

Aalborg Universitet

A foundation for spatio-textual-temporal cube analytics

Iqbal, Mohsin; Lissandrini, Matteo; Pedersen, Torben Bach

Published in:
Information Systems

DOI (link to publication from Publisher):
10.1016/j.is.2022.102009

Creative Commons License
CC BY 4.0

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Iqbal, M., Lissandrini, M., & Pedersen, T. B. (2022). A foundation for spatio-textual-temporal cube analytics.
Information Systems, 108, [102009]. https://doi.org/10.1016/j.is.2022.102009

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 19, 2022

https://doi.org/10.1016/j.is.2022.102009
https://vbn.aau.dk/en/publications/585ac75f-9103-45b8-a06a-5f3c01ed7298
https://doi.org/10.1016/j.is.2022.102009

Information Systems 108 (2022) 102009

m
i
T
t
T
f
i
c
b

(

h
0

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

A foundation for spatio-textual-temporal cube analytics
Mohsin Iqbal ∗, Matteo Lissandrini, Torben Bach Pedersen
Aalborg University, Denmark

a r t i c l e i n f o

Article history:
Received 11 July 2021
Received in revised form 21November 2021
Accepted 14 February 2022
Available online 16 February 2022
Recommended by Gottfried Vossen

Keywords:
Data cube
OLAP
Spatial analytics
Textual analytics
Spatio-textual-temporal data
Spatial-textual-temporal measures

a b s t r a c t

Large amounts of spatial, textual, and temporal (STT) data are being produced daily. This is data
containing an unstructured component (text), a spatial component (geographic position), and a time
component (timestamp). Therefore, there is a need for a powerful and general way of analyzing STT data
together. In this paper, we define and formalize the Spatio-Textual-Temporal Cube (STTCube) structure to
enable combined effective and efficient analytical queries over STT data. Our novel data model over STT
objects enables novel joint and integrated STT insights that are hard to obtain using existing methods.
Furthermore, our proposed STTCube Incremental Maintenance (IMstt) method maintains the already
constructed STTCube efficiently when new data arrives. Moreover, we introduce the new concept of
STT measures with associated novel STT-OLAP operators. To allow for efficient large-scale analytics,
we present a pre-aggregation framework for exact and approximate computation of STT measures. Our
comprehensive experimental evaluation on a real-world Twitter dataset confirms that our proposed
methods reduce query response time by 1–5 orders of magnitude compared to the No Materialization
baseline and decrease storage cost between 97% and 99.9% compared to the Full Materialization baseline
while adding only a negligible overhead in the STTCube construction time. Moreover, approximate
computation achieves an accuracy between 90% and 100% while reducing query response time by
3–5 orders of magnitude compared to No Materialization and IMstt achieves an order of magnitude
improvement in maintenance time compared to the baseline maintenance method.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Due to the increased usage of mobile devices and advance-
ents in accurate geo-tagging, more and more geo-tagged data

s being produced [1]. In particular, social media platforms like
witter and Facebook are some of the primary sources of geo-
agged data, usually in the form of posts, comments, and reviews.
his type of data contains spatial, textual, and temporal (STT) in-
ormation. As a result, STT data analysis is becoming increasingly
mportant [2] since it allows to extract new insights regarding
ustomer satisfaction, user-generated content shared online, and
rand reputation [3].
STT data contains information regarding topics discussed w.r.t.

time and location, hence presenting an invaluable link between
user opinions and the real world. For example, STT data can help
us analyze an advertisement campaign to identify the best loca-
tions for ad placements. Traditionally, this information is accessed
through spatial keyword-queries [4], e.g., to retrieve topics within
a specific location or identify in which locations some topic is
discussed. However, keywords or topics search are point-wise

∗ Corresponding author.
E-mail addresses: mohsin@cs.aau.dk (M. Iqbal), matteo@cs.aau.dk

M. Lissandrini), tbp@cs.aau.dk (T.B. Pedersen).
 t

ttps://doi.org/10.1016/j.is.2022.102009
306-4379/© 2022 The Authors. Published by Elsevier Ltd. This is an open access art
search tasks. Instead, there is a significant need to provide more
extensive analytics analogous to traditional OLAP-style analytics.

Consider the case of an analyst analyzing social media posts
(e.g., Fig. 1). The analyst would collect a large number of such
posts and focus on the three major pieces of information, namely:
time, location, and the important keywords present in the text (as
exemplified in Table 1). A typical STT analysis will then compare
the number of posts that have been posted within a specific
region and time window w.r.t. some keywords of interest. For
instance, an example STT query is ‘‘find the top-k trending hashtags
aggregated by topic within the user-defined polygon around Paris
this month". Such a query would allow the analyst to identify
which topics users are currently talking about and use this for a
marketing campaign, e.g., to identify what users mention in their
plans for New Year’s Eve.

The traditional data cube model is one of the most widely used
tools to analyze structured data. Since their introduction, data
cubes have been extended to analyze different types of data, like
sales [5], locations [6], time-series [7], and text [8], but separately.
In particular, some works propose OLAP operators to analyze
either textual data [9,10] or spatial data [5,6].

However, no previous work proposed a unified model and
set of operators enabling integrated and joint analysis of STT
data. Moreover, as we propose to jointly analyze STT dimensions
ogether with other dimensions, we are also able to define novel
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.is.2022.102009
http://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2022.102009&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:mohsin@cs.aau.dk
mailto:matteo@cs.aau.dk
mailto:tbp@cs.aau.dk
https://doi.org/10.1016/j.is.2022.102009
http://creativecommons.org/licenses/by/4.0/

M. Iqbal, M. Lissandrini and T.B. Pedersen Information Systems 108 (2022) 102009

f
S
d
f

T

s
S
i
s
p
a
F
p
d
(
t
h
s
a
g
i
M
f
s
k
w

(
r
c
p
a
p
m
W
q
w

p
p
i
s
a
t -
b
s
r

m
g
O
o
a

o
n
a

Table 1
Spatio-Textual-Temporal sample dataset.

Time Location Terms

1 11:12:13 20-10-2019 57.016254, 09.991203 Apple, fruit, love
2 11:18:23 24-10-2019 56.187421, 10.171410 Potato, #NewYear
3 11:35:56 20-10-2019 56.151078, 10.204762 Banana, Season
4 16:12:14 24-10-2019 57.016254, 09.991203 Potato, Salad, #Fresh
.

Fig. 1. Geo-tagged tweet: An example of a STT object.

amilies of measures that have not been studied before, namely
TT measures. As we show later, these measures allow to pro-
uce more advanced analytics instead of, e.g., simple keyword
requency.

he STTCube. In this paper, we introduce the Spatio-Textual-
Temporal Cube (STTCube) to analyze STT data. STTCube is a logical
multidimensional data model rather than a conceptual one. As
uch, it is focused on powerful and efficient OLAP querying of
TTCube rather than high-level conceptual modeling. The core
dea is to aggregate and analyze STT objects over the dimen-
ions capturing the time, location, and textual aspects of the
osts. In the STTCube, the cells contain the number of posts for
given time period/instant, location/region, and keyword (see
ig. 2 for a simplified example). Adding spatial, textual, and tem-
oral support to a traditional data cube is not straight-forward
ue to the presence of n-n relationships in textual hierarchies
e.g., a post mentioning both ‘‘banana’’ and ‘‘carrot’’ will map
o both the ‘‘Fruits’’ and ‘‘Vegetables’’ categories in the textual
ierarchy’). and because existing families of measures cannot
upport joint and integrated analysis involving spatial, textual,
nd temporal dimensions, e.g., finding the trending keywords
rouped by regions, defined by geometry shapes, over a time
nterval. Hence, we introduce new families of measures (STT
easures) and OLAP operators that extract combined insights

rom STT dimensions and measures. STTCube provides specialized
patio-textual and spatio-textual-temporal measures such as Top-
Dense Keywords within an area and Top-k Volatile Keywords
ithin an area that deliver the integrated aggregates over STT

data. Moreover, a set of analytical operators, namely STT slice,
dice, roll-up, and drill-down, are proposed. This results in a data
model able to support spatio-textual-temporal OLAP (STTOLAP)
operators. An incremental maintenance method is also proposed
to efficiently incorporate new data into the already constructed
STTCube. Furthermore, we propose Partial Exact Materialization
(PEM) and Partial Approximate Materialization (PAM) methods for
efficient exact and approximate computations of STT measures,
respectively. Among other things, we also provide a systematic
set of solutions to handle n−n relationships in textual hierarchies.

Contributions. In this work, we present the following contribu-
tions: (I) We extend the standard cube model to add
support for spatial, textual, and temporal dimensions and hier-
archies and spatio-textual and spatio-textual-temporal measures
(Sections 3.1–3.3). (II) We propose a set of analytical operators
(STTOLAP) over spatio-textual-temporal data (Section 4). (III) We
introduce keyword density and keywords volatility as prototypical
2

Fig. 2. STTCube example.

spatio-textual and spatio-textual-temporal measures (Section 3.3).
IV) We propose a pre-aggregation framework (STTCube mate-
ialization) for efficient, exact (PEM) and approximate (PAM),
omputation of the proposed STT measures (Section 5). (V) We
ropose techniques for processing spatio-textual-temporal objects
nd the construction of the STT-Cube (Section 6.1). (VI) We pro-
ose a novel incremental maintenance method for efficiently
aintaining an already constructed STTCube (Section 6.2). (VII)
e evaluate the pre-aggregation framework's (PEM and PAM)
uery response time, storage cost, and accuracy by comparing it
ith the No STT Cube, Full Materialization, and No Materialization

baselines. Our pre-aggregation framework provides 1–5 orders
of magnitude improvement in query response time and a 97%
to 99.9% reduction in storage cost with an accuracy between
90% and 100% (Section 7). Furthermore, our proposed incre-
mental maintenance method achieves an order of magnitude
improvement over the baseline method.

2. Related work

OLAP and the Data Cube [21] are used heavily in business
intelligence to obtain insights over the historical, current, and
future state of business. With the emergence of the web and
social media, an immense amount of unstructured data is being
produced, which must be included in the analytical process.

Table 2 summarizes state of the art on spatial, textual, and
temporal analytics by listing the properties and gaps in the cur-
rent methods.

The Text-Cube [8,22] allows OLAP-like queries on text data by
roviding dimensions and hierarchies for terms. Moreover, it sup-
orts the computation of two information retrieval (IR) measures:
nverted index and term frequency. EXODuS [11] processes semi-
tructured document stores (i.e., JSON) using a schema-on-read
pproach to allow exploratory OLAP on text. Text OLAP [12] ex-
ends traditional OLAP to support textual dimensions and keyword
ased top-k search [13]. Yet, all these approaches lack support for
patial and temporal data and the advanced measures and operators
equired for spatio-textual-temporal analytics.

For spatial data, GeoMiner [6] proposes a cube structure for
ining characteristics, comparisons, and association rules from
eo-spatial data. The coupling of GIS and OLAP is known as Spatial
LAP (SOLAP) [23] and Spatial cube [5] allows to perform SOLAP
n the semantic web. Yet, these solutions focus on spatial data only
nd lack support for textual and temporal data.
There are solutions that combine more than one component

f data, e.g., spatio-temporal [24], into the same model but do
ot provide combined STT analytics. Among those, the contextu-
lized warehouse [20] combines traditional OLAP with a textual

M. Iqbal, M. Lissandrini and T.B. Pedersen Information Systems 108 (2022) 102009

f
t
T
t
a
t
a
t
l
a
s
S
c
t
a

g
m
c
h
d
D
m

Table 2
Presence (✔) or absence (✘) of support for spatial and textual data, dimensions, hierarchies, and measures in existing methods.
Method Textual Support Spatial Support ST STT

Data Dimension Hierarchy Measure Data Dimension Hierarchy Measure Measure Measure

EXODuS [11] ✔(JSON) ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

TextCube [8] ✔ ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘

Text OLAP [12] ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘

TextCubeTopKCells [13] ✔ ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘

Geo Miner [6] ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✔ ✘ ✘

SpatialCube [5] ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✔ ✘ ✘

StreamCube [14] ✔ ✘ ✘ ✔ ✔ ✔ ✔ ✘ ✘ ✘

TwitterSand [15] ✔ ✔ ✔ ✘ ✔ ✘ ✘ ✔ ✘ ✘

TextStreams [16] ✔ ✘ ✘ ✔ ✔ ✘ ✘ ✘ ✘ ✘

TopicExploration [17] ✔ ✘ ✘ ✔ ✔ ✔ ✔ ✘ ✘ ✘

SocialCube [18] ✔ ✘ ✘ ✔ ✔ ✔ ✔ ✘ ✘ ✘

TopicCube [19] ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✘

ContextualizedWarehouse [20] ✔ ✘ ✘ ✔ ✔ ✔ ✔ ✘ ✘ ✘

STTCube ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
m

O
e
a
r
S
w
i
u

3

d
a
b
f
n
f
Q
c
a
c
m
d
C
T
(
t
w
T
a
Y
W
g
m
c
o

warehouse. This allows the user to provide some keywords, select
a market (country or region), retrieve documents matching the
keywords as context, and then analyze the facts related to those
keywords and documents. Similarly, Topic Cube [19] extends the
unctionality of a traditional cube and combines probabilistic
opic modeling with OLAP by introducing the topic hierarchy.
witterSand [15] and StreamCube [14] exploit textual and spa-
ial information to gain insights by clustering twitter hashtags
nd tweets in a region, respectively. STT data is also analyzed
o extract events and topics information in TextStreams [16]
nd TopicExploration [17]. Finally, SocialCube [18] tries to cap-
ure human, social, and cultural behavior by performing the
inguistic analysis (sentiment analysis) over tweets. All these
pproaches focus on the unstructured nature of text along with
patial and temporal data. However, they do not provide Integrated
TT analytics, for example, they do not provide the ability to
ompute aggregate spatial, textual, temporal, and spatio-textual-
emporal measures over spatial, textual, and temporal dimensions
nd hierarchies.
When dealing with Data Cube design and implementation in

eneral, it arises the issue on how to translate the conceptual
odel into a logical model. In our case, this issue arises espe-
ially for the case of textual dimensions, which require handling
ierarchies with many-to-many relationships across members of
ifferent levels, e.g., a term belonging to different topics. Multi-
imER [25] models facts with different kinds of hierarchies and
easures in a conceptual rather than logical multidimensional

model. The gap between conceptual and logical models is also
studied in a survey of summarizability [26] exploring the differ-
ences between a multidimensional conceptual model and its al-
ternative logical representation. Furthermore, there exist studies
in the literature that address the challenges of handling many-
to-many relationships between fact and dimension tables [27].
These studies are not specific for the STT use case, i.e., they do
not focus on spatial and textual hierarchies. Nonetheless, some
considerations still applies. In particular, in our work we apply
the snowflake schema with bridge tables for its flexibility, be-
cause it limits redundant information, and because it is a common
and well established method [27]. Moreover, different from the
general case studied in previous work, here we are the first to
study specifically the effect of replication-based and majority-
based methods when applied to the textual hierarchy on STT
OLAP computations.

Spatial top-k keyword-queries [2,28,29] answer only point-wise
queries and do not support aggregation functions or hierarchies.
Thus, they do not support more complex OLAP-style analytical
tasks, which we do. There are methods that solve a very spe-
cific task for a specific type of data [30–32]. These methods are
fundamentally different from STTCube because STTCube provides
3

a generic framework for a wide range of STT analytics over different
kinds of STT data sources, including, but not limited to, geo-tagged
tweets. Also, STTCube can take advantage of the improvements
suggested over other cubes, e.g., Nanocubes [33] and DICE [34],
making it a powerful tool for OLAP-style STT analytics.

Our summary of related work in Table 2 shows that no existing
ethod provides integrated support for STT data, unlike STTCube.

To the best of our knowledge, a proper formalization of a data
cube model for STT data able to support complex analytics for STT
objects at scale is missing. In particular, no previous method stud-
ies dimensions, hierarchies, and measures that allow processing
STT data jointly. Furthermore, the main novel challenge for STT-
LAP is handling n − n relationships inside the STT dimensions
ffectively since n− n relationships do not allow traditional pre-
ggregation techniques to be used. Moreover, arbitrary temporal
anges with multiple levels of granularity add complexity to
TT measures computations. As a remedy, we propose STTCube
hich enables the joint and integrated analysis of STT objects by

ntroducing new sets of STT measures to gain in-depth insights
sing STTOLAP operators.

. Spatio-textual-temporal cubes

Here, we define the STTCube, an extension of the traditional
ata cube to allow storage and analysis of STT objects. Data cubes
re used to model and analyze multi-dimensional data. The basic
uilding block of a data cube is the cell that contains facts. Each
act is the observational object for analysis, with one or more
umerical measures associated with it, e.g., in a typical domain a
act can be a Sales transaction for a Product for which we store the
uantity and the Total Sales Price as measures. Facts in a cube are
haracterized by different dimensions that provide the context for
nalysis, e.g., Product Category and Transaction Date. Dimensions
ontain one or more hierarchies divided into levels to compute
easure aggregations and perform analysis at various levels of
etail. Each level contains multiple members, e.g., in the Product
ategory level, the members are the distinct product categories.
he lowest level of each hierarchy is the fact dimension value
e.g., the specific Transaction Date or Product Category). In contrast,
he highest level is a unique level All with just one value all to
hich all members belong as a single group. For instance, the
ime dimension is always present in a data cube and usually has
hierarchy that groups transaction dates at the Month, Quarter,
ear, and finally All transactions irrespective of their date levels.
hen moving up in a hierarchy, aggregation functions allow ag-
regating the measure values of lower-level cells into a single
easure value in the upper cell. Lastly, each level has some asso-
iated attributes, which describe their members, e.g., the number
f days in a month. By specifying a combination of dimensions,

M. Iqbal, M. Lissandrini and T.B. Pedersen Information Systems 108 (2022) 102009

h
d
c

D
i

(

t
t
t
m
d
t
a
i
N
o
c
a

3

F
b
f

S
e
a
t
s
p

l
r
l
a
l
c
r
t

f
m

ierarchies, and levels, we can identify one or more cells in the
ata cube and then analyze any of the measures for the facts
ontained in such cells.

efinition 3.1 (Data Cube). An n-dimensional data cube CSdc
s a tuple CSdc = (D,M, F), with a set of dimensions D =
{d1, d2, . . . , dn}, a set of measures M = {m1,m2, · · · ,mk}, and
a set of facts F . A dimension di ∈ D has a set of hierarchies Hdi .
Each hierarchy h ∈ Hdi has a set of hierarchy steps (discussed
in Section 3.1) and is organized into a set of levels Lh. Each level
l ∈ Lh contains a set of members and has a set of attributes Al.
Each attribute a ∈ Al is defined over a domain. Each measure
m ∈ M is a function defined over a domain that can return either
a single value or a complex object. The domain of a dimension di
is denoted by δ (di)

Spatio-Textual-Temporal (STT) objects. In this work, we consider
data cubes to analyze Spatio-Textual-Temporal (STT) Objects. An
STT object records place (geo-coordinates or location where it was
created), text (a review or a user comment), and time (when it
was created). Social networks with geo-tagged micro-blog posts
are typical STT data sources (e.g., the geo-tagged tweet in Fig. 1).

Definition 3.2 (STT Object). A spatio-textual-temporal object is a
tuple objst = (λ, ϕ, τ) where λ, ϕ, and τ are base level members
of the location, text, and time dimensions, respectively.

Location is represented as the latitude and longitude pair λ ∈
(R× R). Text is a bag-of-words ϕ = {w1, w2, w3 , . . . , wn} where
wi ∈ W is a string and is called a Term. We use the common bag-
of-words[35] model instead of vectors because the terms order
in ϕ does not matter. Among all Terms, keywords are a user-
defined subset of important Terms Wk ⊆ W . For instance, the
user can decide that hashtags (terms starting with #) have special
meanings and are a special type of keyword. Time specifies a
precise instant (a timestamp) to some resolution (e.g., seconds).
Table 1 contains examples of STT objects with their location, a set
of keywords extracted from the text, and timestamp.

3.1. The STTCube schema

For analytical processing of STT objects we propose to model
them as an STTCube. An STTCube CSstt = (D,M, F) is a data cube
(Definition 1) with three special dimensions, namely Location,
Text, and Time, along with zero or more traditional dimensions,
i.e., D = {dLocation, dText , dTime, d4, . . . , dn}. That is, the STTCube
adds a set of new dimensions, which still adhere to the traditional
definition of dimensions in the standard cube [5,21], but need
special extensions. In the following, we will first provide the core
definitions and then focus specifically on how the STT dimensions
differ from traditional dimensions.

Definition 3.3 (Dimension). A dimension di is a tuple di = (Ldi ,⪯
, l↑, l↓), with a set of dimension levels Ldi having a special member
all, a partial order ⪯ on Ldi , and l↓ ∈ Ldi and l↑ ∈ Ldi being the
bottom and top elements of the partial order, respectively.

Dimensions. Each dimension di in the set of dimensions D =
{d1, d2, . . . , dn} has a set of hierarchies Hdi . The domain of a
dimension di is denoted by δ(di). An STTCube stores STT objects
as facts modeling their spatial, textual, and temporal features
in the corresponding dimensions. Fig. 2 shows a 3-dimensional
STTCube built on the sample dataset in Table 1 where each row
represents one fact (i.e., the members of F) with dimensions D =
{dLocation, dText , dTime}. Domains for the respective dimensions are

δ (dLocation) = {(57.016, 09.991), (56.187, 10.171), . . . }
{ }
δ (dText) = Apple, Fruit, Potato, . . . l

4

δ (dTime) = {11 : 12 : 1320− 10− 2019, . . . }

Hence w.r.t. Definition 2, the dimensions capturing λ, ϕ, and τ
are the spatial, textual, and temporal dimensions, respectively.
STTCube supports one spatial, textual, and temporal dimension
with the possibility of having multiple hierarchies for each.

Dimension hierarchy. A hierarchy is spatial, textual, or temporal
if it contains spatial, textual, or temporal levels, respectively.
In Fig. 2, the Location dimension is a spatial dimension with a
spatial hierarchy going from λ to City, Region, and Country and
the Text dimension is a textual dimension aggregating ϕ into the
Term, Theme, Topic, and Concept levels. Similarly, Time is a tem-
poral dimension. Hierarchy steps HSh = {hs1, hs2, hs3, . . . , hsn}
define the mechanism of moving from a lower (child) level to
an upper (parent) level and vice versa. A hierarchy step hsi =
l↓, l↑, cardinality) ∈ HSh entails that members of a child level l↓
can be aggregated together if they correspond to the same mem-
ber at the parent level l↑ and that this correspondence between
children to parent members has the given cardinality ∈ {1−1, 1−
n, n − 1, n − n}. For instance, the step from Date to Month has
an n−1 cardinality, while Term to Topic has an n−n cardinality
(e.g., the Carrot Term correspond both to the Gardening and Food
Topics, while the Food Topic has as child members not only Carrot
but also Apple).

Level attributes. As mentioned earlier, a level l is associated with
a set of attributes Al={a1, a2, . . . , an} and has a set of members
l={l1, l2, . . . , l3}. Attribute values describe the different charac-
eristics of each member from that level. Spatial, textual, and
emporal levels are then usually characterized by spatial, tex-
ual, and temporal attributes. For instance, at the City level, all
embers have the Boundary attribute whose value is the polygon
efining the boundary of the respective city. An example of a
extual attribute is Sentiment which captures the polarity of the
ssociated textual member. Similarly, an integer value represent-
ng the number of days in a specific month is a temporal attribute.
ote that both measures and filtering conditions in STT OLAP
perators (described later) can perform complex operations that
ompute formulas that use a combination of level attribute values
nd measure values.

.2. Managing STT hierarchies

We now describe the STTCube's dimensions and hierarchies.
or now, STTCube supports balanced hierarchies only; thus, im-
alanced hierarchies are out of the scope of this work and left for
uture work.

patial dimensions. Spatial information can be analyzed at differ-
nt levels and granularities. It is important to note that facts in
n STTCube are composed only by geographical points (i.e., each
weet or user post is associated with a coordinate, not with
hapes or polygons). Points can be aggregated either within a
redefined spatial grid or based on semantic information.
Grid-Based Hierarchy. Here, the geographic area being ana-

yzed is divided into small equal size cells with a predefined
esolution, e.g., 1×1 km2. At the lowest level, each latitude and
ongitude point is assigned to the cell they fall in. To analyze data
t a coarser granularity, neighboring cells are combined into a
arger cell at the parent level (e.g., 3×3 km2). This hierarchy's
omputation is application-specific and is computed as per the
equirements. This hierarchy can be built automatically, without
he need for any meta-data.

Semantic-Based Hierarchy. Here, data is analyzed in a prede-
ined taxonomy, e.g., an administrative division. Therefore, we
ove within the taxonomy, e.g., from the Location to the City
evel, from the City level to the Region level, and so on up to

M. Iqbal, M. Lissandrini and T.B. Pedersen Information Systems 108 (2022) 102009

S

T
f
o
o
u
T
i
i
l
H
h
a

e
m
l
g
o
a

t
p
f
m
d
T
t
h

r
w
s
b
p

o

T
a
a
M
M
a
(
T

3

s
j
i
w
i
a
l
o
h
a
a
t
i
r
w

s
u
A
o
e
t
s
a
m
d
F
a
s
s
u
a
p
a
t

Fig. 3. Example of semantic-based spatial dimension hierarchy.

Fig. 4. Example of replication-based textual dimension hierarchy.

the All level. This hierarchy requires each object coordinate to be
associated with a member in the lowest level in the hierarchy
(usually in a pre-processing step) and requires the taxonomy
information to build the entire hierarchy.

Fig. 3 shows the semantic-based spatial hierarchy constructed
for three Location points λ1, λ2 and λ3 belonging to the respective
TT Objects.

extual dimensions. Hierarchies in the textual dimension move
rom specific concepts to general ones. This follows a generic tax-
nomic structure connecting more specific terms to more general
nes (i.e., hypernyms) [36]. Textual hierarchies are implemented
sing WordNet [37] which is discussed in Section 7. In particular,
erms are the base level which are grouped into Themes, Themes
nto larger categories called Topics, and Topics in turn grouped
nto Concepts. Differently from most hierarchies, the members in the
evels of a textual hierarchy are typically in an n−n relationship.
ence, when moving between textual levels, we need to decide
ow measure values get aggregated. Below we propose a set of
ggregation techniques to address this issue.
Replication-Based Hierarchy. This is a common approach where

ach member of a child level is aggregated into all the parent
embers. Hence, its value is effectively replicated. This approach

eads to a counting problem when parent levels are further aggre-
ated. For example, the first data instance in Table 1 will be part
f two Themes: 1) Fruits because it contains Term {apple and fruit}
nd 2) Emotion because of Term {love}.
5

Majority-Based Hierarchy. If a fact can be mapped to more
han one parent member, then that fact will be part of the
arent member with the most representation (e.g., in terms of
requency). This scheme avoids double counting of facts in parent
embers. In case of ties, some tie-breaking heuristic or a user-
efined criterion can be employed instead, e.g., the first fact in
able 1 will be part of only the Fruits Theme because it has the
wo representative Term {apple, fruit}, as compared to Emotion
aving only one Term {love}.
Custom Hierarchy. In general, other user-specified criteria and

ules can be defined to establish how child–parent level steps
ill be aggregated in case of ambiguities. For instance, a domain-
pecific importance score can be assigned to the hierarchy mem-
ers during the STTCube construction. In this way, facts will be
art of only the parent member with the highest importance.
Fig. 4 shows the textual hierarchy constructed for an STT

bject containing the terms apple, banana, and carrot.

emporal dimensions. Similarly, temporal dimension allows to
nalyze STT objects at different levels of granularity w.r.t. time
nd has the following two temporal hierarchies: τ → Day →
onth → Quarter → Year → all and τ → Second →
inute→ Hour → all. Here, the first contains a hierarchy of Date
ggregated by the temporal levels Day, Month, Quarter, and Year
total 5 levels including All), whereas the second is a hierarchy for
imeOfDay having 4 levels in total.

.3. Spatial, textual, and temporal measures

As defined earlier, an n-dimensional STTCube has a set of mea-
ures M={m1,m2,m3, . . . ,mk}, which permit to analyze STT ob-
ects by computing values at different levels of granularity. For
nstance, the STTCube in Fig. 2 models Location, Text, and Time
ith Fact Count as a measure (i.e., Fact Count∈M). In practice,

t maintains the count of STT objects at given spatial, textual,
nd temporal aggregation levels. We have tweets at the base
evel of the STTCube. Measure values are linked to the base levels
nly, e.g., to the Location level. No facts are linked directly to
igher levels, e.g., to the City or Country levels. Measure values
t different levels in the hierarchies are obtained by applying an
ggregation function over the STT objects. Examples of aggrega-
ion functions are SUM, COUNT, MIN, MAX, and AVG. The STTCube
n Fig. 2 uses COUNT as an aggregation function. For example, it
eports that on September, 20th at AAU Bus Terminal the Term apple
as mentioned in 2 facts.
A measure is spatial if it is defined over a spatial domain. A

patial measure is then computed over a collection of spatial val-
es (e.g., geographical points or geometry shapes like polygons).
spatial measure can be a simple value, e.g., the (numeric) area
f the convex hull of multiple shapes, or a complex spatial object,
.g., the polygon representing the convex hull itself. A measure is
extual if it is defined over a textual domain and can be either a
imple numeric value or a complex textual object. Analogously,
measure is temporal if it is defined over a temporal domain, A
easure is spatio-textual if it is defined over a spatial and textual
omain and is a combination of spatial and textual measures.
inally, a measure is spatio-textual-temporal if it is defined over
spatial, textual, and temporal domain and is a combination of
patial, textual, and temporal measures. Note that, to compute
ome STT measures, we are effectively computing formulae that
se both measure values, e.g., the number of facts, as well as
ttributes values of STT dimension members (e.g., the area of a
olygon for a region). Below, we propose a list of spatio-textual
nd spatio-textual-temporal measures to be used as part of STTCube
o analyze STT objects effectively.

M. Iqbal, M. Lissandrini and T.B. Pedersen Information Systems 108 (2022) 102009

K
l
t
h
l
i

T
r
ξ

f

t
F

i
T
a

a

F
b
b
i
r

T l
m
k
t

d
c
c
k
a
c
a
t
t
a
s

4

(
o
p
a
o
o
t
O
a
n
b
b
t
o
s
n
t

4

d
c

D
S
a
d
p
r
a

eyword locations. is a spatio-textual measure which returns a
ist of (ξi, wj) tuples pairing a keyword wj (i.e., a textual object)
o the geographical locations ξi (at the current level in the spatial
ierarchy) where it appears. For instance, computing keyword
ocations at the City level describes in which City each keyword
s discussed.

op-k keywords within an area. is a spatio-textual measure which
eturns a list of tuples (ξ,

−→
kw) consisting of a geometry shape

representing a geographical area and the list of top-k most
requent keywords

−→
kw = [w1, w2, . . . , wk] in that area. Analogous

to previous measures, it can also be computed at different levels
of aggregation so that it can return the top-k keywords for each
City or each Region.

Keyword density. is a spatio-textual measure which returns a
list of tuples (ξi, wj, ρij) consisting of a geometry shape ξi rep-
resenting a geographical area, a keyword wj, and its density ρij
in the area ξi. The density ρij of a keyword wj over an area ξi

is computed as ρij =
freq(ξi,wj)

SurfaceArea(ξi)
, in which freq(ξi, wj) is the

frequency of the keyword wj in the area ξi (i.e., the number of
objects located within ξi in which wj appears) and SurfaceArea is
the surface area of ξi. For example, if we have two Regions r1, r2
with SurfaceArea(r1) = 10 m2, SurfaceArea(r2) = 100 m2, and the
erm Apple with frequency 5 and 30 in r1 and r2, respectively (see
ig. 5), then, keyword densities are ρ1=0.5, ρ2=0.3 for r1 and r2,

respectively.

Top-k dense keywords within an area. is a spatio-textual measure
which returns a list of tuples (ξi,

−→
kw) computing the keyword

density as described in the measure above, but in this case, it
returns the top-k keywords

−→
kw = [w1, w2, . . . , wk] with the

highest density.

Keyword volatility. is a spatio-textual-temporal measure (becomes
textual-temporal If no region is specified) which returns a list of
tuples (ξi, wj, Tk, ∆ρijk) consisting of a geometry shape ξi repre-
senting a geographical area, a keyword wj, a time interval Tk, and
ts change in density ∆ρijk in the area ξi over the time interval
k (divided into k equal intervals). The change in density ∆ρijk of
keyword wj in an area ξi over a time interval Tk is computed

s ∆ρijk=

∑k
z=1 |ρijz −ρijz−1

|

k , where ρijz represents the density of
the keyword wj in the area ξi at a specific time instance Tkz .
urthermore, the change in the density computation formula can
e updated depending on the analysis requirements, e.g., it can
e changed to weighted density (assign different weights to each
nterval in Tk) or to rate of change computation using linear
egression [38].

op-k volatile keywords within an area. is a spatio-textual-tempora
easure which returns a list of tuples (ξi,

−→
kw) computing the

eyword volatility as described above, but in this case, it returns
he top-k volatile keywords

−→
kw = [w1, w2, . . . , wk] with the

highest change in density.

Distributive, algebraic, and holistic measures. There are three types
(also known as additivity) of measures: distributive, algebraic,
and holistic, depending on whether it is possible to compute the
value of a measure at a parent level directly from the values
at the child level [39]. For distributive and algebraic measures,
this is possible. For instance, the Fact Count at the State level
can be computed by summing up the Fact Counts at the City.
Keyword Density is instead an algebraic measure. We can compute
the higher-level aggregate values of this measure if we store
for each child level both the frequency of each keyword and
the SurfaceArea. The Top-k Keywords, the Top-k Dense Keywords,
and Top-k Volatile keywords within an area measures, instead, are
6

holistic, since the value at a parent level cannot be computed
directly from the values at the child level, but it is necessary to
recompute them directly from the base facts every time.

Consider the computation of Top-3 Dense Keywords within an
Area in Fig. 5 given the two Regions r1 and r2 with SurfaceArea
10 m2 and 100 m2, respectively, and the computation at the par-
ent level r3=r1∪r2 (grayed-out rows are not part of the computed
measure value). The values in the top-3 for the members r1 and
r2 at the child level are not sufficient to compute the correct
ensities for region r3. Both, some of the computed density (in
olumn ρTop−3, while the correct values are reported in ρall) and
onsequently the final ranking, would be wrong. For instance, the
eyword Strawberry would not have been returned (if computed
lgebraically) because it is neither in the top-3 for r1 nor r2. To
ompute the correct response, either we have to store all the
ggregate values for each possible cell or we have to reprocess all
he facts covered by the query. When dealing with large datasets
hese approaches are not feasible. Hence, in Section 5 we provide
framework for the computation of an exact and approximate
olution with accuracy guarantees.

. STTOLAP operators

A data cube allows different OnLine Analytical Proce-ssing
OLAP) operators to group, filter, and analyze cells and subsets
f cells at different levels of granularity and under different
erspectives. Those operators are known as Slice, Dice, Roll-Up,
nd Drill-Down [21], and they take as input a cube and produce as
utput another cube. In the following, we extend the basic OLAP
perators [40] to STTOLAP operators, i.e., for spatial, textual, and
emporal dimensions, hierarchies, and measures. In general, an
LAP (and STTOLAP) operator OP(C ′, params)=C ′′ accepts as input
cube C ′=(D′,M ′, F ′), some parameters params, and outputs a
ew cube C ′′=(D′′,M ′′, F ′′). In this way, a new OLAP operator can
e applied to C ′′. Among all cubes, we distinguish the initial or
ase cube C as the cube containing all the original information at
he base level. In the following, we generally assume every OLAP
perator OP to have access to C (hence, we will not explicitly
how it in the signature of the operators) since some operators
eed access to the base cube C , and not only to C ′, to produce
he desired result.

.1. STT-slice

Slice operates over the current data cube C ′ and given a
imension member vi for dimension di, it keeps only cells in C ′
orresponding to vi while removing the dimension di.

efinition 4.1 (STT-Slice). The STT-Slice operator is defined as
TTSlice(C ′, vi) = C ′′. It takes an n-dimensional STTCube C ′ and
member vi of the level li of a dimension di∈{dLocation, dText ,

Time}, i.e., either the spatial, textual, or temporal dimension, and
roduces a resulting cube C ′′ with n − 1 dimensions, i.e., the
esulting cube is C ′′=(D′′,M ′′, F ′′) where, M ′′ = M ′, D′′ = D′\{di},
nd the facts in F ′′ are new STT objects obtained from F ′ by

selecting only those that are associated to vi,. Hence, it returns
measure values, aggregated at the current level li for dimension
member vi only and removes the dimension of vi.

The member vi could be an object in the taxonomy of a
semantic-based hierarchy or could be a grid cell at some gran-
ularity level. An example of the slice operator is ‘‘slice location
dimension on user-defined polygon representing Aalborg’’, where
‘‘Aalborg’’ is a dimension member in lCity. Similarly, vi could be a
specific Theme or Topic for the textual dimension and a specific
day or month for the temporal dimension.

M. Iqbal, M. Lissandrini and T.B. Pedersen Information Systems 108 (2022) 102009

4

s
h
p
i
t
t
a
p
t
t
n
f

D
S
c
w
b
C
p
p
p

t
t
m
a

Fig. 5. Example: Merging of holistic measure.
d

4

a
t
o
c
s

D
a
l
s
d
n

Fig. 6. Dice on Latitude ≥ 57.00 and date ≥01-10-2019.

.2. STT-dice

While the slice operator selects and removes a single dimen-
ion, the dice operator produces a new cube whose cell contents
ave been filtered based on a set of conditions (e.g., complex
redicates or queries covering several cells) but without remov-
ng any dimension. That is, it produces a resulting cube with
he same number of dimensions but considering only the facts
hat satisfy the provided set of conditions. Such conditions can
lso use a combination of spatial, textual, temporal, and general-
urpose functions. These functions can perform different compu-
ations, e.g., filter objects based on specific conditions, or compare
wo objects and return a Boolean value, or they can produce a
umeric value based on some computation that is then used for
iltering.

efinition 4.2 (STT-Dice). The STT-Dice operator is defined as
TTDice(C ′, CONDi) = C ′′, where CONDi is a set of atomic or
ompound spatial, textual, or temporal logical conditions. Then,
e have that C ′′=(D′′,M ′′, F ′′) where, M ′′ = M ′, D′′ = D′,
ut we have that F ′′⊆F ′ contains only the STT objects satisfying
ONDi. Thus, STT-Dice selects only cell(s) from C ′ that satisfy the
rovided spatial, textual, or temporal logical condition CONDi and
roduces a resulting cube C ′′ with all the dimensions already
resent in C ′ but restricted to only a subset of the facts in C ′.

Two important characteristics of the STT-Dice operator are
hat (1) the filtering condition CONDi often is complex, and (2)
he filtering condition can exploit both attributes of dimension
embers (e.g., the polygon of a region in the spatial dimension)
nd aggregate values of measures (e.g., the number of tweets)
7

when filtering. For instance, an STT-Dice operator can select the
cell(s) that intersect with a user-provided polygon describing a
custom region of interest and containing at least n observations,
or alternatively, the cells with at least 10 terms and relevance
score for the Food topic above 0.7. Fig. 6 shows the resul-
tant STTCube when we dice with COND latitude ≥ (57.00) and
ate ≥(01-10-2019) on the STTCube shown in Fig. 2.

.3. STT-roll-up

The Roll-Up operator aggregates measure values along a hier-
rchy by moving from a child level to a parent level. This allows
o move the analysis to a coarser granularity. The STT-Roll-Up
perator groups facts by aggregating the measure values of all
hild members that belong to the same parent member in a
patial, textual, or temporal hierarchy.

efinition 4.3 (STT-Roll-Up). The STT-Roll-Up operator is defined
s STTRollUp(C ′, li↓, li↑) = C ′′, where, given a STTCube C ′, a child
evel li↓ and a target parent level li↑ (identifying a hierarchy
tep function hsi in the spatial, textual, or temporal dimension
i∈{dLocation, dText , dTime}), the output cube C ′′=(D′′,M ′′, F ′′) is a
ew STTCube that has the same dimensions of C ′, i.e., |D′| = |D′′|,

but where the new set of facts F ′′ is obtained from F ′ by grouping
them based on the hierarchy step function hsi, and by applying,
for each measure m∈M , the aggregation function associated with
m to create aggregated measure values for a new set of STT
Objects for each grouping of F ′ at the higher parent level li↑.

For instance, when we Roll-Up from City level to the Region
level, Fact Count values get summed to compute the new total.
Similarly, ‘‘Roll-Up to Topic level from Theme level’’ groups facts
by aggregating the measure values of all Themes that belong to
the same Topic and ‘‘Roll-Up to Quarter level from Month level’’
groups facts by aggregating the measure values of all Months
that belong to the same Quarter. Fig. 7 shows the resultant
STTCube when we perform roll-up to City and Theme levels on
the STTCube shown in Fig. 2.

4.4. STT-drill-down

The inverse of the Roll-Up is the Drill-Down operator, which
shows data at finer granularity by dis-aggregating measure values
along a hierarchy. The base cube is required for this operation as
we cannot uniquely dis-aggregate measure values knowing only

the values at the parent level.

M. Iqbal, M. Lissandrini and T.B. Pedersen Information Systems 108 (2022) 102009

D

C
d
a
(
i
f
l
v
h

t
i
t
s
t
S
r
d
n
a

4

c
d
t
h
S
l
t
t
t
i

5

m
a
s

5

s
p

Fig. 7. Roll-Up to City & Theme levels.

efinition 4.4 (STT-Drill-Down). The STT-Drill-Down operator is
defined as STTDrillDown(C ′, li↑, li↓) = C ′′, where, given an STTCube
′ at a level li↑ for the spatial, textual, or temporal dimension
i∈{dLocation, dText , dTime}, and a target child-level li↓ (identifying
hierarchy step function hsi), produces a new STTCube C ′′ =

D′′,M ′′, F ′′) at finer granularity, with the same dimensions as C ′,
.e., |D′| = |D′′|, and where the new set of facts F ′′ is obtained
rom F ′ by grouping the facts of the base cube F at the selected
evel li↓ and computing for every measure m∈M the measure
alues aggregated along the selected spatial, textual, or temporal
ierarchy, respectively.

For instance, STT-Drill-Down can move from the Region level
o the City level dis-aggregating the Fact Count of each Region
n the counts for each City in that Region. Similarly, ‘‘Drill-Down
o Term from Theme’’, following the inverse textual hierarchy
tep Term←Theme, and ‘‘Drill-Down to Day from Year’’ following
he inverse temporal hierarchy step Day←Year are examples of
TT-Drill-down operators for textual and temporal dimension,
espectively. Note that, in this case, while the new values are
is-aggregated from the parent level to the lower level, they are
ecessarily computed by aggregating from the base cube since
ggregations are non-reversible.

.5. OLAP vs STTOLAP

The above operator definitions show that the main novel
hallenge for STTOLAP is handling n−n relationships inside the
imensions effectively since n−n relationships do not allow tradi-
ional pre-aggregation techniques to be used. Based on the type of
ierarchy, we use hierarchy-specific computation, as explained in
ection 3.2. Furthermore, arbitrary temporal range with multiple
evels of granularity adds complexity to STT measures compu-
ations. As a remedy, we propose multiple strategies to manage
hese n−n relationships (Section 3.2), handle arbitrary time in-
ervals (Section 5.4), and show their efficiency and effectiveness
n Section 7.

. Cube materialization

Here, we describe the cube materialization methods, the cost
odel for STTCube materialization and incremental maintenance,
nd pre-aggregation framework for pre-computing the STT mea-
ure values.

.1. Cube materialization methods

Cube materialization is the process of pre-aggregating mea-
ure values at different levels of granularity in the cube to com-
ute query responses from pre-aggregated results instead of the
8

Fig. 8. Spatio-Textual-Temporal lattice.

raw data, and hence improve query response time for STTOLAP
operators [41]. In a data cube, a cuboid is a collection of level
members and associated measure values for a unique combina-
tion of dimension hierarchy levels. Each unique combination is
represented by a separate cuboid (Fig. 8). Any cuboid in the path
going down the hierarchy towards the base level (DLT in Fig. 8)
from a specific cuboid is called an ancestor cuboid of that specific
cuboid. Conversely, any cuboid in the path going up the hierarchy
towards the all level (⋆ in Fig. 8) from a specific cuboid is called
a descendant cuboid of that specific cuboid. For instance, if we
request the Fact Count for the State of Denmark and have stored
Fact Count at the Region level, we can avoid accessing the raw
data and compute the aggregation from much fewer rows. This
is an example of partial materialization, i.e., the actual cuboid
at the State level, containing the answer to the query, was not
materialized, but the system was still able to exploit the cuboid
for Region.

What to materialize and how much to materialize depends on
the trade-off between query response time and storage cost. Full
Materialization (FM) is obtained by pre-computing measure values
for all combinations of levels in all hierarchies. This approach
requires massive storage but achieves the best query response
time since every operation can just look up already pre-computed
results. At the other extreme, No Materialization (NM) only ma-
terializes the base cuboid and does not require any extra space
but will require aggregated measure values to be recomputed
from the base cuboid every time, hence incurring much slower
response times. A middle-ground solution is to partially mate-
rialize the cube, i.e., to materialize only some of the possible
cuboids. In this strategy, some queries will be able to exploit pre-
aggregated values at the current level, while other queries can
exploit pre-aggregated values at lower levels for distributive or
algebraic measures.

Example. Consider a simple lattice of cuboid for a cube with 3
dimensions (Fig. 8), each with a single 2-level hierarchy, namely
with base levels Location (L) with 14M rows for the spatial
dimension, Term (T) with 2M rows for the textual dimension,
and Date (D) with 37 rows for the temporal dimension, each of
which can be then rolled up to the all level (⋆) with only one row.
Each node in the lattice is associated with two values; first, the
number of rows in the cuboid, and second a flag (true/false) to
mark if the current cuboid is materialized. At the bottom of the
lattice, we have the base cuboid (which is always materialized)
with Date, Location, and Term (DLT) containing in this example all
rows (100M). If we Roll-Up the spatial dimension from Location
to All, we would obtain a new cuboid (DT) with 4M rows. The
cuboid DLT is referred to as the ancestor of the cuboid DT. If the
cube is partially materialized, i.e., not all cuboids are materialized,
and the cuboid DT is materialized, then to obtain the Fact Count
for every Date and Term, the cuboid DT with 4M rows would
contain the answer already pre-computed without the need to
compute such an answer from the base cube DLT with 100M
rows. Moreover, when the cuboid T is not materialized, we can
still compute the Fact Count for every Term from the cuboid DT
by accessing only 4M values instead of the 100M in DLT.

M. Iqbal, M. Lissandrini and T.B. Pedersen Information Systems 108 (2022) 102009

p
a
t
e
t
a
t
s
T
i
i
w
a
i
a
c
s
d
t
o
c
c
c

c
w
c
c
t
m
W
s

a
a
a
d
K
T
r
a
G
G
t

o
a
a
h
b
u
s
q
(
r

5

c
v
t
a
V
t
k
a
f

Fig. 9. QRT Vs data size.

Table 3
Spatio-Textual-Temporal queries.
Query Description

Q1 Top-k Dense/Volatile Terms in a
City [time span]

Q2 Top-k Dense/Volatile Topics in a
City [time span]

Q3 Top-k Dense/Volatile Concepts in a
Country [time span]

Q4 Top-k Dense/Volatile Terms in a
Region [time span]

Q5 Top-k Dense/Volatile Concepts in a
Region [time span]

Q6 Top-k Dense/Volatile Themes in a
Region [time span]

Q7 Top-k Dense/Volatile Terms in a
Country [time span]

Q8 Top-k Dense/Volatile Terms in a
Country Group by Region [time span]

Q9 Top-ALL Dense/Volatile Topics in a
Country Group by Region [time span]

5.2. Cost model

The core of the proposed partial materialization approach de-
ends on the trade-off between the storage cost of materializing
ny particular cuboid and the actual benefit that the materializa-
ion of the cuboid provides. To evaluate this benefit, we have to
stimate the (run time) cost of a query. To devise a cost model for
his estimation, we performed a micro-benchmark: we selected
set of representative queries (Q1–Q9, details in Table 3) for

he aforementioned spatio-textual-temporal measures and mea-
ured the run time of these queries on increasing data sizes.
he micro-benchmark (Fig. 9) confirmed that the running time
s directly proportional to the data size (the number of rows),
.e., it confirms that we can use the Linear Cost Model [41] (most
idely used cost model for cube materialization) and the associ-
ted benefit calculation. In Section 6.2 we will discuss STTCube
ncremental maintenance in detail and present a maintenance
lgorithm that allows us to minimize the STTCube maintenance
ost, such that we can avoid considering such cost during the
election of the views to be materialized. Then, to model the
ependency relationships among all the possible cuboids, we use
he lattice framework [41] (Fig. 8). Hence, to compute the benefit
f materializing a particular cuboid c , we need to compare the
ost of answering queries at all levels of granularity (i.e., for the
urrent cuboid c and all its descendants in the lattice) with the
urrent set of materialized cuboids against the cost when c is also
9

materialized.

Benefit(c) =
∑

c′∈descendants(c)∪{c}

cost(c ′)− size(c)

For instance, assume the lattice in Fig. 8 and that only the base
uboid (DLT) with 100M rows is materialized. If we consider DT
ith 4M rows, we have that, if materialized, queries against the
uboids D, T, ⋆, and DT itself can be answered through it (with a
ost of 4M). In contrast, without materializing DT, we will need
o compute the answer against DLT (with a cost of 100M). Hence,
aterializing DT will achieve a benefit of (100− 4) ∗ 4 = 384M.
hereas, materializing LT with 96M rows does not achieve a

ignificant benefit ((100− 96) ∗ 4 = 16M).
We adopt this chosen linear cost model and extend the Greedy

lgorithm approach [41] to our task (Algorithm 1). Additionally,
nd different from [41], Algorithm 1 accepts an input parameter K
nd materializes only the top-K measures values in each cuboid. We
iscuss the top-K value estimation in Section 7. For instance, for
= 10, it will materialize the top-10 keywords in each cuboid.

hen, any top-k query, with k≤K , for a materialized cuboid will
eturn the pre-computed answer. In case of Majority-based hier-
rchies, n− n relations in the hierarchies have no impact on the
reedy algorithm, whereas, for Replication-based hierarchies, the
reedy algorithm needs to be specialized to correctly compute
he values when elements are replicated.

Algorithm 1, given a size budget B (measured in rows, cuboids,
r GB), proceeds until the size of the current cube is as large
s possible within the budget (Line 6). At each step, it selects
mong all the non-materialized cuboids (Line 3) the one with the
ighest benefit (Line 4) and materializes it (Line 5). The difference
etween the exact (PEM) and approximate (PAM) materialization
sing Algorithm 1 is the value of K . When K=∞ the complete
orted list of measure values will be stored so that all top-k
ueries can be answered for that cuboid. We set K=∞ and K=n
to materialize only top n measure values) for PEM and PAM,
espectively.

.3. Partial exact materialization

We propose a partial exact materialization technique for pre-
omputing the spatio-textual and spatio-textual-temporal measure
alues. To answer an STT query for these measures we materialize
wo other distributive measures, namely Keyword Frequency f
nd SurfaceArea a. Then, since Keyword Density ρ and Keyword
olatility ∆ρ are algebraic measures, they can be computed from
he values of Keyword Frequency f and SurfaceArea a. Finally, Top-
Dense Keywords and Top-k Volatile keywords are holistic but for
n exact solution we materialize Top-ALL and hence, compute it
rom the materialized measure values (Fig. 5).

Algorithm 1: Greedy Materialization
1 GreedyMaterialization (B, �, K)

Input: Budget B, STTCube �, desired top-k K
Output: Partially Materialized STTCube �

′

2 do
3 Candidates← {V∈�|¬V .isMaterialized};
4 V ← maxV∈Candidates Benefit(V);
5 �.materialize(V , K);
6 while size(�)≤B;
7 return �

′;

Query rewriting. Finally, as in [41], after STTCube materialization,
queries are still formulated in terms of the base cuboid but
rewritten by the system to be evaluated over the smallest cuboid.

M. Iqbal, M. Lissandrini and T.B. Pedersen Information Systems 108 (2022) 102009

w
v
a
h
t
f
c
p
v
o
w

m
m
K
t
m
A
d
w
c

w
(
w
d
o
m
k

b

k
e
w
c
w
b
i
o
a
v
b
i
c
c
ϵ

Algorithm 2: Top-K Dense Keywords within an Area

1 TopKDense (Φ= {(ξ1,
−→
kw1), (ξ2,

−→
kw2), . . . , (ξn,

−→
kwn)}, k)

Input: Set of Top-k+1 Dense Keywords lists Φ , Integer k
Output: (ξ,

−→
kw) top-k keywords

−→
kw in the merged area ξ , δ

number of guaranteed top positions
2 ξ ←

⋃
i∈[1,n] ξi ; // Merge areas

3 A←SurfaceArea(ξ);
4 kw← {} ; // Empty dictionary

5 foreach (ξi,
−→
kwi) ∈ Φ do

6 foreach j ∈ [1, . . . , k+1] do
7 w←

−→
kwi.get(j); // keyword at j

8 f←
−→
kwi .freq(j); // frequency at j

9 if w /∈
−→
kw then

10 kw[w] ← f ;
11 else
12 kw[w] ← kw[w] + f ;

13 ϵ +=
−→
kwi .freq(k+ 1);

14
−→
kw←topK (kw, A) ; // top-k dense keywords

15 δ← maxj∈[1,...,k]
−→
kw.freq(j) ≥ ϵ ;

16 return
−→
kw, δ

5.4. Partial approximate materialization

As a result of the materialization performed by Algorithm 1,
hen querying a non-materialized cuboid, we can directly exploit
alues in the cuboid's materialized ancestors when computing
ll distributive and algebraic measures. On the other hand, for
olistic measures, we have to perform some additional compu-
ation. For instance, as mentioned earlier, to compute the value
or the Top-k Dense Keywords in an area, we can exploit the pre-
omputed Keyword Density values. However, then we need to
erform the top-k selection. That is, if the top-k for the current
iew is not materialized, we cannot exploit the materialized top-k
f the ancestor views without incurring the risk of returning the
rong result.
Yet, it is possible to exploit the top-k computation in some

aterialized cuboid to retrieve an approximate top-k and esti-
ate the result's accuracy [42]. In practice, for the Top-k Dense
eywords within an area, given a target k for the top-k compu-
ation, when materializing a cuboid, we materialize the top-k+1
ost dense keywords for that cuboid (i.e., set K = k+1 in
lgorithm 1). Then, to compute the top-k dense keywords for a
escendant cuboid by exploiting a materialized ancestor cuboid,
e determine which members of the list are guaranteed to be
orrect.
Algorithm 2 implements this computation for Top-k Dense Key-

ords within an area. It receives as input the set Φ = {(ξ1,
−→
kw1),

ξ2,
−→
kw2), . . . , (ξn,

−→
kwn)} of lists of top-K (i.e., k+1) dense key-

ords, and the value for k. The output is the ranked list of top-k
ense keywords in the area ξ that is composed by the merging
f the areas ξ1, ξ2, . . . , ξn. It computes the SurfaceArea of the
erged area ξ (lines 2–3). Then it merges all the aggregated
eyword frequencies in a single dictionary kw (lines 4–12) by

getting each keyword in each list (line 7) and the corresponding
frequency (line 8). Moreover, it keeps track of the upper-bound ϵ
frequency for keywords outside the current materialized ranking
for possible error reporting (line 13). The upper-bound ϵ helps to
report which keywords are guaranteed to be correct if the result
was computed using all the keywords instead of only top-k+1
keywords, i.e., any keyword with frequency ≤ ϵ is guaranteed
to be correct. In contrast, any keyword with frequency > ϵ may
be incorrectly included in the top-k list due to the unavailability
of all the keywords (as shown in Fig. 5). Once all frequencies
are merged, we can compute the top-k dense keywords using
10
the aggregated frequencies and the current surface area (line 14).
Finally, by comparing the value of ϵ with the frequencies of
keywords in the aggregated top-k, we report how many positions
in the current ranking are guaranteed to be exact (line 15). In the
best case, the frequency of the keyword at position k will be at
least ϵ, and thus the computed top-k is guaranteed to be correct.
On the other hand, if a keyword at position k has a frequency
below ϵ, we cannot guarantee the correctness of its position or
that any other keyword not reported has the same or higher
frequency.

Algorithm 3 implements this computation for Top-k Volatile
Keywords within an area. It receives as input the set Φ = {(ξ1,

−→
kw1,

T1), (ξ2,
−→
kw2, T2), . . . , (ξn,

−→
kwn, Tn)} of lists of top-K (i.e., k+1) dense

keywords in a specific area with respective time stamps, time
interval Tx divided into x equal-sized interval (e.g., day or month),
and the value for k. The output is the ranked list of top-k volatile
keywords in the area ξ that is composed by the merging of the ar-
eas ξ1, ξ2, . . . , ξn. It computes the SurfaceArea of the merged area
ξ (lines 2). Then it merges all the aggregated keyword frequencies
(line 10) and changes in keyword frequencies (line 11) for each
time instance in Tx(line 7) in respective dictionaries kw and ∆f
(lines 4–13) by getting each keyword in each list (line 8) and the
corresponding frequencies (line 9). If a keyword is not found in
the kw, ∆f , or prevf dictionaries then its value is considered to
e zero.
Moreover, it keeps track of the upper-bound ϵ frequency for

eywords outside the current materialized ranking for possible
rror reporting (line 13). The upper-bound ϵ helps to decide
hich keywords are guaranteed to be correct if the result was
omputed using all the keywords instead of only top-k+1 key-
ords, i.e., any keyword with frequency ≤ ϵ is guaranteed to
e correct whereas any keyword with frequency > ϵ may be
ncorrectly included in the top-k list due to the unavailability
f all the keywords (as shown in Fig. 5). Once all frequencies
nd changes in frequencies are merged, we compute the top-k
olatile keywords using the aggregated values (line 14). Finally,
y comparing the value of ϵ with the frequencies of keywords
n the aggregated top-k, we report how many positions in the
urrent ranking are guaranteed to be exact (line 15). In the best
ase, the frequency of the keyword at position k will be at least
, and thus the computed top-k is guaranteed to be correct.

Algorithm 3: Top-K Volatile Keywords within an Area
1 TopKVolatile (Φ= {(ξ1,

−−→
kw1, T1), . . . , (ξn,

−−→
kwn, Tn)},Tx ,k)

Input: Set of Top-k+1 Volatile Keywords lists Φ , Set of x Timestamps
Tx , Integer k

Output: (ξ,
−→
kw, Tn) top-k keywords

−→
kw in the merged area ξ over

time interval Tx , δ number of guaranteed top positions
2 ξ ←

⋃
i∈[1,n] ξi , A←SurfaceArea(ξ) ; // Merge areas

3 kw← {}, ∆f ← {}, prevf ← {} ; // Empty dictionaries

4 foreach t ∈ Tx do
5 foreach (ξi,

−→
kwi, Ti) ∈ Φ do

6 foreach j ∈ [1, . . . , k+1] do
7 if t ∈ Ti then
8 w←

−→
kwi.get(j); // keyword at j

9 f←
−→
kwi .freq(j); // frequency at j

10 kw[w] ← kw[w] + f ;
11 ∆f [w] ← ∆f [w] + |prevf [w] − f |;
12 prevf [w] ← f ;

13 ϵ +=
−→
kwi .freq(k+ 1);

14
−→
kw←topK (kw, A, ∆f) ; // top-k volatile keywords

15 δ← maxj∈[1,...,k]
−→
kw.freq(j) ≥ ϵ ;

16 return (ξ,
−→
kw, Tn), δ

M. Iqbal, M. Lissandrini and T.B. Pedersen Information Systems 108 (2022) 102009

i
F
p
t
w
t
c
i
i

6

s
X
s
c
c
m
u
r
n

i
i
(
t

Algorithm 4: STTCubeConstruction
1 ConstructSTTCube (X ,T ,G, B, K)

Input: Collection of Spatio-Textual-Temporal Objects X , Textual
Taxonomy T , Geographical Taxonomy G, Materialization Budget
B, desired top-k K

Output: Spatio-Textual-Temporal Cube �

2 �← load empty cube;
3 �.dTime ← initialize temporal dimension;
4 �.dLocation ← initialize spatial dimension;
5 �.dText ← initialize textual dimension;
6 �.F ← initialize empty Fact Table;
7 foreach x ∈ X do
8 UpdateTemporalHierarchies(x.τ , �.dTime);
9 λ′ ←ProcessLocation(x.λ);

10 UpdateSpatialHierarchies(λ′,G, �.dLocation);
11 ϕ′ ←ProcessText(x.ϕ);
12 UpdateTextualHierarchies(ϕ′,T , �.dText);
13 add fact(x.τ , λ′, ϕ′) to the fact batch insert pool;
14 GreedyMaterialization(B, �, K);
15 return �;

6. STTCube construction and maintenance

Here, we describe the proposed approaches for construct-
ng and maintaining an STTCube from a dataset of STT objects.
irst, we explain the construction of spatial, textual, and tem-
oral hierarchies, the population of the fact table, and compu-
ation of STT measures from the dataset of STT objects. Next,
e discuss the proposed method for incrementally maintaining
he already constructed STTCube by analyzing the associated
osts and their impact on the selection of cuboids for material-
zation. Lastly, we discuss the proposed algorithm for STTCube
ncremental maintenance.

.1. STTCube construction

Algorithm 4 describes the pre-processing techniques and con-
truction of the STTCube in detail. Algorithm 4 takes a collection
of STT objects to be analyzed, a textual taxonomy T with

emantic information about the terms, themes, topics, and con-
epts, and a geographical taxonomy G for cities, regions, and
ountries. Standard date functions are used for the temporal di-
ension processing. The proposed STTCube design is realized
sing the classic snowflake schema (Section 7). Moreover, it also
eceives as input the parameters B and K as the budget and
umber of top-K keywords for the partial materialization.
Algorithm 4 constructs the STTCube in an incremental way,

t initializes an empty cube (line 2), and then the correspond-
ng spatial dLocation, textual dText , and temporal dTime dimensions
lines 3–5) as well as the Fact Table F (line 6). In particular,
he dLocation has the grid-based hierarchy and the semantic-based
hierarchy with the base level at each object's Location λ (i.e., the
geographical point), and then the levels City, Region, Country, and

Algorithm 5: UpdateSTTBaseCube
1 UpdateSTTBaseCube (�,X ,T ,G)

Input: STTCube �, Collection of Spatio-Textual-Temporal Objects X ,
Textual Taxonomy T , Geographical Taxonomy G

Output: Updated Spatio-Textual-Temporal Base Cube �
′

2 foreach x ∈ X do
3 UpdateTemporalHierarchies(x.τ , �.dTime);
4 λ′ ←ProcessLocation(x.λ);
5 UpdateSpatialHierarchies(λ′,G, �.dLocation);
6 ϕ′ ←ProcessText(x.ϕ);
7 UpdateTextualHierarchies(ϕ′,T , �.dText);
8 add fact(x.τ , λ′, ϕ′) to the fact batch insert pool;
9 return �

′;
11
Algorithm 6: ProcessText
1 ProcessText (ϕ)

Input: Text ϕ

Output: Processed Text ϕ′

2 words← ϕ.split();
3 ϕ′ ← {} ; // Empty bag-of-words
4 foreach word ∈ words do
5 if word ∈ StopWords or word is Invalid then
6 word.excluded← true;
7 continue;
8 else
9 word.excluded← false;

10 word.lemma← Lemmatize(word);
11 ϕ′.add(word);
12 return ϕ′;

All (5 levels in total). dText , instead, has the hierarchy built from
the base level Term ϕ and then Theme, Topic, Concept, and All
(5 levels in total). Finally, dTime contains the Date and TimeOfDay
hierarchies mentioned in Section 3.

Once the basic structure is prepared, Algorithm 4 loops through
each STT object in X (lines 8–13). In this loop, it extracts and
initializes from each STT object the base-level members λ, ϕ,
and τ for each dimension. Then, once the base level data has
been extracted, it proceeds with building the various dimen-
sion hierarchies starting from the existing base-level members
and exploiting the provided spatial G and textual T taxonomies
(lines 8–12). Once the dimension hierarchies are built, the STT
object itself is then inserted in the fact table F of the STTCube
(line 13) so that each fact is linked to the lowest (base) level
members λ, ϕ, and τ in the respective dimensions. Algorithm 4
uses batch pooling to perform updates and inserts in batches. In
this step (line 13), the fact measure values are also computed
(e.g., the keyword count). As the last step (line 14), Algorithm
4 executes the (partial) materialization procedure.
Spatial Hierarchies Construction. In our proposed STTCube the
base level for the spatial hierarchies is the Location λ present in
the raw data, i.e., the longitude and latitude points. Hence, we
use Military Grid Reference System (MGRS) for grid-based hierar-
chy, and when building the semantic-based hierarchy, individual
points are linked to the respective cities using the information in
the available geographical taxonomy G, or to a special member for
points that link to unknown locations. Therefore, this corresponds
to the step function from λ to City. The spatial taxonomy G is
also used to generate the spatial hierarchy step functions for the
higher levels.

Textual Hierarchies Construction. The unstructured nature of
the text makes it a challenging task to convert it into a dimension
of a cube. In Algorithms 4 and 5, the ProcessText (Algorithm
6) function (line 11) implements the following standard text
processing [43] steps: (1) splits the text into individual words
(line 2), (2) removes stop words and invalid words (line 6), and
(3) converts the remaining words to their base form, e.g., ‘‘works’’
and ‘‘working’’ have the same base form ‘‘work’’, (line 10). The
final processed text is used to populate the Term base-level ϕ in
the textual dimension. This implements the base step function
and links every fact to one or more Terms, hence it has an
n−n cardinality. Moreover, while constructing the higher levels,
using the semantic taxonomy T (e.g., WordNet), each STT object
is linked to one or more Themes, and similarly for Topics, and
Concepts.
STT Base Cube Update. If the cube is already constructed, i.e., the
cube is being maintained instead of constructed for the first
time, then Algorithm 5 maintains the base STTCube by incremen-
tally incorporating the new data. Algorithm 5 takes an already
constructed STTCube �, a collection X of new STT objects to

M. Iqbal, M. Lissandrini and T.B. Pedersen Information Systems 108 (2022) 102009

b
a
t

c
a
t
o
h
c
(

6

w
p
b
c
e
m
m
o
i
a
(
d
t
o
i

a
o
c
A
f
q
a
a
a
n
S
r
s
p

s
d
s
c

I

R
∆

i

c

t
b

R

U

E

N

M
u
s
e

U

e analyzed, a textual taxonomy T with semantic information
bout the terms, themes, topics, and concepts, and a geographical
axonomy G for cities, regions, and countries.

Differently from Algorithm 4, Algorithm 5 receives an already
onstructed STTCube � as input. Hence, it does not have to load
nd initialize an empty cube with respective dimensions and fact
able. Algorithm 5 (similar to Algorithm 4) loops through each STT
bject in X (lines 2–8), incrementally maintain various dimension
ierarchies, adds the STT object to the fact batch insert pool, and
omputes the measure values for the (new) facts. As the last step
line 9) Algorithm 5 returns the updated STT base Cube.

.2. STTCube maintenance

After the STTCube is initially constructed, it is required that
e can efficiently perform incremental maintenance, i.e., incor-
orate new data, primarily new fact data (e.g., new tweets), as it
ecomes available. To address this, we need to consider how the
ost of cube maintenance, i.e., the cost to update the contents of
ach materialized view, affects the selection of the views to be
aterialized and how to subsequently perform the maintenance
ost efficiently. In accordance with the literature [44], our main
bservation is that the volume of the new data to be incorporated
n the already constructed STTCube is much smaller than the data
lready stored in it. For example, in the case of the tweets dataset
Section 7), we collect on average around 3 million tweets per
ay, so that after six weeks, adding a new day’s data corresponds
o approximately only 1/50 of the already collected data. More-
ver, the size difference between the newly available and already
ncorporated data in the STTCube keeps growing over time.

The problem of view selection in the presence of updates is
well-known issue [44]. In particular, in previous work, the set
f available views in a Data Warehouse is modeled through a so-
alled OR-graph, which corresponds to our STT lattice in Fig. 8.
s analyzed in such works [44], for the case of Data Cubes, the
requency of updates is (much) smaller than the frequency of
ueries. Therefore, since the general volume of updates across
ll views is negligible when compared to the volume of data
lready in each view, we are able to apply the same view selection
lgorithm, with the same performance guarantees, without the
eed to consider the update cost [44]. Furthermore, our proposed
TTCube incremental maintenance method only updates the al-
eady materialized views as new data becomes available, i.e., the
et of materialized views will not change. In the following, we
resent a view maintenance procedure that allows us to do so.
Given a materialized view mv and a base fact delta ∆f , the

et of data that needs to be updated or inserted (there are no
eletes, explained later) to the data cube, the following equation
tates the cost of incremental maintenance (IM) and its associated
omponents.

M(mv, ∆f) = Read(mv, ∆f)+ Upsert(mv, ∆t)

ead(mv, ∆f) represents the cost of reading the base fact delta
f to generate a target delta ∆t (∆f → ∆t) by aggregating rows

n ∆f in such a way that each row of ∆t represents either an
update or insert over the view mv. In some cases, it is required
to read some of mv as well in order to produce a merged row
ombining an existing row in mv and a new row in ∆f . However,
the number of rows needed to be read from mv is proportional
o the size of ∆f . Hence, the cost of Read(mv, ∆f) is represented
y the following equation.

ead(mv, ∆f) = size(∆f)

psert(mv, ∆t) represents the cost of upserting rows, i.e., in-
serting new ones and updating existing ones, in the view mv.
ach row in ∆ is either an insert or update on mv. NoOfUpdates
t

12
and NoOfInserts are update and insert counters, respectively. Each
update or insert operation increments the respective counter by
one and is represented by the following equation.

NoOfUpdates = |∆t ∩mv|

oOfInserts = |∆t \mv|

oreover, the cost of an insert is (much) smaller than of an
pdate. They are represented by CostInsert and CostUpdate, re-
pectively. Thus, the cost of upsert is represented by the following
quation.

psert(mv, ∆t) = CostInsert × NoOfInserts+
CostUpdate× NoOfUpdates

Therefore, the cost of upsert is proportional to the size of ∆t .

Upsert(mv, ∆t) ∼ size(∆t)

Lastly, there are no delete operations in the process of STTCube
incremental maintenance because every new STT object to be
incorporated is a new object, e.g., in the case of social media
platform like Twitter, tweets are not modified or deleted once
created.

Example. Fig. 10 shows the proposed STTCube incremental main-
tenance (IMstt) mechanism. It shows the flow and aggregation of
deltas, i.e., the left column shows how ∆o (delta containing the
new STT objects) is aggregated for a specific materialized view
(mv) (or base STTCube), and each row represents how a mv (or
base STTCube) is updated using the respective ∆t (target delta
computed for the specific mv (or base STTCube)). The incremen-
tal maintenance starts with the availability of new STT objects
∆o (top-left gray box). At first, IMstt groups similar STT objects,
e.g., objects having the same terms, location, and timestamps,
by computing ∆f (base fact delta), and uses ∆f to update the
base STTCube, i.e., updating the dimensions and fact table. Next,
for each mv, IMstt uses the best available (smallest that can be
aggregated to the granularity of mv) delta, we call it ∆s (source
delta), to produce a new ∆t (target delta) by aggregating available
data in ∆s at the same level of aggregation as the considered
mv. Each row of ∆t corresponds to an update or insert on the
respective mv. Once the ∆t is ready, IMstt uses it to maintain
the respective mv. Also, IMstt processes the materialized views in
a specific order, i.e., the largest ones first. In Fig. 10, IMstt uses
∆f as source delta to compute ∆mv1 (a target delta) for view
mv1 and maintains mv1 using ∆mv1. Similarly, for mv2, IMstt uses
∆mv1 as source delta to compute ∆mv2 for mv2 and uses ∆mv2 to
maintain mv2. For mv1, the read, update, and insert numbers are
4 (number of rows in the respective ∆s), 2 rows updated, and 2
rows inserted, respectively. Similarly, for mv2, the read, update
and insert numbers are 2, 2, and 0, respectively.

Algorithm 7 implements the proposed STTCube incremental
maintenance mechanism. It receives as input the STTCube � to
be updated, a collection ∆o of new STT objects to be incorporated
in the STTCube, a textual taxonomy T with semantic information
about the terms, themes, topics, and concepts, a geographical
taxonomy G for cities, regions, and countries, and STTCube lattice
L. The output is the updated STTCube �

′. It starts by invoking
the UpdateSTTBaseCube function (described in Algorithm 5) to
update the base cube, i.e., update respective hierarchies and the
fact table with new data (line 2). It computes the base fact delta
∆f containing all hierarchies’ lowest-level members (line 3). At
this step, it aggregates multiple facts in ∆o representing the same
aggregated data. Next, it constructs an empty list ∆S to store all
the computed deltas (some of which are computed later in the
process) and adds the currently computed ∆f to ∆S (lines 4–
5). It sorts all the available materialized views in � for optimal

M. Iqbal, M. Lissandrini and T.B. Pedersen Information Systems 108 (2022) 102009

a
d
v
t
i
u

Fig. 10. Example: STTCube's maintenance cost.
t
s
a
t
A
(

7

T
s
d
t
i

Algorithm 7: STTCube Maintenance
1 STTCubeMaintenance (�, ∆o,T ,G, L)

Input: STTCube �, Collection of new STT Objects ∆o , Textual
Taxonomy T , Geographical Taxonomy G, STTCube Lattice L

Output: Incrementally Maintained STTCube �
′

2 UpdateSTTBaseCube(�,∆o,T ,G); // Update base STTCube �

using Algorithm 5
3 ∆f ← compute base fact delta;
4 ∆S ← []; // Empty list of computed deltas
5 ∆S.add(∆mv);
6 MV ←Sort(�.MaterializedViews, L) ; // Order views, larger

views first, for optimal update using lattice
7 foreach mv ∈ MV do
8 ∆s ← find the smallest source delta for mv using ∆S and L;
9 ∆mv ← compute target delta for mv using ∆s;

10 foreach row ∈ ∆mv do
11 if row /∈ mv then
12 add row to the batch insert pool;
13 else
14 add update for row to the batch update pool;
15 ∆S.add(∆mv); // Add currently computed ∆mv to the

list of available deltas ∆S
16 return �

′

maintenance, which means that it maintains views in a top-down
fashion, i.e., maintain larger views first (see Fig. 8) and computes
respective deltas early on, which will serve as better candidates
for maintaining the later views (line 6). For example, in Fig. 10 it
maintains mv1 before mv2 and uses ∆mv1 to maintain mv2. Then
it loops through all the sorted views (lines 7–14) and finds the
smallest source delta ∆s that can be used to maintain the current
view mv from ∆S (line 8). Then it computes target delta ∆mv by
ggregating rows in ∆s such that each row in the computed target
elta is either an update or insert to the current materialized
iew mv (line 9). Once the ∆mv is computed, Algorithm 5 iterates
hrough all the rows in ∆mv and performs either an update or
nsert on mv (lines 10–14). Here, it uses batch pooling to perform
pdates and inserts in batches since most DBMS have utilities
13
o apply such batches much faster than using individual SQL
tatements. Finally, it adds the newly computed ∆mv to the list of
vailable deltas ∆S (line 15). Once the base fact table, dimensions
ables, and all the materialized views in the � have been updated,
lgorithm 7 returns the incrementally maintained STTCube �

′

line 16).

. Experimental evaluation

Now, we report on the performance of STTCube analysis. In
particular, we compare the different materialization strategies
for STTCube and No STTCube (NC) implementations in terms of
query response time (QRT) and storage cost. NC answers the
queries by computing the query response from base data without
constructing the STTCube. Also, we compare QRT and hierar-
chy construction time for different combinations of hierarchy
schemes. Moreover, we also report on the accuracy of PAM and
demonstrate the advantage in performance when compared to
PEM. Furthermore, we compare our proposed IMstt method with
a baseline maintenance method in terms of maintenance time.
Lastly, we compare QRTs for different spatial and textual hierar-
chy schemes, showing that combinations of Grid-based spatial and
Majority-based textual (GM) hierarchy scheme achieves the fastest
QRTs among all hierarchy combinations.

Experimental Setup. We evaluate the STTCube on a real-world
witter dataset containing 125 million tweets collected over
ix weeks. We perform experiments on five different sizes of
atasets to show the impact of data size on query response
ime). Each tweet contains the tweet location, text, and time. We
mplemented the STTCube in a leading commercial RDBMS, called
RDBMS-X as we cannot disclose the name. The proposed design
is realized using a snowflake schema to avoid redundancy in the
dimension data. Using a snowflake schema requires more joins to
be executed; hence, it can take much longer to produce results
depending on the dimensions, but it provides less redundancy
and more flexibility in handling n − n hierarchies. Moreover, for

M. Iqbal, M. Lissandrini and T.B. Pedersen Information Systems 108 (2022) 102009
Fig. 11. QRTs for STT measures for different combinations of hierarchy schemes over 125 Million Tweets (log scale).
g

E
s
e

n− n, hierarchies are implemented using a bridge table. Further-
more, QRTs also heavily relies on the internal implementation of
the join algorithms in the used DBMS, but these are outside the
scope of our analysis.

We implemented the Pre-Processing (PP) component, where
the whole raw dataset is parsed and the relational tables are
populated, in Java (v11). Most of the tests are run on a Windows
Server machine with 2 Intel Xeon 2.50 GHz CPUs from 2017, fast
solid-state drives, and 16 GB RAM. We perform the QRTs scala-
bility (Fig. 12) and STT-Cube incremental maintenance (Fig. 14)
experiments on a Ubuntu server machine with 32 AMD 3.0 GHz
CPUs, fast solid-state drives, and 251 GB RAM, so we can handle
the very large data volumes in those experiments.

We implemented the semantic-based and grid-based hierar-
chy schemes for the spatial dimension, replication-based and
majority-based hierarchy schemes for the textual dimension (Sec-
tion 3.2), and Date hierarchy for the temporal dimension.

In particular, we extracted the taxonomy for the spatial di-
mension from GeoNames [45]. For the City level, we considered
all the cities having population > 1000 and for the Region
level, we use administrative divisions information available in
the GeoNames dataset. We use the reverse geocoding process to
find the city name for the Location coordinates. Moreover, the
grid-based hierarchy has been implemented with the Military
Grid Reference System (MGRS) using squares with a side of size
1 meter, 10 m, 100 m, 1000 m, and 10000 m.

For the textual dimension, as a taxonomy for Terms, Themes,
Topics, and Concepts, we use the widely used WordNet [37]. We
use WordNet as an imperfect text collection of relevant terms;
hence, all terms that are missing in there, such as hashtags or
terms formed by words glued together without spaces, are not
present in its hierarchy. We use the direct HYPERNYM link of
WordNet to decide the parent member for a Term, Theme, and
Topic. If a term is present in WordNet and has a super-class (HY-
PERNYM), then the super-class becomes the parent of the term.
Otherwise, it becomes its own parent (this avoids unbalanced
hierarchies and UNKNOWN values in the hierarchy). For text pre-
processing – tokenization, lemmatization, and stop word removal
– we use the Stanford Core NLP library [46]. We implemented the
temporal dimension using the standard Date and Time functions
supported in RDBMS-X.

Spatial, Textual, and Temporal Levels Members. In the con-

structed STTCube, the base levels contain 40.1 million unique

14
Location Points and 9.8 million unique Terms (both valid and
invalid). The GeoNames taxonomy contains 132K cities, divided
into 4K administrative divisions (regions) for 247 countries. Amon
those, we have tweets for 104 K cities, 3.8 K regions, and 246
distinct countries. In the textual hierarchy, terms are grouped into
23.8 K Themes, 19.4 K Topics, and 17.6 K Concepts. Furthermore,
the temporal dimension spans over 37 days. Finally, for PAM we
materialize K=31 densest keywords (selection of K is discussed
later in this section, Fig. 15(c)).

We compare PEM and PAM strategies with the following three
baselines. No STTCube (NC): is the traditional RDBMS setup with
all textual, spatial, and temporal functions implemented as built-
in or user-defined functions. Specifically, NC uses user-defined
functions for text (for retrieving individual terms) and location
processing (e.g., identification of the city a particular longitude,
latitude point belongs to) and built-in functions for timestamp.
Further, NC filters on location and timestamp for the queried area
and time and performs a series of joins, e.g., 4 joins for Concept
level, to retrieve information for the requested textual level.
Finally, it groups results on the textual and temporal columns,
computes the STT measure values, and performs the top-k selec-
tion. NC is the traditional solution one would go for without the
STTCube. No Materialization (NM): constructs the STTCube and
minimizes the storage cost by only materializing the base cuboid
and computing all query responses from it. Full Materialization
(FM): minimizes the QRT by materializing every cuboid in the
STTCube. With this approach, queries are answered through a
lookup in the pre-computed cuboid. These three baselines are
at the extreme ends of the space–time trade-off and are usually
infeasible for large datasets.

Queries.We perform experiments using nine different STT queries.
ach STT query, described in Table 3, targets different levels of
patial, textual, and temporal granularities. Each query requests
ither dense or volatile keywords. The [time span] constraint is

only required for dense keywords queries; hence, queries without
time constraint are dense keywords queries. We execute each
query ten times with randomly generated parameters for each
method and report mean and standard deviation.

Query Response Time. For Top-k Dense and Top-k Volatile Key-
words within an area measures, we compare the QRT of PEM and
PAM with the NC, NM, and FM baselines. For Keyword Density
and Keyword Volatility, no approximate solution is possible so we

M. Iqbal, M. Lissandrini and T.B. Pedersen Information Systems 108 (2022) 102009

o

(
T
F
s

f
d
s
t
F
Q
S
S
n

y

Fig. 12. QRT Vs data size.
nly compare PEM with NC, NM, and FM. As the Majority-based
textual hierarchy scheme links facts to Theme instead of Terms
Section 3.2), we only evaluate five out of nine queries requesting
heme, Topic, and Concept for it (Figs. 11b, 11d, 11f, and 11h).
urthermore, we cannot evaluate PAM for Q9 as no approximate
olution is possible for it.
We plot results in Figs. 11a–11h for 100% (125M) of data and

ive out of nine queries, as the results are similar for smaller
ata sizes and omitted queries.1 Specifically, Figs. 11a and 11e
how the QRTs for the Grid-based spatial and Replication-based
extual (GR) hierarchy combination for all measures. Similarly,
igs. 11b and 11f, Figs. 11c and 11g, and Figs. 11d and 11h show
RTs for Grid-based spatial and Majority-based textual (GM),
emantic-based spatial and Replication-based textual (SR), and
emantic-based spatial and Majority-based textual (SM) combi-
ations, respectively.
Fig. 11 has queries on the x-axis and QRTs in msec on the

-axis (note: log scale). Fig. 11 confirms that
• NC is 1−5 orders of magnitude slower than NM. Specifically,

regardless of the spatial hierarchy scheme, it is 1−2 and
3−5 orders of magnitude slower than NM for Replication-
based and Majority-based textual hierarchy, respectively.
The Majority-based textual hierarchy scheme achieves faster

1 We have omitted the figures for Keywords Density and Top-k Volatile
Keyword within an area measures (can be found in Appendix Fig. A.1) as we
observed similar results.
15
QRTs because it does not process individual Terms but di-
rectly links Theme to the fact, hence, drastically reducing the
number of rows to process (from millions to thousands).
• NM is 1−4 and 3−5 orders of magnitude slower than PEM

and PAM, respectively, for all measures (both algebraic and
holistic) and combinations of hierarchy schemes.
• PEM is on average six times slower than FM which achieves

its fast QRTs at the expense of a highly increased storage
cost (Fig. 13(a)).
• PAM achieves near-optimal QRTs because it materializes only

the K densest keywords in the cuboid, hence it has much
fewer rows to process.
• QRTs for Q9 for Top-k Volatile Keyword within an area and

Top-k Dense Keywords within an area holistic measures for
all combinations of hierarchy schemes are the worst for
PAM (same as NM) because it requests ALL keywords' den-
sities instead of top-k which cannot be computed from the
approximate pre-aggregated information. To generate a re-
sponse for Q9, we have to process all detailed data directly
from the base facts. In comparison, PEM and PAM mate-
rialize a subset of views (also a subset of rows for PAM)
and use the pre-aggregated measure values in those views
to efficiently generate a response for a query instead of
processing base facts, thus improving the overall QRT.
• NC is the slowest of all (1 − 5 orders of magnitude slower

than the slowest STTCube NM) because it has to process
the complete dataset for computing each query response

M. Iqbal, M. Lissandrini and T.B. Pedersen Information Systems 108 (2022) 102009

d
c
T
a
c
b
c
O
Q
c
r
P

S
P
d
t
F
w
o
i
s
c
P
o
t
i
P
v
i
c
g
t

Fig. 13. Benefit and storage cost for views materialization and construction time for cube and hierarchies.
and cannot take advantage of the STTCube optimizations for
algebraic and holistic STT measures.
• Among all the hierarchy scheme combinations (explained

in Section 3.2), GM has the fastest QRTs mainly because of
Majority-based which drastically reduces the row count by
linking the Theme directly to each Fact instead of individual
Terms, whereas, GR has the slowest QRTs due to Replication-
based having far more rows to process than Majority-based
textual hierarchy.
• Furthermore, Grid and Semantic-based spatial hierarchies

have similar QRTs, i.e., GM and GR have the same perfor-
mance as SM and SR, respectively.

Fig. 12 shows the scalability of PEM and PAM over growing
ata sizes for different combinations of hierarchy schemes and
onfirms that the QRTs are almost constant as the data grows.2
his is because the sizes of the materialized views do not increase
lot as the data grows. Only new dimension members, e.g., new
ities or topics, increase the size of materialized views, but only
y a small fraction. Figs. 12d–12f confirm that the GM hierarchy
ombination results in the fastest QRTs, i.e., all QRTs < 50 msec.
n the contrary, Figs. 12a–12c show that GR yields the slowest
RTs, with QRT as high as 100 msec. Fig. 12 confirms that PAM
onsistently achieves the fastest QRTs, i.e., all QRTs < 50 msec,
egardless of the hierarchy schemes. Fig. 12 shows that PEM and
AM scale linearly w.r.t. data size.

torage Cost. We now compare the storage cost for FM, PEM,
AM, and NM. We do not compare NC 's storage cost because it
oes not construct STTCube and hence does not materialize any-
hing. We only show the storage cost for up to 20 million because
M takes an unfeasible amount of time (shown in Fig. 13(c)),
hile for the other methods and over the larger datasets, we
bserve the same trend. We use the number of rows in a view as
ts storage cost. The base cube's storage cost is always needed. Be-
ides that, every additional materialized view adds to the storage
ost, as displayed in Fig. 13(a), that shows the storage cost of NM,
AM, PEM, and FM over growing data sizes. The materialization
f the STTCube using PEM and PAM only adds 13% and 0.1% to
he storage cost of the base cube, respectively. Whereas using FM
ncreases the storage cost by more than an order of magnitude.
EM reduces the storage cost by only materializing a subset of
iews (four views) and still achieves 2-5 orders of magnitude
mprovement in QRT (Figs. 11). PAM further reduces the storage
ost by only materializing a subset of rows in a view (top-k) and
ains an additional order of magnitude improvement in QRT. On
he other hand, FM materializes all views in a cube, i.e., 500 (5×
5×5×4) views in our case, which makes the view materialization
storage cost much higher (one order of magnitude) than the base
cube itself, as shown in Fig. 13(a). Fig. 13(a) confirms that our

2 We have omitted the figures for Keywords Density and Top-k Volatile
Keyword within an area measures as we observed similar results.
16
proposed methods PEM and PAM reduce the storage cost between
97% and 99.9% compared to FM.

Views Selection for Materialization. Our proposed methods PEM
and PAM are partial materialization methods that materialize
only a subset of the cuboids. Hence, an important trade-off to be
understood is between the number of cuboids to materialize, the
corresponding storage cost, and the gain in query response time
achieved. We empirically evaluate the benefit gained (improve-
ments in QRT for all dependent cells, which can be answered
using this view) against the cost of materializing the view (Al-
gorithm 1). We consider the base cube as a necessary view to
be materialized and consider its benefit as zero. Fig. 13(b) shows
that materializing three cuboids ((Day, City, Term), (Day, Location,
Theme), and (Day, Region, Term)) on top of the base cube gain the
most benefit after which we do not get a significant advantage of
materializing further cuboids. The reason is that the materialized
cuboids are already small enough, so the benefit of materializing
any descendant cuboid is small. Hence, materializing 4 cuboids
represents the best trade-off between QRT and storage cost.

Pre-Processing and Cube Construction. Here, we report the time
for the construction of STTCube. Construction of an STTCube is
divided into two steps: 1) Pre-Processing (PP) of base facts (STT
objects) and population of the relational tables and 2) materializa-
tion of views. Further, the materialization of views can be done
either using FM, PEM, or PAM. In Fig. 13(c), we have data sizes
on the x-axis and time in minutes on the y-axis (note: log scale).
FM is the most time-consuming among all and adds significant
overhead on top of PP time and does not scale. On the contrary,
PEM and PAM time is negligible compared to the FM time. Hence,
with PEM and PAM STTCube construction time scales linearly. To
evaluate STTCube's ability to handle updates (maintenance wall-
clock time), we performed several updates of 25M tweets each
(PP_INC in Fig. 13(c)). Experiments confirm that STTCube's update
time grows linearly with the amount of new STT objects because
it only processes the new STT objects and updates respective fact
and dimensions tables.

Furthermore, we compare the different hierarchy schemes
w.r.t. their construction time. Fig. 13(d) shows the hierarchies’
construction time for different hierarchy schemes. It is evident
from Fig. 13(d) that, among all, the Replication-based textual
hierarchy scheme takes the longest to construct because, for
every single spatio-textual-temporal object, it has to process each
individual Term and construct hierarchy for it. Whereas, for all
other schemes, for each spatio-textual-temporal object, only one
hierarchy instance is processed. Fig. 13(d) confirms that all of the
hierarchy schemes are constructed in linear time w.r.t. data size,
allowing STTCube to support multiple hierarchy schemes.

STTCube Incremental Maintenance. Next, we performed experi-
ments to demonstrate the advantages of our proposed STTCube
incremental maintenance method IMstt over a baseline main-
tenance solution, Recomputeall, of recomputing the views from
scratch after each update. We constructed an STTCube over 30

M. Iqbal, M. Lissandrini and T.B. Pedersen Information Systems 108 (2022) 102009

m
w
d
c
I
o
m
t
d
t
a
e
R
s
c
t
F
t
o
m
b
t
e
I
S
p
c
t
g

A
m
r
a
i
8
r
h
h

Q
g
T
a
F
d
o
S
o
o
t

t
s
s
t
t
m
t
a
n
r
K
f
s
K
2
t
i
t
c
b
l
a

S
a
g
Q
Q
c
w
a
a
t
m
t
P
e

8

w
o
e
t
f
S
O
t
S
t
S
F
s

Fig. 14. STTCube incremental maintenance.

illion tweets and partially materialize it (see Fig. 13(b)). Then,
e performed several maintenance operations to incorporate one
ay’s data (30 million for each day, i.e, ∆=30M) in the already
onstructed STTCube and recorded the execution time for the
Mstt and Recomputeall. This corresponds to including data for
ne more week into the existing STTCube by performing seven
aintenance operations of one day each. Fig. 14 shows the time

aken by IMstt and Recomputeall methods for incorporating new
ata into the already constructed STTCube. The x-axis shows
he day number for each maintenance operation, while the y-
xis shows the processing time for each day (in hours). It is
vident that IMstt is on average an order of magnitude faster than
ecomputeall in this setting. IMstt execution time increases very
lowly and linearly with the size of the existing STTCube. On the
ontrary, Recomputeall's execution time is growing on average 9
imes faster with the increase in the size of the existing STTCube.
ig. 14 confirms that time taken by IMstt is negligible compared
o Recomputeall even when it is constructed for only one week
f data. In a real setting, an STTCube usually contains data for
any weeks and months (even years); in this case, the difference
etween IMstt and Recomputeall execution time will be much, up
o several orders of magnitude, higher. It is evident from these
xperiments that the proposed incremental maintenance method
Mstt maintains STTCube efficiently and the size of the existing
TTCube has a limited impact. Thus, we have confirmed our hy-
othesis that the volume/ cost of updates on a view is negligible
ompared to the volume of data in that view. We can apply
he same view selection algorithm, with the same performance
uarantees, without the need to consider the maintenance cost.

ccuracy. Given that PAM efficiently computes the approxi-
ate measure values, it becomes necessary to evaluate its accu-

acy [42]. To evaluate the accuracy of PAM, we use NM's results
s ground truth. Our evaluation result in Fig. 15(a) confirms that
t achieves high accuracy. Specifically, it is 100% for 6 out of
queries and 90%–97% for 2. Queries with 90%–97% accuracy

equest as many keywords as are materialized, and the risk of
aving wrong results near the border (bottom of the top-k list) is
igher.

RT of STTOLAP Operators. Our proposed materialization strate-
ies (PEM and PAM) improves the QRTs for STTOLAP operators.
o demonstrate this, we perform a series of STTOLAP operations
nd measure their QRT for different materialization strategies.
ig. 15(b) shows the QRTs for multiple STTOLAP operations for
ifferent materialization strategies. We have STTOLAP operators
n the x-axis (RU, D, S, and DD represents STT Roll Up, Dice,
lice, and Drill Down operators, respectively) on QRT in msec
n the y-axis. It is evident that NM is on average 3–5 orders
f magnitude slower than PEM which is one order of magni-
ude slower than PAM. Furthermore, PAM achieves near-optimal
 f

17
QRTs, just a fraction higher than FM. These experiments confirm
that STTCube's materialization methods (PEM and PAM) improves
STTOLAP operators' QRTs by materializing only a subset of cuboids.

Top-K Value Estimation. Here, we study the relationship be-
tween QRT and the value of materialized K . We create seven
different STTCube materialization versions using 10, 20, 50, 100,
200, 500, and 1000 as the value of K . Next, we use the Gamma
distribution to generate 100 random numbers, to be used as top-
k values, in the range of 1 and 1000. We chose the Gamma
distribution because it resembles a common long-tail distribution
for top-k values. We execute each query for all the 100 generated
op-k values over all seven materialization versions. Fig. 15(c)
hows the QRT for all queries over different materialization ver-
ions. For K=10 and 20, the median value is the same as the box
op, hence not visible in the plot. It is evident from Fig. 15(c)
hat a larger value of materialized K achieves faster QRTs (lower
edian value) because almost all the queries are answered using

he pre-computed measure values. But, in the case of smaller K ,
ll the queries requesting k>K need to be answered using the
on-pre-computed measure values from the base cuboid. Hence,
esulting in slower QRTs (higher median value). A larger value of
such as 1000 is not recommended because 1) there will be very

ew queries requesting a larger top-k and 2) it will require more
torage cost (Fig. 13(a)). Specifically, between K=50 and 100 and
=100 and 200 QRT decrease by 35% and 0% but storage increase
50% and 200%, respectively. Hence, these experiments confirm
hat choosing a value between 20–50 for K in our current exper-
mental settings is a near-optimal choice. Furthermore, selecting
he K value to materialize is use-case dependent. In practice, one
an target the most frequent request value for k in a normal
usiness analysis scenario (e.g., the 90th percentile from historic
og of queries and workloads) and use a value for K that is slightly
bove that value (e.g., the 91th percentile).

ummary of Findings. Our empirical evaluation confirms that
mong the spatio-textual-temporal cube materialization strate-
ies, NM uses the least amount of storage but has the worst
RT, while FM requires far too much storage to achieve optimal
RT. Among all the methods, NC has by far the worst QRT. In
omparison, our proposed methods PEM and PAM improve QRT
ith 1–5 orders of magnitude compared to NM, reduce stor-
ge cost between 97% to 99.9% compared to FM and add only
minor overhead in the spatio-textual-temporal cube construc-

ion time. Furthermore, our proposed incremental maintenance
ethod IMstt improves maintenance time by an order of magni-

ude compared to Recomputeall in our experimental setting. Thus,
EM, PAM, and IMstt are the best-suited techniques for enabling
fficient spatio-textual-temporal cube analytics.

. Conclusion and future work

The widespread adoption of mobile devices, in conjunction
ith social media platforms, is generating an enormous amount
f STT data. This research work was motivated by the need for
nabling efficient combined analytical processes over STT data. In
his paper, we defined and formalized the STTCube structure to ef-
ectively perform STTCube analytics. We introduced STT hierarchies,
TT measures, and STTOLAP operators to analyze STT data together.
ur proposed STTOLAP operators handle n–n relationships inside
he STT dimensions effectively which allows us to pre-aggregate
TT measure values. We also proposed an incremental main-
enance method to efficiently maintain the already constructed
TTCube by incorporating the new data as it becomes available.
or efficient, exact and approximate, computation of STT mea-
ures, we proposed a pre-aggregation framework able to provide

aster response times by requiring a controlled amount of extra

M. Iqbal, M. Lissandrini and T.B. Pedersen Information Systems 108 (2022) 102009

s
e
P

Fig. 15. PAM's Accuracy and QRT's for STTOLAP Operators and Materialized-K.
Fig. A.1. QRTs for STT measures for different combinations of hierarchy schemes over 125 Million of Data.
torage to store pre-computed measure values. We performed
xperiments on real-world twitter dataset, compared PEM and
AM's QRTs with NM, FM, and NC, and evaluated the space–

time trade-off among different materialization methods, both
exact and approximate. We observed how partial materialization
provides 1 to 5 orders of magnitude reduction in query response
time, with between 97% and 99.9% reduced storage cost compared
to full materialization techniques. Moreover, the approximate
materialization provides accuracy between 90% and 100% while
requiring considerably less space compared to no materializa-
tion techniques. Furthermore, our proposed STTCube incremental
maintenance method maintains STTCube efficiently by reducing

the STTCube maintenance time by an order of magnitude. In

18
future work, we plan to enhance STTCube with additional STT
measures and distributed implementation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This research is partially funded by the European Commis-

sion through the Erasmus Mundus Joint Doctorate Information

M. Iqbal, M. Lissandrini and T.B. Pedersen Information Systems 108 (2022) 102009

T
C
n
a
d
a
g

A

R

Fig. A.2. QRT Vs Data Size.
echnologies for Business Intelligence (EM IT4BI-DC), the Danish
ouncil for Independent Research (DFF) under grant agreement
o. DFF-8048-00051B, Aalborg University’s Talent Programme,
nd the Poul Due Jensen Foundation. Furthermore, Matteo Lissan-
rini is supported by the European Union’s Horizon 2020 research
nd innovation programme under the Marie Skłodowska-Curie
rant agreement No 838216.

ppendix. Complete graphs

See Figs. A.1 and A.2.

eferences

[1] G. Cong, K. Feng, K. Zhao, Querying and mining geo-textual data for
exploration: Challenges and opportunities, in: ICDEW, 2016.

[2] G. Cong, C.S. Jensen, Spatial keyword queries and beyond, in: SIGMOD,
2016.

[3] R. Othman, R. Belkaroui, R. Faiz, Customer opinion summarization based
on Twitter conversations, in: WIMS, 2016.

[4] X. Cao, L. Chen, G. Cong, C.S. Jensen, Q. Qu, A. Skovsgaard, D. Wu, M.L. Yiu,
Spatial keyword querying, in: ER, 2012.

[5] N. Gür, T.B. Pedersen, E. Zimanyi, K. Hose, A foundation for spatial data
warehouses on the semantic web, Semant. Web (2017).
19
[6] J. Han, K. Koperski, N. Stefanovic, GeoMiner: A system prototype for spatial
data mining, 1997.

[7] Y. Chen, G. Dong, J. Han, B.W. Wah, J. Wang, Multi-dimensional regression
analysis of time-series data streams, in: VLDB, 2002.

[8] C.X. Lin, B. Ding, J. Han, F. Zhu, B. Zhao, Text cube: Computing IR measures
for multidimensional text database analysis, in: ICDM, 2008.

[9] M. Azabou, K. Khrouf, J. Feki, C. Soulé-Dupuy, N. Vallès, Analyzing textual
documents with new OLAP operators, in: AICCSA, 2016.

[10] C. Zhang, J. Han, Multidimensional mining of massive text data, in: DMKD,
2019.

[11] M.L. Chouder, S. Rizzi, R. Chalal, Exploratory OLAP over doc stores, Inf.
Syst. (2019).

[12] D. Yu, D. Xu, D. Wang, Z. Ni, Hierarchical topic modeling of Twitter data
for online analytical processing, IEEE Access (2019).

[13] B. Ding, B. Zhao, C.X. Lin, J. Han, C. Zhai, A. Srivastava, N.C. Oza, Efficient
keyword-based search for top-K cells in text cube, IEEE Trans. Knowl. Data
Eng. (2011).

[14] W. Feng, C. Zhang, W. Zhang, J. Han, J. Wang, C. Aggarwal, J. Huang,
STREAMCUBE: Hierarchical spatio-temporal hashtag clustering for event
exploration over the Twitter stream, in: ICDE, 2015.

[15] J. Sankaranarayanan, H. Samet, B.E. Teitler, M.D. Lieberman, J. Sperling,
TwitterStand: News in tweets, in: SIGSPATIAL, 2009.

[16] M. Walther, M. Kaisser, Geo-spatial event detection in Twitter stream, in:
ECIR, 2013.

[17] K. Zhao, L. Chen, G. Cong, Topic exploration in spatio-temporal document
collections, in: SIGMOD, 2016.

http://refhub.elsevier.com/S0306-4379(22)00019-9/sb1
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb1
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb1
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb2
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb2
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb2
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb3
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb3
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb3
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb4
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb4
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb4
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb5
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb5
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb5
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb6
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb6
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb6
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb7
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb7
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb7
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb8
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb8
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb8
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb9
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb9
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb9
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb10
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb10
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb10
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb11
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb11
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb11
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb12
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb12
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb12
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb13
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb13
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb13
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb13
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb13
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb14
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb14
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb14
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb14
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb14
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb15
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb15
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb15
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb16
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb16
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb16
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb17
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb17
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb17

M. Iqbal, M. Lissandrini and T.B. Pedersen Information Systems 108 (2022) 102009
[18] X. Liu, K. Tang, J. Hancock, J. Han, M. Song, R. Xu, B. Pokorny, A text cube
approach to human social and cultural behavior in the Twitter stream, in:
SBP, 2013.

[19] D. Zhang, C.X. Zhai, J. Han, A. Srivastava, N. Oza, Topic modeling for OLAP
on multidimensional text databases, Stat. Anal. Data Min. (2009).

[20] J.M. Pérez-Martínez, R. Berlanga-Llavori, M.J. Aramburu-Cabo, T.B. Peder-
sen, Contextualizing data warehouses with documents, Decis. Support Syst.
(2008).

[21] C.S. Jensen, T.B. Pedersen, C. Thomsen, Multidimensional Databases and
Data Warehousing, Morgan & Claypool Publishers, 2010.

[22] F. Ravat, O. Teste, R. Tournier, G. Zurfluh, Top_keyword: An aggregation
function for textual document OLAP, in: DaWaK, 2008.

[23] S. Rivest, Y. Bédard, P. Marchand, Toward better support for spatial
decision making: defining the characteristics of spatial on-line analytical
processing (SOLAP), Geomatica (2001).

[24] S. Wang, J. Cao, P. Yu, Deep learning for spatio-temporal data mining: A
survey, IEEE Trans. Knowl. Data Eng. (2020).

[25] E. Malinowski, E. Zimányi, Hierarchies in a multidimensional model:
From conceptual modeling to logical representation, Data Knowl. Eng.
(2006).

[26] J.-N. Mazón, J. Lechtenbörger, J. Trujillo, A survey on summarizability issues
in multidimensional modeling, Data Knowl. Eng. (2009).

[27] W. Rowen, I.-Y. Song, C. Medsker, E. Ewen, An analysis of many-to-many
relationships between fact and dimension tables in dimensional modeling,
Data Min. Knowl. Discov. (2001).

[28] L. Chen, G. Cong, C.S. Jensen, D. Wu, Spatial keyword query processing: An
experimental evaluation, PVLDB (2013).

[29] A. Magdy, L. Abdelhafeez, Y. Kang, E. Ong, M. Mokbel, Microblogs data
management: a survey, VLDB J. (2020).

[30] A. Almaslukh, A. Magdy, A.M. Aly, M.F. Mokbel, S. Elnikety, Y. He, S. Nath,
W.G. Aref, Local trend discovery on real-time microblogs with uncertain
locations in tight memory environments, GeoInformatica (2019).

[31] M.D. Lieberman, H. Samet, J. Sankaranarayanan, J. Sperling, STEWARD:
Architecture of a spatio-textual search engine, in: GIS, 2007.
20
[32] B. Pat, Y. Kanza, Where’s waldo?: Geosocial search over myriad geotagged
posts, in: SIGSPATIAL, 2017.

[33] L. Lins, J.T. Klosowski, C.E. Scheidegger, Nanocubes for real-time
exploration of spatiotemporal datasets, IEEE Trans. Vis. Comput.
Graph. (2013).

[34] P. Jayachandran, K. Tunga, N. Kamat, A. Nandi, Combining user interaction,
speculative query execution and sampling in the DICE system, in: ICDE,
2014.

[35] T. Joachims, Text categorization with support vector machines: Learning
with many relevant features, in: ECML, 1998.

[36] J.D. Knijff, F. Frasincar, F. Hogenboom, Domain taxonomy learning from
text: The subsumption method versus hierarchical clustering, Data Knowl.
Eng. (2013).

[37] C. Fellbaum, WordNet: An Electronic Lexical Database, MIT Press, 1998.
[38] J.F. Kenney, E.S. Keeping, Mathematics of statistics, part 1, chapter 15, 1962,

Van Nostrand.
[39] J. Gray, A. Bosworth, A. Lyaman, H. Pirahesh, Data cube: a relational ag-

gregation operator generalizing GROUP-BY, CROSS-TAB, and SUB-TOTALS,
in: ICDE, 1996.

[40] T.B. Pedersen, C.S. Jensen, Multidimensional data modeling for complex
data, in: M. Kitsuregawa, M.P. Papazoglou, C. Pu (Eds.), Proceedings of
the 15th International Conference on Data Engineering, Sydney, Australia,
March 23-26, 1999, IEEE Computer Society, 1999, pp. 336–345.

[41] V. Harinarayan, A. Rajaraman, J.D. Ullman, Implementing data cubes
efficiently, in: SIGMOD, 1996.

[42] A. Skovsgaard, D. Sidlauskas, C.S. Jensen, Scalable top-k spatio-temporal
term querying, in: ICDE, 2014.

[43] R. Feldman, M. Fresko, Y. Kinar, Y. Lindell, O. Liphstat, M. Rajman, Y. Schler,
O. Zamir, Text mining at the term level, in: PKDD, 1998.

[44] H. Gupta, Selection of views to materialize in a data warehouse, in: ICDT,
1997.

[45] GeoNames, 2020, http://download.geonames.org/. (Accessed 09 September
2020).

[46] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, D. McClosky, The
stanford CoreNLP natural language processing toolkit, in: ACL, 2014.

http://refhub.elsevier.com/S0306-4379(22)00019-9/sb18
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb18
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb18
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb18
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb18
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb19
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb19
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb19
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb20
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb20
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb20
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb20
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb20
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb21
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb21
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb21
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb22
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb22
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb22
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb23
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb23
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb23
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb23
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb23
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb24
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb24
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb24
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb25
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb25
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb25
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb25
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb25
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb26
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb26
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb26
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb27
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb27
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb27
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb27
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb27
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb28
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb28
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb28
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb29
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb29
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb29
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb30
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb30
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb30
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb30
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb30
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb31
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb31
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb31
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb32
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb32
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb32
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb33
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb33
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb33
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb33
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb33
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb34
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb34
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb34
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb34
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb34
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb35
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb35
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb35
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb36
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb36
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb36
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb36
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb36
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb37
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb38
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb38
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb38
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb39
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb39
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb39
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb39
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb39
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb40
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb40
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb40
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb40
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb40
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb40
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb40
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb41
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb41
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb41
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb42
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb42
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb42
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb43
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb43
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb43
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb44
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb44
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb44
http://download.geonames.org/
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb46
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb46
http://refhub.elsevier.com/S0306-4379(22)00019-9/sb46

	A foundation for spatio-textual-temporal cube analytics
	Introduction
	Related work
	Spatio-textual-temporal cubes
	The STTCube schema
	Managing STT hierarchies
	Spatial, textual, and temporal measures

	STTOLAP operators
	STT-slice
	STT-dice
	STT-roll-up
	STT-drill-down
	OLAP vs STTOLAP

	Cube materialization
	Cube materialization methods
	Cost model
	Partial exact materialization
	Partial approximate materialization

	STTCube construction and maintenance
	STTCube construction
	STTCube maintenance

	Experimental evaluation
	Conclusion and future work
	Declaration of competing interest
	Acknowledgements
	Appendix. Complete Graphs
	References

