

Aalborg Universitet

A design space for RDF data representations

Sagi, Tomer; Lissandrini, Matteo; Pedersen, Torben Bach; Hose, Katja

Published in:
The VLDB Journal

DOI (link to publication from Publisher):
10.1007/s00778-021-00725-x

Creative Commons License
CC BY 4.0

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Sagi, T., Lissandrini, M., Pedersen, T. B., & Hose, K. (2022). A design space for RDF data representations. The
VLDB Journal, 31(2), 347-373. https://doi.org/10.1007/s00778-021-00725-x

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 19, 2022

https://doi.org/10.1007/s00778-021-00725-x
https://vbn.aau.dk/en/publications/a9d26c24-c55b-49f8-a408-40aa2749d284
https://doi.org/10.1007/s00778-021-00725-x

The VLDB Journal (2022) 31:347–373
https://doi.org/10.1007/s00778-021-00725-x

SPEC IAL ISSUE PAPER

A design space for RDF data representations

Tomer Sagi1 ·Matteo Lissandrini1 · Torben Bach Pedersen1 · Katja Hose1

Received: 31 August 2020 / Revised: 8 September 2021 / Accepted: 9 December 2021 / Published online: 21 January 2022
© The Author(s) 2022

Abstract
RDF triplestores’ ability to store and query knowledge bases augmented with semantic annotations has attracted the attention
of both research and industry. A multitude of systems offer varying data representation and indexing schemes. However,
as recently shown for designing data structures, many design choices are biased by outdated considerations and may not
result in the most efficient data representation for a given query workload. To overcome this limitation, we identify a novel
three-dimensional design space. Within this design space, we map the trade-offs between different RDF data representations
employed as part of an RDF triplestore and identify unexplored solutions. We complement the review with an empirical
evaluation of ten standard SPARQL benchmarks to examine the prevalence of these access patterns in synthetic and real
query workloads. We find some access patterns, to be both prevalent in the workloads and under-supported by existing
triplestores. This shows the capabilities of our model to be used by RDF store designers to reason about different design
choices and allow a (possibly artificially intelligent) designer to evaluate the fit between a given system design and a query
workload.

Keywords RDF · Data representation · SPARQL · Database · Query · Knowledge graphs

1 Introduction

The resource description framework (RDF) [44] is a popular
standard for storing and sharing factual information, pre-
dominantly created from sources on the World Wide Web.
RDF is represented as subject–predicate–object triples, usu-
ally modeled as a graph, whose nodes serve as subjects and
objects and edges as predicates. RDF stores, often called
triplestores, are designed to support the storage of RDF data
and its efficient querying by exposing a declarative queryAPI
standardized in the SPARQL standard [63]. Interest in triple-
stores has grown steadily over the past decade. In particular,
both research and industry are employing these systems to
store and query knowledge bases augmented with semantic

B Tomer Sagi
tsagi@cs.aau.dk

Matteo Lissandrini
matteo@cs.aau.dk

Torben Bach Pedersen
tbp@cs.aau.dk

Katja Hose
khose@cs.aau.dk

1 Department of Computer Science, Aalborg University,
Aalborg, Denmark

annotations [59,85]. Thus, a multitude of triplestore imple-
mentations are available, ranging from academic prototypes
(e.g., RDF-3X [55], Hexastore [81]) and community projects
(e.g., JENATDB [58], and Rya [64]) to commercial products
(e.g., Virtuoso [24], GraphDB [57], and Neptune [13]).

RDF data differs from relational data in the complexity
of its structure. In practice, real-life RDF datasets are highly
heterogeneous in structure, especially compared to relational
datasets [22]. This structural complexity causes query perfor-
mance to vary substantially [3]. Converting RDF data to the
relational model, utilizing existing, mature, RDBMS tech-
nologies (e.g., by Oracle [20] and IBM [17]), introduces
unique challenges due to the substantial information hetero-
geneity and the inherent absence of a strict schema [67].
Together with the need to accommodate increasingly large
RDF graphs, these unique properties of RDF data have led
researchers and companies to suggest RDF-specific designs
rather than just mappings from RDF to relational formats.
Reviewing the features of the numerous available systems
reveals each to employ its own list of design choices each
of which seem equally compelling to the casual observer.
Recently, a different set of systems has been proposed to
handle graph data represented as node and edge labeled
multigraphs annotated with properties, i.e., property graphs

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-021-00725-x&domain=pdf
http://orcid.org/0000-0002-8916-0128

348 T. Sagi et al.

(PG) [14]. Despite the fact that both the RDF model and the
PG model handle graph-shaped data, the two models dif-
fer substantially in terms of the functionalities they offer.
In particular, while RDF represents data as a set of triples,
PG DBMS are designed to query labeled objects annotated
with properties in the form of key-value pairs. Therefore,
the analysis of core operations supported by triplestores sub-
stantially differs from those supported by PG DBMS. (This
can be seen, for instance, by comparing our analysis with the
operations studied in a recent PG DBMS microbenchmark
[47].) For instance, in a PG, we can select nodes having a
specific label and a specific attribute set to a specific type
accessing only node objects, while in an RDF triplestore an
equivalent query will need to query a set of triples instead.

Although there are several surveys of the many existing
triplestores [2,52,56,59], they are either limited to providing
a taxonomy of the features offered by the systems (e.g., API
and data load facilities) or classify them according to their
underlying technology (e.g., relational versus native graph).
Thus, these surveys offer a vast compendium of alternative
systems but only little information regarding the design space
in which their internal architecture reside.

Instead, in this work, we provide a unifying three-
dimensional design space across three axes: Subdivision,
Compression, andRedundancy (SCR, see Fig. 4). The design
space defines the dimensions alongwhich any storage system
for RDF data must be designed. We then provide a review of
the current choices made over these dimensions as well as
a discussion into unexplored options. To guide the analysis
of this space and of current solutions within it, we define a
corresponding feature space for query access patterns1 and
a cost model to tie the different choices in the design space to
their impact on the performance of specific query workloads.

Our approach is, in part, inspired by the Data Calcu-
lator [41]. However, while the Data Calculator focuses on
optimizing a single low-level data structure for generic (i.e.,
non-SPARQL-specific) data access operations, our approach
works at a higher level and focuses on evaluating the set of
data representations employed by a triplestore; choosing the
right design choices to match the RDF access patterns this
system must support. Thus, a triplestore system developer
could use our approach to identify access patterns that are
currently not optimized for by the data representations in
their triplestore. For example, the Jena (TDB) system [58]
does not feature any optimized data representation for fil-
ters selecting triples involving a specific data type or with a
specific language tag, even though they are quite common in

1 Here, we refer to access patterns as logical operations in a query that,
given some input values, establish what kind of output values must be
returned. The difference from the use of the term access patterns in the
relational model [27] and from the term access paths [72] is described
in Sect. 3.

existing workloads (see Sect. 7). This is evident from analyz-
ing Jena’s existing data representations using our proposed
design space (see Tables 5, 6, and 7). Once the developer has
identified this unmet pattern, they can examine which com-
bination of decisions is available in the three design space
dimensions they wish to employ to satisfy this new pattern.
In this example, one possible solution would be to employ
an additional subdivision of the existing ID space to differ-
entiate between data types and languages. This can lead to
a different data organization within an existing index or to a
new access-pattern-specific index. (In this case we alsomove
within the redundancy dimension.) Since the Data Calculator
is not aware of the presence of annotations such as language
tags and the possibility to represent them separately by subdi-
viding the ID space, it cannot identify this unmet need and it
cannot provide an optimized solution for this access pattern.
Similarly, the Data Calculator is not aware of other RDF-
specific access patterns, e.g., reachability and path queries.
Moreover, Jena employs three different main triple data rep-
resentations based on standardB+trees and identical in all the
low-level features considered by the Data Calculator. In the
proposed access patterns feature space, we provide a way to
differentiate between the RDF-specific access patterns each
of these representations is required to support. Thus, we are
able to evaluate and assess the compatibility of a set of data
representations used in a triplestorewithRDF-specific access
patterns.

Our design space is based on intuitions widely shared
across different data models and their DBMS [10]. However,
these intuitions have not been formalized for RDF systems
and existing RDF systems have not been analyzed based on
them. We thereby make the following contributions.

1. A design space for RDF data representations employed
in a triplestore that is simple enough to be intuitive, yet,
as we show, powerful enough to analyze the benefits and
trade-offs of each design choice.

2. A review of existing triplestores positioning them in this
design space and identifying unexplored choices.

3. A feature space for SPARQL query access patterns allow-
ing to characterize query execution over RDF.

4. A software tool to parse query workloads and analyze the
patterns used.

5. A comprehensive analysis of how design choices impact
system performancewhen answering access patterns with
specific features.

6. An empirical evaluation of the prevalence of access pat-
terns in commonly used query workloads.

The rest of the paper is structured as follows: Section 2
provides preliminary definitions followedby the query access
pattern feature space in Sect. 3.We then introduce our design
space in Sect. 4, followed by the review of existing systems

123

A design space for RDF data representations 349

Fig. 1 Example of RDF data in graph format

(Sect. 5). Section 6 presents our impact analysis, distilling
important findings obtained by the analysis of the systems
design in our design space. This analysis is followed by the
empirical evaluation in Sect. 7. Finally, we highlight the dif-
ferences between this work and previous surveys in Sect. 8
and conclude by discussing the implications of our analysis
and findings in Sect. 9.

2 Preliminaries

In this section, we formally define the basic concepts of
RDF graphs and RDF graph patterns. Both revolve around
the concept of RDF triples [44]. An RDF triple is a factual
statement comprised of a subject (s), a predicate (p), and an
object (o). Subjects and objects can be resources identified by
International Resource Identifiers (IRI), anonymous nodes
identified by internal IDs (called blank nodes), or literals.
Predicates are always IRIs (resources) and never literals [62].
For example, the triple (ex:iri1, rdfs:label, "Human") states
that the resource identified by the IRI ex:iri1 has an rdfs:label
which is the literal string "Human". Collectively, nodes (i.e.,
resources, blank nodes, and literals) can be referred to as
atoms. RDF allows to explicitly record knowledge codified
as a graph where subjects and predicates serve as nodes and
triples as edges.

Definition 1 (RDF Triple/Statement & Graph) Given a set
of IRIs I, blank nodes B, and literals L, a triple (s, p, o) ∈
(I ∪ B) × (I) × (I ∪ B ∪L) is called an RDF triple. In the
(s, p, o) triple, also called anRDF statement, s is the subject,
p is the predicate, and o is the object. An RDF graph G is a
set of RDF triples.

Example 1 Consider the graph in Fig. 1, which is a graphical
representation of a set of triples. In this case, ex:iri1,

ex:iri3, rdfs:label, and ex:Sex are examples of
IRIs in I, the first two with the role of nodes and the second
two with the role of predicates. On the other hand, "11M"
and 2018 are literals in L. Finally, (ex:iri1, ex:Sex,
ex:iri3) is an (s, p, o) triple.

AnRDF graph is queried by issuing a SPARQL [63] query
to an evaluation engine, called a triplestore, whose core func-
tionality is to compute answers based on the graph structures
matching it. SPARQL queries contain one or more basic
graph patterns, which are sets of triples with zero or more
of their components replaced by variables, formally defined
as follows.

Definition 2 (Basic Graph Pattern [62]) Assume an infinite
countable set of variables X . A Basic Graph Pattern (BGP)
P is defined as a conjunction of a finite set of triple patterns
P = {t1, . . . , tn}, with ti ∈ P being a triple pattern defined
as ti∈(I∪X)×(I ∪ X)×(I∪L∪X).

Thus, triple patterns are (s, p, o) tripleswhere any position
may be replaced by a variable. Solutions to the variables are
found by matching the triple patterns in the BGP with triples
in the RDF graph.

Moreover, there are special types of patterns that match
sequences of edges satisfying a specific set of predi-
cates, e.g., all nodes reachable by an arbitrary sequence of
ex:childOf predicates. These patterns are called property
paths. They are defined via a specialized form of expressions
called path expressions (similar to regular expressions) and
offer a succinct way to write parts of basic graph patterns
and also extendmatching of triple patterns to arbitrary length
paths [35].

Definition 3 (Property paths [35]) SPARQL 1.1 defines a
property path p recursively as follows. A property path is
(1) any resource a∈I; (2) given property paths p1 and p2,
a property path is either a sequence of paths denoted by
p1/p2, a disjunction paths denoted by p1|p2, a negation of
a path denoted by ˆp1, a sequence of zero or more of the
same path denoted by p1∗, a sequence of one or more rep-
etitions of the same path denoted by p1+, or either zero or
one occurrences of the path denoted by p1?; alternatively
(3) given resources a1, . . . , an∈I, then any of the follow-
ing expressions !a1, !∧a1 ! (a1| . . . |an), !

(∧a1| . . . |∧an
)
and

!
(
a1| . . . |a j

∣∣∧ a j+1| . . . |∧an
)
where ! denotes negation, ∧

denotes inversion and | denotes disjunction.
Hence, property paths are expressions over vocabulary

I of all IRIs [86]. The language does not allow to express
negated property paths, but it is possible to express negation
on IRIs, inverted IRIs and disjunctions of combinations of
IRIs and inverted IRIs. A property path triple is a tuple t of
the form (s,p, o), where s, o∈(I∪X) and p is a property

123

350 T. Sagi et al.

path. Such a triple is a graph pattern that matches all pairs
of nodes 〈s, o〉 in an RDF graph that are connected by paths
that conform to p.

In its simplest form, a SPARQL query has the form
“SELECT V WHERE P”, with P = {t1, . . . , tn} being a set
of triple patterns (BGP). Optionally, one or more FILTER
clauses further constrain the variables in P . Let XP denote
the finite set of variables occurring in P , i.e., XP ⊂ X
[63], then V is the vector of variables returned by the query
such that V ⊆ XP . Additional operators such as UNION
or OPTIONAL allow more than one BGP in a query by
defining the non-conjunctive semantics of their combination.
Finally, SPARQL queries can also make use of GROUP BY
and aggregate operators.

SPARQLqueries are declarative and are therefore designed
to be decoupled from the physical data access methods2 used
to retrieve the data. This decoupling allows specific triple-
store implementations to use different data representations
and query processing designs to dynamicallymatch an appro-
priate execution plan with a given query. Furthermore, when
answering a query, a singleBGP can be decomposed into sev-
eral component BGPs and subsequently recombined before
or after each BGP is solved.

SPARQL queries, as traditional queries, can also specify
how to change the content of the graph. In this case, the query
can either list a set of new RDF triples to be inserted into the
graph or a set of triples to be deleted from the graph.

3 Access patterns

To design a performant RDF triplestore, it is of crucial impor-
tance not only to understand the type of information that it
will store but also how this information will be queried, i.e.,
the expected query workload. Specifically, SPARQL queries,
decomposed into BGPs and their associated triple patterns,
access the data representation in different ways. In this sec-
tion, we describe how SPARQL queries and their constituent
BGPs can be analyzed to identify standard access patterns.

Definition 4 (Access Pattern) An access pattern is the set of
logical operations that, given a set of variable bindings over
a graph, determine what data to access (and optionally to
change) and what output to produce.

Note that the term is used differently by relational model [27]
analyses, where, given a relation, it only refers to what data
is required as input and what tuples of the relation to pro-
duce as output. Moreover, this concept also differs from the
concept of access paths, which refers instead to alternative
data structures that can be navigated to reach the desired data

2 Access methods are low-level algorithms and data structures for
organizing and accessing data [37].

[72]. The need for satisfying the requirements of these access
patterns guides the selection and design of appropriate data
representations along the design space dimensions defined in
the following section.

Given a query and a specific BGP from the query, the
access pattern is determined by the triple patterns in the
BGP and any additional operators assigned to it from the
SPARQL query, e.g., filters, grouping, or aggregations. Here,
we identify the feature space of access patterns (summa-
rized in Table 1). This feature space is comprised of six
dimensions (each dimension containing a set of alternative
features), namely:

– Constants the presence of constant values (as opposed
to variables which have bindings).

– Filter The presence (or absence) of a filter on a range of
values.

– Traversal The complexity and type of the traversal
described by different triple patterns of the BGP.

– Pivot How different triple patterns of the BGP are linked
together by some common atom in the BGP (here called
a pivot).

– Return The information expected to be returned.
– WriteWhether and how the BGP causes a change in the
contents of the database.

Constants A common feature of any BGP is the pres-
ence of variables in one or more of the subject (s), predicate
(p), or object (o) positions (see Definition 2). The presence
of a variable requires finding all the triples that match the
remaining (non-variable, hence constant) positions. There-
fore, since the triplestore must find all triples that contain the
same constants in those positions, their presence in the BGP
provides higher selectivity that can be exploited by filter-
ing and indexing schemes. In particular, a triple pattern that
is fully instantiated translates into an existence clause for a
single specific triple. Partially instantiated BGPs are those
where some of the (s, p, o) positions are expressed as vari-
ables. Finally, when all three (s, p, o) positions are variables,
we have an uninstantiated access pattern which matches all
the triples in the database.

Filter Filters with conditions limiting the values that can
be bound to one or more variables within a specific subset.
Since filter operators have proper semantics defined for lit-
erals, and since literals can only appear as objects in a triple,
filter operators retain triples based on the value assumed by
a variable in the object position. Filter operations usually
define open intervals (e.g., ?o > 10), but when combined the
query engine can translate them into closed intervals (e.g.,
10 >?o > 100). Moreover, for SPARQL, a special type of
filters depends on the type of the object. In practice, a query
could return only values that are all literals or all IRIs, or all
blank nodes, i.e., a filter based on their membership to L, I,

123

A design space for RDF data representations 351

Table 1 Feature space of access patterns for a SPARQL query

or B. For this purpose, SPARQL has special native opera-
tors isLiteral, isBlank, and isURI. Similarly, RDF
literal strings can be annotated with language tags allowing
a query to filter based on those tags. For instance, to distin-
guish that the string “Rome” is in French and not in English,
RDF represents it as "Rome"@fr instead of "Rome"@en.
Hence, a query could select only strings marked as @fr.

Traversal Traversal types determine the number of triples
that need to be traversed or considered, substantially impact-
ing the query’s complexity. We identify three cases, namely
(i) 1-hop traversal s→o for a given specific predicate p; (ii)
k-hops for a given sequence of predicates p1, . . . , pk ; and
(iii) a path for an unconstrained number of hops over some
predicate p. Excluding the simple 1-hop, the other traversals
are usually expressed by (and referred to as) property paths
[62]. In all cases, a traversal can go in either direction (given a
source, find targets, or given a target, find all sources). More-
over, in traversals with more than one hop, the intermediate
nodes are not required to be returned.

Pivot Related to traversals, an essential feature of a BGP
is the ability to connect multiple triple patterns in other struc-
tural forms than a sequence. When an atom appears in two
or more different triple patterns of the BGP, we refer to it
as a pivot. We note that the pivot can appear in the same
position, e.g., always in the subject position, or in differ-
ent positions, e.g., subject of one triple pattern and object
in another. This feature effectively determines the topology
of the graph structure described by the query and can serve
as the building block for more complex structures such as
stars and snow-flakes [16]. We use the term pivot and not
join to separate between the access pattern required (pivot)
and its physical instantiation (e.g., a join operation), which
is dependent on the data representation. Some specific data
representations can speed up pivot operations, avoiding rela-
tional table join-type operations altogether. In particular, we
distinguish between a pivot involving only two triple patterns
and a pivot where the same variable is shared between more
than two triple patterns, e.g., in a star pattern [77]. In the latter

case, recent studies have shown the advantage in employing
worst-case optimal join algorithms [38] wheremultiple triple
patterns sharing a pivot can be evaluated altogether. More-
over, while a pivot over the object of one triple and the subject
of another can be seen as a 2-hop traversal, in general, one
cannot categorically say that using two pivots is better than a
2-hop reachability index. Thus, in our analysis, these features
are considered separately.

Return The solution to a SPARQL query is the set (or a
subset) of the bindings of atoms (from the matching triples)
to some variables. Given a BGP, most queries return all vari-
able bindings that match the triple pattern. Yet, in other cases
not all matching triples and variable bindings are directly
returned in the query result. When only a subset of the vari-
ables are returned, this may cause duplicate values to be
returned, representing all of the triples found to match the
BGP. We name this case Values (all) since the query returns
values and all duplicates are returned (Table 1). When the
DISTINCT keyword is used, only the set of distinct bind-
ings for each variable is required. This case is named Values
(distinct).Moreover, some queries could require the bindings
for some variable to be returned in some predefined order.
We refer to this case as Values (sorted). For some queries,
it is sufficient to identify whether a variable binding exists
satisfying the pattern, but we are not required to return the
binding. In some other cases, a query just needs to verify
whether a specific path exists or vice versa; when a specific
connection does not exist, this is also addressed by a negation
on an existence check. SPARQL ASK queries are an extreme
example where the entire query returns no variable bindings
but only the value true (exists) or false (does not exists) for
a specific BGP. Finally, a query could be required to return
aggregated values, i.e., the count of matchings for a BGP or
max and min values for literals bindings.

Write SPARQL allows not only to retrieve information
from the database but also to modify its contents, i.e., write
operations. Note that update operations are often unsup-
ported, requiring a deletion and subsequent insertion of new

123

352 T. Sagi et al.

Fig. 2 SPARQL query with annotated access patterns

triples instead. We consider these access patterns to dis-
tinguish the case of read-only workloads from read-write
workloads.

Example query analysis Consider the example in Fig. 2
(from a WikiData query log [16]) retrieving location coor-
dinates of archaeological sites. Property path wdt:P31/
wdt:P279* wd:Q1190554 is of the form p1 / p2*
o, meaning that it would match two alternative paths: (1)
1-hop traversals over p1 = wdt:P31 reaching the target
node o=wd:Q1190554 directly, and (2) *-hop traversals
starting with one edge for wdt:P31 and reaching the object
through a sequence of arbitrarily long paths matching the p2
= wdt:P279 triple pattern. Hence, the query contains two
1-hop traversals (marked with stars, one in each direction,
since wdt:P279* is optional) and a composite property
path (wdt:P31/wdt:P279*, see Definition 3). It contains
a triple pattern with constants in both (p) and (o) (highlighted
in dashed blue) and two triple patterns with a constant only
in (p) (in solid blue). Moreover, the query contains both a
closed range filter and two different special filters: one for
the DATATYPE and one for the LANG property of literals.
Finally, the ?event variable is a 3-way pivot, which can
also be executed as a set of binary s ≡ s pivot access pat-
terns.

Therefore, this feature space allows us to characterize each
query with the requirements of the corresponding access pat-
terns needed to answer it. In the following, we define a design
space for data representations. Decisions for the different
dimensions within the design space impact how efficiently
the query’s access patterns are supported by the resulting data
representations.

4 A design space for RDF data
representations

Triplestores implement a set of data representations that
support the data access patterns needed to solve the BGPs
as described in the previous section. A data representation
stores a subset of the graph G⊆G. Given an access pattern
comprised of a BGP P , a vector of variables to return V,
and optionally filter and aggregation operations over these

variables O , a data representation to answer the given access
pattern needs to provide a way to retrieve the values of V
from the information stored inG or to modifyG accordingly
to V. Therefore, given an access pattern A and a data repre-
sentation D, if D holds the information necessary to answer
the access pattern A, we want to evaluate the performance
of D to provide the correct instantiations of V given P and
O . Thus, the question is what is the cost, in terms of time,
needed to compute the instantiations ofV and executeA over
D. Answering such a question allows, given two distinct data
representations, to select the most appropriate one.

In this section, we begin by defining a basic cost model
(Sect. 4.1) and the notion of compatibility between access
patterns and data representations (Sect. 4.2). Then, we pro-
pose a design space for data representations over which
design decisions can be made (Sect. 4.3). Together, these
allow the evaluation of fit between an access pattern and a
design choice which is later showcased in Sect. 6.

4.1 Cost model

To answer aBGPusing a particular data representation incurs
a cost usually expressed in terms of the time it takes to
retrieve all such answers. Estimating this cost for the differ-
ent access patterns is crucial, both at design time and during
query processing, and relies on a cost model assigning a cost
to each type of basic operation. Several such models have
been proposed for RDF [21,29,66], but were biased by a sim-
ple two-tiered memory hierarchy and underlying a relational
data representation. In an era of shared memory clusters,
large-RAM machines, SSD, NVRAM, SIMD, and vector-
ized processing (e.g., [51]), assuming a single cost relation
paradigm is no longer sensible.

What still holds true over all novel (existing or future)
machine architectures and memory types is the fact that ran-
dom seek operations incur a different cost than sequential
read operations. As echoed by the authors of the RUM con-
jecture [9], “.. in the 1970s one of the critical aspects of
every database algorithm was to minimize the number of
random accesses on disk; fast-forward 40 years and a similar
strategy is still used, only now we minimize the number of
random accesses to main memory ”. The use of compression
to minimize memory requirements and speedup retrieval of
large result sets incurs additional costs in compression and
decompression times. Although novel compression methods
utilizing hardware to speedup these times are increasingly
available (e.g., [6]), there remains a difference between com-
pressed and uncompressed data. We, therefore, follow the
recent convention of employing a set of cost constants [12,41]
differentiating between random and sequential and between
compressed and uncompressed costs. The instantiation of
these constants for the different representation options on the
current hardware can be done at design time by measuring

123

A design space for RDF data representations 353

operation times on the current configuration. We use these
constants to induce a ranking over different representations
in the same design space dimension.

Definition 5 (BasicOperationCostConstants)Read random
(Rr) represents the average cost of accessing a random sin-
gle data item (e.g., a key or a value) in a data representation
given a pointer to the item. Read sequential (Rs), instead,
measures the cost of reading a data item stored in a position
succeeding the current one, i.e., stored sequentially within a
contiguous region of memory (e.g., the next block on disk, or
the next position in an array). For compressed data, we dis-
tinguish between read compressed sequential (Rcs) and read
uncompressed sequential (Rus). Similarly defined constants
for write operations areWr ,Ws ,Wcs , andWus , respectively.

4.2 Data representation compatibility

To assess whether a data representation can efficiently sup-
port a specific access pattern, we define the notion of
compatibility.3 Therefore, given an access pattern A and
a data representation D able to answer A, we assume that
there is a sequence of operations specified by an algorithm
Γ defined over D that can compute such an answer S, i.e.,
S = Γ (A,D). Thenumber and cost of these operations spec-
ified by Γ directly determine whether D is a representation
suitable for computing efficiently the answers to A. When
measuring the number of operations required to be executed
over D, we distinguish between random seek and sequential
operations.4 In particular, an RDF data representation can be
seek compatible or sequence compatible, defined as follows.

A data representation is seek compatible with an access
pattern if one or more of the results required by the access
pattern can be retrieved in a single random access step. For
example, if the access pattern requires retrieving the objects
that are related to the same subject s1 via the same predicate
p1, i.e., 〈s1, p1, ?o〉, a seek compatible representation is
one that, given the pair of values 〈s1, p1〉, returns a pointer
to the first element of this set (e.g., a hash table).

A representation is sequence compatible if all results
required by the access pattern can be retrieved through
sequential accesses without requiring (after the initial seek)
any additional random seek to complete the result set. In the
case of a hash table for 〈s1, p1, ?o〉, if the pointer returned
from the first seek is to a contiguous area of memory/disk

3 We define this notion for read operations only under the assumption
that a read operation is required before deletion (to locate the data to
be deleted) and before insertion (to locate where to insert the data and
to avoid duplicates) and is therefore required for every type of access
pattern. Following such a read operation, the set of pointers returned
can be used to perform an update, deletion, or insertion.
4 In the following, for ease of presentation, we refer to a simplified
cost model where we consider the amortized average cost of the data
structures, e.g., hash maps access methods have average constant cost.

containing all objects satisfying the access pattern, the rep-
resentation is sequence compatible. However, if the objects
are stored in a linked list, requiring additional random seeks
to read, the representation is not sequence compatible. More-
over,we say that a representation is selection compatiblewith
an access pattern if no unneeded results are retrieved. For
example, if a variable ?o in our example is restricted to liter-
als (with isLiteral), then any triple with a IRI as object
is unneeded.

Definition 6 (Compatibility) Let A be an access pattern and
letS be the set of results that are the answer toA over a graph
G. LetD be a data representation of G.S is a, possibly empty,
set of tuples containing any combination of literals, blank
nodes, and IRIs. Then, Cr

1(A|D) is the number of random
seek operations required to reach the first result of S in D
or to ascertain that S ≡ ∅. We define Cr

Ω(A|D) to be the
cost in terms of number of random seek operations required
to retrieve all results in S from D after having reached the
first result in S. Correspondingly,Cs

Ω(A|D) is the number of
sequential read operations required to retrieve all subsequent
results. Hence, the total cost to retrieve the results S of A
over D is:

Cr
1(A|D)×Rr + Cr

Ω(A|D)×Rr + Cs
Ω(A|D)×Rs . (1)

Hence, we say that a data representation D is:

– seek compatible with A if Cr
1(A|D) = ε, where ε∈R+

is some small system-dependent constant independent of
|G| (e.g., if D is a hash-table the fixed cost to search
elements in D is usually approximated to the constant
1.2).

– sequence compatible with A if S can be sequentially
retrieved after the initial seek, that is Cr

Ω(A|D) = 0 and
Cs

Ω(A|D) ≤ max(|G|, |S|).
– selection compatible with A if no excess results are
retrieved, that is Cr

Ω(A|D) + Cs
Ω(A|D) ≤ |S|.

Example 2 (Compatibility of different representations) For
instance, one way to store G is to represent each triple as
a 3-tuple, and the entire dataset as a list of 3-tuples sorted
by subject and then by predicate and object (Fig. 3a and d
below) with a clustered B+ tree index over them. In this rep-
resentation, the cost of query processing would resemble that
of a relational table with three attributes (s, p, o), all part of
a primary index. This representation is sequence compatible
with any 1-hop access pattern that binds s, both s and p,
or all three positions. That is, the algorithm Γ (〈s1, p1, ?o〉,
sorted(G);B+ tree) would first find the first tuple perform-
ing log(G) steps traversing the B+ tree looking for s1, p1
and then perform a linear scan over the file to retrieve the
remaining tuples. However, the B+ tree is not seek compat-

123

354 T. Sagi et al.

(a) (b) (c) (d)

Fig. 3 Examples of data representations: a sorted file, b hash map, c property table, and d B+ tree

Fig. 4 The SCR system design space for RDF stores

ible, because the time to find the first result depends on the
size of the graph, i.e., it involves log(|G|) seek operations to
reach the first result.

A different data representation is to employ a key-value
data structure (similar to Fig. 3b) and use the pair subject-
predicate as the key, and the object as the value. In this data
structure, triples sharing the same s and p will store the
list of objects contiguously. This data structure is both seek
and sequence compatible for a traversal that, given s and p,
retrieves all corresponding objects. Nevertheless, this repre-
sentation is neither seek compatible nor sequence compatible
if the query requires all edges for predicate p regardless of
s.

In the following, we present a design space within which
each data representation can be embedded. The definitions
of cost and compatibility presented above allow to analyze
the advantages and drawbacks of the different choices in each
dimension of the design space.

4.3 The design space dimensions

When designing data representations for an RDF store, one
can model the design decisions over three axes: Subdivision,
Compression, and Redundancy (SCR, Fig. 4). Each of these
orthogonal axes,whose properties are summarized inTable 2,
represents a continuum along which a system can be posi-
tioned.

Subdivision The subdivision axis determines how frag-
mented the data is. At one extreme, all data is stored
contiguously in a single structure; at the other extreme, each
edge and node is stored as a separate objectwith pointers to its
neighbors in the induced graph. In between there are various
data structures such as B+ trees or hashmaps adapted to these
settings. This axis contains design decisions such as sorting,
grouping, and hashing. Each of these decisions creates an
additional subdivision in the data. Increasing the extent of
subdivision allows us to minimize the number of unneeded
data items accessed to answer an access pattern (yielding
fewer Rs and Ws operations that return items not in S).
For example, when using the single file approach, we would
potentially need to read the entire file before finding a single
required triple, while with a hash table, we move directly to
the first matching tuple. Filter access patterns on large ranges
of values, however, can be costly when data representations
utilize extensive subdivision. The use of multi-core paral-
lelized processing can ameliorate this cost, to some extent, by
dividing the sequential retrieval tasks amongcores that access
the subdivided data in parallel. Subdivided data representa-
tions provide an additional benefit for multi-core systems,
as they allow the creation of locking mechanisms with finer
granularity, reducingwait times.Consider Fig. 3.Note that, in
a sorted file (Fig. 3a), the sorting keys act as the simplest sub-
division by collecting all triples of the same value together.
On the other hand, with a hash table (Fig. 3b), given the target
IRI, the hash function separated all relevant triples sharing the
same key. Note that every time wemove across subdivisions,
we move into a different non-contiguous region in either
disk or memory, increasing the Rr cost. Therefore, decisions
across the subdivision axis easily determine whether a data
structure is selection compatible, i.e., if it bounds all and only
the answers within a specific subdivision, but it also impact
random and sequence compatibility.

Compression The second axis is the compression axis.
The goal of compression is to minimize the number of bits
read to reach the first tuple in the result set (Rr) and the
number of bits required to read and potentially store the
result set for further processing Rcs . The potentially nega-
tive impact of compression is, of course, the decompression
required to evaluate a predicate in the access pattern if the

123

A design space for RDF data representations 355

Table 2 Summary of data representation design space axes

access pattern is incompatible or partially incompatible. For
example, consider a compressed data representation tuned
for queries of the form (s, ?p, ?o) and s≡s access patterns
(e.g., BitMat [11]). Using this representation to answer an s
p∗/+ o pattern (i.e., is o reachable from s through a edges
labeled with p) would require a potentially large number
of row decompression operations to perform the o≡s pivot
operations required resolve the traversal. Since these may
be spread around the data structure, this would incur a large
number of Rr operations. Therefore, decisions across the
compression axis impact heavily the selection compatibility
when data that does not contribute to the answer are com-
pressed together with data relevant for an access pattern.

Redundancy The third axis is the redundancy axis which
causes (redundant) copies of the data to be stored in the sys-
tem. By adding redundant data representations and indexes,
it is possible to define ideal (seek, sequence, and selec-
tion compatible) data representations for each access pattern.
However, this comes at the cost of having to store the same
information multiple times. For example, by holding both an
SPO clustered index and a PSO clustered index, each triple
is stored twice. Thus, this hinders the compatibility with
write access patterns. Moreover, design decisions includ-
ing full/partial replication need to find a trade-off between
storage space and efficient support of query access patterns.
Hence, the cost of maintaining multiple representations is
threefold: (i) Increased latency for delete and insert opera-
tions (higherWr andWs) with possibly reduced performance
of read operations (higher Rus) as well, since additional
(uncompressed) auxiliary data structures are required to store
deltas until the cost of updating can be amortized over a large
enough set of updates (e.g., as in RDF-3X [55]). The use of
multi-core parallelized processing can avoid this additional
cost, to some extent, by dividing the redundant update tasks
among cores in parallel, allowing for more rapid update of
the compressed structures. (ii) An increase in space require-
ments, subsequently straining the limited space in main
memory and causing an increase in all R costs. (iii) An
increase in query optimization time because alternative struc-
tures to access the data result in a higher number of query
execution plans that have to be considered.

Example 3 (SCR Space analysis.) To illustrate the connec-
tion between the SCR space and the proposed cost model,
consider again the different data representations in Fig. 3.
A sorted file (Fig. 3a) divides the triples (cardinality |G|)
by the values of the first sort field (e.g., s) and eventu-
ally by all remaining sort key fields. Finding the first tuple
with some specific value for s requires log2(|G|) random
seeks. Subsequently, reading all the relevant records (assum-
ing a cardinality of |S|) is now a sequential read. The
final total cost for the Constant s access pattern is then
Rr×log2(|G|)+Rs×|S|. Hash tables (Fig. 3b) improve upon
this, i.e., moves further along the Subdivision axis, by sub-
dividing the space into buckets with the same key value.
Then, all keys with the same value are divided into a linked
list of blocks of predefined maximum size (k, with k = 1
in the figure). Therefore, this incurs a random seek cost to
reach the first record and then sequentially read the whole
bucket, and (m=�|S|/k�) random seeks to move from bucket
to bucket, with a total cost of Rr×(1+m)+Rs×|S|. While
random seek costs often dominate sequential ones by orders
of magnitude, in the average case of small answer set S, this
additional subdivision improves read costs for this access
pattern. Deploying a B+ tree, instead, would keep the same
Subdivision, but move across the Redundancy axis.

We now identify these options in existingRDF triplestores
and place them within the SCR space.

5 Data representations in RDF triplestores

We now review a wide range of existing triplestores and
the data representations they employ within the SCR design
space. Here, we focus on centralized systems5 that have
either been published as research prototypes or commer-
cially available systems. Our inclusion principle is a system,
which allows the ingestion of RDF data and supports the

5 We specifically exclude distributed and cloud-based solutions as the
need for distributing and replicating data between nodes skews the sys-
tem’s cost model and is a mostly orthogonal decision to that of choosing
which core data representations to use. Some distributed systems (e.g.,
4-store [34] and Partout [30]), directly extend centralized systems.

123

356 T. Sagi et al.

SPARQL query language (including insertions and dele-
tions). We exclude systems for which we could not find
sufficiently detailed information regarding their data rep-
resentation. Notable commercial exclusions are, therefore,
Amazon Neptune [13], AllegroGraph [28], and StarDog
[74], which do not disclose their internals. Notable non-
commercial exclusions are HexaStore [81] and RDFBroker
[73], which do not support SPARQL, and KAON2 [78],
which is designed for OWL reasoning rather than SPARQL
answering over RDF triples.Moreover, we also excludeHDT
[25], which only supports data serialization.

Tables 3 and 4 summarize the features of the reviewed sys-
tems over the design space dimensions. Different triplestores
can nowbe compared based on the choices they havemade on
how to subdivide the data (Subdivision), whether and how to
compress IDs, literals and triples (Compression), and which
redundant representations tomaintain (Redundancy). Table 3
lists systems based on an underlying relational database sys-
tem (RDBMS), and Table 4 lists systems using a native
graph storage. The year stated next to the system name rep-
resents the publication year of the latest paper or technical
report describing its features. It seems that recent solutions
favor a native storage mechanism over using an RDBMS.
Furthermore, the use of B+trees is becoming less preva-
lent, with recent solutions favoring hash-based solutions. We
now present a classification of the systems into the different
choices in each dimension.

5.1 Subdivision

Table 5 summarizes the design choices over the subdivi-
sion dimension. Recall that subdivision aims to minimize
the number of unneeded items read when seeking and read-
ing. This minimization may come at the cost of increasing
the number of random seeks required to reach the data items
needed by the access pattern. Within the subdivision dimen-
sion, we identified four choices which system designers can
make: (1) how to subdivide the main triple data, (2) whether
and how to divide the ID space assigned to IRI/literals, (3)
how to subdivide the IRI/Literal→ID data representation,
and (4) how to subdivide the reverse ID→IRI representation.
Systems in the table are divided into four groups according
to their approach toward subdividing the main triple data.
The largest group of systems utilizes an underlying rela-
tional representation, either a column-based (SW-store [1])
or a row-based one (the rest). The 2nd-largest group utilizes
tree-based representations. While Mulgara [54] uses an AVL
tree, the rest use a B+tree. There are four systems utilizing a
hash-based representation and four that opted for more spe-
cialized representations.We now review the systems in Table
5 by each of the main design choice categories.

Main triple dataWhen reusing the underlying infrastruc-
ture and technologies of relational databases, designers must

define how the RDF structure is mapped into a relational
structure. 3store [33], RDFLib [46], and Virtuoso [24] use
a large triple table with a field for each s,p,o atom together
with some auxiliary indexes. Other relational-based systems
use dynamic subdivision to create a set of relational tables.

Dynamic subdivision restructures the data representa-
tion according to the specific contents of the graph, its
schema/ontology, or the query load.6 SW-Store [1] subdi-
vides the triples by creating a collection of property tables
(one for each predicate IRI), thus adding some compression
as the predicate value is encoded in the name of the sub-
division rather than in each triple. However, the number of
distinct predicates may be extremely large, causing a large
schematic overhead. DB2 Graph [17], RDFBroker [73], and
FlexTable [80] create tables for groups of predicates. DB2
Graph uses a fixed number of predicate columns populated
according to their prevalence. RDFBroker creates a differ-
ent table for each combination of predicates. FlexTable [80]
allows a table to have different predicate columns on the data
page level, thus dynamically opening new table pages with a
slightly different schema when such instances appear in the
data. 3XL [48] use the backing ontology of the triplestore
to create complex tables containing related information from
several triples.

Tree-based representations index triples using B+trees as
entry point. Jena(TDB) [58] and RDF3X [55] are the most
notable in this category. Trident [76] follows the relational
subdivision but then concatenates all such subdivisions and
exploits a B+tree on IDs during search. Hash-based solutions
differ on the method in which the hash key is computed and
on the organization of the buckets to which the key points.
TripleT [82] and Oracle Spatial and Graph [84] use multiple
hash-tables for different permutations of s, p, o, such that
one of the positions serves as the hash key and the other
two positions are stored in the buckets. gStore [88] hashes
the IRI and holds its adjacency list in the value as well as
a secondary tree-based construct (see Sect. 5.3). Chameleon
[5] utilizes a hash table from IRI to a subdivision of the graph.
Subdivisions are restructured dynamically according to the
query workload.

We also report on four systems that utilize instead special
representations. TripleBit [87] and BitMat [11] subdivide the
data by predicate thus creating a bit-matrix for each predicate
with rows representing subjects and columns representing
objects. Parliament [45] uses a sorted file with offset point-
ers from the triple to the next one with the same subject to
allow traversal. Effectively, this divides the triples into vari-
able length blocks of same-value parts. To navigate between
these blocks, Parliament uses either the offset pointers or

6 We only mention mechanisms beyond auto-balancing algorithms
prevalent in B+tree structures that are based on the number of keys in
each subdivision.

123

A design space for RDF data representations 357

Table 3 RDBMS-based Stores. <Prefix>#: representations that provide the number of triples with a given prefix

X → Y represents a hash/dictionary from key X to value(s) Y

binary search. YARS [36] augments this approach by sub-
dividing the sorted file into blocks accessible via a sorted
sparse index.

Recently, several data representations have been sug-
gested specifically for the support of worst-case-optimal join
(WCOJ) algorithms since those have been shown to be par-
ticularly efficient for processing n-way pivot access patterns.
Although different implementations of these join algorithm
exist [8,18], most have been implemented as extensions to
existing triplestore systems and often they are both read-only
and provide limited support of the SPARQL standard. The
most extensive implementation is provided in the Jena frame-
work to support the Leapfrog Triejoin [38]. Here, this n-way
pivot access pattern is supported through a fully-redundant
representation that adds three additional SPO permutation
indexes to the default indexes in Jena (TDB). Moreover,
it utilizes the prefix-sorted subdivision of a B+tree to pro-
vide support for an implementation of the WCOJ algorithm
that exploits the standard single-position pivot access pat-
terns. On the other hand, an extreme case of non-redundant
subdivision instead exploits a ring data structure comprised

of a bidirectional cyclic suffix-strings index that allows the
retrieval of any permutation of SPO triples [8]. This represen-
tation is highly subdivided and incurs a substantial number of
seek operations. To minimize the impact of these seeks, the
authors propose an extensive compressionmechanism allow-
ing to maintain the structure in memory and thus minimize
the seek cost. However, as mentioned above, this comes at
the expense of allowing this structure to support additional
access patterns, most notably write and delete patterns.

ID SpaceMost systems do not to subdivide the ID space.
Of those that do, most subdivide the space between IRI and
literals by assigning different ID ranges rather than storing
them separately as only 3store [33] and Blazegraph [49] do.

Oracle [84] and BitMat [11] present unique choices
for separating values with different roles. Oracle separates
between IDs assigned to IRI of classes and properties from
those assigned to other resources. BitMat separates between
resources used as properties, as subjects only, as objects only,
or either as subjects or objects.

IRI/Literal→ID & reverse ID→IRI For systems that
choose to replace IRI/literals with IDs, the mapping mecha-

123

358 T. Sagi et al.

Table 4 Non-RDBMS Stores. <Prefix># representations that provide the number of triples with a given prefix

nism is either B+ trees, which support range queries well, or
hash tables, which are more efficient for single lookup.

5.2 Compression

Table 6presents the triplestores’ compression choices grouped
by the choice for the main triple store. Most early systems
(circa 2003–2009) do not compress the main data at all. A
number of systems (RDF-3X [55], Sparqling kleene [31],

Virtuoso [24], YARS2 [36]) employ block-level compres-
sion. This approach entails organizing the triples in memory
blocks in a manner that allows compression using techniques
such as Huffman encoding [39]. YARS2 [36] also employs
sparse representations (also used by gStore [88] and Triple-
T [82]) where the indexes contain only the used values of
a position, rather than the full domain. SW-store [1] and
TripleBit [87] both use some form of column-compression,
where the values are stored by column, rather than by row,

123

A design space for RDF data representations 359

Table 5 Subdivision design choices

BDR Base data representation, BT B+tree, AVL AVL-tree, RR Relational row store, RC Relational column store, HT Hash table, SF Sorted file,
SI Sparse index over sorted file, MAT Matrix, DS Dynamic subdivision, S-D Schema data, U-L IRI-Literal/Large literal, SPO IRI divide by their
position (e.g., only as p)

allowing to skip empty rows, store only the difference from
the previous value (delta-compression) or other column-
compression methods. Trident [76] uses a combination of
different compression mechanisms. In particular, triples are
sorted in so-called binary tables, since they encode only two
of the 3 SPO positions. The triples are also represented either
row-wise or column-wise within different blocks in order to
exploit run-length encoding and other types of compression
when some values are repeated. The final three solutions are
derived from the subdivision choices made by the system.
Using a classic relational row-based representation, DB2
Graph [17] chose to limit the number of predicate columns
in its table to a fixed K, this reduces the chances of empty
columns in record rows and can be considered a form of
compression. BitMat [11] employs row-based compression
of its bit-matrix using similar methods as those employed
for column-based compression, and Chameleon [5] utilizes
order-preserving compression of its in-lined literals. We also
note that the ring data structure employed to represent the
graph via a set of suffix strings [8] is a way to compress

the triples and to index all their SPO permutations, yet the
current implementation for RDF is a read-only solution that
requires further study.

A second design choice in the compression dimensions is
whether to avoid storing IRIs and literal values as repeated
strings and instead use numerical IDs. Of the 20 systems
reviewed, only eight chose not to do so. 3XL [48] and
Chameleon [5] replace only IRI with IDs. 3XL leave all liter-
als in their original form andChameleon compress the literals
in place using order-preserving string compression. Virtu-
oso and Jena(TDB) [58] inline small literals and encode the
larger ones. The rest of the systems replace all strings with
IDs, regardless of their type.

ID compression is presented by increasing strength of
compression. Int denotes the usage of sequential integers
instead of the original string-based IRI/literal. More com-
pression can be achieved by compressing the IDs into
fixed-length integers (e.g., Virtuoso [24]). In an example
of extreme compression, TripleBit [87] compress IDs into
an average of 2–3 bytes by using variable-length compres-

123

360 T. Sagi et al.

Table 6 Compression design choices

B-C: Block-level compression; Sparse: compressed sparse index; C-C: Column-level compression; N-Col: Fixed number of columns; Cube:
Compressed bit-cube; ISC: Inlined string compression; IRI: Only replace IRI with ID; LS: Replace long strings only; All: replace all strings
with integers; Int: a sequential integer (uncompressed, usually 8 bytes); Fix: ID compressed into a fixed-size integer (6 bytes); Var: variable-sized
compressed integers (2–3 Bytes)

sion instead. Notable missing systems from this analysis are
Oracle [84] and GraphDB [15] which do not provide details
regarding this design choice in their publicly available doc-
umentation.

5.3 Redundancy

Table 7 presents a high-level summary of the implementa-
tions employing multiple redundant representations for the
main triple data. On average, there are 3 redundant repre-
sentations per system. Only one system (Sparqling kleene
[31]) offers reachability indexes to answer triple patterns
such as s p* o (i.e., property paths with kleene-start pat-
terns, see Definition 3). Only one system (gStore [88]) offers
a data representation tuned to matching an N-way same-
position pivot (a star-shaped subgraph structure). gStore is
also notable for being the only system employing a Bloomier
filter construct [19] (the VS*-tree) as a secondary data rep-
resentation. Bloom filters allow determining the existence of
a data item using a compact representation with low latency
at the expense of false positives but never false negatives.
Bloomier filters [19] extend this capability to allow several
functions, in this case returning the vertices matching a set
of PO/SP patterns. The use of a PO/PS hash map as part of
the VS*-tree lookup process is an almost singular example

of using two-position combination hash maps (e.g., sp→o).
Notably, a recent extension of the Jena (TDB) system to
support a worst-case-optimal join algorithm [38] has added
three additional B+-tree indexes to support this pattern. This
results in a high level of redundancy of the data, which new
approaches are trying to overcome with more compressed
(and way less redundant) indexed representations [8]. Also,
Trident [76] employs the replication of the six permutations
of the SPO positions, but employs adaptive storage represen-
tation to reduce the memory footprint.

5.4 Summary

Table 8 summarizes the keys insights obtained while review-
ing the surveyed systems as detailed above. In particular, we
list recent trends in implemented design choices and unex-
plored data representations.

Dimensional interdependence As a final note, while the
three SCR dimensions are orthogonal and independent for
the most part, the surveyed space shows a few cases, where a
design decision over one dimension impacts the availability
of design decisions in others. This impact can either limit
the availability of options or enable options that could not
be chosen otherwise. For instance, choosing to replace URI
with numerical IDs as a design choice over the compression

123

A design space for RDF data representations 361

Table 7 Redundancy

V : Vertices (s/o). X-YZ: A hash table X = x1 will lead to a datastructure sorted by XY Z where X = x1 or with a small number of other xi values.
TC: Triple counts, a hash table of #-triples per resource (s/p/o). 2VC: 2 Variable counts, for each 2 variable combination (sp, ps, …) maps to the
count of the number of triples for values of that combination. MM : Min/Max Values for each p/block. SF: spo Sorted File with pointers. BC:
Compressed bit-cube of |P| concatenated SO matrices. VST: VS* tree, Hash(PO/PS)→B+ tree→V (VS*-tree) RI: |p| s-*-o reachability indexes

Table 8 Summary of the survey of the features of existing systems

Subdivision Compression Redundancy

Prevalent approaches The increasing use of
hash-maps rather than
B+-trees.

Encoding of literals as integers.
Triple store compression
using bit-based
representations.

Multiple (≥ 3) representations
per system.

Gaps Limited use of complex and
hybrid indexes. Limited
support for representations
for optimal N-way joins.

No compression of secondary
indexes.

No support for special filters
(e.g., language). No use of
bloom-filters for existence
checks. Limited support for
complex traversals such as
k-hops and reachability. No
support for two-position (e.g.,
sp→o) hash maps.

123

362 T. Sagi et al.

dimension, both enables and requires a choice of subdivision
for the ID→IRI and IRI→ID mappings. Similarly, the com-
pression design choice of using non-sequential integers to
encode literals limits the ability of B+-tree and other sorted
structures to support sequence-compatible access patterns
such as closed ranges making these subdivision choices less
attractive.

6 Design space analysis

In this section, we study the data representations within the
design space introduced in Sect. 4, which can be employed
to satisfy the requirements of each access pattern analyzed
in Sect. 3. Each design decision is motivated by a specific
use case but comes with inherent trade-offs. Our SCR model
(Sect. 4) provides the necessary framework to explicitly ana-
lyze the implications of different design decisions. Therefore,
we also provide an analysis of the existing design decisions
listed in Sect. 5 identifying unexplored design choices.

6.1 Matching access patterns to the design space

In the following, we provide an analysis cross-referencing
the access patterns in Table 1 to the SCR dimensions (Fig. 4)
and their embodiments in Tables 5, 6, and 7. This links the
requirements of a specific access pattern with an appropriate
design choice.

Constants (Table 9) Our model shows that, for access
patterns matching partially instantiated triples, the close link
between the effects of subdivision, redundancy, and com-
pression is particularly evident. As mentioned earlier, the
presence of constants in an access pattern increases its selec-
tivity. A high degree of subdivision for fully and partially
instantiated search patterns is highly beneficial to reduce the
search space. Nevertheless, for partially instantiated triple
patterns we obtain a benefit only if the subdivision is at least
sequence compatible with the positions of the instantiated
variables.Otherwise,when the representation is not sequence
compatible, the system has to traverse more subsets with a
larger cost in random reads (e.g., if we search for all triples
with a specific predicate and we are using a hash table repre-
sentationwith buckets on subjects like inFig. 3).Weconclude
that, for partially instantiated triple patterns, high subdivision
can be highly beneficial if they are perfectly compatiblewith
the structure of the query, or strongly limit the query perfor-
mance if not. For very large range scans (or when no range
condition applies), instead, the common approach to store the
entire dataset within a specific index can be highly detrimen-
tal if the data structure does not have the option to perform
an efficient sequential scan (e.g., a linked hash table).

Compression could be beneficial for fully instantiated
access if it allows searching efficiently for the compressed

values. Yet, employing compression is detrimental if several
decompression steps are required to check the existence of
specific values. On the other hand, for partially instantiated
triple patterns, given that we expect a larger intermedi-
ate result, compression could reduce data transfer times.
Moreover, we could implement search through bitwise com-
parisons [87]. For uninstantiated access patterns, we will
instead usually gain a substantial benefit from compression
due to the reduced data transfer cost.

Finally, on the redundancy dimension, in the fully instanti-
ated case a data representation designed to answer existence
queries (e.g., Bloom filter) is highly beneficial. Instead,
for partially instantiated queries we should exploit differ-
ent tree or hash indexes as we search for bindings to the
variable positions given the instantiated positions. Hence,
multiple indexes are necessary to cover different combi-
nations of instantiated and uninstantiated positions (e.g.,
s, p �→o or s, o �→p). In both cases, high redundancy pro-
vides advantages for partially and fully instantiated access
patterns. Conversely, redundancy is ineffective for uninstan-
tiated queries since an entire scan of the data will be required.

Filter (Table 10) For filters, when the subdivision is
sequence compatible with the search range, it has a positive
effect. When the representation is not sequence compatible,
i.e., the values span multiple partitions, the subdivision will
cause a larger cost. Instead, when the filter condition requires
membership to a particularly small set of values and it is pos-
sible to enumerate those values (e.g., years between 2015 and
2020), we can actually exploit a hash table index translating
this access pattern into fully or partially instantiated triple
patterns. Still, this approach requires the system to be aware
of the domain or to have a precomputed set of values. For the
case where no filter condition is specified, in the worst case
we require a full scan of the data or to execute a partially
instantiated BGP (see above). Compression is beneficial in
terms of data transfer but could be detrimental when attribute
values need to be compared in a filter operation. In the redun-
dancy dimension, on the other hand, for filters involving a
large range of values or a range of values that cannot be
enumerated, a tree index is a common effective solution, as
long as it supports range scans, i.e., the data representation
is sequence compatible after paying an initial seek cost, e.g.,
a B+ tree.

Traversals (Table 11) For traversal access patterns, 1-hop
traversals are a special case of a partially instantiated triple
pattern (i.e., SP and PO). Therefore, for 1-hop traversals the
advantages of subdivision and redundancy are the same as
those of the corresponding partially instantiated access pat-
tern in Table 9. When the traversal is bound by a specific
predicate, subdivision across edges of the same predicate
is usually highly effective in reducing the search space and
achieves particularly good performance when the data repre-
sentation is seek-compatible to the access pattern retrieving

123

A design space for RDF data representations 363

Table 9 Effect of different storage solutions for each SCR dimension to address access patterns for Constants in the query

Fully instantiated Partially instantiated Uninstantiated

Subdivision ↑ smaller search space ↑ smaller search space if
compatible with
query; ↓ more search
steps if incompatible

↓ more search steps

Compression ↓ decompression
required to search
exact values; ↓
intermediate resultset
is small

↓ decompression
required to search
exact values; ↑
compressing
intermediate results

↑ compressing
intermediate results

Redundancy ↑ A Bloom filter to
check existence

↑ different SPO tree or
hash indexes

∼ requires full scan of
data

↑ points to an advantage, ↓ points to a drawback, ∼ points to a mostly unaffected performance (also in the following tables

Table 10 Effect of different storage solutions for each SCR dimension to address Filter access patterns in the query

Enumerable range Large range No-range

Subdivision ↑ faster search of single
values if compatible; ↓
more search steps if
incompatible

↑ faster search of single
values if compatible; ↓
more search steps if
incompatible

↓ more search steps

Compression ↓ decompression to
access small set; ↑
compressing
intermediate results

↑ faster read; ↑
compressing
intermediate results

↑ compressing
intermediate results; ↓
decompression
required for search

Redundancy ↑ hash-table search ↑ B+Tree search
&sorted scan

∼ requires full scan

the next edge in the path. On the other hand, for traversals
that are not bound by a specific predicate, subdivision across
the same subjects can provide some benefits, but subdivi-
sion across predicates or other kinds of subdivisions usually
increase the number of required search steps since they are
not seek-compatible. In general, compressing intermediate
results can be highly effective for large intermediate result
sets. However, using a compressed representation could be
expensive if the compression does not allow (for instance)
fast intersections (e.g., intersect objects and subjects lists).
Finally, exploiting redundancy, when the access pattern starts
from a node and traverses a fixed set of k-hops with the same
property or an unbounded set of hops (*/+-hops), specialized
indexes can be highly effective [31].

Pivot (Table 12) Access patterns that are joined together
on the same subject, with the pivot joining either binary or N
different triple patterns (forming so-called star shapes [77]),
are among the most optimized by existing triplestores (see
Sect. 5). On the subdivision dimension, different schemes
to partition over subjects are commonly applied to provide
sequence compatibility and are then very effective. In partic-
ular, representing attributes as table columns in a relational
model (e.g., Fig. 3c) has also proven highly beneficial [17].
Other similar clustered representations could in theory be

adapted to answer specific types of pivots joining N differ-
ent triple patterns. In the general case, WCOJ [38] requires
different representations to access triples in sorted order. For
pivot patterns on object to subject, the trade-offs are similar
to a special case of a 2-hop traversal, although in this case,
the predicates involved are also distinct and the intermedi-
ate variable binding is usually returned. Therefore, one could
employ ad hoc indexes for different 2-hop paths, deploy sub-
divisions based on predicates, or compressions that enable
bit-wise intersections. Compression can of course help data
transfer, but can help search, e.g., with id intersection across
compressed representations. Finally, employing redundancy,
most indexes provide fast execution of these patterns, bene-
ficial for modern join algorithms, e.g., WCOJ [38].

Return (Table 13) The requirements of access patterns
are also dependent on the type of information they extract
from the evaluation of the BGP, i.e., the returned values. This
means that, to return all the variable bindings, Subdivision,
depending how implemented, can either increase the number
of steps required to obtain the answers or instead provide a
benefit by allowing to read less data, depending on its com-
patibility to the access pattern. One important advantage is
provided by sorted representations when those are compati-
ble with the sorting order imposed by the query (e.g., by an

123

364 T. Sagi et al.

Table 11 Effect of different storage solutions for each SCR dimension to address Traversal access patterns in the query

1-hop k-hops over p */+ -hops over p

Subdivision ↑ property-table or
clustered on S or
SP, faster
search/retrieval

↑ clustered on P or
PS, faster
search/retrieval; ↓
more search steps
if divided over O

↑ clustered on P or
PS, faster
search/retrieval; ↓
more search steps
if cluster is
incompatible

Compression ↓ requires
decompression; ↑
compressing
intermediate
results

↓ requires
decompression; ↑
compressing
intermediate
results; ↑ bitwise
set intersection

↓ requires
decompression; ↑
compressing
intermediate
results; ↑↑ bitwise
set intersection

Redundancy ↑ hash-index on S or
SP, faster
search/retrieval

↑ execute as set of
1-hops; ↑
specialized index
[31]

↑ execute as set of
1-hops; ↑
specialized index
[31]

Table 12 Effect of different storage solutions for each SCR dimension to address Pivot access patterns in the query

Two-way same S/O/P Two-way different S/O/P N-way pivot

Subdivision ↑ clustered-properties [17]
less retrieval steps

↑ restrict search space ↑ clustered-properties [17]
less retrieval steps for the
same position; ↑ sorted
representations provide
WCOJ [38] guarantees

Compression ↓ requires decompression; ↑ compressing intermediate results; ↑ bitwise set intersection

Redundancy ↑ hash-index fast search ↑ Hash-index fast search ↑ B+-tree WCOJ [38]
guarantees

ORDER BY clause). On the other hand, when only distinct
value bindings are needed, a key-value data structure could
be exploited to just scan the keys, thus allowing even a scan-
compatible access. Note that this may not be possible for
arbitrary hash indexes. Also, for group by aggregates, Subdi-
vision could be beneficial when all the values over which to
compute the distinct operator reside within a single partition.
A subdivision that is at least sequence compatible with the
access via the group-by key would also provide improved
performance.

Compression can be advantageous for transmission of
large intermediate results when returning all answers, but
when returning results to the user, we will need to decom-
press all the variable bindings, incurring extra work. Note
that some compression methods are particularly effective
for, or even require, sorted data. Moreover, for return-
ing distinct values, compression of repeated values (e.g.,
〈key;count〉 pairs) could improve the scan performance and
avoid generating duplicates in the first place.When verifying
existence, compression could be detrimental if decompres-
sion is required before checking the predicate. Finally, in
case of aggregate information, representations in the form
of pre-aggregated values provide a large advantage, while

compression increases the cost, except for counts when the
actual values to be counted are not needed.

Redundancy does not introduce any further advantage or
disadvantage when all values are required to be returned,
unless the values need to be returned in a particular oder. In
this case, having a redundant representation compatible with
the required order will save an expensive sorting step. Fur-
thermore, when a search pattern verifies only existence, e.g.,
to verify whether node n1 is reachable from n0 without actu-
ally listing the paths that connect the two, Bloom filters and
similar types of set-based indexes (i.e., higher redundancy)
could be exploited effectively and provide perfect compat-
ibility. Finally, storing aggregate data in distinct redundant
data structures is highly beneficial to save computations.

Write (Table 14)Write operations usually incur two steps:
(i) determining which tuples to insert or delete and (ii) mate-
rializing their insertion or deletion. The first step requires
the same form of access pattern as read queries. However,
in the second step different data representations need to be
updated to have one or more triples added or removed. In
particular, with higher subdivision usually we only need to
update small localized data structures containing the tuple to
insert or delete. This can also allow smaller localized locks,

123

A design space for RDF data representations 365

Ta
bl
e
13

E
ff
ec
to

f
di
ff
er
en
ts
to
ra
ge

so
lu
tio

ns
fo
r
ea
ch

SC
R
di
m
en
si
on

to
ad
dr
es
s
R
et
ur
n
ac
ce
ss

pa
tte
rn
s
in

th
e
qu
er
y

A
ll
(u
ns
or
te
d)

A
ll
(s
or
te
d)

D
is
tin

ct
E
xi
st
en
ce

A
gg
re
ga
te

Su
bd
iv
is
io
n

↓m
or
e
se
ar
ch

st
ep
s
if
di
vi
de
d
re
su
lts
;↑

be
tte

r
pe
rf
or
m
an
ce

fo
r
so
rt
ed

re
tr
ie
va
l

↓m
or
e
se
ar
ch

st
ep
s
if
di
vi
de
d
re
su
lts
;↑

sm
al
ls
ea
rc
h
sp
ac
e
if
co
m
pa
tib

le
.

↑f
av
or
ab
le
to

gr
ou
p-
by

op
er
at
io
ns

C
om

pr
es
si
on

↑c
om

pr
es
si
ng

in
te
rm

ed
ia
te
re
su
lts
;↓

de
co
m
pr
es
si
on

fin
al
re
su
lts

↑f
as
ts
ki
p
ov
er

re
pe
at
ed

va
lu
es

↓d
ec
om

pr
es
si
on

re
qu
ir
ed

to
ch
ec
k

ex
is
te
nc
e

↓d
ec
om

pr
es
si
on

re
qu
ir
ed

to
co
m
pu
te
ag
gr
eg
at
e

R
ed
un
da
nc
y

∼
al
lr
es
ul
ts
ar
e

re
tu
rn
ed

un
pr
oc
es
se
d

↑a
vo
id

so
rt
in
g
ov
er

so
rt
ed

re
pr
es
en
ta
tio

n

↑i
n
a
ke
y-
va
lu
e
da
ta

st
ru
ct
ur
e
ac
ce
ss

on
ly

ke
ys

↑B
lo
om

fil
te
r
se
ar
ch

↑p
re
co
m
pu
te
d

va
lu
es

Ta
bl
e
14

E
ff
ec
to

f
di
ff
er
en
ts
to
ra
ge

so
lu
tio

ns
fo
r
ea
ch

SC
R
di
m
en
si
on

to
ad
dr
es
s
W

ri
te

ac
ce
ss

pa
tte
rn
s
in

th
e
qu
er
y

In
se
rt

D
el
et
e

Su
bd
iv
is
io
n

↑l
oc
al
iz
ed

up
da
te
s;

↑s
m
al
le
r
lo
ck
s;

↓r
es
iz
in
g
of

si
ng
le
su
bd
iv
is
io
n;

↓r
e-
di
st
ri
bu
te
su
bd
iv
is
io
ns

↑l
oc
al
iz
ed

up
da
te
s;

↑s
m
al
le
r
lo
ck
s;

↓r
e-
di
st
ri
bu
te
su
bd
iv
is
io
ns

C
om

pr
es
si
on

↓r
eq
ui
re
s
de
co
m
pr
es
si
on
;↑

in
se
rt
io
n
do
es

no
tr
eq
ui
re

re
si
zi
ng
;

↓r
eq
ui
re
s
de
co
m
pr
es
si
on
;

R
ed
un
da
nc
y

↓m
ul
tip

le
up

da
te
s
ar
e
re
qu

ir
ed

123

366 T. Sagi et al.

improving concurrency. Yet, when an insertion takes place,
we may need to resize the data structure. In some cases, this
results in a chain effect for the redistribution of elements
among partitions such as in a B+ tree node that reached the
maximum capacity, or in a sorted list. In compressed repre-
sentations, both insert and delete may require decompression
and re-compression. On the other hand, structures like fixed-
size bitmaps can be updatedmore easily with simple bit flips.
Other structures, like Bloom-filters, instead do usually not
allow deletes but only insertions. Finally, higher redundancy
requires each write operation to be mirrored in every redun-
dant copy.

6.2 A compatibility-based analysis

After exploring how the the design space dimensions inter-
sect with the access patterns, we now show how the notion of
compatibility and the cost model presented in Sect. 4 can be
used to asses the fit between existing solutions (as surveyed
in Sect. 5) and these access patterns. Furthermore, our clas-
sification enables identifying unexplored design options and
characterization of the optimal design choice for an access
pattern.

Analysis methodology Starting with a specific cell in
one of Tables 9, 10, 11, 12, or 13, one can investigate
whether a new data representation could be employed in
order to improve specific trade-offs. For example, consider
range queries (i.e., a filter access pattern) and the redundancy
dimension. In this case, we did not identify any existing
solution that adopts skip-list implementation (e.g., S3 [91])
or succint indexes (e.g., SuRF [90]) optimized for both
key-value search and range queries in order to support par-
tially instantiated queries and ranges. Similarly, few systems
explicitly employ stored representations (e.g., increasing
redundancy) for the special type ranges (Filter T in Table 1)
which could bemapped to an enumerable range of predefined
values (e.g., language tags).

A more advanced analysis can be performed for a spe-
cific query. Consider as an example the case of returning
the count of values over a partially instantiated BGP with
fixed predicate and variable subject and object, e.g.,SELECT
?s COUNT(?o) WHERE { ?s ex:friendOf ?o }
GROUP BY ?s. For this case, we did not find systems that
have a compressed representation of 〈key;count〉 and a seek
compatible subdivision over predicates.

Analysis results Table 15 presents a summary of the anal-
ysis insights. In particular, we show for read-only access
patterns the best choice found across existing implementa-
tions as well as design choices that have not been explored
despite (theoretically) providing better performance.We also
point out those cases where some widespread design choices
have important incompatibility with some access patterns,
identifying cases where better options could be studied.

Considering the Subdivision dimension, many systems
implement separate tables for triples sharing a specific pred-
icate. For instance, queries that match triples with the same
subject can usually exploit the clustered representationwhere
several properties for the same subject are stored together in
a single row [17]. Similarly, BGPs describing triples sharing
the same object can exploit an analogous data organization.
On the other hand, a constant in s or o can be exploited
by a hash index of the form s �→po. Yet, no representation
exploits subdivision for a pair of constants, e.g., sp �→o. For
fixed N-way pivot on the same variable, subdivisions like a
property-table, i.e., a table where each column is a property
for the same subject, can be seen as efficient solutions, but
are compatible only with a limited set of access patterns.
Conversely, in all their forms, filter operators are, in general,
efficiently executed over clustered and sorted representations
for values (e.g., B+trees), or other indexes that preserve order
(e.g., skip lists). Yet, overall, we see that there is a strong
incompatibility between filters on literals and the fact that
all representations store literals and special types in mixed
subdivisions. Also, we note that subdivision alone is not suf-
ficient because it can only be compatible with few access
patterns, so (as also discussed in the paragraphs below) a
system will always require redundant representations.

Our survey also reveals the absence of index compres-
sion solutions (e.g., [89]). For instance, we do not find any
application of effective compression solutions for secondary
representations, such as counting indexes (e.g., sp→#) and
structures like bloom-filters [26] or compact LSM-tries like
SuRF [90] that can also support existence checks, which are
prevalent in the existing workloads (as discussed in the next
section).

For redundancy, while 1-hop s→o queries are the most
common and involve a single triple, specialized indexes have
been proposed to speed up reachability and multi-hop path
expressions (e.g., Sparqling kleene [31]). Apart from Parlia-
ment [45], one can rarely find data representations supporting
traversal patterns as required by k-hop and *-hop access pat-
terns. Furthermore, solutions tend to rely on standard B+-tree
and hash map implementations, avoiding the use of hybrid
structures (e.g., hybrid indexes [65]). An exception is the
VS*-tree adopted by gStore [88], which, among others, can
also return all subjects or objects that match a specific set of
predicates and values, thus addressing the needs of a sub-
set of the N-way pivot access pattern where the variable
has the same position in all triple patterns. Data representa-
tions that can efficiently return pre-computedmatch counts or
other pre-computed aggregate values provide direct benefits
(e.g., group-by-query clusters [4]). Nonetheless, redundancy
is used to a large extent.

Recent advancement in query optimization have led to the
introduction of worst-case optimal join algorithms (WCOJ)
[8,38] that make use of highly redundant representations.

123

A design space for RDF data representations 367

Table 15 Compatibility between Access patterns and design choices

Access pattern Best found Incompatible Unexplored

S, P, O 1 Constant Hash table(+sL, +sK, +sQ),
Separate Table(+sL, +sQ)

Incompatible Hash table(-sL,-sK,-sQ) Surf(+sL, +sK, +sQ),
S3(+sL, +sQ)

SP, SO, PO 2 Constants Hash Table(+sK, +sQ),
B+Tree(+sL, +sQ)

SuRF(+sL, +sK, +sQ),
so �→p, sp �→o(+sL, +sK,
+sQ), S3(+sL, +sQ)

SPO 3 Constants Hash Table(+sK, +sQ),
B+Tree(+sL, +sQ)

Bloom filter(+sL, +sK)

< & > Closed range B+Tree(+sL, +sQ) Mixed Literals/URI(-sL, -sQ) SuRF(+sL, +sK, +sQ), Skip
list(+sL, +sQ)

< | > Open range B+Tree(+sL, +sQ) Mixed Literals/URI(-sL, -sQ) SuRF(+sL, +sK, +sQ), Skip
list(+sL, +sQ)

T Special type range Partial subdivision of ID
ranges(+sL, +sQ)

representations mix these(-sL,-sK,-sQ) Separate Tables/Files(+sL,
+sQ)

s→o 1-hop over p Hash Table(+sK, +sQ),
Matrix(+sK, +sQ),
Separate Table(+sL, +sQ)

sp �→o(+sL, +sK, +sQ)

s
k−→ o k-hop p1, . . . , pk Separate p matrix(+sL),

Reachability Index(+sL,
+sQ), VS*-tree(+sL)

sp �→o(+sL, +sK)

p∗/+ ?-hop over p Separate p matrix(+sL),
Reachability Index(+sL)

2-way same position Single Hash table(+sK,
+sQ)

B+Tree(-sK, +sL) sp �→o(+sL, +sK, +sQ)

2-way different position Pre-joined
materialization(+sL,
+sQ); Reachability
Index(+sL, +sQ)

B+Tree(-sK, -sL, -sQ) 4-position hash-map(+sK,
+sL, +sQ)

N-way same position VS*-tree (+sK); Indexed
Property table(+sL,+sQ);
Multiple B+Tree(-sK, -sL,
-sQ)

Incompatible Hash table(-sL,-sK,-sQ) Dyadic tree [43] (+sL)

N-way arbitrary position Multiple B+Tree(-sK, -sL,
-sQ)

Incompatible Hash table(-sL,-sK,-sQ) Dyadic tree [43] (+sL)

All values Single file(+sQ)

Sorted values B+tree(+sL, +sQ); Sorted
table(+sL, +sQ)

Hash Table (-sL, -sQ)

Distinct values Hash table(+sK, +sL) Value counts(+sL, +sK,
+sQ)

Existence Hash table(+sK) Bloom filter (+sK, +sL)

Aggregate Store counts(+sL, +sK,
+sQ), group-by
clusters(+sL, +sK, +sQ)

Compressed Value
counts(+sL, +sK, +sQ)

In brackets we highlight the compatibilities: selection compatible (+sL), seek compatible (+sK), sequence compatible (+sQ), and the corresponding
incompatibilities (-sL, -sK, -sQ)

These algorithms limit query complexity to a factor of the
final result size by performing an N-way join with a pivot
over the same variable in all positions. Current implementa-
tions require sorted access to a single triple pattern for triples
matching the BGP sharing the same variable. However, con-
ceptually, a solution providing all mappings of a variable
at once could support these algorithms better. The dyadic
tree proposed to index gap boxes in the geometric resolu-

tion approach to multi-way joins [43] provides a possible
avenue for providing such support. A gap box is a multi-
dimensional representation of the uncovered portions of the
domains of variables participating in a multi-way join. In the
absence of such a representation for RDF data, one solution
[38] (extending a Jena TDB system) uses a total of 6 B+-tree
indexes to cover all position permutations and thus settles for
a non-optimal (non seek-compatible) fully redundant solu-

123

368 T. Sagi et al.

tion.Another recent solution [8] opts for a highly compressed
and extremely subdivided wavelet-tree-based structure that
is built as a bidirectional spo ring which represents the entire
graph as a string and indexes all its suffixes. However, the
current implementation does not support many other access
patterns, most notably, from the write dimension.

Thus, in practical applications one is required to consider
a full-system design and to analyze the access patterns of an
entire workload. We provide an example of such analysis in
the following section.

7 Workload case analysis

In this section, we provide an empirical analysis of the access
patterns present in different workloads from existing bench-
marks and datasets. Moreover, we show how the analysis can
be used to guide the choice of which data representations to
adopt with respect to a query workload.

7.1 Analyzed workloads

Previous analyses (e.g., [70]) focused on specific features of
the language and query complexity (i.e., the topology of the
graph patterns). Therefore, such analyses are centered around
those characteristics thatwould impactmainly the query opti-
mizer. Instead, here we present an analysis of the access
patterns specific to the storage layer (described in Sect. 3)
whose performance have direct correlation with the available
physical data representations. In this sense, this analysis also
provides a complementary view to existing studies.

In particular, we employ 10 workloads: 5 from popular
synthetic SPARQL benchmarks and 5 based on real-world
query-logs. The synthetic benchmarks are the Lehigh Uni-
versity Benchmark (LUBM) [32], SP2Bench [71], the LDBC
Social Network Benchmark (LDBC) [23], the FEASIBLE
Benchmark [69], and the Waterloo SPARQL Diversity Test
Suite (WatDiv) [3], comprising 14, 17, 19, 50, and 50 queries,
respectively.

The real workloads are based on queries against public
biological knowledge graphs (BioBench [83]), query logs
from the DBpedia endpoint [16], user submitted queries to
the public WikiData endpoint [79], the Semantic Web Dog
Food query log [53], and a popular benchmark for complex
natural question answering over Freebase (Complex) [75].
Theworkloads contain 22, 46, 3.4k, 64k, and169.7kqueries.

To identify the access patterns, we implemented a static
analysis parser for SPARQL, available online.7 The analyzer
extracts the parse tree from each query with the Jena query
parser [7] and automatically maps query constructs matching
the aforementioned access patterns (see Sect. 3 and Fig. 2).

7 https://github.com/tomersagi/rdf_access_patterns.

Hence, the input of the parses is a given query workload,
and the output is the analysis of the prevalence of each spe-
cific access pattern in the given workload. We envision that
the provided tool can be used by practitioners to evaluate
their own query logs for the prevalence of specific access
patterns. These patterns can then be compared with the sup-
port provided by their systems of choice. Thus, for example,
if a workload is characterized by an abundance of k-hops, it
would be prudent to evaluate the support by the current sys-
temcompared to an alternative system that provides a suitable
representation, such as the VS*-tree provided by gStore [88]
or the reachability index in Sparqling kleene [31].

7.2 Limitations

In general, the existence of an access pattern in a query does
not mean that a specific system must utilize it to answer the
query. For example, k-hop patterns such as {s1 p1/p2 ?o1}
can be answered by converting the BGP into the O ≡ S pivot
pattern {s1 p1 ?v1. ?v1 p2 ?o}. Another example is the sorted
value return pattern, which can be used by different algo-
rithms to answer other query patterns as well, e.g., byWCOJ
[38] to perform the efficient intersection in an N-way pivot.
Yet, in our analysis,we countedonlyqueries explicitly requir-
ing sorted output in the form of an ORDER BY clause. Also,
we excluded from this analysis those ORDER BY clauses
that followed an aggregation resulting from a GROUP BY
clause, since the sorted output could not be directly derived
from a sorted retrieval operation.

7.3 Results and discussion

The aggregated results over all benchmarks are presented in
Table 16. Constants are mainly used in predicate (P) and
subject-predicate (SP) combinations. The abundance of P-
constant patterns justifies the prevalent use of subdivision
by predicates in the systems reviewed, which allows rapid
reduction of the search space. SP combinations are better
served by point-lookup mechanisms such as hash maps, yet
this alone does not justify the redundancy of having indexes
for all permutations of SPO since, for instance, patterns
selecting objects (O) are quite rare.

The large number of binary same-position (e.g., S≡S)
pivots requires systems to supplement the subdivision of
data representations by predicate with other redundant data
representations supporting access patterns compatible with
selection by subject/object. Within the binary different-
position pivot (BiD in Table 16), the O≡S pivot dominates
since very few queries involve the pivot in the predicate
positions. The N-way pivots are highly prevalent in all
benchmarks. Perhaps surprisingly, arbitrary position variable
centric pivots (NwA in Table 16), are almost as prevalent as
star patterns. The recent emergence ofWCOJ algorithms [38]

123

https://github.com/tomersagi/rdf_access_patterns

A design space for RDF data representations 369

Table 16 Prevalence of access patterns in popular RDF benchmarks

Color marks prevalence: Yellow/Medium 0.33−0.66, High/Red >0.66; 0.0∗ marks values in 0.0 − 0.01. [] represents a closed range, [) an open
range, and Sp* a special range. SkO and OkS represent K-step S→O and O→S traversals, respectively. All: all values, DV: distinct values, ST:
sorted, EX: existence check, Σ aggregate. Pivot acronyms: BiS: Binary same position, BiD: Binary different position, Star: N-way same position
is also known as a star pattern, NwA: N-way arbitrary position

optimizing this access pattern has exposed the limitations of
existing data representations in supporting this pattern and
required the introduction of novel representations such as the
recently proposed ring [8], that allows all-position pivots on
a selected variable in a single representation.

Notably, a large number of benchmark queries employ
special range filters, e.g., filters for specific languages (e.g.,
@en), or specific types of literals, i.e., numeric values vs.
strings vs. dates. This is especially prevalent when querying
multi-language knowledge graphs and when filtering values
only for literals of a specific data type. This calls for indexes
or subdivisions of triple objects by languages and data types.
Yet, none of the data representations in the reviewed storage
systems explicitly support such access patterns although the
benchmark queries suggest they could be especially useful.
Conversely, the relative absence of closed/open range filters
from most benchmarks corresponds well with the decreased
reliance of systems onB+-trees observed in Section 5.3 as the
relative advantage of B+trees over hash-based lookup mech-
anisms is greatly diminished in the absence of closed/open
range queries or other access patterns that require sorted
access.

When examining the traversal patterns, it is evident that
1-hop traversals dominate although k-hop traversals have a
substantial presence as well. It is interesting to note how
LDBC queries represent an outlier since almost all queries
employ k-hop traversals. For those special workloads, a sys-
tem supporting efficient k-hops (e.g., gStore [88]) could
outperform systems that are forced to break these k-hops
up into multiple 1-hop patterns. Moreover, traversals with
unbounded path queries (marked as P∗) are quite rare. This
rarity renders reachability indexes not so useful in prac-
tice when compared to the extra space and update cost they
require. It is an open question whether the currently lim-

ited presence of these queries is due to the complexity of
the query language (i.e., users are not familiar in express-
ing such queries) or to most systems not being optimized
for these access patterns and hence known to result in slow
queries that are avoided by users.

Another important finding is that over 80% of all the
queries can make use of existence access patterns. Recall
that in these patterns, no triple values are required, but only a
simple test of existence. This prevalence is especially striking
when considering that almost no existing data representa-
tions specifically target existence queries. In many ways, the
success of bit representations such as TripleBit [87] and Bit-
Mat [11] can be attributed to this prevalence. Therefore, data
representations that are compatiblewith existence access pat-
terns, such as Bloom filters, are an unexplored but highly
promising addition to existing systems and could very likely
replace less-frequently used indexes (e.g., B+-trees on OSP
permutations). There is a relatively low number of queries
requiring an explicit sorted result. This allows for the use
of unsorted representations and algorithms for much of the
retrieval, leaving the sorting for post-processing. Finally, we
see that distinct values are often required while aggregation
is present in only a few queries. However, once more, since
aggregation queries are currently computationally expensive,
we could not exclude that better performance for such queries
would result in more frequent use.

One could also use Table 16 to perform retrospective
analysis of previously published benchmarks. For example,
upon its introduction, DB2 Graph [17] was compared with
RDF-3X [55] over both LUBM and DBpedia. Two major
differences between these two benchmarks are the preva-
lence of P-position constant queries in DBpedia as well as
more queries returning distinct values and existence checks
rather than full results. Thus, onewould expect RDF-3Xwith

123

370 T. Sagi et al.

its P-centric data representations (which DB2 Graph lacks)
and usage of IRI replacement to perform comparatively bet-
ter on DBpedia than on LUBM. Indeed, the more modern
DB2 Graph was not able to outperform RDF-3X on DBpe-
dia although doing twice as well on LUBM.

8 Related surveys

Sakr and Al-Naymat [68] defined a taxonomy of data repre-
sentations for relational-basedRDF triplestores. In thiswork,
we review all centralized RDF triplestores.

Modoni et al. [52] review triplestores in the context of
their usefulness as meta data management systems used by
other software in an enterprise scenario. Thus, they focus on
technical and non-functional features such as user manage-
ment, security, and programming language support, unlike
our focus on data representation.

Ma et. al. [50] reviewRDF triplestores by their logical data
representation, dividing the landscape into relational (tra-
ditional) and non-relational (NoSQL). They further divide
relational representations into vertical (single triple table
with 3 columns s p o), horizontal (s as row p as column o as
value / s as row, p as table and o as value) and type (multiple
standard horizontal tables partitioned by the s type). In this
work, we abstract beyond relational/non-relational, looking
at three orthogonal design dimensions.

Özsu [59] focuses on several representative solutions con-
trasting the centralized versus the distributed approach, and
within the centralized approach lists a few architectural
choices such as whether to rely on a relational mapping
from RDF to an RDBMS. Pan et al. [60] present a similar
taxonomy, complementing it with a review of the promi-
nent benchmarks used in the field and a short comparative
empirical evaluation. In this work, we instead abstract across
different architectural choices to identify the underlying
design space.

Abdelaziz et al. [2] focus in their review on distributed
triplestores and on large-scale benchmarks. Kaoudi and
Manolescu [42] similarly limit their analysis to cloud-native
solutions. In this work, we focus on centralized stores since
the distribution of a data structure can be handled as an
orthogonal aspect.

Wylot et al. [85] provide a taxonomy whose two main
branches are centralized and distributed, albeit with a more
detailed categorization of the centralized branch into six
architectural approaches. The six types offered are: triple
tables, property tables, index permutations, vertical partition-
ing, graph-based, and binary storage.While these correspond
to some of the options in our subdivision and redundancy
dimensions, the authors do not discuss additional solutions
we identify, e.g., specific indexes for specific access patterns,
such as hash indexes and reachability indexes. They do not

explicitly address compression options (as we do in Table 6)
and they do not discuss the compatibility between access
patterns and design choices. In this paper, we identify the
fine-grained design space options available to system design-
ers and align them across three orthogonal dimensions to
allow identifying new, previously unexplored, combinations.
Therefore, our analysis is significantly more generalizable,
as demonstrated by our ability to analyze 22 systems over the
proposed SCR space, overcoming the limitations of Wylot et
al. [85].

Pérez et al. [62] performedworst-case complexity analysis
of SPARQL operators regardless of any indexes or physical
data representations by counting the number of edges tra-
versed in a conceptual graph representation for each pattern.
In our work, we align between design choices for data rep-
resentation and their effect on the cost of different access
patterns.

The Data Calculator is based on the analysis provided
by the RUM Conjecture [10], which explores the trade-offs
between read times (R), update cost (U), and memory (or
storage) overhead (M).The intuition behind theRUMconjec-
tures is also shared by our SCR space, although we perform
a complementary analysis.

Finally, in the designofPeloton [61], Pavlo et al. present an
overview of self-driving actions, i.e., the types of actions that
a self-tuning (also called self-driving) relational systemmust
support. These actions are divided in three classes: runtime
actions, physical actions, and data actions. Moreover, these
actions are limited to the relational data model. In practice,
for the storage level, they only allow either to move from
columnar layout to row layout, and vice versa, or to add
and drop indices. Nonetheless, we envision the possibility
to expand the Peloton framework to the case of triplestores
and believe that the analysis provide here is a fundamental
contribution in this direction.

9 Conclusions and future work

In thiswork,we introduce thenewSubdivision-Compression-
Redundancy (SCR) design space of data representations for
RDF databases. We also introduce a new feature space for
analyzing query workload access patterns. Together, they
allow the analysis of RDF store design decisions, specifi-
cally, which data representations can effectively support a
given workload. We performed an analysis of popular RDF
store benchmarks under these assumptions and showed that
multi-hop traversals and existence checks are broadly under-
served by existing RDF store designs, which are oriented
toward providing support for 1-hop traversals, pivots, and
access patterns featuring a constant predicate value. Many
of these design choices can be made at run-time (e.g., by
using an automated tuning mechanism) following an inspec-

123

A design space for RDF data representations 371

tion of a query load or in advance for a planned workload.
To map between query loads and design choices, we offer a
simple cost model, a feature space over which query loads
can be evaluated, and an analysis of the impact of these
choices. Thus, we lay the ground for future RDF stores to
design novel solutions over this space in an informed man-
ner. Such designs can be achieved either manually or even
semiautomatically as proposed by the recent effort in self-
designing data structures [40] and self-organizing relational
database systems [61]. By cross-referencing the access pat-
terns in a query workload with SCR design options, future
RDF stores will be able to add components of the system
to match expected workload. In future work, we intend to
explore the architecture and design principles of such sys-
tems.

Acknowledgements We wish to thank the anonymous reviewers for
the detailed and insightful comments that allowed us to greatly improve
the final version of this manuscript.

Funding This work is supported by the Independent Research Fund
Denmark under Grant No. DFF-8048-00051B (RelWeb) and the SEMI-
OTIC project, Aalborg University’s Talent Programme, the European
Union’s Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie Grant agreement No. 838216, and the Poul
Due Jensen Foundation.

Data availability The data in this work were collected from public
datasets (see Sect. 7 for references and a link to our code).

Declarations

Conflict of interests The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: SW-Store:
a vertically partitioned DBMS for semantic web data management.
VLDB J. 18(2), 385–406 (2009)

2. Abdelaziz, I., Harbi, R., Khayyat, Z., Kalnis, P.: A survey and
experimental comparison of distributed SPARQL engines for very
large RDF data. Proc. VLDB Endow. 10(13), 2049–2060 (2017)

3. Aluç, G., Hartig, O., Tamer Özsu, M., Daudjee, K.: Diversified
stress testing of RDF data management systems. In: ISWC. pp.
197–212 (2014)

4. Aluç, G., Tamer Özsu, M., Daudjee, K., Hartig, O.: Executing
queries over schemalessRDFdatabases. In: ICDE. 807–818 (2015)

5. Aluç, G., Tamer Özsu, M., Daudjee, K.: Building self-clustering
RDF databases using tunable-LSH. VLDB J. 28(2), 173–195
(2019)

6. Andrzejewski, W., Wrembel, R.: GPU-WAH: applying GPUs
to compressing bitmap indexes with word aligned hybrid. In:
Database and Expert SystemsApplications, pp. 315–329. Springer,
Berlin (2010)

7. Apache: Apache Jena. Accessed jan. 4, 2020. http://jena.apache.
org (2020)

8. Arroyuelo, D., Hogan, A., Navarro, G., Reutter, J.L., Rojas-
Ledesma, J., Soto, A.: Worst-case optimal graph joins in almost
no space. In: Proceedings of the 2021 International Conference on
Management of Data. pp. 102–114 (2021)

9. Athanassoulis,M., Idreos, S.: Design tradeoffs of data accessmeth-
ods. In: SIGMOD. pp. 2195–2200 (2016)

10. Athanassoulis, M., Kester, M.S., Maas, L.M., Stoica, R., Idreos, S.,
Ailamaki, A., Callaghan, M.: Designing access methods: the RUM
conjecture. In: EDBT. pp. 461–466 (2016)

11. Atre, M., Srinivasan, J., Hendler, J.A.: BitMat: a main-memory
bit matrix of RDF triples for conjunctive triple pattern queries. In:
ISWC (Posters & Demonstrations). pp. 1–2 (2008)

12. Bausch, D., Petrov, I., Buchmann, A.: Making cost-based query
optimization asymmetry-aware. In: Proceedings of the Workshop
on Data Management on New Hardware. pp. 24–32 (2012)

13. Bebee, B.R., Choi, D., Gupta, A., Gutmans, A., Khandelwal, A.,
Kiran, Y., Mallidi, S., McGaughy, B., Personick, M., Rajan, K.,
Rondelli, S., Ryazanov, A., Schmidt, M., Sengupta, K., Thompson,
B.B., Vaidya, D., Wang, S.: Amazon neptune: graph data manage-
ment in the cloud. In: ISWC (Posters & Demonstrations). (2018)

14. Besta, M., Peter, E., Gerstenberger, R., Fischer, M., Pod-
stawski, M., Barthels, C., Alonso, G., Hoefler, T.: Demystifying
graph databases: analysis and taxonomy of data organization,
system designs, and graph queries. Technical Report. (2019)
arXiv:1910.09017

15. Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z.,
Velkov, R.: OWLIM: a family of scalable semantic repositories.
Semantic Web 2(1), 33–42 (2011)

16. Bonifati, A., Martens, W., Timm, T.: An analytical study of large
SPARQL query logs. VLDB J. 29(2), 655–679 (2020)

17. Bornea,M.A.,Dolby, J., Kementsietsidis, A., Srinivas,K.,Dantres-
sangle, P., Udrea, O., Bhattacharjee, B.: Building an efficient RDF
store over a relational database. In: SIGMOD. pp. 121–132 (2013)

18. Brisaboa, N.R., Cerdeira-Pena, A., Fariña, A., Navarro, G.: A com-
pact RDF store using suffix arrays. In: Costas, I., Simon, P., Emine,
Y. (eds.) String Processing and InformationRetrieval, pp. 103–115.
Springer, Cham (2015)

19. Chazelle, B., Kilian, J., Rubinfeld, R., Tal, A.: The bloomier filter:
an efficient data structure for static support lookup tables. In: Pro-
ceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA). pp. 30–39 (2004)

20. Chong, E.I., Das, S., Eadon, G., Srinivasan, J.: Integrating RDF
data into a relational database system. US Patent US8719250B2
(2014)

21. Cyganiak, R.: A relational algebra for SPARQL query developers
with a powerful tool to extract information from large A relational
algebra for SPARQL. Technical Report, HP Laboratories Bristol,
Bristol, UK (2005)

22. Duan, S., Kementsietsidis, A., Srinivas, K., Udrea, O.: Apples and
oranges: a comparison of RDF benchmarks and real RDF datasets.
In: SIGMOD. 145–156 (2011)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://jena.apache.org
http://jena.apache.org
http://arxiv.org/abs/1910.09017

372 T. Sagi et al.

23. Erling, O., Averbuch, A., Larriba-Pey, J.-L., Chafi, H., Gubichev,
A., Prat-Pérez, A., Pham, M., Boncz, P.A.: The LDBC Social
Network Benchmark: Interactive Workload. In: SIGMOD. pp.
619–630 (2015)

24. Erling, O., Mikhailov, I.: Virtuoso: RDF support in a native
RDBMS. In: Semantic Web Information Management - A Model-
Based Perspective. Springer, pp. 501–519 (2009)

25. Fernández, J.D.,Martínez-Prieto,M.A., Gutiérrez, C., Polleres, A.,
Arias,M.: BinaryRDF representation for publication and exchange
(HDT).Web Semant. Sci. Serv. AgentsWorldWideWeb 19, 22–41
(2013)

26. Ficara, D., Giordano, S., Procissi, G., Vitucci, F.: Multilayer
compressed counting bloom filters. In: Proceedings of the 27th
Conference on Computer Communications. IEEE, pp. 311–315
(2008)

27. Florescu, D., Levy, A., Manolescu, I., Suciu, D.: Query optimiza-
tion in the presence of limited access patterns. In: SIGMOD. pp.
311–322 (1999)

28. Franz Inc. 2020. AllegroGraph. Accessed jan. 14, 2020. https://
franz.com/agraph/allegrograph

29. Frasincar, F., Houben, G.-J., Vdovjak, R., Barna, P.: RAL: an alge-
bra for querying RDF. WWW 7(1), 83–109 (2004)

30. Galárraga, L., Hose, K., Schenkel, R.: Partout: a distributed engine
for efficient RDF processing. WWW 2014, 267–268 (2014)

31. Gubichev, A., Bedathur, S.J., Seufert, S.: Sparqling kleene: fast
property paths in RDF-3X. In Workshop on Graph Data Manage-
ment Experiences and Systems, GRADES (2013)

32. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowl-
edge base systems. J. Web Sem. 3(2–3), 158–182 (2005)

33. Harris, S., Gibbins, N.: 3store: efficient bulk RDF storage. In: Pro-
ceedings of the International Workshop on Practical and Scalable
Semantic Systems (PSSS). 1 (2003)

34. Harris, S., Lamb, N., Shadbolt, N.: 4store : The design and imple-
mentation of a clustered RDF store. In: Scalable Semantic Web
Knowledge Base Systems (SSWS). pp. 81–96 (2009)

35. Harris, S.: Andy. Seaborne. 2012. SPARQL 1.1 Query Language.
W3C Recommendation 21 March (2013)

36. Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: A federated
repository for querying graph structured data from the web. In:
ISWC. pp. 211–224 (2007)

37. Hellerstein, J.M., Stonebraker, M., Hamilton, J.: Architecture of a
database system. Found. Trends Databases 2007, 141–259 (2007)

38. Hogan, A., Riveros, C., Rojas, C., Soto, A.: A worst-case opti-
mal join algorithm for SPARQL. In: ISWC. Springer, pp. 258–275
(2019)

39. Huffman, D.A.: A method for the construction of minimum-
redundancy codes. Proc. IRE 40(9), 1098–1101 (1952)

40. Idreos, S., Dayan,N., Qin,W.,Akmanalp,M.,Hilgard, S., Ross,A.,
Lennon, J., Jain, V., Gupta, H., Li, D., Zhu, Z.: Design continuums
and the path toward self-designing key-value stores that know and
learn. In: CIDR (2019)

41. Idreos, S., Zoumpatianos, K., Hentschel, B., Kester, M.S., Guo, D.:
The data calculator: data structure design and cost synthesis from
first principles and learned cost models. In: SIGMOD. pp. 535–550
(2018)

42. Kaoudi, Z., Manolescu, I.: RDF in the clouds: a survey. VLDB J.
24(1), 67–91 (2015)

43. Khamis, M.A., Ngo, H.Q., Ré, C., Rudra, A.: Joins via geometric
resolutions: worst case and beyond. ACM Trans. Database Syst.
(TODS) 41(4), 1–45 (2016)

44. Klyne, G., Carrol, J.J., McBride, B.: RDF 1.1 Concepts and
Abstract Syntax. World-Wide Web Consortium (2014)

45. Kolas, D., Emmons, I., Dean, M.: Efficient linked-list RDF index-
ing in Parliament. In: Proceedings of the Workshop on Scalable
SemanticWebKnowledgeBaseSystems (SSWS).WashingtonDC,
USA, pp. 17–32 (2009)

46. Krech, D.: RDFlib: A Python Library for Working with RDF.
Accessed jan. 14, (2020). https://rdflib.readthedocs.io

47. Lissandrini, M., Brugnara, M., Velegrakis, Y.: Beyond mac-
robenchmarks: microbenchmark-based graph database evaluation.
Proc. VLDB Endow. 12(4), 390–403 (2018)

48. Liu, X., Thomsen, C., Pedersen, T.B.: 3XL: supporting efficient
operations on very large OWL Lite triple-stores. Inform. Syst.
36(4), 765–781 (2011)

49. SYSTAP LLC. 2013. The bigdata RDF Database. Techni-
cal Report. SYSTAP LLC. https://blazegraph.com/docs/bigdata_
architecture_whitepaper.pdf

50. Ma, Z., Capretz, M.A.M., Yan, L.: Storing massive resource
description framework (RDF) data: a survey. Knowl. Eng. Rev.
31(4), 391–413 (2016)

51. Menon, P., Mowry, T.C., Pavlo, A.: Relaxed operator fusion
for in-memory databases: making compilation, vectorization, and
prefetching work together at last. Proc. VLDB Endow. 11(1), 1–13
(2017)

52. Modoni, G.E., Sacco, M., Terkaj, W.: A survey of RDF store
solutions. In: Proceedings of the Conference on Engineering, Tech-
nology and Innovation (ICE). pp. 1–7 (2014)

53. Möller, K., Heath, T., Handschuh, S., Domingue, J.: Recipes for
semantic web dog food— the ESWC and ISWCmetadata projects.
In: ISWC. pp. 802–815 (2007)

54. Muys, A.: Building an enterprise-scale database for RDF data.
Technical Report. The Mulgara Project. (2006) https://code.
mulgara.org/projects/mulgara/wiki/ImperfectIndexes

55. Neumann, T., Weikum, G.: The RDF-3X engine for scalable man-
agement of RDF data. VLDB J. 19(1), 91–113 (2010)

56. Nitta, K., Savnik, I.: Survey of RDF storagemanagers. In: Proceed-
ings of the International Conference on Advances in Databases,
Knowledge, and Data Applications. pp. 148–153 (2014)

57. OntoText: GraphDB, The Best RDF Database for Knowledge
Graphs. Accessed jan. 14, (2020). https://www.ontotext.com/
products/graphdb/

58. Owens, Alisdair, Seaborne, Andy, Gibbins, Nick: Clustered TDB’:
AClustered Triple Store for Jena. Univ. of Southampton, Technical
Report (2009)

59. Özsu, M.T.: A survey of RDF data management systems. Front.
Comput. Sci. 10(3), 418–432 (2016)

60. Pan, Z., Zhu, T., Liu, H., Ning, H.: A survey of RDF manage-
ment technologies and benchmark datasets. J. Ambient Intell. and
Humanized Comput. 9(5), 1693–1704 (2018)

61. Pavlo, A., Angulo, G., Arulraj, J., Lin, H., Lin, J., Ma, L., Menon,
P., Mowry, T.C., Perron, M., Quah, I., Santurkar, S., Tomasic, A.,
Toor, S., Van Aken, D., Wang, Z., Wu, Y., Xian, R., Zhang, T.:
Self-driving database management systems. In: CIDR (2017)

62. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of
SPARQL. ACM Trans. Database Syst. 34(3), 1–45 (2009)

63. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for
RDF. W3C Recommendation 15 January 2008 (2008)

64. Punnoose, R., Crainiceanu, A., Rapp, D.: Rya: A scalable RDF
triple store for the clouds. In: Proceedings of the Workshop on
Cloud Intelligence (Cloud-I). Article 4 (2012)

65. Qu, W., Wang, X., Li, J., Li, X.: Hybrid indexes by exploring tradi-
tional B-tree and linear regression. In: International Conference on
Web Information Systems andApplications. Springer, pp. 601–613
(2019)

66. Ravindra, P., Kim, H., Anyanwu, K.: An intermediate algebra
for optimizing RDF graph pattern matching on MapReduce. In:
ESWC. pp. 46–61 (2011)

67. Sahoo, S.S., Halb, W., Hellmann, K., Idehen, S., Jr Thibodeau, T.,
Auer, S., Sequeda, J., Ezzat A.: A survey of current approaches for
mapping of relational databases to RDF. Technical Report. W3C
RDB2RDF Incubator Group (2009)

123

https://franz.com/agraph/allegrograph
https://franz.com/agraph/allegrograph
https://rdflib.readthedocs.io
https://blazegraph.com/docs/bigdata_architecture_whitepaper.pdf
https://blazegraph.com/docs/bigdata_architecture_whitepaper.pdf
https://code.mulgara.org/projects/mulgara/wiki/ImperfectIndexes
https://code.mulgara.org/projects/mulgara/wiki/ImperfectIndexes
https://www.ontotext.com/products/graphdb/
https://www.ontotext.com/products/graphdb/

A design space for RDF data representations 373

68. Sakr, S., Al-Naymat, G.: Relational processing of RDF queries: a
survey. SIGMOD Record 38(4), 23–28 (2009)

69. Saleem, M., Mehmood, Q., Ngonga Ngomo, A.-C.: FEASIBLE:
a feature-based SPARQL benchmark generation framework. In:
ISWC. pp. 52–69 (2015)

70. Saleem, M., Szárnyas, G., Conrads, F., Ahmad Chan Bukhari, S.,
Mehmood, Q., Ngomo, A.-C.N.: How representative Is a SPARQL
benchmark? An analysis of RDF Triplestore benchmarks. In:
WWW. pp. 1623–1633 (2019)

71. Schmidt, M., Hornung, T., Meier, M., Pinkel, C., Lausen, G.:
SP2Bench: a SPARQL performance benchmark. In: SemanticWeb
Information Management - A Model-Based Perspective. Springer,
pp. 371–393 (2009)

72. Griffiths Selinger, P., Astrahan, M.M., Chamberlin, D.D., Lorie,
R.A., Price, T.G.: Access path selection in a relational database
management system. In: SIGMOD, pp. 23–34. Association for
Computing Machinery, New York, NY, USA (1979)

73. Sintek, M., Kiesel, M.: RDFBroker: a signature-based high-
performance RDF store. In: ESWC. pp. 363–377 (2006)

74. Stardog Union. (2020). Stardog. Accessed jan. 14, 2020. https://
www.stardog.com/

75. Talmor, A., Berant, J.: The web as a knowledge-base for answering
complex questions. In: NAACL-HLT. pp. 641–651 (2018)

76. Urbani, J., Jacobs, C.: Adaptive low-level storage of very large
knowledge graphs. In: Proceedings of The Web Conference 2020
(Taipei, Taiwan) (WWW’20). Association for ComputingMachin-
ery, New York, NY, USA, pp. 1761–1772. (2020) https://doi.org/
10.1145/3366423.3380246

77. Vidal, M.-E., Ruckhaus, E., Lampo, T., Martínez, A., Sierra, J.,
Polleres, A.: Efficiently joining group patterns in SPARQL queries.
In: Extended Semantic Web Conference. Springer, pp. 228–242
(2010)

78. Volz, R., Oberle, D., Staab, S., Motik, B.: KAON SERVER - a
semantic web management system. In: WWW. online (2003)

79. Vrandečić, D., Krötzsch, M.:Wikidata: a free collaborative knowl-
edgebase. Commun. ACM 57(10), 78–85 (2014)

80. Wang, Y., Xiaoyong, D., Jiaheng, L., Wang, X.: FlexTable: using a
dynamic relationmodel to storeRDFdata. In:DatabaseSystems for
Advanced Applications (DASFAA), pp. 580–594. Tsukuba, Japan
(2010)

81. Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing
for semantic web data management. Proc. VLDB Endow. 1(1),
1008–1019 (2008)

82. Wolff, B.G.J., Fletcher, G.H.L., Lu, J.J.: An extensible framework
for query optimizationonTripleT-basedRDFstores. In:Workshops
of EDBT/ICDT. pp. 190–196 (2015)

83. Wu, H., Fujiwara, T., Yamamoto, Y., Bolleman, J., Yamaguchi, A.:
BioBenchmark Toyama 2012: an evaluation of the performance of
triple stores on biological data. J. Biomed. Semant. 5(1), 32 (2014)

84. Zhe W., Moreno, G.M., Banerjee, J.: Storing and querying graph
data in a key-value store. US Patent US20140310302A1 (2014)

85. Wylot, M., Hauswirth, M., Cudré-Mauroux, P., Sakr, S.: RDF data
storage and query processing schemes: a survey. ACM Comput.
Surv. 51(4), 36 (2018)

86. Yakovets,N.,Godfrey, P.,Gryz, J.: Evaluation of SPARQLproperty
paths via recursive SQL. AMW 1087 (2013)

87. Yuan, P., Liu, P., Wu, B., Jin, H., Zhang, W., Liu, L.: TripleBit: a
fast and compact system for large scale RDF data. Proc. VLDB
Endow. 6(7), 517–528 (2013)

88. Zeng, L., Zou, L.: Redesign of the gStore system. Front. Comput.
Sci. 12(4), 623–641 (2018)

89. Zhang, H., Andersen, D.G., Pavlo, A., Kaminsky, M., Ma, L.,
Shen, R.: Reducing the storage overhead of main-memory OLTP
databases with hybrid indexes. In: SIGMOD. pp. 1567–1581
(2016)

90. Zhang, H., Lim, H., Leis, V., Andersen, D.G., Kaminsky, M., Kee-
ton, K., Pavlo, A.: Surf: Practical range query filtering with fast
succinct tries. In: SIGMOD. pp. 323–336 (2018)

91. Zhang, J., Wu, S., Tan, Z., Chen, G., Cheng, Z., Cao, W., Gao, Y.,
Feng, X.: S3: a scalable in-memory skip-list index for key-value
store. Proc. VLDB Endow. 12(12), 2183–2194 (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://www.stardog.com/
https://www.stardog.com/
https://doi.org/10.1145/3366423.3380246
https://doi.org/10.1145/3366423.3380246

	A design space for RDF data representations
	Abstract
	1 Introduction
	2 Preliminaries
	3 Access patterns
	4 A design space for RDF data representations
	4.1 Cost model
	4.2 Data representation compatibility
	4.3 The design space dimensions

	5 Data representations in RDF triplestores
	5.1 Subdivision
	5.2 Compression
	5.3 Redundancy
	5.4 Summary

	6 Design space analysis
	6.1 Matching access patterns to the design space
	6.2 A compatibility-based analysis

	7 Workload case analysis
	7.1 Analyzed workloads
	7.2 Limitations
	7.3 Results and discussion

	8 Related surveys
	9 Conclusions and future work
	Acknowledgements
	References

