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Abstract: Brain-computer interface performance may be reduced over time, but adapting the classifier
could reduce this problem. Error-related potentials (ErrPs) could label data for continuous adaptation.
However, this has scarcely been investigated in populations with severe motor impairments. The aim
of this study was to detect ErrPs from single-trial EEG in offline analysis in participants with cerebral
palsy, an amputation, or stroke, and determine how much discriminative information different brain
regions hold. Ten participants with cerebral palsy, eight with an amputation, and 25 with a stroke
attempted to perform 300–400 wrist and ankle movements while a sham BCI provided feedback
on their performance for eliciting ErrPs. Pre-processed EEG epochs were inputted in a multi-layer
perceptron artificial neural network. Each brain region was used as input individually (Frontal,
Central, Temporal Right, Temporal Left, Parietal, and Occipital), the combination of the Central
region with each of the adjacent regions, and all regions combined. The Frontal and Central regions
were most important, and adding additional regions only improved performance slightly. The
average classification accuracies were 84 ± 4%, 87± 4%, and 85 ± 3% for cerebral palsy, amputation,
and stroke participants. In conclusion, ErrPs can be detected in participants with motor impairments;
this may have implications for developing adaptive BCIs or automatic error correction.

Keywords: error-related potentials; brain-computer interface; cerebral palsy; amputation; stroke;
neurorehabilitation; artificial neural network

1. Introduction

Brain-computer interfaces (BCIs) provide individuals with severe motor impairments
the possibility to control external devices using only brain activity [1–3]. Examples of such
devices could be wheelchairs and robotic manipulators for mobility restoration, speller
devices for communication, and electrical stimulators or rehabilitation robots for motor
rehabilitation after e.g., stroke [1,4,5]. Various control signals can be used to control BCIs,
such as steady-state visually evoked potentials [2,6], P300, movement-related cortical
potentials, and sensorimotor rhythms. These control signals are recorded from the electrical
activity of the brain and processed to enhance the signal-to-noise ratio, after which they are
detected/classified and translated into device commands. To ensure good performance
of the BCI, several factors need to be attended to such as proper electrode montage and
impedances for recording the brain activity and good calibration data for the classifier [7,8].
The calibration data that often are recorded prior to the actual use of the BCI may not
represent the actual brain activity well after the BCI has been used for some time, e.g., due
to changes in electrode impedance or if the user starts to fatigue. This problem could be
accounted for if the classifier in the BCI is continuously updated. Error-related potentials
(ErrPs) have been proposed as a means for this [9]. An ErrP is elicited when a person
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realizes an error e.g., the output of the BCI is different than expected. With proper ErrP
detection, erroneously classified data can be correctly labelled and the classifier in the BCI
can be correctly updated based on the most recent data. Another application of ErrPs
within BCI is error correction, where an erroneous action of the BCI, e.g., in a P300 speller
or movement of a robotic arm, can be detected and the incorrect action can be reverted
automatically [9,10]. If the ErrPs are properly detected, the performance of the BCI can be
improved, since the potential errors do not need to be corrected manually (see e.g., [11–13]).
It has been shown in several studies that ErrPs can be detected from single-trial EEG [9,10],
primarily from able-bodied individuals, but only a few studies have investigated the
detection of ErrPs in individuals with movement disabilities. It has previously been shown
how various factors modulate the ErrP in stroke patients [14,15], and that ErrPs in stroke
patients can be detected from single-trial EEG [16]. In addition, it has been reported
that ErrPs can be elicited and detected in individuals with spinal cord injury [13,17,18],
amyotrophic lateral sclerosis [19], and epilepsy [20,21]. Lastly, error processing has been
investigated in individuals with Parkinson’s disease [22] and cerebral palsy [23], but
detection of ErrPs in these conditions has not been performed. ErrPs have generally been
detected using temporal waveform features of a bandpass filtered epoch (~0–1 s after the
feedback of the outcome) from electrodes on the scalp in the proximity of the anterior
cingulate cortex amongst other neural generators (roughly around FCz according to the
10–20 EEG system) [9,10]. ErrPs can be detected from a single or few electrodes around
FCz [24,25], but studies have reported that additional discriminative information can be
obtained from using more electrodes covering other parts of the brain [24,26–35]. The aim
of this study was twofold; first it was investigated whether ErrPs could be detected in
individuals with motor disabilities after cerebral palsy, an amputation, or stroke in offline
analysis, and secondly, how much discriminative information different brain regions bring
to the detection of ErrPs.

2. Materials and Methods
2.1. Participants

In this study, ten participants with cerebral palsy (for clinical characteristics see Table 1),
eight amputees (see Table 2), and 25 participants with a stroke (see Table 3) were recruited.
The experiments were conducted at Allied Hospital, Faisalabad, Pakistan. All participants
or their parents provided written informed consent before the experiment. The procedures
were approved by the local ethical committee at Allied Hospital and were conducted
according to the Helsinki Declaration. The cerebral palsy participants were recruited
through the Department of Pediatrics, amputees were enlisted through the Department
of Orthopedics, and stroke participants were recruited at the Department of Neurology at
Allied Hospital Faisalabad. All the cerebral palsy participants were diagnosed between ages
of 1–3 years. The cerebral palsy participants’ motor abilities were assessed by a pediatrician
at Allied Hospital in terms of the gross motor function classification system (GMFCS),
(I = ambulatory, II = some limitations in motor functions, III = dependent on others or
some assistive devices). The motor abilities of the stroke participants were assessed by
a Neurologist in terms of the Bruunstrom Stage classification. The data from the stroke
patients have been presented in a recent study, but the experimental details are described
in detail in the following sections [16].

2.2. Data Recording

EEG was recorded from 64 channels with active electrodes with a sampling rate of
1200 Hz (g.HIamp and g.GAMMASYS, G.Tec, Graz, Austria). The electrodes were placed
according to the 10-10 system and were grounded to AFz and referenced to a linked
ear reference. During the experiment the electrode impedances were below 10 kΩ. The
EEG was synchronized to visual cues through an Arduino controller from a custom-made
MATLAB script (MathWorks®, Natick, MA, USA) which sent a trigger to the EEG amplifier.
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The external triggers were used to divide the continuous EEG into epochs containing error
and correct responses.

2.3. Experimental Details

The participants were seated in a comfortable chair in front of a computer screen
which displayed the visual cues throughout the experiment. The experiment consisted of
15 runs for the participants with cerebral palsy and 20 runs for the amputees and stroke
participants, where each run consisted of 20 trials. Each trial started with an idle phase
lasting five seconds where the participant could relax, this was followed by a preparation
phase lasting three seconds where the participant was cued to bring the attention back to
the screen and prepare to attempt to perform a movement. In the movement phase a picture
of the hand or foot was shown pointing to the left or right indicating that a wrist extension
of the right or left hand should be performed or a dorsiflexion of the right or left foot. The
movement phase lasted three seconds for the amputees and stroke participants and five
seconds for the participants with cerebral palsy to allow them more time to process what
intended movement that should be attempted. The amputees were instructed to imagine
the movement of their amputated limb. A single movement attempt was performed in each
movement phase. After the movement phase, visual feedback with a ratio of 70/30 (for
correct/ incorrect) was presented as a green coloured tick mark or a red coloured cross sign
indicating whether the movement was correctly or incorrectly detected based on the brain
activity. No actual detection of movements was performed, but it was conveyed to the
participant that a BCI classified the movements [16,36]. During the feedback monitoring
the participant was instructed to avoid unnecessary movements and eye blinks. An equal
number of 75, 100, and 100 movements were performed for the left/right hand and foot
for the cerebral palsy, amputees, and stroke participants respectively, i.e., 300, 400, and
400 movements in total. At the end of each run a break was given until the participant
was comfortable with resuming the experiment. The experiments were completed in
approximately 100–180 min.

Table 1. Characteristics of the participants with cerebral palsy. Gender, age, and diagnosis (diplegia
or hemiplegia) as well as the affected side, and gross motor function classification system (GMFCS)
score are presented.

Participant Gender Age (Years) Diagnose GMFCS

01 F 12 Diplegia II
02 F 10 Diplegia II
03 F 10 Hemiplegia-right II
04 M 16 Hemiplegia-left II
05 M 11 Hemiplegia-left I
06 M 9 Hemiplegia-right II
07 F 14 Hemiplegia-right II
08 M 12 Hemiplegia-right III
09 M 13 Diplegia III
10 M 15 Diplegia III

2.4. Signal Processing
2.4.1. Pre-Processing

The continuous EEG data were bandpass filtered between 1–10 Hz with an 8th order
zero phase-shift Butterworth filter. After the filtering, bad channels and epochs were
rejected from the analysis. Channels having a mean amplitude more than three standard
deviations above the overall mean amplitude across all channels were defined as bad
channels and removed. Next, the filtered data were divided into 0.7 s epochs (starting from
0.1 s after the presentation of the visual feedback, i.e., green tick mark or red plus sign, until
0.8 s after) to capture the negative and positive peaks of the error and correct responses. Bad
epochs were defined as an epoch with peak-peak amplitude exceeding ±150 µV. To have
an equal number of error and correct responses, random correct responses were selected
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for the further data analysis to match the number of error responses. The data analysis was
performed in MATLAB (MathWorks®).

Table 2. Characteristics of the participants with an amputation. Gender, age, time since amputation,
the level of amputation, and affected side are presented.

Participant Gender Age (Years) Time Since
Amputation (Years) Amputation Level Amputation Side

01 M 13 3 Hip disarticulation Left
02 F 45 2 Transfemoral Left
03 M 32 5 Wrist disarticulation Right
04 M 27 1 Transfemoral Right
05 M 30 2 Shoulder disarticulation Left
06 M 32 5 Transcredial Right
07 M 53 7 Knee disarticulation Right
08 M 12 5 Hip disarticluation Left

Table 3. Characteristics of the participants with an amputation. Gender, age, time since amputation,
the level of amputation and affected side are presented.

Participant Gender Age (Years) Affected
Side Type of Stroke Time Since Injury (Days) Bruunstrom Stage

01 M 48 Right Haemorrhage 91 II
02 M 55 Right Ischemic 172 V
03 M 41 Left Ischemic 70 III
04 M 50 Left Haemorrhage 90 III
05 M 57 Right Haemorrhage 52 V
06 M 52 Right Ischemic 188 V
07 M 24 Left Haemorrhage 180 IV
08 F 32 Left Ischemic 25 II
09 F 26 Left Haemorrhage 20 I
10 M 60 Right Ischemic 87 IV
11 M 54 Left Ischemic 220 VII
12 M 46 Left Ischemic 42 III
13 M 58 Right Ischemic 84 III
14 M 37 Right Haemorrhage 36 II
15 M 42 Left Haemorrhage 118 V
16 M 24 Left Haemorrhage 45 IV
17 F 26 Right Ischemic 12 I
18 M 62 Right Haemorrhage 118 III
19 M 30 Right Ischemic 60 III
20 F 53 Left Ischemic 93 IV
21 F 38 Right Haemorrhage 45 VI
22 F 28 Left Ischemic 27 V
23 M 45 Left Ischemic 90 IV
24 M 35 Left Haemorrhage 17 II
25 M 45 Right Haemorrhage 280 VI

2.4.2. Classification

For the classification of error and correct responses a multi-layer perceptron artificial
neural network (MLP ANN) was used. In a recent study [16], we found that MLP ANN
performed better than a linear discriminant analysis classifier, which is often used for
classifying ErrPs. Therefore, we chose to perform the classification with MLP ANN.

The input for the MLP ANN was the entire pre-processed epoch. The MLP ANN had
5 layers where the input, layer 1, was the data points in the epoch for the channels of interest
(dimension: number of channels x number of samples in epoch). Three hidden layers were
used, they had a size of 100-50-25, whereas the output layer was of size 1 with a sigmoid
activation function. The MLP ANN was trained using the scaled conjugate gradient descent
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method, and the performance of the MLP ANN was validation checked with cross-entropy.
The classification was performed with different electrode configurations to investigate how
well error responses can be discriminated from correct responses. The electrodes were
divided into six specific brain regions: Frontal, Central, Parietal, Occipital, Temporal Left,
and Temporal Right (see Figure 1). Initially, each region was used as input for the MLP
ANN individually. We had a hypothesis about ErrP classification being highest at the
Central brain region based on existing ErrP literature and the proximity of the anterior
cingulate cortex. Thus, the classification was performed again with the Central region as
input combined with each of the adjacent brain areas (i.e., Frontal, Parietal, Temporal Left,
and Temporal Right). Next, the classification was performed with all brain regions except
the Occipital region, and lastly, the classification was performed with all brain regions
combined. In all the classification scenarios, 10-fold cross-validation was used, the same
folds were used across the different classification scenarios. The analyses were performed
using MATLAB (MathWorks®).
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Figure 1. The electrodes were divided into Frontal, Central, Parietal, Occipital, Temporal Left, and
Temporal Right brain regions. Note that there is a different number of electrodes in the different
brain regions.

3. Results

On average, 0.6 ± 0.7 channels (range: 0–2) and 65 ± 56 epochs (range: 9–141)
were excluded for the cerebral palsy participants, 0.5 ± 1.4 channels (range: 0–4) and
59 ± 71 epochs (range: 0–191) were excluded for the amputees, and 0.3 ± 0.5 channels
(range: 0–1) and 72 ± 64 epochs (range: 2–228) were excluded for the stroke participants.

The average error and correct responses are presented in Figure 2 for participants with
cerebral palsy, participants with an amputation, and participants with a stroke. From the
averages it can be seen that there was a consistent negative peak between 0.3 and 0.4 s after
the presentation of the feedback and a positive peak 0.1 s after the negative peak. Based on
the grand averages, there was a slightly higher peak-peak amplitude between the negative
and positive peaks for the error responses compared to the correct responses. In Figure 3,
topographical plots are shown from representative participants. It can be seen that the
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Central and Frontal channels show the most negative and positive peaks, although most
other channels also show a similar negative or positive peak, but with smaller amplitudes.
In the following sections, the classification accuracies are presented as mean ± standard
error across participants.
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Figure 3. Topographical plot of the negative (top) and positive (bottom) peaks of the error responses
for a representative participant with cerebral palsy (left column), a participant with an amputation
(middle column), and a participant with a stroke (right column). The unit of the color bar is in µV.

The classification results for participants with cerebral palsy are presented in Figure 4.
With a single brain region as input, the highest classification accuracies between error
and correct responses were obtained with the electrodes from the Frontal region (87 ± 3%)
followed by the Central region (84 ± 3%). The lowest classification accuracies were obtained
from the Occipital region (78 ± 5%). The classification accuracies did not increase when
combining different regions.

The classification results for participants with a stroke are presented in Figure 6. Like
the cerebral palsy and amputation participants, the highest classification accuracies with a
single brain region as input were obtained with the electrodes from the Frontal (84 ± 2%)
and Central region (84 ± 3%). The lowest classification accuracies were obtained from the
Parietal region (79 ± 3%). The classification accuracies increased slightly when combining
the Frontal and Central region (85 ± 3%).

The classification results for participants with an amputation are presented in Figure 5.
As with the cerebral palsy patients, the highest classification accuracies with a single
brain region as input were obtained with the electrodes from the Frontal region (84 ± 5%)
followed by the Central region (83 ± 5%). The lowest classification accuracies were obtained
from the Parietal region (78 ± 7%). The classification accuracies increased when adding the
Frontal region to the Central region (87 ± 4%); however, when adding more regions, the
classification accuracies decreased (85 ± 4%).
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participants with a stroke, and the standard error is shown as well. The top of the figure shows the
classification accuracies obtained using each brain region individually, and the bottom of the figure
shows the classification accuracies when combining different brain regions. F: Frontal, TR: Temporal
Right, TL: Temporal Left, C: Central, P: Parietal, and O: Occipital.

4. Discussion

In this study it was shown that error responses can be discriminated from correct
responses from single-trial EEG recordings in participants with cerebral palsy, an ampu-
tation, and a stroke. The highest classification accuracies were obtained from the Frontal
and Central brain regions from all participant groups with average classification accuracies
of 84 ± 4%, 87 ± 4%, and 85 ± 3% for cerebral palsy, amputees, and stroke participants,
respectively. This was also expected, since the Frontal and Central electrodes from the
scalp are closest to the main neural generators associated with error processing such as the
anterior cingulate cortex [37]. The classification accuracies only increased slightly when
information from other brain areas were added to the Frontal and Central region. However,
the classification accuracies from the different regions individually were all significantly
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higher than chance level, calculated with a significance level of 5% (between 62 and 66% for
amputees/stroke and cerebral palsy, respectively) [38]. This could indicate that there is a
high correlation between electrodes, which could be due to the fact that the EEG correlates
of the error/correct responses are widely distributed over the scalp, potentially due to
volume conduction.

The findings agree with several other studies that have reported the midline electrodes
(especially FCz and Cz) to contain the highest error-related activity [24,28–31,34,35,39,40],
but also Parietal areas [24,26–28,31–33,35] and the Occipital cortex have been associated
with error-related activity [27,28,33,35]. It has been reported that the ErrP has the highest
amplitudes around the midline channels but is still visible in the channels in the periphery
furthest away from the midline, with a smaller amplitude though [27,33–35]. This may
explain why all brain regions individually provide enough discriminative information to
provide classification accuracies that are significantly higher than chance level; however, it
has also been reported that the channels in the periphery lead to classification accuracies
around chance level [29]. The fact that the ErrP can be observed in all channels, but with
smaller amplitudes in the periphery, may also explain why adding additional regions to the
Frontal and Central regions does not provide much additional discriminative information
to the classification. This finding is also supported by previous studies that have found
similar marginal increments/decrements in classification accuracies when multiple brain
regions are used as input for classification [28,30]. It should also be noted that there is a
different number of electrodes in the different brain regions in this study, which in itself
could affect the classification accuracies although their spatial distribution probably matters
most. It has been reported that the classification accuracies increase with a higher number
of electrodes used for classification of ErrPs and motor imagery [29,33,41].

Despite this focus on populations with motor impairments, cerebral palsy, amputation,
and stroke, it was still possible to decode ErrPs with accuracies similar to what has been
reported previously in studies with able-bodied participants and participants with other
types of motor impairments. This could be expected since the ErrP is elicited by the
perception of an error, although the motor impairment could potentially cause lower
expectations of one’s own performance and hence affect the elicitation of the ErrP if the
participant does not expect to be able to succeed in the task. However, this was not
probed in the current study. The classification accuracies in similar studies have been
reported to be in the range of 70–90% see e.g., [16,24,30,36,39,42–48]. However, it should
be noted that bad epochs were rejected as part of the pre-processing in the current study,
which is likely to have improved the decoding. These results may be optimistic as to
what can be obtained in online decoding of errors. The approach of using MLP ANN has
previously been shown to be useful for decoding ErrPs in stroke patients [16], and with
this approach it is not necessary to extract features, since the entire epoch is used as input
for the classifier. However, this classifier showed poor between-day and across-participant
transfer [16], which suggests that calibration data for the classifier need to be collected
every time it is going to be used. This can be a time-consuming process and it should be
considered whether other, more generic approaches should be used [43,49–51], that can be
individualized/adapted [17,52] to the user while an error monitoring/correction system
is in use. Alternatively, it should be considered or whether a type of ErrP should be used
in which multiple trials can be obtained more rapidly, such as observational ErrPs [53], or
with higher error/correct ratios [25,54]. These considerations should be tested in future
studies where online control of a BCI with error correction should be evaluated e.g., for
error correction in myoelectric prosthetic control for people with an amputation, control of
assistive devices such as wheelchairs, speller devices, or games for people with cerebral
palsy or for adaptation of BCIs for stroke rehabilitation to account for fatigue or shifts
in attention.

In future studies it could be relevant to perform source localization to better un-
derstand the origin of the error-related activity and investigate how it differs from the
processing of feedback in general: i.e., the correct responses. It would also be relevant to
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perform channel selection to identify the optimal channels for identifying error-related
activity and to investigate how much the relevant channels differ between users and across
conditions. Another aspect that could be investigated is how to further optimize the decod-
ing of ErrPs, which could be done using various techniques such as signal decomposition
techniques and blind source separation for pre-processing the signals [55,56]. In this study,
we only employed one specific type of neural network, but it is likely that other neural
networks or tuning of them could yield better performance [57,58]. This could be tested
systematically with different neural networks with inherent feature extraction, so no fea-
ture extraction with a priori knowledge is needed. Ideally, the classifier should have good
generalization properties across days and users to avoid extensive calibration of it with
user-specific data.

The results in this study also indicated that ErrPs could be decoded from the periphery,
e.g., from non-hairy electrode locations around the ear. It could potentially allow the use
of a more aesthetically appealing headset/electrode setup that also would not require
hair wash after each use, which would be an important consideration for permanent BCI
users [59,60]. This could be investigated in future studies.

5. Conclusions

In this study it was shown that ErrPs can be detected from single-trial EEG in partici-
pants with cerebral palsy, participants with an amputation, and participants with a stroke.
The Frontal and Central brain regions were the most important ones, but it was also shown
that other brain regions contributed with some discriminative information that increased
the classification accuracy slightly. It was also shown that other brain regions beside the
Frontal and Central regions could be used to classify ErrPs, this could be important in BCI
applications where headsets are used that do not cover the Frontal or Central brain areas
e.g., for more aesthetically pleasing headsets. Offline analyses were performed, but the
findings should be validated with online error detection in future studies.
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