

Aalborg Universitet

Metagenomic binning with assembly graph embeddings

Lamurias, Andre; Sereika, Mantas; Albertsen, Mads; Hose, Katja; Nielsen, Thomas Dyhre

DOI (link to publication from Publisher):
10.1101/2022.02.25.481923

Creative Commons License
CC BY 4.0

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Lamurias, A., Sereika, M., Albertsen, M., Hose, K., & Nielsen, T. D. (2022). Metagenomic binning with assembly
graph embeddings. https://doi.org/10.1101/2022.02.25.481923

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 19, 2022

https://doi.org/10.1101/2022.02.25.481923
https://vbn.aau.dk/en/publications/57ca44b5-7e20-46f0-9838-d69f115cdbd5
https://doi.org/10.1101/2022.02.25.481923

Metagenomic binning with assembly graph

embeddings

Andre Lamurias∗1, Mantas Sereika2, Mads Albertsen†2,
Katja Hose†1, and Thomas Dyhre Nielsen†1

1Department of Computer Science, Aalborg University, Aalborg,
Denmark

2Center for Microbial Communities, Aalborg University, Denmark

February 25, 2022

Abstract

Despite recent advancements in sequencing technologies and assem-
bly methods, obtaining high-quality microbial genomes from metagenomic
samples is still not a trivial task. Current metagenomic binners do not
take full advantage of assembly graphs and are not optimized for long-read
assemblies. Deep graph learning algorithms have been proposed in other
fields to deal with complex graph data structures. The graph structure
generated during the assembly process could be integrated with contig
features to obtain better bins with deep learning.
We propose GraphMB, which uses graph neural networks to incorpo-
rate the assembly graph into the binning process. We test GraphMB
on long-read datasets of different complexities, and compare the per-
formance with other binners in terms of the number of High Quality
(HQ) genome bins obtained. With our approach, we were able to ob-
tain unique bins on all real datasets, and obtain more bins on most
datasets. In particular, we obtained on average 17.5% more HQ bins
when compared to state-of-the-art binners and 13.7% when aggregating
the results of our binner with the others. These results indicate that a
deep learning model can integrate contig-specific and graph-structure in-
formation to improve metagenomic binning. GraphMB is available from
https://github.com/MicrobialDarkMatter/GraphMB.

∗andrel@cs.aau.dk
†Equal contribution

1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2022. ; https://doi.org/10.1101/2022.02.25.481923doi: bioRxiv preprint

https://github.com/MicrobialDarkMatter/GraphMB
https://doi.org/10.1101/2022.02.25.481923
http://creativecommons.org/licenses/by/4.0/

1 Introduction

Microbial communities play a vital role in most processes in the biosphere and
are essential for solving present and future environmental challenges [1]. Ex-
amples include the impact of the human microbiome on health and disease [2],
discovery of new antibiotics [3], and turning waste products into valuables [4].
Metagenomics holds the promise to enable access to genomes of microbes from
complex microbial communities and thereby aid to realize their potential. How-
ever, high-quality genomes are difficult to obtain from complex communities,
since it is not trivial to determine which DNA sequences originate from the
same microbial genome.

To retrieve metagenome assembled genomes (MAGs) from complex meta-
genomes, several binners have been proposed based on composition and abun-
dance features [5]. Composition refers to the k-mer frequencies of a particular
contig and can be used to distinguish between different species [6]. The abun-
dance (coverage) of a contig in one or more samples has also been shown to be
a powerful feature to retrieve MAGs [7, 8, 9], which is usually referred to as
differential abundance (or coverage) binning.

One of the most successful binners is MetaBAT2 [10]. It uses coverage and
composition to compute a pairwise distance matrix for all contig pairs, with the
composition feature based on an empirical posterior probability calculated from
a set of reference genomes. A graph-based clustering algorithm is then used to
bin the contigs based on their distances, where the contigs are linked according
to their similarity scores. Wu et al. [11] presented a similar method, MaxBin2,
that uses an Expectation-Maximization algorithm to estimate the probability
of a contig belonging to a particular bin, but also used single-copy marker genes
to estimate the number of bins. Although more composition and abundance
methods have been proposed [12, 13, 14, 15, 16], these two can be considered
the most established and commonly used.

More recently, deep learning-based methods have been used to improve
metagenomic binning. Deep learning models present an advantage over other
statistic methods since this type of model can learn complex patterns in the
data that would be difficult to manually model with other methods. Nissen
et al. [17] proposed, VAMB, a binner based on a variational auto-encoder to en-
code composition and abundance features into low dimension embeddings that
can lead to better binning results on the datasets tested. Other deep learning
approaches have also been recently proposed. LRBinner [18] adapts variational
auto-encoders to long-reads, while SemiBin [19] uses a semi-supervised siamese
neural network with must-link and cannot-link constraints obtained with refer-
ence genomes.

Some recent works have also used the assembly graph to improve metage-
nomic binning. The common assumption is that contigs that were linked on the
assembly graph should also be binned together, as they are likely broken into
contigs based on internal genome repeats. Mallawaarachchi et al. [20] presented
a method that refines bins from other tools using information from the assem-
bly graph. Their method, GraphBin, refines the clusters of contigs that were

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2022. ; https://doi.org/10.1101/2022.02.25.481923doi: bioRxiv preprint

https://doi.org/10.1101/2022.02.25.481923
http://creativecommons.org/licenses/by/4.0/

separated by binning but were linked in the assembly graph. They navigate
the assembly graph using a label propagation algorithm to refine the binning.
MetaCoAG also uses the assembly graph for post-processing bin refinement [21].

However, both GraphBin and MetaCoAG only use the assembly graph dur-
ing post-processing, instead of integrating into the binning process. This means
that their clustering algorithm uses only contig-specific features, ignoring the
connectivity information provided the assembly graph until after an initial clus-
tering is obtained. By integrating the assembly graph only as a post-processing
step, more errors can be introduced if this information is not properly used,
i.e. contigs may be incorrectly assigned to bins due to misleading links in the
assembly graph. This is more likely to occur in complex samples where multiple
strains occur and contigs will be connected in the assembly graph even if they
belong to different but similar genomes.

With the recent successes of deep neural networks in various problems, there
has also been an increasing focus on adapting those approaches for graph data
structures. Graph Neural Networks (GNNs) take advantage of the connectivity
information in a graph and can be used to perform node, edge and graph-
level tasks. The GraphSAGE [22] algorithm samples neighbors from each node
and updates the node’s embeddings taking into account the embeddings of its
neighbors. The embeddings of the neighbors are aggregated and concatenated
with the node embeddings. The resulting vector is the input for the next layer,
and the sampling process is repeated. To train GraphSAGE on unlabeled nodes,
the similarity between neighboring nodes is calculated and the model weights
are updated in order to maximize this similarity, while minimizing the similarity
between random pairs of nodes. The loss function used is a binary cross-entropy
function, that takes as input the dot product between the embeddings of the
two nodes of an edge. However, the random negative sampling strategy is not
optimal for assembly graphs, since two disconnected contigs may also belong
to the same genome. Furthermore, the original GraphSAGE implementation
also considers all neighbors to be of the same importance, while on an assembly
graph some edges may be stronger than others.

Finally, most binning methods are developed only on short-read assem-
blies [5], and only very few binners have been developed with a focus on long-read
assemblies [18, 23]. While long-read sequencing technologies have gained trac-
tion, there is still a lack of benchmarks and studies on long-read sequencing for
metagenomics [24, 25, 26, 27]. The longer read length results in much improved
assemblies that generates more sparse assembly graphs and enables more robust
estimations of composition and coverage.

Here we present GraphMB, a binner developed using long-read metagenomic
data and incorporates the assembly graph into the contig features learning pro-
cess, taking full advantage of its potential by training a neural network to give
more importance to higher coverage edges. The graph-aware features of each
contig are based on its own features, as well as on the contig-specific features of
its neighboring contigs. We accomplish this using state-of-the-art deep learning
techniques, in particular Graph Neural Networks (GNN), a type of deep learn-
ing model that can learn representations of graph nodes based on node features

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2022. ; https://doi.org/10.1101/2022.02.25.481923doi: bioRxiv preprint

https://doi.org/10.1101/2022.02.25.481923
http://creativecommons.org/licenses/by/4.0/

Figure 1: GraphMB’s workflow. (a) The metagenome of an environmental sam-
ple is sequenced and assembled into contigs; (b) Initial embeddings are computed
with a variational auto-encoder based on k-mer composition and abundance
features; (c) The input of the GNN are the initial contig embeddings and the
graph structure provided by the assembly graph. The thickness of the edge cor-
responds to the number of reads that cover it. (d) The GNN model learns new
embeddings by aggregating neighboring contigs (nodes in the assembly graph).
(e) The final embeddings are clustered and bins are obtained.

and the graph structure.

2 Materials and Methods

The main idea behind GraphMB is to generate embeddings based on contig-
specific features and the assembly graph, which are then clustered into bins and
evaluated according to completeness and contamination. The advantage of clus-
tering embeddings instead of the original features is that these embeddings are
of a smaller dimension and can encode relationships that are latent in the orig-
inal features. We improve upon existing binners by incorporating the assembly
graph into the training process. The assembly graph describes which contigs
are connected, and how many reads support that connection (read coverage).
We use this information to train a GNN, and generate embeddings that take
into account the neighborhood of a contig. Figure 1 provides an overview of
GraphMB, and the following sections explain each step of the process.

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2022. ; https://doi.org/10.1101/2022.02.25.481923doi: bioRxiv preprint

https://doi.org/10.1101/2022.02.25.481923
http://creativecommons.org/licenses/by/4.0/

2.1 Input data

GraphMB requires an assembly consisting of a set of contig sequences in FASTA
format and an assembly graph in GFA format. We tested exclusively with
assemblies generated with Flye [24] (v2.9), which has the advantage of including
the read coverage of each edge into the assembly graph file. Additionally, a
Comma-separated Values (CSV) file with the essential single copy marker genes
found on each contig may be provided to select the best training epoch. To take
advantage of the same abundance features as other binners, another CSV file
with the abundance of each contig on different samples may be provided. The
format of this file is one row per contig and the mean base coverage and variance
on each sample as columns, which is compatible with other binners (MetaBAT2
and VAMB).

2.2 Contig-specific embeddings

We first generate contig embeddings using a Variational Auto-Encoder (VAE)
model that takes as input composition and abundance features. This model
defines a multivariate distribution over a latent representation of the features
(Figure 1b). The composition features are calculated on the provided FASTA
file, while the abundance features should be pre-calculated and provided as a
CSV file previously described. The VAE model has an encoder and a decoder
component. The latent representation is learned by training the encoder with a
reconstruction loss, comparing the original inputs to the output of the decoder,
and with a Kullback–Leibler (KL) divergence loss, which penalizes distributions
that diverge from a standard normal distribution. We used the VAMB imple-
mentation of VAEs, that separates the reconstruction loss into two components
(composition and abundance), which have different weights (10% to composition
and 90% to the abundance) [17].

2.3 Neighborhood sampling

We have adapted the GraphSAGE sampling algorithm to make better use of the
assembly graph information. An assembly graph G is constituted by contigs C
and adjacency matrix A. Each contig c ∈ C has contig-specific feature vector
xc ∈ X, obtained in the previous step, and Ai,j = rc(ci, cj), where rc is the read
coverage, if ci and cj are connected in the assembly graph, or 0 otherwise. We use
the read coverage of each edge as a way to distinguish between pairs of contigs
that are more likely to belong to the same genome. If a contig is disconnected
from the graph, we pick a random contig as a negative edge. However, if a
contig is connected to multiple other contigs, we use the read coverage as a
probability of picking an neighbouring edge as a positive edge, and its inverse
as the probability of picking it as a negative. For example, in Figure 1c, C4-C3
is more likely to be sampled as a positive edge than C4-C6, since the former has
a higher read coverage. This way, the model minimizes the distance between
embeddings of pairs of contigs that are connected by high coverage edges.

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2022. ; https://doi.org/10.1101/2022.02.25.481923doi: bioRxiv preprint

https://doi.org/10.1101/2022.02.25.481923
http://creativecommons.org/licenses/by/4.0/

2.4 Graph embeddings

The hidden state of each contig (represented in Figure 1d by the empty squares)
is concatenated with the aggregation of the hidden states of the sampled neigh-
bors. Then a feed-forward neural network is trained to generate graph em-
beddings using the previous concatenation as input. The initial hidden states
correspond to the contig-specific features, while for each layer of the network,
the hidden states correspond to the output of the previous layer for each contig.
The output of the final layer corresponds to the graph embeddings.

We used a loss function that takes advantage of the read coverage information
provided by the assembly graph. For the positive edges, we multiply the dot
product between the two node embeddings by the normalized read coverage.
This way, low coverage edges, which are more likely to introduce noise into the
model, will have less impact on the loss function, and we give more importance
to the edges with high coverage while training. Therefore, the loss we used is
given by:

J(zu) = −rc(u, v) log(σ(z⊤u zv)−Q · Evn∼Pn(v) log(σ(−z⊤u zvn
), (1)

where zu and zv are the embeddings of two contigs with rc read coverage, and
vn is a randomly sampled negative edge for contig u, Pn is the negative sampling
distribution previously explained and Q the number of negative samples, since
multiple negatives can be sampled for each positive edge.

2.5 Clustering

We cluster the concatenation of the contig-specific embeddings and graph em-
beddings with the iterative medoid clustering algorithm used by VAMB, also
similar to the one used by MetaBAT2. We cluster the concatenation of both
embeddings since we observed that this strategy worked better than clustering
only one type of embeddings. This algorithm takes a random seed contig and
calculates its embedding distance to all other contigs. Then it uses an iterative
process to determine the best medoid contigs and generates clusters with the
other contigs that are closest to the medoid. This method has the advantage of
not requiring the number of clusters as input, and being easily parallelizable.

2.6 Experimental setup

We run experiments on one simulated dataset, six Wastewater Treatment Plant
(WWTP) datasets, and one soil sample. As long-read datasets are not part
of the benchmarks used by other binners, we simulated our own data. The
simulated dataset was generated using badread [28] (v0.2.0), by generating reads
according to the methodology proposed by Quince et al. [29]. We simulate
reads from 100 strains, corresponding to 50 species, with randomly generated
abundances. We then assembled the reads with metaflye v2.9 [24] and ran other
binners for comparison. The details of the assembly of each dataset are given
on Table 1. The WWTP datasets come from a previous study [26] (Accession

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2022. ; https://doi.org/10.1101/2022.02.25.481923doi: bioRxiv preprint

https://doi.org/10.1101/2022.02.25.481923
http://creativecommons.org/licenses/by/4.0/

Table 1: Summary of the datasets used to compare binners. Total size refers
to the total number of base pairs in the dataset; Reads N50 is the N50 length
of reads; Assembly length refers to the sum of the length of all contigs; Contig
N50 is the N50 value for contigs; Mean cov. refers to the mean base coverage of
all contigs; Contigs and edges refers to the number of contigs of each assembly
and edges in the assembly graph; Samples is the number of samples available to
calculate abundance.
Datasets Total

size
(Gbp)

Reads
N50
(kbp)

Assembly
length
(Gbp)

Contigs
N50
(kbp)

Mean
cov.

Contigs Edges Samples

Strong100 7.5 13.3 0.17 175.0 42 852 670 1
Hjor 16.0 8.7 0.86 80.4 13 19496 5937 4
Viby 17.2 14.0 1.32 101.0 7 23389 7800 4
Damh 26.7 14.3 1.93 119.0 8 32771 14066 4
Mari 23.3 10.1 1.69 83.1 8 36611 12651 4
AalE 27.7 10.2 1.92 83.4 8 40827 12425 4
Hade 45.2 9.8 3.01 73.9 9 70402 27952 4
Soil 115.0 7.7 1.98 93.3 19 51135 69522 1

number PRJNA629478), from which we used a subset of 6 plants. For each one
of the WWTP datasets, we calculated contig coverage on the long-reads used to
generated those contigs, as well as three additional short-reads datasets from the
same plant but different time points. We assembled with metaflye, and ran three
Racon (v1.3.3) polishing rounds with the long-reads and one round with short-
reads. Finally, we also tested on a soil sample that originated from a previous
study [30] (Accession number PRJEB50688). We developed and optimized the
hyperparameters of the network on all datasets, except Damh and Hade which
we used to confirm if the model was over-optimized for the other datasets. We
have made all datasets available at https://doi.org/10.5281/zenodo.6122610.

2.7 Evaluation

We compared the results of our binner with five other binners on the same
datasets, using their default values. All binners we used take as input the
contig sequences and their abundances. We used MetaBAT2 [10], since it had
obtained good results on the WWTP datasets, and is generally considered the
state-of-the-art on recent papers [31, 32]. We also used MaxBin2 [11], another
established metagenomic binner. VAMB [17] is a deep learning-based binner,
which we compare with our approach. GraphBin [20] is a binner that also
takes advantage of the assembly graph but has only been tested on short-read
assemblies. We run Graphbin with the output of MetaBAT as initial bins, which
are required by this tool. Finally, we ran SemiBin [19], a recently proposed deep
learning binner, using one of the pretrain models provided by the authors (ocean
model) as well as training on our own data with the default parameters.

Each bin generated by GraphMB and other binners was evaluated for com-
pleteness and contamination with CheckM [33] (–reduced-tree, version 1.1.2)

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2022. ; https://doi.org/10.1101/2022.02.25.481923doi: bioRxiv preprint

https://doi.org/10.5281/zenodo.6122610
https://doi.org/10.1101/2022.02.25.481923
http://creativecommons.org/licenses/by/4.0/

and dereplicated using dRep [34] (version 2.3.2). We considered High Qual-
ity (HQ) bins as those with >90 completeness and <5 contamination. dRep
generates bin clusters based on multiple sets of bins obtained with different
approaches. The bin clusters contain bins from different approaches that are
similar enough to be clustered together. We consider unique bins as those that
are HQ and were not clustered together with any other HQ bin from a different
approach. Finally, we used DASTool to combine the bins produced by all tools,
generating a set of bins that is a combination of all approaches.

3 Results

We implemented the proposed method in Python and compared its performance
to state-of-the-art binners on simulated and real-world datasets.

3.1 Implementation

We implemented GraphMB in Python 3.7, Pytorch 1.10 and DGL 0.6.1. It
can run both on CPU (single and multithread) and GPU. The package can
be installed from GitHub, using pip, or with anaconda. We provide simple
instructions on the GitHub page1, including example commands, as well as
a link to more detailed documentation. The GitHub page also includes the
simulated dataset for testing.

Many parameters can be configured, however, we defined default values for
what we used in our experiments. Some parameters, such as the size of the
embedding dimension and batch size, can be set automatically according to the
size of the input datasets. GraphMB has three graph convolution layers, with
hidden dimension of 512 and output dimension of 64, learning rate of 0.00005
and ReLU activation function. We trained each model for 100 epochs.

The output of GraphMB is a TSV file mapping each contig to a bin. The
model and embeddings of the last epoch are saved to disk. If a contig marker file
is provided, GraphMB also saves the model that obtained the best performance
on those markers, which differs from the final CheckM evaluation, but is still
a good indication of the best epoch to stop model training, and we used this
criterion for the results shown. The training process can also be stopped if the
previous two epochs did not reduce the loss by more than a certain threshold.
We do not filter by bin size or write the contigs to file by default, since this can
be accomplished with a post-processing script, and may not be required for all
applications.

3.2 Comparison to other binners

Table 2 shows the results obtained for all datasets by all tested binners. Graph-
Bin, MaxBin2, SemiBin-ocean, Semibin-train, VAMB, MetaBAT2, and GraphMB
refers to the number of HQ bins obtained with each approach for each dataset.

1https://github.com/MicrobialDarkMatter/GraphMB

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2022. ; https://doi.org/10.1101/2022.02.25.481923doi: bioRxiv preprint

https://doi.org/10.1101/2022.02.25.481923
http://creativecommons.org/licenses/by/4.0/

Table 2: Results obtained with GraphMB and state-of-the-art binning tools..
The WWTP datasets are sorted by ascending size of assembly in terms of num-
ber of contigs. The Soil dataset is separate because it has a much higher com-
plexity than the WWTP datasets
HQ bins Strong100 Hjor Viby Damh Mari AalE Hade Soil
GraphBin 30 11 15 14 16 12 6 0
Maxbin2 27 12 19 16 14 12 19 0
SemiBin-ocean 30 11 1 22 18 21 7 0
SemiBin-train 27 7 4 23 22 32 25 0
VAMB 28 22 12 22 30 37 28 0
MetaBAT2 32 23 29 41 39 43 44 2
GraphMB 33 25 23 43 48 46 52 3
∆ VAMB 5 3 11 21 18 9 24 3
∆ MetaBAT 1 2 -6 2 9 3 8 1
∆ % VAMB 15.2% 12.0% 47.8% 48.8% 37.5% 19.6% 46.2% 100.0%
∆ % MetaBAT 3.0% 8.0% -26.1% 4.7% 18.8% 6.5% 15.4% 33.3%
GraphMB dRep
unique

0 1 2 4 6 8 12 2

DASTool w/o
GraphMB

37 32 32 41 43 43 51 15

DASTool w/
GraphMB

37 33 32 46 47 48 58 16

Table 2 also shows the difference in terms of number of HQ bins between
GraphMB and both VAMB and MetaBAT2, in absolute value and in percentage.
We focus our comparison between GraphMB and those two since MetaBAT2
obtained the best results on most datasets, and VAMB is the closest to our ap-
proach. ”GraphMB dRep unique” refers to how many of the HQ bins generated
by GraphMB were not matched with HQ bins from the other binners according
to the dRep analysis. dRep finds bins from different binning approaches that
correspond to essentially identical genomes. The number on the table corre-
sponds to groups of bins that have only one HQ bin, and that bin was obtained
with GraphMB, i.e. HQ bins that only GraphMB could identify.

We obtained more bins using our graph embedding method when compared
to VAMB. For the other WWTP datasets, we obtained between 3 and 21 more
HQ bins (12%-49%) on the WWTP datasets, in comparison to VAMB. Com-
pared with MetaBAT2, we obtained between 1 and 9 more HQ bins (3%-22%),
and our approach obtained more bins on all but one of the real datasets. It
did not outperform MetaBAT2 on one of the WWTP datasets, where VAMB
also obtained lower results. The GraphBin approach obtained worse results
than the other binners, indicating that this particular graph-based approach
is not optimized for the long-read assemblies of these datasets. We observed
that GraphBin incorrectly merged many bins, obtaining highly contaminated
bins. The SemiBin-ocean approach, also obtained a low number of HQ bins
on most datasets, possibly since the pretrained model used was also trained on
short-read assemblies. However, while training SemiBin on our own data (one
model for each dataset), we found that it only improved the results in some

9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2022. ; https://doi.org/10.1101/2022.02.25.481923doi: bioRxiv preprint

https://doi.org/10.1101/2022.02.25.481923
http://creativecommons.org/licenses/by/4.0/

cases, indicating that additional hyperparameter tuning may be necessary.

3.3 Ensemble results

After combining multiple binning results with dRep, we observed that our ap-
proach was able to recover HQ bins that were not recovered by other approaches.
This corresponded to a total of 35 bins across all datasets. Our approach ob-
tained distinct bins from other others on all the real-world datasets.

We used DASTool [35] to observe if our approach could improve the aggre-
gation of bins obtained from multiple approaches. We first combined the output
bins of MetaBAT2, MaxBin2, GraphBin and VAMB, in order to include a vari-
ety of approaches, and then the same bins but also the output bins of GraphMB.
This resulted in more HQ bins than any of the individual binners in most cases.
Since we obtained unique bins on all datasets, we expected that combining our
method to others would also results in more bins, which was the case for 6 out of
7 real datasets we tested on (6 WWTP datasets plus soil dataset). Using DAS-
Tool to aggregate the bins of GraphMB with the others resulted in 23 more HQ
bins to be recovered. Furthermore, in four datasets, the aggregation of the other
bin sets still obtained fewer HQ bins than GraphMB. Note that the difference
between the number of bins obtained with DASTool including GraphMB and
excluding it is not the same as the dRep unique GraphMB bins. While DAS-
Tool aggregates bins from different approaches, improving their scores, dRep
only matches the outputs of different approaches, without attempting generate
a new bin.

3.4 Computational performance

We tested GraphMB both on CPU and GPU environments. We did not account
for the assembly and abundance calculation times, since these are preprocessing
steps common to all approaches. For small datasets such as the simulated
dataset we used, GraphMB can run on CPU, single or multi-threaded. On a
single thread, the simulated dataset took about 4 minutes to process. For bigger
datasets, we recommend using a GPU. We observed that the processing time
scales linearly with the number of contigs, as the Hjor dataset, which is the
smallest of the real datasets, took 52 seconds per epoch, and the Hade dataset,
the biggest one, took 160 seconds per epoch (see Table 1 to compare graph
sizes). We run our experiments on a single Tesla V100 GPU with 32GB RAM.
The batch size parameter can be adjusted if less memory is available.

4 Discussion

This paper presented GraphMB, a metagenomic binner developed for long-read
assemblies, that takes advantage of the assembly graph generated during the
assembly process to obtain neighborhood-aware embeddings. These embeddings
are used to bin contigs and obtain HQ MAGs. We demonstrated our approach

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2022. ; https://doi.org/10.1101/2022.02.25.481923doi: bioRxiv preprint

https://doi.org/10.1101/2022.02.25.481923
http://creativecommons.org/licenses/by/4.0/

on both simulated and real datasets of diverse complexities. While on the
simulated dataset GraphMB worked on par with the other binners, it was able
to obtain more HQ bins on the real datasets. Furthermore, it also obtained
unique bins that other binners could not recover.

The performance of GraphMB depends on the assembly graph, which we
can observe when comparing the different datasets we used. We can see that
on the soil dataset, which has an assembly graph with more edges, GraphMB
obtained lower results, even if higher than the other binners. We intend to
adapt Graph Attention Networks [36] to deal with more complex graphs. This
type of algorithm learns an attention mechanism to decide which neighbors of a
node should have more weight when computing its embedding. This attention
mechanism could also be combined with the edge coverage information that we
make use of on GraphMB.

GraphMB is also dependent on the quality of the contig-specific embed-
dings, since these are used as input features to the Graph Neural Network.
For example, GraphMB performed worse in comparison to MetaBAT2 in the
Viby dataset, where VAMB, which uses only contig-specific embeddings, also
had relatively bad performance. To overcome this issue, we plan to implement
an end-to-end architecture where the variational auto-encoder could be trained
at the same time as the GNN This would mean that instead of having static
contig-specific embeddings, these could be fine-tuned while training the GNN.

Acknowledgements

We would like to acknowledge Caitlin M Singleton for helping with the WWTP
raw datasets.

Funding

The study was funded by research grants from VILLUM FONDEN (34299,
15510) and the Poul Due Jensen Foundation (Microflora Danica)

References

[1] Kenneth Timmis, Willem M de Vos, Juan Luis Ramos, Siegfried E Vlaeminck, Auxiliadora

Prieto, Antoine Danchin, Willy Verstraete, Victor de Lorenzo, Sang Yup Lee, Harald Brüssow,

et al. The contribution of microbial biotechnology to sustainable development goals. Microbial

biotechnology, 10(5):984–987, 2017.

[2] Jack A Gilbert, Martin J Blaser, J Gregory Caporaso, Janet K Jansson, Susan V Lynch,

and Rob Knight. Current understanding of the human microbiome. Nature medicine, 24(4):

392–400, 2018.

[3] Losee L Ling, Tanja Schneider, Aaron J Peoples, Amy L Spoering, Ina Engels, Brian P Conlon,

Anna Mueller, Till F Schäberle, Dallas E Hughes, Slava Epstein, et al. A new antibiotic kills

pathogens without detectable resistance. Nature, 517(7535):455–459, 2015.

[4] Per Halkjær Nielsen. Microbial biotechnology and circular economy in wastewater treatment.

Microbial Biotechnology, 10(5):1102–1105, 2017.

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2022. ; https://doi.org/10.1101/2022.02.25.481923doi: bioRxiv preprint

https://doi.org/10.1101/2022.02.25.481923
http://creativecommons.org/licenses/by/4.0/

[5] Chao Yang, Debajyoti Chowdhury, Zhenmiao Zhang, William K Cheung, Aiping Lu, Zhaox-

iang Bian, and Lu Zhang. A review of computational tools for generating metagenome-

assembled genomes from metagenomic sequencing data. Computational and Structural

Biotechnology Journal, 2021.

[6] Chris Burge, Allan M Campbell, and Samuel Karlin. Over-and under-representation of short

oligonucleotides in dna sequences. Proceedings of the National Academy of Sciences, 89(4):

1358–1362, 1992.

[7] Gene W Tyson, Jarrod Chapman, Philip Hugenholtz, Eric E Allen, Rachna J Ram, Paul M

Richardson, Victor V Solovyev, Edward M Rubin, Daniel S Rokhsar, and Jillian F Banfield.

Community structure and metabolism through reconstruction of microbial genomes from the

environment. Nature, 428(6978):37–43, 2004.

[8] Itai Sharon, Michael J Morowitz, Brian C Thomas, Elizabeth K Costello, David A Relman,

and Jillian F Banfield. Time series community genomics analysis reveals rapid shifts in bac-

terial species, strains, and phage during infant gut colonization. Genome research, 23(1):

111–120, 2013.

[9] Mads Albertsen, Philip Hugenholtz, Adam Skarshewski, K̊are L Nielsen, Gene W Tyson,

and Per H Nielsen. Genome sequences of rare, uncultured bacteria obtained by differential

coverage binning of multiple metagenomes. Nature biotechnology, 31(6):533–538, 2013.

[10] Dongwan D Kang, Feng Li, Edward Kirton, Ashleigh Thomas, Rob Egan, Hong An, and

Zhong Wang. Metabat 2: an adaptive binning algorithm for robust and efficient genome

reconstruction from metagenome assemblies. PeerJ, 7:e7359, 2019.

[11] Yu-Wei Wu, Blake A Simmons, and Steven W Singer. Maxbin 2.0: an automated binning

algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics, 32(4):

605–607, 2016.

[12] Yang Young Lu, Ting Chen, Jed A Fuhrman, and Fengzhu Sun. Cocacola: binning metage-

nomic contigs using sequence composition, read coverage, co-alignment and paired-end read

linkage. Bioinformatics, 33(6):791–798, 2017.

[13] Guoxian Yu, Yuan Jiang, Jun Wang, Hao Zhang, and Haiwei Luo. Bmc3c: binning metage-

nomic contigs using codon usage, sequence composition and read coverage. Bioinformatics,

34(24):4172–4179, 2018.

[14] Johannes Alneberg, Brynjar Smári Bjarnason, Ino De Bruijn, Melanie Schirmer, Joshua Quick,

Umer Z Ijaz, Leo Lahti, Nicholas J Loman, Anders F Andersson, and Christopher Quince.

Binning metagenomic contigs by coverage and composition. Nature methods, 11(11):1144–

1146, 2014.

[15] Hsin Hung Lin and Yu Chieh Liao. Accurate binning of metagenomic contigs via automated

clustering sequences using information of genomic signatures and marker genes. Scientific

Reports 2016 6:1, 6:1–8, 4 2016. ISSN 2045-2322. doi: 10.1038/srep24175. URL https:

//www.nature.com/articles/srep24175.

[16] Michael Imelfort, Donovan Parks, Ben J. Woodcroft, Paul Dennis, Philip Hugenholtz, and

Gene W. Tyson. Groopm: An automated tool for the recovery of population genomes from

related metagenomes. PeerJ, 2014:e603, 9 2014. ISSN 21678359. doi: 10.7717/PEERJ.603/

SUPP-2. URL https://peerj.com/articles/603.

[17] Jakob Nybo Nissen, Joachim Johansen, Rosa Lundbye Allesøe, Casper Kaae Sønderby, Jose

Juan Almagro Armenteros, Christopher Heje Grønbech, Lars Juhl Jensen, Henrik Bjørn

Nielsen, Thomas Nordahl Petersen, Ole Winther, et al. Improved metagenome binning and

assembly using deep variational autoencoders. Nature biotechnology, pages 1–6, 2021.

[18] Anuradha Wickramarachchi and Yu Lin. Lrbinner: Binning long reads in metagenomics

datasets. In 21st International Workshop on Algorithms in Bioinformatics (WABI 2021).

Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2022. ; https://doi.org/10.1101/2022.02.25.481923doi: bioRxiv preprint

https://www.nature.com/articles/srep24175
https://www.nature.com/articles/srep24175
https://peerj.com/articles/603
https://doi.org/10.1101/2022.02.25.481923
http://creativecommons.org/licenses/by/4.0/

[19] Shaojun Pan, Chengkai Zhu, Xing-Ming Zhao, and Luis Pedro Coelho. Semibin: incorporat-

ing information from reference genomes with semi-supervised deep learning leads to better

metagenomic assembled genomes (mags). BioRxiv, 2021.

[20] Vijini Mallawaarachchi, Anuradha Wickramarachchi, and Yu Lin. Graphbin: refined binning

of metagenomic contigs using assembly graphs. Bioinformatics, 36(11):3307–3313, 2020.

[21] Vijini Mallawaarachchi and Yu Lin. Metacoag: Binning metagenomic contigs via composition,

coverage and assembly graphs. bioRxiv, 2021.

[22] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on

large graphs. In Proceedings of the 31st International Conference on Neural Information

Processing Systems, pages 1025–1035, 2017.

[23] Anuradha Wickramarachchi, Vijini Mallawaarachchi, Vaibhav Rajan, and Yu Lin. Metabcc-lr:

meta genomics b inning by c overage and c omposition for l ong r eads. Bioinformatics, 36

(Supplement 1):i3–i11, 2020.

[24] Mikhail Kolmogorov, Derek M Bickhart, Bahar Behsaz, Alexey Gurevich, Mikhail Rayko,

Sung Bong Shin, Kristen Kuhn, Jeffrey Yuan, Evgeny Polevikov, Timothy PL Smith, et al.

metaflye: scalable long-read metagenome assembly using repeat graphs. Nature Methods, 17

(11):1103–1110, 2020.

[25] Mantas Sereika, Rasmus Hansen Kirkegaard, Søren Michael Karst, Thomas Yssing Michaelsen,

Emil Aarre Sørensen, Rasmus Dam Wollenberg, and Mads Albertsen. Oxford nanopore r10.

4 long-read sequencing enables near-perfect bacterial genomes from pure cultures and meta-

genomes without short-read or reference polishing. bioRxiv, 2021.

[26] Caitlin M Singleton, Francesca Petriglieri, Jannie M Kristensen, Rasmus H Kirkegaard,

Thomas Y Michaelsen, Martin H Andersen, Zivile Kondrotaite, Søren M Karst, Morten S

Dueholm, Per H Nielsen, et al. Connecting structure to function with the recovery of over

1000 high-quality metagenome-assembled genomes from activated sludge using long-read se-

quencing. Nature communications, 12(1):1–13, 2021.

[27] Xiaowen Feng, Haoyu Cheng, Daniel Portik, and Heng Li. Metagenome assembly of high-

fidelity long reads with hifiasm-meta. arXiv preprint arXiv:2110.08457, 2021.

[28] Ryan R Wick. Badread: simulation of error-prone long reads. Journal of Open Source

Software, 4(36):1316, 2019.

[29] Christopher Quince, Sergey Nurk, Sebastien Raguideau, Robert S James, Orkun S Soyer,

J Kimberley Summers, Antoine Limasset, A Murat Eren, Rayan Chikhi, and Aaron E Darling.

Metagenomics strain resolution on assembly graphs. BioRxiv, 2020.

[30] Ane Kirstine Brunbjerg, Hans Henrik Bruun, Lars Brøndum, Aimée T Classen, Lars Dalby,

K̊are Fog, Tobias G Frøslev, Irina Goldberg, Anders Johannes Hansen, Morten DD Hansen,

et al. A systematic survey of regional multi-taxon biodiversity: evaluating strategies and

coverage. BMC ecology, 19(1):1–15, 2019.

[31] Yi Yue, Hao Huang, Zhao Qi, Hui-Min Dou, Xin-Yi Liu, Tian-Fei Han, Yue Chen, Xiang-Jun

Song, You-Hua Zhang, and Jian Tu. Evaluating metagenomics tools for genome binning with

real metagenomic datasets and cami datasets. BMC bioinformatics, 21(1):1–15, 2020.

[32] Solize Vosloo, Linxuan Huo, Christopher L Anderson, Zihan Dai, Maria Sevillano, and Ameet

Pinto. Evaluating de novo assembly and binning strategies for time series drinking water

metagenomes. Microbiology spectrum, 9(3):e01434–21, 2021.

[33] Donovan H Parks, Michael Imelfort, Connor T Skennerton, Philip Hugenholtz, and Gene W

Tyson. Checkm: assessing the quality of microbial genomes recovered from isolates, single

cells, and metagenomes. Genome research, 25(7):1043–1055, 2015.

[34] Matthew R Olm, Christopher T Brown, Brandon Brooks, and Jillian F Banfield. drep: a

tool for fast and accurate genomic comparisons that enables improved genome recovery from

metagenomes through de-replication. The ISME journal, 11(12):2864–2868, 2017.

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2022. ; https://doi.org/10.1101/2022.02.25.481923doi: bioRxiv preprint

https://doi.org/10.1101/2022.02.25.481923
http://creativecommons.org/licenses/by/4.0/

[35] Christian MK Sieber, Alexander J Probst, Allison Sharrar, Brian C Thomas, Matthias Hess,

Susannah G Tringe, and Jillian F Banfield. Recovery of genomes from metagenomes via a

dereplication, aggregation and scoring strategy. Nature microbiology, 3(7):836–843, 2018.

[36] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and

Yoshua Bengio. Graph Attention Networks. International Conference on Learning Repre-

sentations, 2018. URL https://openreview.net/forum?id=rJXMpikCZ.

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 27, 2022. ; https://doi.org/10.1101/2022.02.25.481923doi: bioRxiv preprint

https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1101/2022.02.25.481923
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Materials and Methods
	Input data
	Contig-specific embeddings
	Neighborhood sampling
	Graph embeddings
	Clustering
	Experimental setup
	Evaluation

	Results
	Implementation
	Comparison to other binners
	Ensemble results
	Computational performance

	Discussion

