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Optimal Scheduling of a Self-Healing Building using 

Hybrid Stochastic-Robust Optimization Approach 

Alireza Akbari-Dibavar, Behnam Mohammadi-Ivatloo, Senior Member, IEEE, Kazem Zare, and Amjad Anvari-

Moghaddam, Senior Member, IEEE 

Abstract—This article provides a two-stage robust energy 

management method for a self-healing smart building that can 

handle contingencies that occur during real-time operation. Aside 

from an electrical link with the distribution network, the smart 

building is equipped with a diesel generator and photovoltaic solar 

power generating systems. The energy management system should 

be smart enough to plan different resources based on the situation. 

At first, bi-level programming identifies critical faults for affected 

components based on mean-time-to-repair. After identifying 

major failures, the faults are described in operational scenarios, 

and two-stage hybrid robust-stochastic programming technique is 

used to determine the bid/offer in day-ahead and real-time energy 

markets, in which stochastic programming is responsible for 

considering the uncertainty of faults, and the robust optimization 

approach is used to cope with the uncertainty of real-time market 

prices. After linearization, the final optimization is modeled as 

mixed-integer linear programming in GAMS optimization 

package. For the studied smart building, the daily operational cost 

is expected to increase from $ 25.794 (for the deterministic case) to 

$ 28.097 (for the most conservative case) due to the uncertainty of 

real-time market prices. Due to power shortages caused by the 

failure of components, the total expected not-supplied load is 6.72 

kW (2.53%). A comparison between a naive, and self-healing 

scheduling indicated that a naive energy management will charge 

additional $ 2.75 without considering the probability of 

components failures under the deterministic case. 

 
Index Terms— Smart building, resiliency-oriented scheduling, 

two-stage stochastic programming, self-healing, bilevel problem. 

NOMENCLATURE 

Symbols Definition 
t  Index of time (Hour) 

is  Index of failure scenarios 

s  The probability of scenarios 

e

tD  Hourly electric demand (kW) 

iMTTR  The mean-time-to-repair of 

component i (Hour) 

S  Maximum exchangeable power with 

the market (kW) 

Voll  Value of lost load ($/kWh) 
PV

tP  Maximum PV generation at time t 

(kW) 
PV

tP  Generated power by PV (kW)  
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DA

tP ,
,

RT

t sP  Exchanged powers in day-ahead and 

real-time markets (kW) 

,

dis

t sP  Generated power by diesel generator 

(kW) 

,t sLsh  Curtailed load (kW) 

i

tu , i

tz  Binary variables equal to 1 when 

component i is out-of-service  
DA

t ,
RT

t  Day-ahead and real-time market prices 

($/kWh) 
dis  Generation cost of diesel generator 

($/kW) 
1

s ,
2

s ,
3

s  Parameters indicating the availability 

of line, diesel generator and 

photovoltaic, respectively. 
1

tx , 2

tx  Auxiliary continuous positive 

variables 
1

t ,
2

t ,
1

t ,
2

t  Special ordered set variables 

I. INTRODUCTION 

ITH the development of renewable resources, the 

use of these technologies is increased by end-users, 

which opened a way for the active entry of 

residential and commercial sectors in the electricity markets. 

However, without constructing an efficient energy management 

system, economic losses will be incurred due to numerous 

uncertain factors in the energy management process. The 

researchers in the search for solving the issue have proposed 

different concepts, methods and strategies for active buildings 

to reduce their energy consumption, and successfully 

participate in the electricity markets, and gain financial 

benefits. For instance, a smart home energy management 

framework is constructed by [1], which takes the help of 

optimal scheduling of flexible demands, plug-in electric 

vehicles (EV) and battery storage (BS) to maximize the 

utilization of renewable energies and provide demand response 

services to the utility grid. The optimal utilization of renewable 

energies besides satisfying thermal comfort is targeted by [2]. 

The authors constructed an optimization model to minimize the 

energy cost by scheduling different loads and exchanging 

power with the grid. With the help of the building’s thermal 

capacity, the required BS capacity is minimized. The thermal 
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and electrical consumption management of smart homes is 

studied in [3], considering the effects of ambient temperature 

on thermal energy requirements under energy price uncertainty. 

The energy consumption minimization using demand response 

programs (DRP) is addressed in [4], by considering various 

loads and comfort indexes of inhabitants in a smart home. In 

another work [5], the authors evaluated the effects of several 

DRP, including time-of-use, real-time pricing, and inclining 

block rate, on optimal energy management of a residential 

home in the presence of photovoltaic (PV), BS, and exchanging 

power with electric network. The participation of a residential 

building in the power market is carefully carried out in [6] by 

modeling electric and thermal loads, PV, and storage systems. 

The presented model results in optimal bidding curves that 

should be submitted to the electric market, taking into account 

the uncertainty of PV generation and market prices using 

interval-based stochastic programming. In [7], the self-

scheduling problem of a smart home is surveyed with more 

concentration on uncertainty management. In this paper, the 

market participation of a price-taker residential user is assessed 

by a hybrid robust-stochastic approach to cover the 

uncertainties of both day-ahead and real-time markets’ prices 

and PV generation. The energy scheduling problem of a data 

center building is investigated by [8]. The authors integrated the 

combined cooling, heat and power units and BS to provide 

flexibility to the scheduling problem. The market participation 

in day-ahead and real-time markets is inspected by formulating 

a two-stage framework. Also, two-stage stochastic 

programming (SP) is conducted in [9]. The authors have 

modeled the participation of a smart home in spot markets, 

contractual agreements, and gaining power from renewable 

resources considering the uncertainties of resource generation, 

market price, and availability of non-controllable loads 

employing a set of scenarios. 

A. Resiliency-based energy management 

The resiliency in power and energy systems is introduced as 

the capability of the system to foresee and withstand hazards 

and return to normal operation after the events with the least 

cost. According to [10], smart grids are vulnerable to cyber-

physical attacks and social crimes. As the heart of the smart 

grids, smart home energy management plays a critical role in 

society and the energy sector. Additionally, the need for 

resilient smart buildings with electricity generating capacity 

stems from the fact that home medical equipment is vulnerable, 

and a power outage has unpleasant consequences. Extreme 

event causing power outages is a danger to domestic energy 

management systems [11]. The resiliency-oriented energy 

management for small-scale energy systems, such as 

microgrids and nano-grids has been focused on in recent years. 

For instance, resiliency-oriented scheduling of a microgrid 

including PV and BS is assessed by [12]. The microgrid is 

designed to supply a commercial building in islanded mode 

during extreme events. The authors of [13] argued about 

increasing the resiliency level for smart homes using optimally 

sized PV and BS facilities. This paper also provides an optimal 

control strategy based on model predictive control to make the 

decision on the real-time operation. For some predefined grid 

outages, the authors of [14] proposed an energy management 

scheme for the residential buildings, in which plug-in hybrid 

EVs and PV are considered as backup power resources. 

Stochastic programming is used to model the uncertainty of 

PV’s power generation. 

The peer-to-peer (P2P) method and system-of-system (SOS) 

architecture can be used to improve robustness in communities. 

In these modes, numerous buildings with different power 

generation technologies pool their resources in times of need, 

such as when components fail. In this regard, the authors of [15] 

proposed a P2P framework for energy management of three 

residences, two of which are solar-powered and one of which is 

powered by a hydrogen system (HS). The challenge is to 

determine the optimal sizes for PV, HS, and power lines 

connecting dwellings in order to save operating costs. 

Stochastic programming is used to expect the uncertainty of 

solar output and load consumption in the optimization context. 

They provide a peer-to-peer framework for energy 

management of three residences, two of which are solar-

powered and one of which is powered by hydrogen (HS). The 

challenge is to determine the best sizes for PV, HS, and power 

lines connecting dwellings in order to save operating costs. 

Furthermore, stochastic programming is used to predict the 

uncertainty of solar output and load consumption. A shared 

parking station was employed in a P2P approach to improve the 

resiliency of two residential and commercial buildings in [16]. 

With the use of EVs and load-adjustment strategies, the energy 

cost of the system considering random power outages with 

various duration has been minimized. However, the 

uncertainties are not addressed. SOS-based operation is 

prescribed by [17] for energy and water management of a 

residential complex. The buildings within the complex share 

their resources during logjams, for example, utility 

disconnection, to feed electric loads and water desalination 

units. The uncertainties with renewable resources are handled 

by the robust optimization approach (ROA). 

A self-healing system is one that is capable of intelligently 

recognizing, finding, and evaluating defects in a timely manner, 

as well as taking appropriate remedial activities to quickly 

return to normal situation. To provide self-healing features, 

contemporary fault detecting modules, smart meters, and 

communication infrastructures are required [18]. Self-healing 

energy management is a relatively novel topic that is widely 

focused on smart grids and buildings in recent publications. In 

[19], considering the capacity withholding of power generation 

facilities, two-stage energy management is offered for a self-

healing distribution network. While the regular operation is 

assumed for the day-ahead stage, effects of the external events 

are imposed in real-time process. The uncertainty associated 

with EVs, renewable power generation and energy prices is 

considered by scenario-based stochastic programming but the 

uncertainty of faults has not been involved. The authors of [20] 

make levels a DC microgrid with a green building and propose 

a multi-agent control scheme for developing self-healing 

functions for a building with PV, BS and supercapacitor (SC), 

which is connected to a DC grid to supply DC loads directly 



3 

 

and AC loads through DC-AC converters. It should be noted 

that the uncertainties associated with normal and faulty 

operation have not been evaluated. The critical point with this 

work is to compare a microgrid with a smart building. Hence, a 

smart building can be referred to as a nano-grid, and self-

healing functions can be assessed similarly with smart grids. 

However, the works focusing on self-healing smart buildings 

are a handful. In this mean, the autonomous energy 

management of a building without extra resources is interesting. 

With this respect, a self-healing energy management plan for a 

smart home is prescribed in [21] by coordinating the operation 

of wind power generation (WPG), DRP, diesel generator (DG), 

and vehicle-to-home capacity in the off-grid operation to 

minimize the energy cost. Stochastic programming is applied to 

model the uncertainties of WPG and load consumption. The 

resiliency of a self-healing building in off-grid and grid-

connected modes is addressed in [22]. The BS reserve, EVs, and 

PV systems create a resilient energy management scheme 

leading to minimum energy cost. The PV generation 

uncertainty is modeled by scenario-based stochastic 

programming. In [23], the author provided an optimization 

framework for evaluating the effects of resiliency and 

uncertainty on the energy management problem of a typical 

building powered by PV and BS connected to the utility grid. 

The operation is tested on a 90-day time horizon to investigate 

the energy and resiliency costs considering the uncertainties of 

load consumption, PV generation, and energy prices using 

stochastic programming. Finally, a design framework is 

developed in [24]. The target is to address the planning problem 

of a self-healing building incorporating a PV system, DG, and 

BS connected to an electric grid considering the energy 

efficiency and resiliency criteria. Optimal designing 

parameters, such as nominal capacity of resources are obtained, 

where the yearly not-supplied load is minimized. 

The reliability of a self-healing building depends on the 

successful operation of each involved component, because it 

influences the strategy of market participation and consequently 

affects the economic and resiliency aspects. Furthermore, the 

uncertainty associated with natural and human-made 

disruptions should be integrated with optimal energy 

management to reduce the risks and probable losses [25]. 

B. Novelty and contributions 

This paper is the extended version of the previous conference 

paper [26], in which a bi-level model for detecting the 

vulnerabilities of a self-healing building was proposed and used 

for failure scenarios generation in day-time operation. In this 

version, the self-healing strategy is compared with a naive 

energy management strategy to reveal the benefits of detecting 

faults before real-time operation and accordingly 

recommendations for resiliency enhancement are deliberated. 

As presented in [26], the case study is a residential building 

equipped with a DG and PV solar system. The grid connection 

makes it possible to balance the generation and consumption 

and take advantage of market participation. By deriving optimal 

biding/offering strategy in day-ahead and real-time markets and 

using the optimal commitment of PV and DG, the self-healing 

building encounters critical disruptions with the lowest load 

curtailment, assuring the minimum operation cost. Moreover, 

the robust optimization approach is proposed to manage the 

uncertainty of real-time market price. To highlight the 

novelties, it is decided to compare the related works with the 

presented paper in Table I. 

TABLE I 

COMPARISON BETWEEN SIMILAR WORKS 

Ref. Problem 

structure 

Critical 

faults 

detection 

Fault 

uncertainty 

modeling 

Operation 

uncertainty 

modeling 

Items 

[12] LP No No Price/PV 

(CVaR) 

PV/ 

BS 

[13] MILP No No No PV/ 

BS 

[14] MILP No No PV 

(SP) 

PV/ 

EV 

[15] LP No No PV/load 

(SP) 

PV/ 

HS/ 

P2P 

[16] MILP No No No EV/ 

P2P 

[17] MILP No No Renewable 

power 

(RO) 

WPG/ 

PV/ 

BS/ 

DG/ 

DRP 

SOS 

[19] MINLP Yes 

(Simulat

ion-based) 

No EV/price/ 

load/WPG/

PV 

(SP) 

WPG/ 

PV/ 

BS/ 

EV/ 

DG 

[20] Multi-

agent 

controller 

Yes 

(Simulatio

n-based) 

No No PV/ 

BS/ 

SC 

[21] MILP Yes 

(N-1 

criterion) 

No WPG/ 

load/ 

price 

(SP) 

EV/ 

WPG/

DG/ 

DRP 

[22] MILP No No PV 

(SP) 

EV/ 

BS/ 

SC/ 

PV 

[23] MILP No SP PV/load/ 

price 

(SP) 

PV/ 

BS 

[24] MILP Yes 

(N-1 

criterion) 

No No PV/ 

BS/ 

DG 

This 

paper 

MILP Yes 

(Bi-level) 

SP Real-

time price 

(ROA) 

PV/ 

DG 

 

Based on the comparison presented in Table I, this paper is 

the first that proactively schedules a smart self-healing building 

by detecting severe failures in real-time operation, and based on 

this anticipation, creates uncertainty-based scheduling that 

integrates the failure rate of the components to consider the 

importance of each failure. While some of the previous works, 

such as [19]–[21] and [24], have detected the critical faults in 

their work, these are based on complete simulation or using (N-

1) criterion that is not efficient from viewpoint of computational 

time. In turn, we proposed bi-level programming to find the 

critical faults and generate a set of operational scenarios. The 
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proposed bi-level programming is reformulated as mixed-

integer linear programming, which is efficient and timely. From 

Table I, Ref. [23] modeled the uncertainty of faults and outages 

using SP, which is seen in this paper similarly. For operational 

uncertainty, the real-time price uncertainty is handled by the 

ROA, which is proved to be efficient for severe uncertainty 

modeling. At the same time, other works have used pure SP or 

conditional value-at-risk (CVaR) that needs a vast data set for 

prediction. For a realistic case, a smart building may not be 

equipped with numerous flexible resources. The smart building 

in this paper, includes necessary electricity generation facility 

and backup resources. 

The organization of the paper is as follows. The problem 

formulation is presented in Section III. The case study 

descriptions and numerical evaluations are reported in Section 

IV. The conclusions are expressed in Section V. 

III. PROBLEM FORMULATION 

The complete procedure of the proposed self-healing energy 

management of the building consists of two phases. The first phase 

is constructed as bi-level programming, which determines the 

drastic failures leading to high operating costs. In the second phase, 

which directly determines the operation strategy, the two-stage 

stochastic programming finds the optimal bids/offers in day-ahead 

and real-time markets. To manage the uncertainty of the problem 

due to the fluctuations of real-time market price, the robust 

optimization approach with different conservation levels is 

investigated. 

A. Diagnosing critical faults 

As mentioned before, the self-healing system should anticipate 

the failure of components and their effects on overall performance 

and adopt proper actions. One way to identify the critical failure is 

what has been done in previous works, such as considering all the 

possible faults, and effects of failures on the system operation, 

incurred costs and curtailed load. However, for a complex energy 

system with numerous involved components and considering the 

sequence and various permutations of faults, this strategy cannot 

be used. Moreover, in this strategy, all the possible failures are 

evaluated while only some of them are challenging in nature. One 

promotable approach to find the vulnerable part of an energy 

system is to use bi-level programming. At the upper-level, the 

manager tends to enforce severe failures on system, and at the 

lower-level, he/she tries to keep the system security. In other 

words, the attacker-defender problem is adopted in this paper from 

the viewpoint of the decision-makers to find the weak points of the 

self-healing smart building. However, this is done by considering 

the MTTR and overlapping of failures of component that have not 

been done before due to authors’ knowledge. In this process, the 

upper-level problem is responsible for creating a challenging 

condition for system by proposing the time and type of component 

failure (similar to an attacker). In contrast, the lower-level problem 

is responsible for system balance and security to minimize the 

overall cost and restore critical loads during faults (similar to a 

defender). More detailed information is provided in the following 

subsections. By using a bi-level programming, the challenging 

situations can be found intelligently and efficiently. 

B. The upper-level problem 

At the upper-level, the objective is to maximize the system cost 

(including the penalty of curtailed load) by determining some 

binary variables that indicate the failure of each component. This 

stage models the behavior of an attacker tries to remove 

components and impose more cost and load disruption. This is not 

limited to a provocative action; the failure of components is 

commonplace in realistic cases. The objective function is shown in 

(1) that consists of two main parts. The first item is cost related to 

power exchanged with the network in the day-ahead market, and 

the second item calculates the cost in real-time operation. The 

upper-level problem is solved subject to sequence and continuity 

of faults. That means, if a fault has occurred, the component is not 

available during maintenance time or MTTR. Constraints (2) and 

(3) model the sequence and continuity of faults. Constraint (4) 

assures that each component’s outage time equals the MTTR. 

Decision variables of this level are binary variables indicating 

components’ status. 

,
1

1

[ ]

[ ( ) ( ) ( )]

T
DA DA

t t
u z

t

T
RT RT dis dis

t t t t

t

Max P

P P Lsh Voll



 





 

    




 (1) 

1t MTTR

i i

t t

t t

u MTTR z
 





      (2) 

1

i i i

t t t
z u u


       (3) 

1

T

i

t

t

u MTTR


     (4) 

C. The lower-level problem 

The lower-level problem models the behavior of the defender or 

system operator that tries to crisis management with the minimum 

cost assuring the system balance. The system cost is minimized in 

the lower-level, according to (5), subject to energy balancing 

constraint in (6), and components’ availability constraints (7)-(10). 

Equations (7) and (8) limit the exchanged power with grid in day-

ahead and real-time markets, respectively. However, by the 

disconnection of line in real-time operation, the building will not 

be able to fulfill the contracts of day-ahead market too. Equations 

(9) and (10) represent the allowable power generation by PV and 

DG, respectively. The maximum load shedding amount is limited 

in (11). The decision variables of the upper-level (i.e., binary 

variables) are treated as input parameters in the lower-level 

problem indicated in (7)-(11). Hence, the complete bi-level 

problem not only simulates the critical failures, but also encounters 

them with proper decision making. Dual variables (i.e., the 

Lagrange multipliers) of the constraints of lower-level problem are 

defined in front of each one that will be used to reformulate the bi-

level problem. 

, , , ,
1

1

[ ]

[ ( ) ( ) ( )]

DA RT dis PV
t t t t t

T
DA DA

t t
P P P Lsh P

t

T
RT RT dis dis

t t t t

t

Min P

P P Lsh Voll



 





 

    




 (5) 

0,( )DA RT dis PV e

t t t t t t tP P P Lsh P D        (6) 
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1 1 min max(1 ) (1 ), ( , )DA

t t t t tS u P S u          (7) 

1 1 min max(1 ) (1 ), ( , )RT

t t t t tS u P S u          (8) 

2 min max0 (1 ), ( , )dis dis

t t t tP P u        (9) 

3 min max
0 (1 ), ( , )

PV PV

t t t t t
P P u        (10) 

min max0 ,( , )e

t t t tLsh D       (11) 

D. Reformulation of bi-level programming 

The conventional method for solving bi-level problems is to 

recast it as a single-level problem by implementing Karush-Kuhn-

Tucker (KKT) conditions on the lower-level problem. The final 

single-level problem is represented by the equations (12)-(27), 

including feasibility constraints (15)-(19) and complementarity 

slackness conditions for inequality constraints as defined in (20)-

(27). 

,
1

1

[ ]

[ ( ) ( ) ( )]

T
DA DA

t t
u z

t

T
RT RT dis dis

t t t t

t

Max P

P P Lsh Voll



 





 

    




 (12) 

Constraints (2)-(4)    (13) 

Constraints (6)-(11)    (14) 
max min 0DA

t t t t          (15) 

max min 0RT

t t t t          (16) 

max min 0dis

t t t          (17) 

max min 0t t t          (18) 

max min 0t t tVoll          (19) 

1 min0 ( (1 )) 0DA

t t tP S u         (20) 

1 max0 ( (1 ) ) 0DA

t t tS u P         (21) 

1 min0 ( (1 )) 0RT

t t tP S u         (20) 

1 max0 ( (1 ) ) 0RT

t t tS u P         (21) 

min0 0dis

t tP        (22) 

2 max0 (1 ) 0dis dis

t t tP u P         (23) 

min0 0PV

t t
P        (24) 

3 max

(1 )0 0PV PV

t t t t
P u P         (25) 

min0 0t tLsh        (26) 

max0 ( ) 0e

t t tD Lsh        (27) 

E. Linearization of resulted single-level problem 

The initial bi-level problem was mixed-integer linear 

programming. However, after applying the KKT conditions, non-

linear constraints in the form 0 0a b    complicate the 

solution procedure. These constraints are linearized by employing 

Schur’s decomposition method and the help of special ordered set 

of variables type 1 (SOS1). More information regarding the 

linearization techniques for such constraints could be found in [27]. 

Constraints (20) and (21) are linearized in (28)-(33), for example, 

and the rest of the constraints can be linearized in the same manner.  
1 1 2( ) 0t t tx    

    (28) 

1 min

1 [ (1 )]

2

DA

t t t

t

P S u
x

   


   (29) 
1 min

1 2 [ (1 )]

2

DA

t t t

t t

P S u 
 

   
 

  (30) 
2 1 2( ) 0t t tx    

    (31) 
1 max

2 [ (1 )]

2

DA

t t t

t

S u P
x

   


   (32) 
1 max

1 2 [ (1 )]

2

DA

t t t

t t

S u P 
 

   
 

  (33) 

The SOS1 variables are treated as integer variables by most of 

the solvers. Hence, the bilevel programming (1)-(11), can be 

modeled as a mixed-integer linear programming (12)-(19) and 

linearized forms of complementarity slackness conditions with 

high accuracy and computational efficiency are presented. 

F. Two-stage energy management of the building 

The self-healing energy management problem is assessed in this 

section. The problem is formulated as two-stage stochastic 

programming involving the risk of component failures and their 

probability. The scenarios of failures are generated based on bi-

level problem results in the previous section. The proposed two-

stage programming determines the optimal bids/offers of the 

building in day-ahead and real-time markets and the energy 

management scheme to achieve the minimum operation cost. The 

bids/offers are derived based on forecasts of the day-ahead and 

real-time markets’ prices. Although relatively accurate forecasting 

can be assumed for day-ahead market price, the real-time market 

price is highly volatile. To address the uncertainty of it, the robust 

optimization approach is exploited by defining a confidence 

interval on the real-time market price, which covers a wide range 

of deviations. An explanation of robust approach background for 

price uncertainty management can be found in [7]. 

In the following, the two-stage stochastic programming is 

formulated. The objective function of this phase is to minimize the 

operation cost and load curtailment economic losses, shown in 

(34). The decision variables of the day-ahead stage should be 

scenario-free since the failures occurred in real-time operation, and 

the second stage is responsible for considering them according to 

predefined scenarios. The maximum power exchanged in the day-

ahead market is limited in (35). As shown, the availability of each 

component in real-time operation is modeled by constants in (36)-

(39). The presented formulation is risk-neutral without considering 

the effects of uncertainty of real-time market price. 

, , , ,
1

, , ,

1 1

[ ]

[ {( ) ( ) ( )}]

DA RT dis PV
t t t t t

s

T
DA DA

t t
P P P Lsh P

t

NT
RT RT dis dis

s t s t t s t s

t s

Min P

P P Lsh Voll



  



 

 

    




 

      (34) 
DA

tS P S  
    (35) 

1 1

,

RT

s t s sS P S     
   (36) 

2

,0 dis dis

t s sP P   
   (37) 

3

,0 PV PV

t s t sP P   
   (38) 
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,s0 e

t tLsh D 
    (39) 

In order to intervene in the effects of real-time market price 

uncertainty on the operation problem, the risk-neutral problem is 

updated as follows. 0( ), ( ),q t y t Z
 are auxiliary variables of the 

robust optimization approach.   adjusts the conservation level, a 

positive constant between 0 and 1. 

0

1 1

, , ,

1 1

[ ] ( )

[ {( ) ( ) ( )}]
s

T T
DA DA

t t

t t

NT
RT RT dis dis

s t s t t s t s

t s

Min P Z q t

P P Lsh Voll



  

 

 

   

    

 


 

     (40) 

Constraints (35)-(39)   (41) 

0 ( ) ( ) ( )RT RT

t tZ q t y t    
  (42) 

,( ) RT

t sy t P
    (43) 

0( ), ( ), 0q t y t Z 
    (44) 

The proposed optimization (40)-(44) is a two-stage hybrid 

stochastic-robust model that leads to resiliency-oriented 

scheduling of the building considering the possibility of equipment 

faults, MTTR, and the uncertainty of energy price in real-time 

market. 

IV. NUMERICAL EVOLUTIONS 

A. Case Study 

The studied residential building is a smart energy nano-grid 

that interactively takes part in the local energy market. By 

means of the PV and DG, the building enhances the self-healing 

attributes. Fig. 1 shows the structure of the studied residential 

building. Due to the very high investment cost and high 

depreciation of BS that eventually leads to a sharp increase in 

operating costs, the operation of the residential building is 

investigated in the absence of BS. However, component failures 

challenge efficient and resilient operations. Without 

considering the impacts of such failures on the energy 

management issue, the inhabitants will suffer from economic 

losses besides power outages. 

The failure rates and required time for repair of each 

component (MTTR) are involved in the energy management 

problem. The failure rates of the PV system, DG, and network 

line are assumed to be 40%, 30%, and 20%, respectively, in a 

sample day to magnify the harmful impacts of component 

failure on the energy management problem and investigate the 

performance of the proposed model. The required times for 

repair of the PV system, DG, and network line reconnection are 

assumed to be 3, 3, and 5 hours, respectively. Table II 

represents the faults scenarios that are created based on results 

of bi-level programming in section III. Scenario #1 stands for 

the normal condition. The probability of each scenario is 

dependent on the amount of failure rate. For example, for 

scenario #8, where all of the components are out of service, the 

probability is calculated as (0.4×0.3×0.2). The faults occur in 

times represented by Table III. Fig. 2 illustrates the data used in 

the simulation. The generation cost of a DG with a nominal 

capacity of 14 kW is set to 0.3 $/kW. The maximum 

exchangeable power with day-ahead and real-time markets is 

20 kW for each market. The value of the lost load (VOLL) is 

assumed 1 $/kW. Some of the input data are adopted from [24] 

while some of them are assumed known and unique for this 

paper. 

 
Fig. 1. Schematic of self-healing building. 

TABLE II 

FAILURE SCENARIOS 

 S1 S2 S3 S4 S5 S6 S7 S8 

PV 1 0 1 1 0 0 1 0 

DG 1 1 0 1 0 1 0 0 

Line 1 1 1 0 1 0 0 0 
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TABLE III 

FAILURE TIMES 

 S1 S2 S3 S4 S5 S6 S7 S8 

PV NaN 14-

16 

NaN NaN 14-

16 

14-

16 

NaN 14-

16 

DG NaN NaN 19-

21 

NaN 19-

21 

NaN 20-

22 

21-

23 

Line NaN NaN NaN 20-

24 

NaN 20-

24 

20-

24 

20-

24 

B. Simulation results 

The results are found by solving the proposed optimization 

models in GAMS optimization software using CPLEX solver. 

Due to the linear feature of the proposed optimization models, 

the results are optimal. As mentioned, the building takes part in 

the day-ahead market to buy/sell energy, in which the 

bids/offers are submitted one day before the real-time 

operation. During real-time operation, it is possible to balance 

the generation-consumption more accurately according to 

failure occurrences. The deviation between day-ahead and real-

time market prices makes an opportunity to gain more 

economic benefits. 

The proposed robust optimization provides different 

strategies for risk-neutral and risk-averse decision-makers. 

Without considering the uncertainty of real-time price, the 

decisions are made according to the forecasted amount of real-

time prices. However, the risk-averse decision maker is 

interested in evaluating the cost with considering the effects of 

severe uncertainty to obtain the lowest risk. Although the 

bids/offers in the day-ahead market are determined independent 
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of failure scenarios, they depend on the decision-maker 

strategy. The decision variables of the day-ahead stage are 

reputed as here-and-now variables. While the decision variables 

in the real-time market are referred to as wait-and-see variables. 

Fig. 3 depicts the self-scheduling of a residential building in the 

day-ahead market. The residential building can buy or sell the 

energy each time, respectively, shown by positive and negative 

amounts in Fig. 3. Due to lower energy prices in the day-ahead 

market, the residential building tends to buy power from the 

market with the maximum allowable capacity the majority of 

the time. In addition, the deviation of energy prices between 

day-ahead and real-time markets and the surpassing power of 

PV system and DG makes it available to sell power at times 3, 

5, 6, and 10 p.m. Moreover, the differences between risk-

neutral and risk-averse decision-makers are evident in Fig. 3. 

 

 
Fig. 2. The estimations of electric demand, PV generation, day-ahead market price, real-time market price and corresponding 

confidence interval. 

Due to lower energy prices in the day-ahead market, the 

building buys power from the market with the maximum 

allowable capacity most of the time. In addition, the deviation 

of energy prices between day-ahead, and real-time markets and 

the excess power generated by the PV system makes it available 

to sell power at times 3, 5, 6 and 10 p.m. Different scheduling 

plan is obtained for risk-neutral, and risk-averse decision-

makers as shown in Fig. 3. 

 
Fig. 3. Exchanged power in the day-ahead stage. 

TABLE IV 

OPERATION COST VERSUS BUDGET OF UNCERTAINTY 

 0 0.2 0.4 0.6 0.8 1 

Cost ($) 25.794 26.274 26.754 27.212 27.668 28.097 

The energy balance in the system is held under real-time 

operation. It is necessary to take different energy management 

plans according to failures directed by scenarios. The 

exchanged power with the network in real-time operation is 

plotted in Fig. 4. According to Fig. 4, the residential building 

acts as a seller in the majority of the time in the real-time market 

due to relatively higher prices. The building cannot sell/buy 

energy to/from the energy market under scenarios #4,#6,#7 and 

#8 at time slots 8 to 12 p.m. because the connection line is out-

of-service according to Tables II and III. In these conditions, 

the purchasing power from the day-ahead market is not 

accessible and leads to economic losses, which are seen in the 

proposed model. At the time of disconnection, the loads are fed 

by DG, if it is available, and the exceeded load consumption is 

curtailed. Moreover, consideration of price uncertainty changed 

the decision plan in the real-time market, as well. For instance, 

at 8 a.m., 9 a.m., 5 p.m., and 6 p.m. 
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Fig. 4. Exchanged power in the real-time stage. 

 

The most troublesome condition of the building energy 

management is related to line outage that occurred under 

scenarios #4, #6, #7, and 8# during 8 to 12 p.m. In Fig .5, the 

amount of curtailed load and actual load are compared. The load 

shedding in 8 to 11 p.m. is unavoidable since all resources are 

out-of-service. However, an optimal energy management plan 

reduces the amount of curtailed load due to its look-ahead 

feature. According to failure scenarios, the total expected not 

supplied load is 6.72 kW or 2.53% in the daytime operation. It 

should be emphasized that the disruptions considered in this 

paper are the worst ones provided based on the vulnerability 

assessment of the building in section III. Finally, Table IV 

represents the operation cost of building considering the 

different budgets of the uncertainty of real-time price. The cost 

corresponding to =0 is related to risk-neutral strategy 

calculated based on forecasted amounts of the real-time market 

price. By increasing the conservatism level, the operation cost 

increases show that the decision-maker pays more to enhance 

robustness. =1 captures the whole uncertainty budgets and 

reveals that operation cost will exceed $ 28.097 within the 

confidence interval defined for the real-time price. 

 

Fig. 5. Comparison between actual and curtailed loads. 

C. Discussion 

The methodology proposed in this paper can schedule a self-

healing smart building by anticipating drastic failures 

considering the time of repair. In fact, it prevents reckless 

actions done by a naive decision-maker. The proposed approach 

is scalable and can be implemented for large-scale applications 

such as multi-carrier energy systems in industrial parks. The 

computational cost of the proposed method is efficient enough 

to be implemented during daily operation. This can be 

beneficial for systems with model predictive controllers to 

foresee the system’s state and provides look-ahead controlling 

signals. For the current problem, the initialization phase, which 

creates eight operational scenarios, takes about 40 seconds and 

the energy management phase takes about 7 sec while 

conservation parameter covers from =0 to =1 using a laptop 

with Intel Pentium Gold CPU and 4 GB of Ram. It should be 

noted that the operational scenarios increase by the numbers of 

components and can increase the computation time in larger 

cases. Another important discussion is about the accuracy of 

input data, in particular, the mean-time-to-repair and failure rate 

of components. It should be noted that the equipment such as 

PV, DG and line has a minimal failure rate per year and their 

MTTR depends on the intensity of the failure. Accordingly, to 

have a practical comparison among the self-healing and naive 

energy management strategies, the failure rate, and MTTR are 

selected exaggerated and this does not restrict the ability of 

methodology in reality. Table V shows a fair comparison 

among naive and self-healing energy management strategies for 

the studied smart building using forecasted real-time prices 

(i.e., =0). It is notable that naive energy management 

schedules the day-ahead and real-time bids/offers without 

considering the failures, and encounters with failure during 

real-time operation. 

It could also be clearly understood from Table V that by 

considering the probability of failures of components in daily 

operation, the expected cost can be reduced by $ 2.75 (10%). 

This also decreases the probability of load shedding when 

corrective strategies are taken into account (for example, P2P 
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contracts or SOS operation) or when additional equipment such 

as energy storage has been installed. While the naive scheduling 

tries to minimize the overall cost, it takes a different strategy 

from the self-healing strategy leading to relatively higher costs 

in day-ahead market. It compensates for the higher cost of the 

day-ahead market through real-time trades that is true only in 

scenario #1, when all of the components are in-service. In the 

current paper, due to the lack of corrective actions such as BS 

planning, DRP and vehicle-to-home discharging, etc., the total 

amount of curtailed load is the same as under naive energy 

management strategy. The potential of BS, vehicle-to-home and 

DRP in reducing the overall curtailed load would be 

investigated in future attempts. 

TABLE V 

OPERATION COST UNDER NAIVE AND SELF-HEALING 

ENERGY MANAGEMENT STRATEGY 

Case Naive Self-healing 

Day-ahead  $49.41 $43.26 

Real-time (Scen. 1) $-37.29 $-30.54 

Real-time (Scen. 2) $-35.59 $-25.21 

Real-time (Scen. 3) $-19.86 $-25.65 

Real-time (Scen. 4) $9.46 $9.462 

Real-time (Scen. 5) $-14.53 $-20.32 

Real-time (Scen. 6) $8.40 $14.79 

Real-time (Scen. 7) $43.06 $38.86 

Real-time (Scen. 8) $44.75 $44.19 

Expected cost $28.55 $25.79 

V. CONCLUSION 

The self-healing smart buildings are concepts for smart nano-

grids with a resiliency-oriented design. Although there are 

numerous works that investigated the resiliency and reliability 

of energy systems on a grid-scale, only a handful of works 

studied home-scale problems. Meanwhile, these works missed 

some important operational aspects, including the failure rate, 

MTTR of equipment and uncertainties associated with real-time 

outages. The mentioned gaps are seen in the presented paper by 

directing a two-stage hybrid robust-stochastic programming. 

For this purpose, bi-level programming is inspired by the 

attacker-defender concept to identify the critical faults and 

based on sequence and continuity of failures of components 

during daily operation, and generate operational scenarios. 

Based on these scenarios, and considering the failure rate for 

each component, two-stage stochastic programming is 

developed for energy management of the building in day-ahead 

and real-time markets. The results indicated that the proposed 

method could be employed for a home-scale application with 

several components in an efficient simulation time lower than 

one minute. It should be noted that the computation time will 

increase by the number of involved components. The 

simulation results can be summarized as follows. For the 

studied smart building, the daily operational cost is expected to 

increase from $ 25.794 (for the deterministic case) to $ 28.097 

(for the most conservative case) due to the uncertainty of real-

time market prices. Due to power shortages caused by the 

failure of components, the total expected not-supplied load is 

6.72 kW (2.53%). A comparison between a naive, and self-

healing scheduling indicated that a naive energy management 

will charge additional $ 2.75 without considering the 

probability of components failures under the deterministic case. 

It is evident that this additional charge is more considerable 

under robust strategy with the worst realization of real-time 

prices. It is concluded that the proposed energy management 

system can anticipate and schedule the resources more 

efficiently compared with naive strategy but it is still passive to 

restore curtailed load and it is required to be combined with P2P 

and SOS schemes to cover more load demands. Moreover, it is 

expected that predictive optimization concepts, such as the 

rolling-horizon-based method, can significantly improve the 

overall efficiency and resiliency when coordinated with the 

proposed self-healing method. The authors are interested in the 

mentioned research gaps and tries to fulfill them in probable 

future attempts. 
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