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Artificial Intelligence based Control Design for
Reliable Virtual Synchronous Generators

Qianwen Xu, Member, IEEE, Tomislav Dragicevic, Senior Member, IEEE, Lihua Xie, Fellow, IEEE
and Frede Blaabjerg, Fellow, IEEE

Abstract—Virtual synchronous generator (VSG) is a promising
solution for inertia support of the future electricity grid to deal
with the frequency stability issues caused by the high penetration
of renewable generations. However, the power variation in
power electronic interface converters caused by VSG emulation
increases the stress on power semiconductor devices and hence
has a negative impact on their reliability. Unlike existing works
that only consider stability for VSG control design, this paper
proposes a double-artificial neural network (ANN) based method
for designing VSG inertia parameter considering simultaneously
the reliability and stability. First, a representative frequency pro-
file is generated to extract various VSG power injection profiles
under different inertia values through detailed simulations. Next,
a functional relationship between inertia parameter (H) and
lifetime consumption (LC) of VSG is established by the proposed
double-ANN reliability model: ANNt provides fast and accurate
modeling of thermal stress in the semiconductor devices from
a given operating profile; With the aid of ANNt, ANNLC is
built for fast and accurate estimation of LC for different inertia
parameters in the next step. The proposed approach not only
provides a guideline for parameter design given a certain LC
requirement, but can also be used for optimal design of VSG
parameter considering reliability and other factors (e.g. inertia
support in this paper). The proposed technique is applied to a
grid-connected VSG system as a demonstration example.

Index Terms—Virtual synchronous generators, virtual inertia,
stability, reliability, artificial intelligence.

I. INTRODUCTION

THE utilization of renewable energy resources (e.g. PV,
wind turbines) as distributed generation (DG) units have

attracted great attention all over the world for the environmen-
tal friendly requirements [1]. Power electronics converters are
widely used as the interfaces for the integration of the DG
units into the grid [2]. In the past, grid frequency is regulated
by synchronous generators (SGs), which can provide inertia
by absorbing or delivering the kinetic energy stored in their
rotors and turbines [3]. However, with the high penetration of
DG interface converters in the grid, which have very small
or no inertia and damping properties, power system inertia is
reduced and the frequency stability is becoming a considerable
concern [4].

To increase grid inertia and provide frequency support in
the future power electronics based power system, the virtual
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synchronous generator (VSG) technology has been proposed
by mimicking the essential characteristics of the SGs so that
the rotating inertia can be emulated in power electronics
interface converters [4], [5]. There are various implementations
of VSGs in literature, like virtual synchronous machine [6],
virtual synchronous generator (VSG) [7]–[9], synchronverter
[10], synchronous power controller [11], etc. The inertia
characteristics emulated by VSGs can contribute to the total
inertia of the grid and enhance the transient frequency stability.
A prominent feature of VSG is that its parameters (e.g., the
virtual inertia constant H and damping factor D) are not
constrained by the physical factors as the real SGs; on the
contrary, they are control parameters that can be manually
designed to have expected dynamic performance. There are
several works discussing the parameter design of the VSG. In
[8], [11], the closed-loop characteristic equation of the VSG
power loop is derived and a relationship between dynamic per-
formance and deisgn parameters (inertia constant and damping
coefficient) is developed. In [12], the coupling effect between
active power loop and reactive power loop is analyzed and the
inertia coefficient is designed based on the small signal model
from the perspective of system stability. Ref. [13] discusses
the parameter constraints considering stability. In [14], the
influences of parameters on the dynamic response of VSGs are
investigated, including peak time, settling time and overshoot.
However, none of the exisiting works consider the impact of
design parameters on reliability of the VSG, which is a critical
concern in power electronics based power systems.

Power electronic converters are reported to be the most
unreliable parts in renewable energy systems [15], e.g., wind
power systems [16], photovoltaic (PV) power systems [17] and
fuel cell power systems [18]. In particular, power semiconduc-
tor devices are the most vulnerable links in power electronic
converters [15]. Power processing will pose stress on these
sensitive devices, affect their lifetimes and finally impact
system reliability. Previously, reliability assessment is achieved
in a statistic way assuming constant failure rates regardless of
their mission profiles and MIL-HDBK-217 handbook has been
widely adopted to predict lifetime of power electronic devices
[19], [20]. Recent trend in reliability of power electronics
systems is moving towards physics-of-failure based reliability
assessment by identifying root-causes of failures [16][18],
[21]-[26]. Refs [21] and [22] present experimental validation
of linear cumulative damage theory in the lifetime prediction
of power semiconductor devices. In [23], a comprehensive
review of failure and lifetime prediction of power devices
is presented, which summarizes different techniques typically
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used for measuring the junction temperature for lifetime
prediction. Ref. [16] proposes a mission profile based system
level reliability analysis of DC/DC converters for a fuel cell
power application. Ref. [24] proposes a reliability oriented
design of modular multilevel converters for medium-voltage
static synchronous compensator. In [25], a thermal stress based
design of smart transformer is proposed. Reliability oriented
design tools are development for PV converters in [17], [26].
In [18] , selection of power converters in DFIG wind turbine
is presented with enhanced system-level reliability. For all
the state-of-art reliability works [15][17], [20]-[25], failures of
power semiconductor devices are mainly induced by thermal
stress and are assessed by mean junction temperature and
junction temperature cycles over the operating period. The
power loading and ambient temperature profiles are normally
considered as mission profiles of power semiconductor de-
vices, as they have direct contribution to the thermal stress.
Lifetime consumption (LC) of a power semiconductor device
is estimated using the obtained junction temperature profile
from thermal stress under a specific mission profile, which
requires detailed simulations or experiments. To assist long-
term simulation, a look-up table method is conventionally
applied to transform the mission profile into thermal cycles for
LC estimation [17], [26]. However, as the lookup table method
is based on linear interpolation, it cannot learn the nonlinear
relationship between the input and output data; moreover, it
is not suitable for high dimensional data mapping, which is
inevitable when impact of both system design parameters and
mission profile on the system’s lifetime needs to be studied.
A promising solution to overcome the drawbacks is to use
an artificial neural network (ANN), which has the capability
to approximate nearly any functions of input/output data with
arbitrary precision [27], [28]. Inspired by wide applications of
ANN in prediction [28], [29], it is possible to use ANN to
map LC of power semiconductor device from various mission
profiles to achieve faster and more accurate LC estimation.

The VSG technology is important for inertia support in the
future power electronics based power systems. By controlling
the DG interface inverters as VSGs to enhance grid inertia
and provide frequency support, the loading profiles of VSGs
will be different from the original loading profiles. This
will affect LC of power semiconductor devices in the DG
interface inverters, which are commonly designed based on
the original loading conditions (i.e. power outputs of DGs)
without considering inertia support. Current methods for pa-
rameter design of VSGs only consider system dynamics and
stability, while their impacts on power electronics reliability
are not taken into consideration. As power semiconductor
devices are normally the weakest links in the power electronic
converter systems, the LC of power semiconductor device
is selected as the system reliability metric. In this paper,
we propose a double-artificial neural network (ANN) based
approach for designing a more reliable grid connected VSG
system with the consideration of both inertia (stability) and
LC (reliability). First, a representative frequency profile is
extracted to generate different power injection profiles under
different control parameters (i.e., inertial constant H). Then
a double-ANN model is built to map H to LC: ANNt is

Fig. 1. A grid-connected VSG system.

constructed and trained to translate mission profiles (power
injection profile and ambient temperature profile) into the
thermal loading profile based on detailed simulation data;
Based on ANNt and the generated power injection profile
under different values of H , LC of power semiconductor
device in DG inverter is calculated, and these data are used to
train ANNLC , which models the relationship between input
data (H) and output data (LC). ANNLC provides a quick
estimation of LC given different inertia parameters. Then
the overall system optimization function for parameter design
is formulated with the combined objectives of inertia and
LC. The main contributions of this paper are summarized as
follows:

1) Unlike conventional VSG design methodologies only
considering inertia, it optimizes the control parameter con-
sidering both inertia performance and LC .

2) A double ANN model is proposed to provide a quanti-
tative relationship for how the designed inertia parameter will
impact reliability.

3) A novel profile reduction method is developed to map
a long-term mission profile to a representative short-term
mission profile with the same stochastic features.

4) A guideline is developed about how to optimize the
control parameter considering LC and other performance fac-
tors (e.g. the inertia requirement and the transient stability
requirement) simultaneously.

This paper is organized as follows: Section II describes
VSG system model and the impact of inertia parameter. The
double-ANN based technique is proposed for VSG parameter
design by simultaneously considering stability and reliability
in Section III. The proposed technique is demonstrated and
verified in Section IV by a case study. Conclusions are drawn
in Section V.

II. SYSTEM DESCRIPTION AND INERTIA DESIGN

There are several different implementations of the VSG. In
this paper, a relatively common topology is adopted, as shown
in Fig. 1 [5], [31]. An energy storage unit is applied with
the VSG control technique to mimic the swing equation of
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Fig. 2. The small signal model of the grid connected VSG system.

the SGs in order to support the grid frequency fluctuation and
provide inertia. A typical three phase voltage source inverter is
connected to the grid at the point of common coupling through
an LC filter Lf and Cf . Grid impedance is denoted as Zg .
The inverter operates in the voltage source mode with the
inner voltage and current regulation using PR controllers in
synchronous reference frame. The virtual impedance control
(VIC) is implemented to emulate an impedance connected in
series with the grid line impedance between the inverter output
and the PCC to make the equivalent line impedance inductive
[30]. The VSG control is implemented in the power control
loop to provide virtual inertia, damping and droop control. As
only one VSG is studied here, droop control is not included
in VSG control block.

In various implementations of VSG control, the mimicking
of rotor inertia is similar but the forms of damping vary,
e.g., D(ω − ω0) and D(ω − ωg) [5], [31], where D is the
damping factor, ω0 is the nominal angular frequency, ωg is
the grid angular frequency. Note that the former one combines
droop and damping, while the latter considers separate droop
and damping terms. Here, D(ω − ωg) is adopted as an
application example, as its damping factor will not impact
droop coefficient and thus it can be designed to get desired
system dynamics. The swing equation is expressed as

Pin − P −D(ω − ωg) = Jω
d(ω − ωg)

dt
(1)

where Pin is the set-point value of active power, P is the
measured output power of VSG, ω is the angular frequency
of the virtual rotor, J represents the moment of inertia of the
virtual rotor; as the deviation of ω is relatively small, Jω can
be approximated by Jω0 [8].

The small signal model of the VSG system in Fig. 1 is
shown in Fig. 2 [8]. Then the transfer function from power
reference to the output power is derived as

∆P = ∆Pin

VoVg
XtJω0

s2 + ( D
Jω0

)s+
VoVg
XtJω0

(2)

where Xt is the equivalent inductive line impedance consid-
ering the virtual impedance.

The transfer function is equivalent to a standard second
order differential equation [8]:

∆P = ∆Pin
ω2
n

s2 + 2ξωns+ ω2
n

(3)

with the natural frequency ωn and damping ratio ξ expressed
as ωn =

√
VtVg
XtJω0

and ξ = D

2
√
VtVgJω0

Xt

.

Based on (3), J and D can be tuned to have the desired
dynamic response. Given a specific inertia J and the required
damping ratio ξ, D can be designed as

D = 2ξ

√
VtVgJω0

Xt
(4)

The variables in (1) are transformed into per-unit values so
that the system dynamic response is not constrained by the
power ratings of power converters, i.e., frequency response of
a 1 MVA system will be the same as that of a 1-kVA system
as long as their parameters are equivalent in per-unit forms
[32]:

Pin pu−Ppu−Dp(ωpu − ωg pu) = 2H
d(ωpu − ωg pu)

dt
(5)

where H =
Jω2

0

2SN
, Dp = Dω0

SN
, SN is the power rating of the

DG.
Once the inertia constant H is determined, the correspond-

ing J and D can be derived according to (5) and (4) to have
expected system dynamics. Therefore, we assume that H is
the only control parameter to be designed.

Fig. 3 shows the dynamic response of a VSG to support
the grid frequency variation with different inertia values. At
3s, the grid frequency ramps down from 50 Hz to 49.8 Hz
with the rate at 2 Hz/s. The VSG is to provide inertia support
of the grid. As can be observed, a larger H will provide a
larger inertia support, and thus a larger H is expected from
inertia’s perspective. However, a larger H also means more
energy extracted from the energy source for inertia support,
as shown in the response of power P in the first plot of Fig. 3.
The plot reveals that the VSG has different power outputs with
different values of H for different levels of inertia support,
which will definitely impact the lifetime consumption (LC) of
power devices in the VSG and finally impact the reliability of
the VSG. Therefore, it is clear that H is a key parameter that
affects both inertia and reliability.

In existing works, there are no general rules for designing
H . Some works select H based on parameters from the
conventional SGs (0-10s) [4], or from stability [10]-[13]. But
none of them consider reliability. Therefore, an ANN based
methodology is proposed to provide a quantitative relationship
of inertia parameter and reliability, and develop a guideline
for the optimal design of H considering both stability and
reliability.

III. PROPOSED DOUBLE-ANN DESIGN APPROACH

Fig. 4 shows the proposed double-ANN framework for
designing a grid connected VSG system, which involves rep-
resentative mission profile generation, double-ANN based LC
modeling and design optimization considering both reliability
and inertia.

A. Representative mission profile generation

The LC of power semiconductor device is significantly
influenced by the system operating conditions, e.g., the loading
profile and ambient temperature profile. Unlike the original re-
newable energy sources, which normally operate at maximum
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Fig. 3. Dynamic response of a VSG to support the grid frequency variation
with different H .

power point tracking mode or power control mode, a VSG
will provide extra power injection to support system inertia
during the grid frequency fluctuations. This extra injected
power passes through the grid connected inverter, increases
power loss and thermal stress, and as a result, causes increased
LC.Thus the power injection profile Pinj of VSG consists of
the original power set-point value Pin and the extra power
injection caused by virtual inertia support. With different
values of H , different loading profiles Pinj will be generated
and consequently, the LC will be affected.

A problem encountered in this step is to get the power
injection profile from a detailed simulation over a long period
with the grid frequency profile. This is because of the long
simulation time required for simulating a detailed simulation
model over a long operating period, e.g., for a one-minute
operating period, the simulation running time is almost 1
minute.

To avoid running lengthy numerical simulations, the long-
term frequency profile can be represented by a short-term
frequency profile that has similar statistical properties. Based
on KolmogorovSmirnov (k-s) test result for the long-term
frequency profile, the data follows the standard normal distri-
bution. For the normal distribution, the statistical properties are
determined by the mean value and standard deviation [33]. To
be representative, the short-term frequency profile is generated
to have the same normal distribution properties as the long-
term frequency profile. Then the short-term frequency profile
is applied to the system in Fig. 1 with various values of H to
generate the power injection profile of VSG.

B. Double-ANN Lifetime Consumption Model

After the power injection profiles of VSG for different H
constants are obtained, they are applied to the ANN-based
power semiconductor converter thermal model in order to
estimate the LC of the power devices.

The main failure mechanism of power device is related
to the thermal cycling, which is translated from the mission
profiles and can lead to wear-out failures, e.g. bond wire lift

off. In a standard design for reliability approach, the lifetime
evaluation involves translation of the mission profile to thermal
loading profile, interpretation of thermal loading profile and
LC modeling. To assist the simulation for the LC with a
long-term mission profile (e.g., an annual mission profile), a
lookup table model is normally constructed to translate the
mission profile to thermal loading profile. However, as the
electrothermal model is nonlinear, to enhance the accuracy of
lookup table method, numerous simulations are required to
have more breakpoints in the lookup tables; and the whole
process for estimating LC of power electronic converters
usually consists of several lookup tables (e.g., one lookup
table for device model, one lookup table for power loss model
and one lookup table for thermal model in [26]). Thus the
process to build an accurate lookup table based model is quite
complicated, requiring the knowledge of inner physical models
[26]. And when a large amount of data is processed, lookup
table based method is still time-consuming.

As a widely used machine learning algorithm, ANN offers
a promising solution for dealing with nonlinear relationships
with a large amount of data [28]. In the following parts, a
double ANN based approach is used for fast and accurate
mapping of the relationship from control parameter H to LC.

1) ANNt: First, ANNt is constructed to translate the mis-
sion profiles (power injection profile and ambient profile) into
the thermal loading profile.

An ANN is based on a collection of artificial neurons,
which models the neurons in a biological brain. The neurons
receive input, change their internal state (activation) according
to that input, and produce output depending on the input and
activation. A general multi-layer feedforward ANN consists of
an input layer, one or more hidden layers and an output layer,
where each layer has several neurals. The basic knowledge
of an ANN is illustrated in Appendix. For ANNt, it has 2
neurons in the input layer (for two input variables: power
injection Pinj and ambient temperature Ta) and 2 neuron
in the output layer (for two output variables: mean junction
temperature Tjm and cycle amplitude ∆Tj). The hidden layers
can be determined by trial and error from training and test data.
Fig. 5 shows an example ofANNt.

The training and test data of ANNt are obtained by simulat-
ing the detailed models of power converter with the associated
thermal model. The mission profiles of power injection and
ambient temperature are taken as the input variables of the
ANNt and the resulted junction temperature variation profile
is the output.

2) ANNLC: Next, ANNLC is built to estimate the LC
according to different values of H .

Similar as ANNt, ANNLC is a multi-layer feedforward
ANN. It has one neuron at input layer (for virtual parameter
H) and one neuron at output layer (for LC), as shown in Fig.
6.

The training and test data of ANNLC are datasets of
H and the corresponding LC. Given different values of H ,
the corresponding LC is estimated based on the following
procedure:

As described in Section III.A, power injection profiles Pinj
are obtained by simulating VSG system in Fig. 1 with various
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Fig. 4. The proposed double-ANN framework.

Fig. 5. Structure of ANNt.

Fig. 6. Structure of ANNLC .

selections of H under the representative short-term frequency
profile. Then the power injection profile Pinj and ambient
temperature profile Ta are fed to ANNt to generate the
junction temperature profile Tj .

The junction temperature profile provides information of
the mean junction temperature Tjm, cycle amplitude ∆Tj
and cycle period ton. As the junction temperature profile
usually contains mission profile dynamics, which is irregular,
a cycle counting algorithm such as a rainflow analysis is
needed for the thermal cycling interpretation [17], [26]. For
example, the rainflow counting algorithm can decompose an

irregular profile into several regular cycles according to the
amplitude value ∆Tj , average value Tjm and period of the
cycle ton. By applying this method to the juncion temperature
profile, the number of cycles at a certain cycle amplitude ∆Tj ,
mean junction temperature Tjm and cycle period ton can be
obtained.

With the obtained information, the number of cycles to
failure is estimated as [17]:

Nf = A× (∆Tj)
α × (ar)β1∆Tj+β0 ×

[
C+(ton)γ

C+1

]
× exp( Ea

kb×Tjm ) × fd
(6)

where Nf is the number of cycles to failure. Tjm is the mean
junction temperature, ∆Tj is the cycle amplitude and ton
is cycle period, which are obtained from the cycle counting
method. Other coefficient parameters are given in Table I.

Based on Miner’s rule [17], the LC of the power device is
obtained as

LC =
∑
i

ni
Nfi

(7)

where ni is the number of cycles for a certain ∆Tj , Tjm and
ton, which is obtained from the rainflow analysis; Nfi is the
number of cycles to failure for the specific stress condition. For
instance, if the number of cycles ni is counted from a one year
mission profile, the corresponding LC will represent a yearly
LC of the power device. When the value of LC accumulates to
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unity (i.e., 100%), the power electronics device is considered
to fail.

By following the procedure described above, ANNLC can
be constructed with the input data (H) and corresponding
output data (LC).

C. Optimization model considering both inertia and lifetime
consumption

The trained ANNLC maps the control parameter H to
yearly LC, which provides the basis for optimal parameter
design of H considering both reliability and inertia.

As discussed, the control parameter H impacts both inertia
and LC and we want to optimize H from the perspective
of reliability and inertia simultaneously. One objective is to
minimize LC, which can be directly obtained by ANNLC
given different values of H . From the inertia’s perspective, the
mechanism for inertia enhancement is essentially increasing
H [4]. Therefore, another optimization objective is selected
as the maximization of H , or equivalently, minimization of
1/H . Thus the overall cost function for optimizing H with
inertia and reliability is formulated as

f (H) = LC2 + w1

(
1

H

)2

(8)

where w1 is the weighting factor to balance the importance
between the two terms, it is a user-defined parameter based
on the customer requirement.

By solving f (H), the optimal H can be obtained consid-
ering both LC and inertia with different values of weighing
factor w1.

It should be mentioned that, the cost function in (8) can be
revised by taking more factors into consideration. For example,
system dynamic performance indices related to inertia, such
as RoCoF, frequency nadir and settling time [4], can also be
selected as optimization terms.

This method is also flexible for the design of other control
parameters considering reliability, like droop control parame-
ter. The study of droop control parameter with LC is briefly
discussed in Appendix B.

IV. CASE STUDY

The proposed methodology in Fig. 4 is applied to a grid-
connected VSG system in Fig. 1 as a demonstration example.

TABLE I
LIFETIME MODEL PARAMETERS OF AN IGBT MODULE

Variables Value
A 3.4368 ∗ 1014

α -4.923
β0 1.942
β1 −9.012 ∗ 10−3

C 1.434
β1 -1.208
fd 0.6204
ar 0.28
Ea 0.06606eV
kb 8.6173324 ∗ 10−5eV/k

(a)

(b)

Fig. 7. One-month grid frequency profile in Great Britain with its normal
distribution.

The system parameters are listed in Table II. Here the damping
ratio ξ is selected as 0.707 as it offers a good compromise
between rise time and settling time [39]. The proposed method
is applied in the VSG system in Fig. 1 as an application
example, and the detailed procedure described in Section III
and Fig. 4 is demonstrated.

A. Representative mission profile generation

A representative mission profile is generated to shorten
the simulation time. Fig. 7a shows one-month grid frequency
profile in Great Britain [34] with 1s resolution. Its normal
distribution is shown in Fig. 7b. with a mean of 49.9995
Hz and standard deviation at 0.062. To get a representative
short-term frequency profile, a 10-minute frequency profile is
generated with the same statistical properties as Fig. 7. The
generated representative frequency profile is shown in Fig. 8a
with its normal distribution in Fig. 8b. Then a yearly frequency
profile can be generated using the short-term frequency profile.

The generated frequency profile is fed into the system
described in Fig. 1 with the variation of H to generate the
power injection profiles Pinj of VSG system. Fig. 9 shows

TABLE II
SYSTEM PARAMETERS

Variables Description Value
Vdc Input voltage 650V
Vac Grid voltage 220V
fs Switching frequency 5kHz
ω0 Nominal angular frequency 50Hz

Lf , Cf LC filter 1.8mH,0.25mF
Lv , Rv Virtual impedance 4mH,0Ω
kpv , krv Voltage controller 2,100
kpc, krc Current controller 10,100
SN Power rating 50kW
ξ Damping ratio 0.707
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(a)

(b)

Fig. 8. Generated representative frequency profile with its normal distribution.

Fig. 9. Simulation results of power injection of VSG Pinj , the original power
set-point profile Pin, VSG frequency and grid frequency with H selected to
be 10.

simulation results of total power injection of VSG Pinj , the
original power set-point profile Pin, VSG frequency and grid
frequency with H selected to be 10 as an example. Note that
Pin is usually given by the operator, here it is given as the
second plot in Fig. 9 as an example. As can be observed, with
frequency fluctuations, VSG injects or absorbs extra power
accordingly to supply inertia.

B. Double-ANN model training

Double-ANN model is trained based on data from detailed
simulations using the feedforward neural network model.

Fig. 10. Yearly LC of the VSG with different values of H (2:0.1:20).

1) ANNt: ANNt is constructed according to Section III.
B.1. Numerous simulations of the power converter model are
conducted with the input data sweeping at Pinj = 50 :
50 : 1000(W ) and Ta = −10 : 5 : 40 to generate the
corresponding output data of Tj . There are 231 (i.e., 21*11)
sets of input/output data. The training data are normalized
and fed to a feedforward neural network model in deep
learning toolbox in Matlab to get ANNt. To determine the
structure of ANNt, training results are compared for different
ANN structures with one or more hidden layers and different
numbers of neurons in each layer. In this study, the number
of hidden layers is selected to be 3 neurons in both hidden
layers, which is the simplest network that provides excellent
performance.

2) ANNLC: ANNLC is constructed according to Step
III.B.2. Given different values H (2:1:20), corresponding 19
sets of power injection profile Pinj are obtained, as described
in Section IV.A. The ambient temperature is another mission
profile that impacts LC of power device. Considering that
our focus is the impact of power injection profile, ambient
temperature is fixed at 20◦ C. The mission profiles Pinj and Ta
are next fed into ANNt to get the thermal cycling profile Tj
immediately. Then the rainflow counting algorithm is applied
to get the number of cycles at a certain cycle amplitude, mean
junction temperature and cycle period. The yearly LC of the
power device in VSG inverter is calculated based on (6) and
(7).

The structure of ANNLC is determined by following the
same procedure as ANNt. Taking values of H (2:1:20) as
input and corresponding LC values as output data of ANNLC ,
doing normalization and feeding them into a feedforward
ANN, ANNLC is trained.

C. Design optimization considering reliability

The trained ANNLC can be used for selecting control
parameter given a certain LC requirement. Fig. 10 presents
the yearly LC of the VSG with different selection of H
(2:0.1:20). It shows that LC increases with the increase of
inertia parameter. If reliability requirement of the yearly LC
is less than 0.03, H should be selected less than 6.

The trained ANNLC can also be applied for design op-
timization considering LC and inertia using Eq. (8), as il-
lustrated in Section III. C and Fig. 4. To solve the cost
function in (8) is equivalent to solve a multi-objective problem.
To solve a multi-objective problem, the simplest and most
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Fig. 11. Optimal yearly LC and reciprocal of inertia (1/H) with the sweeping
of w1 at 0.01:0.01:1.2

Fig. 12. Cost value with the variation of inertia value H when weighting
factor is selected at 0.1.

common approach is the weight-sum method, achieved by
multiplying each objective function by a weighting factor
and summing up all weighted objective functions [35]. The
weighting factors are usually scaled to make their summation
to be one. The relative value of the weights generally reflects
the relative importance of the objectives. The weights can be
used in two ways. The designer may either set the weighting
factors to reflect preferences before the problem is solved, or
systematically alter weights to yield different Pareto optimal
points.

Here as the problem is a two-objective problem, for simplic-
ity, we set the weighting factor of LC2 as 1 and the weighting
factor of (1/H)2 as w1 in (8), so we only have one weighting
factor w1 to be altered. By alternating w1 value, we can get the
Pareto front of the feasible space of the problem (8), denoted
as red line in Fig. 11, which is a set of optimal solutions
under different values of w1 (w1=0.01:0.01:1.2). Three optimal
points corresponding to w1=0.01, 0.5 and 1 are highlighted
in Fig. 11 as an example to show the balance between LC
and inertia with different values of w1. With the increasing
weight in inertia, a larger optimal inertia value (i.e., smaller
1/H) is obtained, while this results in an increase of LC. For
example, if we want to ensure the LC to be less than 0.06,
and to maximize the inertia, we can select inertia as 11 (i.e.,
1/H =0.09), the corresponding w1 is around 0.5. Therefore, if
inertia support capability is more important, we can select the
H based on Fig. 11 to have optimal inertia support capability
with guaranteed requirement of LC.

Fig. 12 shows the cost value with the variation of inertia
value H when weighting factor is selected at 0.1. The optimal
solution of H for this weighting factor can be obtained by
finding the lowest value in the plot, which can then be applied

(a)

(b)

Fig. 13. Experimental result for inertia constant H selected at 10. (a) when
the active power reference steps up from 500W to 2kW; (b) when the active
power reference steps down from 2kW to 500W.

for parameter design of VSG.
To compare the lookup table method and the proposed

method for reliability evalution, a lookup table based model
is built based on [26] consisting of three lookup tables (one
lookup table for device model, one lookup table for power loss
model and one lookup table for thermal model). The look-
up table method and the proposed method are conducted in
matlab in a laptop with an Intel i7-8550 CPU and 8 GB of
RAM. For the lookup table method, the running time under the
600s power injection profile is 125.670926s. For the proposed
method, the running time is 14.249055s, which reduces 89%
computational time. Therefore, the lookup table method is
more complicated to build and has much higher computational
time. While for our method, we only need to know input and
output data obtained from simulations, and we can obtain fast
and accurate results.

D. Experimental verification for inertia support

Hardware in the loop experiments are conducted in RT-
lab OP5600 Simulator platform in Energy Research Institute
@ NTU to verify the control parameter design for inertia
providing capability. The same parameters listed in Table II are
adopted. Fig. 13 shows the experimental result for the inertia
constant H selected at 10, when the active power reference
steps up from 500W to 2kW and steps down from 2kW to
500W. Fig. 14 shows the result with the same variation for
inertia constant H selected at 2. It shows that, a higher inertia
constant H will have more smooth frequency variation, and
the maximum frequency deviation during transient is much
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(a)

(b)

Fig. 14. Experimental result for inertia constant H selected at 2. (a) when
the active power reference steps up from 500W to 2kW; (b) when the active
power reference steps down from 2kW to 500W.

smaller, which verifies the design goal of inertia that a higher
inertia constant H will lead to higher inertia support.

V. CONCLUSION

Unlike existing VSG works that only considers stability, this
paper proposes a double-ANN based method for designing
VSG inertia parameter (H) considering both reliability and
stability. First, a representative frequency extraction method is
proposed to avoid numerous lengthy simulations for generating
power injection profiles under different inertia parameters.
Next, a double-ANN reliability model is constructed for fast
and accurate estimation of lifetime consumption of power
device. Finally, the trained double-ANN model is combined
with the other performance factors (such as inertia in this
paper as an example) to formulate the cost function for optimal
design of inertia parameter. The proposed approach is applied
in a grid-connected VSG system as a demonstration example.
It provides a guideline about how the inertia constant should
be selected within the acceptable damage in device reliability.
It could also help the system operators to develop a business
model in the future for converter inertia support considering
reliability and other performance factors.

APPENDIX

A. Basic knowledge of ANN

An artificial neural network (ANN) is based on a collection
of artificial neurons, which models the neurons in a biological
brain. A typical ANN structure consists of two basic types of
components, the neurons for processing information and the

Fig. A1. A general structure of an artificial neural network.

links for interconnections. The feedforward multilayer network
structure is a commonly used structure for ANN [27]. Assume
there are L layers. The first layer is called the input layer,
which consists of n neuros (n=the number of input variables).
The last layer is called the output layer, which consists of
m neurons (m= the number of output variables). The rest
layers, i.e. layers 2 to (L-1), are hidden layers. Let the number
of neurons in the l th layer be Nl , l=1,2,..,L. Define the
parameter wji to represent the weight of the link between the
jth neuron in the (l-1)th layer and the ith neuron in the lth
layer. Fig. A1 presents a general structure of an ANN.

Each neuron processes the information in two steps [28].
First, collect the information from the neurons from the
previous layer, given by

γli =

Nl−1∑
j=1

wljiz
l−1
j (A1)

where γli is the weighted sum information for the ith neuron
in the lth layer, which can be seen as the input for that neuron;
Nl is the number of neurons in the lth layer, l=1,2,..,L; wlji is
the weight of the link between the jth neuron in the (l-1) th
layer and the ith neuron in the lth layer; zl−1

j represents the
output of jth neuron in the (l-1) th layer.

Second, the weighted sum information in (A.1) is processed
by an activation function to get the final output of the neuron
as zli, given by

zli = σ(γli) (A2)

The activation function σ(·) can be selected as Sigmoid,
Tanh, ReLU, Softmax, etc. Here the widely used sigmoid
function is selected, which is given by

σ(γ) =
1

1 + e−γ
(A3)

Then the output the neurons in the lth layer will be fed to
the neuros in the next layer for process.

With the input vector (x1, .., xn)T , the process of ANN for
prediction can be summarized as [28]:

z1
i = xi, i = 1, 2, .., N1 N1 = n

zli = σ

(
Nl−1∑
j=1

wljiz
l−1
j

)
, i = 1, 2, .., Nl

yi = zLi , i = 1, 2, .., NL NL = m

(A4)

where (y1, .., ym)T is the predicted output vector of ANN.
To get a proper ANN model to solve the problem, a suitable

number of hidden layers and neurons should be selected
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Fig. A2. The procedure of calculating LC of power converters with the
variation of droop coefficient d and inertia constant H .

first. In general, the choice of hidden layers depends on the
characteristic of data. More hidden layers are adopted to
characterize more complex relationship, yet more data are also
required [36]. How to select the number of hidden neuros
remains an open question, and they are selected based on
experience or the trial and error process, by trying different
neurons during training process to get an acceptable accuracy.

The training process of ANN is to use training data to
obtain a proper set of weight parameters wlji to minimize the
estimation error of ANN output variables with the real output
variables. The properness is evaluated by a loss function,
which is usually a mean-square-error function. The backprop-
agation (BP) training algorithm is widely adopted to get a
proper set wlji [37]. The training process of ANN can be
achieved by many software packages, like Deep Learning
Toolbox in Matlab, Kares, pytorch and tensorflow. In our work,
Deep Learning Toolbox in Matlab is used [38]. By feeding
the input data and real output data as the training data into the
ANN, we can get a well-trained ANN model.

B. Extension of the proposed method considering droop pa-
rameter impact on reliability

This method is flexible to be extended to study the impact of
other control parameters (e.g. droop parameter) on reliability.
The study of droop parameter is the same as the procedure for
H in Fig. 2. First, we can have different droop parameters to
run the simulation and get the power injection profiles Pinj ,
and then we feed the power injection profiles Pinj to ANNt
to get the thermal profile and calculate the corresponding LC.
Then we can build the relationship between input (i.e., droop
coefficient d and inertia constant H) and output (i.e., LC) to
train ANNLC . The procedure is described in Fig. A2. The
training process is similar as to be described in Section IV. B.
Therefore, the proposed double-ANN method can be extended
to study the impact of droop parameters on reliability, and we
can also achieve reliability oriented droop parameter design.
As the focus of this work is to study the impact of VSG inertia
emulation on reliability, the study of droop parameter is not
emphasized.
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