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Abstract: Sensor drift in Wastewater Treatment Plants (WWTPs) reduces the efficiency of the plants
and needs to be handled. Several studies have investigated anomaly detection and fault detection
in WWTPs. However, these solutions often remain as academic projects. In this study, the gap
between academia and practice is investigated by applying suggested algorithms on real WWTP
data. The results show that it is difficult to detect drift in the data to a sufficient level due to missing
and imprecise logs, ad hoc changes in control settings, low data quality and the equality in the
patterns of some fault types and optimal operation. The challenges related to data quality raise the
question of whether the data-driven approach for drift detection is the best solution, as this requires a
high-quality data set. Several recommendations are suggested for utilities that wish to bridge the gap
between academia and practice regarding drift detection. These include storing data and select data
parameters at resolutions which positively contribute to this purpose. Furthermore, the data should
be accompanied by sufficient logging of factors affecting the patterns of the data, such as changes in
control settings.

Keywords: wastewater; treatment; drift; anomaly; machine learning; data driven; detection; real data

1. Introduction

With increased focus on the United Nations Sustainable Development Goals (SDGs)
and increasing energy prices, there has been an increased interest in optimizing the per-
formance of Wastewater Treatment Plants (WWTP) and Wastewater Recovery Facilities,
prospectively referred to as WWTPs in this article. Optimizing the operation of WWTPs is
the topic of several studies [1] where some of the more complex control systems include the
energy usage and economics [2,3]. Several companies offer software for real time control of
WWTP; however, few focus on the data quality involved [4]. This is problematic as sensor
drift can induce decreased total N removal or over aeration, entailing a large increase in
energy consumption. Bias in sensor data can easily counteract the energy reduction and
cost savings obtained by advanced automatic control [5].

Drift in sensors is a commonly known problem. Due to fouling, optical Dissolved
Oxygen (DO) sensors can easily be biased with one mg/L within a month [6]. In calibration
data from two WWTPs, examples of drift with more than one mg/L can be found for both
ammonia and potassium sensors. In plants, where the NH4 level is typically below 3 mg/L
in the outlet, 1 mg/L is a large deviation. Especially a positive drift in ammonia sensors is
subject to increased costs at the utilities, and from an industrial perspective it should be of
high priority to detect these faults.

Faulty sensor data is a problem in several different sectors. Teh et al. [7] reviewed
57 papers on sensor faults and methods used for detection and correcting faulty data. The
faults included outliers, missing data, bias, drift, noise, constant values and the sensor
being stuck at zero. The methods used for drift detection in the reviewed papers were
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Principal Component Analysis (PCA), Artificial Neural Network (ANN), Ensemble Clas-
sifiers and Dempster-Shafer Theory and Mathematical Modelling (only one paper from
2008). Furthermore, PCA, calibration-based methods, PCA based methods and Kalman
filter-based methods were used for drift detection and correction [7].

Several data-driven approaches for wastewater treatment operation have been de-
veloped and presented in the literature; however, in a review, Corominas et al. [4] report
that only 16 percent of the developed solutions resulted in a commercial product, and
seven percent were commercialized without full-scale testing. Within fault detection the
most popular approach is PCA (27 papers) followed by ICA (9 papers) and clustering
(7 papers) [4].

Within fault detection in process tanks, several studies have been made. Baklouti et al. [8]
used univariate statistics to detect bias, drift and variating magnitudes in Dissolved Oxygen
(DO) sensors. They introduced bias of two mg/l, drift with a slope of 0.005 and variating
signal magnitude of three standard deviations. The calculation of 700 datapoints was made
without information on the actual corresponding sampling frequency. Despite stating that
it was in general problematic that models did not encounter seasonal changes, etc., the
authors tested their model in simulated dry weather data [8].

In 2002 Thomann et al. [9] suggested using control charts to make it easier for
WWTP staff to detect drift, outliers and shifts based on four months of collected data.
Newhart et al. [10] stated that control charts are well suited for monitoring single vari-
ables which only contain a low degree of noise, having been measured on a daily to
monthly basis.

Baggiani and Marsili-Libelli [11] used PCA combined with moving windows, T2 and
Q statistics, as well as threshold, to detect spikes and sensor faults in data from a real plant
and obtained performances of 100% and 84% depending on the window size used [11]. It
is worth noticing that the spikes and faults exemplified in the paper are very distinctive
compared to the signal amplitude.

Alferes et al. [12] used PCA over six days and found two deviations in the PCA
analysis. The first was explained by a high unusual discharge and the second was related
to a turbidity sensor. It is worth noticing that when observing the turbidity data, another
case is eye catching; however, it is found in the PCA analysis.

Cheng et al. [13] used kernel PCA (KPCA) and one-class support vector machine to
detect anomalies in the inflow components of a real plant over seven years and obtained
better results than when using linear PCA and K-nearest-neighbours.

Huang et al. [14] proposed a method for anomaly detection in a WWTP at a paper
mill; however, only one case with faulty behaviour was available and the process was in a
more closed and controlled environment than a normal treatment plant. This is indicated
by specific time slots for different processes to take place.

In 2020 and 2021, several methods for fault detection in WWTPs were proposed in
the literature. Ba-Alawi et al. [15] used stacked denoising autoencoders for detection of
drift, bias, precision degradation and complete failure. The method was evaluated on
simulated dry weather data and the authors state that the method was superior to existing
methods and can reduce operating costs and improve the monitoring of the influent [15].
Kazemi et al. [16] showed that incremental PCA was able to distinguish between time
varying events and faults in simulated data, while Kazemi et al. [17] investigated a number
of technics including Support Vector Machine, Ensemble Neural Network and Extreme
Learning and found that they performed better than a PCA based method after testing
on simulated data. Luca et al. [18] applied PCA and statistic for fault detection in DO
sensors in simulated data and stated that the method was successful in detecting the faults.
Mali and Laskar [19] proposed an optimized Monte Carlo deep neural network and were
able to detect faults of low magnitude in simulated data. Xu et al. [20] proposed a version
of ICA called complex-valued ICA. The method was both evaluated for simulated data
and for data from a real plant. In the real case, the authors had 213 samples of which 45
were from normal operation, and these were used for training; however, these samples
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were also included in the test set. The authors stated that this method could obtain more
accurate, intuitive and efficient fault detection. Klanderman et al. [21] proposed a method
based on auto correlation and Fused Lasso. The method was trained on an in-control data
set and tested on a simulated data set with introduced faults and data from a real plant,
which contained one fault that they were able to detect. Mamandipoor and Majd [22]
possessed 11 months of data from 12 sensors in a real plant. The data were classified
according to faulty NH4 data by an expert and a Long Short-Term Memory Network was
developed and outperformed PCA-SVM. Cecconi and Rosso [23] used ANN to predict the
NH4 concentration and used PCA along with Shewhart monitoring charts for detection
of the variation between measured values and predicted values. This study was based
on more than one year of data from a real plant. Six sensors were installed in the plant
including two NH4 sensors. The sensors were cleaned on a weekly basis and calibrated
if there was a difference detected of more than 15% between the sensor and the reference.
The faults considered in the study were sensor faults caused by wrong calibration, process
anomaly and drift. For testing, three types of faults were introduced in real data. The
suggested approach was able to detect the faults and the ANN prediction could be used
for process control when a fault was detected [23]. Anter et al. [24] used fuzzy swarm
intelligence and chaos theory to detect faults in a real data set from 1993 available at the
UCI Machine Learning Repository [24]; however, details on the fault types detected are
not described.

Except for Cecconi and Rosso [23] and Mamandipoor and Majd [22], none of the
solutions proposed in 2020–2021 reflect contemporary conditions met at WWTPs, and
while several papers acknowledge that there is a gap between the solutions in academia
and in the real world [4], there is a lack of knowledge when it comes to implementing
data-driven approaches in real WWTPs.

The aim of this paper is to bridge the gap between academia and practice by applying
different approaches for machine learning to real-world data sets, and thereby identify
challenges hindering implementation of data-driven drift detection at normal operating
WWTPs. The main contribution of this work is identification of the shortcomings between
academia and practice together with recommendations for future data usage and manage-
ment obtained in collaboration between data scientists and water professionals. To ensure
that the recommendations are as relevant as possible for both researchers and managers,
this work is based on data available from operating WWTPs, and no extra data acquisition
was made. This entails the data being of lower quality than if it is acquired with the specific
purpose of developing algorithms for drift detection.

The remainder of this paper is structured as follows. Section 2 contains information
on the data and approaches investigated in this study. Section 3 contains the results and
description of how to interpret these. Section 4 is a discussion of the results and Section 5
contains perspectives on drift detection from both academic and practical perspectives.
These perspectives are accompanied by recommendations for the future. The paper is
concluded in Section 6.

2. Materials and Methods

This section contains an overview of the available data and the applied methodology
for anomaly and fault detection. With inspiration from the literature, several methods
for anomaly and fault detection were initially considered; however, it became clear that
many of the considered methods were not practically applicable. As the purpose of this
paper is to bridge the gap between academia and research, descriptions of the unsuccessful
methods have been included in this section, together with a description of why they were
not successful in this case. Lastly, a description of how the detected anomalies are accessed
is included.
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2.1. Data

Data from three plants were available for this study. The resolution of the data was
one sample per minute, and two of the WWTPs had a log accessible with calibration
information. One of the WWTPs had one process tank (PCT) while the remaining two
WWTPs had two PCTs. An overview of the PCTs can be seen in Table 1.

Table 1. Overview of the available data.

Process Tank Data Period Log *

WWTP 1 PCT 1 From 25 January 2021
To 14 September 2021

4 measurements
1 calibration

WWTP 2 PCT 1 From 13 June 2020
To 14 September 2021 Not available

WWTP 2 PCT 2 From 13 June 2020
To 14 September 2021 Not available

WWTP 3 PCT 1 From 1 February 2021
To 14 September 2021

3 measurements
3 calibrations

WWTP 3 PCT 2 From 1 February 2021
To 14 September 2021

3 measurements
2 calibrations

* Logs were available until 22 May 2021.

The control strategy for aeration of WWTP2 PCT1 was based on alternating operation
where the air pumps turned on and off based on ammonia set points. The remaining PCTs
were controlled by PID controllers. A PID controller tries to obtain a constant NH4 level
which is defined by a set point. The PID controller adjusted the amount of aeration based on
the difference between the NH4 concentration and the set point for the NH4 concentration.
How fast the PID adjust the aeration depends on three constants. This control strategy is
beneficial as it allows for a more constant concentrations in the PCT.

Multiple parameters were available for the three plants including flow to the plant,
NH4, NO3, DO, K and SS, while other parameters variated between the plants such as
information on the aeration, if N2O was measured, etc. The parameters flow, NO3 and
DO are highly related to the NH4 level in the plant. Furthermore, plots of the data did not
indicate that the remainder of the parameters, which were available for all the PCTs, should
be included. Therefore, it was decided to focus on the parameters flow, NH4, NO3 and DO.

For two of the plants, lab measurements and calibration logs were kept for the NH4
sensor and the NO3 sensor. From the logs it could be seen that a drift of the NH4 sensor of
0.5 mg/L was accepted, while a drift of 1 mg/L was accepted for the NO3 sensor. In the
log calibration, events were noted down; however, this was done manually. In some cases,
it was stated that a sensor was adjusted, but it was not stated which sensor.

2.2. Machine Learning Approaches

As described in Section 1, several different data-driven approaches for drift and fault
detection in WWTPs exist; however, these methods cannot be directly applied to the data
available for this study.

A characteristic for almost all the methods presented in the literature is that they have
been developed and tested on data sets where the faults are already known, either because
the faults have been simulated or because the data come from well monitored WWTPs.
Such labelled data sets are rarely available for normal WWTPs, which is also the case for
the data available for this study. Therefore, it was sought to obtain a labelled data set for
drift by manually labelling the data in the PCT with alternating operation, as this was the
easiest PCT to assess. To do this, an interactive software tool for systematic labelling of
each aeration cycle was made. Each aeration cycle could then be labelled as OK or as a fault
type. However, during the labelling process it was observed that it was hard to label the
data without introducing several faults. Reasons for this included the operators changing
the control settings instead of calibrating the sensors and the utility accepting the NO3
sensor to drift with up to 1 mg/L without considering it as an anomaly.
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The lack of labelled data entails that it is not possible to use traditional supervised
learning. Another approach initially tested was predicting each parameter based on one
class learning. Thereby the variations between the prediction and the measurement would
be the fault. However, this task was complicated by the fact that the immediate previous
measurement could not be used as input for the predictive machine learning algorithm, as
drift develops over time. Thereby most of the drift would also be present in the immediate
previous measurement and consequently, the algorithm would predict the measured value
and not the real value. Therefore, experimenters tried to train a Random Forest model,
which is an ensemble method, on the first 80% percentage of the data and test it on the
remaining 20% for each PCT. For this task, daily average values were used to neglect
normal variations during a day such as increased flow in the rush hours, rainfall and when
the aeration pump was activated. This approach showed low performance of the algorithm
and the main bottleneck for obtaining better results was the large variations in control
setting at the PCTs. Therefore, experimenters decided to use unsupervised learning.

2.3. Unsupervised Learning Algorithms

As described in Section 1, a commonly used unsupervised method for fault detection
in WWTPs is PCA. Therefore, the data sets were normalized according to the standard
deviation and examined through PCA. All combinations of Principal Components (PC)
were then plotted per day and visually inspected. It was observed that the patterns changed
over time, and especially changes in control settings caused the patterns to change. Changes
in patterns when plotting principal components were also observed by Alferes et al. [12]
who only looked at a few days of data. However, when considering several months of data
this approach is not efficient, as the evaluation is based on visual inspection. Furthermore,
it was found to be much simpler to interpret the data and changes by simply plotting all
combinations of parameters per day. It was also investigated if using PCA on daily values
could be used to detect anomalies. In this connection, it was tested if faults and anomalies
could be removed by removing the least contributing PC; however, the anomalies were
present in all principal components and this approach did not work.

More complex solutions such as deep auto-encoders were considered; however, based
on the results with one class learning it was not expected that this approach would be
efficient. Therefore, for the purpose of this study, it was found more relevant to use a
simpler and more transparent approach.

The last approach considered was to use the Local Outlier Factor (LOF) [25] on daily
values. Initial results showed that this method gave the most promising results, for which
reason it was chosen to use LOF.

Local Outlier Factor

LOF is an unsupervised learning algorithm which measures the distance to a certain
number of nearest neighbours and uses this distance as a measure of anomaly.

For the LOF it was decided to use daily data. This was done to neglect the large
variations in inflow, wastewater composition and aeration periods during a day. After
averaging the data to daily signals, the data were scaled according to the standard deviation.
In the specific implementation of the LOF, the distance to the 20 nearest neighbours was
used to calculate the LOF. To ensure that the method can be applied in real time, the LOF
was implemented as a Moving LOF filter, where the LOF for a given day was based on the
99 previous days.

A threshold of two was applied to the Moving LOF, and all datapoints exceeding
the threshold were considered as abnormal. All periods of abnormal behaviour were
subsequently assessed.

2.4. Assessment of Anomalies

Several different types of anomalies were present in the data. For gaining an overview,
the anomalies were categorized into five general groups, namely missing data, increased
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presence (referring to increased flow or increased presence of NH4, NO3 or DO), change in
control settings, sensor drift or over aeration and other. In some cases, multiple anomalies
were present, and in these cases it was evaluated, which was the primary reason for the
detection. For instance, there could be a scenario where a sensor has drifted but nothing
is detected until an increase in flow is present and after the next day, nothing is detected
again. In such a case the anomaly is annotated as an “increased presence”, even though the
reason for the anomaly to be detected might be a combination of the drift and the increase
in flow.

Plots were made for each PCT showing the anomaly category and relevant data
examples were plotted. Additionally, examples of longer periods of anomalies not reaching
the threshold were plotted.

3. Results

This section contains a description of the results of the anomaly detection. The results
for each of the PCTs are presented in Sections 3.1–3.5. For each of the PCTs, examples
of anomalies have been highlighted. The examples have been selected so that as many
different scenarios as possible are shown, to give insight into as many scenarios as possible.
Details on all observations are presented in Table 2. Furthermore, general observations are
described in Section 3.6.

3.1. WWTP1 PCT1

The data available for WWTP1 PCT1, calibration and lab measurements, Moving LOF
and the anomalies detected using the Moving LOF and thresholding can be seen in Figure 1.
The detected anomalies are colour coded according to the anomaly type observed. In the
figure, it is worth noticing that several different control settings have been used in the first
period for which the data was available. Consequently, the algorithm does not consider
this type of control setting as an anomaly if it is strongly present in the LOF window. This
might be the reason that changes in control settings in the middle of May 2021 were not
detected. As seen in the figure, most of the detected anomalies were related to increased
presence of one or more of the parameters.
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Table 2. Overview of the anomalies detected in the five PCTs when using Moving LOF and a
threshold of two.

WWTP 1 PCT 1 WWTP 2 PCT 1 WWTP 2 PCT 2 WWTP 3 PCT 1 WWTP 3 PCT 2

0. Increased flow
1. Increased flow
2. Change in PID
3. Missing data
4. Other
5. Other
6. Other
7. Increased flow
8. Increased NH4,

NO3 and DO
9. Increased NO3

and DO
10. Increased NO3

and DO
11. Increased flow

0. Missing data
1. Increased flow + NH4

drift (up)
2. Increased flow + NH4

drift (up)
3. NH4 drift (up)
4. NH4 drift (up)
5. Increased flow
6. Increased flow
7. High concentrations of

NH4 and NO3
8. High concentrations of NO3

present or NO3 sensor
drifted (up)

9. Increased flow
10. Increased flow
11. Increased flow
12. NH4 drift (up)
13. This anomaly starts as NH4

drift (up). The second day
data is missing for almost
13 h. Hereafter, the lower
setpoint seems to be slightly
increased with 0.1, which
handles the problems with
over-aeration. The last day
of the anomaly is due to an
increased flow.

14. All parameters are low
except for the flow. Maybe
this PCT has been out of
operation or experiments
had been performed.

15. Increased flow
16. Increased flow
17. Low parameters, see 14
18. Low parameters, see 14
19. Increased flow
20. High levels of NH4 present

day the first day, increased
flow the second day

21. NH4 drift (up)
22. NH4 drift (up)
23. NH4 drift (up)
24. Change in setpoint. In the

period up to the detection
of this anomaly the
setpoints were increased
multiple times. This also
happened two days before
this anomaly was detected.
The day before this
anomaly was detected, the
setpoints were decreased
inducing over aeration. The
day after the setpoint was
increased again, which was
the case for the remainder
of the anomaly. The LOF
decreased over time as it
learnt the new behaviour

25. Missing data
26. Increased flow and NH4

concentration
27. Increased flow and NH4

concentration

0. Increased flow combined
with changed control
settings the previous day

1. Increased flow
2. Increased flow
3. Increased flow
4. Increased flow and

increased NO3 unrelated
to flow

5. Increased NO3
6. Increased NO3
7. Increased flow
8. Data shows low flow, very

large amounts of DO and
increasing NH4.

9. Increased flow
10. NO3 and NH4 the first day,

increased flow the
second day

11. Increased concentrations of
NH4, NO3 and DO.
Possible because the other
PCT at the WWTP was out
of operation, see anomaly
14 for WWTP2 PCT1

12. Increased flow
13. Increased concentrations of

NH4, NO3 and DO. One
day with increased flow.
Possible because the other
PCT at the WWTP is out of
operation, see anomaly
17–18 for WWTP2 PCT1.

14. Increased concentrations of
NH4, NO3 and DO. One
day with increased flow,
see 13.

15. Increased flow
16. Increased flow
17. Increased flow
18. Missing data
19. NH4 sensor drifted (up)
20. Increased flow
21. Increased flow
22. Increased flow
23. Increased flow

1. Change in PID. There is an
increased flow starting the
day before and continuing
two days after the anomaly
was detected. In the period
of the anomaly, the pattern
of the sensors changed,
indicating change in
control settings.

2. Increased NH4
concentration due to
missing aeration

3. Increased flow, inducing
high NH4, NO3 and
DO concentrations

4. Increased flow, inducing
high NH4 and NO3
concentrations

5. Increased NH4
concentrations inducing
high NO3 concentrations

6. Increased NH4
concentrations inducing
high NO3 concentrations

7. Increased flow, inducing
high NH4 and
NO3 concentrations

0. Increased flow
1. Change in

control settings
2. Increased flow
3. Increased flow
4. Increased NO3,

low DO
5. Increased flow,

increased NO3,
low DO

Examples of an anomaly caused by increased flow and an anomaly caused by change
in control settings are presented in Figure 2. Further details on the anomalies can be found
in Table 2.

3.2. WWTP2 PCT1

Figure 3 shows the data, Moving LOF and detected anomalies for WWTP2 PCT1.
The control strategy for WWTP2 PCT1 is based on alternating operation and the figure
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shows that several anomalies caused by sensor drifts or over aeration were found by
the algorithm.
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Figure 3. WWTP2 PCT1. In the upper graph the orange line shows the Moving LOF and the coloured
areas, numbered from 0 to 27, show anomalies detected when the Moving LOF exceeded the threshold
of two. The lower graph shows the flow, NO3, DO and NH4. No calibration data were available from
the plant.

For WWTP2 PCT 1, in which alternating operation was used, 27 anomalies were
detected. Of these, 15 were primarily detected due to increased presence of flow, NH4, NO3
or DO. However, in two of the cases the NH4 sensor had already drifted but an increase in
flow was the factor which made it exceed the threshold (Anomaly 1–2 in Figure 3).

Examples of missing data, NH4 sensor drift, high NO3 levels, increased flow, increased
presence of NH4, an anomaly categorized as other (which most likely is caused by the
PCT being out of operation or experiments performed at the plant) and change in control
settings are presented in Figure 4. Further details on all the anomalies detected in the PCT
are presented in Table 2.
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In addition to the anomalies exceeding the threshold, some longer time periods with
increased LOF were observed for the PCT with alternating operation. The increase in LOF
was associated with a NH4 sensor drift, which the operator compensated for by changing
the set points. An example of this can be seen in Figure 5. It is worth noticing that the
NO3 and DO levels gradually increased in the period before a change in setpoints for
NH4 and suddenly decreased after the changes. This is especially clear in the period from
23 June 2021 to 1 July 2021.
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Figure 5. Long period of increased LOF in WWTP2 PCT1. The pattern in the data indicates that the
NH4 sensor had drifted and that the operator of the plant subsequently adjusted the setpoint instead
of calibrating the sensor.

3.3. WWTP2 PCT2

Figure 6 shows the data, the Moving LOF and the detected anomalies for WWTP2
PCT2. As seen in the figure, increased presence of the different parameters is the most
common reason for anomalies; however, increased presence of some of the parameters
can be caused by other factors, such as change in the usage of the plant. For instance,
anomalies 11, 13 and 14 coincide with anomalies 14, 17 and 18 in WWTP2 PCT1, which
are most likely caused by PCT1 being out of operation and thereby cause an increased
pressure on this PCT. Figure 6 also shows that several different control settings were used
in the beginning of the data collection. However, as this was within the first 99 days of the
data collection, the Moving LOF could not give the outlier score of the data for this period.
When considering the anomalies detected by the Moving LOF, anomaly eight differs from
previously elaborated anomalies. It has been classified as ‘other’, and the anomaly is most
likely caused by a fault in the DO sensor as a constant increase in NH4 concentration and
low NO3 concentration indicate a lack of DO in the PCT. A detailed plot of anomaly eight is
shown in Figure 7. Further details on the anomalies detected in WWTP PCT2 can be found
in Table 2.
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Figure 6. WWTP2 PCT2. In the upper graph the orange line shows the Moving LOF and the coloured
areas, numbered from 0 to 23, show anomalies detected when the Moving LOF exceeded the threshold
of two. The lower graph shows the flow, NO3, DO and NH4. No calibration data were available from
the plant.
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Figure 7. Example of an anomaly detected in WWTP2 PCT2. The anomaly is categorized as other.
The anomaly is most likely caused by a fault in the DO sensor.

3.4. WWTP3 PCT1

The data, lab measurements and calibrations, Moving LOF and detected anomalies for
WWTP3 PCT1 are shown in Figure 8. For this plant two anomalies distinguish themselves.
These are the anomalies zero and one. Anomaly zero is observed during a longer period of
increased flow. In the parallel PCT the full period of increased flow has been detected as
an anomaly; however, for this PCT only one day during the increased flow was detected.
During this day, changes in patterns indicated that the control settings were changed,
possibly to deal with the increased flow. For anomaly one, it was observed that there were
several hours with no DO, constantly increasing NH4 levels and low NO3 levels, indicating
that the aeration pump had been out of operation. Detailed plots of anomaly zero and one
can be found in Figure 9.
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of two. The lower graph shows the flow, NO3, DO and NH4 and calibration data available from
the plant.
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changed to reduce the NH4 concentration in the outlet; however, for a while this entails 
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Figure 9. Examples of anomalies detected in WWTP3 PCT1. (a) Anomaly zero, increased flow
prompting the operator to change the control settings. Only the 26 of May is detected as an anomaly,
(b) Increased NH4 levels due to lack of aeration.

3.5. WWTP3 PCT2

The data, measurements, and calibration as well as Moving LOF and detected anoma-
lies for WWTP3 PCT2 are shown in Figure 10. In this PCT, anomaly one differs from
previous observations. The pattern of the data indicates that the control settings were
changed to reduce the NH4 concentration in the outlet; however, for a while this entails
that the air pump is constantly active as the NH4 level does not decrease. Hereafter, a more
normal pattern is observed again. A detailed plot of anomaly zero is presented in Figure 11.
Another observation made for this PCT is a low concentration of DO, which is positive, as
it indicates that all the DO has been used.
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Figure 10. WWTP3 PCT1. In the upper graph the orange line shows the Moving LOF and the
coloured areas, numbered from 0 to 5, show anomalies detected when the Moving LOF exceeded the
threshold of two. The lower graph shows the flow, NO3, DO and NH4 and calibration data available
from the plant.
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Figure 11. Example of an anomaly detected in WWTP3 PCT2. The anomaly is most likely caused by
change in control settings.

3.6. General Observations

An overview of the observations and detailed descriptions for each of the PCTs is
presented in Table 2.

Generally, it is worth noticing that the easiest drift to detect was the NH4 sensor
measuring too high values during alternating operation. In these cases, indications of
drift could be visually observed in the data before the threshold was exceeded. However,
reducing the threshold would also introduce more anomalies due to increased flow, which
can be considered as false positives.

In several cases, faults such as drift were included in the data window used by the
Moving LOF. Thereby faults would not be as abnormal for the Moving LOF as if a clean
data set was available.

In some cases, increased amounts of NO3 were detected indicating that the NO3 sensor
measured too high values. However, it was not possible to evaluate if the sensor measured
within the accepted range of ±1 mg/L.

In general, the algorithm did not detect drifts when the sensors measured too low of
values. However, when reviewing the data manually there were indicators of the NO3
sensor measuring too low values. Generally, drift towards low concentrations is harder
to detect than drift towards high concentrations, as there is a natural limit in how much a
drift towards zero can be distinguished from normal behaviours. Furthermore, reaching a
low number of particles in the outlet of the plant is also an indicator of optimal operation
of the plant.

Several cases of changes in control settings were detected as anomalies. Changes in
control settings are not faults; however, they change the basis for any type of data-driven
algorithm significantly.

Regarding missing data, it is worth noticing that this type of anomaly can easily be
detected using rule-based methods. This type of anomaly was present several times but was
not removed before applying the LOF algorithms, as daily values were based on average
values for a given date.

Other Observations

The problem with NH4 sensors measuring too high values is that this can entail plants
over-aerating, which is expensive. An increase in multiple data parameters was observed
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when the NH4 sensor measured too high values in alternating operation. Thereby it is
possible that an increase in the daily average of concentrations could indicate NH4 drift
and that NH4 sensor drift hereby could be detected by utilization of a simple rule-based
algorithm, such as alarming, if a threshold is exceeded for a longer period. An overview of
the average values per day for WWTP2 PCT1 can be seen in Figure 12.
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Figure 12. Average daily values of Flow, NH4, NO3 and DO in WWTP2 PCT1.

4. Discussion

This section contains a discussion of the results.
Based on initial tests described in Section 2, it was chosen to use LOF combined with a

threshold. LOF was chosen despite several more complex methods having been previously
presented in the literature, as it was not possible to apply the more complex methods to the
data, due to low data quality in real WWTPs. The results showed that it was possible to
detect anomalies; however, the most detected anomalies were related to increased presence
of flow or substances. Increased presences of flow and substances are not faults. It is
problematic that the most detected fault is increased in different parameters as previously
published papers primarily focus on dry weather data, simulated data or in-control data,
because this means that the developed methods do not encounter the challenges met at
real plants. It is important to be aware of this shortcoming as it entails that automatically
detecting outliers as faults most likely will entail that valid datapoints are considered as
faults whereas actual faults are overlooked.

The results presented in this paper are highly dependent on the used threshold and the
window length. If one lowers the threshold more anomalies would be detected; however, it
would also entail a larger number of anomalies caused by increased flow or substances.
For plants with more than one PCT, the number of anomalies caused by increased flow
or increased presence of substances could be reduced by removing detections which are
present in both PCT simultaneously, as can be seen in Tables 3 and 4. It is important to
mention that increased presence of substance can both be caused by external factors, such
as industrial discharges, which are anomalies, and internal factors such as sensor drifts,
which are faults. This makes it complicated to distinguish between anomalies and faults.

Table 3 shows that if anomalies present in both PCTs are removed for WWTP2, the
anomalies caused by increased flow and increased presence of other substances will change
from 0.48% of the detected anomalies to 27% of the anomalies for PCT1 and from 79%
to 63% for PCT2. For PCT1 sensor drift increases from 21% to 56% and for PCT 2 the
percentage of anomalies caused by drift would increase from 4% to 17%. Due to the low
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number of anomalies for WWTP3, it would be misleading to make similar calculations for
this plant.

Table 3. Overview of anomaly types detected in WWTP2 for the two PCTs. The table shows how
many of the different types of anomalies are detected in total for each of the PCTs. Furthermore,
it shows how many anomalies are detected if anomalies present in both PCTs are removed. The
numbers in parentheses are the number of anomalies which have some overlap with the other PCT,
but the period of the detections is not similar.

Anomaly Type PCT1, All
Detections

PCT1
Overlapping
Detections
Removed

PCT2, All
Detections

PCT2
Overlapping
Detections
Removed

Increased flow 8 1 (1) 13 2 (4)
Increased presence incl.
substances 5 2 (2) 6 3 (3)

Missing data 2 1 (1) 1 0 (1)
Drift 6 6 1 1
Change in control settings 1 (1) 0 0
Combinations of multiple types 3 1 (1) 1 1
Other 3 (3) 2 1 (1)

Table 4. Overview of anomaly types detected in WWTP3 for the two PCTs. The table shows how
many of the different types of anomalies are detected in total for each of the PCTs. Furthermore,
it shows how many anomalies are detected if anomalies present in both PCTs are removed. The
numbers in parentheses are the number of anomalies which have some overlap with the other PCT,
but the period of the detections is not similar.

Anomaly Type PCT1, All
Detections

PCT1
Overlapping Detections

Removed

PCT2, All
Detections

PCT2
Overlapping Detections

Removed

Increased flow 0 3 (1)
Increased presence incl.
substances 6 2 (1) 2 (1)

Change in control settings 1 (1) 1 1

It is important to mention that drifts primarily were detected in the PCT with alternat-
ing operation and for this plant several of the cases with drift could be detected earlier by
visual inspection of the data, if good visualization tools were provided.

5. Perspectives and Recommendations

Drift in sensors, especially in NH4 sensors, causes non-optimal operation at WWTPs,
which can induce inefficient N removal, increased resource usage and extra economic
costs. Sensor drift is common in most WWTPs and this needs to be handled for resource
optimization. Several data-driven algorithms for drift detection have been developed
in academia; however, they often remain as academic projects entailing a gap between
academia and the real world. This gap was investigated by applying different data-driven
solutions on real WWTPs. The results showed a number of significant challenges in real
data, which have not been handled in the current academic solutions.

This study showed that it was not possible to obtain valid, consistent and precise
labelling of sensor drift in the data after its collection. Only extreme sensor drifts and sensor
drifts induing over aeration could be identified in PCTs with alternating operation. The
study also showed that NH4 drift, to some extent, can be identified using unsupervised
learning. It also shows that more anomalies were detected in the WWTP with alternating
operation than in the plants with PID control systems. However, the performance does not
meet the needs at the WWTPs.
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The challenges described in the Method and the Result sections clearly illustrate that
action needs to be taken if optimal operation at the plants should be widespread among
WWTPs. In the following, the challenges met at the plants are described and discussed
in Sections 5.1–5.5. Section 5.6 contains a discussion of whether it is feasible to acquire a
sufficient data set for data-driven drift detection. Section 5.7 contains perspectives on other
ways of handling drift while Section 5.8 contains a discussion of why well considered data
acquisition from the plants is still important. Section 5.9 contains perspectives on how the
data available today can still create value.

5.1. Variations between Plants

There is a large variance between plants. For instance, there is a large variation in the
design of WWTPs, the sensors installed at the plants, the composition of raw wastewater,
the control strategies and the data stored from each plant. It is worth noticing that factors
such as the composition of the wastewater can induce the NH4 sensor to drift earlier in
one plant than in another. The control methods and settings vary largely between different
plants, due to factors such as variation in the discharge requirements of the plants.

From the perspective of a data scientist, it would be plausible to gain more knowledge
on changes and abnormalities in the PCTs by comparing two PCTs in the same plant. This
approach is not feasible from the perspective of water professionals as the tanks often have
different control settings. However, it might be beneficial to compare the results of the
anomaly detection. If an anomaly is detected in both PCTs simultaneously, the anomaly is
most likely caused by surrounding factors and not faults in the sensors at the plant.

Like in other fields, such as maritime image recognition [26], large variation in the
environment prevents formulation of specific general requirements; however, it is possible
to discuss the main factors which need to be considered.

5.2. Control Settings

In situ changes in control settings at the WWTPs were largely observed in the data.
Some of the changes were detected as anomalies but it was not always the case. In some
cases, the changes were a consequence of drift in the NH4 sensor. This is a practical solution
at the plant and solves the present problem; however, it also introduces a bias in the data
and makes faulty data normal. Furthermore, it was observed that sometimes, when the
conditions at a plant using a PID-controller changed, the control settings were changed.
This could, for instance, be due to increased flow. Some of the more extreme cases were
visible for a human observer while it is uncertain if changes of less extreme character were
present in the data. Change in control settings largely affects the patterns in the data,
complicating development of data-driven solutions and in cases where it is found necessary
to change the settings, it is essential that the changes are logged.

5.3. Logging Strategies

Missing and insufficient logging was a large challenge met in this study. In the
cases where a log was available it solely contained information on measurement and
calibration, and in some cases, it was not clear which sensors were calibrated due to
unprecise documentations. Changes in control settings were never mentioned, despite
being essential for the patterns in the data. The lag of logs at the plants is not solely
a problem from a data science perspective, but it also makes it hard for newcomers to
understand the plant, as they cannot see what has been done previously.

From a data science perspective, all lab tests, calibrations and change in control
settings should be documented in a software system with constrained input parameters
selected either from dropdown menus or check boxes, leaving solely numbers for manual
entering. However, from the operator’s point of view this can easily be considered as
unnecessary bureaucracy. Therefore, the logging software should be as simple as possible
while still providing sufficient data, and the operators should be included in the design
and implementation processes and be able to see a benefit.
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5.4. Data Quality

Multiple definitions of data quality can be found; however, the key element is that
data is of high quality if it is ‘fit for use’ for the given purpose. Thereby data can have a
high quality in one perspective while being of low quality from another perspective. Data
need to contain a certain level of completeness, consistency, validity and timeliness, which
all depend on the particular purpose [27,28].

This study shows that the information in the data available was insufficient for compre-
hensive drift detection in multiple sensors. Furthermore, due to a combination of missing
logs and low resolution in the data, four out of seven data sets available for this study were
not used.

Insufficient data quality is a problem in multiple other industrial cases. Despite
companies collecting data with the purpose of using it, there is a high amount of data,
which are collected without being actionable [28].

Prospectively, the authors suggest that data owners at utilities and municipalities
consider what they wish to gain from their data and, based on this, select which data to
store and what the resolution should be for the data to contain sufficient information. It is
possible that other factors not directly connected to the content of the plant such as energy
usage and cost at a given time could be relevant factors for benchmarking the performance
of the plant. Generally, it is important that the pattern in the data is relevant. Changes
in patterns can occur by change in control settings, sensor drift, change in the catchment
area etc. From a data quality perspective, the changes in patterns should be minimized,
and when they occur, they should be well documented. In case a lot of information needs
manual entry, it could be considered to use a well-defined user interface, to reduce faults in
the manual documentation and increase the precision of the data. Generally, data should
be easily accessible and interpretable [27]. In this connection it is important to ensure
coherent naming of parameters, etc. For more information on data quality, please refer to
Mahanti [27].

5.5. Learning Algorithms

Development of data-driven drift detection in treatment plants is complicated since the
control systems are based on feedback loops. Thereby the system is automatically adjusted
to the drift, minimizing the changes in faulty data compared to correct data. Furthermore,
constant concentration levels in the outlet, where the NH4 and NO3 sensors are placed, are
considered optimal; however, a constant value further decreases the level of information in
the data. As there is a large uncertainty in the composition of the wastewater arriving at
the plant, it can be difficult to distinguish between natural variations and sensor drift from
a data perspective. A solution to this could be sensors located at the inflow. This would
give the possibility of performance evaluation, etc.; however, it would also result in more
sensors to maintain.

Due to the costs of sensors, it is often not feasible to implement additional sensors.
Therefore, when selecting sensors in WWTPs and deciding which parameters to store, it
is important to consider the indirect information in sensors and potential use cases. For
instance, Thürlimann et al. [29] suggested a soft sensor using the pH in the inlet and the
outlet to detect NH4 peak load events. Another parameter worth considering in the future
is the airflow. The correlation between the airflow and the DO most likely contains usable
information of the processes in the plant.

5.6. Data-Driven Drift Detection–Is It Worth It?

Due to large variations between plants, it is necessary to acquire a high-quality data
set for each plant and subsequently adjust the model to the plant. Acquiring the data set
entails that the operators systematically measure and calibrate sensors. Furthermore, the
control settings should not be changed and if they need change due to external factors, this
should be documented. With such a high-quality data set it is possible to detect faults in
the plant [23]. If the catchment area of the plant is changed or if the control system needs
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updates, for instance due to better algorithms, the data acquisition needs to be remade.
This means that the operators need to be systematic in the operation of the plant for several
months, or preferably a year, every time a change is made. Lab measurements are easy
to perform, and the biggest obstacle is to obtain a culture among the operators where lab
measurements are performed instead of ad hoc adjustment of the control settings. A utility
that can acquire the needed data set might already have obtained a culture of high-quality
sensor maintenance, making data-driven drift detection redundant.

5.7. Other Ways of Handling Drift

The above statement yields a need for higher quality in sensor data at wastewater
plants. This is especially relevant for the sensors which record data that are used by the
plant’s control system. Data quality can be obtained by regular monitoring, calibration and
cleaning. Other approaches include self-calibrating sensors and soft sensors. It could also
be argued that in some cases, multiple sensors of the same type could be used for drift
detection; however, as the sensors would be in the same environment, they would also
be affected by the same environmental factors such as fouling or drift after heavy rain or
high NH4 levels. Contemporary, ion-selective sensors are widely used as they are cheap to
operate. Another solution could be to use sensors based on gas chromatography for quality
control. This sensor uses chemicals and measure once an hour; however, this would be an
expensive solution.

A different approach to manage drift could be to include more rules in the control strat-
egy, for instance by stopping aeration if the NO3 level does not increase or by finding the
actual NH4 level by aerating until the NH4 level does not decrease more during night-time.

5.8. Why Well Considered Data Acquisition from Plants Is Still Necessary

Increased focus on the SDGs emphasizes that the utilities optimize the operations
at the plants by reducing energy usage and lowering greenhouse gas emissions while
ensuring a high degree of N removal. However, to benchmark performance of experiments
performed to optimize the performance, the general performance of the plant needs to be
known. Newhart et al. [10] stated that it is essential to a define the problem scope and
desired goals when integrating data-driven control at WWTPs. This can be generalized to
other tasks involving data-driven solutions.

5.9. Can Low Quality Data Still Create Value?

Data quality is a relative concept, and it is related to the purpose of the data [27].
Therefore, the data can be of high quality if used for other purposes. For instance, com-
paring the available parameters for a given day with average values of the previous days,
days with similar flow or similar weekdays can give information to water professionals
and help them evaluate the operation of the plant. If available, the energy usage can give
information on the effectiveness of the operation of the plant. Furthermore, comparing the
average price of the energy used at the plant a given day to the average energy price the
same day can give information on how sustainable the energy usage is, as low energy prices
are often related to a surplus production of green energy. This is relevant as it can help
operators evaluate and optimize the control strategy of the plant and thereby contribute to
a more holistic cross sectorial optimization, which is essential to obtain smart cities.

6. Conclusions

Sensor drifts are widely present in WWTPs and can result in less efficient operation at
the plants. Several approaches for solving this problem have recently been proposed and
documented in academia; however, the studies rarely reflect the conditions at real treatment
plants and thereby remain as academic projects. The aim of this study was to investigate
this gap between academia and practice by applying algorithms suggested in academia on
data from real WWTPs. The results showed that obtaining a robust and valid model for
fault detection is challenged by several factors such as low data quality, missing logging
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and in situ changes of control settings. The most often detected anomalies were related to
increased flow or increased concentrations, which can be hard to distinguish from sensor
drift. It is the author’s interpretation that better algorithms and results could be obtained
by increased focus on the data quality by including well-considered data management,
logging strategies and consistency in the control settings of the WWTP. However, if a utility
can obtain such a data set, the problems with drift might already have been solved. Other
solutions to handle sensor drift include implementation of improved sensors for quality
control, self-calibrating sensors and soft sensors based on informative parameters.

While the data quality might not be sufficient for automatic drift detection, the quality
might be sufficient for statistical purposes, which can contribute to information for water
professionals and help them evaluate the performance of the plant.

Author Contributions: Conceptualization B.D.H., T.B.M. and D.G.J.; methodology, B.D.H., T.B.M.
and D.G.J.; software, B.D.H.; validation, T.B.H., T.B.M. and D.G.J.; formal analysis, B.D.H.; investiga-
tion, B.D.H.; resources, B.D.H.; data curation, B.D.H.; writing—original draft preparation, B.D.H.;
writing—review and editing, B.D.H., T.B.H., T.B.M., and D.G.J.; visualization, B.D.H.; supervision,
T.B.H., T.B.M. and D.G.J.; project administration, B.D.H., and D.G.J.; funding acquisition, B.D.H.,
T.B.M. and D.G.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Innovation Fund Denmark.

Acknowledgments: The authors wish to thank Lars Lading from EnviDan A/S for his assistance
with accessing data and supervision.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, W.; Tooker, N.B.; Mueller, A.V. Enabling Wastewater Treatment Process Automation: Leveraging Innovations in Real-Time

Sensing, Data Analysis, and Online Controls. Environ. Sci. Water Res. Technol. 2020, 6, 2973–2992. [CrossRef]
2. Santín, I.; Pedret, C.; Vilanova, R.; Meneses, M. Advanced Decision Control System for Effluent Violations Removal in Wastewater

Treatment Plants. Control Eng. Pract. 2016, 49, 60–75. [CrossRef]
3. Stentoft, P.A.; Vezzaro, L.; Mikkelsen, P.S.; Grum, M.; Munk-Nielsen, T.; Tychsen, P.; Madsen, H.; Halvgaard, R. Integrated

Model Predictive Control of Water Resource Recovery Facilities and Sewer Systems in a Smart Grid: Example of Full-Scale
Implementation in Kolding. Water Sci. Technol. 2020, 81, 1766–1777. [CrossRef] [PubMed]

4. Corominas, L.; Garrido-Baserba, M.; Villez, K.; Olsson, G.; Cortés, U.; Poch, M. Transforming Data into Knowledge for Improved
Wastewater Treatment Operation: A Critical Review of Techniques. Environ. Model. Softw. 2018, 106, 89–103. [CrossRef]

5. Samuelsson, O.; Olsson, G.; Lindblom, E.; Björk, A.; Carlsson, B. Sensor Bias Impact on Efficient Aeration Control during Diurnal
Load Variations. Water Sci. Technol. 2021, 83, 1335–1346. [CrossRef] [PubMed]

6. Samuelsson, O.; Björk, A.; Zambrano, J.; Carlsson, B. Fault Signatures and Bias Progression in Dissolved Oxygen Sensors.
Water Sci. Technol. 2018, 78, 1034–1044. [CrossRef] [PubMed]

7. Teh, H.Y.; Kempa-Liehr, A.W.; Wang, K.I.-K. Sensor Data Quality: A Systematic Review. J. Big Data 2020, 7, 11. [CrossRef]
8. Baklouti, I.; Mansouri, M.; Hamida, A.B.; Nounou, H.; Nounou, M. Monitoring of Wastewater Treatment Plants Using Improved

Univariate Statistical Technique. Process Saf. Environ. Prot. 2018, 116, 287–300. [CrossRef]
9. Thomann, M.; Rieger, L.; Frommhold, S.; Siegrist, H.; Gujer, W. An Efficient Monitoring Concept with Control Charts for On-Line

Sensors. Water Sci. Technol. 2002, 46, 107–116. [CrossRef] [PubMed]
10. Newhart, K.B.; Holloway, R.W.; Hering, A.S.; Cath, T.Y. Data-Driven Performance Analyses of Wastewater Treatment Plants: A

Review. Water Res. 2019, 157, 498–513. [CrossRef] [PubMed]
11. Baggiani, F.; Marsili-Libelli, S. Real-Time Fault Detection and Isolation in Biological Wastewater Treatment Plants. Water Sci.

Technol. 2009, 60, 2949–2961. [CrossRef] [PubMed]
12. Alferes, J.; Tik, S.; Copp, J.; Vanrolleghem, P.A. Advanced Monitoring of Water Systems Using in Situ Measurement Stations: Data

Validation and Fault Detection. Water Sci. Technol. 2013, 68, 1022–1030. [CrossRef] [PubMed]
13. Cheng, T.; Dairi, A.; Harrou, F.; Sun, Y.; Leiknes, T. Monitoring Influent Conditions of Wastewater Treatment Plants by Nonlinear

Data-Based Techniques. IEEE Access 2019, 7, 108827–108837. [CrossRef]
14. Huang, F.; Shen, W.; Liu, Z. Applications of Sub–Period Division Strategies on the Fault Diagnosis with MPCA for the Biological

Wastewater Treatment Process of Paper Mill. In Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China,
27–30 July 2019; IEEE: Guangzhou, China, 2019; pp. 5138–5143.

15. Ba-Alawi, A.H.; Vilela, P.; Loy-Benitez, J.; Heo, S.; Yoo, C. Intelligent Sensor Validation for Sustainable Influent Quality Monitoring
in Wastewater Treatment Plants Using Stacked Denoising Autoencoders. J. Water Process Eng. 2021, 43, 102206. [CrossRef]

http://doi.org/10.1039/D0EW00394H
http://doi.org/10.1016/j.conengprac.2016.01.005
http://doi.org/10.2166/wst.2020.266
http://www.ncbi.nlm.nih.gov/pubmed/32644969
http://doi.org/10.1016/j.envsoft.2017.11.023
http://doi.org/10.2166/wst.2021.031
http://www.ncbi.nlm.nih.gov/pubmed/33767040
http://doi.org/10.2166/wst.2018.350
http://www.ncbi.nlm.nih.gov/pubmed/30339528
http://doi.org/10.1186/s40537-020-0285-1
http://doi.org/10.1016/j.psep.2018.02.006
http://doi.org/10.2166/wst.2002.0563
http://www.ncbi.nlm.nih.gov/pubmed/12360997
http://doi.org/10.1016/j.watres.2019.03.030
http://www.ncbi.nlm.nih.gov/pubmed/30981980
http://doi.org/10.2166/wst.2009.723
http://www.ncbi.nlm.nih.gov/pubmed/19934517
http://doi.org/10.2166/wst.2013.302
http://www.ncbi.nlm.nih.gov/pubmed/24037152
http://doi.org/10.1109/ACCESS.2019.2933616
http://doi.org/10.1016/j.jwpe.2021.102206


Water 2022, 14, 926 20 of 20

16. Kazemi, P.; Giralt, J.; Bengoa, C.; Masoumian, A.; Steyer, J.-P. Fault Detection and Diagnosis in Water Resource Recovery Facilities
Using Incremental PCA. Water Sci. Technol. 2020, 82, 2711–2724. [CrossRef] [PubMed]

17. Kazemi, P.; Bengoa, C.; Steyer, J.-P.; Giralt, J. Data-Driven Techniques for Fault Detection in Anaerobic Digestion Process.
Process Saf. Environ. Prot. 2021, 146, 905–915. [CrossRef]

18. Luca, A.-V.; Simon-Várhelyi, M.; Mihály, N.-B.; Cristea, V.-M. Data Driven Detection of Different Dissolved Oxygen Sensor Faults
for Improving Operation of the WWTP Control System. Processes 2021, 9, 1633. [CrossRef]

19. Mali, B.; Laskar, S.H. Incipient Fault Detection of Sensors Used in Wastewater Treatment Plants Based on Deep Dropout Neural
Network. SN Appl. Sci. 2020, 2, 2121. [CrossRef]

20. Xu, C.; Huang, D.; Li, D.; Liu, Y. Novel Process Monitoring Approach Enhanced by a Complex Independent Component Analysis
Algorithm with Applications for Wastewater Treatment. Ind. Eng. Chem. Res. 2021, 60, 13914–13926. [CrossRef]

21. Klanderman, M.C.; Newhart, K.B.; Cath, T.Y.; Hering, A.S. Fault Isolation for a Complex Decentralized Waste Water Treatment
Facility. J. R. Stat. Soc. C 2020, 69, 931–951. [CrossRef]

22. Mamandipoor, B.; Majd, M.; Sheikhalishahi, S.; Modena, C.; Osmani, V. Monitoring and Detecting Faults in Wastewater Treatment
Plants Using Deep Learning. Environ. Monit. Assess. 2020, 192, 148. [CrossRef] [PubMed]

23. Cecconi, F.; Rosso, D. Soft Sensing for On-Line Fault Detection of Ammonium Sensors in Water Resource Recovery Facilities.
Environ. Sci. Technol. 2021, 55, 10067–10076. [CrossRef] [PubMed]

24. Anter, A.M.; Gupta, D.; Castillo, O. A Novel Parameter Estimation in Dynamic Model via Fuzzy Swarm Intelligence and Chaos
Theory for Faults in Wastewater Treatment Plant. Soft Comput. 2020, 24, 111–129. [CrossRef]

25. Breunig, M.M.; Kriegel, H.-P.; Ng, R.T.; Sander, J. LOF: Identifying Density-Based Local Outliers. SIGMOD Rec. 2000, 29, 93–104.
[CrossRef]

26. Pedersen, M.; Madsen, N.; Moeslund, T.B. No Machine Learning without Data: Critical Factors to Consider When Collecting
Video Data in Marine Environments. J. Ocean Technol. 2021, 16, 21–30.

27. Mahanti, R. Data Quality: Dimensions, Measurement, Strategy, Management, and Governance; ASQ Quality Press: Milwaukee, WI,
USA, 2018; ISBN 9780873899772.

28. Scarisbrick-Hauser, A.; Rouse, C. The Whole Truth and Nothing but the Truth? The Role of Data Quality Today. Direct Mark. Int.
J. 2007, 1, 161–171. [CrossRef]

29. Thürlimann, C.M.; Dürrenmatt, D.J.; Villez, K. Soft-Sensing with Qualitative Trend Analysis for Wastewater Treatment Plant
Control. Control Eng. Pract. 2018, 70, 121–133. [CrossRef]

http://doi.org/10.2166/wst.2020.368
http://www.ncbi.nlm.nih.gov/pubmed/33341764
http://doi.org/10.1016/j.psep.2020.12.016
http://doi.org/10.3390/pr9091633
http://doi.org/10.1007/s42452-020-03910-9
http://doi.org/10.1021/acs.iecr.1c01990
http://doi.org/10.1111/rssc.12429
http://doi.org/10.1007/s10661-020-8064-1
http://www.ncbi.nlm.nih.gov/pubmed/31997006
http://doi.org/10.1021/acs.est.0c06111
http://www.ncbi.nlm.nih.gov/pubmed/34232030
http://doi.org/10.1007/s00500-019-04225-7
http://doi.org/10.1145/335191.335388
http://doi.org/10.1108/17505930710779333
http://doi.org/10.1016/j.conengprac.2017.09.015

	Introduction 
	Materials and Methods 
	Data 
	Machine Learning Approaches 
	Unsupervised Learning Algorithms 
	Assessment of Anomalies 

	Results 
	WWTP1 PCT1 
	WWTP2 PCT1 
	WWTP2 PCT2 
	WWTP3 PCT1 
	WWTP3 PCT2 
	General Observations 

	Discussion 
	Perspectives and Recommendations 
	Variations between Plants 
	Control Settings 
	Logging Strategies 
	Data Quality 
	Learning Algorithms 
	Data-Driven Drift Detection–Is It Worth It? 
	Other Ways of Handling Drift 
	Why Well Considered Data Acquisition from Plants Is Still Necessary 
	Can Low Quality Data Still Create Value? 

	Conclusions 
	References

