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 

Abstract—Traditional Artificial Intelligence (AI) based fault 

detection approaches need a large amount of data for the model 

learning. However, in a real-world system, it is very difficult and 

expensive to obtain massive labeled fault data. In addition, the 

working conditions of a motor are usually variable, conventional 

fault diagnosis models with weak generalization ability can only 

be used for fault detection under constant working condition. The 

performance of traditional AI based approaches decreases when 

the working condition changes. To this end, a novel deep Gaussian 

process (GP) kernel transfer based few-shot learning method 

(RNGPT) is proposed in this paper for the fault detection of 

electric machines. First, a deep residual network (ResNet) is used 

to extract the features of the raw data. Then, the encoded latent 

feature vector is fed into the GP with kernel transfer ability to 

make the motor fault detection and classification. The proposed 

method uses much less data than the traditional AI based method 

to achieve fault diagnosis under variable working condition, and 

does not cause an overfitting problem. Experimental results of 

two case studies demonstrate that the proposed RNGPT model 

can accurately and effectively detect motor faults with limited 

labeled data under different working conditions. Experimental 

results of RNGPT with radial basis function (RBF) kernel model 

on simulation data present that the fault detection accuracy of the 

proposed method is about 16% higher than the conventional deep 

learning methods, 6% higher than other few-shot learning based 

methods in 5-shot and 4% higher in 1-shot. Finally, experimental 

on a real-world dataset, the RNGPT-RBF model still has the 

highest fault diagnosis accuracy in 5-shot (99.39 ± 0.09%) and 

1-shot (98.55 ± 0.16%). 

 
Index Terms—Kernel transfer, Gaussian process, deep residual 

network, limited samples, electric machines, fault diagnosis. 

 

I. INTRODUCTION 

LECTRIC machines play an important role in industrial 

production, and their reliability is directly related to 

enterprise safety production and economic benefits [1], [2]. 

With the continuous development of science and technology, 

the application fields of electric machines have been widely 
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used, such as electric vehicles, wind power generation, rail 

transit, etc. [3]. State monitoring and fault diagnosis of them 

can provide a reliable guarantee for the normal operation of 

industrial systems. 

There are three main methods applied for electric machine 

faults diagnosis: The first method is based on the analytical 

model, which mainly uses the classical state estimation method 

to identify the fault, for instance, M. A. Mazzoletti et al. [4] 

proposed a model-based strategy for PMSM inter-turn 

short-circuit fault diagnosis. B. Aubert et al. [5] used an 

extended Kalman filter to estimate the number of faulty turns of 

a PMSM turn-to-turn short circuit, which is used to diagnose 

the turn-to-turn short circuit fault. In addition, torque modeling 

can also be used to analyze the electric machine state [6]. The 

second method is based on signal processing, which uses signal 

processing methods to analyze the selected signals to find out 

the characteristic quantities reflecting the motor faults. 

Common signal processing methods mainly focus on Fast 

Fourier Transform (FFT) [7], wavelet transform, Hilbert 

Transform (HT) [8], Empirical Mode Decomposition (EMD) 

[9], etc. Moreover, B. Wang et al. [10] and A. Sapena-Baño et 

al. [11] offered two harmonic order tracking analysis based  

methods that can also be used for electric machines fault 

diagnosis. Despite the previous two methods can be used for 

electric machine fault detection, the performance of these 

methods largely depends on the personal knowledge of signal 

processing and the ability of designers. The third method is 

based on artificial intelligence (AI) [12]-[14], which uses deep 

learning (DL) technology for feature extraction and 

classification of fault diagnosis [15], [16]. DL based faults 

diagnosis methods are a hot topic at present. The advantage of 

this method over the previous two methods is that there is no 

human intervention, which makes fault detection more 

efficient. 

In recent years, numerous DL based methods have been 

proposed for electric machine faults detection due to its 

powerful ability of feature extraction and representation 

learning. The common DL based fault diagnosis methods 

include convolutional neural network (CNN), recurrent neural 

network (RNN) and deep Autoencoder etc. For instance, F. 

Wang et al. [17] recently proposed am improved cascade CNN 

method with progressive optimization for motor fault detection, 

which obtained a reasonable performance under non-stationary 

conditions. In addition, R. Liu et al. [18] proposed a multi-scale 

kernel based residual CNN model for electric machine fault 

detection, which avoid performance degradation when building 
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a deeper network. Moreover, S. Shao et al. [19] proposed a deep 

CNN based approach for induction motor fault detection 

having multi-signals. Their model has a robust performance 

and accurate motor fault detection. For RNN based methods, J. 

Lei et al. [20] presented a wind turbine fault diagnosis model 

based on Long Short-term Memory (LSTM). Moreover, Z. An 

et al. [21] applied a RNN based model for motor bearing fault 

detection under time-varying working conditions and proposed 

a combination loss function, which can increase the training 

efficiency. For deep Autoencoder, it is also used in the field of 

fault diagnosis. For example, L. Wang et al. [22] applied deep 

Autoencoder for wind turbine state monitoring and achieved 

ideal results. In addition, F. Cheng et al. [23] proposed a model 

composed of a deep stacked Autoencoder and a support vector 

machine, which is used for DFIG wind turbine gearboxes fault 

diagnosis based on rotor current. In addition to the fault 

diagnosis methods described above, deep belief networks 

(DBNs) were also applied to electric machine fault detection 

[24]. 

Although the methods presented above have promising fault 

diagnosis performance, the conventional DL based electric 

machine fault diagnosis methods need a large amount of data 

for model training, therefore, these methods will be with less 

competitive performance in the case of limited samples. In the 

real world, it is hard and costly to obtain a large amount of 

labeled electric machines samples for model training. With 

limited training data, conventional deep architectures have the 

possibility to overfit the training data. Moreover, when the 

working conditions change, the performance of the model will 

also be affected. In order to address the described problems 

above, one of the solutions is to expand the original dataset. For 

instance, P. Liang et al. [25] applied Generative Adversarial 

Network (GAN) based method for fault diagnosis, GAN can 

generate fake samples with similar characteristics to real data. 

In addition, the original dataset can also be expanded by 

artificially adding noise, etc. Other solutions are using the 

transfer learning, for instance, S. Shao et al. [26] applied a 

transfer learning based approach for machine fault detection. 

However, this method needs a large amount of data for model 

pre-training. 

Recently, few-shot learning approaches has gradually 

become a hot topic, which offers a promising approach to 

overcome the shortcomings of the fault diagnosis mentioned 

above. In general, few-shot learning aims to train a model under 

the condition of a limited labeled data. Face, speech and 

fingerprint recognition technologies, etc. can all be 

implemented by using few-shot learning methods. Moreover, 

few-shot learning uses different tasks similar to the target task 

to learn a learner [27]. A. Zhang et al. [28] proposed a siamese 

neural network based few-shot learning method for rolling 

bearing fault diagnosis and achieved promising results. In 

addition, S. Zhang et al. [29] and J. Wu et al. [30] also proposed 

two few-shot learning based methods for machine fault 

diagnosis. Inspired by these methods, in this paper, the 

“different tasks” can be regarded as the fault diagnosis tasks 

under different working conditions, and the “target task” can be 

regarded as a fault diagnosis task under an unseen working 

condition. As mentioned above, few-shot learning can not only 

address the problem of large amounts of data that are difficult to 

collect, but also solve the problem of applying the same model 

for fault diagnosis under different working conditions. 

Therefore, applying few-shot learning based method for 

electric machine faults detection seems to be an interesting 

approach.  

In this paper, a novel deep GP kernel transfer based few-shot 

learning method (RNGPT) for electric machine fault detection 

is proposed. First, a deep Residual Network (ResNet) [31] is 

applied to feature extraction, which improves the training 

efficiency and increases the fault detection accuracy. Then a 

Gaussian process (GP) [32] with kernel transfer capability is 

applied to process the features extracted by ResNet and classify 

the health state of electric machine. In this paper, it is different 

from the conventional transfer learning that GP kernel transfer 

uses the identical kernel for all fault diagnosis tasks even 

though under different working conditions. Therefore, when 

the fault diagnosis task is carried out under an unseen working 

condition, only the posterior distribution needs to be 

recalculated and there is no need to update the model 

parameters or make fine-tuning. Finally, the proposed model 

will be tested on the dataset of an unseen working condition. 

The contributions of this paper can be summarized as follows:  

1) The proposed method can achieve high classification 

accuracy utilizing only few-shot training samples. It 

distinguishes from traditional DL methods that require a 

large amount of labeled data, which are difficult and 

costly to obtain in practice.  

2) More comprehensive electric machine working 

conditions are considered in this paper. In addition, the 

training, validation and test of the model are carried out 

under different working conditions. Experimental results 

demonstrate that the proposed RNGPT model has a 

stronger generalization ability. 

3) In most cases, the proposed model has the best 

performance compared with other state-of-the-art 

methods. The RNGPT can address the problems where 

the traditional DL based methods need large amounts of 

data for training. Compared with conventional intelligent 

fault detection models, the proposed model does not need 

to be retrained or fine-tuned when the working 

conditions of the electric machine are changed. 

The remainder of this paper is organized as follows. Section 

II includes the fundamental methodology of the RNGPT model. 

The framework of the proposed electric machine fault detection 

model is introduced in Section III. The case study and results 

analysis are presented in Section IV. Finally, the conclusions 

are given in Section V. 

II. METHODOLOGY AND PROPOSED FRAMEWORK 

This section mainly introduces the basic methodology and 

the framework of the proposed method. The methodology of a 

few-shot learning is presented in Section II-A. The descriptions 

of the proposed framework are represented in Section II-B. 
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A. Few-shot Learning 

Traditional machine learning technology needs a large-scale 

data to train a model. For example, a study on the classification 

of MNIST, there are 10 classes and 6000 samples in the training 

set. On average, there are about 600 samples per class. In some 

practical tasks, machine learning methods face the case of 

“small data” set. For example, image data for some rare species 

are difficult to be collected with very few labeled images. In 

this case, the neural network model needs to be trained based on 

a small number of sampling data. Therefore, it is important to 

develop a reliable model for a task with only a few labeled 

training samples. Few-shot learning aims to train a model to 

identify unseen targets during training with limited labeled 

examples [33], which could address the previous problem. 

Few-shot learning is the application of meta learning in 

supervised learning, in the case of small sample classification, 

which is defined as a task with N-class and K-sample (N-way 

K-shot). In the training phase of few-shot learning, it has many 

different classification tasks where the purpose is to train a 

model that can be transferred to a new class with only a few 

labeled samples.  

 
(a) Traditional machine learning classification 

 
(b) Few-shot learning classification 

Fig. 1. The difference between traditional machine learning method and 

few-shot learning method. (a) Traditional machine learning method has only 

one task for model training, (b) Few-shot learning has multiple classification 
tasks for model training. 

Let 𝐷𝑠 = {(𝑥𝑘 , 𝑦𝑘)}𝑘=1
𝐾  (seen class) be a support set (referred 

to in conventional deep learning as a training set), which 

contains input-output pairs. When k is equal to one, this method 

is called one-shot learning. Let 𝐷𝑞 = {(𝑥𝑡 , 𝑦𝑡)}𝑡=1
𝑇  (unseen 

class) be a query set (referred to in conventional deep learning 

as a test set), typically T is one order of magnitude greater than 

K. Let 𝑇 = {𝐷𝑠 , 𝐷𝑞} denote the group of the support and query 

sets in a training task, 𝐶 = {𝑇𝑚}𝑚=1
𝑀  denote a collection of all 

these tasks. Few-shot learning models are trained on a series of 

random tasks which are sampled from collection 𝐶. In the test 

task, a new task 𝑇∗ = {𝐷𝑠
∗, 𝐷𝑞

∗} is sampled from a test set (which 

differs from conventional deep learning test set) for model 

performance validation. The purpose of the test task is to 

fine-tune the model based on the support set 𝐷𝑠
∗, and then make 

category predictions on the samples of the query set 𝐷𝑞
∗. For a 

more intuitive comprehension of the difference between 

few-shot learning and traditional machine learning, a visualized 

example is presented in Fig. 1. 

B. Architecture of the Proposed Network 

The framework of the proposed method is introduced in this 

section. To establish a strong generalization model for electric 

machine intelligent faults detection with few signal samples, 

inspired by the few-shot learning, a GP based kernel transfer 

method is applied in this paper. The overall framework of the 

proposed method is illustrated in Fig. 2. Each task can be 

regarded as a fault diagnosis task under a specific working 

condition. It can be observed in Fig. 2 that a sub-sampling 

window containing a series of raw data points is collected to be 

one sample, and there is a sampling interval between each 

sub-sampling window. A dataset for model training, validation 

and testing is a combination of all these samples with different 

EM health states. The representation layer extracts the 

discriminative features of the input data (three-phase current 

and vibration signal). Then the encoded feature maps are fed 

into a decision making layer to perform the electric machine 

health state classification. Finally, the trained base model, 

which is called feature fusion model will be transferred to 

different electric machine working conditions data for faults 

diagnosis. The difference between conventional transfer 

learning methods is that the proposed method in this paper uses 

the identical kernel for all faults diagnosis tasks which means 

that the fault diagnosis tasks under different working conditions 

can share a set of “multi-function” hyper parameters. Therefore, 

there is no additional encoding module required. 

1) Representation Layer: Since the characteristics of electric 

machine signals are different under different fault types, it is 

reasonable to detect the faults by analyzing the input inner 

features. And the discriminative features extracting from raw 

signal is playing a crucial role to improve the GP joint 

distribution approximation, which has a great influence on the 

faults detection ability of the model. Deep neural network is 

known for its powerful feature extraction ability [34], which is 

a machine learning model composed of several stacked 

nonlinear processing layers and has made bright achievements 

in the field of smart grid applications. However, as the depth of 

neural network increases, the problem of gradient explosion or 

gradient vanishing will be caused, which makes the solver 

difficult to obtain the optimal solution and makes the neural 

network model to have a higher training error. The advantages 

of deep ResNet is that it could not only increase the learning 

efficiency of deeper network, but also increase the accuracy of 

the model. Moreover, the residual network can avoid the 

gradient vanishing or gradient explosion problem described 

previously with the increase of network layers, which makes it 

possible to develop a very deep neural network. In this paper, a 

deep ResNet is applied to extract the raw data features. These 

encoded features will boost the faults diagnosis performance of 

decision making layer. 
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In the representation layer of Fig. 2, a conventional neural 

network based ResNet with 10 stacked residual units 

(ResNet-10) is applied to process the electric machine signals. 

The difference between a common network and a residual unit 

is shown in Fig. 3. 

It shows in Fig. 3 that the output 𝑀(𝑥) of a common neural 

network is a desired mapping of input 𝑥 , which can be 

described as follows: 

𝑀(𝑥) = 𝑓(𝐺(𝑥,𝑊)), (1) 

where 𝐺(𝑥,𝑊) is a mapping function about input x and weight 

matrix 𝑊, 𝑓(∙) is the activation function 𝑅𝑒𝐿𝑈. Assuming that 

𝑥𝑖  is the input of the i-th residual unit, the output can be 

described as follows: 

𝑥𝑖+1 = 𝑓(𝐹(𝑥𝑖 ,  𝑊𝑖) + 𝑥𝑖), (2) 

where the 𝐹(𝑥𝑖 ,  𝑊𝑖) is the residual function mapping,  𝑊𝑖  is 

the corresponding weight matrix. It should be noted that the 

dimensions of 𝑥𝑖 and 𝐹(𝑥𝑖 ,  𝑊𝑖) should be equal, otherwise, it 

could then perform a linear mapping  𝑊𝑠  to match the two 

dimensions 

𝑥𝑖+1 = 𝑓(𝐹(𝑥𝑖 ,  𝑊𝑖) +  𝑊𝑠𝑥𝑖), (3) 

The form of residual function 𝐹(∙) is flexible and changeable. 

In addition to stack two convolution layers, it can also stack 

three convolution layers. 

Compared with conventional CNN fitting the underlying 

mapping directly, the ResNet fits a residual between two 

adjacent signals, which simplifies the training process of the 

model. Assuming the underlying feature non-linear mapping is 

𝐻(𝑥) = 𝐹(𝑥𝑖 ,  𝑊𝑖) + 𝑥𝑖 , (4) 

the ResNet needs to fit a function mapping of 

𝐹(𝑥𝑖 ,  𝑊𝑖) = 𝐻(𝑥) − 𝑥𝑖 , (5) 

The results show that the model applying ResNet is easier to 

train and has better performance. The experimental results will 

be presented in Section III. After processed by the 

 
Fig. 2. The overall framework of the proposed method for electric machine intelligent faults detection. The few-shot learning based model uses the current and 

vibration signal as inputs, extracts the discriminative features, and calculates the GP joint distribution to recognizing the electric machine state. 
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Fig. 3. The difference between a common neural network and a residual unit. 
(a) A common neural network, (b) A residual unit of ResNet. 
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representation layer, the raw data features will be passed to the 

decision making layer for further processing. 

2) Decision Making Layer: The decision making layer is a 

GP based electric machine health state classifier. It shows in 

Fig. 2 that the input of this layer is the non-linear mapping 

based on Eq. (4): 𝐻(𝑥) → 𝒉, where 𝒉 is a desired feature map. 

A GP can be determined by a mean function 𝜇(𝑥) and a 

covariance function (kernel function)  (𝑥,  𝑥′)  uniquely. 

According to the definition of GP, the distribution functions 𝑓 

can be denoted by 

𝑓(𝑥) 𝐺 (𝜇(𝑥),  (𝑥,  𝑥′)), (6) 

where the 𝜇(𝑥) and  (𝑥,  𝑥′) can be calculated by 

𝜇(𝑥) =  (𝑓(𝑥)), (7) 

 (𝑥,  𝑥′) =   {𝑓(𝑥) − 𝑚(𝑥)}{𝑓(𝑥′) − 𝑚(𝑥′)} , (8) 

In general, the value of the mean function 𝜇(𝑥) is assumed to 

0. This is because in the application of GP in machine learning, 

the data preprocessing method, zero-mean normalization is 

often necessary if we do not have any prior knowledge. The 

covariance function  (𝑥,  𝑥′)  can capture the relationship 

between different input points in the input space. 

In practical application, the Gaussian noise should also be 

considered: 

𝜀  ( ,   
 ), (9) 

where 𝜀  is the Gaussian noise with variance   
 , and it is 

completely independent for the 𝑓(𝑥) . Based on Bayesian 

probability theory, by establishing a priori distribution function 

on a given training dataset 𝐷 = {(𝑥 , 𝑦 )} =1
𝑁 , the output 

distribution 𝑦  with Gaussian noise can be obtained as follows: 

𝑦 = 𝑓(𝑥 ) + 𝜀  ( ,  ( ,  ) +   
   ), (10) 

where    is an  ×   identity matrix;  ( ,  )  is a Gram 

matrix: 

 ( ,  ) = ( 𝑖𝑗) × =  (𝑥𝑖 , 𝑥𝑗), 𝑖, 𝑗 = 1, 2,⋯𝑛, (11) 

The joint prior distribution of observations and predictions 

can be obtained as follows: 

[
𝑦
𝑓∗

]   ( , [
 (𝑥, 𝑥) +   

   

 (𝑥∗, 𝑥)
    

 (𝑥, 𝑥∗)
 (𝑥∗, 𝑥∗)

]), (12) 

where 𝑦∗ is the predicted value; 𝑥∗ is a testing point, which has 

the same Gaussian distribution with the input points 𝑥  in 

training set 𝐷 .  (𝑥, 𝑥∗) =  (𝑥∗, 𝑥)𝑇  is the 𝑛 × 1  covariance 

matrix between test point 𝑥∗ and input points 𝑥.  (𝑥∗, 𝑥∗) is the 

covariance of point 𝑥∗. According to the previous joint prior 

distribution, the posteriori distribution probability of 𝑓∗ can be 

obtained by Bayes’ rule as follows: 

 (𝑓∗ 𝑥∗, 𝑥, 𝑦) 𝐺 ( (𝑓∗),    (𝑓∗)), (13) 

where the mean  (𝑓∗) and covariance    (𝑓∗) of the prediction 

point 𝑓∗ can be obtained as follows: 

 (𝑓∗) =  (𝑥∗, 𝑥)  ( ,  ) +   
     1𝑦, (14) 

   (𝑓∗) =  (𝑥∗, 𝑥∗) −  (𝑥∗, 𝑥)  ( ,  ) +
  

     (𝑥, 𝑥∗), 
(15) 

The mean  (𝑓∗) can be seen as the estimation value of the 

prediction point 𝑓∗ and the    (𝑓∗) can reflect the reliability of 

this value. 

Decision making layer calculates first the joint prior 

distribution of the underlying features of training and test set, 

the specific calculation process is based on Eq. (12). After 

obtaining the prior distribution, the proposed model calculates 

the probability corresponding to each electric machine health 

state according to Eq. (13). The specific parameters in Eq. (13) 

can be calculated by combining Eqs. (14) and (15). The state 

which corresponds to the highest probability is the motor state 

predicted by the model. 

C. Training of The Proposed Model 

In this paper, the GP hyper-parameters of the proposed 

model are determined by the maximum likelihood estimation 

method. In addition, the GP sample function of the model in 

this paper is disconnected from the hyper-parameters, which 

need to be determined. So that, the proposed model simply 

focuses on exploring the hyper-parameters of a GP kernel that 

has the maximum marginal likelihood (marginalizing out the 

GP sample function). With this approach, it means that it is 

reasonable to calculate the posterior distribution probability  

 (𝑦𝑡
∗ 𝑥, 𝜃, ∅)  directly and skip a complicated intermediate 

reasoning step. Let 𝑦𝑡
∗ denotes the target data, 𝐷𝑥 denotes the 

input data (a collection of support set and query set). The 

marginal likelihood function 𝐿(𝜃, ∅) can be described as 

𝐿(𝜃, ∅) = log  (𝑦𝑡
∗ 𝐷𝑥 , 𝜃, ∅) =

1

 
(𝑦𝑡

∗)𝑇𝐶 1𝑦𝑡
∗ +

1

 
log  𝐶 + 𝛼, 

(16) 

where 𝛼 is a constant. 𝐶 is the kernel between all task inputs 

and this is related to the estimation of hyper-parameter θ and 

neural network weight ∅. The proposed model is optimized by 

maximizing the marginal likelihood function. 

Algorithm 1 shows the training and test process of the 

proposed faults detection model.  

Algorithm 1 Training and test procedures of the proposed model 

Training tasks 

Input: Current signal and vibration signal 

Output: The health state of electric machine 

Setting: Parameters of few-shot learning: n and m (n-way, m-shot) 

Initialize: Randomly initialize the ResNet-10’s parameters ∅ 
1: for epoch=1:stop_epoch do 

2: Randomly sample training task 𝑇 = {𝐷𝑠, 𝐷𝑞} 𝐶 

3: 
Get 𝑥 and 𝑦 from 𝐷𝑠, get 𝑥∗ from 𝐷𝑞, then predict signal 

     𝑓∗ in 𝐷𝑞 

4: Feature extracting: 𝐻(𝑥) → 𝒉 (Eq. (4)) 

5 

Estimate the posteriori distribution probability: 

      (𝑓∗ 𝑇, 𝜃, ∅) (Eq. (13) ←  (𝑓∗) and    (𝑓∗) (Eq.(14)          

and Eq.(15)) 

6: Calculate the loss function: 𝑓𝑙𝑜𝑠𝑠 = −𝐿(𝜃, ∅) (Eq. (16)) 

7:     Update parameters of GP: 𝜃𝑡+1 = 𝜃𝑡 − 𝛽∇𝜃𝑡
𝑓𝑙𝑜𝑠𝑠 

8: 
Update parameters of ResNet-10: ∅𝑡+1 = ∅𝑡 −

     𝛾∇∅𝑡
𝑓𝑙𝑜𝑠𝑠 

9 end for 

Test tasks 

10 Randomly sample test task 𝑇∗ = {𝐷𝑠
∗, 𝐷𝑞

∗} 

11 
Get 𝑥 and 𝑦 from 𝐷𝑠

∗, get 𝑥∗  from 𝐷𝑞
∗ , then predict clean 

signal 𝑓∗ in 𝐷𝑞
∗ 

12 
Estimate posteriori distribution probability of 𝑓∗ : 

 (𝑓∗ 𝑥∗, 𝑥, 𝑦) (Eq. (13)) ←  (𝑓∗) and    (𝑓∗) (Eq.(14) and 

Eq.(15)) 
13 end 

The parameters of the ResNet-10 are denoted as ∅ = {𝑊, 𝑏}, 
where 𝑊 = {𝑊𝑖 ,𝑊1,𝑊 , ⋯ ,𝑊10}  represent the weight 

parameters of the ResNet-10, and 𝑏 = {𝑏𝑖 , 𝑏1, 𝑏 , ⋯ , 𝑏10} 
represent the bias parameters of the ResNet-10. The parameters 

of the GP are denoted as 𝜃 = {𝑲,   
   }, where 𝑲 represents 
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the covariance matrix and   
    represents the noise. 

Two stages are included in Algorithm 1: In the training phase, 

the input of the model is motor current or vibration signal. The 

data are processed by a neural network and then sent to GP to 

perform motor states recognition. The loss function of the 

proposed model can be derived based on Eq. (16) as  

𝑓𝑙𝑜𝑠𝑠 = −𝐿(𝜃, ∅) = − log  (𝑦𝑡
∗ 𝐷𝑥 , 𝜃, ∅), (17) 

In this paper, the gradient descent method is applied to update 

the parameters to minimize the loss function: 

𝜃𝑡+1 = 𝜃𝑡 − 𝛽∇𝜃𝑡
𝑓𝑙𝑜𝑠𝑠, (18) 

∅𝑡+1 = ∅𝑡 − 𝛾∇∅𝑡
𝑓𝑙𝑜𝑠𝑠, (19) 

where 𝛽  and 𝛾  are the learning rate, 𝛽∇𝜃𝑡
𝑓𝑙𝑜𝑠𝑠  and 𝛾∇∅𝑡

𝑓𝑙𝑜𝑠𝑠 

represent the gradient of the loss function.  

In the test phase, the input of the model is also the motor 

current or vibration signal, but its working conditions may be 

different from those of the conditions in the training phase. In 

this phase, even if the input never appears in the training phase, 

the parameters of the fault diagnosis model are not updated 

anymore. This is because the model uses the identical kernel for 

all faults diagnosis tasks, even if the input data comes from 

different working conditions, the model parameters can be 

transferred. 

III. RESULTS ANALYSIS 

In this section, the performances of the proposed model with 

different kernels (RNGPT-BNCosSim, RNGPT-CosSim and 

RNGPT-RBF) will be evaluated in two case studies. Accuracy 

is used as the evaluation criteria of fault diagnosis performance. 

The case study I is presented in Section IV A, where the 

proposed model is applied to simulation dataset in order to 

demonstrate its feasibility in fault diagnosis. Then the model is 

tested on a real-world dataset from Case Western Reserve 

University Bearing Data Center Website [35], the detailed 

analysis is presented in Section IV B. Several state-of-the-art 

few-shot learning algorithms for comparison are also presented 

in this paper: MAML [36], ProtoNet [37] and Baseline [38]. 

Moreover, two conventional DL methods WDCNN [39] and 

Capsule-Net [40] are also used to compare with the proposed 

method. 
TABLE I 

DETAILED HYPER-PARAMETERS OF THE PROPOSED METHODS 

Hyper- 

parameters 
RNGPT- 

BNCosSim 

RNGPT- 

CosSim 

RNGPT- 

RBF 

Learning rate 1  3 1  3 1  3 

Number of 

layers 
10 10 10 

Kind of layers ResNet (CNN) ResNet (CNN) ResNet (CNN) 

Epoch 400 400 400 

Mini-batch 16 16 16 

Optimizer Adam Adam Adam 

Loss function 
Marginal 

likelihood 

Marginal 

likelihood 

Marginal 

likelihood 

Activation 

function 
ReLU ReLU ReLU 

GP Kernel 
function 

BNCosSim CosSim RBF 

In this paper, the learning rate for GP based decision making 

layer is 𝛽 = 1  4  and for ResNet based feature extractor is 

𝛾 = 1  3 . All parameters are optimized and updated by an 

Adam optimizer. The other detailed parameters of the 

experiment are introduced in the following subsections. The 

training process of the proposed model are completed on a 

64-bit computer with one Intel(R) Core(TM) i7-9800X CPU of 

3.8 GHz and one RTX2080 Ti GPU of 11 GB VRAM, besides, 

it also has one 32.0 GB RAM. The code of proposed model is 

written in Pycharm platform with Pytarch of GPU version. The 

values of the detailed hyper-parameters of the proposed 

methods are summarized in Table I. All these hyper-parameters 

are tuned and determined by Grid Search method [41]. 

A. Case Study I: Simulation Dataset 

In this case study, the dataset used for the motor faults 

diagnosis experiment is obtained by simulation. The proposed 

model in this research is trained to identify different motor 

health states with only a small number of training samples. A 

three-phase asynchronous induction motor is simulated under 

three different sizes of loads (working conditions) by ANSYS 

Electronics Suite software [42]. The circuit electromagnetic 

performance and system design can be simulated by this 

software uniquely. Moreover, it can also evaluate other 

important mechanical effects, such as temperature, vibration 

etc. [42]. The detailed parameters of the motor are summarized 

in Table II. The three-phase current signal is collected and used 

as the input of the proposed fault diagnosis model. Each 

working condition contains seven motor health states, therefore, 

a total of 21 (3×7) sets of data are obtained in the simulations. 

The descriptions of each motor health state with three different 

sizes of loads are shown in Table III. 
TABLE II 

DETAILED PARAMETERS OF MOTOR 

Parameter Setting Value 

Rated power 11 kW 

Rated speed 1458 rpm 

Rated load torque 75 Nm 

Rated voltage 380 V 

Rated frequency 50 Hz 

Efficiency & power factor 0.85 and 0.86 

TABLE III 
DESCRIPTIONS OF MOTOR HEALTH STATE 

Motor Load 

(Nm) 

Health 

State 
Description 

68 

70 

72 

Normal Healthy motor without fault 

BRB 
There are 4 Broken squirrel-cage Bars, two 
adjacent, and the other two adjacent in the 

opposite pole direction 

ISC Inter-turn Short Circuit of a slot in phase A 

LM Sudden Loss of load 

SPF Stator Phase Failure 

RDE 

Rotor Dynamic Eccentricity, the rotor 
rotates once, the trajectory of the rotor 

center forms a circle with a radius of 

eccentric displacement 

RSE 

Rotor Static Eccentricity, the shaft of the 

rotor is fixed, and the center of the 
trajectory of the rotor rotates at one point 

It can be observed from Table III that the motor with 68, 70, 

and 72 Nm loads are simulated and the data with seven types of 

motor health states are obtained. In order to construct a dataset 

with only a few samples which is used to verify the 

performance of the model. The running time of motor 
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simulation is four seconds, and the data sampling frequency is 1 

kHz. Therefore, the length of the data under each health state is 

4000. It is shown in Fig. 2 that a sub-sampling window 

containing 200 data points is collected to be one sample, and 

with 50 data points between each window. As described above, 

the sample size of each health state is 77. In total, there are 539 

set of samples under each working condition for model training, 

validation and testing. 

1) Process of Model Training: In order to explore the fault 

diagnosis model with high accuracy and strong generalization 

under variable working conditions. A dataset with 70 Nm load 

is selected for model training, 68 Nm load for validation and 72 

Nm load for model final performance testing. The proposed 

faults detection model is trained for 400 epochs to get the 

highest accuracy. During training phase, the parameters of the 

model with the highest accuracy in the validation set will also 

be collected at the same time in each epoch. Therefore, the 

performance of the model can be guaranteed under different 

working conditions. All the tasks are 5-ways (5 of the 7 types of 

health state are randomly selected) with 1-shot or 5-shot (1 or 5 

health state samples are randomly selected in the support set). 

Otherwise, there are 12 samples included in each query set. In 

the representation layer, a 256-dimension feature vector is 

extracted from each three-phase current signal sample. This 

feature map is passed to the input layer of a decision making 

layer in order to make a 5-class classification (5-way). 

2) Evaluation of Model Performance: The health states 

detection performances of the various methods are presented in 

Table IV.  
TABLE IV 

PERFORMANCE OF DIFFERENT MODEL IN SIMULATION DATASET 

Health States 

Detection Model 

Health States Detection Accuracy (100%) 

5-shot 1-shot 

MAML 89.88 ± 0.41 88.84 ± 1.43 

ProtoNet 90.51 ± 1.24 90.28 ± 0.70 

Baseline 89.60 ± 0.67 89.19 ± 1.45 

RNGPT-BNCosSim 90.68 ± 0.70 90.42 ± 0.68 

RNGPT-CosSim 90.35 ± 0.77 90.17 ± 0.74 

RNGPT-RBF 96.10 ± 0.29 93.28 ± 0.68 

Conventional method Health States Detection Accuracy 

WDCNN 80.23 ± 0.82 

Capsule-Net 84.20 ± 1.76 

It shows that the proposed RNGPT model has the best fault 

detection performance compared with other methods on the 

simulation dataset. RNGPT with RBF kernel has the highest 

detection accuracy in 5-shot (96.10 ± 0.29%) and 1-shot (93.28 

±  0.68%). Compared with RNGPT with BNCosSim and 

CosSim kernel, RNGPT-RBF outperforms these two models 

and has at least 5% more accurate in 5-shot and 2% more 

accurate in 1-shot. And compared with three few-shot learning 

based methods, the proposed RNGPT model can detect the 

health states of the motor more accurately, except 

RNGPT-CosSim model. This is because the performance of the 

model is degraded by the CosSim kernel function. Therefore, 

an appropriate GP kernel can make the proposed model more 

effective. In addition, compared with Capsule-Net, the 

detection accuracy of RNGPT-RBF is about 12% higher. There 

are two main reasons for this result: one is the limited data for 

model learning, which makes Capsule-Net overfitting; another 

is that is that when the working condition changes during the 

model test, the traditional DL method has a weak generalization 

ability and as a consequence, the detection accuracy of this 

model will decrease if it does not fine-tune the model 

parameters. 

B. Case Study II: Case Western Reserve University Bearing 

Dataset 

In this case study, the dataset used for the motor faults 

diagnosis experiment is obtained from Case Western Reserve 

University (CWRU) Bearing Data Center. The detailed 

descriptions of the fault type and diameter are shown in Table V. 

It shows that there are three different type of motor bearing 

faults, including inner raceway, rolling element and outer 

raceway. Each type of fault has three different sizes, which are 

0.007, 0.014 and 0.021 inches. Therefore, there are totally 10 

kinds of motor bearing health states for each working condition, 

including 9 kinds of fault states and one kind of normal state. 

The vibration signal is collected and used as the input of the 

proposed fault diagnosis model, the data sampling frequency is 

12 kHz. In order to construct a small-scale dataset, a 

sub-sampling window containing 1600 data points is collected 

to be one sample every 1000 points, as shown in Fig. 2. In total, 

there are 1000 set of samples under each working condition for 

model training, validation and testing. 
TABLE V 

DETAILED PARAMETERS OF MOTOR FOR CASE STUDY II 

Motor 

Load (hp) 

Fault Diameter 

(inches) 
Fault Type 

1 

0.007 

Inner 

Raceway 

Rolling 

Element 

Outer 

Raceway 

0.014 

0.021 

2 

0.007 

0.014 

0.021 

3 

0.007 

0.014 

0.021 

1) Process of Model Training: 

In this research, vibration data of drive end bearing fault with 

three different type of loads (1-3 hp) are selected for model 

training, validation and testing. The dataset with 1 hp load is 

selected for model training, 2 hp load for validation and 3 hp 

load for model final performance testing. The proposed faults 

detection model is trained for 400 epochs to get the highest 

accuracy. During the training phase, the parameters of the 

model with the highest accuracy in the validation set will also 

be collected at the same time in each epoch. Therefore, the 

performance of the model can be guaranteed under different 

working conditions. All the tasks are 5-way (5 of the 10 types 

of health state are randomly selected) with 1-shot or 5-shot (1 or 

5 health state samples are randomly selected in the support set). 

And there are 16 samples included in each query set. In the 

representation layer, a 512-dimension feature vector is 

extracted from the vibration signal. This feature map is passed 

to the input layer of decision making layer then to make a 

5-class classification (5-way). 

2) Evaluation of Model Performance: 
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The evolution of the loss function value over 400 epochs is 

illustrated in Fig. 4. It shows that with the continuous 

optimization of the model, the value of the loss function is 

constantly decreasing, which demonstrates that the model 

proposed in this article can be applied to real-world data.  

 
Fig. 4. The evolution of the loss function value over 400 Epochs. 

The health states detection performances of different 

methods are presented in Fig. 5. It can be observed in Fig. 5 that 

the proposed RNGPT-RBF model has the best fault detection 

performance compared with other methods on the CWRU 

bearing dataset. RNGPT with RBF kernel has the highest fault 

diagnosis accuracy in 5-shot (99.39 ±  0.09%) and 1-shot 

(98.55 ±  0.16%). In addition, the method proposed in this 

paper has smaller variance, which indicates that it has a more 

stable fault diagnosis performance.  

 
(a) 5-shot (b) 1-shot 

Fig. 5. The faults detection accuracy of different models in CWRU dataset: (a) 

5-shot, (b) 1-shot. 

 
(a) 5-shot (b) 1-shot 

Fig. 6. The confusion matrices of RNGPT-RBF model health state detection 

results: (a) 5-shot, (b) 1-shot. 

The confusion matrices of RNGPT-RBF in the testing phase 

are presented in Fig. 6. 𝑆0 to 𝑆4 represent 5 randomly sampled 

motor health states. The abscissa represents the motor health 

states detected by the model, and the ordinate represents the 

actual states. Fig. 6 (a) is the confusion matrix of RNGPT-RBF 

in 5-shot scenario and it demonstrates that the proposed model 

can correctly detect the motor states with low error. Fig. 6 (b) is 

the confusion matrix of RNGPT-RBF in 1-shot scenario and it 

can be seen that the number of misjudgments is more than that 

shown in Fig. 6 (a). The reason is that, compared with 5 input 

samples in the 5-shot scenario, only one sample is input into the 

model in 1-shot scenario. 

In summary, the results in Section-A and B demonstrate that 

the proposed RNGPT model can accurately and effectively 

detect motor health states with limited labeled data under 

different working conditions. 

IV. CONCLUSION 

A novel GP kernel transfer based few-shot learning method 

is proposed in this paper for electric machine fault diagnosis 

under variable working conditions. The diagnostic knowledge 

learns from limited current signal and vibration signal. The 

trained model can be transferred to other unseen working 

conditions without parameters updating and fine-tuning. Two 

case studies are carried using two different electric motor health 

state datasets, including a simulation dataset obtained by 

ANSYS software and a real-world bearing dataset from CWRU. 

In the first case, the proposed model has achieved the highest 

fault detection accuracy of 96.10 ± 0.29% in 5-shot and 93.28 

± 0.68% in 1-shot. In the second case, the proposed model also 

has the best fault detection performance in 5-shot and 1-shot, 

the detection accuracy is 99.39 ± 0.09% and 98.55 ± 0.31% 

respectively. Comparative case studies have shown that the 

proposed approach can achieve the state-of-the-art performance. 

The results demonstrate that, when the limited samples of the 

electric machine are available and the working conditions are 

variable, it is possible and significant to explore a fault 

detection model to exploit the underlying shared features for 

diagnostics. 

The detection of early and hidden failures is still a challenge 

issue which needs to be addressed. Future research will focus 

on the early fault diagnosis and weak fault diagnosis of electric 

machine. 
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