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Abstract
Objective. Transcutaneous electrical nerve stimulation (TENS) has been suggested as a possible
non-invasive pain treatment. However, the underlying mechanism of the analgesic effect of TENS
and how brain network functional connectivity (FC) is affected following the use of TENS is not
yet fully understood. The purpose of this study was to investigate the effect of high-frequency
TENS on the alteration of functional brain network connectivity and the corresponding
topographical changes, besides perceived sensations. Approach. Forty healthy subjects participated
in this study. Electroencephalography (EEG) data and sensory profiles were recorded before and up
to an hour following high-frequency TENS (100 Hz) in sham and intervention groups. Brain
source activity from EEG data was estimated using the LORETA algorithm. In order to generate the
functional brain connectivity network, the Phase Lag Index was calculated for all pair-wise
connections of eight selected brain areas over six different frequency bands (i.e. δ, θ, α, β, γ, and
0.5–90 Hz).Main results. The results suggested that the FC between the primary somatosensory
cortex (SI) and the anterior cingulate cortex, in addition to FC between SI and the medial
prefrontal cortex, were significantly increased in the gamma-band, following the TENS
intervention. Additionally, using graph theory, several significant changes were observed in global
and local characteristics of functional brain connectivity in gamma-band. Significance. Our
observations in this paper open a neuropsychological window of understanding the underlying
mechanism of TENS and the corresponding changes in functional brain connectivity,
simultaneously with alteration in sensory perception.

1. Introduction

Pain and sensation are complex phenomena and the
mechanism of how the brain process the sensory and
painful input is not well understood. It has been
shown that five main cortical regions play a signific-
ant role in pain and sensory regulation, namely: the
primary somatosensory cortex (SI), insular cortex,
the anterior cingulate cortex (ACC), the secondary
somatosensory cortex (SII), and themedial prefrontal
cortex (mPFC) [1–3].

Moreover, the oscillatory activity of brain areas
has been highlighted in the somatosensory cortex
in pain and sensory processing [4]. For example,

magnetoencephalography (MEG) studies suggested
dynamic brain activity in alpha, beta, and gamma
bands as a signature for perception [5]. Oscillation in
high-frequency electroencephalography (EEG) (i.e.
beta and gamma bands) are speculated to represent
bottom-up, feed-forward processing that is sensory-
driven. However, lower frequency bands synchron-
ization are believed to represent regulation of brain
activity as well as top-down feedback processing [6].

Transcutaneous electrical nerve stimulation
(TENS) is a neurorehabilitation and neuromodu-
lation technique for the induction of pain relief as it
is believed to affect the nervous system both at the
peripheral and central levels [7–9]. The underlying
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mechanism of TENS at the central level has been
reported by alteration in the sensory system [10].

Sensory and pain-related evoked potentials have
shown alterations of the sensory responses in the
central nervous system, caused by TENS, through
inhibition of the SI activity [10]. The lasting effect
of TENS on the somatosensory cortex has been
investigated recently [11], and results demonstrated
a significant decrease in the N100 and P200 waves’
amplitudes, at least up to one hour following TENS
intervention. In addition, a statistically meaningful
suppression in the perceived sensation intensity as the
effect of TENS has been reported.

Moreover, studies have been shown that the anal-
gesic effect of TENS depends on different wave-
form properties of the stimulation pulses (including
frequency, intensity, and pulse width) [12–14]. For
example, the application of TENS with the intensity
above the motor threshold resulted in an increase in
corticomotor excitability. The corticomotor excitabil-
ity was suppressed when an intensity below themotor
threshold was used [15, 16].

The graph theory combined with advanced
biosignal processing has been proven as a power-
ful tool to describe the functional synergistic beha-
vior of various brain regions for different conditions
[17–19]. In this regard, the activity of brain regions
is considered as the nodes of the network, and the
strength of connectivity between two nodes defines
the vertices. To quantify the strength of commu-
nication, amplitude-based and phase-based indices
have been used based on data collected by several
neuroimaging techniques (e.g. fMRI [20, 21], EEG
[19, 22], MEG [23, 24]). The quality and intens-
ity of the information exchange within a network
can be mathematically explained using graph theory.
Previous studies have suggested ‘small-world topolo-
gical features (such as clustering coefficient, degree,
global efficiency)’ of the network as strong indicators
and predictors of brain alteration in several neurolo-
gical disease patients (please see [25] and references
therein).

The effect of TENS on pain and sensation may be
caused by the alteration in the brain network, and the
corresponding functional connectivity (FC) features
between various brain regions [26]. In this paper,
motivated by the lack of understanding of the under-
lying neurophysiological mechanism of TENS in pain
therapy, we hypothesize that short-term and long-
term effects of TENS on sensation can be decoded by
analyzing the topographical alterations in the FC of
the central nervous system. In this work, we study a
group of 40 healthy subjects following non-noxious
sensory input.

2. Methods

Figure 1 illustrates the executed protocol. Four soma-
tosensory evoked potentials (SEPs) were included in

each experiment session. Thiswas planned to evaluate
the cortical changes due to TENS intervention in the
following phases: Pre-SEP phase (T0)—considered as
baseline. Three post-intervention phases were con-
ducted immediately after intervention (T1), 30 min
(T2), and 60 min (T3). At each of the four record-
ing phases (T0, T1, T2, and T3) and for both groups
(TENS and sham), we applied 40 double-pulse stim-
uli twice (a total of 80 trials for each SEP phase).

2.1. Participants
Forty healthy participants (20 female), 26.9 ± 4.3
[mean± std] years old, were randomly recruited and
assigned equally to an intervention group (n= 20, 10
female) or a sham group (n = 20, 10 female). Each
participant in the study signed an informed consent
form in accordance with the Committee on Health
Research Ethics (N-20 180 049) in the North Den-
mark Region.

2.2. Data collection
During all experimental conditions, participants were
seated in a comfortable chair in a temperature-
controlled room (i.e. temperature between 24 ◦C
and 26◦ C). They were asked to focus on the stim-
uli and gaze at a black cross in the center of a
screen. A 64-channel systemwas used using the inter-
national 10–20 system to record continuous EEG
data. The sampled data were amplified and recor-
ded using the BrainAmp MRI-compatible ampli-
fier (Brain Products GmbH, Munich, Germany). All
electrodes were grounded to an electrode that was
placed between the Fz and Fpz electrodes and refer-
enced to the FCz electrode. EEG was digitalized at
a 5 kHz sampling rate (electrode impedances main-
tained below 20 kΩ).

Two succeeding constant-current square-wave
electrical pulses with an inter-pulse interval of 10 ms
(500 µs pulse width) were delivered to the left median
nerve for all SEP phases [27]. Electrical stimulations
were applied with an inter-stimulation interval ran-
domly changed between 6 and 8 s to avoid habitu-
ation [28]. These electrical pulses were generated
using a constant current stimulator (DS5, Digitimer,
UK) and applied to two surface electrodes (Axelgaard
PALS Electrodes, skin contact size 4 × 4.6 cm, oval)
placed on the left-median nerve close to thewrist. The
placement of the electrodes is given in figure 1.

As defined by the staircase procedure, the stim-
ulus intensity for all SEP phases was individually
adjusted to an amplitude that was twice the sensa-
tion threshold (without muscle contraction) [29]. A
0.5 mA initial intensity was considered for the elec-
trical stimuli. This amplitudewas iteratively increased
by 0.5mA until the stimulus was reportedly perceived
by the subject. As soon as the subject perceived the
stimulus, the stimulus intensity was reduced in steps
of 0.3 mA until no sensation was perceived. Then,
the increasing steps of current intensity adjusted to
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Figure 1. Experimental procedures. The brain network alteration following TENS was assessed by analyzing EEG data recorded at
four time points (T0 as baseline recording, T1 as immediately after the intervention, T2 as 30 min, and T3 as 60 min after
intervention). TENS and sham interventions was applied following T0 (baseline recording) for each group. Surface electrodes
(Axelgaard PALS Electrodes, skin contact size 4× 4.6 cm, oval) placed on the left-median nerve close to the wrist.

0.1 mA and lasted until the stimulus was reported
again by the subject. The sensation threshold was
defined as the average intensity of the measured
intensities through three times staircase procedure.
This procedure was used for participants subjected to
both TENS and Sham intervention.

Subjects were asked to rate the sensation intensit-
ies perceived by sensory electrical stimulation in the
SEP phases using a 0–10 numerical rating scale from
no touch to maximum non-painful sensation. Addi-
tionally, following a block of SEP recording, indi-
vidual perception profiles were recorded by asking
subjects to highlight the area of the perceived sensa-
tion with the relevant intensity on custom-made soft-
ware on the screen.

2.3. TENS intervention
We applied a high-frequency TENS pattern (i.e.
defined as a 100 Hz pulse train with a high-intensity
amplitude that however does not cause motor move-
ment) similar to what has been reported by Lai et al
and Cruccu et al in their respective studies pertain-
ing to acute and chronic pain, and stroke rehab-
ilitation [7, 9]. The electrical stimulation for both
TENS and Sham intervention was applied for 20min.
For TENS, it includes 40 repetitions of the following
phases: a 20 s on-stimulation phase (during which
100 Hz trains of 1 ms pulse width were provided)
and a 10 s off stimulation interval. For the interven-
tion group, without causing motor response or dis-
comfort, the stimulation intensity was set at 80% of
the discomfort level. The stimulation intensity was
adjusted to be the same as the sensation threshold
for subjects in the sham-controlled group. For the

Sham group, the stimulation lasted for 1 min (i.e.
two trials of stimulation), and for the remaining
19 min, high-frequency electrical stimulation was
not delivered to the subjects. The participants were
informed: ‘For the next 20 min, the electrical stim-
ulation would deliver to your median nerve. The per-
ceived sensation will be subjective and range from no
or weak sensations to intense sensations’.

2.4. Data pre-processing
Off-line EEG data were analyzed by BrainVision Ana-
lyzer 2.2 software (Brain Products®GMBH) andMat-
lab. Raw EEG data were downsampled to 256 Hz and
re-referenced to the averaged reference. Next, data
were band-pass filtered from 0.5 to 90 Hz (4th order
ButterworthZeroPhase IIR Filter), and band-rejected
filtered using a 2nd order Butterworth notch filter at
50 ± 1 Hz. EEG filtered data were then segmented
into epochs of 2000 ms for each stimulation (includ-
ing 500 ms before and 1500 ms after the stimulus
onset). Blink correction of EEG signals using ICA has
been reported to affect the amplitude and phase of
the EEG signal [30–32]. Thus, in this work ICA-based
correction was not conducted; instead, epochs con-
taminated by blink artifact, flagged using ICA ana-
lysis, and thus, on average, 15 epochs (out of total
80 epochs per subject) were deleted as part of sig-
nal inspection before advanced processing. Artifi-
cial power effects and phase synchrony activated by
micro-saccadic eye movements were corrected using
Laplacian current source density (CSD). CSD also
decreased the volume conduction effect on phase syn-
chronization [33]. Baseline correction was performed
for individual epochs for the period of 500 ms before

3
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Figure 2. Grand-average SEPs elicited by double-pulse surface electrical stimulation are illustrated in different time phases for
TENS (A), and Sham (B) experimental group. Panels show SEP components (N2 and P2 wave) at electrode Cz.

stimulus onset. Next, data were inspected to remove
any remaining non-physiological artifacts and epochs
with amplitude values exceeding±100 µv or contam-
inated by excessive noise (3 ± 2 out of on average
65 epochs, following blink rejection) were excluded.

Individual SEP was measured by averaging the
preprocessed epochs for each time phase. To confirm
the validity of the applied methodology for the SEPs,
the grand average of the individual SEPs for differ-
ent time phases (T0, T1, T2, and T2) and conditions
(TENS and Sham) are extracted at the Cz channel and
illustrated in figure 2. Two SEP components, N2 and
P2 waves, are represented in figure 2 as the most neg-
ative and positive peaks between 100 and 400ms after
stimulus onset, respectively.

2.5. Source localization
The source-level electrophysiological activity was
estimated using the build-in low-resolution electro-
magnetic tomography (LORETA) algorithmof Brain-
vision analyzer 2.2. The LORETA method has been
widely used to investigate brain activity [34]. The
LORETA algorithm estimates the electrical neuronal
activity in source space (i.e. current density values
[µV2 mm4]) by computing an inverse solution. As
such, 2394 voxels of spectral densities with 7 mm
spatial resolution were computed using the MNI-305
brain template from a 64-channel scalp EEG [35].

Following anatomical regions of interest (ROIs)
were specified using automated anatomical labeling
(AAL) brain template [36] and specified in line
with the sensory/pain processing network hypothesis
described in the introduction.We selected eight ROIs,
including the primary sensory cortex (SI_L and SI_R,
on the left and right hemispheres, Precentral gyrus in
AAL), the secondary sensory cortex (SII_L and SII_R,
on the left and right hemispheres, Rolandic oper-
culum in AAL), the mPFC (Superior frontal gyrus
medial in AAL), the ACC, and the anterior insula
(INS_L and INS_R, on the left and right hemispheres,
Insula in AAL) and performed LORETA algorithm.
The average current density value across all the voxels

within an ROI resulted in a time series defined as the
source activity.

2.6. Functional connectivity
All the data from selected sources were first filtered
into six predefined frequency bands (δ: 0.5–4 Hz θ:
4–8 Hz, α: 8–13 Hz, β: 14–40 Hz, γ: 51–90 Hz and
0.5–90 Hz [37]) using a 2nd order Butterworth filter.
The phase from a time-series signal was obtained by
theHilbert transform. Next, the FCwas calculated for
pair-wise connections between ROIs activities. The
phase lag index (PLI) was calculated for each pair
of ROI across segments for each subject, frequency
bands, and time phases.

The PLI has been widely used to calculate FC in
both the channel and source domain. As a reflection
of the phase synchronization, PLI measures the
degree of inter-trial phase variability [38]. Follow-
ing disregarding and attenuating the zero and π

phase differences, PLI suppresses the spurious syn-
chronization from the volume conductance and the
common sources of signal interference [39]. Con-
nectivity between signals was therefore indicated by
a divergence of symmetric distribution. The PLI was
calculated as follows [40]:

PLI= |sign [∆ϕ(tk)]| (1)

where ∆ϕ is the phase difference of two-time series
(source activity) at a given time point (tk). The extrac-
ted PLIs were then averaged across trials, and a
synchronization matrix was created for each parti-
cipant, time phase, and frequency band of all defined
connections.

2.7. Graph analysis
The induced changes in the brain network following
TENS intervention were also examined by graph the-
ory analysis. Here, the eight selected ROIs described
the nodes. The extracted PLI indexes defined the
edges between the nodes, which resulted in aweighted
and undirected network. For each constructed PLI
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network at each frequency band, the network altern-
ations following TENS and Sham intervention were
examined by node strength, clustering coefficient,
and efficiency using the Brain Connectivity Toolbox
[41]. Global efficiency represents the level of func-
tional integration in the brain network, and this
measure has been used in several studies to assess
the changes in brain network FC [19, 42]. Moreover,
the extent of the network’s functional segregation is
explained by the global clustering coefficient [18, 43],
while the global strength depicts the overall network
connection strength. Node strength is determined as
the sum of the edge weights connecting the selected
node and represents the strength of interconnectiv-
ity with other nodes [44]. The clustering coefficient
is a metric indicating functional discrimination and
is calculated by the fraction of the node’s neighbors
that are also connected to each other. The efficiency is
described as the average inverse shortest path length
between nodes, which indicates the performance of
information exchange in a network.

2.8. Statistical analysis
The statistics were divided into two groups and con-
ducted in RStudio (R version 4.0.3 and RStudio ver-
sion 1.3.1093). First, statistical tests were applied to
identify FC changes (i.e. for each edge) across time
(i.e. T0, T1, T2, and T3) and group. Since Shapiro–
Wilk test results (examined the normality of dis-
tribution) revealed that data in the first group did
not follow a normal distribution, non-parametric
tests were performed. In this regard, separately for
each group (TENS and Sham), Friedman tests were
employed to compare the PLI changes of each ver-
tex across four time phases and for four different fre-
quency bands. In the case where a statistical signi-
ficance was found, Mann–Whitney tests were used
as a post hoc analysis to investigate the lasting effect
of the intervention between TENS and Sham. For
each frequency and condition, Bonferroni correction
was performed to address the multiple comparisons
problem. Second, the alteration in the constructed FC
networks (PLI networks) was explored by analyzing
the network parameters such as clustering coefficient,
node strength, and network efficiency.

In addition to the above, for the second type of
analysis, the normality of data distribution of the net-
work characteristics passed Shapiro–Wilk test. As a
result, an independent sample t-test was performed
to analyze the significance of the difference (changes
in network parameters in T1 compared to the T0)
in the TENS and Sham groups. Moreover, boot-
strap independent-sample t-tests with 1000 repeti-
tions were applied to address robustness andmultiple
comparison problems. The level of significance was
p < 0.05 in all tests.

Since Shapiro–Wilk tests revealed that perceived
sensation data were not normally distributed, non-
parametric statistical evaluations were used for data

analysis. Friedman tests were employed to analyze
the effect of TENS on sensation in four time phases
(within-subject). Mann–Whitney tests were applied
to compare perceived sensation data between TENS
and Sham groups as between-subject factors. Mul-
tiple comparisons were addressed using Bonferroni
correction.

3. Results

3.1. Perceived sensation
The average sensation threshold at T0 in the
TENS and Sham group was 2.39 ± 0.59 mA and
2.32 ± 0.59 mA, respectively. Statistical analysis
was applied on the normalized perceived sensation
(change in sensation compared to the T0 phase).

Results from the Friedman test on normalized
perceived sensation revealed a statically significant
difference between TESN (χ2 (3)= 54.20, p < 0.001)
and Sham (χ2 (3)= 36.95, p<0.001). Changes in sen-
sation in T1, T2, and T3 following TENS application
compared to T0 were statistically assessed with the
Mann–Whitney test for the TENS and Sham group.
Significant suppression in perceived sensation in the
TENS group compared to the Sham group was found
and remained up to an hour following TENS (T1–T0
p= 0.005, T2–T0 p= 0.002, T3–T0 p= 0.002).

The individual map of sensation profile following
intervention was normalized to the recorded sensa-
tion profile at T0, and the normalized group average
of hand sensation profile map was demonstrated to
supplement the perceived intensity results (figure 3).
Results show that, while the sensation map was nor-
malized to the baseline (i.e. T1–T0, T2–T0, and T3–
T0), suppression (blue color) in quality and location
of perceived sensation is evident in the TENS group
compared to no or enhanced sensation in the Sham
group.

3.2. Functional connectivity
The calculated mean PLI values are presented in
figure 4. While Shapiro–Wilk test results revealed
that PLI values are not normally distributed, figure 4
shows that the mean PLI value for connections in the
TENS group is more than the Sham group in all fre-
quency bands. However, using the non-parametric
Friedman test, statistical significance was observed
only in two pairs of connections in the gamma-band
when comparing TENS and Sham groups. A signific-
ant difference was observed in the FC in gamma-band
for SI_R—ACCand SI_R—mPFCconnections across
time phases in the TENS (p = 0.0463 for SI_R—
ACC and p = 0.0292 for SI_R—mPFC). However,
the same observation was not made in the Sham
group (p = 0.956 for SI_R—ACC and p = 0.173 for
SI_R—mPFC). In addition to the above, a Mann–
Whitney test then examined the lasting effect of these
changes (within-group). Results demonstrate that the
alteration in SI_R—ACC (T0–T1: p = 0.014, T0–T2:
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Figure 3. Group average map of the changes in perceived
sensations normalized to T0 for the TENS and sham group.
The color map shows the changes in quality and location of
evoked sensations following the TENS intervention.
Alteration in sensation profile compared to baseline is
highlighted with blue and red color as suppression and
enhancement, respectively.

p= 0.007, T0–T3: p= 0.012) and SI_R—mPFC (T0–
T1: p = 0.009, T0–T2: p = 0.003, T0–T3: p = 0.007)
connections remained significant up to an hour fol-
lowing TENS intervention (p-values are corrected by
Bonferroni correction).

The mean PLI matrix in the gamma frequency
band are shown in figure 5(B). This figure shows the
functional PLI-based brain network of the gamma-
band. The size and color of a node represent the nor-
malized sum of the connectivity values related to each
node (nodal strength), and the color of pair-wise con-
nections indicates the normalized average PLI value
across subjects. Only edges with a normalized mean
PLI value >30% (as compared to the overall max-
imum value) were included in the figure for the sake
of simplicity.

3.3. Graph analysis
The effect of the TENS intervention on the topo-
logy characteristics of the network was examined.
Therefore, changes from T0 to T1 in global and
local indexes of networks were compared between
TENS and Sham groups for the six frequency bands.
For both global and local indexes, clustering coef-
ficient, efficacy, and strength were evaluated. Please
see figure 6(A). for an illustration of the mean value
of extracted global graph measures for the TENS
and sham groups. The gamma-band results showed
that the global node strength, global clustering coef-
ficient, and global efficiency in the TENS group are
higher than those under sham intervention. Results
from the independent sample t-test revealed a signi-
ficant difference between the TENS and Sham groups
for the gamma-band network in the global node
strength (p = 0.0321), global clustering coefficient
(p= 0.0243), and global efficiency (p= 0.0390).

Statistical analysis of the network also revealed a
significant difference between the TENS and Sham

Figure 4. Circular plot of the changes in average PLI in T1
as compared to T0 for all ROIs connections in the TENS
and Sham group in each frequency band. A (∗) indicates a
significant difference (p < 0.05) between TENS and sham
group following Friedman test.

groups for all local measures in the gamma frequency
band (see figure 6(B))

Statistically significant differences in local effi-
ciency were observed, with significantly higher node
strength in the contralateral SI (p = 0.0214), con-
tralateral insula (p= 0.0419), ACC (p= 0.0175), and
mPFC (p= 0.011) in the TENS group compared with
the sham group.

The local cluster coefficients, however, showed no
significant effect of the TENS intervention on nodes
contralateral to the stimulation. At the same time, the
local cluster coefficient difference between groups for
ACC (p = 0.0204), mPFC (p = 0.0257), and ipsilat-
eral SI (p= 0.0243) ROIs were found significant. Sim-
ultaneously, the independent sample t-test revealed
a statistically significant difference in nodal strength
indexes for ACC (p = 0.00487) and ipsilateral SI
(p= 0.0331) ROIs between TENS and sham groups.

4. Discussion

The present study showed that functional brain con-
nectivity following TENS intervention significantly
differs from those subjected to a sham intervention.
Here we investigate the topographical changes in
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Figure 5. (A) The eight selected source brain regions overlaid on the inflated surface maps using the BrainNet Viewer toolbox
(RRID:SCR_009446; www.nitrc.org/projects/bnv/ (B) The normalized, mean FC matrices calculated for the TENS (first row) and
Sham (second row) groups at the four different time phases (four columns) in the gamma frequency band. The size and color of a
node represent the normalized sum of the connectivity values related to each node (nodal strength) and the color of pair-wise
connections indicates the normalized average PLI value across subjects. For the brain network simplicity, the normalized edges
with value lower than 0.3 are not depicted. Connections with significant changes (i.e. SI_R to ACC, and SI_R to mPFC) are
highlighted with ∗.

Figure 6. Global and local characteristics of functional brain network connectivity. (A) The radar plot depicts the changes
(% change in T1 compared to T0) for global indexes as efficiency, cluster coefficient, and strength in six frequency bands on the
network extracted by PLI. The red area represents the values for the subjects in the TENS group, while the gray area demonstrates
the values in the sham group. While we compared the percent of change, the axes run from the center (−50%) to the outside
(+50%) for global measures and run from the center (−10%) to the outside (+10%) for local measures. Independent sample
t-test revealed a significant difference in all three global indexes in the gamma band. (B) The radar plot shows the three local
index changes for eight nodes in the gamma band. Statistical analysis shows a significant change in SI and Insula contralateral to
the stimulation site, ACC, and mPFC in local efficiency between the groups. The local cluster coefficient in ACC, mPFC, and SI
ipsilateral to the stimulation site were changed significantly. Moreover, our results revealed that TENS was significantly affected
the nodal strength in ACC and SI ipsilateral to the stimulation site.

functional brain connectivity and sensory perception
alterations associated with TENS intervention.

4.1. Effect of TENS on the perception response
The TENS intervention on the evoked perception
has shown a significant effect not only between
groups but also over time. We have used the VAS
scale to rate the perceived sensation following each
block of SEPs. Although these measurements are

subjective and have limited reliability, we have
recorded the location of the subject’s evoked sen-
sation as supplementary measurements. We have
shown that both cortical and sensation responses
are suppressed following TENS. Further experiment
with recording sensation following each stimula-
tion impulse is needed to correlate the suppres-
sion of cortical activity and perceived sensation
responses.

7
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4.2. Effect of TENS on functional connectivity
The TENS intervention had a significant impact on
gamma-band phase-based FC in the SI-ACC and
SI-mPFC pair-wise connections in the contralat-
eral hemisphere to the electrical stimulation. The
enhancement of gamma-band FC in the two men-
tioned connections was remained significant for at
least up to an hour following the intervention.

This study illustrated that TENS alters the FC
between SI-ACC and SI-mPFC in the gamma band,
which occur simultaneously with a decrease in per-
ceived sensation. The aforementioned results can
improve our fundamental understanding of the
neurophysiological effects on perception and poten-
tial association with pain relief mechanisms following
TENS intervention. Our results suggest the increased
FC between SI—ACC and SI—mPFC in the gamma
band may be a possible biomarker for analgesic effect
influenced by TENS.

Several pain studies have reported the SI as a
termination node for canonical ascending nocicept-
ive pathways, which depict the sensory-discriminative
component of pain [45, 46]. The gamma band activ-
ity of SI has also been reported as an important
index for sensory processing [47]. Moreover, ACC
has been reported to represent the affective aspect
of pain experiences [48]. Additionally, the increase
in the ACC’s aversive responses and the plasticity in
both the SI and ACC in chronic pain patients have
been reported previously [49, 50]. The anatomical
and functional connections between SI and ACChave
been previously investigated using optogenetics and
fluorescent tracingmethods. Singh et al improved the
understanding of the sensory processing and neuro-
pathic pain at the cortical level by reporting a dir-
ect projection from the SI to the ACC following nox-
ious stimuli [51]. Additionally, gamma oscillations
have been proved as an index to represent neural
activity in brain FC [17]. Accordingly, our finding
on the enhancement of SI-ACC FC in the gamma-
band following TENS could be possible evidence of
the important role of SI-ACC connection for the anal-
gesic effect of TENS.

4.3. Effect of TENS on global characteristics of
brain network
This study showed an alteration in both global and
local brain network metrics in the TENS group com-
pared to the sham group.Using functionalMRI, some
changes of global metrics of a functional network at
infra low frequencies (<0.1 Hz) have been reported in
chronic pain patients [52]. Furthermore, in a recent
EEG study, Ta Dinh et al demonstrated a gamma-
band global network reorganization in chronic pain
patients [17]. They revealed that chronic pain is asso-
ciated with a significant decrease in the global effi-
ciency of the brain network. In line with this, our res-
ults depict that all three global network parameters

(i.e. global node strength, global efficiency, and global
cluster coefficient) were generally increased in all fre-
quency bands following TENS intervention. How-
ever, results show a significant change only in gamma-
band.

Moreover, chronic pain has been shown to sup-
press the global metrics of sensory processing FC net-
works in gamma-band [17]. As our results showed
TENS improve these metrics, the present study sug-
gests that the global nodal strength, global efficiency,
and global cluster coefficient could be a potential bio-
marker to investigate the mechanism of TENS in pain
reduction.

4.4. Effect of TENS on local characteristics of brain
network
In addition to the topological attributes of the brain
network, analyzing the network from local aspects
is commonly accepted [17, 19]. The local modular
attributes represent the performance of information
exchange with neighboring or directly connected
nodes, and information segregation of the network
can be assessed by local efficiency and local cluster
coefficient [44]. Our results revealed several signi-
ficant enhancements of local features. Significant
increase in efficiency, cluster coefficient, and ACC’s
strength suggest this ROI as one of the most affected
brain areas by TENS intervention. Hautasaari et al
has recently shown that that ACC is not involved
in early processing of nociceptive stimulation [53],
However, in the long-term sensory processing, our
results showed TENS could significantly improve the
segregation of information in ACC.

Moreover, figure 6(B). shows TENS intervention
increased information transmission efficiency for the
contralateral SI, ACC, and insula. Alteration in the
insular cortex’s activity has been reported in sens-
ory (non-painful tactile [54]), acute pain [55], and
chronic pain [56] studies. Previous studies also found
an anatomical connection of the insula with multiple
sensory, motor, limbic, and association areas [57, 58].
At the same time, studies show that ACC plays an
essential role in sensory-pain processing, and an alter-
ation in ACC activity has been reported in chronic
pain patients [51]. Consequently, our result suggests
that the local efficiency enhancement of SI, Insula,
mPFC, and ACC is another explanation for themech-
anism of analgesic effect of TENS.

The changes in the somatosensory cortex activity
induced by TENS on the ipsilateral to the stimulation
site have been reported along with the contralateral
hemisphere [10]. The importance of bilateral brain
area activity has recently been reported in sensory and
pain networks [59]. Moreover, several studies sugges-
ted that applying the TENS on the intact hand for PLP
relief on upper limb amputees is more effective than
the ipsilateral hand [60, 61]. Suppression of inter-
hemisphere FC in the SI following amputation has
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also been reported in the fMRI study [62]. Consistent
with previous research in TENS effect on hemisphere
ipsilateral to the stimulation site, a significant change
in node strength and cluster coefficient of ipsilat-
eral SI (SI_L) in the gamma band FC network was
observed in our study. Thus, local node strength
change in the ipsilateral hemisphere to the stimula-
tion site may represent the possible effect of TENS on
PLP relief. A possible explanation for this view can be
addressed by the gamma-band oscillation role in pain
perception, and evidence on the gamma-band oscilla-
tion of SI ipsilateral to the stimulated hand might be
caused by the same oscillation on the SI to the con-
tralateral stimulated hand.

Our results demonstrated the effect of TENS
on the brain FC network involved in sensory/pain
processing in healthy subjects. The method used in
the present study for inducing the SEPs is based
on recently published results in the literature [11]
which is different in terms of pulse width and num-
ber of pulses when compared with more classic SEP
[63–65]. In this regard, the utilized method includes
double-pulse stimulationwith a pulse width of 500µs
to address more charge of electrical stimulation for
surface electrical stimulation (compared to intraepi-
dermal) to induce a sensory stimulation. Addtion-
ally, in this study, we examined our objective in
healthy subjects to provide an adequately large and
homogeneous subject population. Although chronic
pain reduction previously has been associated with
changes in sensory/pain-related brain FC, the ability
of the present TENS intervention to induce such alter-
ation and analgesic effect on pain should be validated
in a future clinical trial.

5. Conclusion

The application of TENS on pain alleviation has
been previously proved on chronic pain patients. The
underlying brain mechanism following TENS inter-
vention and associated modulation of perceived sen-
sations is not well known. In the present study, we
investigate the influence of TENS on sensation and
hypothesize that it can be decoded by analyzing the
topographical alterations in the FC network of the
central nervous system. The results showed a signi-
ficant increase in the FC between SI_R, ACC, and
mPFC (at least for an hour) following TENS interven-
tion.Moreover, results frombrain functional network
analysis depicted, for the first time, an increase in
global and local network characteristics, with a sup-
pression in the intensity and size of the sensation area
perceived in response to a sensory stimulation after
TENS.
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