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A B S T R A C T   

Smart control in water systems aims to reduce the cost of infrastructure expansion by better utilizing the 
available capacity through real-time control. The recent availability of sensors and advanced data processing is 
expected to transform the view of water system operators, increasing the need for deploying a new generation of 
data-driven control solutions. To that end, this paper proposes a data-driven control framework for combined 
wastewater and stormwater networks. We propose to learn the effect of wet- and dry-weather flows through the 
variation of water levels by deploying a number of level sensors in the network. To tackle the challenges 
associated with combining hydraulic and hydrologic modelling, we adopt a Gaussian process-based predictive 
control tool to capture the dynamic effect of rain and wastewater inflows, while applying domain knowledge to 
preserve the balance of water volumes. To show the practical feasibility of the approach, we test the control 
performance on a laboratory setup, inspired by the topology of a real-world wastewater network. We compare 
our method to a rule-based controller currently used by the water utility operating the proposed network. 
Overall, the controller learns the wastewater load and the temporal dynamics of the network, and therefore 
significantly outperforms the baseline controller, especially during high-intensity rain periods. Finally, we 
discuss the benefits and drawbacks of the approach for practical real-time control implementations.   

1. Introduction 

The primary function of sewers is to convey wastewater (and 
stormwater in case of combined networks) towards treatment facilities 
before releasing it to the environment. Population growth, urbanization, 
and changing precipitation patterns due to climate change cause major 
impacts on these networks with increased wastewater and rain loads 
(Eggimann et al., 2017; Yuan et al., 2019). These loads often result in 
harmful overflows and degraded treatment performance, threatening 
the ecological health of the water bodies and damaging the infrastruc-
ture (Schütze et al., 2002). Advanced strategies for sewer control are 
designed on historical weather observations, raising the question of how 
to operate these infrastructures in the wake of ongoing urbanization and 
climate change. 

1.1. Motivation 

To handle the increased load on old infrastructure (without sub-
stantial investment), a possible solution is to use advanced control 
methods, relying on real-time data and system-wide optimization tech-
niques (Yuan et al., 2019). The increased collection and utilization of 
data enabled the real-time management of urban water systems, forming 
a basis for advanced decision-making tools (Kitchin, 2014). In the 
context of sewer networks, these tools aim to prepare the system for 
high-intensity storm events to optimally utilize the maximum available 
storage capacity. From a control-theoretic perspective, proactive con-
trol, e.g., Model Predictive Control (MPC), has high relevance in sewers, 
however, in practice reactive control is the most commonly imple-
mented approach (Lund et al., 2018). Decision making by using weather 
forecasts is a widely used method by researchers in the water commu-
nity (Campisano et al., 2013). 
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A significant issue with traditional MPC is the need for a well- 
maintained system model. At small utilities, such models are often 
economically out of reach, and therefore neither decision-support nor 
advanced control techniques are used by the practitioners (Lund et al., 
2018). Easy commissioning, therefore, has a great impact in practice, yet 
it is an unresolved issue when it comes to controlling wastewater 
networks. 

Overflows in sewers often occur due to bottlenecks induced by the 
slow filling times of storage elements and the significant delays of the 
sewage transport (Ocampo-Martinez, 2010). The uncertainty associated 
with the weather forecasts is also an issue, often deteriorating the pre-
diction capabilities of MPC. Consequently, handling the rain and 
wastewater load via control is a challenging task, not only due to the 
forecast uncertainty but also due to the uncertainty of the modelling. 

To justify the need for autonomous and easy-commissionable control 
strategies, we introduce first the existing methods. Then, we detail our 
contributions and specify the control and modelling methods used 
throughout the paper. Finally, the proposed approach is evaluated on an 
experimental setup, using real rain and wastewater flow data from real- 
world utilities. 

1.2. State of the art 

Instrumentation forms the basis of system-wide planning and auto-
mation in urban water systems (Eggimann et al., 2017; Yuan et al., 
2019). The data-driven transformation of water system management has 
resulted in the deployment of a high number of sensors, enabling online 
monitoring and data processing at many water utilities (Campisano 
et al., 2013). The most widely used instrumentation in sewers is flow and 
level sensors, often placed in tanks and manholes (Banik et al., 2017). 
Flow sensors are typically used for calibrating hydraulic models for 
planning and decision support (Mignot et al., 2012; Yuan et al., 2019), as 
well as for modelling the hydrologic processes, e.g., rain running off the 
catchments (Li et al., 2019). Placement of the actuators and the sensors 
is a non-trivial task in distributed-parameter systems such as sewer 
networks. For instance, Leitão et al. (2018) discusses the identification 
of flow control devices to enable in-sewer storage. In addition to phys-
ical sensors, software sensors have also been developed for flow esti-
mation, utilizing mainly weather radar data, pump operation, and the 
water level variation through level sensors (Ahm et al., 2016; Chen et al., 
2014; Kallesøe and Knudsen, 2016; Kisi et al., 2013; Rjeily et al., 2017). 

Real-time control in sewer networks converts the latest sensor 
measurements to operational decisions by the use of controllable assets, 
e.g., pumps, gates, and valves (Ocampo-Martinez, 2010). The founda-
tion of all predictive decision-making techniques is the underlying dy-
namic model of the system (Lund et al., 2018). The most intuitive 
approach to obtain such models is to consider the physics behind the 
process and apply first-principle hydraulic and hydrologic laws (Todini, 
2007), while maintaining the intuition behind the modelling (Balla 
et al., 2022). However, such models often rely on a high level of detail 
involving many parameters, and therefore keeping them up-to-date is 
expensive and laborious (Schütze et al., 2002). Besides, one of the most 
commonly applied first-principle modelling techniques relies on sets of 
partial differential equations (Xu et al., 2012; 2011), often requiring 
prohibitively many sensors for proper calibration. Other 
physically-based techniques attempt to conceptualize parts of the 
network, e.g., by considering segments of the system as virtual volumes 
(Joseph-Duran et al., 2015; Mollerup et al., 2016), and to simplify the 
model based on skeletonization of the network (Thrysøe et al., 2019; 
Zhang et al., 2021). 

As a result of the increased data availability, data-driven modelling 
and control techniques have gained popularity within the urban water 
systems community (Eggimann et al., 2017). Data-driven models (often 
termed as black-box) are described by their input-output characteristics, 
where inputs typically comprise the rain forecasts, while the outputs are 
the corresponding flows (Kitchin, 2014). Neural networks have been 

applied in modelling the system hydraulics (Dawson and Wilby, 2001; 
Mounce et al., 2014; Vidyarthi et al., 2020) and the hydrology as well 
(Chang et al., 2001; Duncan et al., 2012; Rjeily et al., 2017). One of the 
strengths of neural networks in water systems is their generally high 
performance of learning complex and nonlinear input-output relations. 
On the other hand, although generating solutions with neural networks 
is efficient, they lack the physical interpretability of parameters and 
depend heavily on data quality. 

MPC is a well-suited approach for the optimal mitigation of sewer 
volumes and regulating the flows with the use of rainfall forecasts 
(Beeneken et al., 2013; Lund et al., 2018). Characterization of the 
forecast uncertainties has been reported by considering a multiple sce-
nario approach in both sewers and water resource management (Balla 
et al., 2020; Tian et al., 2017). In Löwe et al. (2014, 2016) and Vezzaro 
and Grum (2014), the incorporation of stochastic grey-box models for 
rainfall-runoff has been considered to reduce combined overflows. 
Additionally, characterization of the forecast uncertainties by learning 
the underlying dynamics of the flows with Gaussian processes have been 
reported in Wang et al. (2016b) for water distribution systems, and in 
Troutman et al. (2017) for flow prediction in combined sewers. 

Reinforcement learning has shown promising results in both com-
bined (Ochoa et al., 2019) and storm water networks (Mullapudi et al., 
2020), while iterative learning control has been used to learn the return 
periods of rain events (Cui et al., 2015). Nevertheless, relatively few 
studies report on learning-based control in sewer systems. 
Learning-based control is therefore a research area promising a potential 
alternative or supplement to the real-time control of wastewater 
networks. 

1.3. Contribution 

This paper aims to enable fully automated decision-making in com-
bined sewer systems. The key innovation behind the proposed method 
relates to its ability to learn and make decisions in real time based on 
level sensor feeds and weather forecasts. Specifically, the contributions 
are the following:  

• A novel data-driven control approach based on the combination of 
hydraulic modelling and Gaussian processes,  

• An economically and practically feasible predictive controller using 
solely in-sewer water level observations,  

• Uncertainty assessment regarding the system states via propagating 
the uncertainty through the predictions,  

• Experimental overflow control validation. 

The proposed solution has two clear benefits. First, in contrast to 
black-box modelling, the basic hydraulic laws are combined with data- 
driven techniques. The structure of the model preserves intuition by 
incorporating the physically measurable levels familiar to practitioners 
working in the water sector. By utilizing only the easy-accessible phys-
ical description of the network, we make our method robust towards 
forecast uncertainty as well as data deficiency. Additionally, the pur-
chase and maintenance costs related to flow sensors are often expensive 
in comparison to level sensors (Zhang et al., 2021). In this work, the 
level-to-flow conversion is bypassed by establishing direct relations 
between the rain and water levels as well as by relating in-sewer water 
level measurements to the level variations in the storage tanks at the 
pumping stations. As opposed to hydraulic modelling, we focus on 
obtaining a prediction model to evaluate the water levels without the 
need of the network dimensions and other particular parameters. 

2. Problem statement 

The overall concept of the method is shown in Fig. 1, where in-sewer 
level sensors are deployed at critical locations in manholes and basins. 
The network topology is defined by a tree graph (Thrysøe et al., 2019), 
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where pumping stations are connected via gravity sewers. 
Note that the topology is simplified based on the high-level piping 

layout (Thrysøe et al., 2019), while the infiltration of rain and waste-
water is concentrated on network nodes (manholes) being affected by 
the discharge. The discharged waste- and storm-water are collected and 
pumped from station to station until the root (treatment plant) is 
reached. Specifically, we consider the full scale of the network, however, 
only the main sewer lines between the pumping stations are modelled. 

The configuration of our proposed control method is shown in Fig. 2. 
The models behind the controller are the physical model (Section 3.1) 
and the data-driven model (Section 3.2). The former incorporates the 
physical knowledge about the dimension of basins, while the latter de-
scribes the effect of rain, wastewater and the uncertainties in forms of 
residuals by using sensor (h), estimation (Q) and rain forecast (d) data. 
Opposed to classical methods that handle the inflows (or disturbances) 
by building individual forecasting blocks, we consider the translation of 

rain to level variation incorporated in the controller. The Gaussian 
Process-based MPC controller block (GP-MPC) (Section 3.4.3) stands for 
the optimization algorithm behind the MPC problem, using a relevant 
cost function (Section 3.4.2) and the operational and physical con-
straints (Section 3.4.1). The decision support block (Section 3.4.4) is an 
information panel providing performance measures of the closed-loop 
control performance to, e.g., network operators in case the algorithm 
is used as an offline decision-support tool. As shown, the controller 
provides flow setpoints to the pumping stations, where the pumps 
operating in parallel move the water volumes at the rate of the optimal 
flow (Qoptimal). In this study, we focus on variable speed wastewater 
pumping, hence the hybrid behavior induced by the traditional fixed- 
speed pump operation is not within the scope of the proposed predic-
tive control algorithm. Since only water level sensors are deployed in the 
wastewater network, the loop is closed with an observer or pumpflow 
estimator, allowing for using soft sensing techniques or estimating the 

Fig. 1. An illustration of a pumped wastewater network, where water level sensors are deployed in critical points.  

Fig. 2. Closed-loop topology of the GP-MPC controller. Signals denoted with blue are flow variables, green signals are water levels and red signals denote the rain 
forecast and time. The pipe network (plant) is represented by the WW (Wastewater) network block and each block is labeled by the number of section where detailed 
description of the functionality is given. 
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pump flows in the proposed output-feedback scheme. In the following, 
we present the control scheme by describing each building block. 

3. Methods 

3.1. Physical modelling 

The nominal model structure is described by the physical laws of 
wastewater transport. The information we use are the the topological 
layout of the network, the size of storage tanks, and the estimated pump 
flow. Hydraulic storage elements are described with simple mass- 
balances. Specifically, the level change induced by pump operation is 
given by 

ht(t+ 1) = Atht(t) + BtQ(t), (1)  

where ht ∈ RNt is the vector of water levels in storage tanks at discrete 
time t, with Nt being the number of tanks and Q ∈ RNQ is the vector of 
pump flows representing the sum of flows for each pump at the NQ 

pumping stations. The parameter matrices At ∈ RNt×Nt and Bt ∈ RNt×NQ 

are defined by the physical size of the storage elements, i.e., the diam-
eter and the discretization time step or sampling time. The mass balance 
is described by Eq.  (1) with the exception that the effect of inflows, i.e., 
rain runoff and domestic wastewater are in general unknown, hence not 
considered as part of the nominal storage dynamics. 

The discharged flow of each pump at a pumping station can be 
accurately approximated with a polynomial expression of each pump 
sitting in a basin. The pump flow Q is related to the relative pressure, the 
power and the speed of the pump, described by the following expres-
sions: 

Q = sa0
1
ω + sa1

Δp
ω + sa2

Pp

ω2 + sa3ω, (2)  

where Q is the flow to be estimated in m3/s, ω is the rotational speed in 
rad/s, Δh is the level difference between the wastewater basin and the 
outlet point, and p is the relative pressure to atmospheric pressure, ob-
tained by measuring the inlet pressure and the level in the wet well. Note 
that p is in mWc, i.e., meter water column. Constants ai are pump pa-
rameters describing the pump curve of the specific pump, assumed to be 
known in this work. Furthermore, sPp is the sum of the power con-
sumption of Pp of individual pumps, s denoting the number of running 
pumps. Several implementations of flow estimation in wastewater 
pumping stations exist, demonstrating high accuracy in practice 
(Kallesøe and Knudsen, 2016). 

The governing dynamics of the discharged flow propagation in pipes 
is assumed to be unknown in the nominal model. Therefore, the nominal 
part of the mass-balance for the entire network is given by the combi-
nation of the vector of tank levels ht and the vector of water levels hp ∈

RNp in manholes, where system parameters related to pipe dynamics are 
zero. The full nominal model is given in the standard linear state-space 
form 

h(t + 1) = f(h(t),Q(t)) = Ah(t) + BQ(t), (3)  

where f represents the known part or nominal dynamics of the waste-
water network and h ∈ RNh is the vector of combined water levels where 
Nh = Nt + Np corresponds to the number of water level sensors deployed 
in the entire network. Note that the structure of the state-space model is 
created based on the network topology, i.e., using the piping layout. In 
the case of several pumping stations connected by transport pipes, 
building the mass-balance model can be easily automated by stacking 
the vectors of suitable dimensions of water levels in Eq.  (1). 

3.2. Data-driven modelling 

The exogenous effect of dry and wet-weather flows are governed by 

unknown dynamics that are excluded from the nominal model in Eq. 
(3). These exogenous flows induce variations in the levels in basins and 
the manholes. Consequently, the flow inside the combined sewer con-
duits is characterized by the sum of dry-weather discharge (domestic 
wastewater) and wet-weather discharge (delayed rainfall-runoff), i.e., 
q(t) = qr(t) + qww(t), where qr and qww are physically present due to 
rainfall-runoff and domestic wastewater production, respectively, while 
q is the combined sewer flow. We consider both combined and storm-
water networks, wherein the latter case the network is not influenced by 
dry-weather flow. However, we do not take into account the ground-
water infiltration explicitly as we rather consider it implicitly in the dry- 
weather flows. 

Given water level sensor data h, pump flow estimate Q and rainfall 
forecast d, the problem is formed by the need to learn the model parts 
which can complement the nominal dynamics described in Eq.  (3). Note 
that our method does not require to generate the qr rain-impacted flows 
and the qww diurnal flows, as we propose to learn the relation between 
rain and level in the sewers. With the learned model, we aim to predict 
the evolution of water levels, i.e., the system states. For this reason, we 
assume that the entire network dynamics are composed of a nominal and 
an additive, unknown part. The former represents the known hydraulics 
of the sewer network, while the latter represents the rain and waste-
water flow infiltrating into the system, the pipes transporting the water 
volumes, moreover the forecast and model uncertainty. The combined 
network model is given by 

h(t+ 1) = f(h(t),Q(t)) + Bpg(h(t),Q(t), d(t), t) + w(t), (4)  

where g is a nonlinear vector function governing the unknown dy-
namics, d ∈ RNd is the vector of rainfall forecasts at Nd different locations 
and w is the process noise w ∼ N (0, Σw)w ∼ N (0, Σw), following 
Gaussian white noise distribution. Besides, Bp is a matrix mapping the 
nonlinear dynamics g to the full state vector h. Simply stated: if there is a 
storage tank where the level variation h is not affected by uncertain 
inflows, Bp maps the lower dimensional outputs of the function g to the 
full state vector h by simply contributing zero to the nominal dynamics. 

To generate input data for learning the unknown function g, we use 
the level sensor measurements h, the flow estimates Q, and the forecast 
of rainfall d.Note that the weather forecast d indicates how the levels are 
varying inside the sewers due to the infiltration of rain qr. Since the dry- 
weather flow qww typically follows a diurnal pattern, the cyclical 
behavior correlates to time, i.e., it is likely that the level patterns are 
similar at the same time of the day at a different week. For this reason, 
we provide the time of the day t as an input to the unknown function g. 
In this way, we provide information about the time periodicity of the 
dry-weather level pattern variations. For ease of notation, let us define 
the input data as a vector 

z = [h⊺,Q⊺, d⊺, t]⊺. (5)  

To create residuals, we use the data provided by the level sensors and 
subtract the nominal dynamics, i.e., 

y(t) = g
(

z(t)
)
+ w(t) = B†

p

(
h(t + 1) − f

(
h(t),Q(t)

))
, (6)  

where y ∈ RNy is the vector of residuals of size Ny, corresponding to the 
number of water levels influenced by either dry- or wet-weather inflows. 
Besides, the mapping matrix B†

p is inverted with the Moore-Penrose 
pseudo-inverse. By using the level sensors distributed along the 
network, we aim to capture the dry- and wet-weather sewer level dy-
namics in the residuals. 

The input-output set is constructed with data under nominal opera-
tion, i.e., 

D = {(z(i), y(i)) | i = 1, ...,M}, (7)  

where M is the number of collected data points. Note that the nominal 
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operation via the on/off control of the pumps might create spikes in the 
residual signal y and therefore removing the outliers is recommended as 
part of data pre-processing. 

A powerful way to represent the input-output mapping of g by taking 
into account the forecast uncertainties is to model the relation as a 
Gaussian Process. Rather than claiming that the input-output relation 
above belongs to a specific mathematical model structure, a Gaussian 
Process is a nonparametric, probabilistic model, based on data. Instead 
of parameterizing the unknown dynamics governing the residuals, we 
characterize their distribution. Hence, the residual model representing 
one entry of y is given by 

y ∼ GP
(
m(z),ΣGP + Iσ2

n

)
, (8)  

where the distribution of the Gaussian process is fully characterized by 
its mean function m(z) and covariance ΣGP. We consider the mean m(z)
as a constant, equivalent to a model bias. The noise variance is denoted 
by σ2

n and I is the identity matrix of suitable dimension. The mean and 
covariance are defined by 

m(z(i)) = E{g(z(i))}, (9a)  

ΣGP(i, j) = cov(g(z(i)), g(z(j))) ≈ k(z(i), z(j)), (9b)  

where the mean m(z) and the covariance matrix ΣGP are obtained by 
evaluating the mean and covariance functions given all measured data 
pairs in D . The expected value operator is denoted by E{⋅}. The 
covariance function or kernel k establishes a measure of similarity be-
tween the function values of g. Specifically, our model makes use of the 
kernel to approximate the covariance of the residual signals. In this 
setting, we assume that the sewer dynamics exhibit smooth and 
continuous behavior (based on the slow sewer dynamics), and therefore 
a squared exponential kernel is used to approximate the covariance 
function in Eq.  (9) (Rasmussen and Williams, 2018). The squared 
exponential kernel is given by 

k(z(i), z(j)) = σf
2exp

(

−
1
2
(z(i) − z(j))⊺SΛ− 1S⊺(z(i) − z(j))

)

, (10)  

where the kernel is characterized by its hyper-parameters σf
2 and Λ− 1 =

diag(σL,1
− 2, ..., σL,Nz

− 2) denoting the signal variance and the length scale 
matrix, respectively. Note that we use automatic relevance determina-
tion, meaning that we use different length scale parameters for different 
dimensions of the input vector z (Rasmussen and Williams, 2018). 
Hence, the relative importance of contribution for each input is assessed. 

Using all input dimensions in Eq.  (5) for characterizing each residual 
is computationally demanding, considering that each level sensor and 
pumping data is used to evaluate the kernel function. Consequently, the 
mapping matrix S maps only the physically meaningful entries in our 
data set D , therefore the number of hyper-parameters (σL) used for the 
parameterization of the level residuals is reduced. 

It can be shown that the posterior distribution over all possible 
realization of the unknown dynamics g is given by Bayes’ Rule 

P{g | z, y} =
P{g}P{y | z, g}

P{y | z}
. (11)  

Given our problem formulation, the posterior distribution simplifies to 
(Rasmussen and Williams, 2018) 

P{g | z, y} ∼ GP(m(z),ΣGP + Iσ2n) (12)  

The hyper-parameters of the above problem are learned by maximizing 
the marginal likelihood P{y | z}, typically done via numerical approxi-
mations, as the analytical evaluation of the above problem is intractable 
(Chalupka et al., 2013). 

Once the hyper-parameters are identified, the Gaussian process 
model is used to predict the level residual y∗ at a test point z∗, using the 

relation y∗ = g(z∗). The problem of predicting the residual corresponds 
to finding the probability distribution of P{y∗ |D ,z∗}, given the training 
data D , a testing input z∗ and the hyper-parameters. By using the kernel 
to approximate the covariance between the training and testing points, 
the mean and variance of the Gaussian process are reformulated, i.e., 

μGP(z
∗) = m(z∗) + Kz∗z

(
Kzz + Iσn

2)− 1
(y − m(z)), (13a)  

ΣGP(z∗) = Kz∗z∗ − Kz∗z
(
Kzz + Iσn

2)− 1Kzz∗ , (13b)  

where Kzz∗ = k(z, z∗) and Kz∗z = K⊺
zz∗ are the covariances between the 

training and testing points, furthermore Kz∗z∗ is the autocovariance of 
the testing point. Note that the above derivation of the GP-based residual 
model provides a framework to predict the physically meaningful level 
residuals y based on the similarity of the measured (training) and newly 
experienced (target) data points regarding the pump flows Q, water 
levels h and the weather forecasts d. 

3.3. Probabilistic prediction model 

To plan the state of the sewer network over multiple prediction steps 
ahead, we aim to predict the effect of wet- and dry-weather discharges 
on the water levels. Predicting multiple steps ahead with the GPs rep-
resenting g and nominal model f means that the mean and the variance 
of the previously predicted states are used to predict the next states. 
Hence, we feed back stochastic variables as inputs. In general, the 
resulting water level distribution is non-Gaussian, as we propagate the 
stochastic states through the nonlinear kernel stated in Eq.  (10). The 
resulting distribution is approximated, such that the water levels h and 
the GP dynamics are approximated at each prediction step t as jointly 
Gaussian, i.e., 
(

h(t)
GP(t)

)

∼N

(

μ(t),Σ(t)
)

=

([
μh(t)
μGP(t)

]

,

[
Σh(t) Σh,GP(t)

ΣGP,h(t) ΣGP(t)

])

, (14)  

where Σh,GP = (ΣGP,h)⊺ are the cross-covariances between the physical 
and the residual water levels, μh(t) is the vector of mean water levels and 
Σh(t) is the covariance matrix of the water levels at time t. The covari-
ance of the water levels provides an extra measure of how uncertain we 
are about our prediction. The pump flows Q are treated as deterministic 
variables. 

To find the transition probability of the full water level states 
(including the nominal and residual contributions), we apply the first- 
order Taylor expansion of the approximated joint Gaussian distribu-
tion shown in Eq.  (14) around the mean μh(t) of the water levels at time 
step t (Hewing et al., 2020). Note that since we are concerned with the 
probabilistic description of the water level evolution in our prediction, 
the characterization of the states is done by considering the expected 
value μh and the governing uncertainty around it, i.e., the variance of the 
water levels Σh. Hence, the mean and variance dynamics of the water 
levels result in 

μh(t+1)= f (μh(t),Q(t)) + μGP(t), (15a)  

Σh(t+ 1) =
[
∇hf(μh(t),Q(t)),Bp

]
Σ(t)

[
∇hf(μh(t),Q(t)),Bp

]⊺
, (15b)  

where Σ is the joint covariance matrix in Eq.  (14) and ∇h denotes the 
first-order partial derivative with respect to the water levels. Note that 
the expected value in terms of the mean water levels is given by the sum 
of the mass-balance based nominal dynamics f and the contribution of 
the residual dynamics μGP. By inserting the model into the nominal 
dynamics f , the final form of the mean-variance dynamics describing the 
water level evolution becomes 

μh(t+1)=Aμh(t) + BQ(t) + BpμGP(t), (16a)  
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Σh(t+ 1) = AΣh(t)A⊺ + BpΣGP,h(t)A⊺ + AΣh,GP(t)Bp
⊺ + BpΣGP(t)Bp

⊺,

(16b)  

where the co-variance update and the cross co-variance between the 
Gaussian process and the water levels are given by 

μGP(t) = μGP (̃z(t)) (17a)  

Σh,GP(t) = Σh(∇hμGP (̃z(t)))
⊺ (17b)  

ΣGP(t) = ΣGP (̃z(t)) + ∇hμGP (̃z(t))Σh(t)(μGP (̃z(t)))
⊺
, (17c)  

where the input vector is given by ̃z = [μh
⊺,Q⊺, d⊺, t]⊺. 

3.4. Predictive control 

Regarding the control of large-scale water systems, the popularity of 
MPC is to a great extent due to the fact that physical and operational 
constraints are handled in the optimization problem. According to the 
predictions with the model and the rain forecasts, the MPC algorithm 
optimizes the manipulated variables (flows or levels) over a given pre-
diction horizon Hp of chosen length. Inputs are computed and evaluated 
to obtain a future response from the water system. Then, the sequence of 
future responses is evaluated based on our cost function and we optimize 
until our numerical solution yields suitable inputs according to a system 
management policy, which can be identified as optimal. The optimal 
inputs are then sent to the actuators (pumps or gates) and the entire 
process is repeated in a receding horizon fashion. In our work, con-
straints are formed on the physical flow limits of pumps and the physical 
dimensions of the network, e.g., the capacity of storage tanks and 
manholes. The disturbances are considered as the wet- and dry-weather 
flows affecting the sewer network in terms of wastewater flow and rain 
runoff, among which the latter is of highly stochastic nature. The fore-
cast of these exogenous signals is typically done in terms of nowcasting 
and forecasting. Nowcasts are obtained by rainfall radars, providing 
sufficient spatial and temporal reliability up to two hours, while fore-
casts span over a longer time horizon. 

3.4.1. Constraints 
Both physical and operational constraints are formulated for the 

optimization problem associated with the GP-MPC strategy. We consider 
the sum of each pump unit at the pumping station, hence the constraint 
on the manipulated flows is given by 

HQQ(t) ≤ bQ, (18)  

where bQ = [Qmax
⊺,Qmin

⊺]
⊺
∈ R2NQ is the vector of upper and lower flow 

bounds at each pumping station, i.e., the maximum and minimum sum 
of flow that a station can provide. Furthermore, the matrix HQ =

[INQ , − INQ ]
⊺ maps the vector of pump flow variables Q to the suitable 

dimensions of bQ. 
Constraints on the system states pose limitations on the maximum 

and minimum water levels. Often the bounds correspond to the capacity 
of a manhole or a basin. From the physical point of view, it is evident 
that a combined wastewater network is best prepared for a high- 
intensity rain event if basins are emptied beforehand. Keeping the 
water levels as low as possible is particularly important before a storm 
event, as water volumes might need to be used to the maximum capacity 
of the piping network. Considering the uncertain nature of rain forecasts 
and the dynamic nature of wastewater flow patterns, the goal of the 
controller is to reject the wet- and dry-weather inflows. In this study, we 
adapt some ideas from predictive control in water distribution networks 
(Grosso et al., 2014; Wang et al., 2016a), where we introduce an oper-
ational constraint. This operational criterion keeps the levels in storage 
tanks within a specific safety range instead of forcing them to a refer-
ence. The functionality of this constraint is to allow the controller to 
operate the level freely by penalizing only level values which violate the 

safety bounds. The safety bounds and the operating capacity are illus-
trated in Fig. 3. 

While the minimum and maximum level values of the physical ca-
pacity constraints are evident, the determination of the safety bounds is 
crucial to achieving a proper performance of the closed-loop control 
strategy. We argue that the safety bounds are placed best at the lower 
region of tanks, as the system remains emptied and prepared in case of 
an unexpected storm event. (Furthermore to limit odor problems due to 
retention.) While finding the optimal placement of the safety region is 
out of scope here, it is reserved for future simulation studies. 

Introducing the nonlinear kernel and propagating the uncertainties 
with the Gaussian processes result in system states (water levels) being 
probabilistic, following a Gaussian distribution. Hence the state con-
straints need to be treated stochastic. In this study, we formulate prob-
abilistic constraints in terms of chance constraints (Wang et al., 2016a), 
i.e., 

P{Hh(t) ≤ b} ≥ α, (19a)  

P{Hsh(t) ≤ bs} ≥ αs, (19b)  

where Eq.  (19a) describes the constraint on the physical capacity of 
storage elements while Eq.  (19b) describes the constraint on the safety 
region. The operator P{} is the probability that the inequality is satisfied 
with α and αs being the confidence levels. Furthermore, the mapping 
matrices Hh = [INh , − INh ]

⊺ and Hs = [INht
, − INht

]
⊺ map the vector of water 

levels h to suitable size of b = [ht,max
⊺, ht,min

⊺]
⊺ and bs = [hs,max

⊺,hs,min
⊺]

⊺ 

water level bounds, respectively. Note that the lower bounds corre-
sponding to b are defined by the minimum volume in the wet wells to 
avoid the dry-run of the pumps. 

Under our assumptions that h is jointly Gaussian with the residuals y, 
the above probabilistic expressions can be reformulated as convex, 
deterministic constraints (Hewing et al., 2020; Wang et al., 2016a). The 
constraints are given by 

Hμh(t) ≤ b + Hϵϵ(t) − c ⊙ Hdiag(Σh(t))
1
2, (20a)  

Hsμh(t) ≤ bs + Hξξ(t) − cs ⊙ Hsdiag(Σh(t))
1
2, (20b)  

where the actual water level values are replaced by their expected or 
mean values μh. Furthermore, we introduce a term called the vector of 
critical values c = ϕ(α)− 1, where ϕ(⋅) is the vector of inverse cumulative 
distribution function (or quantile) of the standard Gaussian distribution 
evaluated at α. These quantiles can be precomputed and used as constant 
values. The operator ⊙ denotes element-by-element multiplication and 
the slack terms ϵ = [ϵmax

⊺, ϵmin
⊺]

⊺ and ξ = [ξmax
⊺, ξmin

⊺]
⊺ denote vectors of 

relaxation variables standing for safety violation and overflow, respec-
tively. The mapping matrices H ∈ R2Nh×Nh and Hs ∈ R2Nt×Nt map the 
mean water level μh and variance Σh to the suitable dimensions of the 
maximum and minimum water level bounds b and bs. Note that the 
additional term in Eq.  (20) corresponds to the tightening of the original 
bounds, conditioned on the evolution of the water level variances along 
the prediction horizon. As expected, the longer we predict into the 
future, the higher the variances grow due to the model and forecast 
uncertainties. To avoid recursive infeasibility, the slack variables ξ and ϵ 

Fig. 3. Safety and capacity constraints, where blue and red arrows are 
constraint relaxations for overflow (ϵ) and safety violation (ξ). 
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are utilized to soften the constraints. 

3.4.2. Cost function 
The cost function is the key component in the design of the GP-MPC. 

In general, the formulation of the control problem relates to the 
manipulation of water volumes to avoid undesirable overflows and 
water surges outside the main sewer lines. From the control point of 
view, we focus on the rejection of the stochastic meteorological (rain- 
runoff) and human (wastewater flow) loads, aiming to avoid the phys-
ical constraint violations resulting in overflows or water surges. 
Although here we propose a specific objective function, there is a flex-
ibility of either removing or adding control objectives simply by adding 
new control goals. For example, the control strategy may vary according 
to the infrastructure design, e.g., the inclusion of treatment plant ob-
jectives may be crucial to add in combined networks with high waste-
water load. In this work, we focus on the following operational and 
management criteria (listed in decreasing order of priority)  

I. Minimise overflow in storage elements  
II. Minimise safety volume violation  

III. Minimise the water level in storage elements  
IV. Minimise the control action of pumps 

The predefined objectives are aggregated in a multi-objective cost 
function to fulfill all control criteria. As the evolution of the water levels 
is described by an approximated joint Gaussian probability distribution, 
the cost function is formulated on stochastic variables. The overall cost 
of the control problem is formed as expected values, given by 

L (t) = E

⎧
⎨

⎩
W1‖ ϵ(t)‖2

λ1⏟̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅⏟
I.

+W2‖ ξ(t)‖2
λ2⏟̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅⏟

II.

+W3‖ h(t)‖2
λ3⏟̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅⏟

III.

+W4‖ ΔQ(t)‖2
λ4⏟̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅⏟

IV.

⎫
⎬

⎭

(21)  

where the different control objectives are prioritized through the W 
weighting constants. Furthermore, these weights also normalize each 
objective such that water levels and flows become comparable in 
magnitude. Cost I. represents the overflow penalty, where the use of 
slack variable ϵ represents the water level exceeding the physical bounds 
of the basins. The amount of overflow shared between pumping stations 
is prioritized with the diagonal λ1 matrix, where λ1 is diagonal and 
0 ≤ λ ≤ I, similarly to all λ matrices. Moreover, the weight constant W1 
is significantly higher than any other weights, as using the overflow 
variables is undesirable. Cost II. corresponds to the safety slack, while 
Cost III. penalizes the level in storage tanks and manholes. By adjusting 
λ3, the filling sensitivity of storage tanks or manholes can be adjusted, 
meaning that storage nodes prone to overflows are filled slower and 
emptied faster than less sensitive storage elements. Note that Cost IV on 
minimizing the pumpflows is formulated on the variation of the signal 
ΔQ(t) = Q(t) − Q(t − 1), accounting for integral action enabling smooth 
system response. 

The slack variables representing overflow ϵ and the safety violation ξ 
are decision variables, similarly to the change of flow ΔQ for pumps. The 
decision variables are considered deterministic, therefore the only sto-
chastic term in Eq.  (21) is Cost III. Taking the expected value of the 
quadratic term results in the following expression (Hewing et al., 2020): 

E
{

W3‖ h(t)‖2
λ3

}
= W3

[
‖μh(t)‖λ3

2
+ tr{λ3Σh(t)}

]
, (22)  

where tr{} is the trace operator and the expected value results in the 
mean μh and the covariance Σh of the water level values. 

3.4.3. Optimization problem 
Bringing together the approximations of the water levels and the 

Gaussian processes, furthermore the expected values of both the con-
straints and cost function, we introduce the tractable form of the opti-

mization problem behind the GP-MPC algorithm (indicated in Fig. 2). 
The problem is given by 

Minimize
ΔQ(0),...,ΔQ(Hp − 1)

ϵ(0),...,ϵ(Hp − 1)

ξ(0),...,ξ(Hp − 1)

∑i+Hp− 1

t=i
W1 ‖ ϵ(i)‖2

λ1
+ W2 ‖ ξ(i)‖2

λ2
+ W3

[
‖μh(i)‖

2
λ3

+tr{λ3Σh(i)}] + W4‖ ΔQ(i)‖2
λ4
,

(23a)  

subject to 

μh(i+1)= f (μh(i),Q(i)) + μGP(i), (23b)  

Σh(i+ 1) =
[
∇hf(μh(i),Q(i)),Bp

]
Σ(i)

[
∇hf(μh(i),Q(i)),Bp

]⊺
, (23c)  

ΔQ(i) = Q(i) − Q(i − 1), (23d)  

HQQ(i) ≤ bQ, (23e)  

Hμh(i) ≤ b + Hϵϵ(i) − c ⊙ Hdiag(Σh(i))
1
2, (23f)  

Hsμh(i) ≤ bs + Hξξ(i) − cs ⊙ Hsdiag(Σh(i))
1
2, (23g)  

ϵ(i) ≥ 0 and ξ(i) ≥ 0, (23h)  

μGP(i),ΣGP(i)according to Eq. (13) (23i)  

Σ(i)according to Eq. (14) (23j)  

μh(0) = h(i), Σh(0) = 0, (23k)  

where the minimization is solved at time t for every i = 0, ...,Hp − 1 
along the prediction horizon Hp in a receding horizon fashion. Note that 
the optimization problem is subject to the dynamic network equations in 
Eqs. (23b) and (23c), forming equality constraints. Furthermore, the 
rain forecast d is included in these constraints, as the mean and variance 
μGP, Σ are constructed based on the z training data vector. After solving 
the optimization problem in Eq.  () at state h(0), the resulting decision 
variables form an optimal control sequence of the change in pumpflows 
u = [ΔQ⊺(0),ΔQ⊺(1), ...,ΔQ⊺(Hp − 1)], where only the first row of u is 
used. Note that the vector of slacks ϵ and ξ are also decision variables 
obtained via the optimization. 

3.4.4. Key performance indicators 
The proposed approach is aimed for the online, automatic control of 

combined or separated wastewater networks. The approach, however, 
serves as a toolchain not only for closed-loop control but as a decision 
support for water practitioners (information panel in Fig. 2). We aim to 
support decision making by providing Key Performance Indicators 
(KPIs) for predicting overflows, assess the uncertainty of the predicted 
water levels and to provide information about the safety region in 
storage tanks. The KPIs are given by 

KPIξ =
1

Hp

∑NQ

k=1

∑

i=0

Hp − 1

ξk(i), (24a)  

KPIϵ =
1

Hp

∑NQ

k=1

∑

i=0

Hp − 1

ϵmax,k(i), (24b)  

KPIΔQ =
1

Hp

∑Hp − 1

i=0
ΔQ⊺(i)ΔQ(i), (24c)  
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KPIΣ =
1

Hp

∑Hp − 1

i=0
tr{Σh(i)}, (24d)  

where the performance indicator in Eq.  (24a) is related to the safety 
bound violation, the KPI in Eq.  (24b) for overflows, Eq.  (24c) assesses 
the smooth performance of the pumping and the KPI in Eq.  (24d) is 
related to the amount of uncertainy along the prediction horizon Hp, 
respectively. The KPI indicating the level of potential overflow is only 
assessed for the slack variable ϵmax, corresponding to the level violation 
for the upper capacity limit of basins and manholes. Note that all KPIs 
are averaged along the prediction horizon and considered for the entire 
wastewater network. Ideally, the KPIs accounting for overflows and 
safety violation should be zero, meaning that the pumps counteract the 
wet and dry-weather flow disturbances and they respect the safety re-
quirements. In practice, the stochastic disturbances are complicated to 
forecast and the uncertainty in the model and in the forecast are always 
present. 

Additionally, our KPIs are also intended to indicate whether it is 
necessary to activate a fallback scenario in case extreme weather con-
ditions are experienced for which the infrastructure was not designed. In 
this case, we cannot assure that our controller learns to react safely. 

3.4.5. Implementation 
The control algorithm and the interfacing software to the experi-

mental setup are available on an open-source web repository (https://gi 
thub.com/csocsidior/LB-GP-based_WWnetwork_control). The data 
collected during the experiments have also been attached to the web 
repository to allow practitioners and researchers to evaluate our 
implementation. Additionally, a simulator environment replicating the 

topology of our laboratory equipment is also provided. The algorithm 
has been implemented on a Windows OS desktop computer with a 3.6 
(GHz), Intel Xeon machine with 64 GB RAM, and the software has been 
written in Matlab. The real-time control algorithm has been interfaced 
with Simulink, and the data was obtained and locally managed at each 
unit of the experimental setup with a CODESYS soft-PLC in real time 
(3S-Smart Software Solutions GmbH). The optimization problem related 
to the GP-MPC controller has been solved via direct multiple shooting in 
the symbolic framework CasADI (Andersson et al., 2019) with a 
pimer-dual interior point solver IPOPT (Wächter and Biegler, 2006). For 
finding the hyperparameters of the Gaussian processes, we used the 
fitrgp toolbox in Matlab. 

4. Case study 

To show the practical feasibility of the learning-based framework, 
the controller is deployed on a laboratory setup, emulating a combined 
wastewater network. This laboratory setup enables us to prototype our 
control solution serving as proof-of-concept without the risk of 
compromising the operation of real-world infrastructure. (A detailed 
description of the test setup can be found in Val Ledesma et al. (2021).) 
Besides, the experimental tests conducted in this paper are inspired by a 
real wastewater network topology located in Gram, Denmark, proposing 
a realistic control problem. The configuration is shown in Fig. 4. 

The replicate of the network segment is a 1 : 80 scale of the real 
infrastructure. Therefore, the resolution of the time scale and the wet- 
and dry-weather flows are scaled down accordingly. Specifically, the 
diurnal pattern of wastewater is scaled to 19 min, corresponding to one 
day in real life. While the data acquisition is done at every 0.5 s, the 
control time step is 10 s, equivalent to sending a control signal every 12 

Fig. 4. Case study area of a combined wastewater network in Gram, Denmark (a) and the equivalent representation of the considered network segment by the Smart 
Water Infrastructures Laboratory, where (b) is showing the experimental setup and (c) the schematics of the topology. 

K.M. Balla et al.                                                                                                                                                                                                                                

https://github.com/csocsidior/LB-GP-based_WWnetwork_control
https://github.com/csocsidior/LB-GP-based_WWnetwork_control


Water Research 221 (2022) 118782

9

min in real life. Besides, the data used in the experiment are real 
wastewater and rain precipitation1. It is important to note that, due to 
the limitations of the experimental setup, the proper characterization of 
the runoff dynamics is out of scope in this study. Therefore, both the rain 
and wastewater discharges have been emulated based on the historical 
flow measurements. However, the forecast of the rain is provided from 
outside of the optimization problem statement, and therefore our 
method and structure are still valid and remain the same for real-world 
implementation where the synchronization of the rain and wastewater 
flows is characterized properly. 

The experimental setup consists of an upstream and downstream 
pumping station connected via a sewer pipe, where the water volumes 
are transported with pumps. Lateral inflow from household areas enters 
the system by discharging wastewater at the middle point of the pipe-
line. As indicated in Fig. 4, the laboratory setup is equipped with level 
sensors distributed along the open-channel pipes and storage tanks 
together with flow sensors at the pumping stations. Although flow 
estimation is given by Eq.  (2), we simply use the available sensors on the 
setup. 

Following the methods in Section 3, the nominal model of the 
network is assessed. Specifically, we have NQ = 2 pumping stations, Np 

= 1 level sensor in pipes and Nt = 2 at the stations. The dry- and wet- 
weather flows enter the system at Nd = 2 points, where rain infiltrates 
the system at pumping station t1. The training data array for identifying 
the data-driven part of the model in Eq.  (5) is constructed as z(t) =

[h⊺(t),Q⊺(t), d(t), t]⊺, where the level and flow signals at time t are given 
by 

h(t) =
[
ht1 (t), ht2 (t), hp3 (t)

]⊺
, (25)  

Q(t) =
[
Qt1 (t),Qt2 (t)

]⊺
. (26)  

Out of the four available level sensors in manholes, we use hp3 placed 
after the connection of the lateral inflow pipe. We argue that the sensor 
measurement located at this point captures sufficient information to 
model how the pump Qt1 , and disturbance flows qp3 enter the channel. 
Then, the nominal parameters of the wastewater network are given by 

A =

[
I2×2 02×1
01×2 0

]

,B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ts

τt1
0

0
Ts

τt2

01×2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (27)  

where Ts denotes the sampling time of the controller, while τ1 and τ2 are 
the storage tank parameters representing the geometry and size of the 
tanks. It is important to note that the experiments are carried out such 
that the water recirculates in the system, meaning that the flows and 
volumes need to be balanced. For this reason, the controlled pumps 
cannot turn off to zero flows, as expected in a real-world implementa-
tion. Instead, the operating range of the pumped flows is lifted to a value 
where the network can run for long experiments without emptying the 
Rain inflow and Household area auxiliary tanks. 

5. Results and discussion 

5.1. Residual model training 

Given the physical model, the residuals y ∈ R3 can be constructed 
based on the water level measurements h ∈ R3. As stated in Section 3.2, 

beyond the sensor availability, knowledge of the physical system plays a 
significant role in the training efficiency of the model. To find the 
hyperparameters for each GP, the dimension of the training data set is 
reduced according to Eq.  (10) by using the slicing matrices. These 
matrices define which dimensions of the original training set z influence 
the given residual based on the topological layout of the system. 
Matrices S are mapped to a lower dimension than Nz, where the hyper- 
parameters σL are picked that are physically relevant to parameterize the 
given residual. In our specific case study, to train the GP on residual y1 
(corresponding to the upstream tank t1), the predictors Qt1,(4), the rain 
forecasts d, (6), and the time t, (7) are used, hence only three hyper- 
parameters are employed instead of using the full size Nz = 7 inputs 
and the corresponding hyper-parameters. This is well-aligned with our 
physical insights, as we can observe from the visual inspection of the 
water level variation in the upstream tank that both the dry- and wet- 
weather flows and the corresponding pumps influence the signal. The 
illustration of the feature selection is shown in Fig. 5. The collected 
measurement data for training is obtained under the nominal operation 
of the network. We consider the nominal operation of pumping stations 
when pumps operate with threshold-based control rules, most 
commonly applied by wastewater utilities (Lund et al., 2018). 

To test the modelling capabilities of the Gaussian process model 
fitted to the residuals, the collected data have been divided into a 
training and validation sets. The GP models have been trained on 80% of 
the collected data set, corresponding to 60 days of on/off operation. The 
rest of the data (15 days) have been used for validating the results. Fig. 6 
shows the three residuals constructed from the measurement data h 
obtained via the level sensors. It is seen from these results that the 
predictions with the GP model match the level residual observations 
within the validation period in the two tanks and the pipes. Further-
more, except for some outlier points, the confidence interval charac-
terized by the variance of the GP process covers the distribution of the 
data points well. The variations in the data are primarily due to the noise 
and the measuring precision of the sensors. As seen in residual y1, 
removing the effect of the nominal dynamics from the original level 
signal results in the daily diurnal level variation patterns induced by the 
dry-weather discharges, and level peaks due to the wet-weather rain 
precipitation. It is worth noting that the performance of our level pre-
dictions using rain forecasts is underpinned by the fact whether we 
observed rain episodes similar to the current forecast before. Besides, 
note that our experimental test setup has physical limitations of how 
different rain flow profiles we can create. This might partly explain why 
our final model exhibited such suitable performance in predicting the 
combined level variations (e.g., residual y1 in Fig. 6). 

The data describing residual y2 are related to the level variations 
induced by the discharged pump flow coming from the upstream station 
t1 and the lateral inflow coming from the household area. Note that the 
level variations due to the pumping activity of such pumps sitting at the 
downstream station are not visible on the signal in Fig. 6 as we removed 
the pump flow time series scaled to the level variations in the tank. It is 
seen from the signal that the diurnal lateral flows (qp3 ) coming from 
upstream induce the level variations in the downstream tank. Lastly, 
residual y3 describes exactly the level variations in the pipe without any 
modifications, as the dynamics of flow propagation in pipes are not 
characterized by any physically-based nominal dynamics in our study. 
Incorporating physical knowledge (e.g., travel time, level attenuation) 
into the pipe residual model is of course possible in specific cases, but 

Fig. 5. Feature selection with the slicing matrices S.  

1 The rain data has been obtained through the Danish Meteorological In-
stitute’s Open Data application interface (https://confluence.govcloud.dk/disp 
lay/FDAPI). The wastewater data has been obtained from the utility Fredericia 
Spildevand og Energi A/S in Denmark. 
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ignored in this initial evaluation; investigation of this will be reserved 
for future studies. As seen, the variations mainly occur due to the dry- 
weather lateral inflow from the household area (which we desire to 
capture through this signal), while the jumps observed in both the 
predictions and the data are due to the pumping cycles coming from the 
upstream station. 

So far, we verified our assumptions on the input selection based on 
our physical insights. However, it is crucial to make sure that our model 
captures the correlation between each input dimension of the training 
set z used for the residual predictions. Since the GP models are used to 
solve an optimization problem through multiple-step predictions, we 
need to make sure that the decision variables are properly captured in 
the model. Hence, the following measure is introduced to measure the 
relevance of each input on the corresponding residuals: 

ri =
exp

(
− σL,i

)

∑
j=1

NL

σL,j

, (28)  

where ri is the normalized relevance of the ith predictor and NL is the 
number of length-scale hyperparameters used for the given output re-
sidual. The relevant data inputs receive positive values between one and 
zero, while a value close to zero indicates irrelevant input data. 

The comparison of input relevance corresponding to each GP model 
is shown in Fig. 7. As seen in residual y1, the time input t (used to 
describe the diurnal variation of wet-weather flows) is dominant 
compared to the rain forecasts d and to the pumping activity Qt1 . This 
fact is in line with our expectations as the majority of the residual data 
incorporates information about the diurnal wastewater activity, while 
the rain peaks appear less often in the time series. It is also seen that the 
pump flow data are quite irrelevant when we predict with the model. 
This verifies our method since the effect of the pump dynamics is part of 
the nominal model, hence it should not affect the residual. 

The relevance bars of residual y2 show that the level variation in the 
sewer pipe discharging to the downstream tank (hp3 ) has a high rele-
vance, verifying our initial assumptions, as the only discharge source is 
the flow gravitated down from the upstream tank. Note, however, that 
our model shows some correlation between the nominal pump flows Qt2 

and the time input t. A possible explanation for this fact might be that in 
case of high loads, both pumping stations turn on approximately at the 
same time, meaning that Qt2 and hp3 inhabit similar characteristics. 
Moreover, we select the time input to model each residual, in case there 
are some additional periodic components in the signal not described by 
the level sensor in the gravity pipe. Lastly, the water level variation in 
the sewer pipe is induced by the pumps upstream Qt1 and by the lateral 
inflow qp3 , which we model inherently by providing time t as an input. It 
is worth noting that we do not distinguish between weekdays and 
weekends. This means that the predicted diurnal patterns represent an 
average model, which considers the similarity between any days in our 
training set. 

5.2. Closed-loop control experiment 

The experimental evaluation of the learning-based predictive 
controller has been carried out with an Hp = 20 steps horizon, which is 
equivalent to a four-hour ahead prediction in real life. It should be noted 
that the computational complexity of solving the optimization problem 
in Eq.  (22) is highly dependent on the GP model used for learning the 
dry-weather flows and the unmodelled dynamics. From the imple-
mentation point of view, propagating the uncertainty depends on the 
number of data points that we use in our optimization problem, as μGP 
and ΣGP are conditioned on the observed data and therefore evaluating 
Eq.  (13) has a cost growing with the number of points. To overcome this 
issue, we select a subset of M = 80 data points from the D training set 
with a criteria that these points need to be close to the previously 

Fig. 6. Validation of the GP model with the residuals regarding the level variations in the two tanks and in the sewer pipe, respectively.  

Fig. 7. Relevance of the regressors showing the effect of the input data on the residuals.  
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predicted state trajectories. Hence, we assume that the previous solution 
trajectory will lie close to the current one, which is fair considering that 
wastewater networks inhabit slowly-varying dynamics. Although 
several sparse GP approximations exists (Hewing et al., 2020), here we 
implement the most simple version and reserve more advanced sparse 
approximations for future studies. Furthermore, we add new level, pump 
flow and forecast points at every second control step to our data dic-
tionary D , i.e., we continuously learn new state-action-forecast pairs. 
Note that the controller is launched after the model is pre-trained on the 
60 days of training data previously obtained from the nominal opera-
tion, hence the point selection already has a wide feature-space to select 
from. 

The closed-loop control results obtained from our experimental setup 
aim to show the benefits of distributing the water level sensors in 
combination with using the residual-based physical and GP-based data- 
driven techniques to learn the dynamics of a network-scale control 
problem. To assess the performance of the GP-MPC, the method is 
compared with a standard baseline controller, meaning that we emulate 
the same scenarios and run the two different controllers under the same 
physical and control properties. We aim to emphasize how an easy- 
commissionable controller can challenge the simple baseline control-
lers, especially when the sewer system is facing capacity problems under 
heavy hydrologic load (Lund et al., 2018). In our implementation, both 
controllers act globally and compute the flow reference signals to the 
local PI controllers governing the pumps. To stretch both controllers to 
their capacity limits, a period equivalent to 18 days in real life with 
heavy rain periods has been chosen, forcing the network to overflow due 
to its insufficient storage capacity. The results of the experiment are 
shown in Fig. 8. The figure compares both control scenarios by showing 
the forecasts and the discharged inflows entering the system (a-b), the 

water level in each tank (c-d), the volume of actual overflow escaping 
from the tanks (e-f), and finally the control decisions at the two pumping 
stations made by the learning-based GP-MPC (g-h) and by the on/off 
baseline controller (i-j). 

Overflows are triggered several times while running the baseline 
controller due to the lack of collaboration between the upstream and 
downstream pumping stations. Opposed to on/off operation, it is clear 
that the GP-MPC at the upstream tank shifts the timing of the pumping 
under heavy rain events. Note that the controlled flow at the upstream 
station Qt1 rarely reaches its upper flow limit and often reduces the 
outflow, thereby saving the capacity downstream. By delaying the flows 
from the upstream station, the GP-MPC controller allowed the down-
stream tank to drain and to spend less time overflowing. This shift in 
time and the flow reduction is observed between Day 1 − 2, and between 
Day 14 − 17. Looking at the control actions between the latter period 
(Day 14 and 15), the system is exposed to an extreme event, where a 
high-intensity and long-duration rain event is about to be forecasted. 
During this episode, the control actions at the upstream pumping station 
start to oscillate when the controller realizes that the safety bounds need 
to be violated and the upstream tank need to use the slack variables for 
overflows to reduce the overall accumulated spilled volumes. 

The KPI corresponding to the control actions is verifying this 
behavior, shown in Fig. 9. For various practical reasons, this action is 
undesirable. However, the upstream pumping station indeed overflows 
at Day 16, while the water levels at the downstream basin hover just 
below the upper physical level limits. A possible explanation for this 
behavior might be the type of rain event forecasted at Day 14. In Fig. 9 in 
the last row, the uncertainty predicted by the controller is assessed in 
comparison to the different forecasts. Short uncertainty peak can be 
explained by the low performance of the point selection, meaning that 

Fig. 8. Performance comparison between the GP-MPC and On/off controller, operating the experimental setup representing the case study area during an 18-days 
period with heavy rain-events. Inflows, water levels in the basins, accumulated overflow and the control actions are shown regarding the upstream pumping station 
(left column) and the downstream pumping station (right column). 
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the points selected from the feature space D are not suitably repre-
senting the currently forecasted scenario. This is visible at most times 
instants under rain forecasts. However, the uncertainty remains high 
during the two longest rain events between Day 1 − 2 and 14 − 16, 
respectively. This fact indicates that even though the point selection 
with M = 80 points allows solving the optimization problem under two 
seconds on average, the prediction quality and smoothness of the control 
action are degraded significantly. Moreover, our experimental tests 
confirm that the performance of the GP-MPC is quite sensitive to the 
formulation and tuning of the objective function. As seen from the KPIs 
between Day 14 − 15, the uncertainty remains high during the rain 
events, indicating that the points we use for the predictions do not 
describe the forecasted scenario in a proper way. At the same time, the 
rain has a long duration and its intensity triggers overflow in the pre-
dictions. However, as the uncertainty grows due to the bad description 
of the data, the controller attempts to minimize the variance to the cost 
of not reporting overflows. 

Note that between Day 9 − 14 there is a relatively dry period, where 
the controller at both stations makes the outflows of the pumps mimic 
the daily diurnal flow variations induced by the wastewater flowing into 
the system. This indicates that the Gaussian process part of the model 
predicts an average wastewater inflow with an uncertainty bound that 
fits the actual inflows quite well. Thereby the pumps exhibit smooth 
control actions resulting in smooth variations inside the safety region 
defined in the tanks (marked with the blue area in Fig. 8 (c-d)). 

The results illustrated here show a number of benefits and challenges 
to using the GP-MPC scheme to learn and predict the dry- and wet- 
weather flows from the level variations occurring in combined waste-
water networks. Arguably, the major benefit of learning from the level 
data is the ability to launch the controller without developing control 
models relying on the level to flow conversion. However, as the exper-
imental tests have shown, the adoption of the method is challenged by 
several practical issues. Since the effect of the inflows is handled by the 
Gaussian processes, the contribution of the data-driven decision-making 
cannot be easily explained and explicit guarantees cannot be given. 
However, using sparse approximations of the available training data sets 
is anticipated to increase the quality of predicting the residuals. To 
further improve the robustness of the controller, instead of choosing M 
exact points for the covariance matrices, it is anticipated that approxi-
mating the original training data matrix with an M dimensional sparse 
matrix based on the point selection will improve the uncertainty 
propagation. 

6. Conclusions 

This paper introduced a Gaussian process-based predictive control 
algorithm for the real-time control of wastewater networks. While flow 
modelling with Gaussian processes has been successfully used in water 
systems before, to our knowledge this is the first instance where the 
methods have been applied and verified experimentally in real-time 
control without the use of any flow sensors. The methods proposed 
here and our experimental tests showed promising results in using the 
domain knowledge combined with the data-driven model to make 
automated decisions on a network scale. The proposed control archi-
tecture has the potential to serve as either an online or an offline 
decision-support tool to control actuators in wastewater networks, 
predict overflows and assess the uncertainty of the decisions. To that 
end, the formulations and real-time results provided by this paper 
should serve as a basis to support data-driven predictive control as a 
feasible solution in wastewater networks. 

Further research on how the flow and level propagation in the 
transport pipes could be incorporated into the nominal dynamics 
promises a potential for improvement in the robustness of the proposed 
study. This is a matter of future work. 
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