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Abstract—In this paper, the mechanism of energy storage (ES)-

based power oscillation damping is derived by the small signal and 

the classical electric torque method. And then, by cooperating PI 

with an integral reduction loop, a controller is designed to form a 

novel PI-IR controller to guarantee that the energy variation of ES 

damper is zero at the end of one oscillation. Furthermore, for the 

controller parameters tuning, the conventional model-based 

methods require a forecasting model on the uncertainty 

disturbances. To this end, this problem is formulated as a finite 

Markov decision process with unknown transition probability, 

and introduce a deep reinforcement learning (DRL) based model-

free agent, the soft actor-critic, to obtain the real-time optimal 

control strategy. After numerous training, the well-trained agent 

can act as an experienced decision maker to provide the real-time 

near-optimal parameters setting for PI-IR control under different 

operating conditions. Time-domain and eigenvalue analysis results 

demonstrate the effectiveness of the proposed PI-IR controller and 

the superiority of the employed DRL based model-free method. 

Index Terms—Energy storage, power system stability, PI, PI-IR, 

deep reinforcement learning. 

I. INTRODUCTION 

O accelerate the transformation of energy structure, the 

large-scale renewable energy (RE) is penetrating into the 

power system. This transformation, due to the uncertainty 

characteristics of RE, has brought great challenges to the safety 

and stability of the power system operation and control [1], [2]. 

Some researches consider the impact of grid-connected RE on 

power system stability, and the results show that the fluctuation 

power will greatly affect the power system including frequency 

stability [3], voltage stability [4] and transient stability [5]. 

When the RE is incorporated into the power system, the 

proportion of traditional synchronous generator (SG) decreases, 

resulting in a reduction in the equivalent inertia of the power 

system. The lower inertia further reduces the stability margin of 

the system [6], and triggers power oscillations more frequently. 

The traditional power system, consists of synchronous 

generator, can cope with second-level power fluctuation, the 

change rate of load is relatively slow. But the output fluctuation 

of renewable energy is basically millisecond-level and 
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uncontrollable. This difference in regulation ability would lead 

to the imbalance between power supply and demand of the high 

renewable energy penetration power system, and furtherly 

causes great challenges to the power system operation and 

control. 

Traditionally, the power oscillation suppression device is the 

power system stabilizer (PSS), a linearized controller around 

the normal operating point [7], which improves the damping 

capacity of the power system by controlling the excitation of 

SG. Apart from the above PSSs–based suppression approaches, 

the flexible AC transmission systems (FACTS) and energy 

storage (ES)-based methods are also widely used to deal with 

this problem [8]-[10]. For instance, A. Chakrabortty [8] 

proposed a wide-area damping control method to mitigate the 

electromechanical oscillation in large power systems by 

Thyristor controlled series compensators.  

The essential factor causing the security and stability of 

power system is insufficient system damping and power 

imbalance. As an alternative solution, the energy storage device, 

is connected to the power system through power converter and 

appropriate control strategy, has the characteristic of fast 

response speed, and can compensate the power fluctuation of 

renewable energy in time. With the wide application of energy 

storage technologies, which provides the security protection for 

the access of large-scale renewable energy to traditional power 

system. For example, a deterministic and an interval unit 

commitment co-optimization of controllable power source and 

pumped hydro energy storage is proposed in [9]. Y. Zhu et al. 

[10] studied the battery energy storage to improve the power 

stability from the view of both the placement and controller 

parameters optimization. 

To ensure the effectiveness of the controllers, some design 

methods established on the intelligence heuristic algorithms are 

proposed. For instance, the non-dominated sorting in genetic 

algorithms-II (NSGA-II) was used to tune the proportional-

integral-derivate (PID) controller parameters to enhance the 

performance of a FACTS-based stabilizer [11]. X. Sui et al. [12] 

proposed an ES–based method to damp the inter-area 
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oscillation, and the particle swarm optimization (PSO) 

algorithm was applied to tune the power oscillation dampers 

(POD) parameters. Similarly, M. Beza et al. [13] designed an 

adoptive POD controller for static synchronous compensator 

(STATCOM) equipped with ES. The modified imperialist 

competitive algorithm (MICA) combined with a probabilistic 

eigenvalue approach was proposed in [14] to optimize the 

parameters of the PSS, the POD of doubly fed induction 

generators (DFIGs) and STATCOM controllers. The advantage 

of the heuristic method is that no model information is required. 

However, the optimal parameters obtained by this method are 

based on a fixed operating point. The high penetration RE will 

cause the operating point of the system to vary within a 

relatively large range. The aforementioned methods achieved 

some success in power oscillation, but these methods may be 

unsuitable for real-time operation where the variations in RE 

output and the stochastic fault are much more complicated. 

In recently, developing the emerging real-time control 

strategy has been recognized as an important way to handle the 

time-varying operating point caused by intermittent RE output. 

For example, A. S. Mir et al. [15] developed a deep neural 

network (DNN) –based actor-critic (AC) algorithm for real-

time power oscillation control of interconnected power systems. 

Similarly, a DNN was applied to tune the parameters for 

STATCOM to enhance the low-frequency oscillation damping 

in [16]. Y. Guo et al. [17] developed an adaptive gain 

scheduling droop voltage control strategy for wind power plant 

based on the data-driven real-time system equivalent approach 

to achieve the voltage/reactive power control. The above 

approaches aim to formulate the power system stability 

problem as a model-based control problem, and can obtain a 

good response performance for the power system stability 

control. However, the model-based control strategies place too 

much reliance on the accurate model of the power system. 

Unfortunately, the mathematical model and parameters of the 

system are not always known accurately. In this condition, the 

model-based control strategies may be invalid, and the 

reliability of the system cannot be guaranteed. 

Lately, the model-free methods, which are independent on 

any system model information, have been implemented 

significantly success in complicated decision-making 

application [18]. Inspired by [18], the development of model-

free methods for smart grid applications have attracted a lot of 

attention recently [19]-[22]. The advantage of the model-free 

method over the model-based method is that it can learn a top-

quality control policy based on the deep reinforcement learning 

(DRL) technique and does not depend on the model of the 

system. For instance, G. Z. Zhang et al. [19] introduced the 

Deep Deterministic Policy Gradient (DDPG) algorithm to train 

the agent on learning the real-time control strategy for 

STATCOM -based additional damping controller for wind farm. 

Similarly, C. Chen et al. [20] developed a DDPG–based 

approach to learn an emergency frequency strategy. Y. Hashmy 

et al. [21] proposed a faster exploration -based DDPG approach 

to overcome communication delays and other non-linearity 

challenges in a wide-area system for low-frequency oscillation 

damping control. To effectively suppress the ultra-low 

frequency oscillations, G. Z. Zhang et al. [22] proposed a novel 

proportional resonance (PR) based PR-PSS controller. 

Furthermore, the DRL algorithm asynchronous advantage 

actor-critic (A3C), is employed to set the real-time parameters 

of PR-PSS under the uncertainty scenario. These DRL model-

free approaches have achieved an effective response 

performance for the modern power system operation and 

control. However, to the best of author’s knowledge, this is the 

first study to investigate the mechanism analysis and apply the 

state-of-the-art DRL approach to real-time control of ES-based 

grid power oscillation damping problem. 

In this paper, the mechanism of ES-based damper is 

explicitly analyzed via the small signal and classical electric 

torque method. And then, a novel proportional integral 

controller with integral reduction (PI-IR) suitable for ES to 

suppress power oscillation is designed. Finally, the real-time 

control problem of an ES-based damper is formulated as a finite 

Markov decision process (MDP). The objective is to quickly 

suppress the grid power oscillation while finding the cost-

efficient charging/discharging scheme by tuning the PI-IR 

controller parameters. A model-free approach is introduced to 

tune the optimal parameters in the real-world scenarios. 

Specifically, the developed approach takes the oscillation 

duration and the integral of ES charging/discharging power as 

input, and outputs the real-time parameters of PI-IR controller. 

The contribution of this paper can be summarized: 

1) The mechanism analysis of ES-based grid power 

oscillation damping is designed and implemented via small 

signal and damping torque coefficient method. 

2) A novel PI-IR controller is proposed to damp power 

oscillation of SG and reduce energy deviation of ES. 

3) A soft actor-critic (SAC) model-free algorithm which 

does not require any model information is proposed to tune 

the real-time optimal parameters for the PI-IR controller. 

The rest of this paper is organized as follows. The mechanism 

analysis of ES to suppress grid power oscillation and controller 

design is presented in Section II. Then, the state-of-the-art 

algorithm is introduced in Section III to solve the controller 

parameters tuning problem. In Section IV, the simulation is 

carried out to validate the effectiveness of the proposed 

approach. Finally, Section V gives the conclusion. 

II. MECHANISM ANSLYSIS AND CONTROLLER DESIGN 

The single-machine model connected to a strong power grid 

is presented in Fig. 1, deriving the mathematical model of 

electromagnetic power oscillation. It consists of seven parts: 

synchronous generator (SG), transmission line, strong grid, 

battery bank, voltage source converter (VSC), the LC-filter as 

well as grid-connected control part. These seven parts are 

connected by two loops: the electricity loop and the control loop 

(current control inner-loop and speed control outer-loop). When 

it comes to the grid power oscillation, the ES can supply the 

variable real power to compensate electromagnetic power of the 

SG based on the feed-back signal and the appropriate control 

strategy. As the ES interacts with SG through the VSC, the ES 

can be regarded as a controllable current source. To mitigate the 

real power oscillation, the reactive current of ES can be set to 
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zero, that is, the phase of the ES charging/discharging current 

is in phase with grid-connected point of common coupling 

(PCC) voltage . 

 
Fig. 1. Structure of the modern flexible power system with an ES. 

To analyze the influence of ES on the power system 

oscillation, second-order model of the SG is introduced. It can 

be represented by an equivalent voltage source  behand 

the d-axis equivalent reactance , and its magnitude is 

assumed to remain constant value at the pre-perturbation. The 

strong grid and transmission line are modeled as a constant 

 and reactance . Specifically, the simplified 

equivalent system is shown as Fig. 2. 

 
Fig. 2. Simplified equivalent system of the Fig. 1. 

A. Electromagnetic Power Formulation of SG-ES 

Application of Kirchhoff’s law of current to the grid-

connected PCC from Fig. 2 results in: 

(1) 

Separating the real and imaginary parts from (1): 

(2) 

In general, eliminating 𝜃  based on the equation

 in (2), it can be simplified as follows: 

(3) 

Linearizing (3) around the pre-disturbance operating point 

represented by  and  results in: 

 

(4) 

where “ ” denotes the small variation.  and  are the 

simplified reactance coefficient, ,

. 

Based on Fig. 2, the electromagnetic power generation of SG 

is formulated as: 

(5) 

Substituting for  in linearized (5) yields the 

electromagnetic power formulation of SG-ES: 

(6) 

Equation (6) reveals that the charging or discharging current 

of ES will affect the grid power oscillation process. where  

reveals the synchronous and stable operation capability of SG, 

named utility grid synchronization coefficient.  represents 

the effect of ES on the dynamic characteristic of SG under ES 

grid-connected strategy, named ES grid-connected coefficient. 

 and  are constant value in (7) and (8), derived from the 

pre-disturbance operating condition.  

(7) 

 (8) 

B. Mechanism Analysis in Single Machine systems 

As the rapid increase of ES technology, there are more RE 

plants, which are equipped with utility-scale ES. The utility-

scale ES can effectively reduce the energy curtailment and 

flexibly participate in the power market. Moreover, considering 

the expensive initial investment of ES, its function has been 

further developed to supply the ancillary service for power 

system oscillation damping. ES would affect the power system 

oscillation process by means of injecting or absorbing active 

current based on the electromagnetic power formulation of SG-

ES. That is, the interactive timescale between the SG and ES is 

electromechanical level. Hence, the current control inner-loop 

of ES can be neglected. In addition, the charging or discharging 

active current quantity of ES can be controlled by the feed-back 

rotor speed, frequency, or rotor angle signal. However, the rotor 

angle is more difficult to measure than the rotor speed and 

frequency. The rotor speed is measured as the feed-back control 

signal to achieve mechanism analysis. In addition, it should be 

noted that feed-back frequency control also has equivalent 

effect, since the real power is highly correlated with the system 

frequency[23]. 

The classical second-order formula of SG is used to analyze 

the interaction mechanism as well as the dynamic characteristic 

between the SG and ES. The linearized rotor swing equation is 

expressed as a set of differential equations in per unit [7]: 

VSC

LC filter
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dq
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{  (9) 

where rotor angle  is in electrical radians, time  is in 

seconds,  is the base rotor electrical speed in radians per 

second,  is the actual rotor speed in per unit,  is inertia 

constant,  is prime mover input mechanical power,  is 

output electromagnetic power, and  is damping coefficient. 

To analyze the mechanism of ES mitigating the grid power 

oscillation, the PI controller is used to implement the control of 

the ES, and provide active reference current : 

 (10) 

where  represents the Laplace operator,  indicates the 

reference rotor speed. 

Equation (10) shows if the feed-back speed of the generator 

is less than or greater than the rated synchronous rotor speed, 

the ES can generate or absorb real power to/from the utility grid 

to compensate the imbalance electromagnetic power. Thus, if 

the PI controller has a good performance, the reference rotor 

speed is followed by the actual rotor speed , and the 

power oscillation process is mitigated by the ES. Moreover, the 

actual output current  of ES is approximately equal to the 

inner-loop reference value  by ignoring the current loop 

respond time. 

Linearizing (10) becomes: 

 (11) 

Considering , (11) can be rearranged into: 

 (12) 

Substituting for (12) in (6), yields:  

 (13) 

Furthermore, equation (9) can be rewritten as: 

{  (14) 

where  is inertia time constant，  denotes mechanical 

torque,  is the synchronizing torque coefficient, and  

is the damping coefficient. 

Substituting for (13) in (9) and comparing with (14), yields: 

{
 
 

 
 

⁄
 (15) 

Equation (15) reveals that the PI controller’s gains can 

directly affect the damping coefficient (affected by ) and 

synchronizing torque coefficient (affected by ), respectively. 

C. Mechanism Analysis in Multi-Machine systems 

In the multi-machine system, the ES can be installed near the 

generators. As shown in Fig. 3. ,  and  are the 

electromagnetic power, network injection real power and the 

ES output power of the th generator, respectively. The swing 

equation of multi-machine system can be simplified as follows: 

 (16) 

where both , , , , , and  are -

dimensional column vectors; , , and  are the 

diagonal matrix. Specifically, ,  can be 

approximately calculated by [24]: 

 (17) 

where  and  are the voltage and phase angle at th bus; 

 and are modulus and phase angle of the admittance, 

respectively. In addition,  can be controlled by 

rotor speed signal of corresponding generator by PI controller: 

 (18) 

where  and  are the gains of th PI controller. 

 
Fig. 3. Multi-machine system illustration with ES integration. 

The linearized expression of (16)-(18) around the fixed point 

can be derived: 

 (19) 

Specifically, 

 (20) 
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where  is the Jacobian matrix;  and  are the 

diagonal matrix for the PI controller parameters. 

Substituting for (20) into (19), yields: 

 
(21) 

Comparing with (14), results in: 

{
 

 

 (22) 

Similarly, it can conclude that the ES controlled by PI 

controller in multi-machine system can equivalently affect 

synchronizing torque and damping coefficient, respectively. 

The essence of ES to suppress power oscillation is that it can 

provide appropriate active power support through PI controller 

to the power system in time. That is, the cost of ES to suppress 

power oscillation is its own energy deviation ( ) after 

participating in the suppression of power oscillation. The 

greater the energy deviation of ES, the easier it is to cause the 

deep charging or discharging. However, the ES controlled by 

traditional PI controller cannot ensure that the energy deviation 

equals to zero in the steady state of power oscillation control 
(Equation (A-1) -(A-8) in Appendix show the quantitative 

analysis). 

In order to reduce the energy deviation while retaining the 

high performance of the PI controller, a novel PI-IR is proposed 

in Section II-D to damp power oscillation of SG and reduce 

energy deviation of ES 

D. Controller Design 

Inspired by aforementioned issue, a novel PI-IR controller is 

designed to implement oscillation suppression, while making 

sure that the energy deviation equals to zero at the end of an 

oscillation process. The structure of the PI-IR controller is 

shown in Fig. 4. Additionally, the transfer function  can 

be derived: 

(23) 

where the ,  and  ( ) are the controller gains. 

Compared with the traditional PI controller, the proposed PI-

IR controller can eliminate the accumulative integral error by 

the additional negative feed-back loop to ensure that the energy 

deviation of ES equals to zero in the steady-state of power 

oscillation control. Equation (A-9) -(A-12) in Appendix show 

that why the integral reduction can suppress the energy 

deviation. 

 
Fig. 4. The structure of the PI-IR controller. 

The mechanism of the ES with the proposed PI-IR controller 

to suppress the power oscillation is analyzed by referring the 

derivation process of (11) -(15), yields: 

{
 
 

 
 

⁄
 (24) 

Equation (24) reveals that the PI-IR controller’s gains can 

directly affect the damping coefficient (affected by ), 

synchronizing torque coefficient (affected by ), and 

mechanical torque (affected by  and ), respectively. That 

is, when it comes to feed-back rotor speed as well as ES 

controlled by PI-IR controller, the synchronous and oscillation 

damping ability of the synchronous power system will be 

equivalently dominated. In addition, they are also affected by 

the power system structure parameters and the steady-state 

operating point. However, adjusting the PI-IR controller 

parameters is the most significant and flexible way to 

dynamically change the synchronous and damping feature. 

III. PROBLEM AND APPROACH FORMULATION 

Although the optimal and fixed controller parameters can be 

obtained based on the classical control theory at a certain grid 

structure and steady-state operating point in the traditional 

control field, the steady-state operating point would be changed 

in real-time due to all kinds of uncertainties. This situation 

would be unfavorable for the performance of the controller with 

fixed parameters. Hence, real-time tuning method is introduced 

in this section. 

A. Problem Formulation 

To ensure the response performance of the SG-ES integrated 

system for any possible disturbance, the optimal PI-IR 

parameters tuning can be converted to an online making-

decision problem in uncertainty environment. The finite MDP 

is applied to reformulate the PI-IR controller parameters tuning 

problem. MDP is an important way to build the reinforcement 

learning (RL) framework, which describes that the next state of 

the system is not only related to the current state, but also 

associated with the current action taken[25]. Specifically, there 

are five crucial elements in the MDP that make up a tuple, 

namely < , , , , >. 

1) State: The state at time step 𝑡 (the meaning of a time step 

is an oscillation process in this research) is defined as a vector, 

.  denotes the oscillation duration;  

indicates the energy consumption or accumulation for one 

oscillation process. 

 (25) 

where  is the initial time,  is the time-domain simulation 

time, and  is the output active power. 
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2) Action: the action  represents the PI-IR parameters for 

given the state . The parameters are constrained as follows: 

 (26) 

where the  and  ( ) are the allowed 

minimum and maximum value, respectively.  

3) State transition: The state transition probability function 

is related to the action and the randomness of the system, and 

the state transition process from  to  can be 

represented as . The state transition process 

is subject to uncertainty since the oscillation duration and 

energy variation are unknown. Besides, because the 

randomness  is closely linked with many factors, it is an 

intractable task to find an accurate distribution model. In this 

paper, in order to better describe this uncertainty, a model-free 

approach is introduced to learn the state transition like shown 

in Section III-B. 

4) Reward: the reward  should be carefully designed to 

accurately evaluate the action-value for each time step . The 

multimodal reward is defined as: 

 

(27) 

where  is a penalty coefficient to ensure the minimum energy 

variation of ES. 

5) Action-value function: At each step, the agent takes the 

state  as input and outputs an action  based on the policy 

. The performance of the action under the given state is 

evaluated by the expected accumulative reward for one 

trajectory, which is represented as [26]: 

 (28) 

where 

 (29) 

where  is named action-value function,  is the 

finite MDP steps, and  is a discount factor, which is 

utilized to balance the importance of current and future reward. 

Thus, the objective of the real-time parameters tuning 

problem is to obtain optimal policy  to maximize the action-

value function. 

B. SAC Algorithm for PI-IR Real-time Control 

In this paper, an innovative DRL algorithm, SAC, is 

employed to solve the PI-IR real-time control problem, which 

is formulated as MDP. Since new samples are required at each 

gradient step, A3C [22] and PPO [27], [28] as commonly used 

DRL algorithms, are of a notoriously low sampling efficiency. 

Although DDPG [19], as an off-policy algorithm, is proposed 

to improve the utilization of samples, it is too sensitive to the 

hyper-parameters in the training process, which will also have 

a negative impact on the training efficiency. To address these 

drawbacks, the off-policy maximum-entropy deep RL 

algorithm, SAC, is developed to provide a robust and sample-

efficient training performance. SAC algorithm incorporates 

three key tricks: Actor-Critic (AC) architecture (two DNNs 

approximate policy and value function, respectively), entropy 

maximization, which enables to guarantee stability and 

encourage exploration, and off-policy to improve the utilization 

efficiency of samples. 

1) Actor-Critic Method: AC method is the distinct 

framework of the proposed SAC algorithm. Two DNNs are 

established in AC method, named Actor and Critic, for policy 

estimation and policy improvement. At each iteration, the Actor 

, parameterized by , is employed to generate a next-state 

action  based on the current policy function; then, 

the Critic performs the policy evaluation task to estimate Q-

values  of corresponding actions; and temporal 

difference (TD) learning is to guarantee the estimation accuracy 

and update mechanism of the Critic simultaneously by 

minimizing the following loss function  , which is 

presented as follows[29]: 

(30) 

where  is TD error at time step ; in order to achieve 

higher Q-value, gradient  is employed in the 

Critic; besides,  indicates how the parameters 

of the Actor  affect the direction of action selection; at last, 

as shown in (31), the resulting gradient , which contains 

the value function information, is provided as reference for the 

Actor parameters update and action selection [19]. 

 (31) 

2) Maximum-Entropy RL Framework: Generally, the 

objective of RL is to learn a policy to maximize the expected 

value of a cumulative reward, which is presented in (32). 

 (32) 

However, for the advantages of encouraging exploration and 

learning more near-optimal behaviors to improve learning 

speed, maximum-entropy RL framework has a comprehensive 

learning target. Specifically, in addition to obtain higher 

cumulative rewards, it also requires an entropy term 

 of each output action of the policy. The 

optimization objective formula can be transformed into: 

 (33) 

where the parameter  is a temperature coefficient [30], which 

is used to control whether the agent’s target is to focus on 

reward or entropy. 

3) Soft Actor-Critic Algorithm: Based on the above theory, 

soft policy iteration can converge in the case of tabular. Because 

the approximation method based on DNNs can deal with the 

high-dimensional problems, which cannot be solved by the 

tabular, it can be better to apply DNNs to approximate soft Q-
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function and policy. Specifically, one network  

parameterized by  approximates soft Q-function, and another 

 network parameterized by  learns the mean and 

covariance of Gaussian distribution policy. 

As expressed in (34), the update mechanism of soft Q-

function (parameter ) is the same as Q-learning, which 

updates Bellman residuals [31], except that the value function 

here contains the entropy item. 

 (34) 

Note that, a target critic network parameterized by is 

utilized to improve the training stability. When training 

,  is extracted from the replay buffer, but 

 is temporarily collected from policy  during training. 

The policy network  (parameter ) is updated by 

minimizing the Kullback-Leibler (KL) divergence [32], which 

is shown in (35). The details of the SAC algorithm are presented 

in Table I. 

 (35) 

TABLE I  

THE FLOW OF SOFT ACTOR-CRITIC BASED PARAMETERS TUNING ALGORITHM 
// Starting Training 

1: Initialize network weights , ,  

2: For each episode do 

// Generating training data 

3:  For each time step in the environment do 

4:  Choose action 𝑎𝑡 based on  

5:  Execute , and observe ,  

6:  Store  in replay buffer   

7:  End For 

// Training neural networks 

8:  For each gradient step do: 

9:  Uniformly sample   batches from replay buffer 

10: Update soft Q-value function based on (34) 

11:  Update the actor network according to (35) 

12:  Update target network weights according to  

13:  End For 

14:End 

IV. CASE STUDY 

In this section, the authors aim to evaluate the proposed real-

time tuning approach on multiple case studies and illustrate its 

performance through the time-domain simulation analysis. The 

details about the time-domain simulation setup are given in 

Section IV-A. The superiority of the designed PI-IR controller 

is validated in Section IV-B. Then, the training process is 

presented in Section IV-C where only the wind power 

fluctuation is considered as the unknown disturbance. Finally, 

the generalization of the well-trained agent is tested on single 

and multiple disturbances in IV-D. 

A. Simulation Setup 

The simulation is carried out on a modified four-machine two-

area system, which consists of two areas linked two 120 kV of 

110 km length. The simplified single line diagram is shown in 

Fig. 5. Although small in scale, it closely mimics the behavior 

of the typical power systems in practice operation. There are 

three identical round rotor generators rated 13.8 kV/150 MVA, 

two of them in Area #1, and an external equivalent grid rated 

120 kV/200 MVA; the Area #2 is equipped with one round rotor 

generators, an ES rated 10 MW/1 kWh. Besides, a 25 MW wind 

farm is connected into the Area #2. The load in Area #1 is 

represented as constant impedances. 

 
Fig. 5. The simplified single line diagram of the test system. 

The performance of the designed controller and approach are 

evaluated under the time-domain simulation with a real-world 

scenario. The real-world hourly wind power data for one year 

is downloaded from Energinet [33] as the disturbance. The 7 

days test data are randomly sampled from the raw data to act as 

test data set, and the residual data are applied for training. The 

hyper-parameters of the training algorithm are shown in Table 

II. Besides, the structure of the Actor and Critic network are 

predetermined; the neurons of input and output layer are equal 

to the number of states and actions, respectively; the number of 

the neurons in its three hidden layers are 64, 128 and 64. 
TABLE II  

HYPER-PARAMETERS SETTING FOR TRAINING SAC ALGORITHM 

Name Value 

Replay size  48 000 

Discount factor  0.9 

Mini-batch size  64 

Training eposides  7 000 

Step in each episode  24 

Soft update coefficient  5×10-3 

Learning rate for value learning  2×10-3 

Learning rate for policy learning  2×10-4 

Entropy regularization coefficient  0.2 

B. Effectiveness Verification 

One of the contributions of this paper is to design a controller 

suitable for ES to suppress power oscillation while ensuring that 

the energy deviation of ES is zero at the end of the oscillation. 

Hence, the effectiveness of the designed PI-IR controller is 

evaluated by comparing with several traditional controller, 

including P and PI controller. Considering the wind power 

fluctuation as the disturbance, Fig. 6 shows that the energy 

deviation curve of ES corresponding to different controllers. 

This time-domain simulation shows that both the P and PI 

controller cannot guarantee that the energy deviation is zero at 
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the end of the oscillation. However, the proposed PI-IR 

controller would always make sure the energy deviation is zero. 

The advantage of the proposed PI-IR controller is that it can 

reduce the investment cost of ES at the planning stage while 

making it an additional damping controller without affecting its 

participation in the economic dispatch at the operation stage. 

 
Fig. 6. Energy deviation curve of ES corresponding to different controllers. 

C. Training Process of SAC Agent 

The training and simulation are implemented in Tensorflow 

1.8.0 with Python 3.6.5 and MATLAB, the hardware is a 64-bit 

computer with one Intel(R) Core(TM) i9-9820X CPU @ 

3.30GHz. During the training process, regarding history wind 

power fluctuation as the disturbance, the agent obtains current 

state  from the test system and then returns action  based 

on the policy . After executing action , the reward  and 

next state  can be received. As the training episodes 

increase, the state-action mapping become more accurate.  

As a comparison, the double deep Q network (DDQN)–based 

PI-IR parameters tuning mechanism is also performed. The 

DDQN is similar with SAC, and it is also the real-time strategy 

based on the state information (see the Ref. [34] for the detailed 

algorithm). The cumulative reward over 7000 episodes is 

shown in Fig. 7. 

 
Fig. 7. Cumulative reward per episode during the training process. 

The reward of both the DDQN and SAC are lower in the 

initial stage. However, as the better experiences are stored in 

the replay buffer, the cumulative reward begins to increase 

gradually, and then it converges to around -70.29 for SAC agent 

with small oscillation. For DDQN, the reward nearly has same 

convergence speed as SAC, it finally converges around -108.48. 

However, the training curve of DDQN fluctuates greatly, and 

its steady-state reward value is lower than that of SAC. The 

reward curve demonstrates that the proposed SAC approach can 

learn the policy more effectively to maximize the cumulative 

reward than then DDQN method. 

D. Online Application and Performance Evaluation  

In this part, the proposed SAC approach is evaluated and 

compared with several commonly solutions, including the 

DDQN and linear model predictive control (MPC, more details 

can be found in [35]) method. Taking the negative reward 

function as the cost function of the MPC method, the MPC–

based PI-IR parameters tuning method can obtain the optimal 

parameters through real-time rolling calculation. Moreover, to 

evaluate the generalization of the well-trained agent, two cases 

are introduced. 

Case 1: Taking the wind power fluctuation as the disturbance. 

Case 2: On the basis of Case 1, the load on Bus 7 increases by 

0.1 p.u. at 4s. 

So far, three methods and two cases are proposed, and applied 

to the test system by time-domain simulation. The mode 

analysis of Case 1 is carried out by Prony identification. The 

eigenvalues of the dominant mode and the probability density 

function (PDF) of the corresponding damping ratio are plotted 

in Fig. 8. It can be seen from the Fig. 8 that all the eigenvalues 

are located in the left plane of the real axis under the three 

methods. However, it is clearly shown that the linear MPC–

based method has the lowest stability margin, followed by 

DDQN, and SAC has the highest stability margin. The reason 

is that it is difficult for the PI-IR controller of the linear MPC–

based tuning method to adapt the significantly changing of the 

wind power; note that the policy formulated by DDQN–based 

real-time parameters tuning method is discrete, that is, the 

action cannot change continuously for each state, which causes 

the information loss. Thus, this drawback makes it easy to fall 

into a local optimum; compared with DDQN, SAC is a 

continuous stochastic policy and developed for maximum 

entropy reinforcement learning, which is, the agent not only 

learns one way to solve the oscillation, but all possibilities. 

 
(a) The distribution of the eigenvalues 

 
(b) The distribution of the damping ratio 

Fig. 8. Distribution of the eigenvalues of the dominant mode and the PDF of 

the damping ratio. 

2020-08-12

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on April 09,2021 at 08:00:36 UTC from IEEE Xplore.  Restrictions apply. 



1949-3029 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2021.3071268, IEEE
Transactions on Sustainable Energy

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

9 

To evaluate the transient process of the speed oscillations in 

details, the time-domain simulation curve is extracted. For case 

1, the average of the rotor speed deviation of G2 is presented in 

Fig. 9. It is clearly shown that all three methods can effectively 

mitigate the rotor oscillation. Moreover, comparing with the 

linear MPC and DDQN –based method, the SAC method has a 

faster speed to mitigate the oscillation, and the rotor speed 

deviation is completely suppressed after 10s. 

 
Fig. 9. Rotor speed deviation of G2 in Case 1. 

The adaptability comparison of the three methods is further 

done with the multiple disturbances in Case 2, and the 

oscillation curves are shown in Fig. 10. Under the continuous 

disturbances condition, the test system with the SAC–based 

agent reaches the steady-state in the shortest time. These 

experimental results reveal that the SAC–based agent is more 

robust to be applied to the untrained condition. 

 
Fig. 10. Rotor speed deviation of G2 in Case 2. 

Specifically, the average action results are listed in Table III 

for two cases. The load changing will also aggravate the power 

oscillation of the power system, so the agent will enhance the 

adjustable ability of the controller to further mitigate the power 

oscillation. This is why the  and  parameters value in 

Case 2 are greater than that in Case 1. It is worthing noting that, 

with the load demand increasing, the function of the additional 

integral reduction loop will be decreased to enhance the 

synchronization ability of the generator. 
TABLE III  

THE AVERAGE ACTION RESULTS 

    

Case 1 433.701 11.042 0.0811 

Case 2 464.618 33.929 0.0438 

Moreover, in order to intuitively show the quantitative 

analysis of the mentioned three methods, the mean value and 
standard deviation of power oscillation modes of the test system 

under the test data set is shown in Table IV. It can conclude that, 

it is difficult for the linear MPC–based tuning method to adapt 

the significantly changing of the wind power, so that the power 

system has a lower stability margin. However, the SAC-based 

agent has learned the probability distribution characteristic of 

the wind power, and can deal with the arbitrary oscillation 

caused by wind power to make the power oscillation mode 

move more to the left side of the complex plane, to ensure that 

the power system has a larger stability margin.  
TABLE IV  

THE COMPARISON OF POWER OSCILLATION MODES 

Method 
Real 

part 

Imag. 

part 

Damping 

(%) 

Standard deviation 

of damping 

MPC -0.21 4.45 4.71 1.97 

DDQN -0.25 4.62 5.40 1.07 

SAC -0.38 4.44 8.53 1.98 

V. CONCLUSION AND FUTURE WORK 

In this paper, the mechanism of ES damper suppressing the 

grid power oscillation damping via small signal and damping 

torque coefficient method is analyzed. Then, a novel PI-IR 

controller is proposed to mitigate power oscillation while 

ensuring that the energy deviation equals to zero in the steady 

state of power oscillation, and the controller parameters tuning 

problem is formulated as a MDP with unknown transition 

probability. In this tuning process, the fluctuated wind power is 

only used as a disturbance signal to cause the power oscillation 

in power system, and the SAC–based model-free method is 

employed to determine the near-optimal real-time parameters. 

Finally, the modified four-machine two-area system with ES 

and wind farm is used as the test system, and then the 

effectiveness of the proposed PI-IR controller has been 

compared with the conventional P and PI controller in the test 

system, and the results show that only the proposed PI-IR 

controller can make sure that the energy variation of ES is zero 

while effectively suppressing the power oscillation. In addition, 

the test system has also been applied for comparative study of 

MPC–based tuning, DDQN–based tuning and SAC–based 

tuning. The time-domain simulation results under trained and 

untrained disturbances demonstrated that the performance of 

the SAC method is better than the other two compared methods. 

In current research, the load changing is not considered during 

the training phase, to this end, the multiple disturbance will be 

considered to train the agent in our future work. 

APPENDIX 

Proof: Let , , and  be the constant. In order to 

facilitate theoretical analysis, the variation of the state of charge 
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( ) is used instead of energy deviation ( ) of ES. 

The current variation  of the ES with PI controller can 

be formulated: 

 (A-1) 

The variation of the state of charge ( ) is defined as: 

 

 
(A-2) 

The inverse Laplace transform of  can be calculated: 

(A-3) 

Based on Prony analysis, the time-domain form of rotor speed 

deviation  is as follows: 

 
(A-4) 

where  indicates the number of dominant oscillation 

signals,  represents the amplitude of the signal component 

,  is the decay factor of the signal component ,  is 

the initial phase of the signal component ,  is the 

undamped natural frequency of the signal component . 

 

 

(A-5) 

In (A-5), when  and the oscillation duration time 

: 

(A-6) 

(A-7) 

Hence , we would get: 

(A-8) 

Equation (A-2) -(A-8) show that the ES with PI control 

strategy can suppress the power oscillation without ensuring 

that the energy deviation of ES is zero. 

Similarly, the  of the ES with PI-IR controller can be 

formulated: 

 
(A-9) 

The inverse Laplace transform of  is (  and 

): 

(A-10) 

 

(A-11) 

Due to  and , . To this 

end, 

(A-12) 

Hence, the ES with PI-IR controller can mitigate the power 

oscillation and make sure zero energy deviation of ES at the 

same time. 
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