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Abstract: Distributed generation is a vital component of the national economic sustainable develop-
ment strategy and environmental protection, and also the inevitable way to optimize energy structure
and promote energy diversification. The power generated by renewable energy is unstable, which
easily causes voltage and frequency fluctuations and power quality problems. An adaptive online
adjustment particle swarm optimization (AOA-PSO) algorithm for system optimization is proposed
to solve the technical issues of large-scale wind and light abandonment. Firstly, a linear adjustment
factor is introduced into the particle swarm optimization (PSO) algorithm to adaptively adjust the
search range of the maximum power point voltage when the environment changes. In addition, the
maximum power point tracking method of the photovoltaic generator set with direct duty cycle
control is put forward based on the basic PSO algorithm. Secondly, the concept of recognition is
introduced. The particles with strong recognition ability directly enter the next iteration, ensuring the
search accuracy and speed of the PSO algorithm in the later stage. Finally, the effectiveness of the
AOA-PSO algorithm is verified by simulation and compared with the traditional control algorithm.
The results demonstrate that the method is effective. The system successfully tracks the maximum
power point within 0.89 s, 1.2 s faster than the traditional perturbation and observation method
(TPOM), and 0.8 s faster than the incremental admittance method (IAM). The average maximum
power point is 274.73 W, which is 98.87 W higher than the TPOM and 109.98 W more elevated than
the IAM. Besides, the power oscillation range near the maximum power point is small, and the power
loss is slight. The method reported here provides some guidance for the practical development of
the system.

Keywords: particle swarm optimization algorithm; hybrid energy storage; hydrogen generation
system; optimized energy storage capacity configuration

1. Introduction

In recent years, photovoltaic power generation has developed by leaps and bounds,
and its importance is self-evident [1,2]. As natural clean energy, Solar energy has the
advantages of low pollution, low cost, and strong availability. Thus, it has become one of
the most popular renewable energies worldwide. However, the main problem of renewable
energy sources is uninterruptable energy storage. The storage of energy in batteries is
not an efficient, conventional method. Therefore, storage of the energy as hydrogen has
been proposed as a new solution. However, converting electricity to hydrogen energy
and connecting it to the grid, and the necessary technology investments complicate this
transformation. Solar collectors and solar cells are two different methods of absorbing solar
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power available today. Today, this energy can absorb only 20–25% efficiently with various
solar cells. Solar radiation changes over time and is not always stable. These disadvantages
make it necessary to use a storage system. The conventional storage systems are inadequate
and inefficient for the storage of such high energy. Consequently, systems that can convert
solar energy into hydrogen become attractive [3,4].

The existing research on electrolysis water concerning hydrogen production projects
primarily focuses on alkaline electrolysis systems and Polymer Electrolyte Membrane
(PEM) electrolysis. PEM electrolysis has several advantages over conventional alkaline
electrolysis systems because of its ecological cleanliness, simplicity, high efficiency, and
accessible production capacity [5–7]. The present work is aimed at the bottleneck problems
restricting the development of renewable energy, including wind and solar, such as the
intense volatility, intermittence, and instability of renewable energy power generation;
poor electrical energy inadequate for grid connection; and prevailing wind and light
abandonment caused by the local load that cannot be absorbed. Hydrogen energy has
the advantages of large-scale, long-term storage, wide application, many consumption
channels, less environmental pollution, and low requirements for power supply quality
due to the hydrogen production load. Converting the waste wind and light of renewable
energy into hydrogen energy for storage can effectively improve the utilization rate of
renewable energy and reduce the phenomenon of waste wind and sunlight. Combining
solar energy, electric energy, and hydrogen energy to establish a system and realize the
coordinated dispatch of multiple types of power in the system is conducive to improving
energy utilization, reducing the cost of energy supply, and providing new ideas and
channels for solving the energy crisis and environmental pollution worldwide. Given the
urgent survival problems, such as the gradual decline of non-renewable energy reserves
and ecological pollution, multi-energy complementarity is the only course for energy
utilization under the new situation. As a form of multi-energy complementarity, the
photohydrogen system has achieved extensive research and application scope with the
maturity of technology and the continuous improvement of system functions. The orbital
of the outermost layer of Pt is in an unfilled state. Its special electronic arrangement
makes it easy to adsorb reactant molecules and become the active catalytic center. As a
catalyst material for oxygen reduction, Pt can effectively reduce the high overpotential in
the process of oxygen reduction and minimize the loss of battery voltage and output power.

Many scientists and researchers have paid attention to the optimization and modeling
of various blocks forming the photovoltaic–electrolysis system to obtain the best hydrogen
production performance. In particular, Garcia-Valverde optimized the system by coupling
the PV module and electrolysis by integrating a controlled power converter. Garrigos
combined maximum power point tracking (MPPT) and output current control to optimize
the entire system, such as photovoltaic–electrolysis and a direct current to direct current
(DC/DC) converter. Bousquet et al. [8] developed an empirical approach to model a
generative electrolysis or fuel cell. They put forward a dynamic model of PEM electrolysis
and evaluated it by Gorgun. Thomas and Nelson [3] optimized the efficiency of the PV–
electrolysis system by adapting the voltage and the maximum power of the PV to the
voltage generated by the PEM electrolysis operation. Marshall [3] developed a new catalyst
for PEM electrolysis for high hydrogen production. The authors utilized the P&O MPPT
algorithm with a PI controller as a solution of the sensitive controller and emphasized the
role of DC/DC buck converters. However, they did not optimize the MPPT algorithm to
improve the efficiency of solar energy [9].

DC/DC converters are becoming critical for energy conversion. A solution has been
suggested to obtain hydrogen gas from water electrolysis and store this gas by compres-
sion [10,11]. There are three typical types of electrolytic hydrogen production equipment:
proton exchange membrane (PEM) electrolytic cells, high-temperature solid oxide elec-
trolytic cells, and alkaline electrolytic (AE) cells. Some scholars have devoted efforts in
related fields. However, they ignored photovoltaic sources and electrolysis loads, or effi-
cient controllers for nonlinear electrolysis loads [9]. Some scholars have studied similar
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problems, but did not provide more precise details and solutions. Some researchers did
not include such simulation and control methods to optimize such systems, nor did they
give more detailed simulation results and efficiency analysis. Some proposed a different
topology and control method to solve this problem [12]. Generally, there is almost no com-
prehensive research on electrolytic hydrogen production systems and no detailed solution.

Reference [13] proposed a differential evolution algorithm based on partially shielded
photovoltaic modules to improve the tracking efficiency. Reference [8] proposed a maxi-
mum power point tracking control algorithm based on the ant colony algorithm, effectively
solving the tracking problem of local maximum power points. Literature [14] proposed
the MPPT method based on the genetic algorithm to improve the tracking efficiency of
the system and effectively track the maximum global power. In reference [15], a firefly
algorithm was proposed for the photovoltaic system under partial shade to effectively
improve the tracking performance. Wen Xian [10] proposed an improved MPPT tracking
algorithm based on the traditional mountain climbing method to enhance the tracking
efficiency of the photovoltaic system. However, its large amount of data calculation and
algorithm rules lead to low efficiency and increase the cost of the whole system, so it is
not suitable for practical engineering. The algorithm proposed in reference [11] combines
the cuckoo algorithm and particle swarm optimization (PSO) algorithm, improving the
optimization accuracy to a certain extent; however, the mathematical model is complex and
not conducive to practical operation. The PSO algorithm proposed in references [9,16] only
improves the weight change optimization process, and the shadow case’s improvement
effect has limitations. At present, there is only a single optimization method to improve
the efficiency of solar energy with a hydrogen converter and improve the utilization rate
of solar energy with an improved optimization algorithm. Still, there is no optimization
method to combine the two methods [5,9].

An adaptive online adjustment PSO (AOA-PSO) is proposed to solve the above prob-
lems. The innovation of this paper lies in two aspects. On the one hand, a linear adjustment
factor is adopted. This improved method can quickly derive a new maximum power
point voltage. When the environment changes, the search range of MPPT voltage can be
adjusted adaptively. On the other hand, recognition is introduced, and the particle position
is compared with the set value. The particles with a good recognition effect will directly
enter the next iteration better than the set value, and the particles with a poor recognition
effect will be replaced with their best position in history. In this way, the PSO algorithm
can maintain the search accuracy and speed later. Finally, a simulation model is established
in Simulink, and the system is tested on the experimental platform. Compared with the
waveform of the traditional MPPT control algorithm, the feasibility of the proposed method
and the innovation of the algorithm are verified.

2. Characteristic Analysis and Control of the Photovoltaic Hydrogen Generation System
2.1. Mathematical Model and Characteristic Analysis of Photovoltaic Cells

A photovoltaic module consists of several solar cells connected in series or parallel
to achieve the desired voltage and current levels. A solar panel cell is essentially a PN
semiconductor junction that can generate DC when exposed to light. The simple single
diode model shown in Figure 1 is adopted here [16], achieving the balance between clarity
and precision.

The equivalent circuit of the general model consists of a photo current (Iph), a diode,
a parallel resistance (Rp) expressing a leakage current, and a series resistance (Rs) due to
the contacts between the semiconductors and the metal parts. This equivalent circuit is
depicted in Figure 1.

Kirchhoff’s law is applied. The current in Figure 1 is calculated according to Equation (1).

I = Iph − ID − Ip (1)
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In Equation (1), Iph represents the current generated by light or the photocurrent, and
Ip denotes the current flowing in the parallel resistor, which can be described as:

Ip =
V + Rs I

Rp
(2)
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The power of a typical photovoltaic cell at 0.5 V is less than 2 W, so cells must be
connected in series–parallel on a module to produce sufficient power [3]. As presented
in Figure 2, a photovoltaic array is a group of several photovoltaic modules electrically
connected in series (Ns cells) and in parallel (Np columns) to generate the required current
and voltage.
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The voltage–current characteristics of a photovoltaic module can be expressed as:

Ipv = Np Iph − Np Isd

exp

 q
(

Vpv
Ns

+ IRs
Np

)
KTn

− 1

−
(

NpVpv
Ns

+ IRs

)
Rp

(3)

P = Ipv ×Vpv (4)

Light and temperature will affect the output performance of the cell. Figure 3 reveals
the packaging model of photovoltaic cells established in the simulation environment
according to the internal mathematical model.



Energies 2022, 15, 1472 5 of 17

Energies 2022, 15, x FOR PEER REVIEW 5 of 18 
 

 

exp 1

pv s p pv
s

s p s
pv p ph p sd

p

V IR N Vq IRN N N
I N I N I

KTn R

      +   +       = − − −  
  
  

  

 (3)

pv pvP I V= × (4)

Light and temperature will affect the output performance of the cell. Figure 3 reveals 
the packaging model of photovoltaic cells established in the simulation environment ac-
cording to the internal mathematical model. 

  
(a) (b) 

Figure 3. Internal battery simulation diagram: (a) mathematical model inside the photovoltaic cell; 
(b) packaging model of the photovoltaic cell. 

The test temperatures were 10 °C, 25 °C, 40 °C, and 60 °C. Figure 4b shows the rela-
tionship between the output characteristics of the photovoltaic cells and light intensity 
when the ambient temperature remains unchanged at 25 °C. The tested light intensities 
were 250 W/m², 500 W/m², 750 W/m², and 1000 W/m². Comprehensive analysis indicated 
that the output characteristics of photovoltaic cells were easily affected by external envi-
ronmental conditions, showing obvious nonlinear characteristics; the influence of light 
intensity on the maximum output power was far greater than that of environmental tem-
perature on the maximum output power. It can be seen from Figure 4c that the hydrogen 
production rate of the alkaline electrolytic cell was proportional to the current of the elec-
trolytic cell, and the hydrogen production rate per unit time also increased with the in-
crease of the current. 
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Figure 3. Internal battery simulation diagram: (a) mathematical model inside the photovoltaic cell;
(b) packaging model of the photovoltaic cell.

The test temperatures were 10 ◦C, 25 ◦C, 40 ◦C, and 60 ◦C. Figure 4b shows the relation-
ship between the output characteristics of the photovoltaic cells and light intensity when
the ambient temperature remains unchanged at 25 ◦C. The tested light intensities were
250 W/m2, 500 W/m2, 750 W/m2, and 1000 W/m2. Comprehensive analysis indicated that
the output characteristics of photovoltaic cells were easily affected by external environmen-
tal conditions, showing obvious nonlinear characteristics; the influence of light intensity on
the maximum output power was far greater than that of environmental temperature on the
maximum output power. It can be seen from Figure 4c that the hydrogen production rate
of the alkaline electrolytic cell was proportional to the current of the electrolytic cell, and
the hydrogen production rate per unit time also increased with the increase of the current.
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Figure 4. Relationship between the photovoltaic cell output characteristics and temperature: (a) out-
put characteristic curve of the photovoltaic cell with ambient temperature under the same light
intensity; (b) output characteristic curve of the photovoltaic cell with light intensity at the same
ambient temperature; (c) relationship between the hydrogen generation rate and current in an
electrolytic cell.
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Figure 5 shows the photovoltaic system reported here. An intelligent MPPT algorithm
based on PSO and AOA-PSO was utilized, as explained in Section 3. These algorithms aim
to compensate for the limitations of conventional maximization algorithms, which cannot
find the overall maximum, especially during a partial shading phenomenon. Regardless of
the partial shading profile, it can find the maximum power point on the power–voltage
characteristic (Ppv) of a photovoltaic system. This characteristic is usually referred to as
Ppv = f (Vpv). The algorithm was applied to the semiconductor switch of the boost converter
installed to connect the photovoltaic panels to the DC link. Specifically, the duty cycle of
this device was adjusted according to the output of the intelligent MPPT algorithm. In this
paper, Vout represents the voltage required to charge the cell.
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Figure 5. Overall control model of the photovoltaic power generation system.

The parameters of the Simulink package model are set to test the output character-
istics of photovoltaic cells. Experiments suggest that the P–U change of the photovoltaic
cells is a single-peak characteristic curve. Its power changed positively with the voltage
initially, while changing negatively after reaching the threshold. The voltage can be opti-
mized according to this law. If the photovoltaic cell continues to work in the maximum
power state, the working efficiency of the photovoltaic power generation system can be
improved [9]. When the system is working in the maximum power tracking mode, it
will turn on the switch to collect voltage and current signals. Then, the collected current
and voltage are sent to the top power tracking module. The reference value is obtained
through the corresponding algorithm, and the reference value is compared with the actual
value of the sample. The comparison results are input into the proportional-integral regu-
lator. The proportional integral regulator generates a control signal after the pulse width
modulation (PWM) processing. The control signal is used for maximum power control
and sent to the boost conversion circuit to complete tracking. The PWM signal is input
into the boost converter circuit to realize constant voltage control. MPPT model is the
core of the photovoltaic system. Multimodal MPPT is mainly divided into two categories.
The photovoltaic array can be reassembled according to the output characteristics and
transformed into a single peak maximum power tracking problem [21]. The principle of
this method is still the single-peak MPPT algorithm, so they have the same advantages and
disadvantages. The other is the control method based on artificial intelligence, conforming
to the modern control theory, which has good adaptability to nonlinear problems and has
good adaptability to global search. However, the development of multi-peak maximum
power tracking is still restricted by multiple factors, such as the timeliness of monitoring
and the correctness and effectiveness of the global search method [22,23].
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2.2. Electrolysis Load Model

The electrolyzer behaves as a nonlinear resistance during the chemical reaction in
reality. This nonlinearity depends on the chemical composition of the solution, the pressure
of the electrolyzer stack, temperature, and the other parameters that exist during the
chemical reaction. The derived nonlinear mathematical model of the electrolyzer depends
on the parameters given in Equation (5).

Re = Reo

[
1 + α

(
Ie

Iebase

)β
]

(5)

In Equation (5), Reo represents the initial resistance and its value is 0.08 Ω, and α and β
stand for constant values relying on the nonlinear characteristics of the electrolyze model.
The value of α ranges between 0.35 and 0.65, and that of β ranges from 2 to 4 in typical
applications, which are substituted into Equation (6). Equation (6) indicates the relationship
between electrolysis resistance and electrolysis current. The electrolysis nonlinear load
model was simulated in MATLAB/Simulink using Equation (6), as shown in Figure 5.

Re = 0.08

[
1 + 0.5

(
Ie

50

)3
]

(6)

Combining a photovoltaic power generation system with a hydrogen production
system can significantly reduce the energy loss of solar energy and improve the utilization
efficiency of solar energy.

Figure 6 shows the overall simulation model of the photovoltaic hydrogen genera-
tion system.
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The system exchanges power with each energy unit through the converter during
operation. Figure 6 shows the power flow diagram of the photovoltaic power generation
system in the independent operation mode.

2.3. PSO Algorithm and Improved PSO Algorithm

In recent years, intelligent algorithms applied to photovoltaic power generation sys-
tems have been widely studied, among which the PSO algorithm is one of the most effective
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algorithms [24,25]. The cell’s output voltage is the flying particle continuously moving
towards the maximum power point. The update of the flight velocity and flight position of
each particle can be written as:

vk+1
i = wvk

i + c1r1

(
pk

i − Xk
i

)
+ c2r2

(
pk

g − Xk
i

)
(7)

xk+1
i = xk

i + vk+1
i (8)

where w denotes the inertia weight, while c1 and c2 are the acceleration constant, and r1
and r2 are random numbers between 0 and 1. Besides, i is the ith particle, and k refers to
the number of iterations. Meanwhile, Xk

i indicates the position of the ith particle in the kth
cycle, vk

i is the position of the ith particle in the kth cycle, and pk
g stands for the optimal

global value of the kth cycle. Moreover, pk
i is the optimal value of the individual particle in

the kth cycle. The individual particle is updated according to Equation (9).

pk+1
i =

 pk
i f
(

xk+1
i

)
≤ f

(
pk

i

)
xk+1

i f
(

xk+1
i

)
≥ f

(
pk

i

) (9)

pk+1
g =

 xk+1
i f

(
xk+1

i

)
≥ f

(
pk

g

)
pk

g f
(

xk+1
i

)
≤ f

(
pk

g

) (10)

The particle with higher velocity is farther away from the maximum power point,
while the particle with lower velocity is closer to the maximum power point. After several
iterations of the control loop, all particles gradually gather and oscillate in a small range,
and the maximum power point is determined. Figure 6 shows the traditional and improved
process of the PSO algorithm.

The selection of the initial value of the algorithm plays a crucial role in the application
of the PSO algorithm to the real-time control of MPPT. The selected initial value should
contain more compelling information, avoid focusing on local voltage, and be distributed
in the effective output voltage range as evenly as possible. Furthermore, the number of
particles must also be considered. Compared with the traditional MPPT control algorithm,
the basic PSO algorithm can achieve faster and more accurate control in complex envi-
ronments. However, compared with the conventional MPPT algorithm, the basic PSO
algorithm is more complex, has more parameters, and depends more on the initial particle
setting. In some cases, it also has shortcomings, such as low precision and divergence.
Therefore, many scholars focus on improving the performance of the PSO algorithm and
put forward many performance improvement methods, such as using the random function
to generate the initial value of particles. Although the application of the PSO algorithm
has made significant progress, its application in photovoltaic power generation control
technology is still in its infancy. Therefore, it is crucial to study a more effective control
system algorithm [26].

According to the basic PSO algorithm, when the photovoltaic power generation system
reaches stability, the particles almost converge at the maximum power point, so each particle
loses ergodicity. The valuable information content will be dramatically reduced. Suppose
the temperature and light intensity in the environment suddenly change or occlusion occurs.
In that case, the algorithm may fall into a local maximum point and misjudge, resulting in
the energy loss of the whole system. Therefore, the judgment conditions need to be set so
that, when the environmental factors suddenly change, the basic PSO algorithm restarts
the initialization program to find another maximum power point, as shown in Figure 7.
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Figure 7. Traditional and improved PSO algorithms.

Based on the above analysis, four particles are used here to describe the algorithm, as
shown in Equations (11) and (12).∣∣∣∆vk

∣∣∣ = |U1(k)−U1(k− 1), U2(k)−U2(k− 1), U3(k)−U3(k− 1), U4(k)−U4(k− 1)| < ∆V (11)∣∣∣pk − pk−1
∣∣∣

pk−1 > ∆P (12)

Equation (11) determines whether the system is in a stable state. If the speed of the four
particles is less than ∆V, the system is considered to converge near the maximum power
point. At this time, the particle swarm program is stopped, and the voltage reference value
of the DC side controller is identified as the optimal value for eliminating the steady-state
error. When the battery output voltage remains constant but the output power changes, it
can be judged that the environment has a mutation, as shown in Equation (12). In this case,
the algorithm needs to initialize the program. This method can effectively prevent the PSO
algorithm from falling into the local maximum under harsh environments and shadow
occlusion. No matter how the climate changes, the system will be reasonably optimized in
the open-circuit voltage range, which will bring significant oscillation to the system.

In Equation (11), U(k) denotes the voltage of the particle in the kth cycle, ∆vk refers
to the speed of each particle, and ∆K represents the steady-state judgment constant of the
environment. In Equation (12), ∆P refers to the threshold constant of the environmental
assessment, pk−1 represents the real-time change rate of power, and pk denotes the cyclic
output power of the system in the kth cycle.

According to the analysis of the output characteristics of the battery, the ratio of the
maximum power change ∆P of the battery to the maximum power point voltage change is
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a constant value and is not affected by light. Therefore, to reduce the optimal oscillation
of the above algorithm, a new maximum power point voltage was derived by the logical
relationship among the real-time power change, the linear slope, and the old maximum
power point voltage, which can be expressed as Equation (13).

Xnew = Xold −
1

K1
(PoldMPP − P) (13)

In Equation (13), Xnew denotes the new maximum power point voltage, while Xold means
the old maximum power point voltage. Denote K1 as the linear slope, ∆ = ∆PMPP/∆UMPP,
PoldMPP as the old MPP power, and P as the real-time power. The analysis of the P–U curve
of photovoltaic cells indicates that, when the light intensity increases, the new maximum
power point is located on the right side of the original high-power point, meaning that the
slope increases. On the contrary, when the light intensity decreases, the new maximum
power point is located on the left side of the original high-power point, and the linear slope
is significantly smaller than that when the light intensity increases; in other words, the
slope decreases. Therefore, the change value of light was calculated by Equation (14).

k1 =

{
k1 i f ∆P > 0
k1/2 i f ∆P < 0

(14)

In Equation (14), ∆P denotes the real-time power change rate.
The concept of recognition was introduced into the PSO algorithm. Recognition used

here refers to identifying excellent and harmful particles. The position of bad particles is
improved after recognition, and the position of suitable particles is iterated into a better
place. Firstly, particle recognition is defined as the ratio of the optimal trajectory value of
each particle to the optimal global value of the group and is mathematically expressed as
Equation (15):

rk
i =

f
(

Pk
i

)
f
(

Pk
g

) × 100% (15)

XK+1
i =

{
Pk

i rk
i < α

Xk+1
i +Xk

i
2 rk

i ≥ α
(16)

The recognition is an objective understanding of particles through their understanding
and group communication. Therefore, the recognition rk

i is used to judge the particle’s
spatial geographical location. The identification method was set as Equation (15). Set
α = 50%, and recognition rk

i ∈ [0, 1]. The greater the recognition value, the better the
particle’s spatial location, and the closer it is to the currently searched global maximum.
On the contrary, the smaller the recognition value, the worse the particle’s own spatial
location, and the farther it is from the best location. α was set to 50% to objectively reflect
the actual situation. Of course, this value can also be partially increased or decreased. After
comparing the recognition with α, it exceeded 50%, which indicates that it is good to obtain
the current position by comparing with itself and group particles. Therefore, Equation (16)
can be used for a better search. 1. If rk

i < α = 50%, the particle obtains its poor spatial position
through its communication with other particles in the group. 2. In the basic PSO, the inertia
coefficient w represents the particle operating amplitude, which plays an important role in
searching for the optimal value. In the initial stage of the algorithm, the particles gather. At
this time, a slightly larger weight can reduce the possibility of particles falling into local
optimization. In the later stage, the high degree of particle evolution and reducing the
weight w are more conducive to accelerating the search speed and improving the accuracy.
Therefore, the study will improve w. The improved w is defined as Equation (17), and k is
the current number of iterations:

w = 1− 0.1k (17)
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Finally, the derived update of flight velocity and flight position of each particle are
shown in Equations (18) and (19)

vk+1
i = (1− 0.1k)vk

i + c1r1(pk
i − Xk

i ) + c2r2(pk
g − Xk

i ) (18)

xk+1
i = xk

i −
1
Ki

(PoldMPP − P) + vk+1
i (19)

In Equation (19), the value of Ki depends on the ratio of the change value of MPPT
power to the change value of MPPT voltage, that is, the change of the linear slope.

The traditional perturbation and observation method (TPOM), incremental admittance
method (IAM), fixed-value restart particle swarm optimization (FVR-PSO) algorithm, and
AOA-PSO algorithm were tested on the experimental platform. Besides, the intelligent
power module was used as a BOOST circuit to perform the MPPT control experiment. The
testing time was 3 pm on a day in mid-March, and the ambient temperature was 26 ◦C. This
experiment was carried out under uneven natural light to test the algorithm’s performance
under the condition of blocking the photovoltaic array. In the investigation, the interference
step was 0.5 V and the reference voltage was 40 V.

Under natural conditions, the open-circuit voltage of the photovoltaic array measured
by the instrument was 55 V. The parameters of the PSO algorithm are shown in Table 1.
The AOA-PSO algorithm and FVR-PSO algorithm were tested under the condition that the
sampling interval of the system was 0.1 s.

Table 1. Parameter setting of the PSO algorithm.

r1 r2 C1 C2 w ∆V ∆p K1 K2

0.9475 0.4954 1.1 µF 1.1 µF 0.4 s 0.15 mm/s 0.16 W 16 4

3. System Test and Analysis
3.1. Experimental Test and Analysis of the Photovoltaic MPPT Control System

Figure 8 indicates the experimental results of TPOM, IAM, and AOA-PSO.
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Table 2 presents a comparative study among the three MPPT algorithms for differ-
ent aspects.

Table 2. A comparative study among TPOM-MPPT, IAM-MPPT, and AOA-MPPT.

MPPT Techniques TPOM-MPPT IAM-MPPT AOA-MPPT

Time to reach the MPP (s) 1.85 1.61 0.89
Extracted Power at MPP (W) 175.86 164.75 274.73

Tracking Efficiency (%) 61.71 57.81 96.40

The curve of TPOM in Figure 8a suggested that the system successfully found the
maximum power point in about 1.85 s, slow to keep up with the maximum power point.
The average tracked maximum power point power was 175.86 W. As the curve of IAM
in Figure 8b presents, the system successfully found the maximum power point about
1.61 s after operation. The average tracked maximum power point power was 164.75 W.
Although the tracking time of IAM to the maximum power point was faster than that of the
TPOM, the power oscillation of the IAM after the tracking to the maximum power point
was more significant than that of the TPOM; that is to say, its power loss was more than
that of the TPOM. It can be seen from Table 2 that the efficiencies of the TPOM and IAM
control algorithms were only 61.71% and 57.81%. Therefore, these two methods fall into
the local maximum power point and are inefficient. The curve of the AOA-PSO algorithm
in Figure 8c demonstrated that the system successfully tracked the maximum power point
in 0.89 s, 1.2 s faster than TPOM and 0.8 s faster than IAM. AOA-PSO’s average maximum
power point was 274.73 W, 98.87 W higher than that of TPOM and 109.98 W higher than
that of IAM. In addition, the power oscillation ranges near the maximum power point and
power loss were small, presenting the advantages of this algorithm.

3.2. Analysis of the Experimental Results of the AOA-PSO Algorithm and FVR-PSO Algorithm

The experimental control results of the PSO algorithms are shown in Figure 9.

Energies 2022, 15, x FOR PEER REVIEW 13 of 18 
 

 

The curve of TPOM in Figure 8a suggested that the system successfully found the 
maximum power point in about 1.85 s, slow to keep up with the maximum power point. 
The average tracked maximum power point power was 175.86 W. As the curve of IAM in 
Figure 8b presents, the system successfully found the maximum power point about 1.61 s 
after operation. The average tracked maximum power point power was 164.75 W. Alt-
hough the tracking time of IAM to the maximum power point was faster than that of the 
TPOM, the power oscillation of the IAM after the tracking to the maximum power point 
was more significant than that of the TPOM; that is to say, its power loss was more than 
that of the TPOM. It can be seen from Table 2 that the efficiencies of the TPOM and IAM 
control algorithms were only 61.71% and 57.81%. Therefore, these two methods fall into 
the local maximum power point and are inefficient. The curve of the AOA-PSO algorithm 
in Figure 8c demonstrated that the system successfully tracked the maximum power point 
in 0.89 s, 1.2 s faster than TPOM and 0.8 s faster than IAM. AOA-PSO’s average maximum 
power point was 274.73 W, 98.87 W higher than that of TPOM and 109.98 W higher than 
that of IAM. In addition, the power oscillation ranges near the maximum power point and 
power loss were small, presenting the advantages of this algorithm. 

3.2. Analysis of the Experimental Results of the AOA-PSO Algorithm and FVR-PSO Algorithm 
The experimental control results of the PSO algorithms are shown in Figure 9. 

  
(a) (b) 

Figure 9. Experimental control results of the PSO algorithms: (a) FVR-PSO response curve; (b) AOA-
PSO response curve. 

Table 3 presents a comparative study between the two MPPT algorithms for different 
aspects.  

Table 3. Comparative study between FVR-PSO MPPT and AOA-PSO MPPT. 

MPPT Techniques FVR-PSO AOA-PSO 
Time to Reach the MPP (s) 2.4 1.5 

Extracted Power at MPP (W) 185.50 215.25 
Tracking Efficiency (%) 74.5 89.45 

Power Oscillation Range (W) 119.36–185.50 198.55–215.25 

Figure 9a is the power and voltage response curve of the FVR-PSO algorithm. This 
method effectively realized the control in a complex environment. Consequently, after 
searching for about 1.5 s and 2.4 s, the system entered the steady state and worked stably 
at the maximum power point. However, power and voltage oscillations obviously pro-
duced considerable power losses. Figure 9b is the power and voltage response curve of 
the AOA-POS algorithm. The algorithm was added to a linear factor valued at 16. The 
experimental results show that the system finds the new maximum power point after 1 s 

0 1 2 3 4 5 6

20

40

60

80

100

120

140

160

180

200

220

240

P(
w

)

t(s)

 Constant restart pso power response curve
 Constant restart pso voltage response curve

0

10

20

30

40

V
(v

)

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

160

180

200

220

P(
w

)

t(s)

 Adaptive on-line adjustment of PSO power response curve
 Adaptive on-line adjustment of PSO voltage response curve

0

10

20

30

40

V
(v

)

Figure 9. Experimental control results of the PSO algorithms: (a) FVR-PSO response curve; (b) AOA-
PSO response curve.

Table 3 presents a comparative study between the two MPPT algorithms for differ-
ent aspects.

Table 3. Comparative study between FVR-PSO MPPT and AOA-PSO MPPT.

MPPT Techniques FVR-PSO AOA-PSO

Time to Reach the MPP (s) 2.4 1.5
Extracted Power at MPP (W) 185.50 215.25

Tracking Efficiency (%) 74.5 89.45
Power Oscillation Range (W) 119.36–185.50 198.55–215.25
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Figure 9a is the power and voltage response curve of the FVR-PSO algorithm. This
method effectively realized the control in a complex environment. Consequently, after
searching for about 1.5 s and 2.4 s, the system entered the steady state and worked stably at
the maximum power point. However, power and voltage oscillations obviously produced
considerable power losses. Figure 9b is the power and voltage response curve of the AOA-
POS algorithm. The algorithm was added to a linear factor valued at 16. The experimental
results show that the system finds the new maximum power point after 1 s and 1.5 s.
The steady-state oscillation of the above two methods was almost eliminated. They were
0.5–0.9 s faster than the traditional PSO algorithm, and the power loss was much smaller
than the traditional PSO algorithm.

The experimental test results of the tracking time and tracking oscillation realized by
the improved PSO algorithm are shown in Figure 10 and Table 4.
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Figure 10. Experimental results of the tracking time and tracking oscillation of the PSO algorithm:
(a) before improvement; (b) after improvement.

Table 4. Experimental results of the PSO tracking time and tracking oscillation.

Times 1 2 3 4 5 6 7 8 9 10

Unimproved PSO Response time (s) 1.6 1.56 1.66 1.73 1.64 1.80 1.59 1.51 1.93 1.6523
Power oscillation (%) 23 30 40 10 21 25 37 40 31 20

Improved PSO Response time (s) 1.23 1.79 1.03 1.15 1.32 1.44 1.01 1.10 1.29 1.53
Power oscillation (%) 13 29 8 10 21 20 8 9 14 11

The test results shown in Figure 10 show that the improved PSO algorithm has a good
tracking effect on the maximum power point in the rapidly changing light intensity and
shadow environment. The response time was shortened by 0.35 s. The improved algorithm
effectively reduced the oscillation and energy loss of the system, which is consistent with
the simulation results. Compared with the previous control strategy, the AOA-PSO control
strategy reported here resulted in smooth online power, a stable DC bus voltage, and a
reduced light rejection ratio. The factor significantly affecting the algorithm’s performance
was the number of particles. The simulation results verify the effectiveness of the model
and control strategy.

3.3. Analysis of Experimental Results of Group Control Based on the PSO Algorithm

Figure 11 provides the experimental results of the multidimensional algorithm applied
to the teamwork control system.

Figure 11 shows the control results of two groups of photovoltaic cells on the pho-
tovoltaic side of the circuit. Figure 11a,b represent the output voltage curves of two
photovoltaic arrays, and the maximum power point voltages were 33 V and 29 V, respec-
tively. Figure 11c denotes the power curves for two photovoltaic arrays. At 0.35 s, the
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capacitor was charged to form a pulse current, generating pulse power, which passed
through and reached the actual maximum power point of the system.
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Figure 11. Experimental results of the photovoltaic side of group control: (a) pv1/pv2 current curve;
(b) pv1/pv2 current curve; (c) pv1/pv2 power curve.

4. Discussion

The AOA-PSO algorithm proposed here was compared with the algorithms presented
by Iskanderani et al. (2020) [27] and Liang et al. (2018) [28]. The comparison results
are shown in Table 5. They indicate that the AOA-PSO algorithm achieves the smallest
power oscillation range and power loss near the maximum power point than the existing
algorithms, showing apparent superiority.

Table 5. Comparison of the experimental results of different algorithms.

MPPT Techniques Algorithm in
Reference [27]

Algorithm in
Reference [28] AOA-PSO

Tracking Efficiency (%) 73.5 86.45 89.45

Power Oscillation Range (W) 118.26–184.50 176.25–210.45 198.55–215.25

On the other hand, the hydrogen production from electrolyzed water has attracted
extensive attention from researchers as efficient and clean energy and has promising
application prospects. However, as the anode reaction of electrolytic water, the oxygen
evolution reaction involves a slow electron transfer process. Therefore, developing efficient
electrocatalysts to promote the anodic reaction is the key to solving this problem. NiCo-
based nanocomposites are considered potential catalysts for oxygen evolution reactions
because of their strong electronic coupling between different components. Future work
will try to synthesize ultra-thin amorphous NiCo sulfide nano sheet composites targeted
by ultra-small NiCo hydroxide particles using the reverse micelle directional self-assembly
strategy for the electrochemical oxygen evolution reaction [29,30].
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5. Conclusions

The control strategy of each unit model of the photovoltaic power generation hydrogen
production system was studied combined with the photovoltaic power generation and
hydrogen production systems. The electric energy of the photovoltaic panel is converted
into the required voltage level through a DC/DC boost converter for electrolytic hydrogen
production. The output of photovoltaic cells under local shadow has multi-peak nonlinear
characteristics. The traditional MPPT control algorithm quickly falls into the shortcomings
of local maximum power point, low efficiency, and low precision. Therefore, this paper
proposes an AOA-PSO algorithm to realize global maximum power point tracking. Firstly,
a linear factor was introduced into the improved PSO algorithm to implement the adaptive
adjustment of restart parameters. The enhanced method can realize MPPT control quickly
and accurately under rapid changes of light and temperature. Secondly, recognition was
introduced, and the particle position was compared with the set value. The particles with a
good recognition result will enter the next iteration better than the set value. The particles
with poor recognition results will be replaced with their best position in history to maintain
the search accuracy and speed in the later stage of PSO. The experimental results prove
that the dynamic response time of the MPPT control system reported here was shortened
by 0.4 s on average, the system oscillation was effectively reduced by 15.1%, and the
energy conversion rate was improved. At present, the combination of photovoltaic power
generation and hydrogen energy is still in the demonstration operation stage, and further
research is needed for large-scale and commercial operations. This paper has conducted
some work on the coordinated control of photovoltaic power generation systems with
hybrid energy storage and achieved some research results. However, due to the limitation
of research ability and time, it is inevitable to be thoughtless. The research content will
be improved from the following aspects: (1) there is no comprehensive investigation into
applying the PSO algorithm to MPPT control and whether this method has good dynamic
performance under bad conditions; (2) this paper only considers the operation strategy of
the photovoltaic hydrogen generation system under an independent operation mode when
studying the energy coordination control strategy of the photovoltaic hydrogen generation
system. The follow-up research will study the grid-connected and independent operation
modes of the photovoltaic hydrogen generation system and the smooth switching direction
of the two operation modes.
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Abbreviations
The following abbreviations are used in this manuscript.

Iph Photo-generated current
ID Dark current
Rp Parallel resistance
Rs Series resistance
I Load current
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U Load terminal voltage
Irs Diode PN node current
q Electron charge
n Diode factor curve
K Boltzmann constant
Im0 Current of the maximum power point
Um0 Voltage of the maximum power point
Isc Short-circuit current
Uoc Open-circuit voltage
G Sunshine intensity
Tair Ambient temperature
Cba Rated capacity
Uba Rated voltage
Cuc Capacitance value of the ultracapacitor
Uuc Terminal voltage
Eba Energy storage capacity of the battery pack
Euc Energy storage capacity of the ultracapacitor pack
Pba Power of the battery pack
Puc Power of the ultracapacitor pack
ηbac Charging efficiency of the battery pack
ηucc Charging efficiency of the ultracapacitor pack
ηbad Discharging efficiency of the battery pack
ηucd Discharging efficiency of the ultracapacitor pack
c1,c2 Acceleration constant
r1,r2 Random numbers between 0 and 1
Xk

i Velocity of the ith particle in the kth cycle
vk

i Position of the ith particle in the kth cycle
pk

g Optimal global value of the kth cycle
pk

i Optimal value of the individual particle in the kth cycle
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