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ABSTRACT The importance of accurate estimation of the state-of-health (SOH) for Lithium-ion (Li-ion)
batteries is going to increase as Li-ion batteries become more integrated into daily life. As the reliance
on Li-ion batteries increases so does the need for battery pack size optimisation and the extension of
battery lifetime. Data-driven methods for estimation of the SOH of Li-ion batteries have shown to have
good performance under laboratory conditions, but often fail to achieve similar performance when used in
real life applications. This is a consequence of the field data seldomly matching the laboratory data, which
is a necessary condition of most data-driven methods. A method which aims to account for discrepancies
between laboratory and field data is transfer learning. This paper shows how the transfer learning algorithm
kernel mean matching can be used to transfer both multiple linear regression (MLR) and bootstrapped
random vector functional link (BRVFL) models from the laboratory to the field. It is shown that these
methods can achieve mean absolute percentage errors (MAPE’s) smaller than 1% on both laboratory and
field data simultaneously.

INDEX TERMS Bagging random vector functional link neural networks, feature extraction, Lithium-ion
batteries, multiple linear regression, transfer learning

I. INTRODUCTION

THERE has been an increase in the use of Lithium-
ion (Li-ion) batteries in daily life both through the

deployment of more electric vehicles and in grid-connected
residential energy storage systems. It is, therefore, in the
best interest of manufacturers and end users to optimise
the size of the battery packs and the lifetime of the bat-
tery from both an environmental and economic perspective.
In order to achieve this goal, it is important to accurately
ascertain the health of the battery at every moment during
its operation. Nevertheless, accurately estimating the battery
state-of-health (SOH) often requires extensive and expensive
laboratory experiments, which can quickly become obsolete.

Estimation of the SOH of a battery usually falls into one
of two categories: (1) physics-driven methods, or (2) data-
driven methods. The physics-driven methods aim to model
the the internal states of the battery using theory of physics,
chemistry, and electrical circuits. Among the most popular
approaches are the electrochemical models consisting of par-

tial differential equations, which model the internal battery
components and their interactions [1], [2], and equivalent
electric circuit (EEC), which relate battery current to the
voltage through a series of simple circuit elements (e.g., re-
sistors, capacitors, voltage sources etc.) [3]–[7]. While these
methods can be very accurate, they require very large fully
factorial experimental designs to determine the necessary pa-
rameter [8]. Full factorial experimental designs are necessary
to account for all possible battery parameter (e.g., capacity.
resistance etc.) dependencies such as temperature, SOC, and
level of degradation. As an alternative, complex Kalman
filters have had some success in estimating the battery SOH
[9]–[17]. However, due to their intrinsic properties, a singular
solution can not always be ensured to exist, and even if
recursive estimation is used to account for this potential
problem, they require constant monitoring of the battery. In
recent years, there has been an increasing interest towards
more data-driven methods, as they require little to no expert
knowledge and are usually only dependent on the input and
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the output of the system. Among data-driven methods three
of the more popular choices are: (1) support vector machines
(SVM) [18]–[21], (2) Gaussian process regression (GPR)
[22]–[28], and (3) artificial neural networks (ANN) [29]–
[33]. While these methods are black-box methods offering
little to no insight on the how/why the degradation occurs,
they can achieve errors as small as 0.5%. However, a lot
of data is required for ensuring small estimation errors.
Therefore, alternative methods have been proposed which
extract more relevant features from the raw measurements,
and use simpler models like multiple linear regression (MLR)
[34], random vector functional link neural networks [35]–
[39] (RVFL), extreme learning machines [40], [41]. These
methods require much less data, while still achieving errors
smaller than 2%. Lastly, it has been shown that incremen-
tal capacity (IC) can be related to the SOH by extracting
relevant features from the IC curves and modelling the re-
lationship between features and SOH using MLR. However,
this requires the IC curves to be known. It has been shown
that the IC curves can be found using data-driven methods
like SVM and ANN [42]–[48]. It has been shown that the
methods based on the re-constructed IC curves can achieve
errors as low as 0.5%, even in real-life application [47].
Furthermore, very recent advancements have shown that a
hybrid EEC and ANN approach could achieve errors smaller
than 1% [48]. However, the performance comes at the cost of
a more complicated feature extraction due to the IC curve
re-construction. A general disadvantage of the data-driven
methods (including the hybrid methods) is that the laboratory
data on which the models are trained needs to resemble the
intended application. If the application deviates even slightly
(dependent on the method) from the laboratory experiments,
then the predictions of the model cannot be trusted. That is, if
the usage pattern in application changes, then the laboratory
experiments needs to be re-performed using this new pattern.
An important question is: Can this be avoided? A possible
solution is transductive transfer learning.

Transfer learning aims to reduce the amount of data re-
collection by accounting for the fact that the model is going
to be used in a different context than where it was trained
[49]. That is, when training the model, transfer learning tries
to account for the differences between the features used to
train the model, and the features observed in the application.
While some researchers have considered transfer learning
for battery SOH and remaining useful life (RUL) estimation
[50], [51], they have focused on very complicated recurrent
neural network models necessitating large training sets. Fur-
thermore, the type of transfer learning used still requires
knowledge of the SOH on the the field operated batteries (in
this context called the target domain). Therefore, the aim of
the this paper is to show that much simpler SOH modelsbuild
and tested using laboratory ageing experiments can be trans-
ferred to field operated batteries, without the need for SOH
measurements in the target domain. This was achieved by
transferring the models using a type of (transductive) transfer
learning called kernel mean matching [52].

The remainder of the paper is structured as follows: First
the experimental setup and the results of the laboratory
experiments are presented in Section II-A. After which,
three strategies for extracting features are then presented in
Section II-B. These features are used to estimate the SOH in
Section II-C. Section II-D shows how the proposed models
can be transferred from the domain in which they are to be
trained (the laboratory) to the domain where they are to be
applied (the field). The results of the transferred models can
be found in Section III, and a discussion of the approach
follows in Section IV. Lastly, while SOH can be measured
on two fronts capacity and power, the focus in this paper will
be on capacity degradation. That is, from this point forward
SOH estimation will refer to capacity estimation (though
the ideas outlined in this paper will also extend to SOH
modelling in terms of power or resistance).

II. MATERIALS AND METHODS
A. EXPERIMENTAL SETUP
1) Battery and forklift operation
In this work, Li-ion battery cells with a nominal capacity of
180 Ah and a nominal voltage of 3.3 V were considered.
The cells are based on a graphite anode and a lithium iron
phosphate cathode. Battery packs, composed of these cells,
had been deployed in the field, in three forklifts, which were
placed in the back of trucks around Europe and used to
move heavy pallets throughout the day, and charged every
few days. A representative one-week operation profile for the
three forklifts is presented in Fig.’s 1 and 2. The figure shows
that the operation of the forklifts leads to mostly short and
shallow cycles.
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FIGURE 1. Battery load profile during one-week of forklift operation.
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FIGURE 2. Battery SOC profile during one-week of forklift operation.
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Furthermore, throughout the operation of these forklifts
there have only been a few deep cycles (i.e. with a depth
of discharge larger than 80%) and subsequently constant
current charging allowing for an approximation of the battery
charging capacity in only a very few cases. Fig. 3 shows the
approximate forklift battery charging capacity against the full
equivalent cycles (FECs). As one can observe in the figure,
the amount of degradation experienced by the battery in the
forklifts is minimal – between 0.5 and 1% of degradation
during the entire analysed operation period, approximately
17 months. Lastly, the operation of the battery allowed for
the calculation of an approximate capacity at only four points
in time for Forklift 2 and six for Forklift 3.

2) Laboratory Ageing Tests

Due to the nature of the usage of the batteries, with ir-
regular deep discharges, creating a comprehensive battery
degradation model would be difficult. Therefore, a total of
six accelerated ageing tests were conducted; three concerning
calendar ageing, and three cycle ageing. For both calendar
and cycle ageing, the batteries were aged at 35, 40, and 45oC
to capture the effect of temperature on the degradation. The
batteries used to analyse the effects of calendar ageing were
stored at 90% SOC, as this was the average SOC the forklifts
were subjected when they were in idling mode. Every two
weeks a reference performance test is performed to measure
the capacity of the batteries and to quantify their incremental
degradation.

Fig. 4 presents the capacity decrease of the cells during
calendar ageing at the three ageing temperatures and 90%
SOC. From these results, it is seen that the increase in the
idling temperature from 35 oC to 45 oC, does not have a
large influence in the capacity fade behavior of the cells (i.e.,
maximum 5% difference after 15 months of idling between
the considered temperatures).

The batteries used for cycle ageing were subjected to a load
profile created using the first six months of battery operation
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FIGURE 4. The capacity degradation due to calendar ageing of three
batteries aged at a 35, 40, and 45oC shown against time in months.

in the forklifts. The profile was created by removing all
idling periods (which account for more than 90% of the total
operation) from the first six months of the of the battery
operation in the forklifts, resulting in a profile of approxi-
mately 12 days. However, while the forklift during operation
is subjected to the average current applied to the battery was
22 A, it has peaks above 350 A; due to current limitations of
the laboratory battery test station, the current had to be kept
below 50 A. This creates a possible discrepancy between not
only the currents of the ageing profile and the actual forklift
profile, but also their SOCs. In order to overcome this issue
(i.e., SOC mismatch between the two profiles), whenever the
current in the forklift profile exceeded 50 A (mainly during
discharging), the ageing profile was limited to 50 A until the
same SOC value was reached for both forklift and laboratory
ageing profile. This ensured that the SOCs of the two profiles
were identical. The aforementioned procedure, distilled the
six months of forklift operation into the two-week profile,
shown in Fig.’s 5 and 6, which was used to perform cycle
ageing tests at three temperatures (i.e., 35, 40, and 45oC).
After each round of cycle ageing (i.e. every two-weeks), a
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FIGURE 3. The approximate battery charging capacity shown against FEC for the three forklifts.
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reference performance test was performed to measure the
capacity of the batteries and to quantify their degradation.
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FIGURE 5. The current of the two week profile used to age the three batteries
in the cycle experiment.
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FIGURE 6. The SOC of the two week profile used to age the three batteries in
the cycle experiment.

Fig. 7 shows the evolution of the capacity degradation,
of the tested battery cells, during cycle ageing at the three
ageing temperatures. It can be observed that the degradation
behaviour of the three batteries is almost identical despite the
10oC difference in the ageing temperature, which is similar
to the results obtained for the calendar ageing. Furthermore,
Fig. 7 illustrates that during the considered cycle aging
experiment, the batteries were subjected to nearly 600 FECs,
which resulted in approximately 10% capacity fade.

B. STATE-OF-HEALTH FEATURES
The aim of feature extraction is to take raw measurement data
and distill this information into a set of variables, commonly
called features, which are still able to accurately represent
the raw measurements. A model is then created to establish a
relationship between these features and the battery capacity
(i.e. the SOH). Furthermore, the feature extraction methods,
in this paper, are window based (similar to the methodology
presented in [34]), i.e. a period (or window-size) will be
specified and the features will be extracted using the raw
measurements within this period.

85

90

95

100

0 200 400 600
FEC

C
ap

ac
ity

 d
eg

ra
da

tio
n 

[%
]

Temperature 35 40 45

FIGURE 7. The capacity degradation due to cycle ageing of three batteries
aged at a 35, 40, and 45oC shown against FEC.

The extracted features will be used to model the capacity
measured during the reference performance tests performed
at the end of every round of ageing of the battery cells.
As every round of ageing will only have a single capacity
measurement, it is natural to extract the features based on
these rounds of ageing, i.e. the features on the ageing data
will be extracted on a two-week basis.

The length of the period used to extract the features on
the forklift data is not as important, as the period being
large enough to yield consistent results. Preliminary extrac-
tion showed that an extraction period of one week yielded
consistent results. Furthermore, due to the nature of the ca-
pacity measurements performed in the laboratory, the feature
extraction from the forklift data has to be disjoint (i.e. they
can not overlap).

The features extracted on both the ageing and forklift
data will be based on three slightly different techniques: (1)
simple descriptive statistics [34], (2) partial voltage charging
[53], [54], and (3) online resistance extraction [55]. These
methods were chosen because they can be performed in an
"online" fashion using relatively little computing power.

1) Simple descriptive statistics
The descriptive statistics will be extracted from the raw
voltage, current, and temperature profiles in every window in
both the laboratory ageing and forklift data. The descriptive
features give insight into the distribution of the voltage,
current, and temperature. In the following sections the aim
will be to link the change in these distributions to the degra-
dation of the battery. The voltage, current, and temperature of
window w will be denoted by V w, Iw, and Tw, respectively,
and assumed to have length N (i.e. V w, Iw, and Tw are
vectors in RN ). Furthermore, it will be assumed that the
features for all previous windows, 1, 2, ..., w−1 have already
been extracted from the raw measurements.

In the following, a short description of each of the descrip-
tive features, and how they are calculated for each window, is
given:
• Average of the voltage, current, and temperature (Xw

is used to represent either V w, Iw, or Tw): a measure
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FIGURE 8. Extracted features of the ageing data shown against FEC. The left panel shows the average voltage within each round of ageing, while the right panel
shows the skewness of the voltage.

of center of a distribution, and is calculated as:

X̄w =
1

N

N∑
n=1

Xwn

• Standard deviation of the voltage, current, and temper-
ature (Xw is used to represent either V w, Iw, or Tw):
a measure of deviation around the average (the square
root of the average squared distance of every point from
the center), and is calculated as

s(Xw) =

(
1

N − 1

N∑
n=1

(Xwn − X̄w)2

)(1/2)

• Skewness of the voltage and current (Xw is used to
represent eitherV w or Iw): a measure of the asymmetry
of the distribution (if its negative/positive it has larger
left/right tails), and is calculated as:

g1(Xw) =

N

(N − 1)(N − 2)

∑N
n=1(Xwn − X̄w)3

s(Xw)3

• Kurtosis of the voltage and current (Xw is used to
represent either V w or Iw): a measure of how large the
tails of the distribution are when compared to a normal
distribution (if it is larger/smaller than 0, the tails are
larger/smaller than those of a normal distribution), and
is calculated as:

g2(Xw) =
1

(N − 2)(N − 3)

×
{

(N + 1)N

(N − 1)

∑N
n=1(Xwn − X̄w)4

s(Xw)4

− 3(N − 1)2

}
• Maximum change in the voltage and current (Xw is

used to represent either V w, or Iw): a measure of the
largest change in the sequence (in the case of the voltage
this will be related to the ohmic resistance, while for the

current it is related to the workload), and is calculated
as:

∆Xw = max
n ∈ {1,2,...,N−1}

(
Xw(n+1) −Xwn

)
• Cumulative full equivalence cycles (FEC): a measure

of the through-put normalised by the capacity of the
battery cell, and is calculated as:

FECw = FECw−1 +
1

2Qnominal

N∑
n=1

|Iwn|
3600

,

where FECw−1 is the FEC of the previous window (with
FEC0 = 0), andQnominal is the nominal capacity of the
battery (in this case the nominal capacity is 180).

Fig. 8 shows two examples of the features extracted from
the ageing data against FEC. The left panel shows the average
voltage, it is clear that there is a decreasing trend in the
average voltage as a function of the FEC, while there seems
to be nearly no effect of the ageing on the skewness of the
voltage distribution, as seen on the right panel. Furthermore,
the panels show that the temperature does not seem to have
an effect on the shape of these trend lines, only shifting them
up or down.

2) Partial voltage charging
As the battery cell degrades, the time it takes for cell to
completely charge from empty to full will naturally decrease,
i.e. the time it takes for the cell to go from its lower to its
upper voltage limits will decrease, as depicted in Fig. 10.
Furthermore, it has been shown in [53], [54] that it is not
necessary to observe the entire voltage curve from its abso-
lute lower limit to its absolute upper limit, but calculating
through-put in a restricted voltage window from Vlow to
Vhigh (shown as the red horizontal lines in Fig. 10) will be
proportional to the calculating the capacity across the entire
voltage curve.

If the extraction of these reduced capacity measurements,
Qw, are to be performed from a dynamic profile, the current
needs to be consistent as the voltage passes through the
defined voltage limits, as it is well known that the capacity
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FIGURE 10. Exemplification of the partial voltage charging for a fresh and
aged cell; the partial voltage interval lays between Vlow and Vhigh.

is heavily dependent on the current. In real-life applications,
the main difficulty of this method is to identify periods of
time where the current is consistent, i.e. periods where the
current profile repeats at different moments during the battery
operation through its life. Luckily, the charging procedure of
the forklifts and, therefore, the ageing profile, is consistent.
This consistency allows for the extraction of Qw every time
the battery is fully charged, yielding multiple extracted Qw

values for every window in both the ageing and forklift
data. After these features have been extracted, they will be
summarised within each window by taking the average and
standard deviation, denoted Q̄w and s(Qw), respectively.

The average and standard deviation of the extracted Qw

values for the ageing profile can be seen in the left- and
right-hand panels of Fig. 9. As it can be observed, unlike the
descriptive features, the evolution of these features as func-
tion of FEC is dependent on the temperature (at least Q̄w).
Furthermore, two things are worth mentioning: (1) the curve
of Q̄w seems to be flattening, which could become a problem
if used for prediction (unless the measured capacity behaves
in a similar fashion), and (2) the standard deviation, seen
in the right panel of Fig. 9, is increasing slowly overtime.
That is, even though the voltage is passing through the same

voltage limits, the time is takes to pass through these limits
becomes more inconsistent as the battery degrades.

3) Resistance
It has been shown that both the ohmic and internal resistance
can be extracted, to within a reasonable accuracy, from
dynamic profiles [55]. The battery resistance can be extracted
from a dynamic profile by keeping very careful track of the
following:
(1) Changes to the current: ∆I .
(2) The value of the voltage at the end of the last relaxation

period Vs.
(3) Amount of time the battery was relaxed ∆Trelax.
(4) The length of the previous pulse ∆Tprevious.
(5) The length of the current pulse ∆Tcurrent.

Requiring a relaxation period at least as long as the pre-
vious pulse, the resistance can be extracted using these five
variables, as sketched in Fig. 11.

t

I

∆I

∆Tprevious ∆Trelax ∆Tcurrent

Vs

V18s

t

V If ∆Trelax ≥ ∆Tprevious,

then Ri =
V18s − Vs

∆I

FIGURE 11. Illustration of the resistance extraction method.
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FIGURE 9. The average and the standard deviation of the extracted Qw values against the FEC, shown in the left- and right-panel, respectively.
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FIGURE 12. The extracted ohmic and internal resistances against FEC, shown in the left- and right-hand panels, respectively.

To be more specific, requiring ∆Trelax ≥ ∆Tprevious,
then the ohmic and internal resistances can be calculated as:

R0 =
V0.1s − Vs

∆I
, and Ri =

V18s − Vs
∆I

,

where V0.1s and V18s is the voltage 0.1 seconds and 18
seconds after the initiation of the pulse, respectively.

Like the case of the partial voltage method, the ohmic and
internal resistances can be extracted multiple times during ev-
ery period (for both the ageing and forklift data). Therefore,
they are summarised using the average and standard devia-
tion to track the change in the distribution of the extracted
features instead of the raw extracted values. These will be
denoted as R̄0, s(R0), R̄i, and s(Ri).

In Fig. 12 the average of the extracted ohmic and internal
resistances are shown against FEC for every window of the
ageing data. As would be expected, it shows that the average
resistance (both ohmic and internal) increases as the battery
degrades. Furthermore, the figures show that the overall trend
of both the ohmic and internal resistance is not affected by
temperature. Lastly, it seems the variation in the average
extracted ohmic resistance is more stable than the average ex-
tracted internal resistance. It may be possible to stabilise the
extracted internal resistance, by adding further restrictions on
∆Trelax, such as requiring it has to be larger than a minimum
15 seconds (i.e. ∆Trelax ≥ max{∆Tprevious, 15}). How-
ever, as R̄i is just one of many SOH estimation features, it is
not deemed unnecessary in the context of this paper.

C. STATE-OF-HEALTH MODELLING

As the aim of this paper is to transfer a model trained on
the ageing data obtained in laboratory to the forklift data
measured on the field, the modelling of state-of-health (SOH)
should not be the focus. Therefore, the methods presented
in this section are very simple, but with reasonably high
accuracy.

It is assumed that the general SOH can be decomposed into
two parts, the loss of capacity due to idling (calendar ageing),
and the loss of capacity due to the cycling (cycle ageing).

Furthermore, it is assumed that this effect is additive. That is,
the capacity in window w, denote Qw, can be written as:

Qw = Q0 −∆Q(cy)
w −∆Q(ca)

w , (1)

whereQ0 is the initial capacity, ∆Q
(cy)
w is the loss in capacity

due to cycling, and ∆Q
(ca)
w is the loss in capacity due to

calendar ageing.
The two components will be modelled separately as the

loss in capacity due to each of these components, and the
capacity is then predicted using Eq. (1). Lastly, the training
and validation sets were created by making a random 70/30
split of the ageing data, where the 70% will used to train the
models, and the 30% will be used to compare them.

1) Calendar model
Calendar ageing is mainly dependent on two factors: (1) the
storage temperature, and (2) the SOC at which the battery is
stored. As the storage SOC is going to be very consistent in
the intended application (i.e., the forklifts), mostly between
90 and 100%, the storage SOC is going to be ignored as
a variable. It has been shown in [56] that the relationship
between storage time, temperature, and degradation should
follow a power law, i.e. the logarithm of the loss in capacity
due to calendar ageing, ∆Q

(ca)
w , can be modelled as:

log
(

∆Q(ca)
w

)
= η0 + η1 · w + η2 · T + η3 · w · T, (2)

where w is the (accumulated) time in storage measured in
weeks, and T is the temperature measured in centigrade.
Using the calendar aged laboratory data, presented in Fig. 4,
the parameters were found by simple least squares estima-
tion (see Table 1), and the mean absolute percentage error
(MAPE) on the validation set was calculate as ≈ 0.4%.

TABLE 1. The estimated parameters of the power law model, seen in Eq. (2),
used to estimate capacity loss due to calendar ageing.

η0 η1 η2 η3

2.101 0.113 -0.019 0.009

The results of the model described by Eq. (2) using the
trained parameters of Table 1 can be seen in Fig. 13.
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FIGURE 13. The change in capacity against the number of weeks in storage.
The dots and crosses represent the training and validation sets, respectively.
The trained power law model from Eq. (2) is shown in red.

2) Cycling model

Two methods will be compared when modelling the change
in capacity due to cycling, ∆Q(cy). The first method is
a multiple linear regression model (MLR) [34], while the
second is a bootstrap aggregated random vector functional
link neural network (BRVFL) [41]. Before the models are
trained feature reduction will be performed using principle
components analysis (PCA) [57], [58]. Lastly, the two meth-
ods will be compared using cross-validation for each of the
specified PCA thresholds.

Principle components analysis
PCA can be thought of as a linear transformation of the
features, specifically a translation to the origin, followed
by a rotation such that the new first coordinate explains
most of the variation, the second explains the second most
variation, and so on. A simple 2-dimensional example can
be seen in Fig. 14, the left-hand panel shows the original
features (simulated from a multivariate normal distribution
with correlation 0.8), and the right-hand panel shows the
PCA rotated features. The PCA coordinate axes are shown
in both panels as the red and blue unit vectors.
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FIGURE 14. A 2-dimensional example of the linear transformation induced by
principle components analysis.

If the features are stored in a matrix X , then the principle
components can be found by diagonalisation of the matrix:
C = XTX . That is, by identifying the eigenvectors, V , and

eigenvalues, λ1, λ2, ..., λM , such that:

C = V T ΛV,

where Λ is a diagonal matrix containing the eigenvalues
λ1, λ2, ..., λM . The principle components correspond to the
eigenvectors of C (i.e. V ).

Using the matrix of principle components, the feature
matrix can be rotated by simple matrix multiplication:

S = XV.

The elements of the diagonal matrix Λ are related to the
amount of variation explained in the direction of the corre-
sponding eigenvector, and found in numerically descending
order, i.e. |λ1| > |λ2| > ... > |λM |. Thus, the features can
be reduced by selecting the number of columns included in
V when making the rotation.

It follows that to reduce the features, it becomes necessary
to calculate the amount of variance explained by each of the
principle components. If Σ is the covariance matrix of S, and
σmm is the m’th diagonal element of Σ, then the proportion
of the variation explained by the m’th principle component
is:

pm =
σm
σ+

,

where σ+ =
∑M

m=1 σmm. As the principle vectors are
arranged in descending order of variance they explained in
the features, the cumulative sum of the proportions can be
used to identify an index i such that the first i features will
explain more variance than some specified lower limit t.
That is, given t and the cumulative sum of the proportion of
explained variance:

ci =
i∑

m=1

pm,

it is of interest to find the index, i, such that ci−1 < t, but
ci ≥ t. Given this index i, the size of number of features is
reduced as:

S(i) = XV1:i,

where V1:i is the matrix of the first i columns of V . Note:
from this point the superscript in S(i) will be generally be
dropped to alleviate notation.

Multiple linear regression
Let ∆Q

(cy)
w be the change in capacity measured during the

reference performance test, and Sw be the PCA reduced
features corresponding the window w (this is the equivalent
to the w’th round of ageing). A multiple linear regression
(MLR) model assumes that the capacity can be modelled by
a linear combination of the features, i.e.

∆Q(cy)
w = β0 +

i∑
j=1

Swjβj + ε,

where ε is assumed to follow a normal distribution with mean
zero and standard deviation σ, β0 is a common intercept, and

8 VOLUME Y, 2021



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3156657, IEEE Access

Vilsen et al.: Preparation of paper for IEEE ACCESS

βj is the slope of feature j. That is, if all Swi with i 6= j
are kept fixed and Swj is increased by 1, then the response
∆Q

(cy)
w is expected to change by βj .

Let Dtrain = {(∆Q(cy)
1 ,S1), (∆Q

(cy)
2 ,S2), ..., (∆Q

(cy)
N ,

SN )} be a training set of N observation, then the regression
coefficients, β, can be trained by minimising the sum of
squared errors:

β̂ = argmin
β


N∑

n=1

yn − β0 − i∑
j=1

Swjβj

2
 .

The solution to this optimisation problem can be found
in closed form, using matrix notation the solution takes the
form:

β̃ = argmin
β

{
||Q(cy) − S̃β||2

}
,

where Q(cy) =
(
∆Q

(cy)
1 ,∆Q

(cy)
2 , ...,∆Q

(cy)
N

)T
, S is the

matrix containing the reduced features (with an observation
in every row, and a feature in every column), and S̃ = [1 S]
(i.e. a column of 1’s have been added representing the
common intercept). The solution is found by differentiating
||Q(cy) − S̃β||2, setting it equal to the zero vector, and
isolating β, which yields:

β̂ =
(
S̃T S̃

)−1
S̃TQ(cy). (3)

Fig. 15 shows the change in capacity against the FEC for
each of the three temperatures used in the accelerated ageing
tests. The black dots correspond to the measured change
in capacity in the training set, while the black crosses is
the measured change in capacity in the validation set. The
solid and dashed lines correspond to the estimated change
in capacity using a PCA threshold of 95% and 100% (i.e. a

retention of 95% and 100% of the variation in the original
features), respectively. The figure shows that there is nearly
no difference between the two reduction thresholds with one
very clear outlier seen when trying to predict the capacity
around 200 FEC at a temperature of 45oC. This can also
be seen when comparing the mean absolute error (MAE)
and MAPE on the validation sets in Table 2. The largest
validation error was found at 45oC with a value of 0.43%
with a PCA threshold at 95% (with the second largest MAPE
at 0.37%). However, as there is little to no difference between
the two thresholds, it will enable the end user the choice of
a smaller threshold yielding a larger reduction to the number
of features used in the MLR. Either threshold showed good
performance with errors less than 0.5%.

TABLE 2. Validation error between the measured and predicted change in
capacity of the MLR model, shown for two PCA reduction thresholds at 95%
and 100%, and each of the temperatures used to age the cells.

PCA (95%) PCA (100%)

Temperature MAE [Ah] MAPE [%] MAE [Ah] MAPE [%]

35 0.61 0.34 0.18 0.10
40 0.55 0.31 0.55 0.31
45 0.77 0.43 0.37 0.21

Bagged random vector functional link
Random vector functional links (RVFL) are simple feed
forward neural networks with a single hidden layer, where
the bias and weights corresponding to the hidden neurons
are randomised and kept fixed during the training phase,
allowing for fast optimisation which can be solved in closed
form.

The general structure of the RVFL can be seen in Fig. 16.
The features are transformed using the randomly generated
hidden layer, H , and the output layer is a concatenation of

Temperature: 35 Temperature: 40 Temperature: 45
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FIGURE 15. Loss of capacity against FEC for each of the three temperatures in the ageing data. The dots are the measured change in capacity used to train the
model, and the crosses is the measured change in capacity in the validation set. The solid and dashed lines are the estimated change in capacity by the trained
MLR, referring to the PCA reduced features using 95% and 100% thresholds, respectively.
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FIGURE 16. Graph representation of a random vector functional link neural
network (RVFL).

the transformed features H and the reduced features S. That
is, if the number of features in the reduced features is i and
the number of hidden units is j, then the total number of units
in the output layer is i+ j.

If the concatenated features are arranged in a matrix D =
[S H], the solution can be found by minimising the penalised
sum of squared errors:

β̃ =

{
argmin

β
||Q(cy) −Dβ||2 + λ||β||2

}
,

where λ is a regularisation constant, which should be chosen
such that it minimises the out-of-sample error (this can be
accomplished using k-fold cross-validation during training).

If λ > 0 the optimisation problem is a variant of ridge-
regression, and the solution can be found in a similar fashion
to what was described for the MLR:

β̃ =
(
DTD + λIi+j

)−1
DTQ(cy), (4)

where Ii+j is the identity matrix of size i + j. However, if
λ is set to zero the solution will have to be found using the
Moore-Penrose pseudoinverse, D+, as:

β̃ = D+Q(cy). (5)

Due the random nature of the RVFL method, various
extension have been proposed to stabilise the random as-
signment of weights. Among the more promising variants
are the sparse pre-trained RVFL (SP-RVFL) using a sparse
auto-encoder to learn the hidden weights in an unsupervised
fashion [38], ensemble deep RVFL (edRVFL) using an RVFL
with multiple hidden layers each layer predicting the out-
come [39], and bootstrap aggregated RVFL (BRVFL), which
combines the random nature of the RVFL with a bootstrap
aggregation [41].

The BRVFL is chosen as it is a simple extension offering
more stability to the modelling process than the RVFL. When
training the BRVFL, B bootstrap samples of the training set
are created; bootstrap samples are samples of the same size as
the training set, where each element has an equal probability
of being chosen with replacement (i.e. the element is not
removed if it is chosen and can, thus, be chosen again). A
regular RVFL is then trained to each of the B bootstrap
samples using Eq. (4). When predicting the capacity, initially

each of the B trained RVFL models will make a prediction,
Q̂

(cy)
(1) , Q̂

(cy)
(2) , ..., Q̂

(cy)
(B) , and the final prediction of the BRVFL

model is then the average of these predictions:

Q̂(cy) =
1

B

B∑
b=1

Q̂
(cy)
(b) .

Fig. 17 shows the result of a trained BRVFL using 2500
bootstrap sample, a hidden layer with 200 neurons, and a
λ = 0.02. The figure shows the change in capacity against
the FEC for each of the three temperatures used in the
accelerated ageing tests, where the black dots correspond
to the measured change in capacity in the training set, and
the black crosses is the measured change in capacity in the
validation set. The solid and dashed lines correspond to the
estimated change in capacity of the trained BRVFL using
PCA thresholds of 95% and 100%, respectively. The figure
shows very similar behaviour to the estimated capacities of
the MLR for both thresholds. This is further supported by the
validation errors seen in Table 3, showing very similar results
to that of the MLR (though the MAPE’s tend to be slightly
smaller for the BRVFL).

TABLE 3. Validation error between the measured and predicted capacity of
the BRVFL model, shown for two PCA reduction lower limits at 95% and
100%, and each of the temperatures used to age the cells.

PCA (95%) PCA (100%)

Temperature MAE [Ah] MAPE [%] MAE [Ah] MAPE [%]

35 0.33 0.18 0.06 0.03
40 0.47 0.26 0.49 0.27
45 0.60 0.33 0.22 0.12

D. TRANSFER LEARNING
The aim of the paper is to take the SOH estimation models,
which were parameterised using the laboratory ageing data,
presented in Section II-C, and transfer these models to the
field (i.e. the forklifts). Transference of these models cannot
be done directly, because the distribution of the features
extracted from the forklift data will not match those of
the laboratory ageing data, as seen in Section II-A. This
problem falls into a class of machine learning methods, called
transductive transfer learning (TTL). In the context of TTL,
the laboratory (where the ageing data is sampled from) is
called the source domain, denoted S, and the field (where
the forklift data is sampled from) is called the target domain,
denoted T .

Restating the problem more mathematically, with S and
Q(cy) denoting the features and capacity, the joint distribu-
tions of the source and target domains are not equal:

PS
(
S, Q(cy)

)
6= PT

(
S, Q(cy)

)
. (6)

TTL assumes that the conditional distributions in the
source and target domains of the capacity given the features

10 VOLUME Y, 2021
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FIGURE 17. The change in capacity against FEC for each of the three temperatures in the ageing data. The dots are the measured change in capacity used to
train the model, and the crosses is the measured change in capacity in the validation set. The solid and dashed curves are the changes in capacity estimated by the
trained BRVFL, referring to the PCA reduced features using 95% and 100% thresholds, respectively.

are (approximately) equal, i.e.

PS
(
Q(cy)|S

)
≈ PT

(
Q(cy)|S

)
. (7)

Because any joint distribution can be written as:

PX
(
S, Q(cy)

)
= PX

(
Q(cy)|S

)
PX (S),

the assumption of equal conditional distributions, Eq. (7),
implies that the difference between the joint distributions,
Eq. (6), must be due to a difference in the marginal distri-
butions, i.e.

PS(S) 6= PT (S).

This particular type of TTL is, therefore, often called
feature shifting (or more traditionally covariate shifting).

It can be shown that the difference in the marginal distribu-
tions can be accounted for by calculating importance weights
for each sample in the source domain. That is, it is possible
to find α(S) such that:

α(S) =
PT (S)

PS(S)
.

When the importance weights are found they are used
to either up or down weight the influence of the samples
in the sources domain when training a model. Training on
a weighted source sample is almost identical to what was
presented in Section II-C. Therefore, all that remains is to
find the importance weights. However, most TTL methods
require some knowledge of the marginal distribution, which
may be very difficult to ascertain. A method for finding these
importance weights without needing to know anything about
the marginal distributions is kernel mean matching [52].

1) Kernel mean matching

Let F be the feature space from where the features S were
sampled and H a reproducing kernel Hilbert space (RKHS),
with the feature map Φ : F → H, and kernel k. Kernel
mean matching (KMM) tries to estimate the importance
weights, α(S), by minimising the maximum mean discrep-
ancy (MMD):

α̂ = argmin
α
||ES∼PS [α(S)Φ(S)]− ES∼PT [Φ(S)] ||2,

subject to:
α(S) ≥ 0, and
ES∼PS [α(S)] = 1.

where || · ||2 is the `2-norm, and EX∼PX is the expected value
taken w.r.t. variableX and distribution PX .

Given a sample of features and their capacities from the
source domain, DS = {(S1,∆Q

(cy)
1 ), (S2,∆Q

(cy)
2 ), ...,

(SN ,∆Q
(cy)
N )}, and a sample of the features from the target

domain, DT = {T 1,T 2, ...,TM}, it can be shown that
MMD optimisation problem can be approximated by the
following quadratic programming problem:

α̂ = argmin
α

1

2
αTKα− κTα

subject to:
α(Sn) ∈ [0;U ], ∀n ∈ {1, 2, ..., N}, and∣∣∣∣∣

N∑
n=1

α(Sn)−N
∣∣∣∣∣ ≤ Nε,

whereU is an upper bound on the search space, ε is a normal-
isation error, K is a kernel matrix where Kij = k(Si,Sj),
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FIGURE 18. The domain transferred model evaluated on the source domain, showing the capacity against the FEC. The column shows the temperature of the
source domain, while each row shows the name of the forklift used as the target domain. The dots and crosses are the points used to training and validation,
respectively. Furthermore, the solid and dashed curves correspond to the estimated capacity of the domain transferred BRVFL and MLR models.

and κ is a vector where:

κi =
N

M

M∑
m=1

k(Si,Tm).

It follows that if a value κi is large it implies that the
corresponding observation is important, leading to a large
value of αi.

In this formulation, nothing is assumed about the marginal
distributions PS(S) and PT (S). In fact, the only assumptions
necessary to show convergence of α̂ to the ’true’ α (in
this context ’true’ is used in the statistical sense, i.e. the
sample ratio α̂ converges to ratio α between the source and
target domain) is that k needs to be universal (or equivalently
strictly positive definite), and PT (S) needs to be absolutely
continuous with respect to PS(S) (this ensures that PT (S) =
0 when PS(S) = 0).

III. RESULTS
The results of the transferred models will be evaluated in two
ways: (1) The performance of the transferred models on the
source domain, and (2) by the performance of the transferred
model on the target domain. The first evaluation was included
as when the model is transferred from the source to the target
domain it should still perform well on the source domain. It
is included as a sanity check.

A. SOURCE DOMAIN
Because there are three target domains, a total of nine
combinations of sources and targets needs to be considered
when evaluating the performance of the transferred model
on the source domain. The results of the domain transferred
models are shown in Fig. 18. The figure shows the battery

TABLE 4. The MAE and MAPE of the targeted domain transferred MLR and
BRVFL on the source domain, shown for both a 95% and 100% PCA reduction
thresholds and each of the three forklifts.

Forklift 1

PCA (95%) PCA (100%)

Temperature Method MAE [Ah] MAPE [%] MAE [Ah] MAPE [%]

35 MLR 5.24 3.03 1.05 0.61
40 MLR 5.41 3.16 0.75 0.43
45 MLR 2.31 1.34 0.90 0.51

35 BRVFL 4.72 2.72 0.12 0.07
40 BRVFL 5.53 3.23 0.32 0.18
45 BRVFL 4.38 2.52 0.11 0.06

Forklift 2

PCA (95%) PCA (100%)

Temperature Method MAE [Ah] MAPE [%] MAE [Ah] MAPE [%]

35 MLR 4.18 2.42 0.68 0.39
40 MLR 4.27 2.50 0.76 0.44
45 MLR 1.75 1.01 1.00 0.57

35 BRVFL 3.45 1.99 0.12 0.07
40 BRVFL 4.52 2.64 0.32 0.18
45 BRVFL 3.61 2.08 0.10 0.06

Forklift 3

PCA (95%) PCA (100%)

Temperature Method MAE [Ah] MAPE [%] MAE [Ah] MAPE [%]

35 MLR 3.19 1.85 0.68 0.40
40 MLR 3.27 1.92 0.77 0.45
45 MLR 1.40 0.80 1.01 0.58

35 BRVFL 4.05 2.34 0.11 0.07
40 BRVFL 4.97 2.91 0.31 0.18
45 BRVFL 3.92 2.26 0.11 0.06

capacity against the FEC, where each column corresponds
to the temperature in the source domain, and each row
corresponds to the target domain (indicated by the name of
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FIGURE 19. The domain transferred model evaluated on the target domain, showing the capacity against the FEC. Each column shows the name of the forklift (the
target domain). The solid and dashed curves correspond to the estimated capacity of the domain transferred BRVFL and MLR models. The black dots correspond
to approximate capacity measurements of the three forklifts.

the forklift). The dots were used as the training data, while
the crosses were used for validation. The dashed and solid
curves correspond to the estimated capacity using the MLR
and BRVFL methods, respectively. The figures show that the
MLR performs poorly for a temperature of 45oC (and for
40oC when using Forklift 1 as a target), while being relatively
accurate for 35 and 40oC. This is not unexpected, as the
temperature experienced by the forklifts is usually closer
to 20oC, increasing the importance of the samples from
lower temperature sources (i.e. α(S) > α(S′) if measured
temperature in S < S′). This is further supported by the
MAE and MAPE of the validation set shown in Table 4.
Focusing on the 95% PCA reduction threshold, the MAPEs
are in all but three cases less than 3%. Furthermore, it is
clear from the figure and table that the BRVFL is much more
closely fitted to the estimated capacity of the source domain.
In fact, the errors exhibited by the transferred BRVFL models
are comparable to the non-transferred BRVFL models.

B. TARGET DOMAIN
The estimated SOH on the target domain was calculated in
a similar fashion to the source domain, with the additional
dependence of calendar ageing. Under the assumptions out-
lined in the beginning of Section II-C and the results of
the calendar ageing model, seen in Section II-C1, it was
only deemed necessary to transfer the methods modelling the
change in capacity due to cycling ageing. Given the estimated
change in capacity due to calendar ageing and cycling, the
capacity at time w is found using Eq. (1).

The estimated capacity of the two methods on the target
domain is shown in Fig. 19 against the FEC. The predictions
made by transferred the MLR and BRVFL models are shown

as crosses and triangles, respectively. In addition a smoothed
curve is fitted better visualise the trend of the methods, shown
as the dashed and solid lines for MLR and BRVFL, respec-
tively. Furthermore, the capacity measurements performed
during the operation of the forklifts are shown as black dots.
The figure shows very similar estimation results for the two
methods on Forklift 2 and 3, but that the MLR method has
some stability issues on Forklift 1. As a consequence, the
estimated capacities of the MLR method are very far from the
measured capacities on Forklift 1, while the BRVFL method
is consistent through all three forklifts.

TABLE 5. The MAE and MAPE of the domain transferred MLR and BRVFL on
the source target domains (i.e. the three forklifts).

Forklift Method MAE [Ah] MAPE [%]

Forklift 1 MLR 4.64 2.63
Forklift 2 MLR 1.71 0.97
Forklift 3 MLR 0.45 0.26

Forklift 1 BRVFL 0.43 0.24
Forklift 2 BRVFL 0.60 0.34
Forklift 3 BRVFL 0.15 0.08

These results are also supported by finding the MAE and
MAPE between instance of measured capacities and corre-
sponding estimated capacities of the three forklifts, which
can be seen in Table 5. The table shows that the BRVFL
method generally outperforms the MLR method; however, if
Forklift 1 is disregarded the results of the MLR still achieves
MAPE’s less than 1%.
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IV. CONCLUSION AND DISCUSSION

The paper outlines and implements a paradigm for extracting
different types of features, estimating battery SOH using
cycle and calendar laboratory aging tests, and transferring
the SOH estimation models to a real-life application. The
methods used to parameterise the SOH estimation models
based on the laboratory data, were chosen to be as simple
as possible, while having good performance, narrowing the
methods to multiple linear regression (MLR) and a boot-
strapped variant of random vector functional link neural
networks (BRVFL).

The analyses performed in the paper shows the ease of use
and implementation of transfer learning for both the MLR
and BRVFL methods. The transferred models showed good
performance in both the source and target domains (i.e. the
laboratory and field), achieving mean absolute percentage
errors (MAPE’s) smaller than 1% with the exception of the
MLR method on a single forklift (Forklift 1).

A deviation worth pointing out is the capacity estimation
results using the BRVFL method for Forklift 3 in Fig. 19.
This sudden decrease while peculiar cannot be verified as no
capacity measurements of the forklift exists in this period,
though it is not unheard of in the literature. What further
complicates matters is the fact that the decrease is not pre-
dicted by the MLR (though the variance in the prediction of
the MLR increases during this period as well). Two possible
scenarios could exist explaining this sharp decrease: (1) it is
an actual decrease in capacity not accounted for by the MLR,
this is a real possibility as the BRVFL has better performance
on the source domain, or (2) it is not an actual decrease
in capacity, which would imply that the BRVFL method is
overfitting to the source domain. However, it is impossible
to judge whether these predictions can actually be trusted
without any capacity measurements.

Lastly, it is worth pointing out that this approach could
be extended to involve databases of laboratory experiments
with different current, SOC, and temperature profiles, as the
estimated weights are used to up, or down, weight an obser-
vation dependent on the distance between the observation in
the database and each observation of the field data.
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