a mapped location as 〈(vs → ve), ndist〉 when the times-
tamp t is not considered. Given a mapped location l = 〈(vs → ve), ndist〉, the
relative distance rd of l w.r.t. (vs → ve) is the ratio of ndist to the length of
(vs → ve) (denoted as |(vs → ve)|).

Definition 2.2
A network-constrained uncertain trajectory Tuj contains a set of instances

Tuj
w (1 ≤ w ≤ N j) generated from a raw trajectory Tp. Each Tuj

w is associated
with a probability and is represented by a time-ordered sequence of mapped
locations that is different from that of Tuj

v (1 ≤ v ≤ N j ∧ v 6= w). All instances
of Tuj share the same temporal information for all mapped locations.

Example 2.1
In Figure 2.2a, l6 = 〈(v7 → v8), ndist, 5:27:25〉 is the mapped location corre-
sponding to p6 and rd of l6 = 〈(v7 → v8), ndist〉 w.r.t. (v7 → v8) is ndist

|(v7→v8)|
.

Figure 2.2 shows a network-constrained uncertain trajectory Tu1 generated
from the raw trajectory Tp = 〈p0, ..., p6〉. Tu1 contains three instances, i.e., Tu1

1,
Tu1

2, and Tu1
3.

In the rest of the thesis, we use "trajectory" instead of "network-constrained
trajectory" for simplification when this does not cause ambiguity.

2.2 TED representation

In the TED representation [22], an edge sequence is represented by a start
vertex v followed by a sequence of outgoing edge numbers.

Definition 2.3
The outgoing edge number no (≥ 1) of an edge (vs → ve) means that
(vs → ve) is the no

th exit edge of vs.

Example 2.2
In Figure 2.2, the edge sequence of Tu1

1 is represented as 〈185190→ 1,2,1,2,2,0,4,
1,0〉, 18590 is the ID of the start vertex the edge sequence, i.e., v1.

TED uses a time flag bit-string to map timestamps to outgoing edge
numbers.
Example 2.3
In Figure 2.2, the time flag bit-string of Tu1

1 is 〈1,0,1,0,1,1,1,1,1〉, where the first
1 means that there is a mapped location on (v1 → v2) and the first 0 means
that there is no mapped location on (v2 → v3).

14

3. UTCQ Framework

Trajectory Representor

Improved TED Representation

E(Tu), SV(Tu)

Reference Selection

1

2

Referential Representation

Ref (Tu), Ref (Tu).Rrs

3

Trajectory Compressor Binary Encoding

Query Processor

Tu

NCUTs

UTCQ(Tu)

 Compressed Tu

Query Results

ProbabilisticWhen Query

ProbabilisticWhere Query

Probabilistic Range Query

(1)

(2)

(3)

Partially Decompressed

Trajectories

Figure 2.3: Framework [14]

3 UTCQ Framework

Figure 2.3 shows our framework for Uncertain Trajectory Compression and
Querying (UTCQ) that contains three components, trajectory representor,
trajectory compressor and query processor.

The trajectory representor transforms the network-constrained uncertain
trajectories (NCUT) into a new compact format by improved TED representa-
tion, reference selection, and referential representation. Next, the trajectory
compressor compresses the represented trajectories into binary codes. Finally,
the query processor supports efficient querying of compressed trajectories.

4 Representation

This section covers the improve RED representation, referential representa-
tion, and reference selection. The following definitions and examples are
reproduced from [14].

15

Chapter 2. Compression of Uncertain Trajectories in Road Networks

Table 2.1: Example of improved TED representation of Tu1 in Figure 2.2 [14]

w 1 2 3
SV(Tu1

w) 185190 185190 185190
E(Tu1

w) 〈1, 2, 1, 2, 2, 0, 4, 1, 0〉 〈1, 1, 1, 2, 2, 0, 4, 1, 0〉 〈1, 2, 1, 2, 2, 0, 4, 1, 2〉
D(Tu1

w) 〈0.875, 0.25, 0.5, 〈0.875, 0.25, 0.5, 〈0.875, 0.25, 0.5,
0.875 0.5, 0, 0.875〉 0.875 0.5, 0, 0.875〉 0.875 0.5, 0, 0.5〉

T′(Tu1
w) 〈0, 1, 0, 1, 1, 1, 1〉 〈1, 0, 0, 1, 1, 1, 1〉 〈0, 1, 0, 1, 1, 1, 1〉

Tu1
w.p 0.75 0.2 0.05

4.1 Improved TED representation

In the improved TED representation, we convert each uncertain trajectory
instance Tuj into a tuple (SV(Tuj

w), E(Tuj
w), D(Tuj

w), T′(Tuj
w), Tuj

w.p). SV(Tuj
w)

is the start vertex ID of the first edge that is traversed by Tuj
w. D(Tuj

w) and
Tuj

w.p are the relative distance sequence and probability of Tuj
w. E(Tuj

w) is the
outgoing edge number sequence of Tuj

w, excluding the start vertex. T′(Tuj
w) is

the time flag bit-string of Tuj
w. Note that the first and last bits 1 of T′(Tuj

w) are
fixed according to [22] and thus are omitted to improve the compression.

Sample Interval Adaptive Representation (SIAR) of T(Tuj). Figure 2.1b
reports the deviations between the actual sample intervals and the default
ones of three real-life datasets. Since most of the actual sample intervals are
very similar to their default ones, we record only the difference between them.
Let the first timestamp of the time sequence of Tuj be t0 and Ts be the default
sample interval. SIAR keeps t0 as the first value in T(Tuj) and represents the
following timestamps as (ti+1 − ti)− Ts, where ti is the ith timestamp. The
improved TED representation of Tu1 is given in Table 2.1.

4.2 Referential Representation

Motivated by the high similarities among the trajectory instances representing
a single uncertain trajectory (cf. Figure 2.1a), we select one or more instances
as references for each uncertain trajectory. Then, other instances can be
represented according to these references using a set of factors defined below.

Definition 4.1
Given a non-reference Nref j

ik and its corresponding reference Ref j
i , Nref j

ik can be

expressed as a list of factors, i.e., Comφ(Nref j
ik, Ref j

i) = 〈φ
j
ik(Mah)|1 ≤ h ≤ H〉,

where H is the number of factors, and a factor φ
j
ik(Mah) denotes a subsequence

in Nref j
ik.

We use the referential representation set Ref j
i .Rrs to denote the set of Nref j

ik

(1 ≤ k ≤ |Ref j
i .Rrs|) represented by Ref j

i . Different components of trajecto-

16

4. Representation

Table 2.2: An referential representation example for Table 2.1 [14]

φ Comφ(Nref 1
11, Ref 1

1) Comφ(Nref 1
12, Ref 1

1)

SV ∅ ∅
E 〈(0, 1, 1), (2, 7)〉 〈(0, 8, 2)〉
D ∅ 〈(6, 0.5)〉
T′ 〈(1, 2), (3, 4)〉 ∅

ries are referentially represented by different formats of factors. We adopt
the format (S, L, M) to encode Ej

ik(Mah) and the format (S, L) to encode

T′ jik(Mah) [49], where S is the start position of the subsequence in the reference,
L is the length of the subsequence, and M is the first mis-matched element fol-
lowing the subsequence. T′ jik(Mah) omits M because it can be inferred easily

by the reference. Dj
ik(Mah) is represent using the format (pos, rd), where pos

is the position of the different value rd. The referential representation of Tu1

is given in Table 2.2.

4.3 Reference Selection

As can be seen from Table 2.2, the more similar a reference and a non-reference
are, the more redundancy can be removed and thus the higher compression
ratio can be achieved. Intuitively, trivially computing the similarity between
each pair of trajectories is time-consuming. Thus, inspired by a previous
study [49], we propose to use the similarity between the referential represen-
tations of trajectory instances to approximate their exact one. This requires
us to select a pivot for each uncertain trajectory for referentially representing
other trajectory instances. The pivot selection generally follows that of an
an existing study [50]. Thereafter, we approximately estimate the similarity
between two represented edges sequences E(Tuj

w) to E(Tuj
v) against a pivot

pivi by a newly defined Fine-grained Jaccard Distance (FJD),

FJD(Tuj
w → Tuj

v, pivi)(w 6= v) =
∑H′

h′=1sim(Ej
iv(Mah′), ComE(Tuj

w, pivi))

max{H, H′} , (2.1)

where H and H′ denote the number of factors in ComE(Tuj
w, pivi) and ComE(Tuj

v,
pivi), respectively, while Ej

iv(Mah′) denotes the h′th factor (Siv
h′ , Liv

h′) in ComE(Tuj
v,

pivi). In addition, we use sim(Ej
iv(Mah′), ComE(Tuj

w, pivi)) to measure the sim-

ilarity between Ej
iv(Mah′) and ComE(Tuj

w, pivi) as follows.

sim(Ej
iv(Mah′), ComE(Tuj

w, pivi)) =
maxH

h=1(Ej
iw(Mah) ∩ Ej

iv(Mah′))

max{Liw
max, Liv

h′}
(2.2)

17

Chapter 2. Compression of Uncertain Trajectories in Road Networks

We define Ej
iw(Mah)∩ Ej

iv(Mah′) as max{min{Siw
h + Liw

h , Siv
h′ +Liv

h′}−max{Siw
h ,

Siv
h′}, 0}, and Liw

max = arg maxLiw
h

Ej
iw(Mah) ∩Ej

iv(Mah′). Example 4.1 gives the
process of FJD computation.

Example 4.1
Consider the example in Table 2.2. Given piv1 = Tu1

3, we have ComE(Tu1
1, piv1) =

〈(0, 8), (5, 1)〉 and ComE(Tu1
2, piv1) = 〈(0, 1), (0, 1), (2, 6), (5, 1)〉. Next we com-

pute E1
11(Ma1)∩E1

12(Ma1)

max{L11
1 ,L12

1 }
= 1

8 for getting sim(E1
12(Ma1), ComE(Tu1

1, piv1)). Simi-

larly, we are able to gain sim(E1
12(Ma2), ComE(Tu1

1, piv1)) =
1
8 , sim(E1

12(Ma3),
ComE(Tu1

1, piv1)) = 3
4 , and sim(E1

12(Ma4), ComE(Tu1
1, piv1)) = 1. Therefore,

FJD(Tu1
1 → Tu1

2, piv1) = (1
8 + 1

8 + 3
4 + 1)/4 = 1

2 .

Next, we define a score function SF(Tuj
w, Tuj

v) = Tuj
w.p ·max

nj
p

i=1FJD(Tuj
w →

Tuj
v, pivi) (w 6= v) that evaluates the performance of representing Tuj

v by Tuj
w.

This way, the optimal reference for Tuj
v can be derived by:

Ref (Tuj
v) = arg max

Tuj
w

SF(Tuj
w, Tuj

v) (2.3)

Finally, we propose a greedy algorithm for reference selection of uncer-
tain trajectories. We first build a score matrix SM according to SF, where
SM[w][v] = SF(Tuj

w, Tuj
v). Then, we always select Tuj

w as a reference such that
SM[w][v] (1 ≤ v ≤ |Tuj|) is the current maximal element in SM and remove it
from SM. This process continues until SM is empty. Example 4.2 gives the
reference selection of Tu1.

Example 4.2
Assuming that we only select Tu1

3 as a pivot for Tu1, we get an SM. Then we
find the maximum in SM, i.e., SF(Tu1

1, Tu1
2), based on which we get a reference

Tu1
1 and add Tu1

2 to its Rrs. Next, SM[w′][2] ∪ SM[2][w′′] ∪ SM[v′][1] (1 ≤
w′, w′′, v′ ≤ 3) are removed from SM as (i) Tu1

1 has been assigned as a
reference and (ii) Tu2

1’s reference has been determined, i.e., Tu1
1. This process

is shown below,

SM =

 0 3
8

1
3

7
80 0 1

30
1

40
1

80 0

→
 A0 AA

3
8

1
3

SS
7

80 A0 SS
1

30
SS
1

40 SS
1

80 0


Then we add Tu1

3 to Tu1
1.Rrs due to SM[1][3] > SM[3][3], and remove SM[w′][3]

∪SM[3][w′′](1 ≤ w′, w′′ ≤ 3) from SM. Finally, since SM = ∅, we return the
reference Tu1

1 with its Rrs = {Tu1
2, Tu1

3} for Tu1.

18

5. Compression

5 Compression

We adopt the PDDP-tree [22] to encode D(Ref) and Ref .p that are floats. We
use the error bounds ηD and ηp to constrain their compression accuracy. Given
the maximum outgoing number of a road network, o, each outgoing edge
number in E(Ref) is encoded with fixed length, i.e., dlog2 oe.

Improved Exp-Golomb Encoding. Exp-Golomb encoding, that is well-
known for encoding positives, encodes smaller values with shorter lengths
and encodes larger values with longer lengths. Since we find that small
deviations between the actual sample intervals and the default ones occur
much more frequently than large ones (cf. Figure 2.1b), we adopt the Exp-
Golomb encoding [51] to encode 4ti = (ti+1 − ti)− Ts (0 ≤ i < |T(Tuj)| − 1)
(cf. Section 4). However, as 4ti may be negative, the Exp-Golomb encoding
needs to be modified.

Assuming that the longest actual sample interval is Tl , we have 4ti ∈
(−Ts, Tl − Ts] (0 ≤ i < |T(Tuj)| − 1). We divide [0, max{Ts − 1, Tl − Ts}]
into n groups, where n = dlog2(max {Ts − 1, Tl − Ts}+ 1)e, and the range
of the jth(j ≥ 0) group is

[
−2j+1 + 2, −2j + 1

]
∪
[
2j − 1, 2j+1 − 2

]
. This

way, all the possible deviations between the actual sample interval and the
default one can be covered by [−max{Ts− 1, Tl − Ts}, max{Ts− 1, Tl − Ts}] ⊆
[−2n + 2, 2n− 2]. The offset of4ti in the jth group is given by | 4 ti| − (2j− 1).
Moreover, we add one 1 bit immediately before the offset if 4ti is a negative
digit; otherwise, 0 is added.

Variable-Length Encoding. Let |E(Ref j
i)| be the length of E(Ref j

i) and
o be the maximum number of outgoing edges for any vertex v ∈ V. Dur-
ing the variable-length encoding of a factor (S, L, M) in E(Nref j

ik), S takes

dlog2 |E(Ref j
i)|+ 1e bits, L takes dlog2 |E(Ref j

i)|e bits, and M takes dlog2 oe
bits. Similarly, when encoding a factor of (S, L, M) in T′(Nref j

ik), both S and L

take log2d|T′(Ref j
i)|e bits, while M takes 1 bit. Further, pos in each factor of

D(Nref j
ik) takes dlog2 |D(Ref j

ik)|e bits, and rd is encoded by a PDDP-tree [22].
This way, binary codes of different non-references may have different lengths
depending on their similarities to the corresponding references, which further
improve compression.

6 Query Processing

This section introduces an index structure and filtering and validating tech-
niques for probabilistic queries. The following definitions and examples are
reproduced from [14].

19

Chapter 2. Compression of Uncertain Trajectories in Road Networks

[5:00:00, 5:30:00)

Ref

(5:03:25,0,17)

(185190,0,0,1,0.2)

(185192,1,6,1,0.2)

(228476,3,12,1,0.2)

(228478,6,30,1,0.2)

(185190,0,0)

(185194,2,11)

Nref

[4:30:00, 5:00:00)

Temporal Index

Spatial Index

Tu

re1

re2

re3

re4

(a) Index Structure

v4

v5

v6

v7v8

v10

v3

v2v1
l0

l1

l2

l3
l4
l5l6

l1'

re4re3
re1 re2

RE1

RE222

0

(b) Tu1
1 and Tu1

2

Figure 2.4: StIU built on Tu = {Tu1} depicted in Figure 2.1 [14]

6.1 StIU Index

We propose an index, called Spatio-temporal Information based Uncertain
Trajectory Index (StIU), to support efficient probabilistic queries by partial
decompression [22]. The index contains two parts, as shown in Figure 2.4a.
The upper part indexes the temporal information of trajectories, while the
lower part supports effective spatial search.

Temporal Index of StIU. We partition the time line into equal-length time
intervals. The information of an uncertain trajectory Tuj corresponding to a
time interval is stored in a tuple (t.start, t.no, t.pos), where t.start is the earliest
timestamp of Tuj falling into the time interval, t.no indicates that t.start is the
t.noth timestamp in T(Tuj), and t.pos refers to the matching position of the
(t.no + 1)th timestamp in T̂(Tuj).

Spatial Index of StIU. We define the concept of final vertex, before intro-
ducing the spatial index.

Definition 6.1
A final vertex of a trajectory instance Tuj

w w.r.t. a region re is a vertex in G that
is traversed by the trajectory instance immediately before reaching re, denoted
as Tuj

w.fv of re.

For a reference, the tuple corresponding to re has the form (fv.id, fv.no,
d.pos, ptotal, pmax), where 1) fv.id (≥ 0) is the ID of Ref j

i .fv of re; 2) fv.no indicates

the position of fv.id in E(Ref j
i); 3) d.pos is the matching position of the d.noth

relative distance in D̂(Ref j
i) such that it is the last relative distance of Ref j

i
before entering re; 4) with Ω defined as the subset of all trajectory instances
Ref j

i ∪ Ref j
i .Rrs that overlap re, ptotal is then the sum of the probabilities of

all instances in Ω; and 5) pmax = Nref j
ik′ .p such that ∀Nref j

ik ∈ Ω: Nref j
ik′ .p ≥

Nref j
ik.p. If ∀Nref j

ik ∈ Ref j
i .Rrs, Nref j

ik does not overlap re, pmax is set to 0. For a
non-reference, the tuple corresponding to re has the form (fv.id, ptotal, pmax),
where ptotal and pmax are the same as those for the reference. The binary code

20

6. Query Processing

of a sequence seq is denoted as ˆseq.

Example 6.1
Figure 2.4a shows an StIU index built on Tu1, where Tu1

1 (used as Ref 1
1) and

Tu1
2 (used as Nref 1

11) are instances of the uncertain trajectory Tu1 in Figure 2.2,
where the IDs of v1, v2, v3, v4, v5, and v7 are 185190, 185191, 185192, 185194,
228476, and 228478, respectively; the mapping positions of the relative dis-
tances of l1, l2, and l5 in D̂(Ref 1

1) are 6, 12, and 30, respectively; and the
maximum outgoing edge number of the road network in Figure 2.4b is 7. If
we locate a query result in re2, we can obtain the mapping position of v5 in
Ê(Ref 1

1) and the relative distance w.r.t l2 on (v5, v6) in D̂(Ref 1
1) by the tuple

(228476, 3, 12, 1, 0.2). This way, we get the information of Ref 1
1 in re2 without

decompressing from the beginning of those sequences.

6.2 Probabilistic Queries

Based on StIU, three representative types of queries, namely probabilistic
where, when, and range queries, can be performed.

Definition 6.2
Given a timestamp t, a probability α, and a compressed trajectory stream
Trn, a probabilistic where query where(Tuj, t, α) returns the set of mapped
locations at time t of the instances Tuj

w ∈ Tuj with Tuj
w.p ≥ α. Each location is

given as 〈(vs → ve), ndist〉, where (vs → ve) is the edge traversed by Tuj
w, and

ndist is the network distance between vs and the location at t.

Definition 6.3
Given a mapped location 〈(vs → ve), rd〉, a probability α, and a compressed un-
certain trajectory Tuj, a probabilistic when query when(Tuj, 〈(vs → ve), rd〉, α)
returns the set of timestamps, where rd is the relative distance of the location
w.r.t. (vs → ve), and each timestamp t corresponds to a instance Tuj

w of Tuj

with Tuj
w.p ≥ α, such that Tuj

w passed 〈(vs → ve), rd〉 at t.

Definition 6.4
Given a query region RE, a timestamp tq, and a collection of compressed
uncertain trajectories Tu, a probabilistic range query range(Tu, RE, tq, α) re-
turns the set of uncertain trajectories Tuj(1 ≤ j ≤ M) in Tu, such that

∑Tuj
w∈Tuj∧Tuj

w∩RE 6=∅
Tuj

w.p ≥ α at tq.

When querying using the StIU, we can effectively avoid unnecessary
decompression by the following filtering and validating lemmas, which exploit
ptotal and pmax that are maintained for each reference.

21

Chapter 2. Compression of Uncertain Trajectories in Road Networks

Lemma 6.1
Given a query when(Tuj, 〈(vs → ve), rd〉, α), if pmax < α holds for all the tuples

of reference Ref j
i in the StIU corresponding to the region where 〈(vs → ve), rd〉

is located then we do not need to fully decompress Ref j
i .

Example 6.2
Given a query when(Tu1, 〈(185191→ 185192), 0.25〉, 0.5) in Figure 2.4b, Ref 1

1
does not need to be fully decompressed. This is because Ref 1

1 .pmax w.r.t. re3 is
0.2, implying that Nref 1

1k.p < 0.5 (k = 1, 2).

Lemma 6.2
Given a spatial region RE, a timestamp tq, and two edges (vs → ve) and

(vs′ → ve′) where an uncertain trajectory instance Tuj
i is located at timestamps

tb and tb′ (tb ≤ tq ≤ tb′), (i) if the subpath sp from vs to ve′ satisfies sp ∈
RE then Tuj

i overlaps RE at tq; (ii) if the subpath sp from vs to ve′ satisfies

sp∩ RE = ∅ then Tuj
i does not overlap RE at tq.

Lemma 6.3
Given a query range(Tu, RE, tq, α) and a set Canj that contains the instances of
Tuj ∈ Tu satisfying condition (i) in Lemma 6.2, if the sum of the probabilities
of all the instances in Canj is not smaller than α then Tuj should be in the
query result.

Lemma 6.4
Given a query range(Tu, RE, tq, α), a region retotal(RE ⊆ retotal), and a set
Canj that contains all the instances of Tuj ∈ Tu that overlap retotal during
[tb, tb′] (tb ≤ tq ≤ tb′), if the sum of probabilities of all the instances in Canj is
smaller than α then Tuj does not qualify as a query result.

Example 6.3
Given a query range(Tu, re3 ∪ re4, 5:05:25, 0.5) in Figure 2.4 and ηp = 1

2048 ,
we can get the subpath from v1 to v4 after partially decompressing T(Tu1)
and E(Ref 1

1), where Ref 1
1 is located on (v1 → v2) at 5:03:25 and located on

(v3 → v4) at 5:07:25. According to Lemma 6.2, we can ensure that Ref 1
1 must

overlap re3 ∪ re4 at 5:05:25 without decompressing D(Ref 1
1). Since Ref 1

1 .p ≥ 0.5,
Tu1 can be directly returned by Lemma 6.3. Then, since the sum of the
probabilities of instances in Can1(= ∅) w.r.t. retotal(= RE1) is 0 (< 0.5), Tu1

can be safely pruned by Lemma 6.4.

7 Experimental Evaluation

22

7. Experimental Evaluation

7.1 Experimental Design

Datasets. We use three real-life datasets, i.e., Denmark (DK), Chengdu (CD),
and Hangzhou (HZ). The DK dataset is collected from 162 vehicles over about
2 years (from Jan. 2007 to Dec. 2008) in Denmark. The CD dataset is collected
from 14,864 taxis over one month (Aug. 2014) in Chengdu, China. The HZ
dataset is collected from 24,515 taxis over one month (Nov. 2011) in Hangzhou,
China. The DK, CD, and HZ datasets contain 0.27, 1.96, and 1.81 million
NCUTs, respectively.
Baseline and experimental settings. Since no existing study is designed for
network-constrained uncertain trajectory compression, we compare our work
with TED [22], which is the state-of-the-art work for network-constrained
accurate trajectory compression. All algorithms are implemented in C++ and
run on a computer with an Intel Core i9-9880H CPU (2.30 GHz) and 32 GB
memory.

Table 2.3: Comparison on three datasets [14]

Datasets
UTCQ

Compression ratio
Time(s)

Total T E D T′ p
Denmark 14.342 7.685 14.861 26.171 15.843 7.111 23
Chengdu 11.867 3.128 13.589 15.141 18.061 7.111 135

Hangzhou 13.787 3.193 16.092 17.815 14.592 5.818 1031

Datasets
TED

Compression ratio
Time(s)

Total T E D T′ p
Denmark 4.439 4.545 11.888 9.143 1 7.111 1823
Chengdu 4.287 1.707 11.247 9.143 1 7.111 65310

Hangzhou 4.008 1.418 9.376 9.143 1 5.818 980447

Performance metrics. We use the compression ratio (CR) and compression
time to evaluate the compression performance, and we use the index size and
query time to evaluate performance of querying processing.

0

15

30

45

128×12864×6432×3216×16

In
d
ex
si
ze
(M
B
)

Number of grid cells

UTCQ (s-size)

TED (size)

8×8

UTCQ (t-size)UTCQ-time

TED-time

10
-2

10
-1

10
0

10
1

10
2

10
3

Q
u
er
y
T
im
e
(m
s)

(a) DK dataset

0

400

800

1200

In
d
ex
si
ze
(M
B
)

Number of grid cells
128×12864×6432×3216×168×8

UTCQ (s-size)

TED (size)

10
1

10
2

10
3

10
4

Q
u
er
y
ti
m
e
(m
s)

UTCQ-time

TED-time

UTCQ (t-size)

(b) HZ dataset

Figure 2.5: Query performance [14]

23

Chapter 2. Compression of Uncertain Trajectories in Road Networks

7.2 Experimental Results

Compression performance. Table 2.3 compares UTCQ and TED, where T, E,
D, T′, p, and Total refer to the timestamps, outgoing edge numbers, relative distance,
time flag bit-string, probability, and the total compression ratio, respectively. As
can be observed, UTCQ outperforms TED by more than three times in terms
of compression ratio and by more than an order of magnitude in terms of
compression time. This is because (i) UTCQ employs referential compression
to remove more redundancy for achieving a high compression ratio and (ii)
TED has to load all trajectories for the preparation of compression [22], while
UTCQ compresses trajectories one by one.
Query performance. Figure 2.5 reports the performance of probabilistic range
queries when varying the spatio-temporal partition granularity. It shows
that the StIU index is smaller than the index used by TED, which is due
to the referential compression. Next, as road networks are divided at finer
granularities, the query time of both frameworks decreases. Finally, UTCQ
is faster than TED, which is due to the proposed StIU index and the filtering
and validation techniques.

24

Chapter 3

Compression of Streaming
Trajectories in Road
Networks

This chapter gives an overall introduction to Paper B [52]. It reuses content
from that paper when this was considered most effective.

1 Problem Motivation and Statement

Most existing trajectory compression studies target offline compression [14, 17–
22, 53–55]. This requires an entire trajectory is available before compression
starts and is not appropriate for use by GPS-enabled devices. If trajectories
are instead transmitted to a location where compression can be performed,
e.g., a data center, this will result in high communication overheads or data
loss. In contrast, online compression compresses GPS points once they arrive
in real-time, thus enabling a broader range of applications and saving both
storage and transmission costs [56–59].

Few studies target online network-constrained trajectory compression [23,
24, 56, 59] and have mainly the following two limitations. First, they obtain a
compact representations by excluding important information [23, 24, 56, 59],
e.g., the exact locations of trajectories. This reduces the accuracy of the
compressed trajectories and thus decreases their usability. Second, previous
studies perform online compression on top of prediction models trained
offline using historical data [23, 24]. However, movement patterns vary across
time [25, 26]. This necessitates frequent re-training and delivery of re-trained
models, which increases the communication overheads.

25

Chapter 3. Compression of Streaming Trajectories in Road Networks

To address the above two limitations, we propose a novel framework for
online TRAjectory ComprEssion (TRACE). We first present a speed-based
trajectory representation and a multiple-reference based referential repre-
sentation for improving compression. Next, we develop an effective online
reference selection technique based on so-called k-mer matching [60–62]. A
reference deletion algorithm is proposed to keep the memory consumption
low, while a reference rewriting algorithm is proposed to adapt to varying
movement patterns. Further, we provide a data transmission strategy that
enables low-overhead transmission of trajectories in real-time. Finally, we
develop an index structure and filtering techniques that facilitate real-time
range querying of compressed trajectories.

In summary, our main contributions are as follows:
• We propose a new real-time streaming vehicle trajectory compression,

transmission, and querying framework.
• We develop a speed-based representation and a multiple-reference based

referential representation. We present an online reference selection
technique together with reference deletion and rewriting functions.

• We present a data transmission scheme that reduces transmission over-
head. We also propose an index structure and filtering techniques to
accelerate real-time query processing.

• Extensive experiments offer insight in the TRACE and also show that it
is capable of outperforming three baselines in terms of both compression
ratio and transmission cost.

2 Preliminaries

In this chapter, we formally define streaming trajectories in road networks.
The following definitions and examples are reproduced from [14].

A path sp is a sequence of connected edges (vi → vj) that starts from vs
and ends at ve, i.e., sp = 〈(vs → v0), · · · , (vn−1 → ve)〉.

Definition 2.1
A streaming network-constrained trajectory Trn is modeled as an infinite,
time-ordered sequence of mapped GPS points Ln with an infinite path sp(Trn)
traversed by Trn.

Definition 2.2
The accumulative distance of a streaming trajectory Trn at its ith timestamp
t(Trn)[i], denoted as ad(Trn)[i], is the network distance between vs and li
along the path (vs → ve), · · · , (vs∗ → ve∗), where li is located on (vs∗ →
ve∗) and (vs → ve) is the first edge traversed by Trn. The accumulative
distance sequence ad(Trn) of a streaming trajectory Trn contains the trajectory’s
accumulative distance at each timestamp.

26

2. Preliminaries

Tr1
.l0

Tr
2
.l0

7:03:25

Tr3
.l0

7:03:35

Tr1
.l1

7:03:45 7:03:55 7:04:05 7:04:15 7:04:25 7:04:35 7:04:45 7:04:55

2
.l1Tr

Tr3
.l1 Tr1

.l2

2
.l2Tr

Tr3
.l2 Tr1

.l3

2
.l3Tr

2
.l4Tr

Tr3
.l3 Tr1

.l4 Tr3
.l4

(d) Time line of Tr , Tr and Tr1 2 3

7:06:35 7:06:25 7:06:15 7:06:05 7:05:55 7:05:45

Tr1
.l6

7:05:35 7:05:057:05:25 7:05:15

2
.l5Tr2

.l6Tr

Tr1
.l5Tr3

.l5Tr3
.l6Tr3

.l7Tr3
.l8Tr3

.l9 Tr1
.l7

p0=(120.14514, 30.34056, 7:03:25)

p1=(120.14511, 30.34152, 7:03:45)

p2=(120.14549, 30.34228, 7:04:06)

p3=(120.14546, 30.34236, 7:04:26)

p4=(120.14559, 30.34253, 7:04:46)

p5=(120.14552, 30.34256, 7:05:05)

p6=(120.14510, 30.34258, 7:05:30)

p7=(120.14510, 30.34259, 7:05:50) v1 v2

v3

v4v5

v6

v7

v8 v9

v10

1

p2

l1

l22 pppppppp
p1

l4 p4

p3l3

l5

p5

p6 l6

v0

p0

l0

2 2
1

1

4

12

2

2

3

3

(a)

1

50

v11

v12

Tr
1

p7
p
7 l7

100

v13

v0 v1

v3v14

v5 v4

v7 v10

v15

v16

l0l1

l2 0

l3

v11
l4

v2

v3

v4

v7 v10 v11

v15

v16

v17

v18

l0 l1
l2

l3

l4
l5

l66

l7

l8

441

2 1

2 2 2

3

2 2 1

1

1

2 2 2

3

3

3

(b) (c)

7

l9

l5

l6
v17

3 8

Tr2 Tr 3

Figure 3.1: A streaming network-constrained trajectory set Tr = {Tr1, Tr2, Tr3} [52]

27

Chapter 3. Compression of Streaming Trajectories in Road Networks

Edge Server

Centralized

Cloud

Edge Server

SRSUSRSU

Smart Vechicles

Smart Vechicle Layer

Edge Server Layer

Centralized Cloud Layer

Figure 3.2: Vehicular edge computing architecture [52]

Example 2.1
Figure 3.1 shows a network-constrained trajectory set Tr = {Tr1, Tr2, Tr3}
that contains three streaming network-constrained trajectories. sp(Tr1) =
〈(v0 → v1), · · · , (v11 → v12), · · · 〉 and L1 = {l0, l1, · · · , l7, · · · }. Given that the
network distance between v0 and l1 is 150, ad(Tr1)[1] = 150.

Since we propose a multiple-reference based referential representation,
a represented non-reference Nref, defined in Definition 4.1 in Chapter 2 is
denoted as Comφ(Nref) in this chapter.

3 Framework

TRACE enables online compression and subsequent querying of streaming
network-constrained trajectories. To enable real-time compression on diverse
devices with variable computing capabilities, we employ vehicular edge com-
puting (VEC) [56], as shown in Figure 3.2. The edge server layer is near the
smart vehicle layer, but is generally far away from the centralized cloud layer.
TRACE is deployed at both the edge server layer and the centralized cloud
layer. Specifically, TRACE takes network-constrained streaming trajectories
as input, which are delivered from the smart vehicle layer. Next, TRACE per-
forms trajectory representation and compression at the edge server layer and
transfers the compressed trajectories to the centralized cloud layer for query
processing. This way, complex computations are accomplished at the edge
server layer, while only compressed trajectories are subject to long-distance
transmission. Hence, both wireless communication energy consumption and
network load [63, 64] are reduced.

28

4. Representation

Table 3.1: Speed-based representation of Tr in Figure 3.1 [52]

n 1 2 3
SV(Trn) 44183 27444 44183
E(Trn) 〈2, 2, 1, 1, 4, 1, 2, 1, 2, 3, 2, 3〉 〈4, 4, 1, 2, 1, 2, 2, 2, 3, 3〉 〈2, 2, 1, 1, 1, 2, 2, 2, 3, 3, 3〉

RD(Trn) 0.5 0.05 0.25
GD(Trn) 〈0.67, 0.5, 0.5, 0.67 〈0.97, 0.69, 0.35, 〉 〈0.8, 0.5, 0.5, 0.5, 0.64〉

0.33, 0.83, 0.05 〉 0.53, 0.11, 0.75〉 0.53, 0.11, 0.75, 0.67〉
V(Trn) 〈5, 4.76, 5, 10, 〉 〈6.9, 17.11, 8.75, 〉 〈5, 5, 5, 5, 8.75, 〉

5.26, 20, 1.25〉 〈10, 1.25, 3.75〉 〈10, 1.25, 3.95, 7.5〉
T(Trn) 〈7:03:25, 0, 1, 〈7:03:30, 1,−1 〈7:03:35, 0, 0, 0,

0, 0,-1, 5, 0〉 0,0,0,0〉 0,0,0,0,−1,0〉

4 Representation

This chapter covers the key techniques of trajectory representation. The
following definitions and examples are reproduced from [52].

4.1 Speed-based Representation

Co-movement patterns of trajectories motivate us to apply referential represen-
tation to speeds. We thus propose a speed-based representation, where Tr is
represented as a tuple (SV(Tr), E(Tr), RD(Tr), GD(Tr), V(Tr), T(Tr)). GD(Tr)[i]
is the growth rate of the accumulative distance at T(Tr)[i], calculated as
ad(Tr)[i]−ad(Tr)[i−1]
ad(Tr)[i]−ad(Tr)[i−2] . V(Tr)[i] is the speed, computed as ad(Tr)[i]−ad(Tr)[i−1]

t(Tr)[i]−t(Tr)[i−1] (i > 0),

where t(Tr)[i] is the ith timestamp of Tr. An example of the speed-based
representation is given in Table 3.1.

4.2 Multiple-reference based Referential Representation

Next, we apply referential compression [14] to the speed-based representation.
Specifically, we modify the (S, L, M) format to the (refid, S, L, M) format to
enable the use of multiple references, where refid is the ID of a reference.
The referential representation of E(Tr) essentially follows the UTCQ repre-
sentation [52]. However, unlike the out-going edge numbers, two speeds are
unlikely to be exactly the same. We thus consider V(Trn)[i] ≈ V(Trn′)[i′] if
V̈(Trn)[i] = V̈(Trn′)[i′], where V̈(Trn)[i] is the integer closest to V(Trn)[i]

0.5η , and
η is the speed error bound. If V(Tr) is a non-reference, M is recorded as
GD(Tr)[i] if we encounter a mis-matched value V(Tr)[i]; otherwise, we just
keep GD(Tr) and discard V(Tr). The reason is that V(Tr)[i] (∈ [0, µ]) can only
achieve the same compression as GD(Tr)[i] (∈ [0, 1)) at the cost of compres-
sion accuracy, where µ is a speed constraint of the road network. Among the
elements of the speed-based representation of Tr, only E(Tr)[i] and V(Tr)[i]
are referentially represented.

29

Chapter 3. Compression of Streaming Trajectories in Road Networks

..
.

86

24

..
.

25

877

..
.

1 4 null

996

985

954 1<1> 1 985

..
.

..
.

955

969 2<4,4,1> 0 877

..
.

986

987

..
.

..
.

..
.

996

2 3 24 25<2>

null

1<2,2,1> 0 954null

2 5 25 987<2>

2 6 986<3> null

1 2 86<4> 954

2<1> 2 877 955

2<2> 4 955 986

1<1> 3 996 877

2<2> 1 969 24

86

Figure 3.3: A hash table H constructed according to E(Tr) in Table 3.1 at 7:05:06, where k=3 [52]

Example 4.1
Let η = 0. In Table 3.1, the referential representation of E(Tr3) w.r.t. E(Tr1)

and E(Tr2) is ComE(Tr3) = 〈(1, 0, 4, 1), (2, 5, 5, 3)〉, while that of V(Tr3) w.r.t.
V(Tr1) and V(Tr2) is ComV(Tr3) = 〈(1, 0, 3, 0.5), (2, 2, 4, 0.67)〉.

4.3 Reference Selection and Deletion

As the online reference selection and deletion for E(Tr) and that for V(Tr) are
very similar, we only discuss E(Tr).

Reference selection. Following an existing study [61], we start by decom-
posing a subsequence into k-mers. A k-mer φn

i is a subsequence of fixed
length k of φ(Trn), i.e., φn

i = {φ(Trn)[i], φ(Trn)[i + 1], ..., φ(Trn[i + k− 1])}.
Definition 4.1
The subsequence of E(Tr) of a streaming trajectory Tr arriving at t(Tr)[j] (j >
0), is denoted as E(Trj) (j > 0). It starts from the edge traversed by Tr
immediately after leaving the last edge of E(Trj−1) and ends at the edge
where Tr is located at t(Tr)[j].

Example 4.2
In Figure 3.1a, we have E(Tr1

4) = 〈4, 1〉 because (v4 → v5) is traversed by Tr1

after leaving (v3 → v4) and l4 is located on (v5 → v6) at T(Tr1)[4].

Next, we construct a hash table H for E(Trn). Each k-mer in H is stored
as a tuple (En

i , n, offi, pti, pdi), where i) En
i is the ith k-mer of E(Trn); ii) n is the

ID of Trn; iii) offi is the offset of En
i [0] in E(Trn); and iv) pti and pdi are the

indexes of the entries associated with En
i−1 and En

i+1 in H, respectively. The
hash table built according to the streaming trajectories in Table 3.1 is shown
in Figure 3.3. As can be seen, we only store En

i [k− 1] (i > 0) rather than En
i to

save space. This is because the whole k-mer can be retrieved by pti.

Example 4.3
In Figure 3.3, the entry associated with E1

1 (= (2, 1, 1)) in H is stored as (〈1〉,
1, 1, 985, 996), where 985 and 996 are the indexes of E1

0 and E1
2 of Tr1 in H.

30

4. Representation

A k-mer is only formed when |E(Trn
m) ∪ E(Trn

m+1) ∪ · · · ∪ E(Trn
m+j)| is no

less than k. Once a k-mer is formed, we calculate its hash key, key, and hash it
to H. There are two cases: H[key] = ∅ and H[key] 6= ∅. The former implies
that no identical subsequence is already stored in H, where the corresponding
sequence E(Trn

m) is assigned as a reference. The later implies that the sub-
sequence can be represented by an existing reference; thus, E(Trn

m) is assigned
as a non-reference.
Example 4.4
Continuing the example in Figure 3.1 and Table 3.1, since E3

0 matches E1
0, we

initialize a factor (1, 0, 3, ∅) for it. For the arriving E(Tr3
3) = 〈1〉, we retrieve

E(Tr1)[3] according to the index pd0 associated with E1
0 , i.e, 954, and compare

it with E(Tr3
3) (= E3

1 [2]). After that, we update the factor to (1, 0, 4, ∅) due to
E(Tr1)[3] = E(Tr3

3). As E(Tr1)[4] 6= E3
2 [2], we generate a factor, i.e., (1, 0, 4, 1),

for ComE(Tr3). Then, we wait until E(Tr3
6) arrives due to |E(Tr3

5)∪ E(Tr3
6)| ≥ 3

and repeat the process. Finally, we get ComE(Tr3) = 〈(1, 0, 4, 1), (2, 5, 5, 3)〉.

Reference selection. The number of references stored in the hash table
increase over time, which motivates us to eliminate outdated references. We
consider a reference to be outdated if it has not been visited for a long time.
Specifically, a trajectory is visited at timestamp t if (i) it is used for referential
representation and/or (ii) its corresponding data still arrives. We define Go
as the set of the references at timestamp to and denote each reference in Go,
Go[i], as a tuple (refid, Go[i].tl), where refid is the ID of the reference Go[i], and
Go[i].tl is the timestamp when Go[i] was visited most recently.

Definition 4.2
A reference Go[i] is outdated at to if its freshness at to, denoted as Go[i]. f ,

satisfies Go[i]. f < C · Fo
|Go | , where Fo = ∑

|Go |−1
i′=0 Go[i′]. f and C (0 < C ≤ 1) is

the deletion coefficient.

The freshness Go[i]. f of a reference Go[i] is calculated as follows:

Go[i]. f = λto−Go [i].tl (to ≥ Go[i].tl), (3.1)

where λ ∈ (0, 1) is a decay factor [65].

Example 4.5
In Figure 3.1, given the current timestamp to =7:03:26 and λ = 0.998, we get
E(Tr1). f = 0.998 at to.

According to Definition 4.2 and Formula 3.1, we can update the freshness
of each reference to determine whether it is outdated. However, this naive
strategy is time-consuming, especially when the number of references stored
in the hash table is large. Thus, we propose to get the sum of all references at
timestamp to, i.e., Fo, by the following formula.

31

Chapter 3. Compression of Streaming Trajectories in Road Networks

Fo = (Fo′ − ∑
Go′ [i]∈Rvo

Go′ [i]. f) · λto−to′ + |Rvo|, (3.2)

where Rvo (Rvo ⊆ Go) is a set of references visited at to. With Formula 3.2, we
are enable to update Fo by only computing the freshness of Go′ [i], such that
Go′ [i] ∈ Rvo.

4.4 Reference Rewriting

We rewrite references in real-time to further improve the compression ratio. A
motivating example is shown as follows.

Example 4.6
If the subsequence of E(Tr3), 〈44183, 2, 2, 1, 1, 1, 2, 2〉, is frequent, 〈2, 2, 1, 1, 1, 2, 2〉
should be stored as k-mers. However, E(Tr3) is assigned as a non-reference just
because E(Tr1) arrives earlier than it, as shown in Example 4.4. In this case, for
another new arriving subsequent Trn that also traverses 〈44183, 2, 2, 1, 1, 1, 2, 2〉,
ComE(Trn) will contain at least two factors.

Example 4.6 illustrates that it is attractive to update infrequent references
in real-time, which is achieved by identifying rewriting candidates.

Definition 4.3
A rewriting candidate is a reference E(Ref) that represents a non-reference
E(Nref) as ComE(Nref) = 〈· · · , (refid, S, L, M), (refid, S′, L′, M′), · · · 〉, where
S + L + 1 = S′ and refid is the ID of the reference Ref.

In Definition 4.3, we identify E(Ref) as a rewriting candidate because two
factors (refid, S, L, M) and (refid, S′, L′, M′) can be merged if E(Re f)[S + L] is
replaced with M, which is called a rewriting operation. Here we only consider
rewriting E(Ref) because the patterns of speed are very likely to vary accross
different time periods [25, 26]. Given a factor (refid, S, L, M), it intersects
E(Ref)[i], if refid is the ID of Ref and S ≤ i < S + L.

There are two principles for conducting a rewriting operation. First,
M should occur frequently, to make sure that the rewritten reference is a
frequent subsequence. Second, the factors intersecting E(Re f)[i] should occur
infrequently; otherwise, many factors may be separated when applying the
rewritten result to the referential representation. These principles require us
to record each factor represented by E(Re f), if it is identified as a rewriting
candidate. This leads to a high space-time consumption.

Inspired by a regular square grid graph [66], we construct a b× b factor
matrix FA for each E(Ref), where b = d |E(Ref)|r

k e and |E(Ref)|r is the length
of the subsequence of E(Ref) used as a reference. We denote an element
FA[x][y] in FA as FAxy, which corresponds to the subsequence 〈E(Ref)[(x−

32

5. Compression

1) · k], · · · , E(Ref)[y · k− 1]〉. A factor (refid, S, L, M) contributes to FAxy, where
x = b S

k c+ 1 and y = d S+L
k e.

Example 4.7
Consider E(Tr4) = 〈2, 2, 1, 1, 4, 1, 3, 1, 2, 3, 3〉, E(Tr5) = 〈1, 1, 4, 1, 3, 1, 2, 3, 3〉,
and E(Tr6) = 〈2, 2, 1, 1, 4, 1, 2, 1, 2, 2, 2, 2, 1, 3〉. Following Example 4.4 and
assuming that Tr = {Tr1, Tr2, Tr3, Tr4, Tr5, Tr6}, the factor matrix FA of E(Tr1)
is:

FA =


[0, 2] [0, 5] [0, 8] [0, 11]

[3, 5] [3, 8] [3, 11]
[6, 8] [6, 11]

[9, 11]

→


1 3 1 0
0 0 0

0 2
0


Here, the left part of FA intuitively gives the subsequences of E(Tr1) cor-
responding to FAxy, and the right part shows the value of FAxy. For in-
stance, FA12 = 3 is contributed by three factors, i.e., (1, 0, 4, 1), (1, 0, 6, 3), and
(1, 2, 4, 3).

Lemma 4.1
Given a factor (refid, S, L, M) intersecting E(Ref)[i] and a b× b factor matrix FA
of E(Ref), (refid, S, L, M) can only contribute to FAxy, where x ≤ i

k + 1∧ y > i
k .

Lemma 4.2
Given a b× b factor matrix FA of E(Ref), the maximum number of factors that

intersect E(Ref)[i] is ∑
b i

k c+1
x=1 ∑b

y=b i
k c+1

FAxy.

Example 4.8
Continuing Example 4.4, the maximum number of the factors intersecting
E(Tr)[6] is ∑3

x=1 ∑4
y=3 FAxy = 3, where only 6 out of 10 elements in FA need to

be visited.

Example 4.8 implies that Lemmas 4.1 and 4.2 enable rewriting by scan-
ning part of the factor matrix, which enhances the efficiency of reference
rewriting. Based on the above conclusions, we formulate the conditions for
implementing a rewriting operation, i.e, replacing E(Ref)[i] with M: i) the
frequency of occurrence of M, f (M), is no less than a threshold α, and ii)

∑
b i

k c+1
x=1 ∑b

y=b i
k c+1

FAxy < f (M).

5 Compression

This chapter covers the binary encoding and data transmission schemes for
compressed trajectories. The binary code of seq is denoted as ˆseq. The following
formula and example are reproduced from [52].

33

Chapter 3. Compression of Streaming Trajectories in Road Networks

5.1 Binary Encoding

We propose to encode the floating number in RD(Ref) and GD(Ref) by the
following formula.

f̂v = arg min
f̂vm

∣∣∣∣∣∣
|f̂vm |

∑
i=1

f̂vm[i− 1] · 1
2i − fv

∣∣∣∣∣∣ , (3.3)

where |f̂vm| = γ and γ is a threshold that controls the compression accuracy.
We set the lengths of Ŝ and L̂ to be the same and adopt variable-length
encoding [14] for referential compression. Moreover, we record the lengths of
Ŝ and L̂ for decompression, as the whole length of a sequence φ(Tr) (φ = E, V)
is unknown in streaming settings.

5.2 Data Transmission

We propose a data transmission strategy that targets low transmission cost
and enables decoding at the centralized cloud. The strategy contains three
states: ¬ transferring the initialized factor (refid, S, L′, ∅), where L′ ≥ k and
|Ŝ| = |L̂′|; ­ transferring the updated L′; and ® transferring the mis-matched
element M when L′ is updated to L. Setting γ ≥ 2 and 2 · |Ŝ| 6= |M̂|, the
binary codes delivered at each state can be distinguished just by their lengths;
thus, no extra information needs to be transmitted. Example 5.1 illustrates
this.

Example 5.1
Continuing Example 4.7 and letting both ˆrefid (≥ 1) and M̂ take 3 bits, the
first factor of ComE(Tr6) is initialized as (1, 0, 3, ∅) and thus is encoded as
(000, 00, 10). Then b̂c = 0000010 is sent to the centralized cloud, which triggers
the state transition from ® to ¬. Next, we continue to transfer b̂c = 0001
before the mis-matched value M = 2 is found, where the first three bits is to
record refid. During this process, the state is first transferred to ­ and then
remains unchanged. Meanwhile, L′ continues to be incremented by 1. Once
the centralized cloud receives M = 2, i.e., b̂c = 000001, a factor is generated
and stored in the form (M̂, ˆlen, ˆrefid, Ŝ, L̂), i.e., as (001, 0, 000, 0000, 1000), in the
centralized cloud.

6 Query Processing

This chapter covers an index and accompanying filtering techniques for facili-
tating real-time range queries. The definitions and examples are reproduced
from [52].

34

7. Experimental Evaluation

v2

v3

v4v5

v6
v7 v10

v11

v12

l1

l22

l4

l3

l5

v0 l0l0

l2

l3

l4
l5

l666

l8

2 2
1

1

4

12

2

2

3

3

2 2 1

1

1

2 2 2

3

3

3

(a) (b)
1

Tr 3
Tr

l9

1

re0 re1

r0

z0

r1 z1

RE0

RE1
v1 l1

000 001 010

011 100

101 110 111

v8 v9

l6

8

r0

r2 z1

RE1

l7

Figure 3.4: The partition of the road network G in Figure 3.1 [52]

Definition 6.1
Given a query region RE and a set of compressed streaming trajectories T̂r,
a range query range(T̂r, RE) returns the set of streaming trajectories Trn(1 ≤
n ≤ N) in Tr, such that Trn ∩ RE 6= ∅ at the current timestamp.

We partition the road network G using grid cells, each of which is a
region re and links to the streaming trajectories that are currently located in it.
Figure 3.4 partitions the road network G in Figure 3.1.

Definition 6.2
The minimum distance mind(re, RE) between a grid cell re and a query region
RE is the distance between a location r and a location z, denoted as |rz|, where
r ∈ re ∧ z ∈ RE ∧ ∀r′ 6= r (r′ ∈ re ∧ |r′z| ≥ |rz|) ∧ ∀z′ 6= z (z′ ∈ RE ∧ |rz′| ≥
|rz|).

Lemma 6.1
Given a range query range(T̂r, RE), the current timestamp tc, the reachable
distance dis of Trn w.r.t. tc, and Trn located in grid cell re at Trn.tp, if the
minimum distance mind(re, RE) > dis, Trn cannot be in the result.

Lemma 6.1 enables pruning Trn without computing its location at the
current timestamp, which is illustrated in Example 6.1.

Example 6.1
Given |r2z1| = 233 in Figure 3.4b, we do not need to decompress ˆComE(Tr3)

and ˆComV(Tr3) if a range query range(T̂r, RE1) arrives at 7:04:06. This is
because Tr3 overlaps re0 at 7:03:55 and the reachable distance of Tr3 w.r.t.
7:04:06 is 231<233.

7 Experimental Evaluation

35

Chapter 3. Compression of Streaming Trajectories in Road Networks

2 0 4 0 6 0 8 0 1 0 00
1 5
3 0

CR

D a t a s i z e (%)

 T R A C E O C T
 C L E A N O C T - L S T M

(a) CR on HZ

2 0 4 0 6 0 8 0 1 0 01 0 - 2

1 0 1

1 0 4

MC
 (M

B)

D a t a s i z e (%)

 T R A C E O C T
 C L E A N O C T - L S T M

(b) MC on Syn

2 0 4 0 6 0 8 0 1 0 01 0 1

1 0 3

1 0 5

TC
 (b

it)

D a t a s i z e (%)

 T R A C E O C T
 O C T - L S T M

(c) TC on Syn

2 0 4 0 6 0 8 0 1 0 00
2
4

De
lay

 (s)
D a t a s i z e (%)

 T R A C E O C T
 O C T - L S T M

(d) Delay on Syn

Figure 3.5: Comparison [52]

7.1 Experimental Design

Datasets. The experiments use two real datasets, Denmark (DK) and Hangzhou
(HZ), and a synthetic dataset, Synthetic (Syn). DK, HZ, and Syn contain 0.42,
1.92, and 50 million trajectories, respectively.

Baselines and experimental settings. We use three baselines: CLEAN [55],
OCT-LSTM [24], and OCT [24]. CLEAN targets trajectory compression in
offline settings and exploits movement patterns of trajectories to improve
compression. OCT-LSTM and OCT are online methods. OCT-LSTM trains an
LSTM model that mines repetitive patterns of time-distance sequences using
historical data and performs compression by discarding data that cannot be
predicted accurately. OCT [24] employs a linear prediction model and does
not involves offline training. All algorithms are implemented in C++ and
run on a computer with an Intel Core i9-9880H CPU (2.30 GHz) and 32 GB
memory.

Performance metrics. We use the compression ratio (CR), time delay
(Delay), maximum memory cost (MC), and transmission cost (TC) to evaluate
compression performance, and we use the query time (Time) and transmission
cost (TC) to evaluate query performance.

7.2 Experimental Results

Compression performance. Figure 3.5 reports experimental results when
varying the size of a dataset from 20% to 100%. Since 80%, 10%, and 10%
data of each dataset are used for training, validation, and testing, respectively,
for OCT-LSTM, all methods are performed on a 10% dataset. Since CLEAN
is an offline method and takes 192.1 hours to compress 20% Syn, we only

36

7. Experimental Evaluation

5 1

5 2

5 3

8 2
2 . 5 82 . 5 5 2 . 6 4

2 . 4 9TC
 (b

it)

N u m b e r o f g r i d c e l l s

 T R A (T C)
 N O I (T C)

1 2 8 26 4 23 2 21 6 2

2 . 4 6

0 . 2

0 . 4

0 . 6

0 . 8

Tim
e (m

s)

 T R A (T i m e)
 N O I (T i m e)

(a) TC and query time on DK

4 0

4 5

5 0

3 63 12 6TC
 (b

it)

N u m b e r o f g r i d c e l l s

 T R A (T C)
 N O I (T C)

0 . 2

0 . 4

0 . 6

Tim
e (m

s)

1 2 8 26 4 23 2 21 6 28 2

2 5

 T R A (T i m e)
 N O I (T i m e)

2 2

(b) TC and query time on HZ

Figure 3.6: Query performance [52]

report its compression ratio and maximum memory cost on HZ and 20% Syn.
First, TRACE outperforms all the baselines in terms of compression ratio and
transmission cost, due to its two-stage representation and its encoding and
transmission schemes. Next, the maximum memory cost and time delay of
TRACE are higher than those of OCT-LSTM and OCT. This is because TRACE
trades these for higher compression ratios and lower transmission cost, by
maintaining a reference table and employing k-mers matching.

Query performance. Figure 3.6 reports the transmission cost and query
time when varying the number of grid cells. "TRA" denotes our TRACE frame-
work while "NOI" denotes the case of no indexing. Intuitively, a fine-grained
partition of road networks leads to higher query efficiency and larger trans-
mission cost. The blue numbers along the TRACE query time line denote the
index creation time (µs), which is the average time used on creating/updating
indexes for all the arriving locations at each timestamp. Clearly, this time is
negligible compared with the query time.

37

Chapter 3. Compression of Streaming Trajectories in Road Networks

38

Chapter 4

Evolutionary Clustering of
Streaming Trajectories

This chapter gives an overall introduction to Paper C [67]. It reuses content
from that paper when this was considered most effective.

1 Problem Motivation and Statement

The clustering of streaming trajectories facilitates finding representative paths
or movement trends that are shared by objects in real time [30–38]. Existing
real-time clustering studies perform clustering using only the most recent data
and target high clustering efficiency at the expense of clustering quality [68].
However, clusters should be robust to short-term fluctuations in the underlying
trajectory data, which may be achived by means of smoothing [39]. We use an
example to illustrate this.

Example 1.1
Figure 4.1 shows the trajectories of 12 moving objects at three timestamps, k =
1, 2, 3. Traditional clustering algorithms return clusters c1 = {o1, o2, o3, o4, o5, o6}
and c2 = {o7, o8, o9, o10, o11, o12} at the first timestamp, clusters c1 = {o1, o2, o3,
o4, o5}, c2 = {o7, o8, o9, o11}, and c3 = {o6, o10, o12} at the second timestamp,
and the same two clusters at the third timestamp as at the first timestamp.

The fluctuation of the clustering results may be caused by errors related
to o6 and o10 at the second timestamp. Such errors may occur because GPS
devices are sensitive to external factors [4]. It is clear that returning a consistent
and robust clustering over all three timestamps is preferable. A intuitive
strategy to achieve this is to correct the GPS records of the two objects before
performing the clustering. However, studies on two real-life datasets suggest

39

Chapter 4. Evolutionary Clustering of Streaming Trajectories

o7
o8

o10

o9
o3

o5o2

o1
o4

y

k

x

o6
((30.35, 120.2), 00:00:12)

x

o10

o3
o4

o2

o1

o5 o6

x

y
o7
o8

o10
o9o3 o6

o2

o1

o4 o5

y

r(o6)

3

2

1

r(o10)

c1 c2

c1 c2
c3

c1 c2

((30.36, 120.2), 00:00:22)

o11o12

o8

o9
o11o12
o7

o12
o11

Figure 4.1: Motivating example [67]

that among the trajectories that incur the mutations of clusterings, 88.9% and
75.9% of the trajectories comply with speed constraints, while 97.8% and
96.1% of the trajectories are not outliers [42]. Further, it is infeasible to correct
previous clusterings retroactively in real-time applications. Thus, existing
trajectory cleaning techniques [43–45] are unsuitable for smoothing.

Evolutionary clustering [39, 68–76] has been proposed for smoothing
clustering results in online scenarios. It evaluates clustering quality in terms
of so-called snapshot and temporal costs, thus taking temporal smoothness into
account. However, existing studies of evolutionary clustering are not suitable
for smoothing clustering of trajectories. First, they generally target dynamic
networks, which differ substantially from two-dimensional trajectory data.
Second, most of them smooth clustering results iteratively until convergence,
which is infeasible in settings with large-scale streaming trajectories.

We propose an efficient and effective method for evolutionary clustering
of streaming trajectories (ECO). First, we develop a structure called minimal
group to summarize trajectories close to each other as the basis for smoothing.
Second, we present new notions of snapshot cost and historical cost and
integrate these into an optimization problem, akin to what is done in existing
studies [68, 72, 74, 76–78]. Next, we present a linear solution to the proposed
optimization problem based on a set of mathematical proofs. Finally, we
introduce a grid index structure together with an algorithm for evolutionary
clustering. The paper’s main contributions are summarized as follows:

• We formalize the ECO problem. To the best of our knowledge, this is
the first proposal for streaming trajectory clustering that takes temporal
smoothness into consideration.

• We formulate ECO as an optimization problem, based on the new no-

40

2. Preliminaries

tions of snapshot cost and historical cost. We prove that the optimization
problem can be solved approximately in linear time.

• We propose a minimal group structure to facilitate temporal smoothing
and a seed point shifting strategy to improve clustering quality.

• We conduct extensive experiments on two real-life datasets that offer
insight into the properties of ECO and show that ECO is capable of
outperforming state-of-the-art proposals in terms of both clustering
quality and efficiency.

2 Preliminaries

We introduce preliminary definitions, DBSCAN, and evolutionary clustering.
The following definitions and examples are reproduced from [67].

2.1 Data Model

Definition 2.1
A GPS record is a pair (l, t), where t is a timestamp and l = (x, y) is a
location, with x being a longitude and y being a latitude.

Definition 2.2
A streaming GPS trajectory o is an unbounded ordered sequence of times-
tamped, mapped locations, 〈(o.l1, o.t1), (o.l2, o.t2) · · · 〉.

To facilitate the subsequent processing, we discretize time into short inter-
vals that are indexed by integers, following an existing study [36]. Given a
time interval, the timestamp of each GPS record is mapped to the index of the
interval that the timestamp belongs to. We call each index a time step dt.

Example 2.1
Assume that we partition the time domain into intervals of duration ∆t =
10s. The two time series 〈00:00:01, 00:00:12, 00:00:20, 00:00:31, 00:00:44〉 and
〈00:00:00, 00:00:13, 00:00:21, 00:00:31, 00:00:40〉 are both mapped to 〈0, 1, 2, 3, 4〉.

A trajectory is active at time step dt = [t1, t2] if it contains a GPS record
(l, t) such that t ∈ [t1, t2]. A snapshot Ok is the set of trajectories that are
active at time step dtk. We denote the GPS record of o at dtk as (o.lk, o.tk). In
the case of the current time step dtk, o.lk, o.tk, o.lk−1 and, o.tk−1 are simplified
as o.l, o.t, o.l̃ and o.t̃, respectively.

Definition 2.3
A θ-neighbor set of a streaming trajectory o (∈ Ok) at the time step dtk is
Nθ(o) = {o′|o′ ∈ Ok ∧ d(o.l, o′.l) ≤ θ}, where d(·) is Euclidean distance and θ
is a distance threshold. |Nθ(o)| is called the local density of o w.r.t. θ at dtk.

41

Chapter 4. Evolutionary Clustering of Streaming Trajectories

e
e e

o3

o5
o2

o1 o4

o6

e

(a) Core points oi (1 ≤ i ≤ 6∧ i 6= 3) (minPts = 3)

o5

o4
o6

d

d

do3

o1

o2

(b) Seed points o1 and o4 (ρ = 3)

Figure 4.2: oi (1 ≤ i ≤ 6) at dt1 in Figure 4.1 [67]

Example 2.2
Figure 4.1 shows three snapshots O1, O2, and O3. We have o7.l̃ = o7.l1 =
(30.35, 120.2), o7.t̃ = o7.t1 = 00:00:12, o7.l = o7.l2 = (30.36, 120.2), and o7.t =
o7.t2 = 00:00:22 at dt2. In Figure 4.2, Nδ(o1) = {o1, o2, o3}.

2.2 DBSCAN

We adopt a well-known density-based clustering approach, DBSCAN [79], for
clustering. The following concepts are from [79].

Definition 2.4
A trajectory o ∈ Ok is a core point w.r.t. ε and minPts, if Nε(o) ≥ minPts.

Definition 2.5
A trajectory o ∈ Ok is density reachable from another trajectory o′ ∈ Ok, if
a sequence of trajectories o1, o2, · · · on (n ≥ 2) exists such that (i) o1 = o′ and
on = o; (ii) ow (1 ≤ w < n) are core points; and (iii) d(ow, ow+1) ≤ ε (1 ≤ w <
n).

A clustering result Ck = {c1, c2, · · · , cn} is a set of clusters obtained from
the snapshot Ok. DBSCAN generates a clustering result according to a set of
core points and their density reachable points [79].

2.3 Evolutionary Clustering

Evolutionary clustering performs clustering at each time step and evaluates
the quality of clustering according to two aspects:

• Historical quality: how similar the current clustering Ck and the previous
clustering Ck−1 are;

42

3. Problem Formulation

• Snapshot quality: how similar the current clustering Ck and the cluster-
ing without smoothing Co are.

Specifically, evolutionary clustering defines a historical cost T Ck and a snap-
shot cost SCk. The lower the cost, the higher the quality. Evolutionary
clustering then integrates two costs into a cost function [72]:

Fk = SCk(Co, Ck) + α · T Ck(Ck−1, Ck), (4.1)

where α is a parameter enabling trade-offs between the two aspects. Generally,
Copt is the clustering result at dtk that minimizes Fk [39, 68–76]. This suggests
that a good clustering should evolve smoothly w.r.t. its previous counterpart
and should be faithful to the current data. Existing studies generally apply iter-
ative adjustements to achive clustering results Copt that minimize Formula 4.1.
Such iterative processes incur high time costs and thus are unsuitable for
processing large-scale trajectories in real-time. An existing study [69] proposes
cost embedding that pushes down the cost computation from the clustering
result level to the data level. This technique enables efficient and flexible
smoothing. We thus apply this strategy in ECO.

3 Problem Formulation

We introduce the new notions of snapshot cost and historical cost and formally
define ECO.

3.1 Snapshot Cost

As we adopt cost embedding [69] that smooths trajectories at the data level,
we need to define the location of a trajectory after smoothing.

Definition 3.1
An adjustment rk(o) is a location of a trajectory o obtained through smoothing
at dtk. Here, rk(o) 6= rk(o′) if o 6= o′. The set of adjustments in Ok is denoted
as Rk.

We simplify rk(o) to r(o) if the context is clear. With Definition 3.1, we
formulate the snapshot cost of a trajectory o as the distance between its
location o.l and its adjustment r(o), which is in accordance with the idea of
cost embedding:

SCk(r(o)) = d(r(o), o.l)2 s.t. d(r(o), o.l̃) ≤ µ · (o.t− o.t̃), (4.2)

where µ is a speed constraint of the road network. Formula 4.2 constrains
each adjustment to comply with the speed constraint.

43

Chapter 4. Evolutionary Clustering of Streaming Trajectories

g44 g54g24

g23

g25

g33 g43 g53

g35 g45 g55

g63

g64

g65

o3

o5
o2

o1

o4

o6

r(o6)

r''(o6)

r'(o6)

d
d

d

e

e

g34

Figure 4.3: oi (1 ≤ i ≤ 6) at dt2 in Figure 4.1 (ρ = 3) [67]

3.2 Historical Cost

Definition 3.2
A seed point s (s ∈ Sk) summarizes a minimal group Mk(s) = {o ∈
Ok| d(o, s) ≤ δ ∧ ∀s′ ∈ Sk (s′ 6= s ⇒ d(o, s) ≤ d(o, s′))} at dtk, where
δ (0 < δ ≤ ε) is a given parameter and Sk (Sk ⊂ Ok) is a seed point set
at dtk. The cardinality ofMk(s) must exceed a parameter ρ. Any trajectory
o in Mk(s) that is different from s is called a non-seed point. Note that,
Mk(s) ∩Mk(s′) = ∅ if s 6= s′.

Given the current time step dtk, s̃ denotes the seed point of a non-seed
point o at dtk−1 such that o ∈ Mk−1(s̃).

Example 3.1
In Figure 4.2b, there are two minimal groups, i.e.,M1(o1) = {o1, o2, o3} and
M1(o4) = {o4, o5, o6}. In Figure 4.3, there is only one minimal group before
smoothing, i.e.,M2(o1) = {o1, o2, o3}. Further, given the current k = 2, both s
and s̃ of o2 is o1 and s̃.l̃ = o1.l1.

Based on Definition 3.2, we formulate the temporal cost of a trajectory o as
follows.

T Ck(r(o)) =
(
dd(r(o), s̃.l)

δ
e − 1

)2

s.t. d(r(o), o.l̃) ≤ µ · (o.t− o.t̃),
(4.3)

where o ∈ Mk−1(s̃)\{s̃}. We use the degree of closeness, i.e., d d(r(o),s̃.l)
δ e, to

quantify the historical cost rather than using the exact distance d(r(o), s̃.l),
which is too strict considering the characteristics of trajectories.

44

3. Problem Formulation

3.3 Total Cost

The snapshot cost measures a distance, while the historical cost measures the
degree of closeness. Thus, we first normalize them to the unit range.

SCk(r(o)) =
(

d(r(o), o.l)
4µ · ∆t + δ

)2

s.t. d(r(o), o.l̃) ≤ µ · (o.t− o.t̃) (4.4)

T Ck(r(o)) =

(
d d(r(o),s̃.l)

δ e − 1
4µ·∆t+δ

δ

)2

s.t. d(r(o), o.l̃) ≤ µ · (o.t− o.t̃),

(4.5)

where o ∈ Mk−1(s̃)\{s̃} and ∆t is the duration of a time step. Obviously,
SCk(r(o)) ≥ 0 and T Ck(r(o)) ≥ 0; thus, we only need to establish that
SCk(r(o)) < 1 and T Ck(r(o)) < 1.
Lemma 3.1
If d(o.l, o.l̃) ≤ (o.t− o.t̃) · µ then d(r(o), o.l) ≤ 4µ · ∆t.

Lemma 3.1 indicates that we must have SCk(r(o)) < 1 if d(o.l, o.l̃) ≤ (o.t−
o.t̃) · µ always holds. In order to satisfy this constraint, we pre-process the
location of a trajectory when it arrives, to be covered in Section 4.3.
Lemma 3.2
If d(s̃.l, s̃.l̃) ≤ (s̃.t− s̃.t̃) · µ then d(r(o), s̃.l) ≤ 4µ · ∆t + δ.

We have d 4µ·∆t+δ
δ e − 1 < 4µ·∆t+δ

δ and thus T Ck(r(o)) < 1, based on
Lemma 3.2. Setting 4µ · ∆t + δ = π, the total cost Fk is:

Fk = ∑
o,s̃∈Θk∧o 6=s̃

1
π2

(
d(r(o), o.l)2 + α ·

(
δ ·
(
dd(r(o), s̃.l)

δ
e − 1

))2
)

s.t. ∀o ∈ Θk (d(r(o), o.l̃) ≤ µ · (o.t− o.t̃)),

(4.6)

where Θk = Ok ∩ (
⋃

s̃∈Sk−1
Mk−1(s̃)). Based on Formula 4.6, we formulate

the clustering problem as follows.

Definition 3.3
Given a snapshot Ok, a set of previous minimal groups

⋃
s̃∈Sk−1

Mk−1(s̃); a
time duration ∆t; a speed constraint µ; and parameters α, δ, ε, minPts, and ρ,
evolutionary clustering of streaming trajectories (ECO) is to

• finds a set of adjustments Rkopt such that Rkopt = arg minRk Fk;

• computes a set of clusters Ck over Rkopt .

In particular, ropt(o) (∈ Rkopt) denotes the adjustment of o.l at dtk and is then
used as the previous location of o in the evolutionary clustering at dtk+1.
Existing solvers compute Rkopt by iteratively adjusting each ropt(o) ∈ Rkopt , as
Formula 4.6 is neither continuous nor differentiable [80].

45

Chapter 4. Evolutionary Clustering of Streaming Trajectories

4 Computation of Adjustments

We proceed to present an approximate solution that enables minimizing the
cost defined in Formula 4.6 in linear time. We also show the speed-based
pre-processing that guarantees the correctness of the normalization introduced
in the previous chapter.

4.1 Linear Time Solution

Formula 4.6 can be decomposed as follows.

Fk = ∑
s̃∈Sk−1

fk(s̃.l)

= ∑
s̃∈Sk−1

∑
o∈Ω

(
d(r(o), o.l)2 + α ·

(
δ ·
(
dd(r(o), s̃.l)

δ
e − 1

))2
)

= ∑
s̃∈Sk−1

∑
o∈Ω

fk(r(o), s̃.l)

s.t. ∀o ∈ Θk (d(r(o), o.l̃) ≤ µ · (o.t− o.t̃)),

(4.7)

where Θk = Ok ∩ (
⋃

s̃∈Sk−1
Mk−1(s̃)), Ω = Mk−1(s̃)\{s̃}, r(o) is the adjust-

ment of o.l at dtk, s̃ is the seed point of o at dtk−1, and s̃.l is the location of s̃ at
dtk. We omit 1

π2 that is a constant.

Lemma 4.1
Fk achieves the minimum value if each fk(s̃.l) (s̃ ∈ Sk−1) achieves the mini-
mum value.
Lemma 4.2
fk(s̃.l) achieves the minimum value if each fk(r(o), s̃.l) (o ∈ Mk−1(s̃)∩Ok\{s̃})
achieves the minimum value.

Lemmas 4.1 and 4.2 suggest that Rkopt can be obtained by computing each
r(o) (o ∈ Θk) that minimizes fk(r(o), s̃.l). We denote a circle as Q(e, x), where
e is the center and x is the radius. Further, we denote a segment connecting
two locations l and l′ is denoted as se(l, l′). The intersection of a circle Q(e, x)
and a segment se(l, l′) is denoted as se(l, l′)⊕Q(e, r).

Lemma 4.3
se(o.l, s̃.l) ∩Q(o.l̃, µ · (o.t− o.t̃)) 6= ∅.

Lemma 4.3 indicates that a feasible solution r(o) on se(o.l, s̃.l) must exist
that satisfies the speed constraint in Formula 4.7.

Omitting the speed constraint. We first derive an adjustment ropt′(o) in
linear time that minimizes fk(r(o), s̃.l) without considering the speed con-
straint. Then, we show how to compute ropt(o) approximately on the basis of
ropt′(o).

46

4. Computation of Adjustments

Lemma 4.4
∀r′(o) /∈ se(o.l, s̃.l)(∃r(o) ∈ se(o.l, s̃.l)(fk(r(o), s̃.l) ≤ fk(r′(o), s̃.l))).

Example 4.1
In Figure 4.3, f (r(o6), o4.l) ≤ f (r′′(o6), o4.l) and f (r′(o6), o4.l) ≤ f (r′′(o6), o4.l)
due to r′′(o6) /∈ se(o4.l, o6.l).

Lemma 4.4 enables us to search ropt′(o) only on se(o.l, s̃.l) without sacrific-
ing accuracy.

Lemma 4.5
Let d(ropt′(o), s̃.l) = bopt′ · δ. If d(o.l, s̃.l) > δ then bopt′ ∈ {N∗ ∩ [λ1, λ2]} ∪ λ2,

where λ1 = d(s̃.l,o.l̃)−µ·(o.t−o.t̃)
δ , λ2 = d(o.l,s̃.l)

δ , and N∗ is the natural numbers.

Lemma 4.5 further reduces the search space of ropt′(o) from a segment
se(o.l, s̃.l) to discrete points on the segment. According to Lemmas 4.3 to 4.5
and setting d(r(o), s̃.l) = b · δ, fk(r(o), s̃.l) can be transferred into the following
function :

fk(b, s̃.l) = (d(o.l, s̃.l)− b · δ)2 + α · (δ · (b− 1))2

s.t. b ∈ {N∗ ∩ [λ1, λ2]} ∪ λ2,
(4.8)

where λ1 = d(s̃.l,o.l̃)−µ·(o.t−o.t̃)
δ and λ2 = d(o.l,s̃.l)

δ . Clearly, the objective function
of Formula 4.8 is continuous and differentiable, thus bopt′ that minimizes
fk(b, s̃.l) can be derived in constant time. As d(ropt′(o), s̃.l) = bopt′ · δ and
ropt′(o) ∈ se(o.l, s̃.l) (cf. Lemma 4.4), ropt′(o) can be obtained directly by bopt′ .

Example 4.2
Continuing Example 3.2 and given d(o6.l, o4.l) = 25, α = 2.1, and δ = 10, we
get bopt′ = 1 and ropt′(o6) = r(o6).

Introducing the speed constraint. We propose to efficiently compute ropt
by shrinking its feasible region from Q(o.l̃, µ · (o.t− o.t̃)) to the search space
of ropt′(o), which is a set of discrete points on se(o.l, s̃.l). As Formula 4.8 is a
simple quadratic function, bopt can be derived approximately on top of bopt′ .

bopt = arg min
b∈{N∗∩[λ1,λ2]}∪λ2

|b− bopt′ |

s.t. Q(o.l̃, µ · (o.t− o.t̃)) ∩Q(s̃.l, b · δ) 6= ∅
(4.9)

Similar to ropt′(o), ropt(o) can be obtained directly after getting bopt(o). Intu-
itively, ropt(o) = ropt′(o) if ropt′(o) satisfies the speed constraint in Formula 4.7.
Empirical studies indicate that this happens in most cases. The underlying
reasons are (i) that the speed of a trajectory generally does not exceed the
speed constraint of a road network because of the limitations of road condi-
tions and (ii) that the location of a trajectory has been adjusted for satisfying
the speed constraint before smoothing (to be shown in Section 4.3). Overall,
ropt(o) can be derived in constant time.

47

Chapter 4. Evolutionary Clustering of Streaming Trajectories

4.2 Shifting of Seed Points

In Section 4.1, we compute adjustments o ∈ Mk−1(s̃)\{s̃} by assuming that
the change from s̃.lk−1 to s̃.lk is smooth, which is not always the case. This
problem can be addressed by smoothing s̃ first. A previous study [80] cleans s̃
according to its close neighbors. Inspired by this, we use o ∈ Mk−1(s̃)\{s̃} as a
pivot to adjust s̃. However, according to Definition 3.2,Mk−1(s̃)\{s̃} generally
contains more than one non-seed point. This requires us to determine which
non-seed point should be selected as the pivot to adjust s̃.

We consider a trajectory o to be normal if it moves smoothly, which is
essentially evaluated by fk(b, s̃.l) in Formula 4.7. Thus, the pivot is chosen
according to the following formula.

s̃new = arg min
o∈Mk−1(s̃)∩Ok

fk(o) (4.10)

Next, rather than using s̃new to smooth s̃ and then using s̃ to smoothMk−1(s̃)∩
Ok\{s̃}, we directly assign s̃new as the seed point for smoothing by Formula 4.7,
i.e., we shift the seed point from s̃ to s̃new. The underlying reasons are: (i) s̃new
is identified as the trajectory with the smoothest movement among trajectories
in Mk−1(s̃) ∩ Ok by Formula 4.10; thus, it is less necessary to smooth it;
(ii)|Mk−1(s̃)| − 1 computations can be saved by using the seed point shifting
strategy.

4.3 Speed-based Pre-processing

In order to ensure the correctness of the normalization of both snapshot and
historical costs (cf. Formula 4.4), we adjust the locations of a trajectory as they
arrive so that they satisfy the speed constraint, i.e., d(o.l, o.l̃) ≤ µ · (o.t− o.t̃).
We denote the location of a trajectory o before speed-based pre-processing as
o.lo while that after speed-based pre-processing is still denoted as o.l.

According to the minimum change principle [20], the effect of the speed-
based pre-processing on the subsequent smoothing should be as little as
possible. Thus, we derive o.lo, the non-seed points at the previous time step,
according to the following formula.

o.l = arg min
o.lp

∣∣d(o.lp, s̃.l)− d(o.lo, s̃.l)
∣∣

s.t. d(o.lp − o.l̃) ≤ µ · (o.t− o.t̃)
(4.11)

Formula 4.11 implies that o.l = o.lo if o.lo satisfies the speed constraint. Since
s̃ does not need to be smoothed by Formula 4.7, it is adjusted according to the
following formula.

s̃.l = arg min
s̃.lp

d(s̃.lo, s̃.lp)

s.t. d(s̃.lp − s̃.l̃) ≤ µ · (s̃.t− s̃.t̃)
(4.12)

48

5. Algorithm

Following the seed point shifting strategy, we check each o ∈ Mk−1(s̃) ∩Ok
for identifying s̃new. Hence, before this process, we need to ensure that
each o ∈ Mk−1(s̃) ∩Ok follows the speed constraint w.r.t. the current to-be-
examined seed point s̃ by Formulas 4.11 and 4.12.

5 Algorithm

Next, we present a grid index and the the algorithm underlying ECO.

5.1 Grid Index

We adopt a grid index [81] to accelerate the clustering algorithms. The
diagonal of each grid cell (denoted as g) has length ε, which is one of the
parameters used in DBSCAN [81]. An example is shown in Figure 4.3. We
denote the smallest distance between the boundaries of two grid cells, g and
g′, as min(g, g′). Based on this, we introduce the concept of h-closeness [81].

Definition 5.1
Two grid cells g and g′ are h-close if min(g, g′) ≤ h. The set of the h-close
grid cells of g is denoted as Ih(g).

Lemma 5.1
For o ∈ g, we have d(o.l, o′.l) > h if o′ ∈ g′ ∧ g′ /∈ Ih(g).

5.2 Generating Minimal Groups

The previous analysis suggests that we smooth a trajectory o only when it is
contained in a minimal group. Since we hope to smooth as many trajectories
as possible at each time step, the optimal set of minimal groups should
satisfy ∀o ∈ Ok\(

⋃
s∈Sk
Mk(s))∀s ∈ Sk (d(o, s) > δ)). However, as we require

|Mk(s)| ≥ ρ and d(o.l, s.l) ≤ d(o.l, s′.l) if o ∈ Mk(s), we have to enumerate all
the possible combinations to get the optimal set of Sk. To make this feasible in
streaming settings, we propose to greedily select a trajectory o as a seed point
if ∀s ∈ Sk(d(o.l, s.l) > δ. Further, Lemma 5.1 enables us to search the seed
point s of a non-seed point o only in Iδ(o) according to Lemma 5.1 without
sacrificing any accuracy.

5.3 Evolutionary Clustering

The overall ECO clustering algorithm first computes a set of adjustments Rkopt
according to Formulas 4.8–4.12. Then, it generates minimal groups according
to Rkopt . Finally, it performs clustering on the basis of Rkopt . Further, we adapt
an existing strategy [69] to optimizing modularity online and connect clusters
in adjacent time steps following an existing proposal [69].

49

Chapter 4. Evolutionary Clustering of Streaming Trajectories

10-2

10-1

100

A
ve

ra
ge

 p
ro

ce
ss

in
g

tim
e

(s
ec

)

The value of

 ECO Kim-Han
 Dyn OCluST

5 7 864

(a) CD dataset

10-2

10-1

100

A
ve

ra
ge

 p
ro

ce
ss

in
g

tim
e

(s
ec

)

The value of

 ECO Kim-Han
 Dyn OCluST

5 7 864

(b) HZ dataset

0.7

0.8

0.9

5

Q
S

The value of

 ECO Kim-Han
 Dyn OCluST

8764

(c) CD dataset

0.7

0.8

0.9

Q
S

The value of

 ECO Kim-Han
 Dyn OCluST

5 7 864

(d) HZ dataset

0.4

0.6

0.8

NM
I

The value of

 ECO Kim-Han
 Dyn OCluST

5 7 864

(e) CD dataset

0.6

0.7

0.8

0.9

NM
I

The value of

 ECO Kim-Han
 Dyn OCluST

5 7 864

(f) HZ dataset

Figure 4.4: Comparison [67]

6 Experimental Evaluation

6.1 Experimental Design

Datasets. We use two real-life datasets, Chengdu (CD) and Hangzhou (HZ).
The CD and HZ datasets contain 30 and 107 million GPS records, respectively.

Baselines and experimental settings. We use three baselines an existing
proposal Kim-Han [69], DYN [74], and OCluST [29]. Kim-Han [69] is a
representative density-based evolutionary clustering method. It improves
efficiency by evaluating costs at the data level rather than at the cluster level.
DYN [74] is the state-of-the-art evolutionary clustering technique. It adapts
a particle swarm algorithm and random walks to improve clustering quality.
OCluST [29] is the state-of-the-art for traditional clustering of streaming
trajectories, but does not consider temporal smoothness. It constructs a novel
structure to support continuous updates of representative trajectories in real-

50

6. Experimental Evaluation

time. All algorithms are implemented in C++, and the experiments are run on
a computer with an Intel Core i9-9880H CPU (2.30 GHz) and 32 GB memory.

Performance metrics We use modularity QS to evaluate the clustering
quality. A higher modularity indicates a better clustering. In addition, we
use normalized mutual information NMI [82] to evaluate the smoothness of
clustering over time. A higher NMI implies a more gradually change in the
clustering. Finally, we use the average processing time per record at each time
step to quantify efficiency.

6.2 Experimental Results

Comparison. Figure 4.4 reports the comparison results when varying ρ. First,
ECO generally outperforms the baselines in terms of all performance metrics.
The underlying reasons are: (i) ECO does not perform any iterations except
for at the initial time step; (ii) ECO considers temporal smoothness and is
designed specifically for trajectories, and (iii) ECO adjusts the location of a
trajectory that does not move smoothly according to the location of a neighbor
generally with high local density, increasing the intra-density and decreasing
the inter-density of clustering.

51

Chapter 4. Evolutionary Clustering of Streaming Trajectories

52

Chapter 5

Conclusion and Future Work

1 Conclusion

Three papers are included in this thesis. Each paper formulates and solves a
problem, as summarized below:

• Paper [14] proposes a framework, UTCQ, for compressing and querying
uncertain trajectories in road networks. It presents an improved TED
representation and a compact referential representation of uncertain
trajectories in road networks. A SIAR scheme is proposed as a part of
the improved TED representation for representing temporal informa-
tion. To achieve high compression performance, a reference selection
algorithm together with a Fine-grained Jaccard Distance are proposed,
which enables selecting high-quality references efficiently. Further, a
variable-length encoding scheme is presented for compressing referen-
tially represented trajectories. In addition, an StIU index and efficient
filtering and validation techniques are developed for partial decompres-
sion and efficient querying. Extensive experiments conducted using
three real-life datasets show that the UTCQ framework outperforms the
state-of-the-art solution in terms of both compression ratio and efficiency.

• Paper [52] proposes a framework, TRACE, for compressing and querying
streaming trajectories in road networks. It presents a speed-based trajec-
tory representation that exploits the similarity between sub-trajectories
and a referential representation that uses multiple references. It adapts
k-mer matching to trajectory representation and designs an online ref-
erence selection algorithm with an index structure to store references
efficiently. Reference deletion and rewriting functions are also included
in the framework. The former releases memory by detecting and delet-
ing outdated references. The latter updates references according to the

53

Chapter 5. Conclusion and Future Work

most recent frequent patterns to improve compression. Moreover, a
transmission strategy is developed that reduces the transmission cost
while ensuring that compressed trajectories are decodable. A grid index
and a filtering technique are also included in the framework to sup-
port real-time range queries. Extensive experiments conducted on two
real-life datasets and one synthetic dataset show that TRACE outper-
forms the state-of-the-art solution in terms of both compression ratio
and transmission cost.

• Paper [67] proposes a framework, ECO, for evolutionary clustering of
streaming trajectories. Following existing studies, we adopt the idea
of temporal smoothness and present new notions of so-called snapshot
and historical costs for clusters of trajectories. To ensure that temporal
smoothness is achieved efficiently, we develop a structure called minimal
group, for summarizing neighboring trajectories. Next, we formulate the
problem of evolutionary clustering of streaming trajectories, i.e., ECO.
Then we formalize ECO as an optimization problem and prove that it can
be solved approximately in linear time. A seed point shift strategy and
a speed-based pre-processing are proposed along with the linear time
solution. Finally, we present the algorithms that detail each component
of ECO together with optimization techniques. Extensive experiments
conducted on two real-life datasets show that ECO outperforms the state-
of-the-art proposal in terms of both clustering quality and efficiency.

2 Future Work

In further research, it is of interest to adapt multiple-order representation to
referential representation, which may further improve compression, and to
enable query processing directly on compressed trajectories. It is also of inter-
est to reduce the time delay and maximum memory cost for compression of
streaming trajectories, without sacrificing the compression ratio and transmis-
sion cost. Moreover, deploying TRACE in a distributed cloud setting would be
more practical and flexible for real-life applications. Finally, more information
can be exploited for temporal smoothness in evolutionary clustering, which
may enable improved performance.

54

Bibliography

References

[1] R. S. D. Sousa, A. Boukerche, and A. A. Loureiro, “Vehicle trajectory similarity:
Models, methods, and applications,” CSUR, vol. 53, no. 5, pp. 1–32, 2020.

[2] T. Cejka, V. Bartos, M. Svepes, Z. Rosa, and H. Kubatova, “Nemea: a framework
for network traffic analysis,” in CNSM. IEEE, 2016, pp. 195–201.

[3] J. S. C. Sheng Wang, Zhifeng Bao and G. Cong, “A survey on trajectory data
management, analytics, and learning,” arXiv preprint arXiv:2003.11547, 2020.

[4] Y. Zheng, “Trajectory data mining: an overview,” TIST, vol. 6, no. 3, pp. 1–41,
2015.

[5] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: user movement
in location-based social networks,” in SIGKDD, 2011, pp. 1082–1090.

[6] L. Liang, H. Ye, and G. Y. Li, “Toward intelligent vehicular networks: A machine
learning framework,” IEEE Internet Things J., vol. 6, no. 1, pp. 124–135, 2018.

[7] P. Sun, S. Xia, G. Yuan, and D. Li, “An overview of moving object trajectory
compression algorithms,” Math. Probl. Eng., vol. 2016, 2016.

[8] K. Zheng and H. Su, “Go beyond raw trajectory data: Quality and semantics.”
IEEE Data Eng. Bull., vol. 38, no. 2, pp. 27–34, 2015.

[9] X. Zhang, L. Xie, Z. Wang, and J. Zhou, “Boosted trajectory calibration for traffic
state estimation,” in ICDM. IEEE, 2019, pp. 866–875.

[10] H. Su, K. Zheng, H. Wang, J. Huang, and X. Zhou, “Calibrating trajectory data
for similarity-based analysis,” in SIGMOD, 2013, pp. 833–844.

[11] D. Zhang, M. Ding, D. Yang, Y. Liu, J. Fan, and H. Shen, “Trajectory simplification:
an experimental study and quality analysis,” PVLDB, vol. 11, no. 9, pp. 934–946,
2018.

[12] M. Bierlaire, J. Chen, and J. Newman, “A probabilistic map matching method for
smartphone GPS data,” TRANSPORT RES C-EMER, vol. 26, pp. 78–98, 2013.

[13] S. Taguchi, S. Koide, and T. Yoshimura, “Online map matching with route predic-
tion,” IEEE trans Intell Transp Syst, vol. 20, no. 1, pp. 338–347, 2018.

55

References

[14] T. Li, R. Huang, L. Chen, C. S. Jensen, and T. B. Pedersen, “Compression of
uncertain trajectories in road networks,” PVLDB, vol. 13, no. 7, pp. 1050–1063,
2020.

[15] L.-Y. Wei, Y. Zheng, and W.-C. Peng, “Constructing popular routes from uncertain
trajectories,” in KDD, 2012, pp. 195–203.

[16] G. R. Jagadeesh and T. Srikanthan, “Probabilistic map matching of sparse and
noisy smartphone location data,” in ITSC, 2015, pp. 812–817.

[17] Y. Han, W. Sun, and B. Zheng, “Compress: A comprehensive framework of
trajectory compression in road networks,” TODS, vol. 42, no. 2, p. 11, 2017.

[18] Y. Ji, Y. Zang, W. Luo, X. Zhou, Y. Ding, and L. M. Ni, “Clockwise compression
for trajectory data under road network constraints,” in ICBDA, 2016, pp. 472–481.

[19] B. Krogh, C. S. Jensen, and K. Torp, “Efficient in-memory indexing of network-
constrained trajectories,” in SIGSPATIAL, 2016, pp. 17–26.

[20] R. Song, W. Sun, B. Zheng, and Y. Zheng, “Press: A novel framework of trajectory
compression in road networks,” PVLDB, vol. 7, no. 9, pp. 661–672, 2014.

[21] S. Koide, Y. Tadokoro, C. Xiao, and Y. Ishikawa, “CiNCT: Compression and
retrieval for massive vehicular trajectories via relative movement labeling,” in
ICDE, 2018, pp. 1097–1108.

[22] X. Yang, B. Wang, K. Yang, C. Liu, and B. Zheng, “A novel representation and
compression for queries on trajectories in road networks,” TKDE, vol. 30, no. 4,
pp. 613–629, 2017.

[23] A. Silva, R. Raghavendra, M. Srivatsa, and A. K. Singh, “Prediction-based online
trajectory compression,” arXiv preprint arXiv:1601.06316, 2016.

[24] J. Chen, Z. Xiao, D. Wang, D. Chen, V. Havyarimana, J. Bai, and H. Chen,
“Toward opportunistic compression and transmission for private car trajectory
data collection,” IEEE Sens. J., vol. 19, no. 5, pp. 1925–1935, 2018.

[25] G. Hu, J. Shao, F. Liu, Y. Wang, and H. Shen, “If-matching: Towards accurate
map-matching with information fusion,” TKDE, vol. 29, no. 1, pp. 114–127, 2016.

[26] W. Liu, Y. Zheng, S. Chawla, J. Yuan, and X. Xing, “Discovering spatio-temporal
causal interactions in traffic data streams,” in SIGKDD, 2011, pp. 1010–1018.

[27] Z. Chen, H. T. Shen, X. Zhou, Y. Zheng, and X. Xie, “Searching trajectories by
locations: an efficiency study,” in SIGMOD, 2010, pp. 255–266.

[28] F. I. Bashir, A. A. Khokhar, and D. Schonfeld, “Object trajectory-based activity
classification and recognition using hidden markov models,” TIP, vol. 16, no. 7,
pp. 1912–1919, 2007.

[29] J. Mao, Q. Song, C. Jin, Z. Zhang, and A. Zhou, “Online clustering of streaming
trajectories,” Front. Comput. Sci., vol. 12, no. 2, pp. 245–263, 2018.

[30] C. S. Jensen, D. Lin, and B. C. Ooi, “Continuous clustering of moving objects,”
TKDE, vol. 19, no. 9, pp. 1161–1174, 2007.

[31] Z. Li, J.-G. Lee, X. Li, and J. Han, “Incremental clustering for trajectories,” in
DASFAA. Springer, 2010, pp. 32–46.

56

References

[32] Y. Yu, Q. Wang, X. Wang, H. Wang, and J. He, “Online clustering for trajectory
data stream of moving objects,” Comput. Sci. Inf. Syst., vol. 10, no. 3, pp. 1293–1317,
2013.

[33] G. Costa, G. Manco, and E. Masciari, “Dealing with trajectory streams by cluster-
ing and mathematical transforms,” Int. J. Intell. Syst., vol. 42, no. 1, pp. 155–177,
2014.

[34] Z. Deng, Y. Hu, M. Zhu, X. Huang, and B. Du, “A scalable and fast optics for
clustering trajectory big data,” Cluster Comput, vol. 18, no. 2, pp. 549–562, 2015.

[35] T. L. C. Da Silva, K. Zeitouni, and J. A. de Macêdo, “Online clustering of trajectory
data stream,” in MDM, vol. 1. IEEE, 2016, pp. 112–121.

[36] L. Chen, Y. Gao, Z. Fang, X. Miao, C. S. Jensen, and C. Guo, “Real-time distributed
co-movement pattern detection on streaming trajectories,” PVLDB, vol. 12, no. 10,
pp. 1208–1220, 2019.

[37] L.-A. Tang, Y. Zheng, J. Yuan, J. Han, A. Leung, C.-C. Hung, and W.-C. Peng, “On
discovery of traveling companions from streaming trajectories,” in ICDE. IEEE,
2012, pp. 186–197.

[38] X. Li, V. Ceikute, C. S. Jensen, and K.-L. Tan, “Effective online group discovery in
trajectory databases,” TKDE, vol. 25, no. 12, pp. 2752–2766, 2012.

[39] Y. Chi, X. Song, D. Zhou, K. Hino, and B. L. Tseng, “Evolutionary spectral
clustering by incorporating temporal smoothness,” in SIGKDD, 2007, pp. 153–162.

[40] N. S. Nafi, R. H. Khan, J. Y. Khan, and M. Gregory, “A predictive road traffic
management system based on vehicular ad-hoc network,” in ATNAC. IEEE,
2014, pp. 135–140.

[41] V. Milanes, J. Villagrá, J. Godoy, J. Simó, J. Pérez, and E. Onieva, “An intelligent
v2i-based traffic management system,” IEEE trans Intell Transp Syst, vol. 13, no. 1,
pp. 49–58, 2012.

[42] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying density-
based local outliers,” in SIGMOD, 2000, pp. 93–104.

[43] L. Li, X. Chen, Q. Liu, and Z. Bao, “A data-driven approach for gps trajectory
data cleaning,” in DASFAA. Springer, 2020, pp. 3–19.

[44] V. Patil, P. Singh, S. Parikh, and P. K. Atrey, “Geosclean: Secure cleaning of gps
trajectory data using anomaly detection,” in MIPR. IEEE, 2018, pp. 166–169.

[45] A. Idrissov and M. A. Nascimento, “A trajectory cleaning framework for trajectory
clustering,” in MDC workshop, 2012, pp. 18–19.

[46] M. Bierlaire and E. Frejinger, “Route choice modeling with network-free data,”
TRANSPORT RES C-EMER, vol. 16, no. 2, pp. 187–198, 2008.

[47] S. Deorowicz and S. Grabowski, “Robust relative compression of genomes with
random access,” Bioinformatics, vol. 27, no. 21, pp. 2979–2986, 2011.

[48] S. Wandelt and U. Leser, “Adaptive efficient compression of genomes,” ALGO-
RITHM MOL BIOL, vol. 7, no. 1, p. 30, 2012.

[49] W. Sebastian and L. Ulf, “Fresco: Referential compression of highly similar
sequences,” TCBB, vol. 10, no. 5, pp. 1275–1288, 2013.

57

References

[50] L. Chen, Y. Gao, X. Li, C. S. Jensen, and G. Chen, “Efficient metric indexing for
similarity search,” in ICDE, 2015, pp. 591–602.

[51] J. Teuhola, “A compression method for clustered bit-vectors,” INFORM PROCESS
LETT, vol. 7, no. 6, pp. 308–311, 1978.

[52] T. Li, L. Chen, C. S. Jensen, and T. B. Pedersen, “Trace: real-time compression of
streaming trajectories in road networks,” PVLDB, vol. 14, no. 7, pp. 1175–1187,
2021.

[53] P. Sui and X. Yang, “A privacy-preserving compression storage method for large
trajectory data in road network,” J. Grid Comput., vol. 16, no. 2, pp. 229–245, 2018.

[54] Y. Zhao, S. Shang, Y. Wang, B. Zheng, Q. V. H. Nguyen, and K. Zheng, “Rest: A
reference-based framework for spatio-temporal trajectory compression,” in KDD,
2018, pp. 2797–2806.

[55] P. Zhao, Q. Zhao, C. Zhang, G. Su, Q. Zhang, and W. Rao, “Clean: frequent
pattern-based trajectory spatial-temporal compression on road networks,” in
MDM, 2019, pp. 605–610.

[56] C. Chen, Y. Ding, Z. Wang, J. Zhao, B. Guo, and D. Zhang, “Vtracer: When online
vehicle trajectory compression meets mobile edge computing,” IEEE Syst J, vol. 14,
no. 2, pp. 1635–1646, 2019.

[57] J. Muckell, J.-H. Hwang, V. Patil, C. T. Lawson, F. Ping, and S. Ravi, “Squish: an
online approach for gps trajectory compression,” in COM.Geo, 2011, pp. 1–8.

[58] Y. Li, W. Gao, W. Gao, H. Zhang, and J. Zhou, “A distributed double-newton
descent algorithm for cooperative energy management of multiple energy bodies
in energy internet,” IEEE T IND INFORM., 2020.

[59] C. Chen, Y. Ding, X. Xie, S. Zhang, Z. Wang, and L. Feng, “Trajcompressor: An
online map-matching-based trajectory compression framework leveraging vehicle
heading direction and change,” IEEE trans Intell Transp Syst, vol. 21, no. 5, pp.
2012–2028, 2019.

[60] S. Deorowicz, “Fqsqueezer: k-mer-based compression of sequencing data,” Sci.
Rep., vol. 10, no. 1, pp. 1–9, 2020.

[61] Y. Liu, H. Peng, L. Wong, and J. Li, “High-speed and high-ratio referential genome
compression,” Bioinformatics, vol. 33, no. 21, pp. 3364–3372, 2017.

[62] S. Saha and S. Rajasekaran, “Nrgc: a novel referential genome compression
algorithm,” Bioinformatics, vol. 32, no. 22, pp. 3405–3412, 2016.

[63] S. Raza, S. Wang, M. Ahmed, and M. R. Anwar, “A survey on vehicular edge
computing: architecture, applications, technical issues, and future directions,”
IEEE Wirel Commun, vol. 19, no. 4, pp. 2322–2358, 2019.

[64] Y. Li, D. W. Gao, W. Gao, H. Zhang, and J. Zhou, “Double-mode energy manage-
ment for multi-energy system via distributed dynamic event-triggered newton-
raphson algorithm,” IEEE T Smart Grid., vol. 11, no. 6, pp. 5339–5356, 2020.

[65] Y. Chen and L. Tu, “Density-based clustering for real-time stream data,” in
SIGKDD, 2007, pp. 133–142.

58

References

[66] A. Dignös, M. H. Böhlen, and J. Gamper, “Overlap interval partition join,” in
SIGMOD, 2014, pp. 1459–1470.

[67] T. Li, L. Chen, C. S. Jensen, T. B. Pedersen, and J. Hu, “Evolutionary clustering of
streaming trajectories,” arXiv preprint arXiv:2109.11609, 2021.

[68] K. S. Xu, M. Kliger, and A. O. Hero III, “Adaptive evolutionary clustering,” Data
Min Knowl Discov, vol. 28, no. 2, pp. 304–336, 2014.

[69] M.-S. Kim and J. Han, “A particle-and-density based evolutionary clustering
method for dynamic networks,” PVLDB, vol. 2, no. 1, pp. 622–633, 2009.

[70] D. J. Fenn, M. A. Porter, M. McDonald, S. Williams, N. F. Johnson, and N. S.
Jones, “Dynamic communities in multichannel data: An application to the foreign
exchange market during the 2007–2008 credit crisis,” J Nonlinear Sci, vol. 19, no. 3,
p. 033119, 2009.

[71] J. Chen, C. Zhao, L. Chen et al., “Collaborative filtering recommendation algorithm
based on user correlation and evolutionary clustering,” Complex Syst., vol. 6, no. 1,
pp. 147–156, 2020.

[72] D. Chakrabarti, R. Kumar, and A. Tomkins, “Evolutionary clustering,” in SIGKDD,
2006, pp. 554–560.

[73] M. Gupta, C. C. Aggarwal, J. Han, and Y. Sun, “Evolutionary clustering and
analysis of bibliographic networks,” in ASONAM. IEEE, 2011, pp. 63–70.

[74] Y. Yin, Y. Zhao, H. Li, and X. Dong, “Multi-objective evolutionary clustering for
large-scale dynamic community detection,” Inf. Sci., vol. 549, pp. 269–287, 2021.

[75] X. Ma and D. Dong, “Evolutionary nonnegative matrix factorization algorithms for
community detection in dynamic networks,” TKDE, vol. 29, no. 5, pp. 1045–1058,
2017.

[76] F. Liu, J. Wu, S. Xue, C. Zhou, J. Yang, and Q. Sheng, “Detecting the evolving
community structure in dynamic social networks,” World Wide Web, vol. 23, no. 2,
pp. 715–733, 2020.

[77] F. Folino and C. Pizzuti, “An evolutionary multiobjective approach for community
discovery in dynamic networks,” TKDE, vol. 26, no. 8, pp. 1838–1852, 2013.

[78] F. Liu, J. Wu, C. Zhou, and J. Yang, “Evolutionary community detection in
dynamic social networks,” in IJCNN. IEEE, 2019, pp. 1–7.

[79] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm for
discovering clusters in large spatial databases with noise,” in SIGKDD, vol. 96,
no. 34, 1996, pp. 226–231.

[80] S. Song, C. Li, and X. Zhang, “Turn waste into wealth: On simultaneous clustering
and cleaning over dirty data,” in SIGKDD, 2015, pp. 1115–1124.

[81] J. Gan and Y. Tao, “Dynamic density based clustering,” in SIGMOD, 2017, pp.
1493–1507.

[82] A. Strehl and J. Ghosh, “Cluster ensembles—a knowledge reuse framework for
combining multiple partitions,” J Mach Learn Res, vol. 3, no. Dec, pp. 583–617,
2002.

59

References

60

Part II

Papers

61

Paper A

Compression of Uncertain Trajectories
in Road Networks

Tianyi Li, Ruikai Huang, Lu Chen, Christian S. Jensen, and
Torben Bach Pedersen

The paper has been published in the
International Conference on Very Large Data Bases (PVLDB), pp. 1050–1063, 2020.

© 2020 VLDB
The layout has been revised.

1. Introduction

Abstract

Massive volumes of uncertain trajectory data are being generated by GPS devices.
Due to the limitations of GPS data, these trajectories are generally uncertain. This
state of affairs renders it is attractive to be able to compress uncertain trajectories and
to be able to query the trajectories efficiently without the need for (full) decompression.
Unlike existing studies that target accurate trajectories, we propose a framework
that accommodates uncertain trajectories in road networks. To address the large
cardinality of instances of a single uncertain trajectory, we exploit the similarity
between uncertain trajectory instances and provide a referential representation. First,
we propose a reference selection algorithm based on the notion of Fine-grained Jaccard
Distance to efficiently select trajectory instances as references. Then we provide
referential representations of the different types of information contained in trajectories
to achieve high compression ratios. In particular, a new compression scheme for
temporal information is presented to take into account variations in sample intervals.
Finally, we propose an index and develop filtering techniques to support efficient
queries over compressed uncertain trajectories. Extensive experiments with real-life
datasets offer insight into the properties of the framework and suggest that it is capable
of outperforming the existing state-of-the-art method in terms of both compression
ratio and efficiency.

1 Introduction

GPS sensors in smart-phones, in-vehicle navigation systems, and wearable
devices more generally are generating massive volumes of raw trajectories,
increasing the cost of data storage and transmission [20, 21, 42]. This has
led to the proposal of a variety of trajectory compression methods that fall
into two general categories: raw trajectory compression and road network-
embedded compression. The former category of methods aim to compress
trajectories without considering an underlying road network [1, 3, 4, 6, 8, 9, 11,
13, 16, 22–25, 27, 29, 31, 40, 41, 44]. Methods in the latter category first project
a trajectory onto a road network using a map-matching algorithm and then
exploit the road network to reduce the storage by transforming the mapped
trajectories into compact formats [5, 13, 17, 18, 31, 32]. As map-matching
can help improve the quality of trajectories and as in-network trajectories are
useful, we study road network-embedded compression.

The uncertainty of trajectories is caused by two characteristics, a low
sampling rate and inaccurate GPS positions [38, 45]. A low sampling rate
can make multiple routes between two map-matched GPS positions possible,
while position inaccuracy means that a raw GPS position may be map-matched
to multiple road-network positions. Here, a real-life example is shown in
Fig. A.1a for a trajectory consisting of 8 raw GPS points recorded by a taxi

65

Paper A.

(a) Raw trajectory (b) 1st trajectory instance

(c) 2nd trajectory instance (d) 3rd trajectory instance

Figure A.1: A real-life example of a raw trajectory and a corresponding network-constrained
uncertain trajectory.

in Hangzhou, China. All these GPS points are off the road, and the sam-
pling interval between two green points exceeds 4 minutes. To address this,
probabilistic map-matching [2, 15] has been proposed to transform a raw
trajectory into a set of network-constrained trajectory instances. Instead of
mapping each position in a raw trajectory to a unique road-network location,
probabilistic map-matching generally finds several potential road-network
locations. Figs. A.1b, A.1c, and A.1d are trajectory instances generated from
Fig. A.1a, which are similar to each other. To the best of our knowledge, no
existing solutions aim to compress uncertain trajectories, which is the target
of our study.

Two challenges must be addressed in order to effectively compress un-
certain trajectories. The first challenge is how to achieve a high compression ratio.
As shown in the example in Fig. A.1, the instances of an uncertain trajectory
are similar, which is also validated by statistics from three real-life datasets,
to be covered in Section 4.2. Hence, we adopt a referential representation
for uncertain trajectories that has proven effective for highly similar genome
sequences [10, 30, 35]. The second challenge is how to support efficient querying of
compressed uncertain trajectories. An existing study [40] provides an index for
accurate compressed trajectories that considers neither the uncertainty nor is
applicable to referentially represented trajectory instances. Consequently, we
propose a novel indexing technique that eliminates both shortcomings and
also propose associated query processing algorithms.

We integrate these contributions into a novel framework that compresses
uncertain trajectories and supports efficient query processing without the
need for (full) decompression. First, we separate the temporal, path, and
distance information of uncertain trajectories, thus following the state-of-

66

2. Preliminaries

the-art TED model [40]. Here, we propose a representation of the temporal
information to improve the compression ratio when sample intervals vary.
Then, we represent trajectory instances referentially using a two-step process,
i.e., selecting high-quality reference trajectory instances and transforming other
trajectory instances accordingly. As part of this, we propose a Fine-grained
Jaccard Distance function to measure the similarity between trajectories, and
we propose a greedy algorithm to efficiently select high-quality references.
Finally, we develop an index structure and algorithms that exploit effective
filtering techniques and partial decompression to support typical probabilistic
queries on compressed uncertain trajectories.

In summary, our main contributions are as follows:

• We propose a novel uncertain trajectory compression framework that
supports efficient probabilistic query processing. To the best of our
knowledge, this is the first proposal for compression of uncertain trajec-
tories in road networks.

• We develop a representation that accommodates a novel encoding
scheme for the temporal information of trajectories, and we use referen-
tial representation to compress uncertain trajectories in road networks.

• We design an effective indexing structure and filtering techniques to
accelerate query processing, including the processing of probabilistic
where, when, and range queries.

• We conduct extensive experimental evaluations that offer insight into
the framework and demonstrate that it is able to outperform the state-
of-the-art solution [40] by a factor of more than two in terms of the
compression ratio and by more than one order of magnitude in terms of
compression efficiency.

The rest of the paper is organized as follows. We present preliminaries
in Section 2 and give an overview of the proposed framework in Section 3.
Section 4 details the representation and compression schemes, and Section 6
covers the index structure and the query processing methodology. Section 6
reports the experimental results. Section 7 reviews related work, and Section
8 concludes and offers directions for future work.

2 Preliminaries

We proceed to introduce probabilistic map-matching and the TED model.
Table B.1 summarizes frequently used notation.

67

Paper A.

Table A.1: Frequently used notation

Notation Description
Tu a set of uncertain trajectories
Tuj an uncertain trajectory in Tu
N j the number of instances in Tuj

nj
p the number of pivots selected for Tuj

Tuj
w an instance of the uncertain trajectory Tuj

SV(Tuj
w) the start vertex of Tuj

w

D(Tuj
w) the relative distance sequence of Tuj

w

Tuj
w.p the probability of Tuj

w

E(Tuj
w) the edge sequence of Tuj

w

T′(Tuj
w) the time flag bit-string of Tuj

w
T(Tuj) the time sequence of Tuj

li the ith mapped location
Ref j

i the ith reference in Tuj

Ref j
i .Rrs the referential representation set of Ref j

i
Nref j

ik the kth non-reference in the set Ref j
i .Rrs

Comφ(Nref j
ik , Ref j

i) the referential representation of Nref j
ik

φ
j
ik(Mah) the hth factor in Comφ(Nref j

ik , Ref j
i)

ˆseq the binary code of a sequence seq
ωseq the flag array of a sequence seq
γseq the original array of a sequence seq

2.1 Probabilistic Map-Matching

A raw trajectory is a series of time-stamped point locations p0, ..., pn−1 of
a moving object of the form (x, y, t), where (x, y) is a point location in 2D
Euclidean space, with x being a longitude and y being a latitude, and t is a
timestamp. Tp = 〈p0, ..., p6〉 in Fig. A.2a is an example of a raw trajectory.

Definition 2.1
A road network is modeled as a directed graph G = (V, E), where V is a set of
vertices v (x, y) denoting intersections or end points, and E is a set of directed
edges e (vi → vj). Here, (x, y) denotes the 2D location of a vertex.

For simplicity, we use v and (vi → vj) to denote a vertex and a directed
edge of a road network, respectively. Map-matching [14, 28] aligns a raw
trajectory with the road network that constrains the movement of the corre-
sponding object, and the result is a network-constrained accurate trajectory.
This process transforms each original point location into a mapped location.

68

2. Preliminaries

1

(a) Tu
1

1

1

v1
l0

l1

l2
l3
l4l5l6

v2

2

4

v3 v4
v5

v6

v7v8

p00
p1

p2
p3

p4p5p6

2

1
2

2

4

1

ndistp0=(120.0692, 30.28622, 5:03:25)

p1=(120.0724, 30.28618, 5:07:25)

p2=(120.0757, 30.28621, 5:11:26)

p3=(120.0762, 30.28621, 5:15:26)

p4=(120.0772, 30.28620, 5:19:25)

p5=(120.0786, 30.28617, 5:23:25)

p6=(120.0796, 30.28498, 5:27:25)

(b) Tu (c) Tu
1

3

2

4

1

l2
l3
l4l5l6

2

2

l0 l1'1 1 1

1
2

4

1

l1

l2
l3
l4l5

2

2

l6'' 2

1 0 1 l0
v10

v9

2

1

2

Figure A.2: Instances of the network-constrained uncertain trajectory Tu1

Definition 2.2
A mapped location l is a network-constrained location in a road network G, rep-
resented as 〈(vs → ve), ndist, t〉, where ndist is the network distance between
vs and l on (vs → ve) and t is a timestamp.

For example in Fig. A.2a, l6 = 〈(v7 → v8), ndist, 5:27:25〉 is the mapped
location corresponding to p6; thus, the two have the same timestamp. We also
denote a mapped location as 〈(vs → ve), ndist〉 when the timestamp t is not
considered.

Definition 2.3
A network-constrained accurate trajectory Tr = 〈l0, l1, ..., ln−1〉 is a time-ordered
sequence of mapped locations l0, l1, ..., ln−1 of a moving object.

For example in Fig. A.2a, Tr = 〈l0, ..., l6〉 is a network-constrained accurate
trajectory.

69

Paper A.

Definition 2.4
Given two vertices vs and ve in a road network G, a path is a sequence of
connected edges (vi → vj), that starts from vs and ends at ve, i.e., (vs →
v1), (v1 → v2), · · · , (vn−1 → ve).

For example in Fig. A.2a, the path of Tp after map-matching is (v1 →
v2), (v2 → v3), · · · , (v7 → v8). A network-constrained accurate trajectory
encodes a unique path of a raw trajectory after map-matching. However, to
take into account the uncertainty in raw trajectories (as shown in Fig. A.1)
when mapping them to the road network, probabilistic map-matching [2, 15]
is proposed. Unlike a network-constrained accurate trajectory, a network-
constrained uncertain trajectory encodes a set of potential paths, each of
which is associated with a likelihood.

Definition 2.5
A network-constrained uncertain trajectory Tuj contains a set of instances Tuj

w

(1 ≤ w ≤ N j) generated from a raw trajectory Tp. Each Tuj
w is associated

with a probability and is represented by a time-ordered sequence of mapped
locations that is different from that of Tuj

v (1 ≤ v ≤ N j ∧ v 6= w). All instances
of Tuj share the same temporal information for all mapped locations.

Fig. A.2 shows a network-constrained uncertain trajectory Tu1 generated
from the raw trajectory Tp = 〈p0, ..., p6〉. Tu1 contains three instances, i.e.,
Tu1

1, Tu1
2, and Tu1

3, where Tu1
1 = 〈l0, l1, l2, l3, l4, l5, l6〉 has probability 0.75, Tu1

2 =
〈l0, l1′ , l2, l3, l4, l5, l6〉 has probability 0.2, and Tu1

3 = 〈l0, l1, l2, l3, l4, l5, l6′〉 has
probability 0.05. They share the temporal information 〈5:03:25, 5:07:25, 5:11:26,
5:15:26, 5:19:25, 5:23:25, 5:27:25〉, as they are all generated from Tp. In this
example, the uncertain trajectory has three possible paths (v1 → v2), (v2 →
v3), (v3 → v4), · · · , (v7 → v8) for Tu1

1, (v1 → v2), (v2 → v10), (v10 → v4), · · · ,
(v7 → v8) for Tu1

2, and (v1 → v2), (v2 → v3), (v3 → v4), · · · , (v8 → v9) for
Tu1

3. In contrast, only Tu1
1 that has the highest probability would be chosen as

the network-constrained accurate trajectory Tr.
In the rest of the paper, we use accurate trajectory instead of network-

constrained accurate trajectory, and we use uncertain trajectory instead of
network-constrained uncertain trajectory when this does not cause any ambi-
guity.

2.2 TED Representation

TED represents an accurate trajectory Tr as an edge sequence E(Tr), a time
sequence T(Tr), a time flag bit-string T′(Tr), and a relative distance sequence
D(Tr). Fig. A.2a shows an example of Tr, where an object moves from (v1 →
v2) to (v7 → v8) in sequence, and li (0 ≤ i ≤ 6) are the mapped locations. The
TED representation of Tr is shown in Table A.2.

70

2. Preliminaries

Table A.2: An example of TED representation

E(Tr) 〈185190→ 1,2,1,2,2,0,4,1,0〉
D(Tr) 〈0.875,0.25,0.5,0.875,0.5,0,0.875〉
T′(Tr) 〈1,0,1,0,1,1,1,1,1〉
T(Tr) 〈(0, 5:03:25), (1, 5:07:25), (2, 5:11:26)

(3, 5:15:26), (4, 5:19:25), (6, 5:27:25)〉

Edge Sequence. E(Tr) is represented by a start vertex v followed by a
sequence of outgoing edge numbers.

Definition 2.6
The outgoing edge number no (≥ 1) of an edge (vs → ve) means that (vs → ve)

is the no
th exit edge of vs.

In Fig. A.2a, the edge sequence of Tr can be straightforwardly represented
as 〈(v1 → v2), (v2 → v3), ..., (v7 → v8)〉. Let ID of v1 be 185190, and assume
that (v1 → v2) is labeled as the first outgoing edge w.r.t. v1. Then (v1 → v2)
can be represented as 185190 → 1. Here, we keep the ID of v1 to identify
the start vertex of the path. Next, if (v2 → v3) is assigned as the second
outgoing edge w.r.t. v2, (v2 → v3) is encoded as 2. To capture that an edge
(vs → ve) has r (r > 1) GPS points located on it, TED includes (r− 1) 0s after
(vs → ve)’s outgoing edge number w.r.t. vs. As shown in Table A.2, the 0 after
the 2 (2 is the outgoing edge number of (v5 → v6) w.r.t. v5) in E(Tr) indicates
that (v5 → v6) has two mapped locations, i.e., l2 and l3.

Time Sequence. T(Tr) is represented by omitting the consecutive times-
tamps with unchanged sample intervals. For example, 〈ti, ti+1, ti+2〉 is en-
coded as 〈(i, ti), (i +2, ti+2)〉 if ti+2 − ti+1 = ti+1 − ti. However, statistics from
real-life datasets show that the actual sample intervals vary frequently over
time. To be specific, the sample interval changes every 6.80, 2.32 and 1.97 sam-
ple intervals on average on three real-life datasets, namely the Denmark (DK),
Chengdu (CD), and Hangzhou (HZ) datasets, respectively. This translates into
redundant representations and subsequent poor compression ratios for TED.
We propose a new compression scheme that tackles this problem (Section 4.1).

Time Flag Bit-String. T′(Tr) is a time flag bit-string that maps timestamps
in T(Tr) to outgoing edge numbers in E(Tr). As shown in Table A.2, the
mapping between the timestamps in T(Tr) and outgoing edge numbers in
E(Tr) is not a one-to-one mapping. The reason is that an edge used by a
trajectory may not contain any mapped location. For example, the fourth bit 0
of T′(Tr) indicates that no GPS point is mapped to (v4 → v5); otherwise, it is
set to 1.

Relative Distance Sequence. D(Tr) is a sequence of relative distances of
the mapped locations on their edges.

71

Paper A.

Definition 2.7
Given a mapped location l = 〈(vs → ve), ndist〉, the relative distance rd of l
w.r.t. (vs → ve) is the ratio of ndist to the length of (vs → ve) (denoted as
|(vs → ve)|).

For example in Fig. A.2a, rd of l6 = 〈(v7 → v8), ndist〉 w.r.t. (v7 → v8) is
ndist

|(v7→v8)|
. In the rest of the paper, we use 〈(vs → ve), ndist〉 and 〈(vs → ve), rd〉

to represent a mapped location l interchangeably, as they are semantically
equivalent.

2.3 Compression with TED

We illustrate TED’s compression [40] of E(Tr), T(Tr), T′(Tr), and D(Tr).
Compression on E(Tr). Each E(Tr) has a start vertex followed by a se-

quence of outgoing edge numbers, as illustrated in Section 2.2. TED com-
presses E(Tr) using the following three steps: i) encoding each outgoing edge
number using dlog2(o)e bits, where o is the maximal number of outgoing
edges for all vertices v ∈ V; ii) grouping trajectories by the length of the binary
code of E(Tr), and forming an A × B binary code matrix for each group,
where A is the number of trajectories and B is the length of E(Tr); iii) applying
multiple bases-based compression to each matrix, based on the observation
that the highest bit of each code in the matrix has a high probability of being
0. Although the last two steps improve the compression ratio, we do not
adopt them in our proposal due to two reasons. First, additional cost must
be expended to group trajectories according to their lengths. Second, they
require extra space for storing the auxiliary information and extra time for
matrix operations during the multiple bases-based compression.

Compression on T(Tr) and T ′(Tr). Each element in T(Tr) is binary en-
coded while T′(Tr) are bit-strings that are compressed using an existing
bitmap compression algorithm [34].

Compression of D(Tr). D(Tr) is encoded by using a distance-preserving
scheme. The binary code C(rd) of a relative distance rd (0 ≤ rd < 1) is defined
as C(rd) = ∑I

i=0 C(rdxi)
1
2i , where C(rdxi) is its ith bit (i ≥ 0). Given an error

bound η, I equals the smallest number of bits having |C(rd)− rd| ≤ η. In
addition, a PDDP-tree is proposed to further reduce the storage cost.

3 Framework

We study the compression and subsequent querying of network-constrained
uncertain trajectories (NCUTs). We take Tu = {Tuj|1 ≤ j ≤ M}, where M is
the number of uncertain trajectories, as the input to our framework. Each
Tuj contains a set of instances Tuj

w (1 ≤ w ≤ N j) consisting of i) Ue(Tuj
w)

72

3. Framework

that is the edge sequence of Tuj
w; ii) Ud(Tuj

w) that is the relative distances of
all mapped locations; iii) Ut′(Tuj

w) that is the time flag bit-string to associate
timestamps with edges; and iv) U(Tuj

w).p that is the probability associated
with Tuj

w. All Tuj
w (1 ≤ w ≤ N j) share the same time sequence Ut(Tuj).

Fig. A.3 depicts our framework for Uncertain Trajectory Compression and
Querying (UTCQ) that encompasses three steps, where the red dashed box
encloses the input and output to the steps, the blue dashed boxes capture the
operations conducted during each step, and the orange dashed boxes capture
techniques corresponding to each step.

Trajectory

Representor

Improved TED

Representation

Sample Interval

Adaptive Representation

E(Tu), SV(Tu)

Reference

Selection

1

2

Referential

Representation

Ref (Tu), Ref (Tu).Rrs

3

Pivot-selection and

Fine-grained

Jaccard Distance

Computation

Trajectory

Compressor
Binary Encoding

Improved Exp-

Golomb Encoding

Query

Processor

Tu

Index Structure

NCUTs

UTCQ(Tu)

 Compressed

Tu

Query

Results

Com(Tu, piv)

ProbabilisticWhen Query

ProbabilisticWhere Query

Probabilistic Range Query

Flag and Original Array

Temporal Index

Spatial Index

 Trajectories

(1)

(2)

(3)

Partially Decompressed

Trajectories

Figure A.3: Framework

The trajectory representor converts the NCUTs into a new format. This pri-
marily involves three operations, i.e., improved TED representation, reference
selection, and referential representation, as described below:

i) We separate the start vertices from the edge sequences Ue(Tu) = {Ue(Tuj)
|Tuj ∈ Tu} to obtain SV(Tu) and E(Tu), to achieve a more compact
format. Moreover, we propose a new scheme to represent the time
sequences Ut(Tu) = {Ut(Tuj)| Tuj ∈ Tu} to achieve a high compression
ratio. The details are presented in Section 4.1.

73

Paper A.

Table A.3: Example of improved TED representation of Tu1 in Fig. A.2

w 1 2 3
SV(Tu1

w) 185190 185190 185190
E(Tu1

w) 〈1, 2, 1, 2, 2, 0, 4, 1, 0〉 〈1, 1, 1, 2, 2, 0, 4, 1, 0〉 〈1, 2, 1, 2, 2, 0, 4, 1, 2〉
D(Tu1

w) 〈0.875, 0.25, 0.5, 〈0.875, 0.25, 0.5, 〈0.875, 0.25, 0.5,
0.875 0.5, 0, 0.875〉 0.875 0.5, 0, 0.875〉 0.875 0.5, 0, 0.5〉

T′(Tu1
w) 〈0, 1, 0, 1, 1, 1, 1〉 〈1, 0, 0, 1, 1, 1, 1〉 〈0, 1, 0, 1, 1, 1, 1〉

Tu1
w.p 0.75 0.2 0.05

ii) The representation of path information SV(Tuj) and E(Tuj) of each
uncertain trajectory Tuj is given to the reference selector (Fig. A.3 1©), that
selects one or more high-quality reference instances for each uncertain
trajectory. For each selected reference Ref j

i , the reference selector finds a

set of non-references (denoted as Ref j
i .Rrs), i.e., other instances that can

be represented by Ref j
i . The reference selector sends the above results

back to the improved TED representation step to identify the references
as well as their non-references (Fig. A.3 2©). The detailed algorithm is
covered in Section 4.3.

iii) For each uncertain trajectory Tuj, the non-reference instances of Tuj

are represented according to their references, by applying a referential
representation method (Fig. A.3 3©). Several formats are proposed to
represent the non-references compactly. The details are provided in
Section 4.2.

The trajectory compressor compresses the references and non-references
into binary codes. Specifically, we adapt Exp-Golomb encoding [33] to com-
press T(Tuj), and we apply variable-length encoding to compress each non-
reference based on its reference, in order to further reduce the storage cost.
The detailed method is covered in Section 4.4.

The query processor is equipped with efficient algorithms that only par-
tially decompress compressed trajectories. Specifically, we construct and use
two auxiliary data structures to facilitate decompression of necessary informa-
tion of non-references. In addition, we build a spatio-temporal index during
compression that can effectively reduce the search space without the need for
full decompression. The details are presented in Section 5.

4 Representor and Compressor

We present the expression and encoding scheme designed for uncertain trajec-
tories. We use the running example depicted in Fig. A.2, which contains three
instances (i.e., Tu1

1, Tu1
2, and Tu1

3) of an uncertain trajectory Tu1.

74

4. Representor and Compressor

Table A.4: An referential representation example for Table 3

φ Comφ(Nref 1
11, Ref 1

1) Comφ(Nref 1
12, Ref 1

1)

SV ∅ ∅
E 〈(0, 1, 1), (2, 7)〉 〈(0, 8, 2)〉
D ∅ 〈(6, 0.5)〉
T′ 〈(1, 2), (3, 4)〉 ∅

4.1 Improved TED Representation

We denote each uncertain trajectory instance Tuj
w (1 ≤ w ≤ N j) of a particular

NCUT Tuj as a tuple (SV(Tuj
w), E(Tuj

w), D(Tuj
w),

T′(Tuj
w), Tuj

w.p). Table A.3 shows how the example in Fig. A.2 is represented.
SV(Tuj

w). SV(Tuj
w) is the start vertex ID of the first edge traversed by Tuj

w.
In Table A.3, SV(Tu1

1) = 185190, which is the ID of v1 in Fig. A.2a.
D(Tuj

w) and Tuj
w.p. D(Tuj

w) and Tuj
w.p are the relative distance sequence

(cf. Definition 2.7) and probability generated via the probabilistic map-
matching process. As Tuj consists of N j instances, we have ∑N j

w=1 Tuj
w.p = 1.

E(Tuj
w). E(Tuj

w) is the edge sequence of Tuj
w (exclude the start vertex). We

adopt the representation of edge sequence used by TED to represent it.
T ′(Tuj

w). We represent the time flag bit-string T′(Tuj
w) by modifying the

TED representation slightly. The first and last edges traversed by Tuj
w must

each have at least one GPS point mapped onto them, so the first and last
bits of T′(Tuj

w) must be 1. As a result, we omit the first and last bits when
representing T′(Tuj

w), to improve the compression ratio.
The sample interval is unstable in real-life applications, and TED has a

problem when representing such trajectories. In order to tackle this problem,
we develop a new representation scheme to represent T(Tuj), namely Sample
Interval Adaptive Representation (SIAR) .

Sample Interval Adaptive Representation of T(Tuj). Fig. A.4a counts
the differences between the actual sample intervals and the default ones using
three real-life datasets, i.e., DK, CD, and HZ. As can be observed, most of the
actual sample intervals (93% in DK, 62% in CD, and 54% in HZ) are equal
to or deviate only 1 second from the default one. Motivated by this, we only
record the difference between the (actual) sample interval and the default one.
Assume that the time sequence of Tuj starts with t0 and that Ts is the default
sample interval. SIAR keeps t0 as the first value in T(Tuj) and represents the
following timestamps as (ti+1 − ti)− Ts, where ti is the ith timestamp. Given
the time sequence 〈5:03:25, 5:07:25, 5:11:26, 5:15:26, 5:19:25, 5:23:25, 5:27:25〉, an
example of SIAR used in UTCQ is T(Tu1) = 〈5:03:25, 0, 1, 0, -1, 0, 0〉, where
the default sample interval is 240 sec. In contrast, TED represents the sequence

75

Paper A.

as 〈(0, 5:03:25), (1, 5:07:25), (2, 5:11:26), (3, 5:15:26), (4, 5:19:25), (6, 5:27:25)〉,
because most of its adjacent (actual) sample intervals are different. Hence,
SIAR achieves a more compact representation when the sample interval varies
frequently.

4.2 Referential Representation

The referential representation encodes the differences of an input sequence
w.r.t. a reference sequence by exploiting the similarity between them (i.e.,
the more similar the sequences are, the higher the compression ratio). It is
a lossless encoding [10, 30, 35]. Fig. A.4b shows statistics on the similarity
between trajectory instances in DK, CD, and HZ. Here, we use edit distance
to measure the similarity of E(·) between two instances as in [37, 43]. As can
be observed, the edit distance between most of the instances of a particular
uncertain trajectory (88% in DK, 94% in CD, and 83% in HZ) is at most 5, while
that between most of the instances from different uncertain trajectories (53%
in DK, 77% in CD, and 54% in HZ) is no less than 9. Hence, we only apply the
referential representation to the trajectory instances of an uncertain trajectory
rather than to the instances of different uncertain trajectories, to guarantee
high compression ratios. For each uncertain trajectory, we select one or more
instances as references, i.e., reference trajectory instances (see Section 4.3 for
the selection). Then, other instances can be represented according to their
reference using a set of factors defined below.

Definition 4.1
Given a non-reference Nref j

ik and its corresponding reference Ref j
i , Nref j

ik can be

expressed as a list of factors, i.e., Comφ(Nref j
ik, Ref j

i) = 〈φ
j
ik(Mah)|1 ≤ h ≤ H〉,

where H is the number of factors, and a factor φ
j
ik(Mah) denotes a subsequence

in Nref j
ik.

Since one reference can be used for representing multiple non-references,
we use the referential representation set Ref j

i .Rrs to denote the set of Nref j
ik

(1 ≤ k ≤ |Ref j
i .Rrs|) represented by Ref j

i . Table A.4 shows the referential
representation of Table 3, where Tu1

1 is selected as the reference Ref 1
1 and is

used to represent Tu1
2 and Tu1

3 (also called Nref 1
11 and Nref 1

12). The detailed
representation is explained below.
E(Nref j

ik). Several strategies exist for encoding a factor [10, 30, 35]. We adopt

the (S, L, M) representation [30] to encode each factor of ComE(Nref j
ik, Ref j

i),
as it has a high compression ratio when the to-be-compressed sequence and
the reference are highly similar. Specifically, S is the start position of the
subsequence in the reference, L is the length of the subsequence, and M is the

76

4. Representor and Compressor

0 1 (1,50] (50,100] >100
0.0

0.3

0.6

0.9
F
ra
ct
io
n

Differences (sec)

DK CD HZ

(a) Sample intervals

0.0

0.2

0.4

0.6

Edit distance between uncertain trajectories

DK CD HZ

[3,5] ≥9[6,8]

F
ra
ct
io
n

Edit distance within an uncertain trajectory
[0,2]

0.0

0.2

0.4

0.6

0.8
DK CD HZ

≥9

F
ra
ct
io
n

[6,8][3,5][0,2]

(b) Similarity

Figure A.4: Statistics of real-life datasets

first mis-matched element following the subsequence. However, we rewrite the
form of each factor in two cases:

A) When M does not exist (no mismatch), we record the factor as (S, L),
omitting M. This does not introduce any ambiguity, since (S, L) only
occurs at the end of the factor list.

B) When an outgoing edge number (denoted as no) in E(Nref j
ik) does not

exist in E(Ref j
i), we denote the factor by assigning S = |E(Ref j

i)| and

M = no, where |E(Ref j
i)| is the length of E(Ref j

i). The idea is to append
no to the end of the reference, i.e., to consider no as its last value. We
further omit L as it always equals 1. Hence, the factor in this case has
the form (S, M). For example, given E(Tu1

4) = 〈3, 2, 1, 2, 2〉, we have
E1

13(Ma1) = (9, 3), by referentially representing Tu1
4 (denoted as Nref 1

13).

T ′(Nref j
ik). The referential representation of T′(Nref j

ik) is similar to that of

E(Nref j
ik). We represent each factor using the format (S, L) because M can

be inferred easily from the reference. To be specific, if the bit immediately
following the longest prefix in T′(Ref j

i) is 1, the first mis-matched bit in

T′(Nref j
ik) is 0, i.e., M = 0; otherwise, M = 1. Specifically, we always keep the

last factor in the form (S, L, M) when M exists in order to avoid ambiguity.
Then, if T′(Nref j

ik) is exactly the same as T′(Ref j
i), ComT′(Nref j

ik, Ref j
i) = ∅ (as

shown in Table A.4).
D(Nref j

ik). We observe that even though a raw positional point could be
mapped to two different edges via the probabilistic map-matching, the
mapped locations may have the same relative distance, as the GPS records
shown in Fig. A.1. Based on this observation, we encode each factor in
D(Nref j

ik) using the format (pos, rd), where pos is the position of the different
value rd. Note that this strategy is not good for referentially representing
E(Nref j

ik) and T′(Nref j
ik) because their lengths vary across the instances of a

single uncertain trajectory Tuj.

77

Paper A.

Finally, we omit SV(Nref j
ik). Because we do not choose a non-reference

Nref j
ik that has a different start vertex than Rref j

i . Also, we do not referentially

compress T(Nref j
ik) or Nref j

ik.p, because i) all instances for a single uncertain

trajectory Tuj share the same T(Tuj), and ii) the probability Nref j
ik.p has quite

different values.

4.3 Reference Selection

Intuitively, the more similar a reference and a non-reference are, the higher
the compression ratio. A naive reference selection strategy is to try every
instance as the reference. However, its cost is too high. Inspired by an existing
study [30], we use the similarity between the referential representations of
trajectory instances to approximate their exact one. Here, we first select a
set of pivots, and then represent each instance using these pivots. Thereafter,
a fine-grained Jaccard Distance function is defined to estimate the similarity
between two represented instances.

Pivot Selection. We select a set of pivots {pivi|1 ≤ i ≤ nj
p} from Tuj.

High-quality pivots are usually far away from each other and far away from
other instances [7]. Hence, we i) randomly choose a trajectory instance and
referentially represent all the remaining ones according to it; ii) select the one
with the most factors as a pivot; iii) referentially represent all the trajectory
instances using the most recently selected pivot; and iv) we repeat steps ii) and
iii) until enough pivots are selected. Note that we only referentially represent
E(·) of each trajectory instance by that of each pivot, as it is sufficient to
distinguish the distances between instances.

Pivot Representation. We adopt the format (S, L) [10] to represent each
factor in step iii). An example of (S, L) representation in Table A.3 is
ComE(Tu1

1, piv1) = 〈(0, 8), (5, 1)〉, where piv1 = Tu1
3. If an outgoing edge

number in E(Tuj
w) does not exist in E(pivi), we omit the factor but increase

the number of factors by 1. After pivot selection and representation, we get
the referential representations of each trajectory Tuj w.r.t. a set of pivots, i.e.,
ComE(Tuj

w, pivi) (1 ≤ w ≤ N j, 1 ≤ i ≤ nj
p). The time complexity of pivot selec-

tion and representation for a Tuj is O(N j · nj
p · avg(|E|) · avg(|ComE|), where nj

p

is the number of pivots selected for Tuj, avg(|E|) is the average length of E(·)
of all instances of Tuj, and avg(|ComE|) is the average length of all instances
w.r.t. all pivots of Tuj.

Fine-grained Jaccard Distance Function. Given two trajectory instances
Tuj

w and Tuj
v, and a pivot pivi, we use the similarity between ComE(Tuj

w,
pivi) and ComE(Tuj

v, pivi) to estimate the similarity between E(Tuj
w) and

E(Tuj
v). Previous work [30] uses the Jaccard Distance to measure the simi-

78

4. Representor and Compressor

larity. However, this distance is inaccurate in some cases. Given piv1 = Tu1
3

and E(Tu1
5) = 〈1, 2, 1, 2, 2, 0, 4〉, we have ComE(Tu1

1, piv1) = 〈(0, 8), (5, 1)〉 and
ComE(Tu1

5, piv1) = 〈(0, 7)〉. Thus, the Jaccard Distance between them is 1.
However, E(Tu1

1) is actually very similar to E(Tu1
5). To obtain a more fine-

grained distance notion, we propose a new distance metric, called Fine-grained
Jaccard Distance (FJD), to calculate the distance from E(Tuj

w) to E(Tuj
v) against

a pivot pivi.

FJD(Tuj
w → Tuj

v, pivi)(w 6= v)

=
∑H′

h′=1sim(Ej
iv(Mah′), ComE(Tuj

w, pivi))

max{H, H′} ,
(A.1)

where H and H′ denote the number of factors in ComE(Tuj
w, pivi) and ComE(Tuj

v,
pivi), respectively, while Ej

iv(Mah′) denotes the h′th factor (Siv
h′ , Liv

h′) in ComE(Tuj
v,

pivi). In addition, we use sim(Ej
iv(Mah′), ComE(Tuj

w, pivi)) to measure the sim-

ilarity between Ej
iv(Mah′) and ComE(Tuj

w, pivi), calculated as follows,

sim(Ej
iv(Mah′), ComE(Tuj

w, pivi))

=
maxH

h=1(Ej
iw(Mah) ∩ Ej

iv(Mah′))

max{Liw
max, Liv

h′}

(A.2)

We define Ej
iw(Mah)∩ Ej

iv(Mah′) as max{min{Siw
h + Liw

h , Siv
h′ +Liv

h′}−max{Siw
h ,

Siv
h′}, 0}, and Liw

max = arg maxLiw
h

Ej
iw(Mah) ∩Ej

iv(Mah′). If Liw
max is not unique,

we choose the minimum value.
Example 4.1
(FJD computation) Consider the example in Table A.3. Given piv1 = Tu1

3, we
have ComE(Tu1

1, piv1) = 〈(0, 8), (5, 1)〉 and ComE(Tu1
2, piv1) = 〈(0, 1), (0, 1), (2,

6), (5, 1)〉. Then we calculate E1
11(Ma1)∩E1

12(Ma1)

max{L11
1 ,L12

1 }
= 1

8 , in order to get sim(E1
12(Ma1),

ComE(Tu1
1, piv1)). Similarly, we are able to gain sim(E1

12(Ma2), ComE(Tu1
1, piv1))

= 1
8 , sim(E1

12(Ma3), ComE(Tu1
1, piv1)) =

3
4 , and sim(E1

12(Ma4), ComE(Tu1
1, piv1))

= 1. Hence, FJD(Tu1
1 → Tu1

2, piv1) = (1
8 + 1

8 + 3
4 + 1)/4 = 1

2 .

Based on FJD(Tuj
w → Tuj

v, pivi), we present our score function SF(Tuj
w, Tuj

v)

(w 6= v) for representing Tuj
v by Tuj

w, which is calculated as Tuj
w.p ·max

nj
p

i=1FJD

(Tuj
w → Tuj

v, pivi). Here, a trajectory instance with higher probability of
occurrence is expected to get a higher chance to be a reference, in order to
speed up decompression during querying. Therefore, we multiply Tuj

w.p
with the maximum FJD value. SF(Tuj

w, Tuj
w) (1 ≤ w ≤ N j) is set to 0, as we

79

Paper A.

do not consider the case of representing a trajectory instance by itself. In
addition, we calculate SF(Tuj

w, Tuj
w) only when SV(Tuj

w) = SV(Tuj
v), because

two trajectory instances with different start vertices usually are not similar to
each other. According to the score function SF, the optimal reference for Tuj

v
can be derived by the following formula:

Ref (Tuj
v) = arg max

Tuj
w

SF(Tuj
w, Tuj

v) (A.3)

There are two constraints in our setting: i) each non-reference only has one
reference, to avoid redundancy; and ii) we only consider single-order compres-
sion. Our goal of reference selection is to maximize ∑Tuj

w ,Tuj
v∈Tuj SF(Tuj

w, Tuj
v)

for an uncertain trajectory Tuj under these two constraints. Unfortunately,
we have to enumerate all the possible combinations to get the best selection
choice, which is unfeasible, as the enumeration cost is O(((N j)2)!) for Tuj.

Therefore, we propose a greedy algorithm, shown in Algorithm 1, for
selecting the references for each uncertain trajectory Tuj (1 ≤ j ≤ M). By
applying SF to each pair of instances of an uncertain trajectory Tuj, we can get
a score matrix SM, where SM[w][v] = SF(Tuj

w, Tuj
v) is the score of representing

Tuj
v by Tuj

w. Algorithm 1 shows that we always choose the maximal element
from SM, since it represents the current best reference. After each selection,
we delete the elements in SM that do not satisfy the constraints (Line 7 and
9). The above-mentioned procedure is repeated until SM = ∅ or the current
maximum of it is 0. In the latter case, the trajectory instances that have
not been selected are formally added to the reference set of Tuj for easier
query processing but are not associated with a reference representation set
(Lines 11–13). The efficiency of Algorithm 1 can be further improved by pre-
sorting the elements in SM. The time complexity of reference selection for Tuj

is O(N j · nj
p · avg(|E|) · avg(|ComE|) + N j2 · nj

p · avg(|ComE|)2 + N j2 · 2 logN j

2),

while the space complexity is O(N j · nj
p · avg(|ComE|) + (N j)2 · nj

p).

Example 4.2
(Algorithm 1 overview) Assuming that we only select Tu1

3 as a pivot for Tu1, we
get an SM. Then we find the maximum in SM, i.e., SF(Tu1

1, Tu1
2), based on

which we get a reference Tu1
1 and add Tu1

2 to its Rrs. Afterwards, SM[w′][2] ∪
SM[2][w′′] ∪ SM[v′][1] (1 ≤ w′, w′′, v′ ≤ 3) are removed from SM according
to the two constraints. This process is shown below,

SM =

 0 3
8

1
3

7
80 0 1

30
1

40
1

80 0

→
 A0 AA

3
8

1
3

SS
7

80 A0 SS
1

30
SS
1

40 SS
1

80 0


Then we add Tu1

3 to Tu1
1.Rrs due to SM[1][3] > SM[3][3], and remove SM[w′][3]

80

4. Representor and Compressor

Algorithm 1: Reference Selection Algorithm

Input: SM of Tuj

Output: the reference set Ref (Tuj) of Tuj, and the referential representation set
of each reference in Ref (Tuj) if it exists

1 initialize an empty reference set Ref (Tuj)
2 while SM 6= ∅ do
3 select the maximum score SM[w][v] from SM
4 if SM[w][v] > 0 then
5 if Tuj

w /∈ Ref (Tuj) then
6 add Tuj

w to Ref (Tuj), and create Tuj
w.Rrs

7 remove SM[v′][w] from SM (1 ≤ v′ ≤ N j)

8 add Tuj
v to Tuj

w.Rrs
9 remove SM[w′][v], SM[v][w′′] from SM (1 ≤ w′, w′′ ≤ N j)

10 else
11 for each diagonal element SM[w][w] in SM do
12 if SM[w][w] exists then
13 add Tuj

w to Ref (Tuj)

14 return Ref (Tuj) and the non-empty Tuj
w.Rrs for each Tuj

w ∈ Ref (Tuj)

∪SM[3][w′′](1 ≤ w′, w′′ ≤ 3) from SM. Finally, since SM = ∅, we return the
reference Tu1

1 with its Rrs = {Tu1
2, Tu1

3} for Tu1.

4.4 Compression

Binary Encoding References. We follow TED [40] to compress E(Ref). As
discussed in Section 2.2, we omit the time-consuming procedures of TED. In
this case, UTCQ still outperforms TED in terms of compressing ratio due to the
referential representation and compression, while significantly improving the
compression efficiency. Also, we adopt the PDDP-tree [40], which is the only
lossy component in our framework, to encode D(Ref) and Ref .p that are floats.
We use the error bounds ηD and ηp to constrain their compression accuracy.
Both ηD and ηp are pre-set compression parameters, and the actual errors
between the original and compressed data are constrained by these settings.
T′(Ref) is already represented as bit strings as discussed in Section 4.1 and
does not need any further compression. Moreover, we propose an improved
Exp-Golomb encoding to compress T(Ref), which effectively addresses the
sample interval fluctuation.

Improved Exp-Golomb Encoding. As different deviations between the
actual sample interval and the default occur with different frequencies, encod-

81

Paper A.

ing each value of T(Tuj) in a binary code with fixed length may waste space.
Specifically, we find that small deviations are much more frequent than large
ones. The statistics in Fig. A.4a exemplify this. Thus, we adopt the well-known
Exp-Golomb encoding [33] to compress T(Tuj). It encodes smaller values with
shorter lengths and larger values with longer lengths. We set the parameter
k, which controls the length of the first group, to 0. Given timestamps ti
and ti+1 of an uncertain trajectory Tuj with default sample interval Ts, we let
4ti = (ti+1 − ti)− Ts (0 ≤ i < |T(Tuj)| − 1), where |T(Tuj)| is the length of
T(Tuj). However, since 4ti may be negative, the Exp-Golomb encoding needs
to be modified.

Assuming that the longest actual sample interval is Tl , we have 4ti ∈
(−Ts, Tl − Ts] (0 ≤ i < |T(Tuj)| − 1). We divide [0, max{Ts − 1, Tl − Ts}]
into n groups, where n = dlog2(max {Ts − 1, Tl − Ts}+ 1)e, and the range
of the jth(j ≥ 0) group is

[
−2j+1 + 2, −2j + 1

]
∪
[
2j − 1, 2j+1 − 2

]
. This

way, all the possible deviations between the actual sample interval and the
default one can be covered as [−max{Ts− 1, Tl − Ts}, max{Ts− 1, Tl − Ts}] ⊆
[−2n + 2, 2n− 2]. The offset of4ti in the jth group is given by | 4 ti| − (2j− 1).
Moreover, we add one 1 bit immediately before the offset if 4ti is a negative
digit; otherwise, 0 is added. Following the example of SIAR in Section 4.1,
〈5:03:25, 0, 1, 0, -1, 0, 0〉 is encoded as 〈00100011100011101, 0, 1000, 0, 1010,
0, 0〉 by the improved Exp-Golomb encoding. Hence the compression ratio
of T(Tu1) by our method is 32×7

12+17 = 7.72, while the counterpart by TED
is 32×7

(17+12)×6 = 1.29, where we assume each trajectory contains at most 212

timestamps and ti (0 ≤ i < |T(Tuj)|) is encoded using 17 bits.
Binary Encoding Non-references. Let |E(Ref j

i)| be the length of E(Ref j
i)

and o be the maximum number of outgoing edges for any vertex v ∈ V.
Then S takes dlog2 |E(Ref j

i)|+ 1e bits, L takes dlog2 |E(Ref j
i)|e bits, and M

takes dlog2 oe bits when performing binary encoding of a factor (S, L, M) in
E(Nref j

ik). Next, S and L in the factor of T′(Nref j
ik) are encoded in dlog2 |T′(Ref j

i)

|e bits, while M takes 1 bit. Further, pos in each factor of D(Nref j
ik) occu-

pies dlog2 |D(Ref j
ik)|e bits, and rd is encoded by a PDDP-tree [40]. It can be

seen that, by using referential representation, binary codes of different non-
references may have different lengths depending on their similarities to the
corresponding references, further saving space. We denote the binary code of
a sequence seq as ˆseq in the rest of the paper, e.g., the binary code of E(·) is
denoted as Ê(·).

Overall, the space complexity of compressing Tuj is O(N j · nj
p · avg(|ComE|)

+(N j)2 · nj
p + sizein(Tuj) + sizeout(Tuj)), where sizein(Tuj) and sizeout(Tuj) are

the input size and the compressed size of Tuj, respectively.

82

5. Query Processor

5 Query Processor

In this section, we describe how to compute queries directly on compressed
uncertain trajectories. First of all, we introduce a strategy to extract the
necessary information from compressed time flag bit-strings by means of partial
decompression. Second, we design an index to achieve fast retrieval and partial
decompression. In addition, several pruning techniques are proposed to more
efficiently support probabilistic queries on compressed uncertain trajectories.

5.1 Time Flag Bit-string Decompression

We have represented the time flag bit-strings of non-references as a list of
factors. Since time flag bit-strings associate D(·) and T(·) with E(·), we need
to get the number of 1s before any position in order to support queries
over compressed data [40]. Naively, we can first decompress factors of

ˆComT′(Nref j
ik, Ref j

i) to T′(Nref j
ik), and then count the number, with the cost

O(| ˆComT′(Nref j
ik, Ref j

i)| +|T
′(Nref j

ik)|). To accelerate this, we propose an ef-
fective method by constructing two assisting arrays, flag array and original
array.

Flag Array and Original Array. The flag array of T′(Ref j
i) is denoted as

ω
T′(Ref j

i)
, and counts the number of 1s before the gth (not including g) bit

of T′(Ref j
i) (0 < g ≤ |T′(Ref j

i)|). However, T′(Ref j
i) omits the first and last

bit of the original time flag bit-string during representation (in Section 4.1).
Therefore, we define the original array, γ

T′(Ref j
i)

, which records the number

of 1s until the gth bit in the original time flag bit-string (0 ≤ g < |T′(Ref j
i)|).

Here, we simplify ϕ
T′(Ref j

i)
and ϕ

T′(Nref j
ik)

by representing them as ϕ
Ref j

i
and

ϕ
Nref j

ik
, where ϕ ∈ {ω, γ}.

For a reference Ref j
i , it is easy to get ω

Ref j
i

by linearly scanning T′(Ref j
i).

To get γ
Nref j

ik
for a non-reference, we propose a strategy by partially decom-

pressing ComT′(Nref j
ik, Ref j

i). Given ω
Ref j

i
and g, we can get γ

Nref j
ik
[g] by only

decompressing at most one factor in ComT′(Nref j
ik, Ref j

i). More specifically,

we first locate the factor in ComT′(Nref j
ik, Ref j

i) that the gth bit of the original

T′(Nref j
ik) falls into, as follows.

max h s.t. h +
h

∑
l=1

Lik
l ≤ g ∧ h < H, (A.4)

where H is the number of factors in ComT′(Nref j
ik, Ref j

i) and Lik
l is the length of

83

Paper A.

the subsequence represented by T′ jik(Mal). Formula A.4 ensures that the gth bit

of the original T′(Nref j
ik) either falls into T′ jik(Mah+1) or exactly corresponds

to the M that is omitted in T′ jik(Mah). Thus we only need to decompress

T′ jik(Mah+1) after calculating the number of 1s within the subsequence before
the (h + 1)th factor, as follows.

Z =1 +
h

∑
l=1

ω
Ref j

i
[Sik

l + Lik
l]−ω

Ref j
i
[Sik

l]

+ ∼ T′(Re f j
i)[S

ik
l + Lik

l],

(A.5)

where ∼ (x) means NOT(x), i.e., the neglected mismatched elements of
T′ jik(Mal), and Sik

l refers to the start position of the subsequence represented

by T′ jik(Mal). Let g′ = g − h − ∑h
l=1 Lik

l . Then γ
Nref j

ik
[g] can be derived as

follows.

γ
Nref j

ik
[g] =Z + ω

Ref j
i
[Sik

h+1 + g′]−ω
Ref j

i
[Sik

h+1], (A.6)

where g ≥ Lik
1 + 1∧ g < H + ∑H

l=1 Lik
l (H 6= 1).

Hence, we extract the necessary information γ
Nref j

ik
[g] with the cost O(| ˆComT′

(Nref j
ik, Ref j

i)|+
|T′(Nref j

ik)|
H) if g is given, where |T

′(Nref j
ik)|

H is the average length
of each factor.

5.2 StIU Index

We propose an index, called Spatio-temporal Information based Uncertain
Trajectory Index (StIU), to support efficient probabilistic queries by partial
decompression. The partial decompression is lossless and decompresses only
the information necessary for answering queries [40]. As shown in Fig. A.5a,
an StIU index is built on Tu1, where Tu1

1 (used as Ref 1
1) and Tu1

2 (used as
Nref 1

11) are instances of the uncertain trajectory Tu1 depicted in Fig. A.2. Let
the IDs of v1, v2, v3, v4, v5, and v7 be 185190, 185191, 185192, 185194, 228476,
and 228478, respectively. Assume that the mapping positions of the relative
distances of l1, l2, and l5 in D̂(Ref 1

1) are 6, 12, and 30, respectively, and that the
maximum outgoing edge number of the road network in Fig. A.5b is 7. The
index contains two parts. The upper part indexes the temporal information of
trajectories, while the lower part supports effective spatial search.

Temporal Index of StIU. We first partition a day into equal-length time
intervals. Then, we associate each interval with the uncertain trajectories,
whose timestamps intersect with it. The information on an uncertain trajectory
Tuj corresponding to a time interval is stored in a tuple (t.start, t.no, t.pos),
where t.start is the earliest timestamp of Tuj falling into the time interval, t.no

84

5. Query Processor

indicates that t.start is the t.noth timestamp in T(Tuj), and t.pos refers to the
matching position of the (t.no + 1)th timestamp in T̂(Tuj).

[5:00:00, 5:30:00)

Ref

(5:03:25,0,17)

(185190,0,0,1,0.2)

(185192,1,6,1,0.2)

(228476,3,12,1,0.2)

(228478,6,30,1,0.2)

(185190,0,0)

(185194,2,11)

Nref

[4:30:00, 5:00:00)

Temporal Index

Spatial Index

Tu

re1

re2

re3

re4

(a) Index Structure

v4

v5

v6

v7v8

v10

v3

v2v1
l0

l1

l2

l3
l4
l5l6

l1'

re4re3
re1 re2

RE1

RE222

0

(b) Tu1
1 and Tu1

2

Figure A.5: StIU built on Tu = {Tu1} depicted in Fig. A.2

Spatial Index of StIU. We further organize the trajectory instances in each
time interval according to their spatial information. To be specific, we first
partition the road network G using grid cells, each of which represents a region
rei. Then we create tuples, each linking a trajectory instance to a region it has
passed. The tuples for a trajectory instance form a chronologically ordered
list. For example, in Fig. A.5a, the tuple associated with re3 is followed by
that associated with re4 for Tu1

1 (used as Ref 1
1). Before detailing the index

information stored in each tuple of Tuj
w, we introduce the concept of final

vertex.

Definition 5.1
A final vertex of a trajectory instance Tuj

w w.r.t. a region re is a vertex in G that
is traversed by the trajectory instance immediately before reaching re, denoted
as Tuj

w.fv of re.

For example, in Fig. A.5b, v3 is Ref 1
1 .fv w.r.t. re4. Then, we introduce the

format of a tuple for a reference Ref j
i associated with a region re, if (Ref j

i .Rrs∪
Ref j

i) ∩ re 6= ∅. Accordingly, there are two possible cases for Ref j
i if it has a

tuple corresponding to re: i) Ref j
i passed re itself; ii) Ref j

i did not pass re but

∃Nref j
ik ∈ Ref j

i .Rrs s.t. Nref j
ik passed re.

For the first case, the tuple corresponding to re is stored as (fv.id, fv.no,
d.pos, ptotal, pmax), where 1) fv.id (≥ 0) is the ID of Ref j

i .fv w.r.t. re; 2) fv.no

indicates the position of fv.id in E(Ref j
i); 3) d.pos is the matching position of the

d.noth relative distance in D̂(Ref j
i), where d.no=γ

Ref j
i
[fv.no]; 4) with Ω defined

as the subset of all trajectory instances Ref j
i ∪ Ref j

i .Rrs that overlap re, ptotal is

then the sum of the probabilities of all instances in Ω; and 5) pmax = Nref j
ik′ .p

85

Paper A.

such that ∀Nref j
ik ∈ Ω: Nref j

ik′ .p ≥ Nref j
ik.p. If ∀Nref j

ik ∈ Ref j
i .Rrs, Nref j

ik does
not overlap re, pmax is set to 0.

For the second case, each tuple has the form (fv.id, ptotal, pmax). Specifically,
we set fv.id = ∞, which indicates that Ref j

i itself did not traverse re, and ptotal
and pmax are the same as for the first case.

The tuple for a non-reference Nref j
ik w.r.t. re has the form (rv.id, rv.no,

ma.pos), where 1) rv.id is the ID of the first vertex rv represented in Ej
ik(Mah)

(the hth factor of ComE(Nref j
ik, Ref j

i)), such that Ej
ik(Mah) contains Nref j

ik.fv of re;

2) rv.no indicates the position of rv in E(Nref j
ik); and 3) ma.pos is the matching

position of Ej
ik(Mah) in ˆComE(Nref j

ik, Ref j
i). In the case when a factor “crosses"

more than one region, we only keep the tuple for the region that the trajectory
instance traverses first. In the case when re is the first region traversed by Tuj

w

or Tuj
w.fv of re is exactly SV(Tuj

w), we store (SV(Tuj
w), 0, 0, pmax, ptotal) if Tuj

w

is a reference, and we store (SV(Tuj
w), 0, 0) if Tuj

w is a non-reference.

5.3 Probabilistic Queries

Based on StIU, three representative types of queries, namely probabilistic
where, when, and range queries, can be performed.

Definition 5.2
Given a timestamp t, a probability α, and a compressed trajectory stream
Trn, a probabilistic where query where(Tuj, t, α) returns the set of mapped
locations at time t of the instances Tuj

w ∈ Tuj with Tuj
w.p ≥ α. Each location is

given as 〈(vs → ve), ndist〉, where (vs → ve) is the edge traversed by Tuj
w, and

ndist is the network distance between vs and the location at t.

Definition 5.3
(Probabilistic when query) Given a mapped location 〈(vs → ve), rd〉, a prob-
ability α, and a compressed uncertain trajectory Tuj, a probabilistic when
query when(Tuj, 〈(vs → ve), rd〉, α) returns the set of timestamps, where rd is
the relative distance of the location w.r.t. (vs → ve), and each timestamp t
corresponds to a instance Tuj

w of Tuj with Tuj
w.p ≥ α, such that Tuj

w passed
〈(vs → ve), rd〉 at t.

Example 5.1
(Probabilistic where and when query) Let the IDs of v6 and v7 be 228477 and
228478, respectively, and the length of the edge (v6 → v7) be 200. Given
a query where(Tu1, 5:21:25, 0.25) and assume that the time partition dura-
tion of StIU is 15 minutes, we locate the tuple (5:15:26, 3, 23) through bi-
nary search, as its t.start is the closest timestamp to 5:21:25 with t.start≤
5:21:25, and then decompress T̂(Tu1) from its 23th bit. In this way, we get

86

5. Query Processor

the result 〈228477 → 228478, 150〉 without full decompression. Similarly,
given the road network partition shown in Fig. A.5b and a query when(Tu1,
〈228477 → 228478, 0.75〉, 0.25), we search from v5 according to the tuple
(228476, 3, 12, 1, 0.2) in StIU and return 5:21:25.

Definition 5.4
(Probabilistic range query) Given a query region RE, a timestamp tq, and a
collection of compressed uncertain trajectories Tu, a probabilistic range query
range(Tu, RE, tq, α) returns the set of uncertain trajectories Tuj(1 ≤ j ≤ M) in

Tu, such that ∑Tuj
w∈Tuj∧Tuj

w∩RE 6=∅
Tuj

w.p ≥ α at tq.

Example 5.2
(Probabilistic range query) A query range(Tu, re3 ∪ re4, 5:05:25, 0.5) returns
Tu1, as Tu1

1, Tu1
2, Tu1

3 overlaps re3 ∪ re4 at 5:05:25 and ∑3
w=1 Tu1

w.p = 1(> 0.5).
However, a range(Tu, RE1, 5:05:25, 0.5) returns empty due to Tu1 ∩ RE1 = ∅.

5.4 Filtering and Validating Lemmas

When querying using the StIU, we can effectively avoid unnecessary decom-
pression by exploiting ptotal and pmax that are maintained for each reference.

Lemma 5.1
Given a query when(Tuj, 〈(vs → ve), rd〉, α), if pmax < α holds for all the tuples

of reference Ref j
i in the StIU corresponding to the region where 〈(vs → ve), rd〉

is located then we do not need to fully decompress Ref j
i .

Proof. Let re be the region where 〈(vs → ve), rd〉 is located, and Ω′ be the
subset of Ref j

i .Rrs that overlaps re. If pmax < α holds for every tuple (under

each time interval) associated with region re, it follows that ∀Nref j
ik ∈ Ω′,

Nref j
ik.p < α due to Nref j

ik.p ≤ pmax. As a result, the timestamps of all non-
references within Ω′ will not be returned in accordance with the definition
of a probabilistic when query. Therefore, Ref j

i does not need to be fully
decompressed.

Example 5.3
(Filtering by Lemma 1) Given a query when(Tu1, 〈(185191→ 185192), 0.25〉, 0.5)
in Fig. A.5b, Ref 1

1 does not need to be fully decompressed. This is because
Ref 1

1 .pmax w.r.t. re3 where 〈(185191→ 185192), 0.25〉 falls is 0.2, implying that
Nref 1

1k.p < 0.5 (k = 1, 2).

Lemma 5.2
Given a spatial region RE, a timestamp tq, and two edges (vs → ve) and

(vs′ → ve′) where an uncertain trajectory instance Tuj
i is located at timestamps

87

Paper A.

tb and tb′ (tb ≤ tq ≤ tb′), (i) if the subpath sp from vs to ve′ satisfies sp ∈
RE then Tuj

i overlaps RE at tq; (ii) if the subpath sp from vs to ve′ satisfies

sp∩ RE = ∅ then Tuj
i does not overlap RE at tq.

Proof. Let the location where Tuj
i is located at tq be l. Then, l must be located

on sp due to tb ≤ tq ≤ tb′ . Hence, Tuj
i overlaps RE at tq if sp ∈ RE; Tuj

i does
not overlap RE at tq if sp∩ RE = ∅.

Lemma 5.3
Given a query range(Tu, RE, tq, α) and a set Canj that contains the instances of
Tuj ∈ Tu satisfying condition (i) in Lemma 5.2, if the sum of the probabilities
of all the instances in Canj is not smaller than α then Tuj should be in the
query result.

We omit the proof of Lemma 5.3 as it is straightforward.

Lemma 5.4
Given a query range(Tu, RE, tq, α), a region retotal(RE ⊆ retotal), and a set
Canj that contains all the instances of Tuj ∈ Tu that overlap retotal during
[tb, tb′] (tb ≤ tq ≤ tb′), if the sum of probabilities of all the instances in Canj is
smaller than α then Tuj does not qualify as a query result.

Proof. Let Can′j be a set of instances of Tuj that overlaps RE at tq. We have
Can′j ⊆ Canj due to RE ⊆ retotal and tq ∈ [tb, tb′]. As a result, the sum of
probabilities of instances in Can′j can not be greater than that in Canj. Thus, if

∑Tuj
i∈Canj Tuj

i .p < α then Tuj does not qualify as a query result.

Example 5.4
(Filtering by Lemmas 5.2, 5.3, and 5.4) Given a query range(Tu, re3 ∪ re4, 5:05:25,
0.5) in Fig. A.5 and ηp = 1

2048 , we can get the subpath sp1 from v1 to
v4 after partially decompressing T(Tu1) and E(Ref 1

1), where Ref 1
1 is located

on (v1 → v2) at 5:03:25 and located on (v3 → v4) at 5:07:25. According
to Lemma 5.2, we can ensure that Ref 1

1 must overlap re3 ∪ re4 at 5:05:25
without decompressing D(Ref 1

1). Since Ref 1
1 .p ≥ 0.5, Tu1 can be directly

returned by Lemma 5.3. Given a query range(Tu, RE1, 5:05:25, 0.5), we can
infer that Ref 1

1 , Nref 1
11 and Nref 1

12 do not overlap RE1 without decompressing
D(Ref 1

1), D(Nref 1
11) and D(Nref 1

12) according to Lemma 5.2. This is because
sp1 ∩ RE1 = ∅ and sp2 ∩ RE1 = ∅, where sp2 is the subpath of Nref 1

11 from v1
to v10. Then, since the sum of the probabilities of instances in Can1(= ∅) w.r.t.
retotal(= RE1) is 0 (< 0.5), Tu1 can be safely pruned by Lemma 5.4. Consider
another example range(Tu, RE2,5:05:25, 0.8). Assume that only Ref 1

1 traversed
re1, Tu1 can be safely pruned by Lemma 5.4 without checking any of its other
instances, as the sum of the probabilities of instances in Can1(= {Ref 1

1 }) w.r.t.
retotal(= re1) is 0.75 (< 0.8).

88

6. Experiments

Table A.5: Trajectory datasets

Datasets Denmark Chengdu Hangzhou
Storage of NCUTs 0.97 GB 5.00 GB 20.20 GB

of trajectories 266,913 1,956,640 1,807,895
of trajectory instances Average 9 Average 3 Average 13

(2 to 434) (2 to 192) (2 to 1,500)
of edges per trajectory Average 14 Average 11 Average 13

(2 to 139) (2 to 148) (2 to 189)
Default sample interval 1s 10s 20s

Table A.6: Road network information

Road network # of edges # of vertices Out degree
Denmark 818,020 667,950 Average 2.449
Chengdu 125,929 88,868 Average 2.834

Hangzhou 85,949 61,581 Average 2.791

Due to the space limitation, the detailed algorithms for probabilistic where,
when, and range quires are omitted.

6 Experiments

We report on extensive experiments aimed at evaluating the performance of
the proposed framework.

6.1 Experimental Setting

Datasets. We use three real-life datasets, i.e., Denmark (DK), Chengdu (CD),
and Hangzhou (HZ), as described in Table B.3, while the road network
information is shown in Table A.6. The DK dataset is collected from 162
vehicles over about 2 years (Jan. 2007 to Dec. 2008) in Denmark. The CD
dataset is collected from 14,864 taxis over one month (Aug. 2014) in Chengdu,
China. The HZ dataset is collected from 24,515 taxis over one month (Nov.
2011) in Hangzhou, China.

Comparison Algorithm. As this is the first study on the compression of
uncertain trajectories, we adapt the state-of-the-art work for the compression of
accurate trajectories, i.e., the TED framework [40], to compress each uncertain
trajectory instance while using the same to compress probability as our UTCQ.
We omit bitmap compression [40], as it is time consuming and it is also
applicable to UTCQ.

Parameter Setting. In the experiments, we study the effect on the perfor-
mance of the parameters summarized in Table B.4. In addition, due to the use
of the PDDP-tree [40], the error bound for representing the relative distance

89

Paper A.

Table A.7: Parameter ranges and default values

Parameter Range
Number of instances 20%, 40%, 60%, 80%, 100%
Trajectory length 20%, 40%, 60%, 80%, 100%
Number of pivots 1, 2, 3, 4, 5
Number of grid cells 82, 162, 322, 642, 1282

Time partition duration (min) 10, 20, 30, 40, 50, 60
Error bound of distance (meter) 1

8 , 1
16 , 1

32 , 1
64 , 1

128
Error bound of probability 1

128 , 1
256 , 1

512 , 1
1024 , 1

2048

Table A.8: Comparison on three datasets

Datasets
UTCQ

Compression ratio
Time(s)

Total T E D T′ p
Denmark 14.342 7.685 14.861 26.171 15.843 7.111 23
Chengdu 11.867 3.128 13.589 15.141 18.061 7.111 135

Hangzhou 13.787 3.193 16.092 17.815 14.592 5.818 1031

Datasets
TED

Compression ratio
Time(s)

Total T E D T′ p
Denmark 4.439 4.545 11.888 9.143 1 7.111 1823
Chengdu 4.287 1.707 11.247 9.143 1 7.111 65310

Hangzhou 4.008 1.418 9.376 9.143 1 5.818 980447

ηD is set to 1
128 , while the error bound w.r.t. probability ηp is set to 1

512 for
the DK and CD datasets and to 1

2048 for the HZ dataset. As the HZ dataset
contains more instances for each uncertain trajectory, it is given a lower ηp.

Performance Metrics. For compression, we use the compression ratio,
compression time, and maximum memory cost as the performance metrics.
For query processing, we use the index size, query time, average difference,
and F1 score as performance metrics. All algorithms are implemented in C++
and run on a computer with Intel Core i9-9880H CPU (2.30 GHz) and 32 GB
memory.

60 70 80 90 100
0

5

10

15

C
o
m
p
re
ss
io
n
ra
ti
o
(C
R
)

Number of instances (%)

UTCQ-CR

TED-CR

10
0

10
1

10
2

10
3

0.19

37
44

50
57 64

0.430.350.28
0.22

C
o
m
p
re
ss
io
n
ti
m
e
(s
ec
)UTCQ-time

TED-time

(a) DK dataset

60 70 80 90 100
0

5

10

15

C
o
m
p
re
ss
io
n
ra
ti
o
(C
R
)

Number of instances (%)

UTCQ-CR

TED-CR

10
2

10
3

10
4

10
5

10
6

1438
1278

1131983838

15.57
12.609.997.695.67

C
o
m
p
re
ss
io
n
ti
m
e
(s
ec
)UTCQ-time

TED-time

(b) HZ dataset

Figure A.6: Effect of the number of instances

90

6. Experiments

6.2 Performance of Compression

We first compare UTCQ and TED in terms of compression ratio and time.
Table A.8 shows the results, where T, E, D, T′, and p refer to the compression
ratios of time, edge, relative distance, time flag bit-string, and probability, respec-
tively, and Total denotes the total compression ratio. As observed, UTCQ
outperforms TED more than 2–3 times in terms of compression ratio. The
compression ratio of time offers evidence of the effectiveness of the SIAR
scheme, while the compression ratios of edge, relative distance, and time flag
bit-string reveal the effectiveness of referential compression. Moreover, the
compression time of UTCQ is always more than 1–2 orders of magnitude
smaller than that of TED, which validates the efficiency of UTCQ.

20 40 60 80 100
0

4

8

12

UTCQ-CR

TED-CR

C
o
m
p
re
ss
io
n
ra
ti
o
(C
R
)

Length (%)

10
0

10
1

10
2

10
3

10
4

C
o
m
p
re
ss
io
n
ti
m
e
(s
ec
)UTCQ-time

TED-time

0.02

155
123926229

0.05

0.04
0.04

0.03

(a) DK dataset

20 40 60 80 100
0

10

20

UTCQ-CR

TED-CR

714
563420277135

8.268.148.04
7.86

C
o
m
p
re
ss
io
n
ra
ti
o
(C
R
)

Length (%)

7.97

10
1

10
2

10
3

10
4

10
5

C
o
m
p
re
ss
io
n
ti
m
e
(s
ec
)UTCQ-time

TED-time

(b) HZ dataset

Figure A.7: Effect of the trajectory length

Effect of the Number of Instances. Fig. A.6 shows the compression
ratio and time when varying the number of trajectory instances. Specifically,
we filter the trajectories with fewer than 20 instances in the datasets. As
observed, the compression ratio of UTCQ improves slightly when increasing
the number of instances, while that of TED is unaffected. The reason is
that the more instances we have, the more can be referentially represented
by UTCQ. In contrast, TED compression is independent of the number of
instances. Moreover, the time of UTCQ and TED grows with the number of
instances, and UTCQ is 1–2 orders of magnitude faster than TED. Finally, the
digits along with the compression time are the maximum memory cost during
compression. As can be seen, the maximum memory cost of TED is always
1–2 orders of magnitude higher than that of UTCQ. This is because UTCQ
processes uncertain trajectories one by one, while TED has to load all the E(·)
for the preparation of matrix transformation and partitioning [40]. In addition,
the memory cost grows with the number of instance, in accordance with the
space complexity.

Effect of the Trajectory Length. Fig. A.7 reports the compression perfor-
mance results for different lengths of trajectories. We eliminate trajectories
with fewer than 20 edges and vary the trajectory length from 20% to 100% of
the total number of edges. As can be seen, the compression ratios of UTCQ
on both CD and HZ first increase slightly and then drop. This is because,

91

Paper A.

1 2 3 4 5
10

12

14
C
o
m
p
re
ss
io
n
ra
ti
o
(C
R
)

Number of pivots

DK CD HZ

(a) Compression ratio

1 2 3 4 5

10
1

10
2

10
3

0.95
0.77

0.62
0.430.25

0.12
0.11

0.09
0.070.05

76.74

61.44
46.51

30.8615.57

C
o
m
p
re
ss
io
n
ti
m
e
(s
ec
)

Number of pivots

DK CD HZ

(b) Compression time

Figure A.8: Effect of pivots

on the one hand, the compression ratio of time increases with the trajectory
length, while, on the other hand, the referential compression performance
drops due to the larger dissimilarity among longer sequences. Moreover, the
compression ratio of TED decreases slightly as the highest bits of the entry
path representation in one column [40] are more unlikely to be all 0. Finally,
both the compression time and maximum memory cost increase slightly with
the trajectory length, and UTCQ always uses 1–3 orders of magnitude less
space and 1–2 orders of magnitude less time than TED.

0

15

30

45

128×12864×6432×3216×16

In
d
ex
si
ze
(M
B
)

Number of grid cells

UTCQ (s-size)

TED (size)

8×8

UTCQ (t-size)UTCQ-time

TED-time

10
-2

10
-1

10
0

10
1

10
2

10
3

Q
u
er
y
T
im
e
(m
s)

(a) DK dataset

0

400

800

1200

In
d
ex
si
ze
(M
B
)

Number of grid cells
128×12864×6432×3216×168×8

UTCQ (s-size)

TED (size)

10
1

10
2

10
3

10
4

Q
u
er
y
ti
m
e
(m
s)

UTCQ-time

TED-time

UTCQ (t-size)

(b) HZ dataset

10 20 30 40 50 60
1.0

1.1

1.2

1.3

1.4

In
d
ex
si
ze
(M
B
)

Time partition duration (min)

UTCQ (t-size)

0

40

80

120

Q
u
er
y
ti
m
e
(µ
s)

UTCQ-time

(c) DK dataset

10 20 30 40 50 60
0

10

20

30

In
d
ex
si
ze
(M
B
)

Time partition duration (min)

UTCQ (t-size)

0

20

40

60

Q
u
er
y
ti
m
e
(m
s)

UTCQ-time

(d) HZ dataset

Figure A.9: Effect of spatial and temporal partition granularity on probabilistic range queries

Effect of the Number of Pivots. Fig. A.8 reports on the impact of the
number of pivots on the compression performance. It can be seen that the
compression ratio increases with the number of pivots used. The reason
is that the more pivots, the higher the accuracy of the proposed similarity
measure. On the other hand, the compression time and the maximal memory
cost increase. As can be observed, the maximum memory cost on the CD

92

6. Experiments

dataset is the smallest, since it has the shortest and the least instances for each
uncertain trajectory on average among the three datasets. Specifically, we set
the default pivot count to 1 on CD and HZ datasets, while set that to 2 on DK
dataset. We do this because on DK dataset, the compression ratio improves
significantly from 1 to 2 without reducing the efficiency considerably.

DK CD HZ
10

-1

10
0

10
1

10
2

Q
u
er
y
ti
m
e
(s
ec
)

Dataset

UTCQ TED

(a) Probabilistic where query

DK CD HZ
10

0

10
1

10
2

Q
u
er
y
ti
m
e
(s
ec
)

Dataset

UTCQ TED

(b) Probabilistic when query

Figure A.10: Probabilistic where and when query performance

6.3 Query Performance

Probabilistic Range Query. Fig. A.9 reports the performance of probabilistic
range queries when varying the spatio-temporal partition granularity. Here,
we omit coverage of probabilistic where and when queries, as they are largely
unaffected by variations in the spatio-temporal partitioning. Fig. A.9 indicates
that the proposed index size is smaller than that of TED, which is due to
the referential compression. It is clear that the query time decreases as road
networks and time intervals are partitioned at finer granularities. Moreover,
UTCQ is faster than TED, which is due to the index structure and the filtering
and validating techniques.

1/128 1/64 1/32 1/16 1/8
0

2

4

6

A
v
er
ag
e
d
if
fe
re
n
ce
(m
)

Error bound of relative distance (m)

Where-CD

Where-HZ

0.00

0.15

0.30

0.45

A
v
er
ag
e
d
if
fe
re
n
ce
(s
ec
)When-CD

When-HZ

(a) Relative distance

1/2048 1/1024 1/512 1/256 1/128
0.96

0.98

1.00

F
1
sc
o
re

Error bound of probability

Where-CD When-CD

Where-HZ When-HZ

(b) Probability

Figure A.11: Effect of error bound on query accuracy

Probabilistic Where and When Queries. We also report the performance
(i.e., the query time) of probabilistic where and when queries. Fig. A.10
shows that UTCQ is faster than TED for both probabilistic where and when
queries, due to the temporal index of StIU and Lemma 1 that are used for
filtering. However, the superiority of UTCQ is not obvious on DK dataset for

93

Paper A.

20 40 60 80 100
0

5

10

15

C
o
m
p
re
ss
io
n
ra
ti
o
(C
R
)

Data size (%)

UTCQ-CD TED-CD

UTCQ-HZ TED-HZ

(a) Compression ratio

20 40 60 80 100
0

400

800

1200

C
o
m
p
re
ss
io
n
ti
m
e
(s
ec
)

Data size (%)

UTCQ-CD

UTCQ-HZ

10
3

10
4

10
5

10
6

C
o
m
p
re
ss
io
n
ti
m
e
(s
ec
)TED-CD

TED-HZ

(b) Compression time

20 40 60 80 100

0

50

100

150

Q
u
er
y
ti
m
e
(m
s)

Data size (%)

UTCQ TED

(c) DK dataset

20 40 60 80 100

0

200

400

600

800

Q
u
er
y
ti
m
e
(m
s)

Data size (%)

UTCQ TED

(d) HZ dataset

Figure A.12: Scalability of compression and query processing

probabilistic when query, because the query performance (i.e., the pruning
ability of Lemma 1) relies on the distribution of the dataset.

Effect of Error Bound. Fig. A.11 studies the effect of the error bounds of
the PDDP-tree [40] on the query accuracy, where the average difference and
the F1(= 2 precision·recall

precision+recall) score are the performance metrics. Specifically, the
average difference is the deviation between the query results derived from
the original versus the compressed datasets. It is measured in meters (m) for
probabilistic where queries and in seconds (sec) for probabilistic when queries.
Fig. A.11 shows that the average difference is small, especially when ηD is
set to the default value; and the F1 score is always close to 1. These indicate
that the error caused by PDDP-tree encoding is small. We omit the results on
range queries because they achieve similar performance.

6.4 Scalability

Fig. A.12 reports on the scalability of compression and query processing,
where the data size is varied from 20% to 100% of the total dataset storage size.
Fig. A.12a shows that the compression ratios achieved by both UTCQ and TED
are roughly independent of the dataset size. This is because the compression
ratio is unaffected by the number of uncertain trajectories, but rather depends
on the number and the lengths of instances. In Fig. A.12b, the compression
time of UTCQ is measured by the left y axis in black color, while that of TED
is measured by the right y axis in blue color. Two axes are used to show more
clearly the time for both solutions that differ substantially. We see that the
compression time of UTCQ increases linearly as it processes trajectories one

94

7. Related Work

by one, while that of TED increases super linearly due to its matrix operations.
As expected, the query time of both UTCQ and TED increase linearly with
the growth in the data size, as shown in Figs. A.12c and A.12d.

7 Related Work

Trajectory compression can be classified into raw data-oriented compression
and road network-embedded compression.

7.1 Raw Data-oriented Compression

Raw data-oriented compression techniques are designed to compact trajecto-
ries that have not been map-matched. A typical approach is to use trajectory
simplification that approximates an original trajectory by a subsequence of
the trajectory while attempting to minimize the information loss according
to certain distance measures. The Bellaman [1] method uses dynamic pro-
gramming to find a subsequence with the minimum spatial distance error.
The MRPA algorithm [8] employs a distance measure called Integral Square
Synchronous Euclidean Distance to simplify trajectories.To minimize the sim-
plification error under a storage budget, Min-Error [25] is proposed. It protects
the direction information of trajectories using a direction-based error mea-
surement to detect the sharp change of directions of trajectories. In addition,
trajectory simplication methods can be classified into offline methods [1, 8, 25]
and online methods [4, 22–24, 29], where the offline methods require that full
trajectories are available before compression starts, while the online methods
can compress trajectories in streaming settings. Comprehensive experimental
evaluations of trajectory simplification techniques are available [41].

Approaches based on other strategies also exist. Philippe et al. [9] pro-
pose two strategies, Single Trajectory Delta compression and Cluster-based
compression. The former compresses each single trajectory by encoding the
deviation between successive values. The latter clusters similar subtrajectories
and only stores one summary trajectory per cluster. Wandelt and Sun [36]
propose a lossless compression technique for 4D trajectories that exploits the
similarities between subtrajectories by predicting the next point in a trajectory
based on previous trajectories. Cai et al. [3] assume that moving objects are
likely to maintain a certain mode during a period and extract this mode as a
state vector based on sampling. Zhao et al. [44] construct a reference trajectory
set and represent a raw trajectory as a concatenation of a series reference
trajectories within a given spatio-temporal deviation threshold. More recently,
Gao et al. [11] also study semantic-based compression.

The above methods do not consider the road network embedding and are
not competitive in our setting.

95

Paper A.

7.2 Road Network-embedded Compression

Road network-embedded compression leverages an underlying road network
to achieve better trajectory compression. GPS points are first map-matched to
road segments [2, 14, 15, 26]. Since a sequence of successive points can often
be mapped to, and represented by, the same segment, spatial redundancy can
be reduced, which yields a higher compression ratio. Auxiliary information,
such as frequent travel paths and shortest travel paths are also utilized in
existing studies [13, 16, 18, 31] to improve compression. Road network-
embedded compression can be classified as spatial compression or spatio-
temporal compression.

Spatial compression. Krogh et al. [18] compress a trajectory by only
storing the first and last edge of each shortest path in the trajectory. Koide et
al. [17] present a compression technique for spatial information of trajectories
and support the retrieval of subpaths. Specifically, they store path information
in a Huffman-based Wavelet Tree (HWT) that counts the frequency of each
label in advance. Chen et al. [5] compress trajectories by retaining out-edges
with remarkable heading changes. Sui et al. [32] assign each GPS point to the
middle point of a segment and propose a road-network partitioning strategy
on which the compression ratio depends.

Spatio-temporal compression. Most existing studies [6, 12, 13, 16, 31]
represent the temporal information of trajectories as pairs (d, t), where d is
the network distance traveled at the timestamp t since the start of the trajec-
tory. Sun et al. [13, 31] propose a two-stage spatial compression algorithms
encompassing shortest path and frequent sub-trajectory compression. Ji et
al. [16] encode outgoing road segments clockwise based on a pre-computed
clockwise code table. Chen et al. [6] focus mainly on reducing the frequency
of data transmission and adopt existing integer encoding approaches [19, 39]
to compress trajectories.

The work closest to ours is TED [40]. Instead of representing (d, t) together,
TED represents them individually, leading to a lossless compression in terms
of t and a higher compression ratio. In addition, it provides an index structure
for facilitating queries of compressed trajectories. However, TED cannot
solve our problem efficiently as it is not designed to take the uncertainty
of trajectories into account. In contrast, we exploit the similarities between
uncertain trajectory instances to achieve high performance. To the best of our
knowledge, we propose the first framework for compressing and querying
uncertain trajectories. Moreover, we propose an effective index structure to
support efficient queries against compressed uncertain trajectories.

96

8. Conclusion

8 Conclusion

We propose a novel framework for compressing and querying uncertain
trajectories. We referentially represent uncertain trajectories by exploiting sim-
ilarities between trajectory instances. To achieve this, we propose a reference
selection algorithm that uses a new similarity measure, as well as several refer-
ential representation formats that make it possible to represent trajectories at a
high compression ratio. As part of this, we propose an effective representation
of the temporal information in trajectories that addresses fluctuations in the
sampling time intervals as seen in real-life data. In addition, we propose an
effective index for compressed trajectories and develop filtering techniques
to accelerate probabilistic where, when, and range queries over compressed
data, where flag array and original array structures are constructed to extract
necessary information without full decompression. Extensive experiments
conducted on three real datasets show that the UTCQ framework is 2–3 times
better than the state-of-the-art method in terms of compression ratio, uses
1–3 orders of magnitude less memory, is 1–2 orders of magnitude faster in
terms of compression time, and is always faster in terms of query time. In the
future, it is of interest to introduce a multiple-order representation that may
further improve the compression performance, and it may also be possible to
develop techniques that can recover a non-reference without decompressing
its reference.

97

References

References

[1] R. Bellman and B. Kotkin, “On the approximation of curves by line seg-
ments using dynamic programming. ii,” RAND CORP SANTA MONICA
CALIF, Tech. Rep., 1962.

[2] M. Bierlaire, J. Chen, and J. Newman, “A probabilistic map matching
method for smartphone GPS data,” TRANSPORT RES C-EMER, vol. 26,
pp. 78–98, 2013.

[3] Z. Cai, F. Ren, J. Chen, and Z. Ding, “Vector-based trajectory storage and
query for intelligent transport system,” TITS, vol. 19, no. 5, pp. 1508–1519,
2017.

[4] W. Cao and Y. Li, “Dots: An online and near-optimal trajectory simplifi-
cation algorithm,” J Syst Softw, vol. 126, pp. 34–44, 2017.

[5] C. Chen, Y. Ding, X. Xie, S. Zhang, Z. Wang, and L. Feng, “Trajcompres-
sor: An online map-matching-based trajectory compression framework
leveraging vehicle heading direction and change,” IEEE trans Intell Transp
Syst, vol. 21, no. 5, pp. 2012–2028, 2019.

[6] J. Chen, Z. Xiao, D. Wang, D. Chen, V. Havyarimana, J. Bai, and H. Chen,
“Toward opportunistic compression and transmission for private car
trajectory data collection,” IEEE Sens. J., vol. 19, no. 5, pp. 1925–1935,
2018.

[7] L. Chen, Y. Gao, X. Li, C. S. Jensen, and G. Chen, “Efficient metric
indexing for similarity search,” in ICDE, 2015, pp. 591–602.

[8] M. Chen, M. Xu, and P. Franti, “A fast o(n) multiresolution polygonal
approximation algorithm for GPS trajectory simplification,” TIP, vol. 21,
no. 5, pp. 2770–2785, 2012.

[9] P. Cudre-Mauroux, E. Wu, and S. Madden, “Trajstore: An adaptive
storage system for very large trajectory data sets,” in ICDE, 2010, pp.
109–120.

[10] S. Deorowicz and S. Grabowski, “Robust relative compression of genomes
with random access,” Bioinformatics, vol. 27, no. 21, pp. 2979–2986, 2011.

[11] C. Gao, Y. Zhao, R. Wu, Q. Yang, and J. Shao, “Semantic trajectory com-
pression via multi-resolution synchronization-based clustering,” Knowl
Based Syst, vol. 174, pp. 177–193, 2019.

[12] Y. Gao, B. Zheng, G. Chen, Q. Li, C. Chen, and G. Chen, “Efficient mutual
nearest neighbor query processing for moving object trajectories,” Inf. Sci,
vol. 180, no. 11, pp. 2176–2195, 2010.

98

References

[13] Y. Han, W. Sun, and B. Zheng, “Compress: A comprehensive framework
of trajectory compression in road networks,” TODS, vol. 42, no. 2, p. 11,
2017.

[14] G. Hu, J. Shao, F. Liu, Y. Wang, and H. Shen, “If-matching: Towards
accurate map-matching with information fusion,” TKDE, vol. 29, no. 1,
pp. 114–127, 2016.

[15] G. R. Jagadeesh and T. Srikanthan, “Probabilistic map matching of sparse
and noisy smartphone location data,” in ITSC, 2015, pp. 812–817.

[16] Y. Ji, Y. Zang, W. Luo, X. Zhou, Y. Ding, and L. M. Ni, “Clockwise
compression for trajectory data under road network constraints,” in
ICBDA, 2016, pp. 472–481.

[17] S. Koide, Y. Tadokoro, C. Xiao, and Y. Ishikawa, “CiNCT: Compression
and retrieval for massive vehicular trajectories via relative movement
labeling,” in ICDE, 2018, pp. 1097–1108.

[18] B. Krogh, C. S. Jensen, and K. Torp, “Efficient in-memory indexing of
network-constrained trajectories,” in SIGSPATIAL, 2016, pp. 17–26.

[19] D. Lemire and L. Boytsov, “Decoding billions of integers per second
through vectorization,” SOFTWARE PRACT EXPER, vol. 45, no. 1, pp.
1–29, 2015.

[20] Y. Li, K. Gai, L. Qiu, M. Qiu, and H. Zhao, “Intelligent cryptography
approach for secure distributed big data storage in cloud computing,”
Inf. Sci, vol. 387, pp. 103–115, 2017.

[21] Y. Li, H. Zhang, X. Liang, and B. Huang, “Event-triggered-based dis-
tributed cooperative energy management for multienergy systems,” IEEE
T IND INFORM, vol. 15, no. 4, pp. 2008–2022, 2018.

[22] X. Lin, J. Jiang, S. Ma, Y. Zuo, and C. Hu, “One-pass trajectory sim-
plification using the synchronous Euclidean distance,” arXiv preprint
arXiv:1801.05360, 2018.

[23] J. Liu, K. Zhao, P. Sommer, S. Shang, B. Kusy, and R. Jurdak, “Bounded
quadrant system: Error-bounded trajectory compression on the go,” in
ICDE, 2015, pp. 987–998.

[24] J. Liu, K. Zhao, P. Sommer, S. Shang, B. Kusy, J.-G. Lee, and R. Jurdak, “A
novel framework for online amnesic trajectory compression in resource-
constrained environments,” TKDE, vol. 28, no. 11, pp. 2827–2841, 2016.

99

References

[25] C. Long, R. C.-W. Wong, and H. Jagadish, “Trajectory simplification: on
minimizing the direction-based error,” PVLDB, vol. 8, no. 1, pp. 49–60,
2014.

[26] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang, “Map-
matching for low-sampling-rate gps trajectories,” in SIGSPATIAL, 2009,
pp. 352–361.

[27] J. Muckell, P. W. Olsen, J.-H. Hwang, C. T. Lawson, and S. Ravi, “Compres-
sion of trajectory data: a comprehensive evaluation and new approach,”
GeoInf, vol. 18, no. 3, pp. 435–460, 2014.

[28] D. A. Peixoto, H. Q. V. Nguyen, B. Zheng, and X. Zhou, “A framework
for parallel map-matching at scale using Spark,” DISTRIB PARALLEL
DAT, vol. 37, no. 4, pp. 697–720, 2019.

[29] M. Potamias, K. Patroumpas, and T. Sellis, “Sampling trajectory streams
with spatiotemporal criteria,” in SSDBM, 2006, pp. 275–284.

[30] W. Sebastian and L. Ulf, “Fresco: Referential compression of highly
similar sequences,” TCBB, vol. 10, no. 5, pp. 1275–1288, 2013.

[31] R. Song, W. Sun, B. Zheng, and Y. Zheng, “Press: A novel framework
of trajectory compression in road networks,” PVLDB, vol. 7, no. 9, pp.
661–672, 2014.

[32] P. Sui and X. Yang, “A privacy-preserving compression storage method
for large trajectory data in road network,” J. Grid Comput., vol. 16, no. 2,
pp. 229–245, 2018.

[33] J. Teuhola, “A compression method for clustered bit-vectors,” INFORM
PROCESS LETT, vol. 7, no. 6, pp. 308–311, 1978.

[34] S. J. van Schaik and O. de Moor, “A memory efficient reachability data
structure through bit vector compression,” in SIGMOD, 2011, pp. 913–924.

[35] S. Wandelt and U. Leser, “Adaptive efficient compression of genomes,”
ALGORITHM MOL BIOL, vol. 7, no. 1, p. 30, 2012.

[36] S. Wandelt and X. Sun, “Efficient compression of 4D-trajectory data in air
traffic management,” TITS, vol. 16, no. 2, pp. 844–853, 2014.

[37] J. Wang, J. Feng, and G. Li, “Trie-join: Efficient trie-based string similarity
joins with edit-distance constraints,” PVLDB, vol. 3, no. 1–2, pp. 1219–
1230, 2010.

[38] L.-Y. Wei, Y. Zheng, and W.-C. Peng, “Constructing popular routes from
uncertain trajectories,” in KDD, 2012, pp. 195–203.

100

References

[39] H. Yan, S. Ding, and T. Suel, “Inverted index compression and query
processing with optimized document ordering,” in WWW, 2009, pp.
401–410.

[40] X. Yang, B. Wang, K. Yang, C. Liu, and B. Zheng, “A novel representation
and compression for queries on trajectories in road networks,” TKDE,
vol. 30, no. 4, pp. 613–629, 2017.

[41] D. Zhang, M. Ding, D. Yang, Y. Liu, J. Fan, and H. Shen, “Trajectory
simplification: an experimental study and quality analysis,” PVLDB,
vol. 11, no. 9, pp. 934–946, 2018.

[42] H. Zhang, Y. Li, D. W. Gao, and J. Zhou, “Distributed optimal energy
management for energy internet,” IEEE T IND INFORM, vol. 13, no. 6,
pp. 3081–3097, 2017.

[43] Z. Zhang, M. Hadjieleftheriou, B. C. Ooi, and D. Srivastava, “Bed-tree:
an all-purpose index structure for string similarity search based on edit
distance,” in SIGMOD, 2010, pp. 915–926.

[44] Y. Zhao, S. Shang, Y. Wang, B. Zheng, Q. V. H. Nguyen, and K. Zheng,
“Rest: A reference-based framework for spatio-temporal trajectory com-
pression,” in KDD, 2018, pp. 2797–2806.

[45] Y. Zheng, “Trajectory data mining: an overview,” TIST, vol. 6, no. 3, pp.
1–41, 2015.

101

References

102

Paper B

TRACE: Real-time Compression of Stream-
ing Trajectories in Road Networks

Tianyi Li, Lu Chen, Christian S. Jensen, Torben Bach Pedersen

The paper has been published in the
International Conference on Very Large Data Bases (PVLDB), pp. 1175–1187, 2021.

© 2021 VLDB
The layout has been revised.

1. Introduction

Abstract

The deployment of vehicle location services generates increasingly massive vehicle
trajectory data, which incurs high storage and transmission costs. A range of studies
target offline compression to reduce the storage cost. However, to enable online services
such as real-time traffic monitoring, it is attractive to also reduce transmission costs
by being able to compress streaming trajectories in real-time. Hence, we propose a
framework called TRACE that enables compression, transmission, and querying of
network-constrained streaming trajectories in a fully online fashion. We propose a
compact two-stage representation of streaming trajectories: a speed-based represen-
tation removes redundant information, and a multiple-references based referential
representation exploits subtrajectory similarities. In addition, the online referential
representation is extended with reference selection, deletion and rewriting functions
that further improve the compression performance. An efficient data transmission
scheme is provided for achieving low transmission overhead. Finally, indexing and fil-
tering techniques support efficient real-time range queries over compressed trajectories
are developed. Extensive experiments with real-life and synthetic datasets evaluate the
different parts of TRACE, offering evidence that it is able to outperform the existing
representative methods in terms of both compression ratio and transmission cost.

1 Introduction

Massive volumes of vehicle trajectories are being accumulated at an unprece-
dented scale with the proliferation of GPS-enabled devices and mobile internet
connectivity. This yields high storage and transmission costs for trajectories.
Hence, trajectory compression that addresses these aspects has attracted atten-
tion [3–5, 8, 11, 13, 16, 17, 19, 27, 32–34, 41, 44, 45]. However, most existing
studies target offline compression [11, 13, 16, 17, 19, 33, 34, 41, 44, 45]. They
generally compress an entire trajectory after all the GPS points are collected,
which may not be realistic for resource-constrained GPS-enabled devices.
In particular, offline compression incurs high communication overheads or
data loss because the data needs to be transmitted to the location where the
compression is performed. In contrast, with online compression, GPS points
are compressed as they arrive in real-time, thus enabling a broader range of
applications, while saving both storage and transmission costs [3, 4, 22, 27].

To enable compression on diverse devices with variable computing capa-
bilities, we employ vehicular edge computing (VEC) to compress trajectories
in real-time [3]. A VEC architecture has three layers: a smart vehicle layer, an
edge server layer, and a centralized cloud layer [29], as shown in Figure B.1.
The smart vehicle layer delivers raw GPS data to the edge server layer that en-
compasses software-defined networking (SDN) based roadside units (SRSUs),
which possess the computational and storage capabilities needed for trajectory

105

Paper B.

Edge Server

Centralized

Cloud

Edge Server

SRSUSRSU

Smart Vechicles

Smart Vechicle Layer

Edge Server Layer

Centralized Cloud Layer

Figure B.1: Vehicular edge computing architecture.

compression. The centralized cloud layer collects and stores the compressed
trajectories from the edge server layer to provide multiple services.

Although several studies [3–5, 32] consider online network-constrained
trajectory compression, two challenges remain to be tackled. The first challenge
is how to obtain a concise and accurate representation of trajectories. Existing studies
obtain a compact representations in part by discarding information [3–5, 32],
e.g., the exact locations of trajectories. This renders the resulting trajectories
inaccurate and reduces their usability. The second challenge is how to compress
trajectories in real-time with low transmission costs. Some previous proposals for
streaming trajectory compression rely on offline training of prediction models
using historical data, enabling them to omit data that can be predicted within
a certain error bound [5, 32]. However, movement patterns on even the same
road vary across time [12, 24], necessitating frequent re-training and incurring
high transmission cost for delivering re-trained models.

To address the above two challenges, we propose a new framework for
online TRAjectory ComprEssion (TRACE). The goals of TRACE are to achieve
high compression ratios and low transmission costs with acceptable time
delays. To realize these, we first present a speed-based trajectory represen-
tation on the basis of UTCQ [19]. This representation removes redundant
information while enabling decompression of trajectories by capturing growth
rates of accumulative distances and vehicle speeds. Further, as existing studies
indicate that subtrajectories from different streaming trajectories are likely to
exhibit co-movement patterns during the same time periods [12], we make
it possible to exploit the similarity between subtrajectories from different
streaming trajectories by means of so-called referential compression. Next, we
develop an effective online referential representation and a reference selection
technique based on so-called k-mer matching, which employs hashing to

106

2. Preliminaries

identify matching subsequences [25]. To keep memory consumption low, we
design a reference deletion algorithm that removes references that have not
been used for some time. To be able to adapt to variable movement patterns,
we present a reference rewriting algorithm that updates the references in real-
time. Further, we provide a real-time data transmission scheme that targets
low-overhead transmission of trajectory data. Finally, we develop an index
structure and filtering techniques that facilitate real-time range querying of
compressed trajectories.

In summary, our main contributions are as follows:

• We propose a new real-time streaming vehicle trajectory compression,
transmission, and querying framework. To the best of our knowledge,
this is the first such framework that does not depend on offline training
and discard any data.

• We develop a concise speed-based representation and a k-mer matching
based referential representation that use multiple references to capture
the similarities between subtrajectories. A reference selection technique
and reference deletion and rewriting functions are provided that further
improve compression performance.

• We provide an effective data transmission scheme that reduces trans-
mission overhead and supports decoding at the centralized cloud. We
also propose an index structure and filtering techniques to accelerate
real-time query processing.

• Extensive experiments offer insight into the workings of the different
parts of the framework and show that it is able to outperform three
baselines in terms of compression ratio and transmission cost.

The rest of the paper is organized as follows. We present preliminaries
in Section 2 and give an overview of the proposed framework in Section 3.
Section 4 details the representation. Section 5 presents the encoding and
transmission schemes, and Section 6 covers the index structure and query
processing. Section 7 reports the experimental results. Section 7 reviews
related work, and Section 9 concludes and offers directions for future work.

2 Preliminaries

We proceed to introduce preliminary definitions and algorithms. Table B.1
summarizes frequently used notation.

2.1 Data Model

A raw trajectory is a series of raw GPS points p = ((x, y), t), where x is
longitude, y is latitude, and t is a timestamp. Tp1 = 〈p0, · · · , p7〉 in Figure B.2a

107

Paper B.

Table B.1: Frequently used notation.
Notation Description
Tr a set of streaming trajectories
Trn a streaming trajectory in Tr
li the ith mapped GPS point
sp(Trn) the path traversed by Trn

ad(Trn) the accumulative distance sequence of Trn

t(Trn) the time sequence of Trn

SV(Trn) the start vertex of Trn

E(Trn) the outgoing edge number sequence of Trn

RD(Trn) the first relative distance of Trn

GD(Trn) the growth rates of accumulative distances of Trn

V(Trn) the speed sequence of Trn

E(Trn)[i] the ith outgoing edge number of E(Trn)
E(Trn

i) the outgoing edge numbers arriving at t(Trn)[i]
Ref a reference streaming trajectory
Nref a non-reference streaming trajectory
Comφ(Nref) the referential representation of Nref
Go the reference set at timestamp to
Go[i]. f the freshness of the ith reference in Go
Go[i].tl the latest visiting timestamp of the ith reference in Go
Fo the sum of freshness of references in Go
FA a factor matrix
ˆseq the binary code of a sequence seq

is an example of a raw trajectory. A road network is modeled as a directed
spatial graph G = (V, E), where V is a set of geo-located vertices v denoting
intersections or end points, and E is a set of directed edges e = (vi → vj).
Figure B.2 gives a road network example. A mapped GPS point l is a network-
constrained point in a road network G obtained by map-matching [35]. It is
represented as ((vi → vj), nd(vi, l), t), where nd(vi, l) is the network distance
between vi and l on the edge (vi → vj) and t is a timestamp. In Figure B.2a,
l0 = ((v0 → v1), 50, 7:03:25) is a mapped GPS point. We also denote a mapped
GPS point as ((vi → vj), nd(vi, l)) when the timestamp t is not considered.

Definition 2.1
Given two vertices vs and ve in a road network G, a path sp is a sequence of
connected edges (vi → vj) that starts from vs and ends at ve, i.e., sp = 〈(vs →
v0), · · · , (vn−1 → ve)〉.

Definition 2.2
A streaming network-constrained trajectory Trn is modeled as an infinite,
time-ordered sequence of mapped GPS points Ln with an infinite path sp(Trn)
traversed by Trn.

Figure B.2 gives an example of a set Tr = {Tr1, Tr2, Tr3} of three streaming
network-constrained trajectories, where, e.g., sp(Tr1) = 〈(v0 → v1), · · · , (v11 →

108

2. Preliminaries

v12), · · · 〉 and L1 = {l0, l1, · · · , l7, · · · }. Tr uses two road-network distances as
defined next.
Definition 2.3
The accumulative distance of a streaming trajectory Trn at its ith timestamp
t(Trn)[i], denoted as ad(Trn)[i], is the network distance nd(vs, li) along the path
(vs → ve), · · · , (vs∗ → ve∗), where li is located on (vs∗ → ve∗) and (vs → ve)
is the first edge traversed by Trn. The accumulative distance sequence ad(Trn)
of a streaming trajectory Trn contains the trajectory’s accumulative distance at
each timestamp.

Definition 2.4
Given a mapped GPS point ((vs → ve), nd(vs, l)), the relative distance rd of l
w.r.t. (vs → ve) is the ratio of nd(vs, l) to the length of (vs → ve) (denoted as
|(vs → ve)|).

In Figure B.2a, given nd(v0, l1) = 150, we have ad(Tr1)[1] = 150. Given
|(v0 → v1)| = 100, rd of l0 w.r.t. (v0 → v1) is 0.5. In the rest of the paper, we
simply use “trajectory” instead of “network-constrained trajectory” when this
does not cause ambiguity.

2.2 UTCQ Representation

Trajectory representation transforms network-constrained trajectories into a
format with small entropy to achieve a high compression ratio [11, 13, 16, 19,
33, 41]. The UTCQ representation [19] is designed for compressing uncertain
trajectories. Due to the uncertainty, a raw trajectory can be transformed
to multiple trajectory instances by probabilistic map-matching [2]. UTCQ
first adapts the representative trajectory representation TED [41] to express
a trajectory instance Trn as a start vertex SV(Trn), an edge sequence E(Tr), a
relative distance sequence D(Tr), a time flag bit-string T′(Tr), and a timestamp
sequence T(Tr).

Example 2.1
Assuming that the default sample interval of Tr in Figure B.2 is 20s, the UTCQ
representation of Tr1 is i) SV(Tr1) = 44183; ii) E(Tr1) = 〈2, 2, 1, 1, 4, 1, 2, 1, 2, 3, 2,
3, 0〉; iii) D(Tr1) = 〈0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.75〉; iv) T′(Tr1) = 〈1, 1, 1, 1, 0, 1,
1, 0, 0, 0, 0, 1, 1〉 and v) T(Tr1) = 〈7:03:25, 0, 1, 0, 0,−1, 5, 0〉. The single 0 and
the last 3 (3 is the outgoing edge number of (v11 → v12) w.r.t. v11) in E(Tr1)
indicate that (v11 → v12) has two mapped GPS points, l6 and l7. T′(Tr) is
introduced to map relative distances in D(Tr) to outgoing edge numbers in
E(Tr) for decompression [41].

Next, UTCQ exploits the similarity between trajectory instances of a single
uncertain trajectory and provides referential representations for the edge
sequence E(Tr), the distance sequence D(Tr), and the time flag bit-string

109

Paper B.

Tr1
.l0

Tr
2
.l0

7:03:25

Tr3
.l0

7:03:35

Tr1
.l1

7:03:45 7:03:55 7:04:05 7:04:15 7:04:25 7:04:35 7:04:45 7:04:55

2
.l1Tr

Tr3
.l1 Tr1

.l2

2
.l2Tr

Tr3
.l2 Tr1

.l3

2
.l3Tr

2
.l4Tr

Tr3
.l3 Tr1

.l4 Tr3
.l4

(d) Time line of Tr , Tr and Tr1 2 3

7:06:35 7:06:25 7:06:15 7:06:05 7:05:55 7:05:45

Tr1
.l6

7:05:35 7:05:057:05:25 7:05:15

2
.l5Tr2

.l6Tr

Tr1
.l5Tr3

.l5Tr3
.l6Tr3

.l7Tr3
.l8Tr3

.l9 Tr1
.l7

p0=(120.14514, 30.34056, 7:03:25)

p1=(120.14511, 30.34152, 7:03:45)

p2=(120.14549, 30.34228, 7:04:06)

p3=(120.14546, 30.34236, 7:04:26)

p4=(120.14559, 30.34253, 7:04:46)

p5=(120.14552, 30.34256, 7:05:05)

p6=(120.14510, 30.34258, 7:05:30)

p7=(120.14510, 30.34259, 7:05:50) v1 v2

v3

v4v5

v6

v7

v8 v9

v10

1

p2

l1

l22 pppppppp
p1

l4 p4

p3l3

l5

p5

p6 l6

v0

p0

l0

2 2
1

1

4

12

2

2

3

3

(a)

1

50

v11

v12

Tr
1

p7
p
7 l7

100

v13

v0 v1

v3v14

v5 v4

v7 v10

v15

v16

l0l1

l2 0

l3

v11
l4

v2

v3

v4

v7 v10 v11

v15

v16

v17

v18

l0 l1
l2

l3

l4
l5

l66

l7

l8

441

2 1

2 2 2

3

2 2 1

1

1

2 2 2

3

3

3

(b) (c)

7

l9

l5

l6
v17

3 8

Tr2 Tr 3

Figure B.2: A streaming network-constrained trajectory set Tr = {Tr1, Tr2 and Tr3}.

110

2. Preliminaries

T′(Tr). It encodes the differences of an input sequence w.r.t. a reference
sequence. (i.e., the more similar the sequences are, the higher the compression
ratio) [9, 31, 39].

Definition 2.5
Given an input sequence φ(Nref) (also called a non-reference) and its corre-
sponding reference φ(Ref), φ(Nref) can be represented as a list of W factors,
i.e., Comφ(Nref) = 〈φ(Maw)|0 ≤ w < W〉, where a factor φ(Maw) denotes a
subsequence in φ(Nref).

Here, φ identifies the to-be-represented sequence of a trajectory. For example,
ComE(Nref) is the referential representation of the edge sequence E(Nref).
UTCQ adopts the (S, L, M) format to encode each factor in Comφ(Nref).
Specifically, S is the start position of the subsequence in the reference, L
is the length of the subsequence, and M is the first mis-matched character
following the subsequence. For example, in Figure B.2, we have E(Tr2) =
〈4, 4, 1, 2, 1, 2, 2, 2, 3, 0, 3〉 and E(Tr3) = 〈2, 2, 1, 1, 1, 2, 2, 2, 3, 0, 3, 3〉. Let Tr3 be
a non-reference Nref and Tr2 be its corresponding reference Ref. We get
ComE(Nref) = 〈(5, 2, 1), (2, 1, 1), (5, 6, 3)〉. Note that UTCQ only assigns one
reference to each non-reference.

2.3 k-mer Matching

Developed for genome sequences, k-mer matching is an effective strategy for
high-speed referential compression [25].

Definition 2.6
A k-mer φn

i is a subsequence of fixed length k of φ(Trn), i.e., φn
i = {φ(Trn)[i], φ

(Trn)[i + 1], ..., φ(Trn[i + k− 1])}.

Given a reference φ(Ref) and a non-reference φ(Nref), k-mer matching
employs a hash table H, to efficiently obtain the referential representation
Comφ(Nref). Each factor of Comφ(Nref) is of the form (S, L, M), where L is
the length of the matched subsequence. We highlight that k is different from
L; thus, k is kept fixed during compression. To be specific, for a reference
φ(Ref), k-mer matching first computes the hash key of each k-mer in φ(Ref)
by a given hash function. Next, each k-mer is stored with its start position S
in φ(Ref) in H. For a non-reference φ(Nref), k-mer matching greedily finds
the longest prefix of φ(Nref) that exists in φ(Ref) with the help of H. In
particular, it calculates the hash key of each k-mer in φ(Nref) and checks
whether a matched subsequence exists in H. If it exists, it continues to match
the subsequent characters in φ(Nref) and φ(Ref) until an un-matched character
M occurs. The procedure implies that L can be an arbitrary value with L ≥ k,
meaning that k can remain fixed during compression. It also means that the
correctness of k-mer matching is un-affected by k.

111

Paper B.

Speed-based

representation

Referential

representation

Trajectory

Representor

T(Tr)
7:03:25

...
0
...

GD(Tr)

...
0.67
...

V(Tr)

...
5
...

Æ
SV(Tr)
44183

...

...

k-mers
<5,5,5>
<7,17,9>

...

k-mers
<2,2,1>
<4,4,1>

...

E(Tr)
2
...
2
...

RD(Tr)
0.5
...

...

k-mers
<2,2,1>

...

k-mers
<2,2,3>

...

Reference

deletion

Reference

rewritingk-mer matching

based reference selection

Encoding and

data transmission
S1

(1,0,3)
0000010

...

S2

1
1
...

...

...

...

...

S3

1
001
...

States
Representation
Binary codes

...

()
E

Com Tr

()
V

Com Tr

Query processing

Compressed

trajectories

Index
100
...

Trajectory

Compressor

Query Processor

Edge

Server Layer

Compressed trajectories

and index information

Decompress

T(Tr)

Filtering

technique

Decompress
Query

results

Centralized

Cloud Layer

()Com Trf

Æ

ÆÆ

Figure B.3: TRACE framework.

Example 2.2
Consider E(Tr1) as a reference and E(Tr3) as a non-reference. Assuming
that the current timestamp is 7:04:55, we have four k-mers for E(Tr1), i.e.,
E1

0 = (2, 2, 1), E1
1 = (2, 1, 1), E1

2 = (1, 1, 4), and E1
3 = (1, 4, 1), each of which

is mapped to a hash table with its corresponding start position in E(Tr1). To
find the longest prefix of E(Tr3) in E(Tr1), we get the first k-mer of E(Tr3), i.e.,
E3

0 = 〈2, 1, 1〉, and finds E1
0 = E3

0 in the hash table; then we greedily match the
subsequent characters of both E3

0 and E1
0 until the first mis-matched character

(i.e., E(Tr3)[4] = 1) occurs. Thus, we obtain a factor (0, 4, 1), where 0 is the
offset of E1

0 [0] in E(Tr1). After that, we remove the subsequence represented
by (0, 4, 1) from E(Tr3). Since E(Tr3) = ∅, the k-mer matching stops.

Note that k is a pre-defined and fixed value that only constrains the initial
length of a matched subsequence. We adapt k-mer matching to streaming set-
tings and detail how to select references and referentially compress trajectories
in real-time.

3 TRACE framework

The framework enables the online compression and subsequent querying
of streaming network-constrained trajectories (NCTs). It takes a set Tr =
{Trn|1 ≤ n ≤ N} of streaming trajectories as input. Each Trn contains i) the
streaming path sp(Trn) traversed by Trn, ii) a streaming sequence of accumula-
tive distances ad(Trn), and iii) a streaming time sequence t(Trn). Figure B.3

112

4. Representation

depicts the TRACE framework that encompasses three components: a trajec-
tory representor, a trajectory compressor, and a query processor. We deploy
TRACE at the edge server and the centralized cloud layers of VEC. Raw GPS
points are delivered from the smart vehicle layer to the edge server layer,
where they are transformed to mapped GPS points using map-matching [35].
We do this to support smart vehicle layers with limited computational capabil-
ities [4], thus extending the applicability. While the cost of data transmission
from the smart vehicle layer to the edge server layer equals the size of the
raw trajectories, this transmission is relatively efficient and scalable, because
the edge server layer is geographically closer to the smart vehicle layer than
to the centralized cloud layer, reducing the wireless communication energy
consumption and the network load [21, 29].

Edge Server Layer. The trajectory representor converts the NCTs into
speed-based and referential representations. In particular, we propose to use
speed information to identify the mapped GPS point to achieve a compact
representation format. Then, we apply the referential representation in [19]
to exploit the similarities among subtrajectories and multiple references to
achieve a high compression ratio, with the details presented in Sections 4.1 and
4.2. To select references and to represent non-references in online scenarios,
we adopt k-mer matching [25]. Specifically, two hash tables are used to store
the reference sets E(Ref) and V(Ref) for fast retrieval. Reference deletion and
rewriting functions are provided that make it possible to update the tables
efficiently. The former enables deleting infrequent sequences to reduce the
storage cost, while the latter updates references using frequent sequences
to improve the compression ratio. The detailed algorithms are covered in
Sections 4.3–4.5. In the sequel, the trajectory compressor compresses the
references and non-references into binary codes. A scheme for transmitting
binary codes is also presented, which enables the centralized cloud to decode
binary codes without extra information. The details are provided in Section 5.

Centralized Cloud Layer. The query processor is located at the centralized
cloud and operates on compressed trajectories. It has an online range query
algorithm that exploits indexing and filtering to achieve efficiency, to be
detailed in Section 6.

4 Representation

We proceed to detail the representation of streaming trajectories.

4.1 Speed-based Representation

Existing works show that objects moving on the same road during the same
time period tend to have a similar speed trend [12]. This motivates us to

113

Paper B.

Table B.2: Speed-based representation of Tr in Figure B.2.

n 1 2 3
SV(Trn) 44183 27444 44183
E(Trn) 〈2, 2, 1, 1, 4, 1, 2, 1, 2, 3, 2, 3〉 〈4, 4, 1, 2, 1, 2, 2, 2, 3, 3〉 〈2, 2, 1, 1, 1, 2, 2, 2, 3, 3, 3〉

RD(Trn) 0.5 0.05 0.25
GD(Trn) 〈0.67, 0.5, 0.5, 0.67 〈0.97, 0.69, 0.35, 〉 〈0.8, 0.5, 0.5, 0.5, 0.64〉

0.33, 0.83, 0.05 〉 0.53, 0.11, 0.75〉 0.53, 0.11, 0.75, 0.67〉
V(Trn) 〈5, 4.76, 5, 10, 〉 〈6.9, 17.11, 8.75, 〉 〈5, 5, 5, 5, 8.75, 〉

5.26, 20, 1.25〉 〈10, 1.25, 3.75〉 〈10, 1.25, 3.95, 7.5〉
T(Trn) 〈7:03:25, 0, 1, 〈7:03:30, 1,−1 〈7:03:35, 0, 0, 0,

0, 0,-1, 5, 0〉 0,0,0,0〉 0,0,0,0,−1,0〉

transfer the accumulative distances of trajectories to speeds and apply the
referential representation to them. However, the reference speed sequence is
difficult to compress substantially due to its wide range [41]. We tackle this
challenge by developing the following representation.

ad(Tr) → (RD(Tr), GD(Tr), V(Tr)). We represent accumulative distances
as a sequence of growth rates (denoted as GD(Tr)) following the first rel-
ative distance of Tr (denoted as RD(Tr)). The growth rate of the accumu-
lative distance at T(Tr)[i], denoted as GD(Tr)[i] (i > 0), is calculated by
ad(Tr)[i]−ad(Tr)[i−1]
ad(Tr)[i]−ad(Tr)[i−2] (i > 1). Further, GD(Tr)[1] = ad(Tr)[1]−ad(Tr)[0]

ad(Tr)[1] . For example

in Figure B.2a, given ad(Tr1)[0] = 50, ad(Tr1)[1] = 150 and ad(Tr1)[2] = 250,
we have GD(Tr1)[1] = 0.67 and GD(Tr1)[2] = 0.5. V(Tr) is a sequence of
speeds. The speed at t(Tr)[i] is calculated by ad(Tr)[i]−ad(Tr)[i−1]

t(Tr)[i]−t(Tr)[i−1] (i > 0), de-
noted as V(Tr)[i]. Given T(Tr), both GD(Tr) and V(Tr) are able to identify
ad(Tr). Thus, we only store one of them, to be detailed in Section 4.2.

sp(Tr) → (SV(Tr), E(Tr)) & t(Tr) → T(Tr). We adopt UTCQ [19] to
represent a path sp(Tr) as SV(Tr) followed by E(Tr) and a time sequence t(Tr)
as T(Tr). We use the UTCQ representation because it is the state-of-the-art
referential compression framework for network-constrained trajectories and
exhibits high compression ratios. Note that, since both GD(Tr) and V(Tr)
enable decompressing trajectories without T′(Tr) and the “0” in E(Tr) used
in UTCQ representation, we omit them to achieve a more compact format.
Overall, the speed-based representation expresses Tr as a tuple (SV(Tr), E(Tr),
RD(Tr), GD(Tr), V(Tr), T(Tr)). Table B.2 shows an example representation for
Tr in Figure B.2.

4.2 Representation with Multiple-References

Based on the representation introduced in Section 4.1, we apply referen-
tial compression [19] to sub-trajectories from different streaming trajecto-
ries. Due to the use of multiple references, we modify the (S, L, M) for-
mat [19] as (refid, S, L, M), where refid is the ID of the reference. For ex-

114

4. Representation

..
.

86

24

..
.

25

877

..
.

1 4 null

996

985

954 1<1> 1 985

..
.

..
.

955

969 2<4,4,1> 0 877

..
.

986

987

..
.

..
.

..
.

996

2 3 24 25<2>

null

1<2,2,1> 0 954null

2 5 25 987<2>

2 6 986<3> null

1 2 86<4> 954

2<1> 2 877 955

2<2> 4 955 986

1<1> 3 996 877

2<2> 1 969 24

86

Figure B.4: A hash table H constructed according to E(Tr) in Table B.2 at 7:05:06, where k=3.

ample, the referential representation of E(Tr3) w.r.t. E(Tr1) and E(Tr2) is
ComE(Tr3) = 〈(1, 0, 4, 1), (2, 5, 5, 3)〉.

Different from the outgoing edge numbers, the speeds are unlikely to be
exactly the same. Therefore, we consider V(Trn)[i] ≈ V(Trn′)[i′] if V̈(Trn)[i] =
V̈(Trn′)[i′], where V̈(Trn)[i] is the integer closest to V(Trn)[i]

0.5η and η is the speed
error bound. A larger η yields a more accurate compression at the expense
of the compression ratio. If V(Tr) is a non-reference, we record GD(Tr)[i] if
V(Tr)[i] is a mis-matched value w.r.t. its reference; otherwise, we store GD(Tr)
instead of V(Tr). This is because V(Tr)[i] (∈ [0, µ]) can only achieve the same
compression as GD(Tr)[i] (∈ [0, 1)) at the cost of compression accuracy, where
µ is a speed constraint of the road network. Taking V(Tr1) and V(Tr2) as
references and given η = 0, we have ComV(Tr3) = 〈(1, 0, 3, 0.5), (2, 2, 4, 0.67)〉.

4.3 Reference Selection for E(Trn)

We introduce the real-time reference selection technique based on k-mer
matching. Note that, we only decompose E(Trn) and V(Trn) into k-mers, i.e.,
φ = E or V, as we only apply referential representation to them.

Definition 4.1
The subsequence of E(Tr) of a streaming trajectory Tr arriving at t(Tr)[j] (j >
0), is denoted as E(Trj) (j > 0). It starts from the edge traversed by Tr
immediately after leaving the last edge of E(Trj−1) and ends at the edge
where Tr is located at t(Tr)[j].

Specifically, E(Tr0) is the outgoing edge number of (vs → ve) w.r.t. vs, where
(vs → ve) is the first edge traversed by Tr. For example, in Figure B.2a, we have
E(Tr1

4) = 〈4, 1〉 because (v4 → v5) is traversed by Tr1 after leaving (v3 → v4)
and l4 is located on (v5 → v6) at T(Tr1)[4].

We construct a hash table H for E(Trn), whose cardinality (i.e., number of
hash entries) is pre-defined and fixed. Each k-mers in H is stored as a tuple
(En

i , n, offi, pti, pdi), where i) En
i is the ith k-mer of E(Trn); ii) n is the ID of Trn;

iii) offi is the offset of En
i [0] in E(Trn), and iv) pti and pdi are the indexes of the

115

Paper B.

entries associated with En
i−1 and En

i+1 in H, respectively. Figure B.4 gives an
example of the hash table constructed according to the streaming trajectories
in Table B.2, where BKDR hashing is adopted due to its high efficiency and
good distribution capability [40]. To save space, we only store En

i [k− 1] (i > 0)
instead of En

i in the hash table because the whole k-mer can be retrieved by
pti. For example, the entry associated with E1

1 (= (2, 1, 1)) in H is stored as
(〈1〉, 1, 1, 985, 996), where 985 and 996 are the indexes of E1

0 and E1
2 of Tr1 in

H, respectively.
A k-mer does not form until |E(Trn

m)∪ E(Trn
m+1)∪ · · · ∪ E(Trn

m+j)| ≥ k. For

example given k = 3, E1
0 is formed at t(Tr)[2] =7:04:06, as E(Tr1

0) ∪ E(Tr1
1) ∪

E(Tr1
2) = 〈2, 2, 1〉. Once the first k-mer En

0 of E(Trn) is formed, we hash it to
hash table H according to its hash key, denoted as key.

1) If H[key] = ∅, En
0 cannot be referentially represented by the existing

k-mers in H, as it is distinct from all of them. Hence, we mark E(Trn) as
a reference and create a tuple for En

0 as well as all the subsequent k-mers
En

i (i > 0), in order to prepare for referentially representing other sequences.
2) If H[key] 6= ∅ and a tuple (En′

i′ , n′, offi′ , pti′ , pdi′) exists with En′
i′ = En

0 ,
Trn is marked as a non-reference. Then, we initialize a factor E(Ma0) =
(n′, offi′ , k, ∅) for E(Trn), where k is the current matched length and ∅ indicates
that the mis-matched value of E(Ma0) is unknown. Next, we follow an existing
work [25] to greedily match the subsequent character En

i+1[k− 1] (i > 0) with

that in E(Trn′). This process ends when a mis-matched character M occurs.
So far, a factor (n′, S, L, M) is generated, where L is the final matched length
of the subsequence of E(Trn′) and S = offi′ . Then we wait until another k-mer
forms and repeat the process. Clearly, the time delay occurs mainly when
waiting for k mapped GPS points before initializing a factor.

Example 4.1
Following the example shown in Figure B.4 and Table B.2, since E3

0 matches
with E1

0, we initialize a factor (1, 0, 3, ∅) for it. For the arriving E(Tr3
3) = 〈1〉,

we retrieve E(Tr1)[3] according to the index pd0 associated with E1
0, i.e, 954,

and compare it with E(Tr3
3) (= E3

1 [2]). After that, we update the factor to
(1, 0, 4, ∅) due to E(Tr1)[3] = E(Tr3

3). As E(Tr1)[4] 6= E3
2 [2], we generate a

factor, i.e., (1, 0, 4, 1), for ComE(Tr3). Then, we wait until E(Tr3
6) arrives due

to |E(Tr3
5) ∪ E(Tr3

6)| ≥ 3 and repeat the process. Finally, we get ComE(Tr3) =
〈(1, 0, 4, 1), (2, 5, 5, 3)〉.

However, a streaming trajectory Trn can be a non-reference at the beginning
but cannot be referentially represented since a timestamp ti, because its k-mer
formed at ti cannot match any tuple stored in the hash table H. In this case,
we call Trn as a hy-reference and create a tuple for each k-mer of Trn generated
since ti to referentially represent other sequences. Intuitively, the former part
of a hy-reference Trn is a non-reference that is referentially represented, while

116

4. Representation

the latter part of it is a reference.
We store a repetitive En

i as (n, offi, pti, pdi) by omitting the redundant En
i .

We associate this tuple with (En′
i′ , n′, offi′ , pti′ , pdi′) (En′

i′ = En
i) (i.e., they are

stored in the same hash entry) to trace back the subsequence of Trn during
k-mer matching. As shown in Figure B.4, the tuple of E1

4 , i.e., (1, 4, 86, null) is
associated with that of E2

1 , as E1
4 = E2

1 . Here, null indicates that E1
5 is unknown

at the current timestamp. Moreover, En
i and En′

i′ may be stored in the same
hash entry even if En

i 6= En′
i′ due to hash collisions. According the introduction

of k-mer matching in Section 2.3, k remains unchanged during compression
and only determines the length of the initial matched subsequence. However,
k cannot be too large or too small. A too large k may result in a very high
probability of failed matching and thus excessively many references, and
a too small k may lead to many “trivial” matches, where each factor of a
non-reference represents a very short subsequence. We study the impact of k
on compression performance in Section 7.

4.4 Reference Deletion for E(Trn)

The number of k-mers stored in the hash table increases over time. To reduce
the storage cost, we delete the k-mers corresponding to references from the
hash table that have not been visited for a long time. A reference E(Ref) is
visited if i) it referentially represents a non-reference or ii) its corresponding
data is still arriving. We define Go as the set of the references at timestamp
to. Specifically, Go[i], that represents a reference E(Ref), denotes the tuple
(refid, Go[i].tl), where refid is the ID of the reference Go[i], and Go[i].tl is the
timestamp when Go[i] was most recently visited.

Definition 4.2
A reference Go[i] is outdated at to if its freshness at to, denoted as Go[i]. f ,

satisfies Go[i]. f < C · Fo
|Go | , where Fo = ∑

|Go |−1
i′=0 Go[i′]. f and C (0 < C ≤ 1) is

the deletion coefficient.

We set the deletion coefficient C ∈ (0, 1] because we consider a reference
as outdated only if its freshness is below the average freshness Fo

|Go | . A larger
C implies that references expire more easily. We calculate Go[i]. f as follows:

Go[i]. f = λto−Go [i].tl (to ≥ Go[i].tl), (B.1)

where λ ∈ (0, 1) is a decay factor [7]. In Figure B.2, given the current
timestamp to =7:03:26 and λ = 0.998, we get E(Tr1). f = 0.998 at to.

Definition 4.2 is more effective than using a fixed threshold to determine
whether a reference is expired. Specifically, using a fixed threshold, if no trajec-
tory arrives for a long time due to an occasional interrupt of communications,
all references in the hash table will expire. A naive solution is to update the

117

Paper B.

freshness of each reference in the hash table at each timestamp in order to com-
pute the average freshness and then to identify the outdated data. To improve
efficiency, we propose to compute the freshness of parts of Go[i] (0 ≤ i < |Go|)
at to. We sort Go in ascend order of Go[i]. f (0 ≤ i < |Go|). Then, we detect
expired data in order until Go[i′]. f ≥ C · Fo

|Go | (0 < i′ < |Go|). Specifically, no

k-mers are deleted if Go[0]. f ≥ C · Fo
|Go | . This process can actually be realized

without sorting, as shown in Algorithm 2. Next, we define a set containing
the references in Go that are visited at to, denoted as Rvo (Rvo ⊆ Go). Given
Fo′ , Fo (to > to′) is updated as follows:

Fo = (Fo′ − ∑
Go′ [i]∈Rvo

Go′ [i]. f) · λto−to′ + |Rvo| (B.2)

Formula B.2 enables us to update Fo by only computing the freshness of
Go′ [i], such that Go′ [i] ∈ Rvo. The derivation of it is omitted due to the space
limitation.

Algorithm 2 details the reference deletion. Assuming that the latest times-
tamp when new data arrives is to′ . The algorithm searches each Go′ [i] ∈ Rvo
in the current reference set Go′ and removes Go′ [i] from Go′ if it exists in Rvo
(Lines 1–4). Then, each reference E(Ref) ∈ Rvo is appended to Go′ (Line 6).
This way, it sorts Go′ in ascending order of freshness. Meanwhile, Formula B.2
is applied to calculate Fo (Lines 5 and 7) and Go′ is updated to Go. After
“sorting”, we check the freshness of references in Go by starting from its first
reference every time, in order to only calculate the freshness of the potentially
outdated references (Lines 8–11). Finally, the updated references Go and
the sum of their freshness Fo are returned (Line 12). This approach reduces
the time complexity of updating freshness from O(|Go|) to O(|Rvo|+ |EXo|),
where EXo is the set of expired references at to. We evaluate the effectiveness
and efficiency of reference deletion via experiments in Section 7.

4.5 Reference Rewriting for E(Trn)

To further improve the compression ratio, we rewrite the references E(Ref)
in real-time. The motivation is that a non-frequent edge sequence may be-
come a reference if it arrives early. For example, given a frequent path
〈44183, 2, 2, 1, 1, 1, 2, 2〉, 〈2, 2, 1, 1, 1, 2, 2〉, i.e., a subsequence of E(Tr3), should
be stored as k-mers. However, since Tr1 arrives before Tr3 and E(Tr1) can
referentially represent E(Tr3), E(Tr3) is made as a non-reference and Tr1 is a
reference, as shown in Example 4.1. In this case, for another new arriving sub-
sequent Trn that also traverses 〈44183, 2, 2, 1, 1, 1, 2, 2〉, ComE(Trn) will contain
at least two factors. To address the problem, we detect the frequent subse-
quence and rewrite the k-mers in real-time. Following an existing study [31],
we define the rewriting candidate below.

118

4. Representation

Algorithm 2: Reference Deletion Algorithm
Input: the reference set Go′ at to′ , the set Rvo, the sum of freshness Fo′ and a

threshold C
Output: the reference set Go and the sum of freshness Fo

1 for each reference E(Ref) ∈ Rvo do
2 if E(Ref) ∈ Go′ with E(Ref)=Go′ [i] then
3 compute Go′ [i]. f using Formula B.1
4 remove the tuple (refid, Go′ [i].tl) from Go′

5 Fo′ ← Fo′ − Go′ [i]. f

6 append the tuple (refid, to) to Go′

7 Fo ← Fo′ · λto−to′ + |Rvo|
8 while λto−Go′ [0].tl < C · Fo

|Go′ |
do

9 Fo ← Fo − λto−Go′ [0].tl

10 remove the tuple (refid, Go′ [0].tl) from Go′

11 delete the k-mers associated with Go′ [0] from the hash table

12 return Go′ (= Go) and Fo

Definition 4.3
A rewriting candidate is a reference E(Ref) that represents a non-reference
E(Nref) as ComE(Nref) = 〈· · · , (refid, S, L, M), (refid, S′, L′, M′), · · · 〉, where
S + L + 1 = S′ and refid is the ID of the reference Ref.

Given a rewriting candidate Ref, we can merge two factors (refid, S, L, M)
and (refid, S′, L′, M′) into one factor (refid, S, L + 1 + L′, M′), by replacing
E(Re f)[S + L] with M, which is called a rewriting operation.

Example 4.2
Given E(Tr4) = 〈2, 2, 1, 1, 4, 1, 3, 1, 2, 3, 3〉 such that Tr4 arrives after Tr1 ends,
E(Tr1) becomes a rewriting candidate as ComE(Tr4) = 〈(1, 0, 6, 3), (1, 7, 3, 3)〉.
If E(Tr1)[6] is replaced with 3, ComE(Tr4) will only contain one factor, i.e.,
(1, 0, 10, 3), which leads to a higher compression. Similarly, given E(Tr5) =
〈1, 1, 4, 1, 3, 1, 2, 3, 3〉 such that Tr5 also arrives after Tr1 terminates, the com-
pression can be improved by replacing E(Tr1)[6] with 3.

We construct an array rp for each E(Ref), where rp[i] is a list recording M
corresponding to a rewriting operation for E(Ref)[i] (1 ≤ i < |E(Ref)− 1|) and
its frequency of occurrence, denoted as f (M). Following Example 4.2, rp[6]
of E(Tr1) is 〈(3, 2)〉, due to M = 3 and f (M) = 2. Obviously, a prerequisite
for conducting a rewriting operation is that f (M) should be large. This is
to guarantee that a frequent subsequence (i.e., a frequent path) is generated
by the rewriting. Moreover, we should ensure that the factors overlapping
E(Ref)[i] occur rarely. Given a factor (refid, S, L, M), it intersects E(Ref)[i], if
refid is the ID of Ref and S ≤ i < S + L.

119

Paper B.

Algorithm 3: Reference Rewriting Algorithm
Input: a rewriting operation, i.e., replacing E(Ref)[i] with M, a b× b factor

matrix FA of E(Ref), an array rp of E(Ref) and a threshold α

Output: a rewritten reference or ∅
1 f (M)← f (M) + 1, where f (M) is associated with rp[i]
2 if ∀M′ ∈ rp[i] (f (M) ≥ f (M′)) ∧ f (M) ≥ α then

3 if ∑
b i

k c+1
x=1 ∑b

y=b i
k c+1 FAxy < f (M) then

4 replace E(Ref)[i] with M
5 update k-mers associated with E(Ref)
6 delete FA and rp of E(Ref)
7 return a rewritten reference

8 else
9 return ∅ /* no operation will be conducted */

10 else
11 return ∅ /* no operation will be conducted */

Example 4.3
Given E(Tr6) = 〈2, 2, 1, 1, 4, 1, 2, 1, 2, 2, 2, 2, 1, 3〉 such that Tr6 arrives after Tr1

terminates, we get ComE(Tr6) = 〈(1, 0, 9, 2), (1, 0, 3, 3)〉, where (1, 0, 9, 2) in-
tersects E(Tr1)[6]. Following Example 4.2, even if replacing E(Tr1)[6] with 3
reduces the number of factors of both ComE(Tr4) and ComE(Tr5), it produces
one more factor for ComE(Tr6). This indicates that we should rewrite E(Tr1)[6]
only when it does not frequently intersect any factors.

The above analysis implies that we should record each factor that intersects
E(Ref)[i] (1 ≤ i < |E(Ref)| − 1) for rewriting. Intuitively, this results in a high
space-time consumption. Inspired by the regular square grid graph [10],
we construct a b× b factor matrix FA for each E(Ref), where b = d |E(Ref)|r

k e.
Here, |E(Ref)|r is the length of the subsequence of E(Ref) used as a reference.
FA[x][y] (x, y > 0), denoted as FAxy, is associated with a subsequence of E(Ref)
in its factor matrix, i.e., 〈E(Ref)[(x− 1) · k], · · · , E(Ref)[y · k− 1]〉, and counts
the frequency of factors (refid, S, L, M) intersecting E(Ref)[i] ((x− 1) · k ≤ i ≤
y · k − 1), where refid is the ID of Ref. Thus, we update FA once a factor is
generated.

Proposition 4.1
A factor (refid, S, L, M) contributes to FAxy, where x = b S

k c+ 1 and y = d S+L
k e.

Example 4.4
Following Examples 4.1, 4.2, and 4.3 and assuming that Tr = {Tr1, Tr2, Tr3, Tr4,

120

4. Representation

Tr5, Tr6}, the factor matrix FA of E(Tr1) is:

FA =


[0, 2] [0, 5] [0, 8] [0, 11]

[3, 5] [3, 8] [3, 11]
[6, 8] [6, 11]

[9, 11]

→


1 3 1 0
0 0 0

0 2
0


Here, the left part of FA intuitively gives the subsequences of E(Tr1) corre-
sponding to FAxy, and the right part shows the value of FAxy. For instance,
FA12 = 3 is contributed by three factors, i.e, (1, 0, 4, 1), (1, 0, 6, 3), and (1, 2, 4, 3).

Lemma 4.1
Given a factor (refid, S, L, M) that intersects E(Ref)[i] and a b× b factor matrix
FA of E(Ref), (refid, S, L, M) can only contribute to FAxy, where x ≤ i

k + 1∧ y >
i
k .
Proof. As (refid, S, L, M) intersects E(Ref)[i], we have S ≤ i < S + L. Propo-
sition 4.1 guarantees that S ≥ (x − 1) · k ∧ S + L ≤ y · k if (refid, S, L, M)
contributes to FAxy. Hence, we have i ≥ (x − 1) · k ∧ i < y · k, i.e., x ≤
i
k + 1∧ y > i

k .

Lemma 4.2
Given a b× b factor matrix FA of E(Ref), the maximum number of factors that

intersect E(Ref)[i] is ∑
b i

k c+1
x=1 ∑b

y=b i
k c+1

FAxy.

Proof. Following Lemma 4.1, the factors intersecting E(Ref)[i] can only con-
tribute to FAxy, where x ≤ i

k + 1∧ y > i
k . As a result, the maximum number

of the factors that intersect E(Ref)[i] is ∑
b i

k c+1
x=1 ∑b

y=b i
k c+1

FAxy.

Example 4.5
Continuing Example 4.4, the maximum number of the factors intersecting
E(Tr)[6] is ∑3

x=1 ∑4
y=3 FAxy = 3, where only 6 out of 10 elements in FA need to

be visited.

Based on the above conclusions, we present the conditions for implement-
ing a rewriting operation, i.e, replacing E(Ref)[i] with M: i) f (M) ≥ α, where
∀M′ ∈ rp[i] (f (M) ≥ f (M′)) and α (≥ 1) is the rewriting coefficient, and

ii) ∑
b i

k c+1
x=1 ∑b

y=b i
k c+1

FAxy < f (M). The first condition ensures that M occurs

more frequently than other characters for a given position i. The second
condition ensures that the maximum number of factors intersecting E(Ref)[i]
is smaller than f (M). Note that a smaller α means that f (M) ≥ α occurs more
often, thus implying more frequent rewriting.

Algorithm 3 presents the pseudo-code of rewriting references. If a reference
is rewritten, we update its corresponding k-mers (Line 5). Moreover, we

121

Paper B.

store the rewritten reference by referentially representing it according to the
corresponding original one. The aim is to reduce the storage needed when
introducing a new reference. Thus, we do not consider to rewrite a reference
more than once, as it introduces θ-order compression (θ > 2) at the cost of
decreased efficiency of decompression and querying. This is also the reason
that we delete FA and rp after rewriting a reference (Line 6). In addition, we
observe that the factor matrix FA of E(Ref) still takes up unnecessary space
due to FAxy (y > x) = ∅. Hence, to store FAxy, we construct a vector FV of size
b·(b+1)

2 , where b = d |E(Ref)|r
k e and |E(Ref)|r is the length of E(Ref) that is used

as a reference. FV is enlarged over time according to the latest |E(Ref)|r. The
worst case time complexity of reference rewriting for a reference is O(|FV|).
However, Lemma 4.2 enables rewriting by scanning part of FV (as shown in
Example 7), which enhances the efficiency of reference rewriting. This is also
studied in Section 7.

4.6 Reference Selection and Deletion for V(Trn)

The reference selection for V(Trn) is almost the same as that for E(Trn). How-
ever, as a speed V(Trn)[i] is a float, we cannot directly apply k-mer matching
to it. Instead, we convert it to an integer V̈(Trn)[i], where V̈(Trn)[i] is the
integer closest to V(Trn)[i]

0.5η . This strategy is consistent with the error-bounded
referential representation in Section 4.2. The reference deletion for V(Trn) is
also similar to that for E(Trn); thus, we omit it. Moreover, we do not rewrite a
reference V(Ref), as speed patterns may vary substantially during different
time periods [12, 24] and the latest patterns have already been mined by
reference selection.

5 Compression

We proceed to present the binary encoding and data transmission of streaming
trajectories.

5.1 Binary Encoding

We denote the binary code of seq as ˆseq. e.g., the binary code of E(·) is denoted
as Ê(·).

Binary Encoding of References. We follow UTCQ [19] to compress E(Ref).
Moreover, we adapt a typical scheme [41] to encode RD(Ref) and GD(Ref).
Specifically, given an encoding error bound γ, the binary code f̂v of a float-

ing number fv is calculated as f̂v = arg min
f̂vm

∣∣∣∣∑|f̂vm |
i=1 f̂vm[i− 1] · 1

2i − fv
∣∣∣∣, where

|f̂vm| = γ. For example, given fv = 0.37 and γ = 3, we get f̂v=011, i.e., fv is

122

5. Compression

approximated as 0.375. The binary code of a reference φ(Ref) (φ = E, GD) is
delivered to the centralized cloud immediately after it is generated.

Binary Encoding of Non-references. We set the lengths of the binary
codes of both S and L the same, denoted as len, and record it for decoding a
factor (refid, S, L, M) in a streaming setting. The Exp-Golomb encoding [38]
is adopted to compress len. Moreover, len is set to 0 if the reference φ(Ref)
has terminated before generating a factor (refid, S, L, M). This way, we can
improve compression as len = 0 only takes 1 bit, and both Ŝ and L̂ are still
decodable as the length of φ(Ref) is known [19]. Finally, M̂ takes dlog2 oe
bits for ComE(Nref) and takes γ bits for ComV(Nref), where o is the maximum
number of outgoing edges for any vertex v ∈ V.

5.2 Transmission of Compressed Binary Codes

As illustrated in Section 4.3, a factor (refid, S, L, M) cannot be generated until
the mis-matched character M is found. It is easy to recognize each part of a
factor if we transmit it as a whole to the centralized cloud. However, in this
case, the centralized query processor is unable to receive the latest data in real-
time, resulting in inaccurate results. To avoid this, we continue transmitting
the up-to-date information of a factor during its formation.

We propose a data transmission strategy, which targets low transmission
overhead and enables decoding at the centralized cloud without the need of
delivering extra information. Given the value of k for k-mer, the transmission
of a factor (refid, S, L, M) is completed in three states: ¬ transferring the
initialized factor (refid, S, L′, ∅), where L′ ≥ k and |Ŝ| = |L̂′|; ­ transferring
the updated L′; and ® transferring the mis-matched element M when L′

is updated to L. We denote the binary code of a factor transmitted to the
centralized cloud at each timestamp as b̂c. Obviously, |b̂c| = | ˆrefid|+ 2 · |Ŝ| ≥
| ˆrefid|+ 2 · k at step ¬, and the b̂c that is used to update L′ at step ­ is always
| ˆrefid|+ 1. As the maximum number of outgoing edges for any vertices in a
road network is generally no less than 4, i.e, o ≥ 4, and we set γ ≥ 2, we have
|b̂c| = | ˆrefid|+ |M̂| > | ˆrefid|+ 1 at step ®. If we let 2 · |Ŝ| 6= |M̂|, the binary
codes transferred during the above three states can be distinguished just by
|b̂c|. The initial state is ®.
Example 5.1
Continuing Example 4.3 and letting ˆrefid take 3 bits, the first factor of ComE(Tr6)

is initialized as (1, 0, 3, ∅) and thus is encoded as (000, 00, 10), i.e., b̂c =
0000010. Then it is sent to the centralized cloud, which triggers the state
transition from ® to ¬. Next, we continue to transfer b̂c = 0001 before the mis-
matched value M = 2 is found, during which the state is first transferred to ­

and then remains unchanged. Meanwhile, L′ continues to be incremented by
1. Once the centralized cloud receives M = 2, i.e., b̂c = 000001, a factor is gen-
erated and stored in the form (M̂, ˆlen, ˆrefid, Ŝ, L̂), i.e., (001, 0, 000, 0000, 1000),

123

Paper B.

v2

v3

v4v5

v6
v7 v10

v11

v12

l1

l22

l4

l3

l5

v0 l0l0

l2

l3

l4
l5

l666

l8

2 2
1

1

4

12

2

2

3

3

2 2 1

1

1

2 2 2

3

3

3

(a) (b)
1

Tr 3
Tr

l9

1

re0 re1

r0

z0

r1 z1

RE0

RE1
v1 l1

000 001 010

011 100

101 110 111

v8 v9

l6

8

r0

r2 z1

RE1

l7

Figure B.5: The partition of the road network G in Figure B.2.

in the centralized cloud, where we assume o = 7, i.e., M̂ takes 3 bits.

6 Query Processing

6.1 Query Definition

Definition 6.1
Given a query region RE and a set of compressed streaming trajectories T̂r,
a range query range(T̂r, RE) returns the set of streaming trajectories Trn(1 ≤
n ≤ N) in Tr, such that Trn ∩ RE 6= ∅ at the current timestamp.

We denote the lastest timestamp of a trajectory Trn as Trn.tp, i.e., Trn.tp =
t(Trn)[|t(Trn)| − 1].

Example 6.1
Considering the streaming trajectories in Figure B.2 and assuming that the
current timestamp is 7:04:06, we have Tr1.tp =7:04:06 and Tr3.tp =7:03:55.
Given k = 2, γ = 7, η = 0, and |(v0 → v1)| = |(v1 → v2)| = |(v2 → v3)| =
100, we get ad(Tr1)[2] = 254.76, ad(Tr3)[1] = 127.38, and V(Tr3)[1] = 5.12
after decompression, i.e., Tr1 is located on (v2 → v3) and Tr3 is located on
(v1 → v2); thus, the range query range(T̂r, RE1) returns ∅.

A naive strategy for computing range queries over compressed streaming
trajectories is to decompress each Trn(1 ≤ n ≤ N) and calculate their current
locations, which is time-consuming. Instead we introduce indexing and
filtering to achieve fast query processing.

6.2 Index and Filtering Technique

We partition the road network G using grid cells rem, each of which links to
the streaming trajectories that are currently located in it. The number of grid

124

6. Query Processing

cells is denoted by gc. Figure B.5 partitions the road network G in Figure B.2.
Considering the examples in Figure B.2 and assuming the current timestamp
is 7:03:25, re0 links to Tr1.

Definition 6.2
The minimum distance mind(rem, RE) between a grid cell rem and a query
region RE is the distance between a location r and a location z, denoted as
|rz|, where r ∈ rem ∧ z ∈ RE ∧ ∀r′ 6= r (r′ ∈ rem ∧ |r′z| ≥ |rz|) ∧ ∀z′ 6= z (z′ ∈
RE∧ |rz′| ≥ |rz|).

For instance in Figure B.5a, the minimum distance between grid cell re1 and
query region RE0 is |r0z0|. Since queries are computed centrally, we need
to calculate the current location of each streaming trajectory from the most
recently arrived data. Given a speed constraint µ of the road network and
a timestamp tc, the reachable distance of a streaming trajectory Trn w.r.t. tc,
denoted as dis, is (tc− Trn.tp) · µ. Following Example 6.1 and given µ = 21,
the reachable distance of Tr1 w.r.t. 7:04:06 is 0× 21 = 0, while that of Tr3 w.r.t.
7:04:06 is 11× 21 = 231.
Lemma 6.1
Given a range query range(T̂r, RE), the current timestamp tc, the reachable
distance dis of Trn w.r.t. tc, and Trn located in grid cell rem at Trn.tp, if the
minimum distance mind(rem, RE) > dis, Trn cannot be in the result.

Proof. Assuming that Trn has a mapped location l at Trn.tp, we have l ∈ rem as
Trn located in grid cell rem at Trn.tp. Since mind(rem, RE) > dis, the distance
between l and RE must also exceed the reachable distance dis of Trn w.r.t. tc,
i.e., Trn cannot reach RE at tc. Hence, Trn cannot be in the query result.

Lemma 6.1 enables pruning Trn without computing its location at the cur-
rent timestamp. Following Example 6.1 and given |r2z1| = 233 in Figure B.5b,
we do not need to decompress ˆComE(Tr3) and ˆComV(Tr3) if a range query
range(T̂r, RE1) arrives at 7:04:06. This is because Tr3 overlaps re0 at 7:03:55 and
the reachable distance of Tr3 w.r.t. 7:04:06 is 231<233. If Trn cannot be filtered,
we need to fully decompress it to calculate its current location. The details are
omitted due to the space limitation.

6.3 Index Transmission

Index information is created at the edge server once new data arrives, while
query processing occurs centrally. Hence, we need to deliver the index to
the centralized cloud. As illustrated in Section 5.2, we always transmit a
compressed trajectory once it is (referentially) represented, in order to support
accurate queries. A naive strategy is to transfer the ID of the grid cell where
Trn is located at each timestamp, which incurs high transmission cost.

We propose to transfer the ID of the grid cell, denoted as gid, for Trn only
when it changes. As shown in Figure B.5b, Trn can enter at most 8 grid cells if

125

Paper B.

it leaves the current grid cell. Therefore, ĝid takes 3 bits and is appended to
b̂c. We add one bit at the beginning of b̂c to identify whether it carries index
information. The transmission algorithm that includes indexes is very similar
to that in Section 5.2, so we omit the details due to the space limitation.

6.4 Discussion

TRACE is able to adopt and support a variety of partitioning methods and
queries, as discussed next.

Road Network Partition. We introduce two representative partitioning
methods, spatial partitioning [20, 30] and graph-based partitioning [1, 36, 37],
which are alternatives to our grid partitioning. Quad-tree partitioning [20,
30] is used often in different settings. It recursively decomposes the space
while considering the spatial distribution of the underlying data, and it stops
when some pre-defined conditions are satisfied. Each tree node represents
a subregion and has either exactly four children (an internal node), or no
children (a leaf node). In congestion-based partitioning of a road network [1,
36, 37], edges are associated with feature values and traffic densities. Based
on this information, different heterogeneous subregions of a road network are
identified that exhibit homogeneous traffic congestion patterns internally.

The above-mentioned partitioning methods and corresponding indexing
techniques can be adapted straightforwardly to TRACE, by considering sub-
regions as grid cells. We use grid partitioning because it is simple, is very
efficient, and has low construction cost [24]. However, exploration of possible
benefits of other partitioning techniques is a relevant topic for future work.

Query. We introduce two different types of queries that can be supported
by TRACE, i.e., a shortest path query and a KNN query. We use lc to denote
the mapped GPS point of a streaming trajectory Trn at the current timestamp
tc.

Shortest path query: short(ˆTrn, vq). Given a vertex vq and a compressed
streaming trajectory ˆTrn, short(ˆTrn, vq) returns the shortest path distance
between lc and vq. To answer short(ˆTrn, vq), we first decompress T̂(Trn),
Ê(Trn) and ĜD(Trn) (or V̂(Trn)) to get lc = ((vi → vj), nd(vi, lc), tc)). Then
the shortest path distance between lc and vq is obtained by computing the
shortest path distances between vi and vq and between vj and vq [15]. This
process can be facilitated by constructing a G*-tree [23].

KNN query: KNN(ˆTrn, T̂r,). Given a threshold , a compressed streaming
trajectory ˆTrn, and a set of compressed streaming trajectories T̂r, KNN(ˆTrn, T̂r,
) returns the top streaming trajectories in T̂r ranked by their shortest path
distances to lc at tc in ascending order. The process of computing KNN(ˆTrn, T̂r,
) is similar to that of computing short(ˆTrn, vq). In addition, a priority queue is
maintained to perform the most promising vertex expansions [23].

126

7. Experimental Evaluation

Table B.3: Trajectory datasets.
Datasets Storage of NCTs # of NCTs # of edges per NCT
Denmark 3.47 GB 415,920 Average 95.844

Hangzhou 24.60 GB 1,918,677 Average 250.540
Synthetic 384.61 GB 50,000,000 Average 137.712

Table B.4: Parameter ranges and default values.
Parameter Range
the length of k-mer 5, 7, 9, 10, 11, 13, 15, 20, 25
the value of C 0.1, 0.3, 0.5, 0.7, 0.9
the value of α 2, 3, 4, 5, 6, 8, ∞
the number of grid cells gc 82, 162, 322, 642, 1282

7 Experimental Evaluation

7.1 Experimental Setting

Datasets. We use two real datasets, Denmark (DK) and Hangzhou (HZ),
and a synthetic dataset, Synthetic (Syn), as described in Table B.3. DK is
collected from 162 vehicles over about 2 years from Jan. 2007 to Dec. 2008
in Denmark, while HZ is collected from 24,515 taxis during Nov. 2011 in
Hangzhou, China. Syn is generated using the road network of Hangzhou.
It contains five data groups, each with the same number of trajectories (i.e.,
Syn0.1, Syn0.3, Syn0.5, Syn0.7, and Syn0.9), where the similarities between
each pair of trajectories are 0.1± 0.05, 0.3± 0.05, 0.5± 0.05, 0.7± 0.05, and
0.9± 0.05, respectively. The similarity is measured according to the Longest
Common Road Segment (LCRS) [42]. We generate similar speed patterns
when trajectories traverse an LCRS. Specifically, any two subsequences of
speeds corresponding to an LCRS, denoted as sub(Vn) and sub(Vn′), satisfy
|sub(Vn)| = |sub(Vn′)| ∧ |sub(Vn

i) − sub(Vn′
i)| ≤ 1

2
η
(0 ≤ i < |sub(Vn)|),

where η = 7. The default sample interval of HZ and Syn is 20s, and that of
DK is 1s.
Parameter Setting. In the experiments, we study the effect on the performance
of the parameters summarized in Table B.4. We set λ to 0.998 and γ to 3 on
both datasets, and set η to 3 on DK and 7 on HZ, respectively. Note that
the default values of parameters for Syn are the same as those for HZ. The
cardinalities of the hash tables for storing E(Ref) and V(Ref), are both 1000.
All algorithms are implemented in C++ and run on a computer with an Intel
Core i9-9880H CPU (2.30 GHz) and 32 GB memory.
Comparison Algorithms. We compare TRACE with three methods: CLEAN
[44], OCT-LSTM [5], and OCT [5]. CLEAN is an offline method, while OCT-
LSTM trains an LSTM model to obtain repetitive patterns of time-distance
sequences using historical data. OCT-LSTM compresses time-distance se-
quences by discarding data if the prediction deviation is smaller than an error
bound. OCT [5] is similar to OCT-LSTM, except that it uses a linear model for

127

Paper B.

2 0 4 0 6 0 8 0 1 0 00
1 0
2 0
3 0

CR

D a t a s i z e (%)

 T R A C E O C T
 C L E A N O C T - L S T M

(a) CR on HZ

2 0 4 0 6 0 8 0 1 0 01 0 - 1

1 0 1

1 0 3

MC
 (M

B)
D a t a s i z e (%)

 T R A C E O C T
 C L E A N O C T - L S T M

(b) MC on HZ

2 0 4 0 6 0 8 0 1 0 01 0 1

1 0 3

1 0 5

D a t a s i z e (%)

TC
 (b

it)

 T R A C E O C T
 O C T - L S T M

(c) TC on HZ

2 0 4 0 6 0 8 0 1 0 01 0 - 3

1 0 - 1

1 0 1

De
lay

 (s)

D a t a s i z e (%)

 T R A C E O C T
 O C T - L S T M

(d) Delay on HZ

2 0 4 0 6 0 8 0 1 0 00
1 5
3 0

CR

D a t a s i z e (%)

 T R A C E O C T
 C L E A N O C T - L S T M

(e) CR on Syn

2 0 4 0 6 0 8 0 1 0 01 0 - 2

1 0 1

1 0 4

MC
 (M

B)

D a t a s i z e (%)

 T R A C E O C T
 C L E A N O C T - L S T M

(f) MC on Syn

2 0 4 0 6 0 8 0 1 0 01 0 1

1 0 3

1 0 5

TC
 (b

it)

D a t a s i z e (%)

 T R A C E O C T
 O C T - L S T M

(g) TC on Syn

2 0 4 0 6 0 8 0 1 0 00
2
4

De
lay

 (s)

D a t a s i z e (%)

 T R A C E O C T
 O C T - L S T M

(h) Delay on Syn

Figure B.6: Comparison and scalability.

128

7. Experimental Evaluation

5 7 9 1 1 1 3
2 2

2 4

2 6

CR

T h e v a l u e o f k

 C R

6
7
8
9

MC
 (M

B)

M C

(a) CR and MC on DK

5 7 9 1 1 1 35 1
5 2
5 3
5 4
5 5

TC
 (b

it)

T h e v a l u e o f k

 T C

0

1

2

De
lay

 (s)

 D e l a y

(b) TC and Delay on DK

5 1 0 1 5 2 0 2 5
1 8
2 2
2 6

CR

T h e v a l u e o f k

 C R

3

4

5

MC
 (M

B)

 M C

(c) CR and MC on HZ

5 1 0 1 5 2 0 2 5
4 4

4 6

4 8

TC
 (b

it)

T h e v a l u e o f k

 T C

6
9
1 2
1 5

De
lay

 (s)

 D e l a y

(d) TC and Delay on HZ

Figure B.7: Effect of k.

prediction and does not perform any offline training.
Performance Metrics. For compression, we use the compression ratio (CR),
time delay (Delay), maximum memory cost (MC), and transmission cost (TC)
as the performance metrics. For query processing, we use the query time
(Time) and transmission cost (TC) as the performance metrics. Specifically,
the maximum memory cost records the maximum storage of auxiliary struc-
tures (such as hash tables) created for compression over all timestamps. The
auxiliary structures are stored in main memory at the edge server, while
the compressed data is transmitted to and stored in the centralized cloud.
Moreover, both the time delay and transmission cost are reported as average
values to process an arriving mapped GPS point at a timestamp. As the
experiments are simulated in a vehicular edge computing architecture, the
transmission cost is the size of contents to be transferred from the edge server
to the centralized cloud. The contents include compressed trajectories and
indexes, thus we use the transmission cost as a performance metric of both
compression and query processing.

7.2 Experimental Results

Comparison and Scalability. Figure B.6 reports experimental findings when
varying the dataset size from 20% to 100%. We use 80%, 10%, and 10% of each
dataset for training, validation, and testing for OCT-LSTM, respectively. Thus,
all methods are applied to 10% of each dataset in this set of experiments. Since
CLEAN is an offline method and takes 192.1 hours to compress 20% Syn, we
only report its compression ratio and maximum memory cost on HZ and 20%
Syn. First, TRACE outperforms all the baselines in terms of compression ratio

129

Paper B.

0 . 1 0 . 3 0 . 5 0 . 7 0 . 92 4

2 5

2 6

CR

T h e v a l u e o f C

 C R

6

7

8

MC
 (M

B)1 . 52 . 14 . 53 0 . 2
 M C

2 3 . 5

(a) CR and MC on DK

0 . 1 0 . 3 0 . 5 0 . 7 0 . 95 1

5 2

5 3

TC
 (b

it)

T h e v a l u e o f C

 T C

0

1

2

De
lay

 (s)2 . 2 41 . 2 40 . 0 4 0 . 0 8
 D e l a y
2 . 1 5

(b) TC and Delay on DK

0 . 1 0 . 3 0 . 5 0 . 7 0 . 92 5

2 6

2 7

1 3 . 1 1 0 . 94 8 . 1CR

T h e v a l u e o f C

 C R
6 1 . 7

4

5

6

MC
 (M

B)

3 5 . 1

 M C

(c) CR and MC on HZ

0 . 1 0 . 3 0 . 5 0 . 7 0 . 94 5

4 6

4 7

TC
 (b

it)

T h e v a l u e o f C

 T C

5
6
7
8
9

1 0 . 6 1 5 . 81 3 . 36 . 3 De
lay

 (s)

2 . 1

 D e l a y

(d) TC and Delay on HZ

Figure B.8: Effect of C.

and transmission cost. This is mainly due to TRACE’s separate compression
of paths, speeds, and timestamps that eliminates more redundancy. Second,
the compression ratios of TRACE and OCT-LSTM increase slightly, as more
subsequences can be referentially compressed and more training data is used.
The transmission cost of OCT-LSTM is two orders of magnitude higher than
that of TRACE. The reason is that OCT-LSTM needs to update and transmit
the model to adapt to new speed patterns. Next, the maximum memory cost
and time delay of TRACE exceed those of OCT-LSTM and OCT. This is in
line with TRACE’s goal of achieving high compression ratios without losing
mapped GPS points. Hence, TRACE needs to maintain references in main
memory and needs to wait for k mapped GPS points to initialize a factor. In
contrast, OCT-LSTM and OCT trade the accuracy for compression efficiency
and memory cost, by discarding data that can be predicted within an error
bound. However, the maximum memory cost of TRACE never exceeds 8 MB,
which we expect is easily accommodated by the edge server layer [29]. The
maximum memory cost and the processing time of CLEAN are the highest
among the four methods. However, CLEAN is the best among the baselines
in terms of compression ratio; thus, it is a good option if the compression can
take place offline and the dataset is relatively small. Finally, the time delay of
TRACE is roughly independent of the dataset size, while that of OCT-LSTM
drops slightly with more data as fewer models are re-trained. The time delay
of TRACE on both datasets never exceeds its corresponding default sample
interval, i.e., 20s, which suggests that TRACE supports real-time compression.

Effect of k. Figure B.7 reports the results when varying k, the length of
k-mers. First, the compression ratios on both DK and HZ first increase and
then drop. On one hand, a larger k results in more references due to the

130

7. Experimental Evaluation

2 2
2 3
2 4
2 5

862 ∞

CR

T h e v a l u e o f �

 C R

4 6

7

8

MC
 (M

B)

 M C

(a) CR and MC on DK

5 1

5 2

5 3
0 . 0 8 00 . 0 90 . 1 1

TC
 (b

it)

T h e v a l u e o f �

 T C

862 ∞4

0 . 1 9

0

1

2

De
lay

 (s)

 D e l a y

(b) TC and Delay on DK

2 4
2 6
2 8
3 0

CR

 C R

542 ∞T h e v a l u e o f �
3 3

4

5

MC
 (M

B)

 M C

(c) CR and MC on HZ

4 6

4 7

4 8

∞543

TC
 (b

it)

 T C

T h e v a l u e o f �
2 5

6
7
8
9

01 . 6 31 . 8 02 . 2 3

De
lay

 (s)

2 . 6 7

 D e l a y

(d) TC and Delay on HZ

Figure B.9: Effect of α.

higher probability of mismatching among longer sequences, which reduces
the compression ratio. On the other hand, a longer subsequence tends to
be encoded into one factor, increasing the compression ratio. Second, the
maximum memory cost increases with k, because more references lead to
more k-mers being stored. Next, the transmission cost has an opposite trend
to the compression ratio. The higher the compression ratio we can achieve, the
less data is delivered to the centralized cloud. Finally, Figures B.7b and B.7d
show that the time delay increases with k in most cases, as the time to initialize
each factor rises.

Effect of C. Figure B.8 studies the effect of the deletion coefficient C that
controls the amount of outdated data. Specifically, the blue numbers along
with the maximum memory cost in Figures B.8a and B.8c report kmmax

km %,
where kmmax is the maximum number of the k-mers in memory over all
timestamps using reference deletion, while km is the number without using
reference deletion. The figures show that reference deletion function reduces
the memory cost substantially. We also report the average processing time
(ms) of the reference deletion at each timestamp in Figures B.8b and B.8d
(the blue numbers along with the time delay). As observed, the processing
time is 2–4 orders of magnitude less than the time delay. In addition, both
the compression ratio and the time delay drop with the increasing of C on
both DK and HZ. This is because a larger C results in more deletions, which
reduces the number of k-mers stored in memory. In this case, an upcoming
sequence is more likely to be assigned as a reference. Since the time delay is
mainly caused by compressing non-references, it drops with the decrease of
non-references. However, the drops are smooth because we only delete k-mers
that are unlikely to be referenced.

131

Paper B.

3 0
3 2
3 4
3 6

0 . 1 0 . 3 0 . 5 0 . 7

CR

T r a j e c t o r y s i m i l a r i t y

 C R

0 . 9 6

7

8

MC
 (M

B)

 M C

(a) CR and MC

4 0
4 2
4 4
4 6
4 8

De
lay

 (s)

TC
 (b

it)

 T C

0 . 1 0 . 3 0 . 5 0 . 7T r a j e c t o r y s i m i l a r i t y 0 . 9 1

3

5 D e l a y

(b) TC and Delay

Figure B.10: Effect of trajectory similarity.

Effect of α. Figure B.9 reports the impact of the rewriting coefficient α on
the compression performance, where α controls the frequency of rewriting
and “∞” indicates no rewriting. We see that the compression ratio of TRACE
first increases and then drops with the increase of α on DK, while it continues
to increase with α on HZ. The reason is that subsequences may be identified
wrongly as being frequent if a small α is used, while many truly frequent
subsequences may be missed if a very large α is used. Intuitively, the optimal
α value highly depends on the dataset. Second, the maximum memory cost
of TRACE drops when α = ∞, because we do not maintain any auxiliary
structures for rewriting in this case. Next, the time delay of TRACE follows the
opposite trend of the compression ratio on both datasets, as it is mainly caused
by initializing factors. Finally, the blue numbers along with the time delay
in Figures B.9b and B.9d are the average processing time (ms) of reference
rewriting at each timestamp, which are negligible compared with the time
delay.

Effect of Trajectory Similarity. We perform TRACE on Syn0.1, Syn0.3,
Syn0.5, Syn0.7, and Syn0.9, denoted as 0.1, 0.3, 0.5, 0.7, and 0.9, respectively,
to study the impact of trajectory similarities on compression. Figure B.10
shows that the compression ratio increases and that the transmission cost
drops as trajectories become more similar. Moreover, the maximum memory
cost and the time delay decrease with the increase of similarity because fewer
k-mers are stored and fewer factors are generated. Overall, TRACE achieves
higher compression performance on datasets with larger similarity, due to its
referential compression.

Effect of gc. Figure B.11 reports the transmission cost and query time
when varying the number of grid cells, gc. “TRA” denotes our TRACE
framework while “NOI” denotes the case of no indexing. It is clear that a
larger gc results in higher query efficiency and larger transmission cost. The
blue numbers along the TRACE query time line denote the index creation
time (µs), which is the average time used on creating/updating indexes for
all the arriving locations per timestamp. The index creation time increases
slightly with a finer grid granularity, i.e., larger gc. This is because TRACE
updates the grid information of streaming trajectories once this changes and
then delivers the new information to the centralized cloud to improve the

132

8. Related Work

5 1

5 2

5 3

8 2
2 . 5 82 . 5 5 2 . 6 4

2 . 4 9TC
 (b

it)

N u m b e r o f g r i d c e l l s

 T R A (T C)
 N O I (T C)

1 2 8 26 4 23 2 21 6 2

2 . 4 6

0 . 2

0 . 4

0 . 6

0 . 8

Tim
e (m

s)

 T R A (T i m e)
 N O I (T i m e)

(a) TC and query time on DK

4 0

4 5

5 0

3 63 12 6TC
 (b

it)

N u m b e r o f g r i d c e l l s

 T R A (T C)
 N O I (T C)

0 . 2

0 . 4

0 . 6

Tim
e (m

s)

1 2 8 26 4 23 2 21 6 28 2

2 5

 T R A (T i m e)
 N O I (T i m e)

2 2

(b) TC and query time on HZ

Figure B.11: Effect of number of grid cells gc.

query efficiency. However, the grid information contributes at most 6.5% to
the total transmission cost and the index creation time is negligible compared
with the time delay.

8 Related Work

8.1 Raw Data Compression

Raw trajectory compression aims to compact trajectories that have not been
map-matched and targets either offline [6, 26, 45] or online settings [8, 18, 27].
REST [45] is the first offline reference-based raw trajectory compression frame-
work. Targeting raw trajectories, it differs very substantially from TRACE.
REST compresses the timestamps of a non-reference w.r.t. to that of a reference
only when their spatial information are matchable, while TRACE referentially
compresses different parts of trajectories separately, which enables the re-
moval of more redundancy. SQUISH [27] is a representative work that aims at
reducing data loss and preserves speed information at high accuracy during
compression. Deng et al. [8] consider direction-preserving compression in
streaming settings and propose an advanced online DPTS algorithm that
achieves high compression ratios. Li et al. [18] take into account the special
needs of real-time surveillance applications and increase the loading speed of
trajectory data very noticeably. Comprehensive experimental evaluations of
raw trajectory compression are available [14, 28, 43].

8.2 Network-constrained Compression

Network-constrained trajectory compression leverages the underlying road
network to improve compression, which also occurs either offline or online.

Offline Mode. Krogh et al. [17] compress a trajectory by storing only the
first and last edges of each shortest path in a trajectory. Ji et al. [13] encode
outgoing road segments clockwise based on a pre-computed clockwise code
table. Sun et al. [11, 33] propose a two-stage spatial compression algorithm
using shortest path and frequent subtrajectory compression. Yang et al. [41]

133

Paper B.

present a very compact representation that separates the distance information
from timestamps. Koide et al. [16] develop a compression technique for
spatial information of trajectories and support the retrieval of subpaths. Sui
et al. [34] assign each GPS point to the middle point of a segment and
propose a road-network partitioning strategy on which the compression ratio
depends. CLEAN [44] encodes trajectories by means of frequent patterns.
In particular, CLEAN is the first study to perform temporal compression
on top of spatial compression and presents novel pattern concatenation and
generation techniques that always expand the pattern with the highest support.
However, CLEAN needs to count the support of each newly generated pattern
in the trajectory dataset. This incurs high main memory and running time
costs for large datasets, which precludes it from running in an online manner.
UTCQ [19] targets compression of uncertain trajectories; in contrast, TRACE
aims to compress streaming trajectories in real-time. Specifically, UTCQ uses
an improved TED representation and develops an FJD function to measure
the similarity between trajectory instances and to select references in batch
mode. Instead, TRACE proposes a more compact speed-based representation
and adapts k-mer matching for real-time reference selection.

Online Mode. Four studies exist that target online network-constrained
trajectory compression. Chen et al. [3, 4] present a solution that compresses
the edge sequences in trajectories by retaining only out-edges with remark-
able heading changes and also uses frequent paths trained offline to further
improve compression. The solution does not consider the compression of
temporal information and locations of trajectories. ONTRAC [32] uses a k-
order Markov model to learn frequent paths and apply them to compress
incoming edges in real-time. This solution discards the mapped GPS points
of the original trajectories and only estimates the time of traversing an edge
using a trained model. OCT-LSTM [5] trains models to obtain repetitive
movement patterns of the time-distance sequences using historical data and
only transfers data when predicted values deviate significantly from the actual
ones. Then, re-training is performed at the centralized cloud and the updated
model is transmitted to the edge server layer, incurring a high transmission
cost. Moreover, OCT-LSTM does not mine frequent paths that exist widely
and can enhance compression substantially. If no historical data exists, OCT-
LSTM uses linear prediction, called OCT. All the above methods compress
trajectories by discarding useful information, but TRACE keeps all of them to
maintain data usability. Moreover, both OCT-LSTM and ONTRAC employ an
offline training phase as the foundation for their online compression, while
TRACE is designed to compress streaming trajectories in a fully online fashion,
making it more generally usable in practice.

134

9. Conclusion and Future Work

9 Conclusion and Future Work

We propose a new framework for compressing, transmitting, and querying
streaming network-constrained trajectories in real-time. We develop a speed-
based and a multiple-references based referential representation to represent
trajectories concisely. We propose k-mer matching based online reference
selection with reference deletion and rewriting. Deletion reduces the storage
cost, while rewriting improves the compression ratio. Moreover, we propose
a transmission strategy that reduces the transmission cost and ensures that
compressed trajectories are decodable. Finally, we enable querying of com-
pressed streaming trajectories and provide indexing and filtering techniques
that accelerate real-time query processing. An experimental study using two
real-life datasets and one synthetic dataset shows that the proposed TRACE
framework outperforms three baselines [5, 44] in terms of compression ratio
and transmission cost. In future research, it is of interest to reduce the latency
and memory cost of online compression and to deploy TRACE in a distributed
cloud setting.

135

References

References

[1] T. Anwar, C. Liu, H. L. Vu, M. S. Islam, and T. Sellis, “Capturing the
spatiotemporal evolution in road traffic networks,” TKDE, vol. 30, no. 8,
pp. 1426–1439, 2018.

[2] M. Bierlaire, J. Chen, and J. Newman, “A probabilistic map matching
method for smartphone GPS data,” TRANSPORT RES C-EMER, vol. 26,
pp. 78–98, 2013.

[3] C. Chen, Y. Ding, Z. Wang, J. Zhao, B. Guo, and D. Zhang, “Vtracer: When
online vehicle trajectory compression meets mobile edge computing,”
IEEE Syst J, vol. 14, no. 2, pp. 1635–1646, 2019.

[4] C. Chen, Y. Ding, X. Xie, S. Zhang, Z. Wang, and L. Feng, “Trajcompres-
sor: An online map-matching-based trajectory compression framework
leveraging vehicle heading direction and change,” IEEE trans Intell Transp
Syst, vol. 21, no. 5, pp. 2012–2028, 2019.

[5] J. Chen, Z. Xiao, D. Wang, D. Chen, V. Havyarimana, J. Bai, and H. Chen,
“Toward opportunistic compression and transmission for private car
trajectory data collection,” IEEE Sens. J., vol. 19, no. 5, pp. 1925–1935,
2018.

[6] M. Chen, M. Xu, and P. Franti, “A fast o(n) multiresolution polygonal
approximation algorithm for GPS trajectory simplification,” TIP, vol. 21,
no. 5, pp. 2770–2785, 2012.

[7] Y. Chen and L. Tu, “Density-based clustering for real-time stream data,”
in SIGKDD, 2007, pp. 133–142.

[8] Z. Deng, W. Han, L. Wang, R. Ranjan, A. Y. Zomaya, and W. Jie, “An
efficient online direction-preserving compression approach for trajectory
streaming data,” Future Gener Comput Syst, vol. 68, pp. 150–162, 2017.

[9] S. Deorowicz and S. Grabowski, “Robust relative compression of genomes
with random access,” Bioinformatics, vol. 27, no. 21, pp. 2979–2986, 2011.

[10] A. Dignös, M. H. Böhlen, and J. Gamper, “Overlap interval partition join,”
in SIGMOD, 2014, pp. 1459–1470.

[11] Y. Han, W. Sun, and B. Zheng, “Compress: A comprehensive framework
of trajectory compression in road networks,” TODS, vol. 42, no. 2, p. 11,
2017.

[12] G. Hu, J. Shao, F. Liu, Y. Wang, and H. Shen, “If-matching: Towards
accurate map-matching with information fusion,” TKDE, vol. 29, no. 1,
pp. 114–127, 2016.

136

References

[13] Y. Ji, Y. Zang, W. Luo, X. Zhou, Y. Ding, and L. M. Ni, “Clockwise
compression for trajectory data under road network constraints,” in
ICBDA, 2016, pp. 472–481.

[14] Jonathan Muckell, Jeong-Hyon Hwang, Catherine T. Lawson and SS
Rav, “Algorithms for compressing GPS trajectory data: an empirical
evaluation,” in SIGSPATIAL, 2010, pp. 402–405.

[15] Ken CK Lee, Wang-Chien Lee, Baihua Zheng and Yuan Tian, “ROAD: A
new spatial object search framework for road networks,” TKDE, vol. 24,
no. 3, p. 547, 2012.

[16] S. Koide, Y. Tadokoro, C. Xiao, and Y. Ishikawa, “CiNCT: Compression
and retrieval for massive vehicular trajectories via relative movement
labeling,” in ICDE, 2018, pp. 1097–1108.

[17] B. Krogh, C. S. Jensen, and K. Torp, “Efficient in-memory indexing of
network-constrained trajectories,” in SIGSPATIAL, 2016, pp. 17–26.

[18] L. Li, X. Xia, and Z. Xiong, “A novel online trajectory compression
algorithm for real-time trajectory surveillance applications,” in IMCEC,
2019, pp. 995–999.

[19] T. Li, R. Huang, L. Chen, C. S. Jensen, and T. B. Pedersen, “Compression
of uncertain trajectories in road networks,” PVLDB, vol. 13, no. 7, pp.
1050–1063, 2020.

[20] Y. Li, G. Li, J. Li, and K. Yao, “Skqai: A novel air index for spatial keyword
query processing in road networks,” Inf. Sci., vol. 430, pp. 17–38, 2018.

[21] Y. Li, D. W. Gao, W. Gao, H. Zhang, and J. Zhou, “Double-mode energy
management for multi-energy system via distributed dynamic event-
triggered newton-raphson algorithm,” IEEE T Smart Grid., vol. 11, no. 6,
pp. 5339–5356, 2020.

[22] Y. Li, W. Gao, W. Gao, H. Zhang, and J. Zhou, “A distributed double-
newton descent algorithm for cooperative energy management of multi-
ple energy bodies in energy internet,” IEEE T IND INFORM., 2020.

[23] Z. Li, L. Chen, and Y. Wang, “G*-tree: An efficient spatial index on road
networks,” in ICDE, 2019, pp. 268–279.

[24] W. Liu, Y. Zheng, S. Chawla, J. Yuan, and X. Xing, “Discovering spatio-
temporal causal interactions in traffic data streams,” in SIGKDD, 2011,
pp. 1010–1018.

[25] Y. Liu, H. Peng, L. Wong, and J. Li, “High-speed and high-ratio referential
genome compression,” Bioinformatics, vol. 33, no. 21, pp. 3364–3372, 2017.

137

References

[26] C. Long, R. C.-W. Wong, and H. Jagadish, “Trajectory simplification: on
minimizing the direction-based error,” PVLDB, vol. 8, no. 1, pp. 49–60,
2014.

[27] J. Muckell, J.-H. Hwang, V. Patil, C. T. Lawson, F. Ping, and S. Ravi,
“Squish: an online approach for gps trajectory compression,” in COM.Geo,
2011, pp. 1–8.

[28] J. Muckell, P. W. Olsen, J.-H. Hwang, S. Ravi, and C. T. Lawson, “A frame-
work for efficient and convenient evaluation of trajectory compression
algorithms,” in COM.Geo, 2013, pp. 24–31.

[29] S. Raza, S. Wang, M. Ahmed, and M. R. Anwar, “A survey on vehicular
edge computing: architecture, applications, technical issues, and future
directions,” IEEE Wirel Commun, vol. 19, no. 4, pp. 2322–2358, 2019.

[30] S. J. Samet Hanan and A. Houman, “Scalable network distance browsing
in spatial databases,” in SIGMOD, 2008, pp. 43–54.

[31] W. Sebastian and L. Ulf, “Fresco: Referential compression of highly
similar sequences,” TCBB, vol. 10, no. 5, pp. 1275–1288, 2013.

[32] A. Silva, R. Raghavendra, M. Srivatsa, and A. K. Singh, “Prediction-based
online trajectory compression,” arXiv preprint arXiv:1601.06316, 2016.

[33] R. Song, W. Sun, B. Zheng, and Y. Zheng, “Press: A novel framework
of trajectory compression in road networks,” PVLDB, vol. 7, no. 9, pp.
661–672, 2014.

[34] P. Sui and X. Yang, “A privacy-preserving compression storage method
for large trajectory data in road network,” J. Grid Comput., vol. 16, no. 2,
pp. 229–245, 2018.

[35] S. Taguchi, S. Koide, and T. Yoshimura, “Online map matching with route
prediction,” IEEE trans Intell Transp Syst, vol. 20, no. 1, pp. 338–347, 2018.

[36] Tarique Anwar, Chengfei Liu, Hai L. Vu and Christopher Leckie, “Spatial
Partitioning of Large Urban Road Networks,” in EDBT, 2014, pp. 343–354.

[37] Tarique Anwar, Chengfei Liu, Hai L. Vu and Md Saiful Islam, “Tracking
the evolution of congestion in dynamic urban road networks,” in CIKM,
2016, pp. 2323–2328.

[38] J. Teuhola, “A compression method for clustered bit-vectors,” INFORM
PROCESS LETT, vol. 7, no. 6, pp. 308–311, 1978.

[39] S. Wandelt and U. Leser, “Adaptive efficient compression of genomes,”
ALGORITHM MOL BIOL, vol. 7, no. 1, p. 30, 2012.

138

References

[40] Y. Xiang, W. Zhou, and M. Guo, “Flexible deterministic packet marking:
An ip traceback system to find the real source of attacks,” IEEE Trans
Parallel Distrib Syst, vol. 20, no. 4, pp. 567–580, 2008.

[41] X. Yang, B. Wang, K. Yang, C. Liu, and B. Zheng, “A novel representation
and compression for queries on trajectories in road networks,” TKDE,
vol. 30, no. 4, pp. 613–629, 2017.

[42] H. Yuan and G. Li, “Distributed in-memory trajectory similarity search
and join on road network,” in ICDE, 2019, pp. 1262–1273.

[43] D. Zhang, M. Ding, D. Yang, Y. Liu, J. Fan, and H. Shen, “Trajectory
simplification: an experimental study and quality analysis,” PVLDB,
vol. 11, no. 9, pp. 934–946, 2018.

[44] P. Zhao, Q. Zhao, C. Zhang, G. Su, Q. Zhang, and W. Rao, “Clean:
frequent pattern-based trajectory spatial-temporal compression on road
networks,” in MDM, 2019, pp. 605–610.

[45] Y. Zhao, S. Shang, Y. Wang, B. Zheng, Q. V. H. Nguyen, and K. Zheng,
“Rest: A reference-based framework for spatio-temporal trajectory com-
pression,” in KDD, 2018, pp. 2797–2806.

139

References

140

Paper C

Evolutionary Clustering of Streaming
Trajectories

Tianyi Li, Lu Chen, Christian S. Jensen, Torben Bach Pedersen,
Jilin Hu

The paper has been under reviewed in the
VLDB, pp. XXX–XXX, 2022.

© 2022 VLDB
The layout has been revised.

1. Introduction

Abstract

The widespread deployment of smartphones and location-enabled, networked in-vehicle
devices renders it increasingly feasible to collect streaming trajectory data of moving
objects. The continuous clustering of such data can enable a variety of real-time
services, such as identifying representative paths or common moving trends among
objects in real-time. However, little attention has so far been given to the quality of
clusters—for example, it is beneficial to smooth short-term fluctuations in clusters to
achieve robustness to exceptional data.

We propose the notion of evolutionary clustering of streaming trajectories, abbrevi-
ated ECO, that enhances streaming-trajectory clustering quality by means of temporal
smoothing that prevents abrupt changes in clusters across successive timestamps.
Employing the notions of snapshot and historical trajectory costs, we formalize ECO
and then formulate ECO as an optimization problem and prove that ECO can be per-
formed approximately in linear time, thus eliminating the iterative processes employed
in previous studies. Further, we propose a minimal-group structure and a seed point
shifting strategy to facilitate temporal smoothing. Finally, we present all algorithms
underlying ECO along with a set of optimization techniques. Extensive experiments
with two real-life datasets offer insight into ECO and show that it outperforms
state-of-the-art solutions in terms of both clustering quality and efficiency.

1 Introduction

It is increasingly possible to equip moving objects with positioning devices
that are capable of transmitting object positions to a central location in real
time. Examples include people with smartphones and vehicles with built-in
navigation devices or tracking devices. This scenario opens new opportuni-
ties for the real-time discovery of hidden mobility patterns. These patterns
allow characterizing individual mobility for a certain time interval and en-
able a broad range of important services and applications such as route
planning [33, 41], intelligent transportation management [34], and road infras-
tructure optimization [35].

As a typical moving pattern discovery approach, clustering aims to group
a set of trajectories into comparatively homogeneous clusters to extract repre-
sentative paths or movement patterns shared by moving objects. Considering
a streaming setting, many works are proposed to cluster the trajectories in
real-time [5, 7–9, 16, 21, 22, 32, 39]. However, existing real-time clustering
methods focus on the most current data, achieving low computational cost
at the expense of clustering quality [36]. In streaming settings, clusterings
should be robust to short-term fluctuations in the underlying trajectory data,
which may be achieved by means of smoothing [6]. An example illustrates
this.

143

Paper C.

o7
o8

o10

o9
o3

o5o2

o1
o4

y

k

x

o6
((30.35, 120.2), 00:00:12)

x

o10

o3
o4

o2

o1

o5 o6

x

y
o7
o8

o10
o9o3 o6

o2

o1

o4 o5

y

r(o6)

3

2

1

r(o10)

c1 c2

c1 c2
c3

c1 c2

((30.36, 120.2), 00:00:22)

o11o12

o8

o9
o11o12
o7

o12
o11

Figure C.1: Motivating example

Example 1.1
Figure C.1 shows the trajectories of 12 moving objects at three timestamps,
k = 1, 2, 3. Traditional clustering algorithms return the two clusters c1 =
{o1, o2, o3, o4, o5, o6} and c2 = {o7, o8, o9, o10, o11, o12} at the first timestamp,
the three clusters c1 = {o1, o2, o3, o4, o5}, c2 = {o7, o8, o9, o11}, and c3 =
{o6, o10, o12} at the second timestamp, and the same two clusters at the third
timestamp as at the first timestamp.

The underlying reason for this result is the unusual behavior of objects
o6 and o10 at the second timestamp. Clearly, returning the same two stable
clusters for all three timestamps is a more robust and better-quality result. A
naive approach to eliminating the effect of the two objects’ unusual behavior
is to perform cleaning before clustering. However, studies of on two real-
life datasets show that among the trajectories that cause the mutations of
clusterings, 88.9% and 75.9% of the trajectories follow the speed constraint,
while 97.8% and 96.1% of them are categorized as inliers [2]. Moreover, in real-
time applications, it is impractical to correct previous clusterings retroactively.
Hence, it is difficult for existing cleaning techniques to facilitate smoothly
shifted clustering sequences [15, 18, 28].

However, this problem can be addressed by applying evolutionary cluster-
ing [3, 4, 6, 11, 14, 17, 23, 25, 36, 37], where a good current clustering result
is one that fits the current data well, while not deviating too much from the
recent history of clusterings. Specifically, temporal smoothness is integrated
into the measure of clustering quality [6]. This way, evolutionary clustering
is able to outperform traditional clustering as it can reflect long term trends
while being robust to short-term variability. Put differently, applying evolu-

144

1. Introduction

tionary clustering to trajectories can mitigate adverse effects of intermittent
noise on clustering and present users with smooth and consistent movement
patterns. In Example 1.1, clustering with temporal consistency is obtained if
o6 is smoothed to r(o6) and o10 is smoothed to r(o10) at the second timestamp.
Motivated by this, we study evolutionary clustering of trajectories.

Existing evolutionary clustering studies target dynamic networks and
are not suitable for trajectory applications, mainly for three reasons. First,
the solutions are designed specifically for dynamic networks, which differ
substantially from two-dimensional trajectory data. Second, the movement in
trajectories is generally much faster than the evolution of dynamic networks,
which renders the temporal smoothness used in existing studies too "strict"
for trajectories. Third, existing studies often optimize the clustering quality
iteratively at each timestamp [3, 12, 17, 23, 24, 37], which is computationally
costly and is infeasible for large-scale trajectories.

We propose an efficient and effective method for evolutionary clustering
of streaming trajectories (ECO). First, we adopt the idea of neighbor-based
smoothing [17] and develop a structure called minimal group that is summa-
rized by a seed point in order to facilitate smoothing. Second, following existing
studies [3, 12, 23, 24, 36, 37], we formulate ECO as an optimization problem
that employs the new notions of snapshot cost and historical cost. The snap-
shot cost evaluates the true concept shift of clustering defined according to
the distances between smoothed and original locations. The historical cost
evaluates the temporal distance between locations at adjacent timestamps by
the degree of closeness. Next, we prove that the proposed optimization function
can be decomposed and that each component can be solved approximately in
constant time. The effectiveness of smoothing is further improved by a seed
point shifting strategy. Finally, we introduce a grid index structure and present
algorithms for each component of evolutionary clustering along with a set
of optimization techniques, to improve clustering performance. The paper’s
main contributions are summarized as follows,

• We formalize ECO problem. To the best of our knowledge, this is the
first proposal for streaming trajectory clustering that takes into account
temporal smoothness.

• We formulate ECO as an optimization problem, based on the new no-
tions of snapshot cost and historical cost. We prove that the optimization
problem can be solved approximately in linear time.

• We propose a minimal group structure to facilitate temporal smoothing
and a seed point shifting strategy to improve clustering quality of evolu-
tionary clustering. Moreover, we present all algorithms needed to enable
evolutionary clustering, along with a set of optimization techniques.

• Extensive experiments on two real-life datasets show that ECO advances
the state-of-the-arts in terms of both clustering quality and efficiency.

145

Paper C.

The rest of paper is organized as follows. We present preliminaries in Section 2.
We formulate the problem in Section 3 and derive its solution in Section 4.
Section 5 presents the algorithms and optimization techniques. Section 6
covers the experimental study. Section 7 reviews related work, and Section 8
concludes and offers directions for future work.

2 Preliminaries

2.1 Data Model

Definition 2.1
A GPS record is a pair (l, t), where t is a timestamp and l = (x, y) is the
location, with x being a longitude and y being a latitude.

Definition 2.2
A streaming trajectory o is an unbounded ordered sequence of GPS records,
〈(o.l1, o.t1), (o.l2, o.t2) · · · 〉.

The GPS records of a trajectory may be transmitted to a central location in an
unsynchronized manner. To avoid this affecting the subsequent processing,
we adopt an existing approach [5] and discretize time into short intervals that
are indexed by integers. We then map the timestamp of each GPS record
to the index of the interval that the timestamp belongs to. In particular, we
assume that the start time is 00:00:00 UTC, and we partition time into intervals
of duration ∆t = 10s. Then time series 〈00:00:01, 00:00:12, 00:00:20, 00:00:31,
00:00:44〉 and 〈00:00:00, 00:00:13, 00:00:21, 00:00:31, 00:00:40〉 are both mapped
〈0, 1, 2, 3, 4〉. We call such a sequence a discretized time sequence and call
each discretized timestamp a time step dt. We use trajectory and streaming
trajectory interchangeably.

Definition 2.3
A trajectory is active at time step dt = [t1, t2] if it contains a GPS record (l, t)
such that t ∈ [t1, t2].

Definition 2.4
A snapshot Ok is the set of trajectories that are active at time step dtk.

Figure C.1 shows three snapshots O1, O2, and O3, each of which contains
twelve trajectories. Given the start time 00:00:00 and ∆t = 10, (o7.l, o7.t) arrives
at dt1 because 00:00:12 is mapped to 1. For simplicity, we use o in figures to
denote o.l. The interval duration ∆t is the default sample interval of the dataset.
Since deviations between the default sample interval and the actual intervals
are small [20], we can assume that each trajectory o has at most one GPS record
at each time step dtk. If this is not the case for a trajectory o, we simply keep o’s

146

2. Preliminaries

Table C.1: Frequently used notation
Notation Description
o A trajectory
dtk The kth time step
o.lk, o.tk The location and timestamp of o at dtk
o.l, o.t A simplification of o.lk, o.tk at dtk
o.l̃, o.t̃ A simplification of o.lk−1, o.tk−1 at dtk
Ok A set of trajectories at dtk
r(o) An adjustment of o.l
Rk The set of adjustments of Ok
s A seed point of o at the current time step dtk
s̃ A seed point of o at the previous time step dtk−1
Sk The set of seed points at dtk
Mk(s) A minimal group summarized by a seed point s at dtk
SCk(r(o)) The snapshot cost of a trajectory o w.r.t. r(o) at dtk
T Ck(r(o)) The historical cost of a trajectory o w.r.t. r(o) at dtk
c A cluster c
Ck The set of clusters obtained at dtk

earliest GPS at the time step. This simplifies the subsequent clustering. Thus,
the GPS record of o at dtk is denoted as (o.lk, o.tk). If a trajectory o is active at
both dtk−1 and dtk and the current time step is dtk, o.lk and o.tk are simplified
as o.l and o.t, and o.lk−1 and o.tk−1 are simplified as o.l̃ and o.t̃. At time step
dt2 (k = 2) in Figure C.1, o7.l̃ = o7.l1 = (30.35, 120.2), o7.t̃ = o7.t1 = 00:00:12,
o7.l = o7.l2 = (30.36, 120.2), and o7.t = o7.t2 = 00:00:22.

Definition 2.5
A θ-neighbor set of a streaming trajectory o (∈ Ok) at the time step dtk is
Nθ(o) = {o′|o′ ∈ Ok ∧ d(o.l, o′.l) ≤ θ},where d(·) is Euclidean distance and θ
is a distance threshold. |Nθ(o)| is called the local density of o w.r.t. θ at dtk.

e
e e

o3

o5
o2

o1 o4

o6

e

(a) Core points oi (1 ≤ i ≤ 6∧ i 6= 3) (minPts = 3)

o5

o4
o6

d

d

do3

o1

o2

(b) Seed points o1 and o4 (ρ = 3)

Figure C.2: oi (1 ≤ i ≤ 6) at dt1 in Figure C.1

147

Paper C.

Figure C.2 plots oi (1 ≤ 1 ≤ 6) at dt1 from Figure C.1, where Nδ(o1) =
{o1, o2, o3}.

2.2 DBSCAN

We adopt a well-known density-based clustering approach, DBSCAN [10],
for clustering. DBSCAN relies on two parameters to characterize density or
sparsity, i.e., positive values ε and minPts.

Definition 2.6
A trajectory o ∈ Ok is a core point w.r.t. ε and minPts, if Nε(o) ≥ minPts.

Definition 2.7
A trajectory o ∈ Ok is density reachable from another trajectory o′ ∈ Ok, if
a sequence of trajectories o1, o2, · · · on (n ≥ 2) exists such that (i) o1 = o′ and
on = o; (ii) ow (1 ≤ w < n) are core points; and (iii) d(ow, ow+1) ≤ ε (1 ≤ w <
n).

Definition 2.8
A trajectory o ∈ Ok is connected to another trajectory o′ if a trajectory o′′

exists such that both o and o′ are density reachable from o′′.

Definition 2.9
A non-empty subset of trajectories of Ok is called a cluster c, if c satisfies the
following conditions:

• Connectivity: ∀o, o′ ∈ c, o is connected to o′;

• Maximality: ∀o, o′ ∈ Ok, if o ∈ c and o′ is density reachable from o, then
o′ ∈ c.

Definition 2.9 indicates that a cluster is formed by a set of core points and
their density reachable points. Given ε and minPts, o ∈ Ok is an outlier, if it is
not in any cluster; o ∈ Ok is a border point, if Nε(o) < minPts and d(o, o′) ≤ ε,
where o′ is a core point.

Definition 2.10
A clustering result Ck = {c1, c2, · · · , cn} is a set of clusters obtained from the
snapshot Ok.

Example 2.1
In Figure C.1, C1 has two clusters c1 = {o1, o2, o3, o4, o5,
o6} and c2 = {o7, o8, o9, o10, o11, o12}. Further, oi (1 ≤ i ≤ 6 ∧ i 6= 3) in Fig-
ure C.2a are core points.

148

3. Problem Statement

2.3 Evolutionary Clustering

Evolutionary clustering is the problem producing a sequence of clusterings
from streaming data; that is, clustering for each snapshot. It takes into
account the smoothness characteristics of streaming data to obtain high-quality
clusterings [3]. Specifically, two quality aspects are considered:

• High historical quality: clustering Ck should be similar to the previous
clustering Ck−1;

• High snapshot quality: Ck should reflect the true concept shift of cluster-
ing, i.e., remain faithful to the data at each time step.

Evolutionary clustering uses a cost function Fk that enables trade-offs between
historical quality and snapshot quality at each time step dtk [3],

Fk = SCk(Co, Ck) + α · T Ck(Ck−1, Ck) (C.1)

Fk is the sum of two terms: a snapshot cost (SCk) and a historical cost (T Ck).
The snapshot cost SCk captures the similarity between clustering Ck and
clustering Co that is obtained without smoothing. The smaller SCk is, the
better the snapshot quality is. The historical cost T Ck measures how similar
clustering Ck and the previous clustering Ck−1 are. The smaller T Ck is, the
better the historical quality is. Parameter α (> 0) enables controlling the
trades-off between snapshot quality and historical quality.

3 Problem Statement

We start by presenting two observations, based on which, we define the
problem of evolutionary clustering of streaming trajectories.

3.1 Observations

Gradual evolutions of travel companions As pointed out in a previous
study [32], movement trajectories represent continuous and gradual location
changes, rather than abrupt changes, implying that co-movements among
trajectories also change only gradually over time. Co-movement may be
caused by (i) physical constraints of both road networks and vehicles, and (ii)
vehicles may have close relationships, e.g., they may belong to the same fleet
or may target the same general destination [32].

Uncertainty of "border" points Even with the observation that movements
captured by trajectories are not dramatic during a short time, border points
are relatively more likely to leave their current cluster at the next time step

149

Paper C.

than core points. This is validated by statistics from two real-life datasets.
Specifically, among the trajectories shifting to another cluster or becoming an
outlier during the next time steps, 75.0% and 61.5% are border points in the
two real-life datasets.

3.2 Problem Definition

Cost embedding Existing evolutionary clustering studies generally perform
temporal smoothing on the clustering result [3, 6, 12, 37]. Specifically, they
adjust Ck iteratively so as to minimize Formula C.1, which incurs very high
cost. We adopt cost embedding [17], which pushes down the cost formula from
the clustering result level to the data level, thus enabling flexible and efficient
temporal smoothing. However, the existing cost embedding technique [17]
targets dynamic networks only. To apply cost embedding to trajectories, we
propose a minimal group structure and snapshot and historical cost functions.

Snapshot cost SCk We first define the notion of an "adjustment" of a trajec-
tory.

Definition 3.1
An adjustment rk(o) is a location of a trajectory o obtained through smoothing
at dtk. Here, rk(o) 6= rk(o′) if o 6= o′. The set of adjustments in Ok is denoted
as Rk.

We simplify rk(o) to r(o) if the context is clear. In Figure C.1, r(o6) is an
adjustment of o6 at dt2. According to Formula C.1, the snapshot cost measures
how similar the current clustering result Ck is to the original clustering result
Co. Since we adopt cost embedding that smooths trajectories at the data level,
the snapshot cost of a trajectory o w.r.t. its adjustment r(o) at dtk (denoted as
SCk(r(o))) is formulated as the deviation between o and r(o) at dtk:

SCk(r(o)) = d(r(o), o.l)2 s.t. d(r(o), o.l̃) ≤ µ · (o.t− o.t̃), (C.2)

where µ is a speed constraint of the road network. Formula C.2 requires that
any adjustment r(o) must follow the speed constraint. Obviously, the larger
the distance between o.l and its adjustment r(o), the higher the snapshot cost.

Historical cost T Ck As discussed in Section 2.3, one of the goals of evo-
lutionary clustering is smoothing the change of clustering results during
adjacent time steps. Since we push down the smoothing from the cluster level
to trajectory level, the problem becomes one of ensuring that each trajectory
represents a smooth movement. According to the first observation in Sec-
tion 3.1, gradual location changes lead to stable co-movement relationships

150

3. Problem Statement

g44 g54g24

g23

g25

g33 g43 g53

g35 g45 g55

g63

g64

g65

o3

o5
o2

o1

o4

o6

r(o6)

r''(o6)

r'(o6)

d
d

d

e

e

g34

Figure C.3: oi (1 ≤ i ≤ 6) at dt2 in Figure C.1 (ρ = 3)

among trajectories during short periods of time. Thus, similar to neighbor-
based smoothing in dynamic communities [17], it is reasonable to smooth the
location of each trajectory in the current time step using its neighbours at the
previous time step. However, the previous study [17] smooths the distance
between each pair of neighboring nodes. Simply applying this to trajectories
may degrade the performance of smoothing if a "border" point is involved.
Recall the second observation of Section 3.1 and assume that o1.l is smoothed
according to o3.l at dt2 in Figures C.1 and C.2 . As o3 is a border point at dt1
with a higher probability to leave the cluster c1 at dt2, using o3 to smooth o1
may result in o1 also leaving c1 or being located at the border of c1 at dt2. The
first case may incur an abrupt change to the clustering while the second case
may degrade the intra-density of c1 (∈ C2) and increase the inter-density of
clusters in C2. To tackle this problem, we model neighboring trajectories as
minimal groups summarized by seed points.

Definition 3.2
A seed point s (s ∈ Sk) summarizes a minimal group Mk(s) = {o ∈
Ok| d(o, s) ≤ δ ∧ ∀s′ ∈ Sk (s′ 6= s ⇒ d(o, s) ≤ d(o, s′))} at dtk, where
δ (0 < δ ≤ ε) is a given parameter, and Sk (Sk ⊂ Ok) is a seed point set
at dtk. The cardinality ofMk(s), |Mk(s)|, exceeds a parameter ρ. Any trajec-
tory o inMk(s) that is different from s is called a non-seed point. Note that,
Mk(s) ∩Mk(s′) = ∅ if s 6= s′.

Given the current time step dtk, we use s to denote the seed point of o at
dtk (i.e., o ∈ Mk(s)), while use s̃ to denote that at dtk−1 (i.e., o ∈ Mk−1(s̃)).

Example 3.1
In Figure C.2b, there are two minimal groups, i.e.,M1(o1) = {o1, o2, o3} and
M1(o4) = {o4, o5, o6}. In Figure C.3, there is only one minimal group before
smoothing, i.e.,M2(o1) = {o1, o2, o3}. Further, given the current k = 2, both s
and s̃ of o2 is o1 and s̃.l̃ = o1.l1.

151

Paper C.

We propose to use the location of a seed point s to smooth the location of a
non-seed point o (o ∈ Mk−1(s̃)) at dtk. In order to guarantee the effectiveness
of smoothing, Definition 3.2 gives two constraints when generating minimal
groups: (i) d(o, s) < δ (δ ≤ ε) and (ii) |Mk(s)| ≥ ρ. Setting δ to a small
value, the first constraint ensures that o ∈ Mk(s) are close neighbors at dtk.
Specifically, we require δ ≤ ε because this makes it very likely that trajectories
in the same minimal group are in the same cluster. The second constraint
avoids small neighbor sets Nδ(s). Specifically, using an "uncertain border"
point as a "pivot" to smooth the movement of other trajectories may lead to
an abrupt change between clusterings or a low-quality clustering (according
to the quality metrics of traditional clustering). We present the algorithm for
generating minimal groups in Section 5.2.

Based on the above analysis, we formalize the historical cost of o w.r.t. its
adjustment r(o) at dtk, denoted as T Ck(r(o)), as follows.

T Ck(r(o)) =
(
dd(r(o), s̃.l)

δ
e − 1

)2

s.t. d(r(o), o.l̃) ≤ µ · (o.t− o.t̃),
(C.3)

where o ∈ Mk−1(s̃)\{s̃}. Given the threshold δ, the larger the distance
between r(o) and s̃.l, the higher the historical cost. Here, we use the degree of
closeness (i.e., d d(r(o),s̃.l)

δ e − 1) instead of d(r(o), s̃.l) to evaluate the historical
cost, due to two reasons. First, constraining the exact relative distance between
any two trajectories during a time interval may be too restrictive, as it varies
over time in most cases. Second, using the degree of closeness to constrain
the historical cost is sufficient to obtain a smooth evolution of clusterings.

Total cost Fk Formulas C.2 and C.3 give the snapshot cost and historical
cost for each trajectory o w.r.t. its adjustment r(o), respectively. However, the
first measures the distance while the latter evaluates the degree of proximity.
Thus, we normalize them to a specific range [0, 1):

SCk(r(o)) =
(

d(r(o), o.l)
4µ · ∆t + δ

)2

s.t. d(r(o), o.l̃) ≤ µ · (o.t− o.t̃) (C.4)

T Ck(r(o)) =

(
d d(r(o),s̃.l)

δ e − 1
4µ·∆t+δ

δ

)2

s.t. d(r(o), o.l̃) ≤ µ · (o.t− o.t̃),

(C.5)

where o ∈ Mk−1(s̃)\{s̃} and ∆t is the duration of a time step. Clearly,
SCk(r(o)) ≥ 0 and T Ck(r(o)) ≥ 0. Thus, we only need to prove SCk(r(o)) < 1
and T Ck(r(o)) < 1.

152

3. Problem Statement

Lemma 3.1
If d(o.l, o.l̃) ≤ (o.t− o.t̃) · µ then d(r(o), o.l) ≤ 4µ · ∆t.

Proof. According to our strategy of mapping original timestamps (Section 2.1),
o.t − o.t̃ ≤ 2∆t. Considering the speed constraint of the road network,
d(r(o), o.l̃) ≤ µ · (o.t− o.t̃). Further, d(r(o), o.l) ≤ d(o.l, o.l̃) + d(r(o), o.l̃) due
to the triangle inequality. Thus, we get d(r(o), o.l) ≤ d(o.l, o.l̃) + 2µ · ∆t. Since
d(o.l, o.l̃) ≤ (o.t− o.t̃) · µ, d(r(o), o.l) ≤ 4µ · ∆t.

It follows from Lemma 3.1 that SCk(r(o)) < 1 if d(o.l, o.l̃) ≤ (o.t − o.t̃) · µ.
However, d(o.l, o.l̃) ≤ (o.t − o.t̃) · µ does not necessarily hold. To address
this problem, we pre-process o.l according to o.l̃ so that it follows the speed
constraint before conducting evolutionary clustering. The details are given in
Section 4.3.

Lemma 3.2
If d(s̃.l, s̃.l̃) ≤ (s̃.t− s̃.t̃) · µ then d(r(o), s̃.l) ≤ 4µ · ∆t + δ.

Proof. We have d(r(o), o.l̃) ≤ 2µ ·∆t according to Lemma 3.1. Further, d(o.l̃, s̃.l̃) ≤
δ according to Definition 3.2. Since d(r(o), s̃.l) ≤ d(r(o), o.l̃) + d(o.l̃, s̃.l) ≤
d(r(o), o.l̃) + d(o.l̃, s̃.l̃) + d(s̃.l̃, s̃.l), we get d(r(o), s̃.l) ≤ 4µ · ∆t + δ.

According to Lemma 3.2, we can derive d 4µ·∆t+δ
δ e − 1 < 4µ·∆t+δ

δ and thus
T Ck(r(o)) < 1. Letting 4µ · ∆t + δ = π, the total cost Fk is:

Fk = ∑
o,s̃∈Θk∧o 6=s̃

1
π2

(
d(r(o), o.l)2 + α ·

(
δ ·
(
dd(r(o), s̃.l)

δ
e − 1

))2
)

s.t. ∀o ∈ Θk (d(r(o), o.l̃) ≤ µ · (o.t− o.t̃)),

(C.6)

where Θk = Ok ∩ (
⋃

s̃∈Sk−1
Mk−1(s̃)). Formula C.6 indicates that we do not

smooth the location of o at dtk if o is not summarized in any minimal group at
dtk−1. This is in accordance with the basic idea that we conduct smoothing by
exploring the neighboring trajectories. We can now formulate our problem.

Definition 3.3
Given a snapshot Ok, a set of previous minimal groups

⋃
s̃∈Sk−1

Mk−1(s̃), a
time duration ∆t, a speed constraint µ, and parameters α, δ, ε, minPts, and ρ,
evolutionary clustering of streaming trajectories (ECO) is to

• find a set of adjustments Rkopt , such that Rkopt = arg minRk Fk;

• compute a set of clusters Ck over Rkopt .

Specifically, each adjustment of o.l ∈ Rkopt is denoted as ropt(o) and is then
used as the previous location of o (i.e. o.l̃) at dtk+1 for evolutionary clustering.

153

Paper C.

Example 3.2
Following Example 3.1, ECO first finds a set of adjustments R2opt = {ropt(oi)|1
≤ i ≤ 12} at dt2. Then, it performs clustering overR2opt and gets C2 = {c1, c2},
where c1 = {oi|1 ≤ i ≤ 6} and c2 = {oi|7 ≤ i ≤ 12}. Note that we only show
ropt(o6)(= r(o6)) and ropt(o10)(= r(o10)) in Figures C.1 and C.3 because
ropt(oi) = oi.l (1 ≤ i ≤ 12∧ i 6= 6∧ i 6= 10) at dt2.

Clearly, the objective function in Formula C.6 is neither continuous nor dif-
ferentiable. Thus, computing the optimal adjustments using existing solvers
involves iterative processes [30] that are too expensive for online scenarios.
We thus prove that Formula C.6 can be solved approximately in linear time in
Section 4.

4 Computation of Adjustments

Given the current time step dtk, we start by decomposing Fk at the unit of
minimal groups as follows,

Fk = ∑
s̃∈Sk−1

fk(s̃.l)

= ∑
s̃∈Sk−1

∑
o∈Ω

(
d(r(o), o.l)2 + α ·

(
δ ·
(
dd(r(o), s̃.l)

δ
e − 1

))2
)

s.t. ∀o ∈ Θk (d(r(o), o.l̃) ≤ µ · (o.t− o.t̃)),

(C.7)

where Θk = Ok ∩ (
⋃

s̃∈Sk−1
Mk−1(s̃)), Ω = Mk−1(s̃)\{s̃}, r(o) is the adjust-

ment of o.l at dtk, s̃ is the seed point of o at dtk−1, and s̃.l is the location of s̃
at dtk. We omit the multiplier 1

π2 from Formula C.6 because ∆t, µ, and δ are
constants and do not affect the results.

4.1 Linear Time Solution

We show that Formula C.7 can be solved approximately in linear time. How-
ever, Formula C.7 uses each previous seed point s̃ for smoothing, and such
points may also exhibit unusual behaviors from dtk−1 to dtk. Moreover, s̃ may
not be in Ok. We address these problems in Section 4.2 by proposing a seed
point shifting strategy, and we assume here that s̃ ∈ Ok has already been
smoothed, i.e., r(s̃) = s̃.l.

Lemma 4.1
Fk achieves the minimum value if each fk(s̃.l) (s̃ ∈ Sk−1) achieves the mini-
mum value.

154

4. Computation of Adjustments

Proof. To prove this, we only need to prove that fk(s̃.l) and fk(s̃′.l̃) (s̃ 6=
s̃′ ∧ s̃, s̃′ ∈ Sk−1) do not affect each other. This can be established easily, as
we requireMk−1(s̃) ∩Mk−1(s̃′) = ∅. We thus omit the details due to space
limitation.

Lemma 4.1 implies that Formula C.7 can be solved by minimizing each
fk(s̃.l) (s̃ ∈ Sk−1). Next, we further "push down" the cost shown in Formula C.7
to each pair of o (o ∈ Mk−1(s̃)\{s̃}) and s̃.

fk(r(o), s̃.l) =

(
d(r(o), o.l)2 + α ·

(
δ ·
(
dd(r(o), s̃.l)

δ
e − 1

))2
)

s.t. d(r(o), o.l̃) ≤ µ · (o.t− o.t̃) (C.8)

Lemma 4.2
fk(s̃.l) achieves the minimum value if each fk(r(o), s̃.l)
(o ∈ Mk−1(s̃) ∩Ok\{s̃}) achieves the minimum value.

Proof. The proof is straightforward, because fk(r(o), s̃.l) and fk(r′(o), s̃.l) (o, o′ ∈
Mk−1(s̃) ∩Ok\{s̃} ∧ o 6= o′) are independent of each other.

According to Lemma 4.2, the problem is simplified to computing ropt(o) =
arg minr(o) fk(r(o), s̃.l) (o ∈ Mk−1(s̃)∩Ok\{s̃}) given s̃. However, Formula C.8
is still intractable as its objective function is not continuous. We thus aim to
transform it into a continuous function. Before doing so, we cover the case
where the computation of ropt(o) w.r.t a trajectory o can be skipped.

Lemma 4.3
If d(o.l, s̃.l) ≤ δ then o.l = arg minr(o) fk(r(o), s̃.l).

Proof. Let r(o) (r(o) 6= o.l) be an adjustment of o.l. Given d(o.l, s̃.l) ≤ δ,
T Ck(o.l) = 0 ≤ T Ck(r(o)). On the other hand, as d(r(o), o.l) > d(o.l, o.l) = 0,
the snapshot cost SCk(o.l) = 0 < SCk(r(o)). Thus, ropt(o) = o.l if d(o.l, s̃.l) ≤
δ.

A previous study [17] smooths the distance between each pair of neighboring
nodes no matter their relative distances. In contrast, Lemma 4.3 suggests that
if a non-seed point remains close to its previous seed point at the current time
step, smoothing can be ignored. This avoids over-smoothing close trajectories.
Following Example 3.2, o2.l = arg minr(o2)

f2(r(o2), o1.l).

Definition 4.1
A circle is given by Q(e, x), where e is the center and x is the radius.

Definition 4.2
A segment connecting two locations l and l′ is denoted as se(l, l′). The
intersection of a circle Q(e, x) and a segment se(l, l′) is denoted as se(l, l′)⊕
Q(e, r).

155

Paper C.

Figure C.3 shows a circle Q(o1.l, δ) that contains o1.l, o2.l, and o3.l. Further,
r(o6) = se(o6.l, o4.l)⊕Q(o4.l, δ).

Lemma 4.4
se(o.l, s̃.l) ∩Q(o.l̃, µ · (o.t− o.t̃)) 6= ∅.

Proof. In Section 3.2, we constrain o.t− o.t̃ ≤ µ · ∆t before smoothing, which
implies that o.l ∈ Q(o.l̃, µ · (o.t − o.t̃)). Hence, se(o.l, s̃.l) ∩ Q(o.l̃, µ · (o.t −
o.t̃)) 6= ∅.

In Figure C.4, given o6.t− o6.t̃ = 3, o6.l ∈ se(o6.l, o4.l) ∩Q(o6.l̃, 3µ).

Omitting the speed constraint We first show that without utilizing the
speed constraint, an optimal adjustment ropt′(o) of o.l that minimizes f (r(o), s̃.l)
can be derived in constant time. Based on this, we explain how to compute
ropt based on ropt′(o).

Lemma 4.5
∀r′(o) /∈ se(o.l, s̃.l)(∃r(o) ∈ se(o.l, s̃.l)(fk(r(o), s̃.l) ≤ fk(r′(o), s̃.l))).

Proof. Let d(o.l, s̃.l) = y. First, we prove that ∀r′(o) /∈ Q(s̃.l, y)(∃r(o) ∈
se(o.l, s̃.l)(fk(r′(o), s̃.l) ≥ fk(r(o), s̃.l))). Two cases are considered, i.e., (i)
d(r′(o), o.l) ≤ y and (ii) d(r′(o), o.l) > y. For the first case, we can always find
an adjustment r(o) ∈ se(o.l, s̃.l), such that d(r′(o), o.l) = d(r(o), o.l). Hence,
SCk(r′(o)) = SCk(r(o)). However, we have T Ck(r′(o)) ≥ T Ck(r(o)) due to
d(r′(o), s̃.l) > d(r(o), s̃.l). Thus, fk(r′(o), s̃.l) ≥ fk(r(o), s̃.l). For the second
case, it is clear that ∀r(o) ∈ se(o.l, s̃.l)(SCk(r′(o)) > SCk(r(o)) ∧ T Ck(r′(o)) ≥
T Ck(r(o))). Thus, fk(r′(o), s̃.l) > fk(r(o), s̃.l).

Second, we prove that ∀r′(o) ∈ Q(s̃.l, y)\se(o.l, s̃.l)(∃r(o) ∈ se(o.l, s̃.l)(fk(r′

(o), s̃.l) ≥ fk(r(o), s̃.l))). We can always find r(o) ∈ se(o.l, s̃.l), such that
d(r′(o), s̃.l) = d(r(o), s̃.l). Hence, T Ck(r′′(o)) = T Ck(r(o)). However, in this
case SCk(r′(o)) > SCk(r(o)) due to r(o) ∈ se(o.l, s̃.l)∧ r′(o) /∈ se(o.l, s̃.l). Thus,
we have fk(r′(o), s̃.l) > fk(r(o), s̃.l).

In Figure C.3, f (r(o6), o4.l) ≤ f (r′′(o6), o4.l) and f (r′(o6), o4.l) ≤ f (r′′(o6), o4.l)
due to r′′(o6) /∈ se(o4.l, o6.l). Lemma 4.5 indicates that if we ignore the speed
constraint in Formula C.8, we can search ropt′(o) just on se(o.l, s̃.l) without
missing any result.

Lemma 4.6
Let d(ropt′(o), s̃.l) = bopt′ · δ. If d(o.l, s̃.l) > δ then bopt′ ∈ {N∗ ∩ [λ1, λ2]} ∪ λ2,

where λ1 = d(s̃.l,o.l̃)−µ·(o.t−o.t̃)
δ , λ2 = d(o.l,s̃.l)

δ and N∗ is the natural numbers.

Proof. We start by proving max{λ1, 1} ≤ bopt′ ≤ λ2. First, we have ropt′(o) ∈
se(o.l, s̃.l) according to Lemma 4.5. Thus, bopt′ · δ ≤ d(o.l, s̃.l), i.e., bopt′ ≤ λ2.

156

4. Computation of Adjustments

o3

o5
o2

o1

o4

o6

o6.ll

o6.

o6.

o6. 'l

d d

r(o6)

d

(o6.l)
3m

3m

'l '

o
l

Figure C.4: An example of speed-based pre-processing, i.e., o6.lo → o6, in Figure C.3 (ρ = 3)

Further, ∀r(o) ∈ se(o.l, s̃.l)(d(r(o), s̃.l) + d(r(o), o.l̃) ≥ d(s̃.l, o.l̃)) due to the
triangle inequality. Thus, bopt′ · δ + µ · (o.t− o.t̃) ≥ d(s̃.l, o.l̃), i.e., bopt′ ≥ λ1.
Moreover, ∀r′(o) ∈ se(o.l, s̃.l)((0 < d(r′(o), s̃.l) < δ ∧ d(r(o), s̃.l) = δ) ⇒
(T C(r′(o)) = T C(r(o)) ∧ SC(r′(o)) > SC(r(o)))). Thus, we get bopt′ ≥ 1.

Next, we prove ∀r′(o), r(o) ∈ se(o.l, s̃.l)((b− 1) · δ < d(r′(o), s̃.l) < b · δ ∧
d(r(o), s̃.l) = b · δ ∧ 1 ≤ b ≤ bλ2c ∧ b ∈ N∗) ⇒ (f (r(o), s̃.l) < f (r′(o), s̃.l))).
According to Formula C.5, T C(r(o)) = T C(r′(o)). Further, d(o.l, r′(o)) =
d(o.l, s̃.l)− d(r′(o), s̃.l) and d(o.l, r(o)) = d(o.l, s̃.l) −b · δ. As d(r′(o), s̃.l) < b · δ
we have SC(r(o)) < SC(r′(o)). Thus, bopt′ /∈ [1, bλ2c]\N∗.

Finally, we prove ∀r′(o) ∈ se(o.l, s̃.l)(b · δ ≤ d(r′(o), s̃.l) ∧ bλ2c < b ≤
λ2) ⇒ (f (o.l, s̃.l) < f (r′(o), s̃.l))). Similar to the above proof, in this case
T C(r′(o)) = T C(o.l) ∧ SC(r′(o)) > SC(o.l). Thus, bopt′ /∈ (bλ2c, λ2]\{λ2}.

In Figure C.3, we have ropt′(o6) ∈ {o6.l, r(o6), r′(o6)}. Based on Lemmas 4.3
to 4.6, we let d(r(o), s̃.l) = b · δ and simplify Formula C.8 to the following
function:

fk(b, s̃.l) = (d(o.l, s̃.l)− b · δ)2 + α · (δ · (b− 1))2

s.t. b ∈ {N∗ ∩ [λ1, λ2]} ∪ λ2,
(C.9)

where λ1 = d(s̃.l,o.l̃)−µ·(o.t−o.t̃)
δ and λ2 = d(o.l,s̃.l)

δ . The snapshot cost (d(o.l, s̃.l)−
b · δ)2 is derived according to Lemma 4.5, i.e., o.l, ropt′(o) and s̃.l are on
the same line segment; while the historical cost (δ · (b− 1))2 is obtained by
simply plugging d(r(o), s̃.l) = b · δ into Formula C.8. The objective function
in Formula C.9 is a continuous. Thus, the bopt′ (∈ {N∗ ∩ [λ1, λ2]} ∪ λ2) that
minimizes the function can be obtained in constant time without sacrificing
accuracy.

Example 4.1
Continuing Example 3.2 and given d(o6.l, o4.l) = 25, α = 2.1 and δ = 10, we
get bopt′ = 1 and ropt′(o6) = r(o6).

157

Paper C.

Introducing the speed constraint Recall that ropt′(o) is the optimal adjust-
ment of o.l without taking the speed constraint in Formula C.8 into account,
while ropt(o) takes the constraint into account. We have narrowed the range
of ropt′ to a set of discrete locations on se(o.l, s̃.l) without sacrificing any ac-
curacy. Further, if ropt′ ∈ Q(o.l̃, µ · ∆t) then ropt(o) = ropt′(o). However, if
ropt′ /∈ Q(o.l̃, µ · ∆t), ropt′(o) is an invalid adjustment. In this case, letting
d(ropt(o), s̃.l) = bopt · δ, we propose to approximate ropt by searching only in
the narrowed range of ropt′ , i.e., we propose to compute bopt approximately as
follows.

bopt = arg min
b∈{N∗∩[λ1,λ2]}∪λ2

|b− bopt′ |

s.t. Q(o.l̃, µ · (o.t− o.t̃)) ∩Q(s̃.l, b · δ) 6= ∅,
(C.10)

where Q(o.l̃, µ · (o.t− o.t̃))∩Q(s̃.l, b · δ) 6= ∅ indicates that ropt(o) ∈ Q(o.l̃, µ ·
(o.t− o.t̃)) must hold due to d(ropt(o), s̃.l) = bopt · δ. After getting bopt′ , bopt

can be located according to se(o.l, s̃.l)⊕Q(o.l̃, µ · (o.t− o.t̃)) in constant time.
Following Example 4.1 and given o6.t− o6.t̃ = 3 and µ = 9, ropt(o6) = r(o6)
if o6.l1 = o6.l̃, while ropt(o6) = o6.l if o6.l1 = o6.l̃′ (shown in Figure C.4).
Specifically, in the latter case, o6.l is the only feasible solution of ropt(o6)
according to Formula C.10, as se(o6.l, o4.l) ⊕Q(o6.l̃′, 3µ) = o6.l. Note that
computing ropt using Formula C.10 may not yield an optimal value that
minimizes fk(r(o), s̃.l). This is because we approximate the feasible region of
ropt by the narrowed range of ropt′ and may miss an r(o) (r(o) ∈ Q(o.l̃, µ · (o.t−
o.t̃))\se(o.l, s̃.l)) that minimizes Formula C.8. However, experiments show
that ropt′ = ropt in most case. The underlying reasons are that the maximum
distance a trajectory can move under the speed limitation is generally far
larger than the distance a trajectory actually moves between any two time
steps and that we constrain d(o.l, o.l̃) ≤ µ · (o.t− o.t̃) before smoothing, which
"repairs" large noise to some extent. So far, the efficiency of computing ropt(o)
using Formula C.8 has been improved to O(1) time complexity.

4.2 Shifting of Seed Points

Section 4.1 assumes that the previous seed point s̃.l evolves gradually when
smoothing o ∈ Mk−1(s̃) ∩ Ok\{s̃} at dtk, which is not always true. Thus,
s̃.l may also need to be smoothed. We first select a "pivot" for smoothing
s̃.l. An existing method [30] maps the noise point to the accurate point
that is closest to it in a batch mode. Inspired by this, we smooth s̃.l using
o.l (o ∈ Mk−1(s̃) ∩Ok), which is a set of discrete locations. This is based on
the observation that the travel companions of each trajectory evolves gradually
due to the smooth movement of trajectories. Next, we determine which
trajectory o should be selected as a "pivot" to smooth s̃.l.

Evolutionary clustering assigns a low cost (cf. Formula C.1) if the clus-

158

4. Computation of Adjustments

terings change smoothly during a short time period. Since we use cost
embedding, we consider the location of a trajectory o as evolving smoothly
if the distance between o and o′ (o′ ∈ Mk−1(s̃) ∩ Ok\{o}) varies only little
between two adjacent time steps. This is essentially evaluated by fk(o) (cf. For-
mula C.7), which measures the cost of smoothing o′ (o′ ∈ Mk−1(s̃) ∩Ok\{o})
according to o. Hence, we select the "pivot" for smoothing s̃.l using the
following formula:

s̃new = arg min
o∈Mk−1(s̃)∩Ok

fk(o) (C.11)

After obtaining a "pivot" s̃new, instead of first smoothing s̃.l according to s̃new.l
and then smoothing o.l(o ∈ Mk−1(s̃)\{s̃}) by s̃.l, we shift the seed point of
o ∈ Mk−1(s̃)\{s̃} from s̃ to s̃new and use s̃new to smooth other trajectories
o (o 6= s̃new). The reasons are: (i) by Formula C.11, s̃new is the trajectory with
the smoothest movement from dtk−1 to dtk among trajectories in Mk−1(s̃),
and thus it is less important to smooth it; (ii) we can save |Mk−1(s̃)| − 1
computations in Formula C.7. Formula C.11 suggests that the seed point
may not be shifted, i.e., s̃new may be s̃. Intuitively, when computing s̃new, the
locations of all trajectories in their corresponding minimal group are smoothed;
and with the seed point shifting strategy, smoothing does not require that the
previous seed point is active at the current time step.

Example 4.2
Continuing Example 4.1, given f2(o6.l) = min{ f2(o4.l), f2(o5.l), f2(o6.l)}, s̃new =
s̃ = o6. When calculating s̃new, we get ropt(o4) = o4.l, ropt(o5) = o5.l, and
ropt(o6) = r(o6).

The time complexity of smoothing a minimal groupMk−1(s̃) is O(|Mk−1(s̃)|2).

4.3 Speed-based Pre-processing

We present the pre-processing that forces each to-be-smoothed trajectory o ∈
Ok ∩ (

⋃
s̃∈Sk−1

Mk−1(s̃)) to observe the speed constraint. The pre-processing
guarantees the correctness of the normalization of the snapshot and historical
costs and can repairs large noise to some extent. We denote the location of o
before pre-processing as o.lo and the possible location after as o.lp.

A naive pre-processing strategy is to map o.lo to a random location on or
inside Q(o.l̃, µ · ∆t). However, this random strategy may make the smoothing
less reasonable.
Example 4.3
Continuing Example 4.1, Figure C.4 shows two possible locations o6.l and
o6.l′ of o6.lo, both of which are chosen at random while observing the speed
constraint, i.e., they are located on and inside Q(o6.l̃, 3µ), respectively. Since
d(o6.l′, o4.l) < δ < d(o6.l, o4.l), the adjustment of o6.l′ is o6.l′ itself while that
of o6.l is r(o6).

159

Paper C.

In this example, o6.l′ is less reasonable than r(o6). Specifically, according to
the minimum change principle [30], the changes to the data distribution made
by the speed-based pre-processing and the neighbor-based smoothing should
be as small as possible. However, considering d(o6.lo, o4.l), o6.l′ is too close
to o4.l compared with o6.l and r(o6). Given a pre-processed location o.l, its
change due to smoothing has already been minimized through Formula C.8.
Thus, to satisfy the minimum change principle, we just need to make the
impact of speed-based pre-processing on neighbor-based smoothing as small
as possible. Hence, we find the pre-processed o.l via the speed constraint as
follows.

o.l = arg min
o.lp

∣∣d(o.lp, s̃.l)− d(o.lo, s̃.l)
∣∣

s.t. d(o.lp − o.l̃) ≤ µ · (o.t− o.t̃)
(C.12)

This suggests that the difference between d(o.l, s̃.l) and d(o.lo, s̃.l)) is expected
to be as small as possible, in order to mitigate the effect of speed-based pre-
processing on computing historical cost. Before applying Formula C.12, we
pre-process s̃.l so that it also follows the speed constraint:

s̃.l = arg min
s̃.lp

d(s̃.lo, s̃.lp)

s.t. d(s̃.lp − s̃.l̃) ≤ µ · (s̃.t− s̃.t̃)
(C.13)

As s̃ is not smoothed by any trajectories in Mk−1(s̃) (cf. Section 4.1), For-
mula C.13 lets the closest location to s̃.lp satisfying the speed constraint be s̃.l.
This is also in accordance with the minimum change principle [30]. According
to the seed point shifting strategy, we examine each o ∈ Mk−1(s̃)∩Ok to iden-
tify the most smoothly moving trajectory as s̃new. Thus, before this process, we
have to force each o ∈ Mk−1(s̃) ∩Ok to follow the speed constraint w.r.t. the
current to-be-examined seed point s̃, i.e., computing o.l w.r.t. s̃.l according to
Formula C.12. Obviously, a speed-based pre-processing is only needed when
d(o.lo − o.l̃) > µ · (o.t− o.t̃); otherwise, o.l = o.lo. Formulas C.12 and C.13 can
be computed in constant time.

5 Algorithms

We first introduce a grid index and then present the algorithms for generating
minimal groups, smoothing locations, and performing the clustering, together
with a set of optimization techniques.

5.1 Grid Index

We use a grid index [13] to accelerate our algorithms. Figure C.3 shows an
example index. Specifically, the diagonal of each grid cell (denoted as g) has

160

5. Algorithms

Algorithm 4: Generating minimal groups
Input: a set of trajectories Ok, a threshold δ

Output: a set of seed point Sk and minimal groups
⋃

s∈Sk
Mk(s)

1 for each o ∈ Ok do
2 Sk ← Sk ∪ o if ∀s ∈ Sk(d(o.l, s.l) > δ)

3 for each o ∈ Ok\Sk do
4 Mk(s)←Mk(s) ∪ o
5 s← arg min{s∈Iδ(g(o))∧d(o.l,s.l)≤δ} d(o.l, s.l)

6 return Sk and
⋃

s∈Sk
Mk(s)

length ε, which is the parameter used in DBSCAN [13]. This accelerates
the process of finding core points. The number of trajectories that fall into
g is denoted as |g|. Given o ∈ g at dtk and o ∈ Mk(s), G(g) is the collection
of grid cells g′, such that o′ ∈ Mk(s) ∧ o′ ∈ g′. Following Example 3.1,
G(g34) = {g24, g34}, as shown in Figure C.3. The smallest distance between
the boundaries of two grid cells, g and g′, is denoted as min(g, g′). Clearly,
min(g, g) = 0. For example in Figure C.3, min(g24, g44) = ε. Next, we
introduce the concept of h-closeness [13].

Definition 5.1
Two grid cells g and g′ are h-close, if min(g, g′) ≤ h. The set of the h-close
grid cells of g is denoted as Ih(g).

Lemma 5.1
For o ∈ g, we have d(o.l, o′.l) > h if o′ ∈ g′ ∧ g′ /∈ Ih(g).

The proof is straightforward. We utilize two distance parameters, i.e., ε for clus-
tering (cf. Definition 2.6) and δ for finding minimal groups (cf. Definition 3.2).
Thus, we only need to consider Ih(g), where h = ε, δ. Following again ex-
isting work [13], we define Iε(gij) = Ω\(gi1 j1 ∪ gi1 j2 ∪ gi2 j1 ∪ gi2 j2), where
Ω = {gi′ j′ |i1 ≤ i′ ≤ i2 ∧ j1 ≤ j′ ≤ j2} and i1 = i − 2, i2 = i + 2, j1 = j− 2
and j2 = j + 2. For example in Figure C.3, Iε(g44) = Ω\(g22 ∪ g62 ∪ g26 ∪ g66),
where Ω = {gij|2 ≤ i, j ≤ 6}. Since we set δ < ε, we only need to compute
Ih(g), such that h < ε.

Lemma 5.2
Ih(gij) = Iε(gij) if ε√

2
≤ h < ε; otherwise Ih(gij) = {gi′ j′ |i − 1 ≤ i′ ≤

i + 1∧ j− 1 ≤ j′ ≤ j + 1}.

The proof of Lemma 5.2 follows from the grid cell width being ε√
2
. In

Figure C.3, given ε√
2
≤ h < ε, Iδ(g44) = Iε(g44).

161

Paper C.

5.2 Generating Minimal Groups

Sections 3 and 4 indicate that o is smoothed at dtk if ∃Mk−1(s̃)(o ∈ Mk−1(s̃));
otherwise, o is considered as an "outlier," to which neighbor-based smoothing
cannot be applied. Thus, we aim to include as many trajectories as possible in
the minimal groups, in order to smooth as many trajectories as possible.

According to the above analysis, an optimal set of minimal groups should
satisfy ∀o ∈ Ok\(

⋃
s∈Sk
Mk(s)), ∀s ∈ Sk (d(o, s) > δ). Clearly,

⋃
s∈Sk
Mk(s),

the set of trajectories in the minimal groups, is determined given Sk. Defini-
tion 3.2 implies that the local density of a seed point s should be not small,
i.e., |Nδ(s)| ≥ ρ. It guarantees that there is at least one trajectory o (= s) in
a minimal group that is not located at the border of a cluster. Considering
the above requirement and constraint, we have to enumerate all the possible
combinations to get the optimal set of Sk, which is infeasible.

Therefore, we propose a greedy algorithm, shown in Algorithm 4, for
computing a set of minimal groups at dtk. Each trajectory o is mapped to a
grid cell g before generating minimal groups. We first greedily determine Sk
and then generate minimal groups according to Sk. This is because a non-seed
point o attached to a minimal groupMk(s) at the very beginning may turn
out to be closer to another newly obtained seed point s′. This incurs repeated
processes for finding a seed point for o. Instead, we compute the seed point
s for each o ∈ Ok exactly once. According to Lemma 5.1, we will not miss
any possible seed point for o by searching Iδ(o) rather than Sk (Line 5). Note
that Algorithm 4 generates minimal groupsMk(s) such that |Mk(s)| < ρ. We
simply ignore these during smoothing.

5.3 Evolutionary Clustering

Smoothing Algorithm 5 gives the pseudo-code of the smoothing algorithm.
We maintain glp to record the current minimal fk(o′.l) = ∑o∈Mk−1(s̃)∩Ok\{o′} fk
(r(o), o′.l) (o′ ∈ Mk−1(s̃) ∩ Ok) and maintain A to record adjustments w.r.t.
o′.l (Line 1). The computation of fk(o′.l) is terminated early if its current value
exceeds glp (Lines 8–9). As can be seen, if o′ (o′ ∈ Mk−1(s̃)) ∩Ok is identified
as the trajectory with the smoothest movement in its minimal group, the set of
adjustments r(o) (o ∈ Mk−1(s̃) ∩Ok) w.r.t o′.l is returned, i.e., Rk(Mk−1(s̃)).

Optimizing modularity Modularity is a well-known quality measure for
clustering [17, 37], which is computed as follows.

QS = ∑
c∈Ck

(
IS(c)
TS

−
(

DS(c)
TS

)2
)

(C.14)

Here, TS is the sum of similarities of all pairs of trajectories, IS(c) is the
sum of similarities of all pairs of trajectories in cluster c, DS(c) is the sum

162

5. Algorithms

Algorithm 5: Smoothing
Input: a minimal groupMk−1(s̃)
Output: a set of adjustments Rk(Mk−1(s̃))

1 sum← 0, Rk(Mk−1(s̃))← ∅, glp← ∞, s̃new ← null, A ← ∅
2 for each o′ ∈ Mk−1(s̃) ∩Ok do
3 compute o′.l according to Formula C.13, A ← o′.l, sum← 0
4 for each o ∈ Mk−1(s̃) ∩Ok\{o′} do
5 compute o.l according to Formula C.12
6 compute ropt(o) according to Formulas C.9 and C.10
7 sum← sum + fk(ropt(o), o′.l)
8 if sum ≥ glp then
9 break /* o′ must not be s̃new */

10 A ← A∪ ropt(o)

11 if |A| = |Mk−1(s̃)| then
12 glp← sum, s̃new ← o′, Rk(Mk−1(s̃))← A

13 return Rk(Mk−1(s̃))

of similarities between a trajectory in cluster c and any trajectory in cluster
c′ (c′ ∈ Ck\{c}). A high QS indicates a good clustering result. The similarity
between any two trajectories o and o′ is defined as 1

d(o.l,o′ .l) .
A previous study [17] iteratively adjusts ε to find the (local) optimal QS

as well as the clustering result at each time step. Specifically, given an ε, a
constant ∆ε, and the current clustering result Ck, it calculates three modularity
during each iteration: QSh, QSl , and QSm. QSm = QS is the modularity of
Ck. QSh is calculated from pairs in Ck with a similarity in the range [ε, ε + ∆ε],
and QSl is calculated from pairs in Ck with a similarity in the range [0, ε− ∆ε).
Then ε is adjusted as follows.

• If QSh = max{QSh, QSl , QSm}, ε increases by ∆ε;

• If QSl = max{QSh, QSl , QSm}, ε decreases by ∆ε;

• If QSm = max{QSh, QSl , QSm}, ε is unchanged.

The first two cases leads to another iteration of calculating QSh, QSl , and QSm
using the newly updated ε, while the last case terminates the processing. This
iterative optimization of modularity [17] has a relatively high time cost. We
improve the cost by only updating ε at dtk (denoted as εk) once to "approach"
the (local) optimal modularity of Ck. Although εk is then used for clustering at
dtk+1 instead of at dtk, the quality of the clustering is generally still improved,
as the clustering result evolves gradually. Specifically, ε is still obtained by the
iterative optimization at the first time step.

163

Paper C.

Algorithm 6: Evolutionary clustering (ECO)
Input: a snapshot Ok, a clustering result Ck−1, a set of minimal groups⋃

s∈Sk−1
Mk−1(s̃), thresholds δ, ρ, α, εk−1, ∆ε, minPts

Output: a clustering result Ck
1 smooth Ok and get the set of adjustments Rk /* Algorithm 5 */
2 build a grid index according to εk−1
3 generate minimal groups based on Rk /* Algorithm 4 */
4 cluster Rk to get Ck /* DBSCAN */
5 update εk−1 to εk according to Ck
6 map c ∈ Ck to c′ ∈ Ck−1 /* literature [17] */
7 return Ck

Grid index and minimal group based accelerations As we set the grid cell
width to ε√

2
, each o ∈ g is a core point if |g| ≥ minPts [13]. Similarly, if

|Mk(s)| ≥ ρ, s is a core point. These efficient checks accelerate the search for
core points as well as DBSCAN. In Example 4.1 and given minPts=3, o4, o5 and
o6 are core points due to |g44| = 3 and o1 is core point due to |M2(o1)| = 3.

Evolutionary clustering of streaming trajectories All pieces are now in
place to present the algorithm for evolutionary clustering of streaming tra-
jectories (ECO), shown in Algorithm 6. The sub-procedures in lines 1–5 are
detailed in the previous sections. Note that, as we perform evolutionary
clustering at each time step with an updated ε, a grid index is built at each
time step once locations arrive. The time cost of this is neglible [19]. Also
note that, the grid index should be built after smoothing, as the locations of
trajectories are changed. Finally, we connect clusters in adjacent time steps
with each other (Line 6) as proposed in the literature [17]. This mapping aims
to find the evolving, forming, and dissolving relationships between c′k ∈ Ck−1
and c′k ∈ Ck. Building on Examples 2.1 and 3.2, c1 ∈ C1 evolves to c1 ∈ C2
while c2 ∈ C1 evolves to c2 ∈ C2, and no clusters form or dissolve. The details
of the mapping are available elsewhere [17]. The time complexity of ECO at
time step dtk is O(|Ok|2).

6 Experiments

We report on extensive experiments aimed at achieving insight into the perfor-
mance of ECO.

164

6. Experiments

Table C.2: Parameter ranges and default values
Parameter Range

minPts 2, 4, 5, 6, 7, 8, 10
δ 200, 300, 400, 500, 600, 700, 800
α 0.1, 0.3, 0.5, 0.7, 0.9
ρ 4, 5, 6, 7, 8

6.1 Experimental Design

Datasets. Two real-life datasets, Chengdu (CD) and Hangzhou (HZ), are
used. The CD dataset is collected from 13,431 taxis over one day (Aug. 30,
2014) in Chengdu, China. It contains 30 million GPS records. The HZ dataset
is collected from 24,515 taxis over one month (Nov. 2011) in Hangzhou, China.
It contains 107 million GPS records. The sample intervals of CD and HZ are
10s and 60s.

Comparison algorithms and experimental settings. We compare with three
methods:

• Kim-Han [17] is a representative density-based evolutionary clustering
method. It evaluates costs at the individual distance level to improve
efficiency.

• DYN [37] is the state-of-the-art evolutionary clustering. It adapts a
particle swarm algorithm and random walks to improve result quality.

• OCluST [27] is the state-of-the-art for traditional clustering of streaming
trajectories that disregards the temporal smoothness. It continuously
absorbs newly arriving locations and updates representative trajectories
maintained in a novel structure for density-based clustering.

In the experiments, we study the effect on performance of the parameters
summarized in Table C.2. ∆ε is set to 50 on both datasets. The number of
generations and the population size of DYN [37] are both set to 20, in order
to be able to process large-scale streaming data. Other parameters are set
to their recommended values [17, 27, 37]. We compare with Kim-Han [17]
and DYN [37] because, to the best of our knowledge, no other evolutionary
clustering methods exist for trajectories. To adapt these two to work on
clustering trajectories, we construct a graph on top of the GPS data by adding
an edge between two locations (nodes) o.l and o′.l if d(o.l, o′.l) ≤ τ, where
τ = 3000 on CD and τ = 1000 on HZ. All algorithms are implemented in C++,
and the experiments are run on a computer with an Intel Core i9-9880H CPU
(2.30 GHz) and 32 GB memory.

Performance metrics. We adopt modularity QS (cf. Formula C.14) to measure
the quality of clustering. We report QS as average values over all time steps.

165

Paper C.

10-2

10-1

100

A
ve

ra
ge

 p
ro

ce
ss

in
g

tim
e

(s
ec

)

The value of

 ECO Kim-Han
 Dyn OCluST

5 7 864

(a) CD dataset

10-2

10-1

100

A
ve

ra
ge

 p
ro

ce
ss

in
g

tim
e

(s
ec

)

The value of

 ECO Kim-Han
 Dyn OCluST

5 7 864

(b) HZ dataset

0.7

0.8

0.9

5

Q
S

The value of

 ECO Kim-Han
 Dyn OCluST

8764

(c) CD dataset

0.7

0.8

0.9

Q
S

The value of

 ECO Kim-Han
 Dyn OCluST

5 7 864

(d) HZ dataset

0.4

0.6

0.8

NM
I

The value of

 ECO Kim-Han
 Dyn OCluST

5 7 864

(e) CD dataset

0.6

0.7

0.8

0.9

NM
I

The value of

 ECO Kim-Han
 Dyn OCluST

5 7 864

(f) HZ dataset

Figure C.5: Effects of varying ρ

The higher the QS, the better the clustering. Moreover, we use normalized
mutual information NMI [31] to measure the similarity between two clustering
results obtained at consecutive time steps.

NMI =
I(Ck−1; Ck)√

H(Ck−1) · H(Ck)
, (C.15)

where I(Ck−1; Ck) is the mutual information between clusters Ck−1 and Ck,
H(Ck) is the entropy of cluster Ck. Specifically, the reported NMI values are
averages over all time steps. Clusters evlove more smoothly if NMI is higher.
Finally, efficiency is measured as the average processing time per record at each
time step.

6.2 Comparison and Parameter Study

We study the effect of parameters (summarized in Table C.2) on the perfor-
mance of the four methods.

166

6. Experiments

Effects of varying ρ Figure C.5 reports on the effect of varying δ. First, ECO
generally outperforms the baselines in terms of all performance metrics. In
particular, ECO’s average processing time is almost one order of magnitude
lower than Kim-Han and almost two orders of magnitude better than that
of Dyn on both datasets. Moreover, ECO is even slightly more efficient than
OCluST, because the latter updates its data structure repeatedly for macro-
clustering. The high efficiency and quality of ECO are mainly due to three
reasons: (i) Except for the initialization, ECO excludes iterative processes and
is accelerated by grid indexing and the proposed optimizing techniques; (ii)
ECO takes into account temporal smoothness, which is designed specifically
for trajectories (cf. Formula C.6); (iii) Locations with the potential to incur
mutation of a clustering are adjusted to be closer to their neighbors that
evolve smoothly, generally increasing the intra-density and decreasing the
inter-density of clustering.

Second, we consider the effects of varying ρ. Figures C.5a and C.5b show
that the average processing time is relatively stable. This is because the most
time-consuming process in ECO is the clustering, which depends highly on
the volume of data arriving at each time step. All four methods achieve
higher efficiency on HZ than CD, due to CD’s larger average data size of
each time step. Figures C.5c–C.5f show that as ρ grows, QS and NMI first
increase and then drop. On the one hand, trajectories with high local density
are generally more stable, i.e., more likely to remain in the same cluster in
adjacent time steps. On the other hand, with a too large ρ, few minimal groups
are generated, and thus few locations are smoothed. As the baselines do not
have parameter ρ, their performance is unaffected.

Figure C.6 reports in the effects of varying δ. Specifically, ECO outperforms
the baselines in terms of all metrics, and the processing times of the methods
remain stable, as shown in Figures C.6a and C.6b. Figures C.6c–C.6f indicate
that as δ increases, both QS and NMI first increase and then drop. On the one
hand, a too small δ leads to a small number of trajectories forming minimal
groups and being smoothed; on the other hand, a too large δ also leads to few
smoothing operations, as more pairs of trajectories o and o′ (o, o′ ∈ Mk−1(s̃))
satisfy d(o.l, o′.l) ≤ δ at dtk. Since the baselines do not utilize parameter δ,
they are unaffected by variations in δ.

Effects of varying minPts Figure C.7 shows the effect of minPts on cluster-
ing. When varying minPts, the effects are similar to those seen when varying
ρ and δ. Figures C.7c and C.7d show that QS of ECO, Dyn, and OCluST drop
as minPts increases. The findings indicate that the average distance between
trajectories in different clusters decreases with minPts. Assume that o is a
core point when minPts is small and that o′ is a border point that is density
reachable from o. As minPts increases, o may no longer be a core point. In this

167

Paper C.

400 500 600 700 800

10-2

10-1

100

A
ve

ra
ge

 p
ro

ce
ss

in
g

tim
e

(s
ec

)

The value of

 ECO Kim-Han
 Dyn OCluST

(a) CD dataset

10-2

10-1

100

600500400300A
ve

ra
ge

 p
ro

ce
ss

in
g

tim
e

(s
ec

)

The value of

 ECO Kim-Han
 Dyn OCluST

200

(b) HZ dataset

400 500 600 700 800
0.7

0.8

0.9

Q
S

The value of

 ECO Kim-Han
 Dyn OCluST

(c) CD dataset

0.8

0.9

1.0

Q
S

The value of

 ECO Kim-Han
 Dyn OCluST

300 600500400200

(d) HZ dataset

400 500 600 700 800
0.4

0.6

0.8

NM
I

The value of

 ECO Kim-Han
 Dyn OClusST

(e) CD dataset

0.6

0.7

0.8

0.9

NM
I

 ECO Kim-Han
 Dyn OCluST

600500400300
The value of

200

(f) HZ dataset

Figure C.6: Effects of varying δ

case, o′ and o may be density reachable from different core points and may
thus be in different clusters, even if d(o.l, o′.l) ≤ ε. As a result, the distances
between trajectories in different clusters decrease. Figures C.7e and C.7f show
that NMI increases with minPts for ECO, Dyn, and OCluST. The findings
suggest that with a smaller minPts, the trajectories at the "border" of a cluster
are more likely to shift between being core points and being non-core points
over time. In this case, clusters fluctuate more between consecutive time steps
for a smaller minPts. As Dyn adopts particle swarm clustering instead of
density based clustering, Dyn is unaffected by minPts.

Effects of varying α Figure C.9 shows the effects of varying α. First, ECO
always achieves the best performance among all methods. Second, all methods
exhibit stable performance when varying α. Third, both QS and NMI of ECO
increase with α. On the one hand, according to Formula C.8, a larger α
generally leads to a smaller distance between two trajectories in the same
cluster. On the other hand, Formula C.8 reduces the historical cost as α

168

6. Experiments

4 5 6 7 8

10-2

10-1

100

A
ve

ra
ge

 p
ro

ce
ss

in
g

tim
e

(s
ec

)

The value of minPts

 ECO Kim-Han
 Dyn OCluST

(a) CD dataset

2 4 6 8 10

10-2

10-1

100

A
ve

ra
ge

 p
ro

ce
ss

in
g

tim
e

(s
ec

)

The value of minPts

 ECO Kim-Han
 Dyn OCluST

(b) HZ dataset

4 5 6 7 8
0.6

0.7

0.8

0.9

Q
S

The value of minPts

 ECO Kim-Han
 Dyn OCluST

(c) CD dataset

2 4 6 8 10

0.8

0.9

Q
S

The value of minPts

 ECO Kim-Han
 Dyn OCluST

(d) HZ dataset

4 5 6 7 8
0.4

0.6

0.8

NM
I

The value of minPts

 ECO Kim-Han
 Dyn OCluST

(e) CD dataset

2 4 6 8 10
0.6

0.8

1.0

NM
I

The value of minPts

 ECO Kim-Han
 Dyn OCluST

(f) HZ dataset

Figure C.7: Effects of varying minPts

increases, which renders the evolution of clusters more smooth.

6.3 Scalability

To study the scalability, we vary the data size from 20% to 100%, which is
done by randomly sampling moving objects by their IDs. The results are
reported in Figure B.6. First, ECO achieves the highest efficiency for large
datasets, but is less efficient than OCluST for small datasets. This is because
the locations of trajectories are generally distributed uniformly when data size
is small. In this case, the grid index becomes less useful. As expected, the
processing times of all methods increase with the dataset size.

Second, QS improves with the data size for all methods, with ECO always
being best. As illustrated above, data distribution is generally non-uniform for
a 100% dataset and becomes increasingly uniform as the data size decreases.
Thus, the average distances between any pair of trajectories in the same cluster
become smaller as data size increases, resulting in a larger QS.

Third, ECO achieves the highest NMI, which increases with the data size.

169

Paper C.

0.1 0.3 0.5 0.7 0.9

10-2

10-1

100

A
ve

ra
ge

 p
ro

ce
ss

in
g

tim
e

(s
ec

)

The value of

 ECO Kim-Han
 Dyn OCluST

(a) CD dataset

0.1 0.3 0.5 0.7 0.9

10-2

10-1

100

A
ve

ra
ge

 p
ro

ce
ss

in
g

tim
e

(s
ec

)

The value of

 ECO Kim-Han
 Dyn OCluST

(b) HZ dataset

0.1 0.3 0.5 0.7 0.9
0.7

0.8

0.9

Q
S

The value of

 ECO Kim-Han
 Dyn OCluST

(c) CD dataset

0.1 0.3 0.5 0.7 0.9
0.7

0.8

0.9

Q
S

The value of

 ECO Kim-Han
 Dyn OCluST

(d) HZ dataset

0.1 0.3 0.5 0.7 0.9
0.4

0.6

0.8

NM
I

The value of

 ECO Kim-Han
 Dyn OCluST

(e) CD dataset

0.1 0.3 0.5 0.7 0.9
0.6

0.8

1.0
NM

I

The value of

 ECO Kim-Han
 Dyn OCluST

(f) HZ dataset

Figure C.8: Effects of varying α

This is mainly because fewer trajectories are able to form minimal groups and
be subjected to smoothing when the average distances between any pair of
trajectories increases.

7 Related Work

We proceed to review related works on streaming trajectory clustering and
evolutionary clustering.

7.1 Streaming Trajectory Clustering

Streaming trajectory clustering finds representative paths or common move-
ment trends among objects in real time. The main target of existing studies
of streaming trajectory clustering is to update clusters continuously with
high efficiency. Jensen et al. [16] exploit an incrementally maintained cluster-
ing feature CF and propose a scheme for continuous clustering of moving

170

7. Related Work

20 40 60 80 10010-5

10-4

10-3

10-2

10-1

100

A
ve

ra
ge

 p
ro

ce
ss

in
g

tim
e

(s
ec

)

Data size (%)

 ECO Kim-Han
 Dyn OCluST

(a) CD dataset

20 40 60 80 10010-4

10-3

10-2

10-1

A
ve

ra
ge

 p
ro

ce
ss

in
g

tim
e

(s
ec

)

Data size (%)

 ECO Kim-Han
 Dyn OCluST

(b) HZ dataset

20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

Q
S

Data size (%)

 ECO Kim-Han
 Dyn OCluST

(c) CD dataset

20 40 60 80 100
0.7

0.8

0.9

1.0

Q
S

Data size (%)

ECO Kim-Han
 Dyn OCluST

(d) HZ dataset

20 40 60 80 100
0.3

0.5

0.7

0.9

NM
I

Data size (%)

 ECO Kim-Han
 Dyn OCluST

(e) CD dataset

20 40 60 80 100
0.6

0.8

1.0
NM

I

Data size (%)

 ECO Kim-Han
 Dyn OCluST

(f) HZ dataset

Figure C.9: Scalability

objects. Costa et al. [7] define a new metric for streaming trajectory cluster-
ing and process trajectories by means of non-separable Fourier transforms.
Tra-POPTICS [9] explores the use of graphics processing units to improve effi-
ciency. Similar to ECO, proposals in [38, 39] use an index structure, TC-tree,
to facilitate efficient updates of clusters. Some studies maintain a micro-group
structure, that stores compact summaries of trajectories to enable fast and
flexible clustering [8, 22, 27, 29]. CUTis [8] continuously merges micro-groups
into clusters, while CC_TRS [29], TCMM [22], and OCluST [27] generate macro
groups on top of micro groups when requested by users. In the experimental
study, we compare with the state-of-the-art streaming trajectory clustering
method [27]. Some studies of real-time co-movement pattern mining also
involve streaming trajectory clustering [5, 21, 32]. Comprehensive surveys of
trajectory clustering are available [1, 40].

To the best of our knowledge, no existing studies of streaming trajectory
clustering exploit temporal smoothness to improve clustering quality.

171

Paper C.

7.2 Evolutionary Clustering

Evolutionary clustering has been studied to discover evolving community
structures in applications such as social [17] and financial networks [11]
and recommender systems [4]. Most studies target k-means, agglomerative
hierarchical, and spectural clustering [3, 6, 25, 26, 36]. Chakrabarti et al.
[3] propose a generic framework for evolutionary clustering. Chi et al. [6]
develop two functions for evaluating historical costs, PCQ (Preserving Cluster
Quality) and PCM (Preserving Cluster Membership), to improve the stability
of clustering. Xu et al. [36] estimate the optimal smoothing parameter α of
evolutionary clustering. Recent studies model evolutionary clustering as a
multi-objective problem [12, 23, 24, 37] and use genetic algorithms to solve
it, which is too expensive for online scenarios. Dyn [37], the state-of-the-art
proposal, features non-redundant random walk based population initialization
and an improved particle swarm algorithm to enhance clustering quality.

The Kim-Han proposal [17] is the one that is closest to ECO. It uses
neighbor-based smoothing and a cost embedding technique that smooths the
similarity between each pair of nodes. However, ECO differs significantly
from Kim-Han. First, the cost functions used are fundamentally different.
Kim-Han’s cost function is designed specifically for nodes in dynamic net-
works and is neither readily applicable to, or suitable for, trajectory data. In
contrast, ECO’s cost function is shaped according to the characteristics of the
movements of trajectories. Second, Kim-Han smooths the similarity between
each pair of neighboring nodes; in contrast, ECO smooths only the locations
of a trajectory with abrupt movements, and the smoothing is performed only
according to its most smoothly moving neighbor. Finally, Kim-Han includes
iterative processes that degrade its efficiency, while ECO achieves O(|Ok|2)
complexity at each time step in the worst case and adopts a grid index to
improve efficiency.

8 Conclusion and Future Work

We propose a new framework for evolutionary clustering of streaming trajec-
tories that targets faster and better clustering. Following existing studies, we
propose so-called snapshot and historical costs for trajectories, and formalize
the problem of evolutionary clustering of streaming trajectories, called ECO.
Then, we formulate ECO as an optimization problem and prove that it can be
solved approximately in linear time, which eliminates the iterative processes
employed in previous proposals and improves efficiency significantly. Further,
we propose a minimal group structure and a seed point shifting strategy that
facilitate temporal smoothing. We also present the algorithms necessary to
enable evolutionary clustering along with a set of optimization techniques

172

8. Conclusion and Future Work

that aim to enhance performance. Extensive experiments with two real-life
datasets show that ECO outperforms existing state-of-the-art proposals in
terms of clustering quality and running time efficiency.

In future research, it is of interest to deploy ECO on a distributed platform
and to exploit more information for smoothing such as road conditions and
driver preferences.

173

References

References

[1] J. Bian, D. Tian, Y. Tang, and D. Tao, “A survey on trajectory clustering
analysis,” arXiv preprint arXiv:1802.06971, 2018.

[2] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying
density-based local outliers,” in SIGMOD, 2000, pp. 93–104.

[3] D. Chakrabarti, R. Kumar, and A. Tomkins, “Evolutionary clustering,” in
SIGKDD, 2006, pp. 554–560.

[4] J. Chen, C. Zhao, L. Chen et al., “Collaborative filtering recommendation
algorithm based on user correlation and evolutionary clustering,” Complex
Syst., vol. 6, no. 1, pp. 147–156, 2020.

[5] L. Chen, Y. Gao, Z. Fang, X. Miao, C. S. Jensen, and C. Guo, “Real-time
distributed co-movement pattern detection on streaming trajectories,”
PVLDB, vol. 12, no. 10, pp. 1208–1220, 2019.

[6] Y. Chi, X. Song, D. Zhou, K. Hino, and B. L. Tseng, “Evolutionary spectral
clustering by incorporating temporal smoothness,” in SIGKDD, 2007, pp.
153–162.

[7] G. Costa, G. Manco, and E. Masciari, “Dealing with trajectory streams by
clustering and mathematical transforms,” Int. J. Intell. Syst., vol. 42, no. 1,
pp. 155–177, 2014.

[8] T. L. C. Da Silva, K. Zeitouni, and J. A. de Macêdo, “Online clustering of
trajectory data stream,” in MDM, vol. 1. IEEE, 2016, pp. 112–121.

[9] Z. Deng, Y. Hu, M. Zhu, X. Huang, and B. Du, “A scalable and fast
optics for clustering trajectory big data,” Cluster Comput, vol. 18, no. 2,
pp. 549–562, 2015.

[10] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in SIGKDD,
vol. 96, no. 34, 1996, pp. 226–231.

[11] D. J. Fenn, M. A. Porter, M. McDonald, S. Williams, N. F. Johnson, and
N. S. Jones, “Dynamic communities in multichannel data: An application
to the foreign exchange market during the 2007–2008 credit crisis,” J
Nonlinear Sci, vol. 19, no. 3, p. 033119, 2009.

[12] F. Folino and C. Pizzuti, “An evolutionary multiobjective approach for
community discovery in dynamic networks,” TKDE, vol. 26, no. 8, pp.
1838–1852, 2013.

174

References

[13] J. Gan and Y. Tao, “Dynamic density based clustering,” in SIGMOD, 2017,
pp. 1493–1507.

[14] M. Gupta, C. C. Aggarwal, J. Han, and Y. Sun, “Evolutionary clustering
and analysis of bibliographic networks,” in ASONAM. IEEE, 2011, pp.
63–70.

[15] A. Idrissov and M. A. Nascimento, “A trajectory cleaning framework for
trajectory clustering,” in MDC workshop, 2012, pp. 18–19.

[16] C. S. Jensen, D. Lin, and B. C. Ooi, “Continuous clustering of moving
objects,” TKDE, vol. 19, no. 9, pp. 1161–1174, 2007.

[17] M.-S. Kim and J. Han, “A particle-and-density based evolutionary clus-
tering method for dynamic networks,” PVLDB, vol. 2, no. 1, pp. 622–633,
2009.

[18] L. Li, X. Chen, Q. Liu, and Z. Bao, “A data-driven approach for gps
trajectory data cleaning,” in DASFAA. Springer, 2020, pp. 3–19.

[19] T. Li, L. Chen, C. S. Jensen, and T. B. Pedersen, “Trace: real-time compres-
sion of streaming trajectories in road networks,” PVLDB, vol. 14, no. 7,
pp. 1175–1187, 2021.

[20] T. Li, R. Huang, L. Chen, C. S. Jensen, and T. B. Pedersen, “Compression
of uncertain trajectories in road networks,” PVLDB, vol. 13, no. 7, pp.
1050–1063, 2020.

[21] X. Li, V. Ceikute, C. S. Jensen, and K.-L. Tan, “Effective online group
discovery in trajectory databases,” TKDE, vol. 25, no. 12, pp. 2752–2766,
2012.

[22] Z. Li, J.-G. Lee, X. Li, and J. Han, “Incremental clustering for trajectories,”
in DASFAA. Springer, 2010, pp. 32–46.

[23] F. Liu, J. Wu, S. Xue, C. Zhou, J. Yang, and Q. Sheng, “Detecting the
evolving community structure in dynamic social networks,” World Wide
Web, vol. 23, no. 2, pp. 715–733, 2020.

[24] F. Liu, J. Wu, C. Zhou, and J. Yang, “Evolutionary community detection
in dynamic social networks,” in IJCNN. IEEE, 2019, pp. 1–7.

[25] X. Ma and D. Dong, “Evolutionary nonnegative matrix factorization
algorithms for community detection in dynamic networks,” TKDE, vol. 29,
no. 5, pp. 1045–1058, 2017.

[26] X. Ma, D. Li, S. Tan, and Z. Huang, “Detecting evolving communities
in dynamic networks using graph regularized evolutionary nonnegative
matrix factorization,” Physica A, vol. 530, p. 121279, 2019.

175

References

[27] J. Mao, Q. Song, C. Jin, Z. Zhang, and A. Zhou, “Online clustering of
streaming trajectories,” Front. Comput. Sci., vol. 12, no. 2, pp. 245–263,
2018.

[28] V. Patil, P. Singh, S. Parikh, and P. K. Atrey, “Geosclean: Secure cleaning
of gps trajectory data using anomaly detection,” in MIPR. IEEE, 2018,
pp. 166–169.

[29] M. Riyadh, N. Mustapha, M. Sulaiman, N. B. M. Sharef et al., “Cc_trs:
Continuous clustering of trajectory stream data based on micro cluster
life,” Math. Probl. Eng., vol. 2017, 2017.

[30] S. Song, C. Li, and X. Zhang, “Turn waste into wealth: On simultaneous
clustering and cleaning over dirty data,” in SIGKDD, 2015, pp. 1115–1124.

[31] A. Strehl and J. Ghosh, “Cluster ensembles—a knowledge reuse frame-
work for combining multiple partitions,” J Mach Learn Res, vol. 3, no. Dec,
pp. 583–617, 2002.

[32] L.-A. Tang, Y. Zheng, J. Yuan, J. Han, A. Leung, C.-C. Hung, and W.-C.
Peng, “On discovery of traveling companions from streaming trajectories,”
in ICDE. IEEE, 2012, pp. 186–197.

[33] J. Wang, P. Cheng, L. Zheng, C. Feng, L. Chen, X. Lin, and Z. Wang,
“Demand-aware route planning for shared mobility services,” PVLDB,
vol. 13, no. 7, pp. 979–991, 2020.

[34] S. Wang, Y. Sun, C. Musco, and Z. Bao, “Public transport planning: When
transit network connectivity meets commuting demand,” in SIGMOD,
2021, pp. 1906–1919.

[35] H. Wu, C. Tu, W. Sun, B. Zheng, H. Su, and W. Wang, “Glue: a parameter-
tuning-free map updating system,” in CIKM, 2015, pp. 683–692.

[36] K. S. Xu, M. Kliger, and A. O. Hero III, “Adaptive evolutionary clustering,”
Data Min Knowl Discov, vol. 28, no. 2, pp. 304–336, 2014.

[37] Y. Yin, Y. Zhao, H. Li, and X. Dong, “Multi-objective evolutionary cluster-
ing for large-scale dynamic community detection,” Inf. Sci., vol. 549, pp.
269–287, 2021.

[38] Y. Yu, Q. Wang, and X. Wang, “Continuous clustering trajectory stream
of moving objects,” China Commun., vol. 10, no. 9, pp. 120–129, 2013.

[39] Y. Yu, Q. Wang, X. Wang, H. Wang, and J. He, “Online clustering for
trajectory data stream of moving objects,” Comput. Sci. Inf. Syst., vol. 10,
no. 3, pp. 1293–1317, 2013.

176

References

[40] G. Yuan, P. Sun, J. Zhao, D. Li, and C. Wang, “A review of moving object
trajectory clustering algorithms,” ARTIF INTELL REV, vol. 47, no. 1, pp.
123–144, 2017.

[41] Y. Zeng, Y. Tong, and L. Chen, “Last-mile delivery made practical: An
efficient route planning framework with theoretical guarantees,” PVLDB,
vol. 13, no. 3, pp. 320–333, 2019.

177

TIA
N

YI LI
A

SPEC
TS O

F SPATIA
L TR

A
JEC

TO
R

Y D
ATA M

A
N

A
G

EM
EN

T– C
O

M
PR

ESSIO
N

 A
N

D
 C

LU
STER

IN
G

ISSN (online): 2446-1628
ISBN (online): 978-87-7573-983-7

	Omslag_TL.pdf
	PHD_TL_TRYK.pdf
	Kolofon_TL.pdf
	Thesis_Tianyi_Li.pdf
	Front page
	Abstract
	Resumé
	Contents
	Acknowledgements
	Thesis Details
	I Thesis Summary
	1 Introduction
	1 Background and Motivation
	1.1 Trajectory Compression
	1.2 Trajectory Clustering

	2 Thesis structure

	2 Compression of Uncertain Trajectories in Road Networks
	1 Problem Motivation and Statement
	2 Preliminaries
	2.1 Data Model
	2.2 TED representation

	3 UTCQ Framework
	4 Representation
	4.1 Improved TED representation
	4.2 Referential Representation
	4.3 Reference Selection

	5 Compression
	6 Query Processing
	6.1 StIU Index
	6.2 Probabilistic Queries

	7 Experimental Evaluation
	7.1 Experimental Design
	7.2 Experimental Results

	3 Compression of Streaming Trajectories in Road Networks
	1 Problem Motivation and Statement
	2 Preliminaries
	3 Framework
	4 Representation
	4.1 Speed-based Representation
	4.2 Multiple-reference based Referential Representation
	4.3 Reference Selection and Deletion
	4.4 Reference Rewriting

	5 Compression
	5.1 Binary Encoding
	5.2 Data Transmission

	6 Query Processing
	7 Experimental Evaluation
	7.1 Experimental Design
	7.2 Experimental Results

	4 Evolutionary Clustering of Streaming Trajectories
	1 Problem Motivation and Statement
	2 Preliminaries
	2.1 Data Model
	2.2 DBSCAN
	2.3 Evolutionary Clustering

	3 Problem Formulation
	3.1 Snapshot Cost
	3.2 Historical Cost
	3.3 Total Cost

	4 Computation of Adjustments
	4.1 Linear Time Solution
	4.2 Shifting of Seed Points
	4.3 Speed-based Pre-processing

	5 Algorithm
	5.1 Grid Index
	5.2 Generating Minimal Groups
	5.3 Evolutionary Clustering

	6 Experimental Evaluation
	6.1 Experimental Design
	6.2 Experimental Results

	5 Conclusion and Future Work
	1 Conclusion
	2 Future Work

	Bibliography
	References

	II Papers
	A Compression of Uncertain Trajectories in Road Networks
	1 Introduction
	2 Preliminaries
	2.1 Probabilistic Map-Matching
	2.2 TED Representation
	2.3 Compression with TED

	3 Framework
	4 Representor and Compressor
	4.1 Improved TED Representation
	4.2 Referential Representation
	4.3 Reference Selection
	4.4 Compression

	5 Query Processor
	5.1 Time Flag Bit-string Decompression
	5.2 StIU Index
	5.3 Probabilistic Queries
	5.4 Filtering and Validating Lemmas

	6 Experiments
	6.1 Experimental Setting
	6.2 Performance of Compression
	6.3 Query Performance
	6.4 Scalability

	7 Related Work
	7.1 Raw Data-oriented Compression
	7.2 Road Network-embedded Compression

	8 Conclusion
	References

	B TRACE: Real-time Compression of Streaming Trajectories in Road Networks
	1 Introduction
	2 Preliminaries
	2.1 Data Model
	2.2 UTCQ Representation
	2.3 k-mer Matching

	3 TRACE framework
	4 Representation
	4.1 Speed-based Representation
	4.2 Representation with Multiple-References
	4.3 Reference Selection for E(Trn)
	4.4 Reference Deletion for E(Trn)
	4.5 Reference Rewriting for E(Trn)
	4.6 Reference Selection and Deletion for V(Trn)

	5 Compression
	5.1 Binary Encoding
	5.2 Transmission of Compressed Binary Codes

	6 Query Processing
	6.1 Query Definition
	6.2 Index and Filtering Technique
	6.3 Index Transmission
	6.4 Discussion

	7 Experimental Evaluation
	7.1 Experimental Setting
	7.2 Experimental Results

	8 Related Work
	8.1 Raw Data Compression
	8.2 Network-constrained Compression

	9 Conclusion and Future Work
	References

	C Evolutionary Clustering of Streaming Trajectories
	1 Introduction
	2 Preliminaries
	2.1 Data Model
	2.2 DBSCAN
	2.3 Evolutionary Clustering

	3 Problem Statement
	3.1 Observations
	3.2 Problem Definition

	4 Computation of Adjustments
	4.1 Linear Time Solution
	4.2 Shifting of Seed Points
	4.3 Speed-based Pre-processing

	5 Algorithms
	5.1 Grid Index
	5.2 Generating Minimal Groups
	5.3 Evolutionary Clustering

	6 Experiments
	6.1 Experimental Design
	6.2 Comparison and Parameter Study
	6.3 Scalability

	7 Related Work
	7.1 Streaming Trajectory Clustering
	7.2 Evolutionary Clustering

	8 Conclusion and Future Work
	References

	Omslag_TL
	Blank Page
	Blank Page

