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Abstract: Unmanned aerial vehicles (UAVs) create an interesting alternative for establishing more
sustainable urban freight deliveries. The substitution of traditional trucks in the last-mile distribution
by a UAV fleet can contribute to urban sustainability by reducing air pollution and increasing urban
freight efficiency. This paper presents a novel approach to the joint proactive and reactive planning
of deliveries by a UAV fleet. We develop a receding horizon-based approach to reactive, online
planning for the UAV fleet’s mission. We considered the delivery of goods to spatially dispersed
customers over an assumed time horizon. Forecasted weather changes affect the energy consumption
of UAVs and limit their range. Therefore, consideration should be given to plans for follow-up
tasks, previously unmet needs, and predictions of disturbances over a moving time horizon. We
propose a set of reaction rules that can be encountered during delivery in a highly dynamic and
unpredictable environment. We implement a constraint programming paradigm, which is well
suited to cope with the nonlinearity of the system’s characteristics. The proposed approach to online
reactive UAV routing is evaluated in several instances. The computational experiments have shown
that the developed model is capable of providing feasible plans for a UAV fleet’s mission that are
robust to changes in weather and customer’s orders.

Keywords: reactive planning; vehicle routing problem; unmanned aerial vehicle fleet mission;
declarative modeling

1. Introduction

Delivering goods in urban areas is related to negative externalities, such as congestion,
noise, and air pollution. Urban distribution operations have a significant impact on three
dimensions of sustainability (economic, environmental, and social) [1].

In the framework of city logistics, the general issues related to urban freight deliveries
(in the framework of city logistics) are identified in [2–4] as follows:

• Higher costs for urban goods delivery.
• Nuisance including traffic congestion and crashes.
• Green House Gas (GHG) emissions and local emissions.
• Reduction of the greenfield sites and open spaces (due to the transport infrast-

ructure development).
• Increasing amounts of waste products, such as tires, oil, and other waste products

related to maintenance of traditional delivery and transport systems.
• Noise and vibration.

In the European Union, over 75% of the population lives in cities. The growing urban
population is linked to the higher demand for deliveries in urban areas. Freight transport
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in urban areas generates 25% of emissions of CO2 in a city (EC UTF, 2012). Due to the
organization of traffic in the city structure, in urban freights there are more frequent stops
and shorter distances traveled. For that reason, urban freight transport pollutes air more
than long-distance transport [5]. The city logistics issues involve different stakeholders like
local authorities, residents, consumers, visitors to the city, shippers, receivers, transport
companies, and public transport operators [6,7]. In this paper, we take into consideration
the shippers and receivers. Due to the development of e-commerce, a considerable share
of deliveries is made directly to individual customers [4]. The “last-mile” of delivery is
performed in highly urbanized areas, where the use of traditional trucks is not effective [8].
The negative effects of goods deliveries in urban areas are caused mainly by a low level
of cooperation between partners in the supply chain, and also the low effectiveness of
transport systems [9]. The low efficiency of the last-mile operations (with the use of
traditional trucks) results from a spatial distribution of relatively small receiving points,
demands for more frequent but smaller shipments, various delivery time windows, and
changes in the delivery schedules due to the absence of the recipient. This inefficiency is
translated into ecological concerns and actions are taken on a local, regional, and national,
as well as cross-boundary, scale to limit the negative impacts of urban freight deliveries
on the environment [9]. Moreover, the share of “last-mile deliveries” increases due to
e-commerce. There is a need for innovative types of deliveries in inner cities, reducing
the negative ecological and social impact of transport. A lot of attention has been also
given to the use of alternative fuel vehicles in urban logistics, in particular, the usability of
electric freight vehicles (EFVs) [8] and zero-emissions solutions [10,11]. To address these
issues, several innovative solutions have been proposed such as [12]: Information and
Communication Technologies (ICT), Intelligent Transport Systems (ITS), Internet of Things
(IoT), Artificial Intelligence (AI), and deliveries with robots (e.g., UAVs).

Public authorities have taken action to encourage the use of green vehicles in the
last mile of logistics [13]. Unmanned aerial vehicles (UAVs) create an interesting alter-
native for decarbonizing transport, reducing air pollution, and increasing urban freight
efficiency [14–16]. Compared with delivery trucks [17], UAVs consume less energy per
package kilometer. The current scale of the applications of UAVs in urban distribution is rel-
atively low [13,18]. Urban deliveries are characterized by frequent stop-and-go movements,
low consolidation, and frequent rescheduling (e.g., due to the cancelation of delivery or
absence of recipient) [13]. The use of UAVs on a larger scale requires research to provide
better solutions to meet the challenges related to dynamic changing conditions [19–21].

In this paper, we consider the reactive planning of a UAV fleet’s mission problem
with highly dynamic and unpredictable environment constraints. Typical disruptions in
urban deliveries by UAVs may be caused by changes in the order by customers or changing
weather conditions (e.g., a sharp drop in temperature, icing of propellers, turbulences),
which affect the energy consumption of UAVs and cause them to have a shorter range due
to the depletion of batteries [22,23]. For that reason, the routing of a UAV fleet in a partially
known and unpredictable environment should guarantee a reactive online determined
contingency reaction.

Path planning for UAVs has been an active research area, and the existing scientific
approaches can be classified as:

• optimization criteria (e.g., fuel consumption [24], delivery time [25], delivery costs [26])
• fields of application (e.g., reconnaissance and mapping [27], package delivery [28],

delivery communication capabilities [29,30])
• Fleet planning and scheduling (e.g., congestion-free scheduling [23,31,32], fleet

assignment [33]).

The aim of UAV fleet mission planning is to find a sequence of waypoints that connect
the starting point to the destination location for every vehicle in the fleet. UAV routes can be
determined through proactive planning [34], and generated in offline mode or in reactive
planning [35–37], while executed in the online mode. Routes determined in proactive
planning guarantee the achievement of the planned mission’s goal for the environment’s
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parameters, which change in predetermined intervals. Sometimes the routes determined
in proactive planning cannot guarantee the achievement of the mission goal. That issue
happens because scenarios corresponding to planned reactive rules do not guarantee the
existence of reactive end-to-end paths employed in the routing process [37] while adapting
it to changes in the environment during mission execution.

Usually, the designed mission plans are analyzed from multiple perspectives includ-
ing changing weather conditions (i.e., wind speed and direction), payload and energy
capacities of UAVs, fleet sizes, the number of delivery points visited by a UAV on a
mission, and delivery performance [23,31,38–42]. Due to the NP-hard nature of the consid-
ered problems, the models used in the above-mentioned contexts include representations
implementing formalisms of MLP [43,44], declarative modelling [22,31,34,45], computer
simulation [46,47], AI [48], and heuristic searching [49].

Relatively few works devoted to the planning of UAV fleet missions take into account
the various technical and environmental factors influencing possible solutions [22]. Among
the listed factors, the following are significant:

• Technical parameters of UAVs (UAV dimensions, battery capacity, and carrying
payload limit).

• Changing weather conditions (the wind speed, wind direction, wind gust, precipita-
tion, icing, turbulence, and air density and temperature).

• Dynamically changing terms of delivery and static or moving obstacles (withdrawing or
changing the date and place of deliveries as well as their volume, and collision avoidance).

Those conditions, by influencing the battery consumption, determine the range of
the planned missions. The time of completion of the UAV’s mission is normally calcu-
lated offline by using information about the known route length and the parameters of
the employed vehicle. However, studies on the influence of weather-dependent energy
consumption constraints, and changes in the weight of the shipment, as well as changes in
weather conditions determining energy consumptions, are rare [22,50].

In this context, a research gap concerns both the dynamic control [51,52] and the
proactive planning [35,36,39] of UAV missions. Dynamic control policies are responsible
for carrying out all of the real-time operational functions required to maneuver a vehicle.
Reactive routing strategies allow for responses after an incident occurrence. They both
play a pivotal role in a vehicle’s navigation in uncertain operational environments. The
reactive routing strategies linking the “route discovery” (proactive route planning) and
“route maintenance” (reactive rules adopting) concepts [53] are especially responsible for
the UAV’s robustness to the changes that appear in the urban distribution context. The
reactive routing strategies match the needs of dynamically developing vehicular ad hoc
networks (VANETs), which are characterized by frequent path failures due to the high
mobility caused by the sudden changes of vehicle direction [54,55].

The indicated research gap has become the inspiration for conducting this research,
which focuses on reactive planning of deliveries by UAV fleets that are resistant to sudden
changes in weather conditions and unforeseen changes in the delivery schedules.

The research problem concerns the delivery of goods within assumed time windows
to a set of spatially dispersed customers, over a given time horizon. When forecasted
changes in the weather affect the energy consumption of UAVs and limit their range, then
some of the demand is unmet. Proactive planning of subsequent missions will take into
account previously unmet demand as well as predictions of future disturbances over a
moving time horizon. Therefore, we aim to propose a set of condition-action (if-then)
rules for situations that can be encountered in the course of delivery missions in a highly
dynamic and unpredictable environment.

The originality of this paper results from merging the proactive and reactive planning
of the missions of UAV fleets. The developed model allows for predictive (i.e., taking into
account forecasted weather conditions changing) and reactive (i.e., enabling interruption
of a drone’s mission) planning of delivery missions in terms of the Constraint Satisfac-
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tion Problem easily implemented in a commercially available constraint programming
environment, e.g., IBM ILOG.

The paper is structured as follows. The research problem and methods are presented
in Section 2. The declarative model for reactive planning of deliveries by a UAV fleet using
the Constraint Satisfaction Problem is described. Computational experiments are presented
in Section 3. The discussion on results is presented in Section 4. The final conclusions are
stated in Section 5, followed by a description of future research.

2. Materials and Methods

Most approaches to this topic employ either proactive or reactive route planning
strategies. Proactive planning allows for the selection of a set of waypoints that avoids the
anticipated disturbances [34]. In reactive planning (instead of an actions’ specific sequence)
sets of condition-actions, or if-then rules (corresponding to possible situations that may
appear), are prepared. In that context, reactive planning is a process in which one rule is
selected (from available rules assigned to the relevant situation) in order to implement the
required contingency actions [56,57].

This research addresses the existing gap in the state-of-the-art of mission planning,
with regard to the changing weather conditions and uncertainty of unpredictable behavior
of the ordering party. We search for a feasible plan for a UAV fleet’s mission that allows
for successful completion of the deliveries before the UAV’s battery discharging. Such a
plan will be robust to disturbances relating to the changes in weather conditions and the
customer’s order (e.g., the recipient is absent or cancels the delivery). We have given:

• A set of spatially dispersed delivery points
• A fleet of capacitated UAVs
• A distribution network with distinguished, so-called base nodes, used for loading

UAVs and replacing used batteries, as well as a set of edges labeled by travel times
linking adjacent nodes.

We have also given disturbances including types of order changes and the weather
forecast for the given time horizon.

Our research problem is to find the proactive plan for the UAV fleet’s mission that
ensures completion of the assumed deliveries in a given time horizon. That plan is deter-
mined by the forecasted changes in weather conditions. The feasible mission plan consists
of a sequence of overlapping sub-missions (covering the UAV’s routes and flight schedule).
The time and range of sub-missions are limited by the battery’s capacity and its current
depletion rate. We also search for a reactive plan with a set of condition-action rules that
defines which type of contingency operations will be taken when disturbances appear. A
disturbance can be related to a change in the size and location of delivery and/or dynamic
changes in weather conditions (exceeding forecasted weather conditions). Then, for the
designated UAV’s baseline routes and a set of rules, the reactive online delivery plan is
implemented. The joint proactive and reactive planning allows for changes to be made
during the execution of the initial plans. When, at a given waypoint, a disturbance appears
related to at least one condition among the assigned reactive rules, then the corresponding
initial (proactively planned) UAV’s delivery is properly rerouted.

The mathematical formulation of this problem belongs to the class of NP-hard prob-
lems [33,38,50,58], as it consists of many highly nonlinear constraints. Those constraints are
related to energy consumption under the different directions and speed of the wind and
variable loads. Therefore, a declarative reference model is applied [13]. Our contribution
extends the previous works [22,23,31,34], which have explored the proactive planning
methods for fast prototyping of feasible UAV fleet routing, in regard to the changing
weather conditions. In the next sections, we present the stages of our model development.

2.1. General Concept—The Method for Online Routing

We consider a distribution network, that is modeled by the graph G = (N, E)
where N = {N1, . . . , Nλ, . . . , Nn} signifies the set of n = |N| nodes (distinguishing N1
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node representing a base and {N2, . . . , Nn} nodes representing delivery points), and
E =

{(
Ni, Nj

)∣∣ i, j ∈ {1, . . . , n}, i 6= j
}

signifies the set of edges determining the pos-
sible connections between nodes.

There is given a fleet of UAVs U = {U1, . . . , Uk, . . . , UK} that delivers to the points
{N2, . . . , Nn}. It is assumed that to each delivery point Nλ an ordered quantity of goods
zλ ∈ N kg (taken from the base N1) should be transported. Deliveries are made as part
of mission S, which consists of sub-missions lS (i.e., delivery plans that include a single
course of UAVs: base-delivery points-based). Z denotes a sequence consisting of variables
zλ: Z = (z1, . . . , zn). It is assumed that all required goods should be delivered in the
given horizon time H. The number of goods delivered during one sub-mission lS by the
Uk to the delivery point Nλ is determined by the variable lck

λ ∈ N kg. lC is a sequence:
lC =

(
lc1

1, . . . , lcK
1 , . . . , lc1

n, . . . , lcK
n

)
determining the payload weight delivered by fleet

U . The sum of goods delivered to point Nλ should be equal to the required value of zλ

(∑L
l=1 ∑K

k=1
lck

λ = zλ, where: L denotes the number of sub-missions lS). It is assumed
that each delivery point can be serviced by several UAVs. In addition, a UAV used in a
sub-mission can service several delivery points. Variable Qk denotes the payload capacity
of Uk kg (amount of goods transported by Uk cannot exceed Qk). Moreover, each Uk is
described by technical parameters: battery capacity CAP, airspeed va, drag coefficient CD,
front surface A of UAV, and UAV width b. The time spent on take-off and landing Uk on
delivery point Nλ is indicated by variable wλ ∈ N s.

Note that lU ⊆ U denotes a set of UAVs used during sub-mission lS. The moment
when the Uk ∈ lU arrives at the delivery point Nλ during sub-mission lS is indicated by
variable lyk

λ ∈ N[s]. In that context, the sequence lY consisting of moments lyk
λ, is called

the schedule of the fleet lU : lY =
(

ly1
1, . . . , lyK

1 , . . . , ly1
n, . . . , lyK

n

)
.

We assume that the variable tβ,λ ∈ N[s] determines traveling time between nodes Nβ, Nλ,
where:

(
Nβ, Nλ

)
∈ E and routes of Uk ∈ lU during sub-mission lS are represented by se-

quences: lπk =
(

Nk1 , . . . , Nki
, Nki+1

, . . . , Nkµ

)
, where: ki ∈ {1, . . . , n}, (Nki

, Nki+1
) ∈ E. lΠ

denotes a sequence of routes executed during sub-mission lS: lΠ = (lπ1, . . . , lπk, . . . , lπK)
(in cases when Uk /∈ lU then lπk = 4). The delivery plan of one UAV’s sub-mission lS is
defined as a sequence: lS =

(
lU , lΠ, lY , lC

)
.

It is assumed that a plan of sub-mission lS is implemented under specific weather con-
ditions, i.e., the weather forecast is known for each sub-mission lS. The forecasted weather
conditions are described by the set F of pairs composed of direction θ and wind speed
(θ, vw) ∈ F , i.e., F is defined as follows: F = {(θ, vw)|θ ∈ [0◦, 360◦), vw ∈ [0, F (θ)]}.
Where Z(θ) is a function whose values determine the maximum forecasted wind speed for
the given direction θ. The weather conditions determine the admissibility of the adopted
sub-mission’s plan lS, i.e., they determine whether, during its implementation, the batteries
of one of the UAVs will not be prematurely discharged.

A function Yk,l(θ) determines the borderline wind speed (for a given direction θ),
which guarantees the successful completion of the delivery plan by the Uk during sub-
mission lS in the distribution network G: Yk,l(θ) = maxΓk,l(θ), where: Γk,l(θ)–set of wind
speed values vw for a given direction θ, for which the battery of Uk is not discharged. The
sub-mission’s plan lS is assumed [27] to be resistant to the forecast weather conditions F if
the boundary wind Yk,l(θ) of all Uk ∈ lU in any direction θ does not exceed the forecasted
value Z(θ): ∀Uk∈lU ∀θ∈[0◦ ,360◦)Yk,l(θ) ≥ F (θ).

A typical problem in proactively planning weatherproof missions is, as follows:
Does a route plan exist for mission S (consisting of sub-missions lS) of the fleet U that

guarantees the delivery of the required goods to all recipients in the G network in a given horizon
H, and is resistant to the forecasted weather conditions F (∀Uk∈lU ∀θ∈[0◦,360◦)Yk,l(θ) ≥ F(θ)?

In reality, however, the implementation of the designated mission S may be subject to
various disturbances IS. Among them, there are sudden changes in the weather (beyond
the expected F ∗(θ) range), and changes in orders Z), order changes (increase or decrease
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in the number of ordered deliveries Z∗), and changes in the number of delivery points
served (changing the structure of the network G∗). The UAV fleet, when performing the
delivery mission plan S, meets a disturbance IS(t∗)-covering one of the cases: the weather
F ∗(θ), the network G∗, orders Z∗, at the time t∗. In such situations, it becomes necessary
to answer the following question:

Does a re-route plan exist for mission S∗ that guarantees the timely deliveries in a
given time horizon H and at acceptable battery levels?

A mission planning algorithm, which allows for the reactive routing of the UAV’s fleet
with disturbances, is presented in the following subsections.

2.2. Reactive UAV Fleet Rerouting

To illustrate the motivation behind our approach, let us consider a distribution network
from Figure 1a covering an area of 100 km2 and containing 39 delivery points (nodes
N2, . . . , N40). The goods are delivered by the UAV fleet, which is stationed at the base N1.
The technical parameters of the UAVs are collected in Figure 1c. The weight of individual
orders is:

z2 = . . . = z6 = 5kg, z7 = 10kg, z8 = z9 = 15kg, z10 = z11 = . . . = z16
= 5kg, z17 = 10kg, z18 = z19 = 15kg, z20 = . . . = z26
= 5kg, z27 = 10kg, z28 = z29 = 15kg, z30 = . . . = z36
= 5kg, z37 = 10kg, z38 = z39 = 15kg, z40 = 5kg

In that context, we search for the minimum fleet size guaranteeing timely deliveries of
the required amount of goods.
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It is easy to notice that the smallest fleet that guarantees timely delivery (within the
time horizon of 2.5 h) consists of U = {U1, U2, U3, U4 } UAVs, see Figure 2b. In turn, the
fleet of U = {U1, U2, U3} UAVs enables the realization of deliveries within the time horizon
of 2.825 h. Figure 2a shows a schedule for carrying out transport operations (flight of the
UAV between successive nodes) and unloading operations at subsequent collection points
(landing in a node and unloading of goods) executed in the planned mission. In the case
under consideration, mission S consists of 6 sub-missions. Since only 3 UAVs were used,
the delivery time to all delivery points (in given weather conditions see Figure 1) exceeds
the allowable time limit of 2.5 h (H = 9000 s ). It is possible to meet the set delivery date by
using 4 UAVs: U = {U1, U2, U3, U4} ).
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In this case, mission S of Figure 2b consists of 6 sub-missions: S =
(1S, 2S, . . . , 6S

)
(the

wind speed does not exceed 9 m
s ). In turn, Figure 2c illustrates the UAV routes occurring in

sub-mission 1S and executed due to resistance functions: Y1,1(θ), Y2,1(θ), Y3,1(θ), Y4,1(θ).
It is apparent that the following routes in mission 1S are weatherproof for the given

forecasted weather (i.e., Yk,l(θ) ≥ F (θ)) :

1π1 = (N1, N33, N34, N13, N35, N24, N1); 1π2 = (N1, N31, N21, N22, N25, N26, N1) :

1π3 = (N1, N20, N10, N40, N3, N14, N1); 1π4 = (N1, N11, N5, N12, N32, N4, N1)

and robustness function UAVs: Y1,1(θ), Y2,1(θ), Y3,1(θ), Y4,1(θ).
The mission under consideration is determined in the proactive planning process.

In the course of carrying out a planned mission, many different disturbances can occur.
However, other disturbances IS including changes in weather or the appearance of a newly
notified unplanned (not included in the planned route) order may occur in the course of
mission execution.

All goods should be delivered within 2.5 h (T = 9000 s). The deliveries take place in
different forecasted weather conditions (set F), which are illustrated in Figure 1b. According
to the forecast, the wind speed does not exceed vw = 9 m

s .
We consider a situation in which the weather conditions of the mission carried out

rapidly changed at the time t∗ = 3000 s, i.e., during the execution of sub-mission 2S,
the wind speed increased to vw = 11 m

s for direction θ = 210◦–230◦. Such a change
means that this mission cannot be continued due to too much energy consumption (the
mission’s resistance function Y3,2(θ) values are below the level corresponding to speed
11 m

s , see Figure 3. Figure 3 shows the location of the UAVs at time t∗ = 3000 s, i.e., upon
receipt of information about a change in weather, and marked the place where the battery
U3 will be discharged in the event of continuation of deliveries in accordance with the
current plan 2S.Sustainability 2021, 13, x FOR PEER REVIEW 10 of 26 

 

 
Figure 3. Sub-mission   after changed weather conditions: the wind speed increased to  =  11 /  in direction =210° − 230°. 
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in direction θ = 210◦–230◦.



Sustainability 2021, 13, 5228 9 of 23

In this situation, it is necessary to correct the route of sub-mission 2S being carried
out, which forces the search for an answer to the following question:

Given a fleet U = {U1, U2, U3, U4 } providing deliveries to the delivery points allo-
cated in the network G from Figure 1. The fleet realizes the delivery mission plan S∗ from
Figure 2b. At the time t∗ = 3000, a rapid weather F ∗(θ) change, i.e., disturbance IS, occurs,
resulting in vw = 11 m

s ; θ = 210◦–230◦.
Does a re-route plan exist for mission S∗ that guarantees the timely delivery of the

ordered supplies in a given time horizon H = 9000 s and at acceptable battery levels?
A procedure enabling a reactive (dynamic) planning of the mission for the UAV fleet

in the event of a disturbance occurrence is presented in the next sections.

2.3. CSP Formulation
2.3.1. Reactive Mission Planning

The proposed reaction to the occurrence of a disturbance IS(t∗) can be reduced to
dynamic re-routing and rescheduling of previously adopted routes lΠ, schedules lY , and
delivered goods lC stated in the basic proactive plan for the mission by the UAV fleet. It is a
feasible adjustment of assumed lΠ, lY , and lC values to the changes in forecasted weather
F ∗(θ), as well as corrections introduced to the network G∗ or orders Z∗.

To formally define the concept of disturbance IS(t∗), let us introduce the concept
of the state of mission implementation S. The state of mission S at the time t is defined
as follows:

IS(t) = (M(t), F ∗(θ, t), ∗G(t), Z∗(t)) (1)

where:
M(t) is an allocation of UAVs to nodes at the time t: M(t) =

(
Na1 , . . . , Nak , . . . , NaK

)
,

where: ak ∈ {1, . . . , n} determines the (delivery points) node Nak occupied by Uk (or the
node the Uk is headed to),

F ∗(θ, t) is the weather condition forecast at the time t,
∗G(t) is the graph model of the distribution network structure at time t (number and

location of delivery points), and
Z∗(t) is the sequence of goods requested at the time t.
The state IS(t∗) following condition [F ∗(θ, t∗) 6= F ∗(θ)]∨ [∗G(t∗) 6= G]∨ [Z∗(t∗) 6= Z]

is called the disturbance occurring at the time t∗.
Occurrence of IS(t∗) disturbance should be assessed in terms of its impact on the

further course of the mission of S (that is, whether the value of the resistance function
Yk,l(θ) is greater than F (θ)). If the implementation of the mission is at risk (Yk,l(θ) � F (θ)),
an attempt should be made to reschedule it. The following condition action (if-then) rules
are used for this purpose:

1. If the adopted mission plan S is not resistant to disturbance IS(t∗)(
∃k∈{1,...,K},l∈{1,...,L}Yk,l(θ) � F (θ)

)
, then it should be checked whether it is possi-

ble to adapt (re-plan), adjusting it to new conditions. That is, decide whether all UAVs
in the air continue their current missions or make their appropriate corrections.

2. If there are UAVs (the set UR) that cannot continue to fly due to disturbance IS(t∗),
then they should be returned to the base after it is ensured that airborne UAVs
(the set U\UR) can take over their tasks.

3. If the tasks of the UAVs returning to the base (the set UR) cannot be taken over by
UAVs still performing their missions, then it should be checked whether the reserve
UAVs available at the base (the set UB) can take over their responsibilities. This means
the UAVs in the air continue their existing missions, while the reserve UAVs take over
the liabilities of the UAVs returned to the base.

4. If the reserve UAVs (the set UB) are unable to take over the responsibilities of those
returned to the base (the set UR), then their activity should be suspended until the
disturbance is resolved.
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The above rules have been used in the reactive mission planning method S shown in
Figure 4. The idea behind this method is as follows. During the implementation of mission
S, there is continuous monitoring of the state of the IS(t) (for t ∈ {0 . . . H}). If at the state
IS(t), the following condition holds [F ∗(θ, t∗) 6= F ∗(θ)] ∨ [∗G(t∗) 6= G] ∨ [Z∗(t∗) 6= Z]
(e.g., there is a change in the weather forecast or in the structure of the distribution network
as well as in the size of the requests) and mission S is under threat (i.e., at least one of the
UAVs will not return to base due to low battery), then an attempt is made to replan it. Such
reaction is performed by the function solve, the purpose of which is to designate a mission
∗S adapted to the new conditions determined by the disturbance IS(t).
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In practice, it comes down to solving the relevant constraints satisfaction problem
CS
(OU , S, IS(t)

)
(where:OU—defines the fleet designated by condition action rules 1–4.

The relevant constraints distribution process follows the sequence where at first, an attempt
is made to designate mission ∗S for the fleet U = U (according to rule 1). In the event of
failure, an attempt is made to designate it for the fleet U = U\UR (according to rule 2 and
then for the fleet U = (U\UR) ∪ UB (according to rule 3). If an admissible solution ∗S
still does not exist, then the currently used mission plan should be modified (due to the
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reduce function) in such a way that it removes the sub-missions, which are not resistant to
disturbance IS(t) (according to rule 4).

It should be noted that the designation of mission ∗S is associated with the designation
of routings lΠ, schedules lY , and delivery sequences lC throughout the remaining time
horizon {t, . . . , H}.

Due to the disturbance IS(t∗) occurrence, the proposed reactive planning algorithm
(implemented in the IBM ILOG environment) generates the end-to-end paths that modify
previously planned routes, restoring the ability to implement the designated mission
delivery plan.

2.3.2. Declarative Modelling

The mathematical formulation of the constraint satisfaction problem CS
(OU , S, IS(t)

)
aimed at reactive planning of the mission employs the following parameters, variables,
sets, and constraints.

Parameters:

l G
the graph of a distribution network: lG = (N, E) for sub-mission lS, where:
N = {N1, . . . , Nλ, . . . , Nn} is the set of nodes,
E =

{(
Ni, Nj

)∣∣∣ i, j ∈ {1, . . . , n}, i 6= j
}

is the set of edges

zλ the demand at node Nλ, z1 = 0
dβ,λ the travel distance between nodes Nβ, Nλ

tβ,λ the travel time between nodes Nβ, Nλ

w the time spent on take-off and landing of a UAV
ts the time interval at which UAVs can take off from the base

lU the subset of UAVs lU ⊆ U = {U1, . . . , Uk, . . . , UK} carrying out the sub-mission lS,
where: Uk is the k-th UAV

K the size of the fleet of UAVs
IS(t) the state of UAVs mission at the time t: IS(t) = (M(t), F ∗(θ, t), ∗G(t), Z∗(t))

Yk,l(θ)
Uk resistance to changes in weather conditions during the execution of the plan of
mission lS

Q the maximum loading capacity of a UAV
CD the aerodynamic drag coefficient of a UAV
A the front-facing area of a UAV
ep the empty weight of a UAV
D an air density
g the gravitational acceleration
b the width of a UAV

CAP the maximum energy capacity of a UAV
H the time horizon (see Figure 2b—H = 9000)

F (θ) the function values of which determine the maximum of forecasted wind speed for
given direction θ

vaβ,λ an airspeed of a UAV traveling between nodes Nβ, Nλ

ϕβ,λ
the heading angle, angle of the airspeed vector when the UAV travels between nodes
Nβ, Nλ

vgβ,λ the ground speed of a UAV traveling between nodes Nβ, Nλ

ϑβ,λ
the course angle, angle of the ground speed vector when the UAV travels between
nodes Nβ, Nλ

lS

the plan of sub-mission: lS =
(

lU , lΠ, lY , lC
)

when there is no disturbance:
lY : is a sequence of moments lyk

λ (i.e., the fleet lU schedule):
lY =

(
ly1

1, . . . , lyK
1 , . . . , ly1

n, . . . , lyK
n

)
, lyk

λ is the time at which Uk arrives at node Nλ,

lΠ: the set of UAV routes lπk: lπk =
(

Nk1
, . . . , Nki

, Nki+1
, . . . , Nkµ

)
lC : is a sequence of weights of delivered goods lck

λ: Ck =
(

ck
1, . . . , ck

λ, . . . , ck
n

)
, lck

λ is
the weight of goods delivered to node Nλ by Uk

S the flight mission plan S =
(

1S, . . . , lS, . . . , LS
)

, where: L denotes the number of
sub-missions.



Sustainability 2021, 13, 5228 12 of 23

Decision Variables:

l xk
β,λ

the binary variable used to indicate if Uk travels between nodes Nβ, Nλ, after the
disturbance IS(t∗) occurrence (during sub-mission lS)

l xk
β,λ =

{
1 if Uk travels between nodes Nβ, Nλ

0 otherwise

lyk
λ

the time at which Uk arrives at node Nλ, after the disturbance IS(t∗) occurrence
(during sub-mission lS)

lck
λ

the weight of freight delivered to node Nλ by Uk, after the disturbance IS(t∗)
occurrence (during sub-mission lS)

l f k
β,λ

the weight of freight carried between nodes Nβ, Nλ by Uk, after the disturbance
IS(t∗) occurrence (during sub-mission lS)

l Pk
β,λ

the energy per unit of time consumed by Uk during the flight between nodes Nβ, Nλ

(after the disturbance IS(t∗) occurrence)

lbatk the total energy consumed by Uk, after the disturbance IS(t∗) occurrence (during
sub-mission lS)

lsk the take-off time of Uk, after the disturbance IS(t∗) occurrence (during sub-mission
lS)

lc pλ
the total weight of freight delivered to node Nλ, after the disturbance IS(t∗)
occurrence (during sub-mission lS)

lπk
the route of Uk after the disturbance IS(t∗) occurrence (during sub-mission lS),
lπk = (Nk1

, . . . , Nki
, Nki+1

, . . . , Nkµ
, ki ∈ {1, . . . , n},

(
Nki

, Nki+1

)
∈ E.

Sets:

lY is a sequence of moments lyk
λ, schedule of the fleet lU after the disturbance IS(t∗)

occurrence
lC is a sequence of weights of delivered goods lck

λ
lΠ the set of UAV routes lπk

lS
the plan of sub-mission after the disturbance IS(t∗) occurrence :
lS =

(
lU , lΠ, lY , lC

)
∗S the re-route plan of the mission : ∗S =

(
1S , . . . , lS , . . . , LS

)
.

Constraints limiting: routes, delivery of freight, and energy consumption

1. Routes. Relationships between the variables describing UAV take-off times/mission
start times and task order:

lsk ≥ 0; k = 1, . . . , K;= 1, . . . , L, (2)(
lsk ≤ t∗

)
⇒
(

lsk = lsk
)

; k = 1, . . . , K ; l = 1, . . . , L, (3)(
|lsk − lsq| ≥ ts

)
; k, q = 1 . . . K; k 6= q; l = 1, . . . , L, (4)(

lyk
j ≤ t∗

)
⇒
(

l xk
i,j =

l xk
i,j

)
; j = 1 . . . n; i = 2, . . . , n; k = 1, . . . , K; l = 1 . . . L, (5)(

lyk
j ≤ t∗

)
⇒
(

lyk
j =

lyk
j

)
; j = 1, . . . , n; i = 2, . . . , n; k = 1, . . . , K; l = 1, . . . , L, (6)

∑n
j=1

l xk
i,j = 1 ; k = 1, . . . , K; l = 1, . . . , L, (7)(

l xk
1,j = 1

)
⇒
(

lyk
j =

lsk + t1,j

)
; j = 1, . . . , n; k = 1, . . . , K, (8)(

lyk
i 6= 0 ∧ lyq

i 6= 0
)
⇒
(∣∣∣lyk

i − lyq
i

∣∣∣ ≥ w
)

; i = 1, . . . , n; k, q = 1, . . . , K ; k 6= q, (9)(
l xk

i,j = 1
)
⇒
(

lyk
j =

lyk
i + ti,j + w

)
; j = 1, . . . , n; i = 2, . . . , n; k = 1, . . . , K , (10)

lyk
i ≥ 0; i = 1, . . . , n; k = 1, . . . , K, (11)



Sustainability 2021, 13, 5228 13 of 23

∑n
j=1

l xk
i,j = ∑n

j=1
l xk

j,i; i = 1, . . . , n; k = 1, . . . , K, (12)

lyk
i ≤ H ×∑n

j=1
l xk

i,j, i = 1, . . . , n; k = 1, . . . , K, (13)

l xk
i,i = 0; i = 1, . . . , n; k = 1, . . . , K. (14)

2. Delivery of freight. Relationships between variables describing already delivered and
requested amount of freight:(

lyk
j ≤ t∗

)
⇒
(

lck
j =

lck
j

)
;= 1, . . . , n; i = 2, . . . , n; k = 1, . . . , K; l = 1, . . . , L, (15)

lck
i ≥ 0; i = 1, . . . , n; k = 1, . . . , K;l = 1, . . . , L, (16)

lck
i ≤ Q×∑n

j=1 xk
i,j; i = 1, . . . , n; k = 1, . . . , K; l = 1, . . . , L, (17)

∑n
i=1

lck
i ≤ Q; k = 1, . . . , K; l = 1, . . . , L, (18)(

l xk
i,j = 1

)
⇒
(

lck
i ≥ 1

)
; k = 1, . . . , K; i = 1, . . . , n; j = 2, . . . , n, (19)

∑L
l=1 ∑K

k=1
lck

i = zi; i = 1, . . . , n , (20)

∑n
i=1

lck
i =

lcsk; k = 1, . . . , K;= 1, . . . , L, (21)(
l xk

i,j = 1
)
⇒
(

l f ck
j =

lcsk
)

; j = 1 . . . n; k = 1 . . . K ; l = 1, . . . , L, (22)(
l xk

i,j = 1
)
⇒
(

l f ck
j = f ck

i − lck
i

)
; i, j = 1, . . . , n; k = 1 . . . K ; l = 1, . . . , L, (23)(

l xk
i,j = 1

)
⇒
(

l f k
1,j =

lcsk
)

; j = 1, . . . , n; k = 1 . . . K ; l = 1, . . . , L, (24)(
l xk

i,j = 1
)
⇒
(

l f k
i,j =

l f ck
j

)
; i, j = 1, . . . , n; k = 1, . . . , K ; l = 1, . . . , L, (25)

3. Energy consumption. In order to ensure the waterproofness of the lS sub-mission
(i.e., its robustness to weather condition changes Z(θ)), it is necessary that the amount
of energy required to complete the task carried out by a UAV does not exceed the
capacity of its battery.

Yk,l(θ) ≥ F (θ); ∀θ ∈ [0◦, 360◦), (26)

Yk,l(θ) = maxΓk,l(θ), (27)

Γk,l(θ) =
{

vw
∣∣∣ vw ∈ R0

+ ∧ ∀ k∈{1...K} lbatk(θ, vw) ≤ CAP
}

, (28)

lbatk(θ, vw) = ∑n
i=1 ∑n

j=1
l xk

i,j × ti,j × l Pk
i,j(θ, vw), (29)

lbatk(θ, vw) = ∑n
i=1 ∑n

j=1
l xk

i,j × ti,j × l Pk
i,j(θ, vw), (30)

where: lvai,j(θ, vw) and ti,j depend on the assumed goods delivering strategy.

If the ground speed vgi,j is constant, then an airspeed lvai,j is calculated from:

lvai,j(θ, vw) =

√(
vgi,j × cosϑi,j − vw× cosθ

)2
+
(

vgi,j × sinϑi,j − vw× sinθ
)2

, (31)

ti,j =
di,j

vgi,j
. (32)

The constraints (1)–(13) describe the relationship between UAV routes (represented by
the variables l xk

i,j) and the delivery schedule (variables lyk
i and lsk). They provide, among
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others, that it is not possible for several UAVs to take off from the base at the same time (3),
that there is no possibility of simultaneous occupation of a common recipient by several
UAVs (8), that service of delivery points must be in accordance with the adopted route (7),
(9), and so on. Constraints (14)–(24), in turn, link UAV routes (l xk

i,j) to the number of goods

delivered (variables lck
i ). They also ensure that the UAVs are not overloaded (17), the correct

amount of goods is delivered (19), and determine the weight (l f k
β,λ) of the goods carried

on each section of the taken route (21)–(24). Constraints (25)–(31) determine the values of
the determined resistance functions Yk,l(θ) for UAVs (26)–(31) and ensure that its values
exceed the value set on the function F (θ) (determining forecasted weather conditions).

Since the re-planning of the mission delivery plan S is the result of the disturbance
IS(t∗), hence the new set of sub-missions 1S , . . . , lS , . . . , LS guaranteeing timely delivery
are determined by solving the following Constraint Satisfaction (CS) Problem (32):

CS
(

OU , S, IS(t∗)
)
=
(
(V ,D), C

(
OU , S, IS(t∗)

))
, (33)

where:
V̂ =

{
lΠ, lY , lC

∣∣∣l = 1 . . . L
}

—the set of decision variables: lΠ—the set of routes

determining the schedule lY , lY—schedule of the fleet OU guarantees timely service of
delivery points in the case of disturbance IS(t∗), and lC—sequence of weights of delivered
goods by the fleet OU .

D—the finite set of decision variable domains: l xk
i,j ∈ {0, 1}, lyk

λ ∈ N, lck
i ∈ N

Ĉ—the set of constraints that take into account the set of routes lΠ, schedules lY , and
the disturbance IS(t∗), while determining the relationships linking the operations executed
by UAVs (1)–(31).

To solve CS (32), the values of the decision variables from the adopted set of domains
for which the given constraints are satisfied must be determined.

3. Results-Computational Experiments

We consider the network from Figure 1, in which the four UAVs U = {U1, U2, U3, U4}
service delivery points N2–N40 according to the proactive plan from Figure 2b. The struc-
ture of the implementation of subsequent sub-missions 1S, 2S, . . . , 6S of the adopted mis-
sion plan S is presented in Figure 3.

Let us consider a situation related to the appearance of a disturbance IS(3000), specified
in Section 2.2, where at the time t∗ = 3000 s, during the execution of sub-mission 2S, the wind
speed increased to vw = 11 m

s with the same wind intensity and direction θ = 210◦– 230◦. With
such a change in weather conditions, the implementation of the adopted plan turns out to
be impossible.

It becomes necessary to re-plan the implemented mission, including the introduction
of sub-missions 2S, 3S,4S,5S, 6S to correct its course. For this purpose, an algorithm from
Figure 4 modeled in CS (32) formalism has been used. Its implementation in the constraint
programming environment IBM ILOG (Windows 10, Intel Core i7-M4800MQ 2.7 GHz,
32 GB RAM) has shown that the solution time for problems of the size considered does not
exceed 25 s.

Figure 5 shows the mission ∗S schedule adapted to the weather conditions determined
by the disturbance IS(3000). Rule 2 was used in assigning mission ∗S, i.e., if there are
UAVs (the set UR) that cannot continue to fly due to disturbance IS(t∗), then they should
be returned to the base, and after it is ensured that airborne UAVs (the set U\UR) can take
over their tasks. Accordingly, as a result of the IS (3000) disturbance, the decision to turn
U3 back to the base was made (see sub-mission 2S) because there was a risk of premature
battery depletion. At the same time, U4 continued its mission unchanged. This decision
forced the necessity to reschedule subsequent sub-missions 3S,4S,5S, 6S—Figure 6, which
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allowed for the designation of a new alternative plan ∗S, taking into account the conditions
of the disturbance IS(3000)—see the path marked in blue in the graph from Figure 6.
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Figure 6. A tree graph illustrating an example of reactive execution of a proactive plan of mission
S =

(1S, 2S, . . . , 6S
)

in Figure 2b along with alternative scenarios of sub-mission plans.

Figure 7 shows an alternative variant of the disturbance response based on rule 3, i.e.,
if the tasks of a UAV returning to the base (the set UR) cannot be taken over by UAVs still
performing their missions, then it should be checked whether the reserve UAVs available in
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the base (the set UB) can take over their responsibilities. In the proposed solution, similar
to the previous one, the decision was made to return U3 to the base (see sub-mission 2S).
The functions of U3 (execution of deliveries to the point N23) were taken over by the reserve
U5. Such a solution does not interfere with the implementation of the remaining UAVs,
which allows them to return and continue (beginning from sub-mission 4S) the originally
established reactive plan: 4S = 4S,5S = 5S, 6S = 6S—see the path marked in orange in the
graph from Figure 6.
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As part of the conducted experiments, a case related to the occurrence of a disturbance
caused by a change in the structure of the network G∗ (including elements of the set of
served delivery points) was also considered. The case under consideration concerns the
situation (i.e., the disturbance IS (4800)) in which at the time t∗ = 4800 s, during the
execution of sub-mission 3S, four delivery points N18, N28, N38, N19 give up previously
ordered deliveries and six new ones N41–N46 submit their orders.

Figure 8 shows the current structure of the distribution network. This disturbance
makes the adopted mission plans (in particular 3S, 4S, 5S) insufficient–it becomes necessary
to redesign them. Consequently, due to the reactive planning algorithm from Figure 4,
rule 1 was used to design a new mission ∗S plan, i.e., if the adopted mission plan S is not
admissible to disturbance IS(4800), then it should be checked whether it is possible to
adapt (re-plan), adjusting it to new conditions.

Figure 9 shows the modification (calculated in less than 16 s) of the mission plan ∗S
caused by the disturbance IS (4800) and implying the designation of new sub-missions
3S, 4S, 5S (see scenario marked in Figure 6 with a purple line). Despite the newly added
delivery points, all pre-scheduled deliveries were completed within the given time horizon.
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The presented example shows that the determination of reactive mission plans can be
done online, i.e., in a time not exceeding 30 s.

To assess the scalability of the proposed approach in terms of the possibility of its use in
an online mode (i.e., to solve the problem in <600 s) in decision support systems, a series of
quantitative experiments have been carried out. Table 1 contains the results of experiments
that are conducted for the three functions of forecasted weather F (θ) = 9, 10, 11 m

s . The
experiments are carried out for the network of n randomly designated delivery points
(on the area 10 km × 10 km) collection and a fleet consisting of K UAVs with technical
parameters as shown in Figure 1c. For each of the considered variants of the network,
a proactive mission plan has been set out to guarantee the delivery in the time horizon
H = 10000 s. It was assumed that at the moment t∗ = 2000 s , there is a change in the
weather forecast (disturbance IS(2000)) that lasts until the end of the considered time
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horizon. The change in weather involves increasing the expected wind speed by 2 m/s and
equals accordingly F ∗(θ) = 11, 12, 13 m/s. For each network, the UAV route planning is
aimed at reactive performance of missions enabling deliveries in a given time horizon and
in the expected weather conditions F ∗(θ). Results (i.e., the times TC determining reactive
mission plans design) are presented in Table 1, where symbol
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4 11 219.03 11 293.16 12 360.92 

60 

2 13 93.12 17 108.14 15 125.26 

3 15 157.14 16 253.91 17 300.65 

4 14 464.70 15 541.12 16 598.24 

70 

2 22 208.10 26 225.85 29 254.21 

3 21 221.42 22 322.41 24 448.48 

4  t > 600  t > 600  t > 600 

80 

2 20 302.48 29 345.20 29 386.21 

3 23 328.01 24 469.14 25 544.57 

4  t > 600  t > 600  t > 600 

90 

2 27 398.89 31 471.75  t > 600 

3 21 526.24  t > 600  t > 600 

4  t > 600  t > 600  t > 600 

100 

2 29 483.68 32 598.64  t > 600 

3  t > 600  t > 600  t > 600 

4  t > 600  t> 600  t > 600 

110 

2  t > 600  t> 600  t > 600 

3  t > 600  t > 600  t > 600 

4  t > 600  t > 600  t > 600 

𝑛—number of nodes (delivery points). 𝐾—size of the UAV fleet; 𝑇𝐶—time of computation (s). 

—no solution allowed in time t < 600 s. 

4. Discussion 

The NP-hard nature of the problem under consideration requires time-consuming 

calculations for most of the practical cases. The experiments allow for quantitative assess-

ments of the scale of the distribution network for which the developed approach guaran-

tees obtaining a reactive response in the online mode, i.e., in time t < 600 s. The conducted 

experiments (both qualitative and quantitative) show that for a distribution network of a 

size up to 90 delivery points and with a fleet of three UAVs (see Figure 10), the fleet mis-

sion plans can be effectively refined (in less than 600 s) and successfully carried out in 

changing weather conditions and after the occurrence of specific types of disturbances. 

The cases in which the computation time exceeds 600 s (see Table 1), mean that UAV can-

not continue the planned mission (i.e., following rule 3, therefore it should return to base 

and suspend its activity until the disturbance is gone.) 

highlights those cases for
which it was not possible to designate a mission plan in time t < 600 s.

Table 1. Results of the experiments conducted.
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(θ)=11 m
s

∀Θ∈[0◦,360◦)

n K TC [s] TC [s] TC [s]

40

2 9 30.48 10 32.36 12 33.54

3 8 32.39 9 34.79 10 40.60

4 7 110.64 8 200.16 9 221.32

50

2 14 65.43 14 66.05 15 66.30

3 12 76.51 13 102.72 15 122.54

4 11 219.03 11 293.16 12 360.92

60

2 13 93.12 17 108.14 15 125.26

3 15 157.14 16 253.91 17 300.65

4 14 464.70 15 541.12 16 598.24

70

2 22 208.10 26 225.85 29 254.21

3 21 221.42 22 322.41 24 448.48

4
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4. Discussion 

The NP-hard nature of the problem under consideration requires time-consuming 

calculations for most of the practical cases. The experiments allow for quantitative assess-

ments of the scale of the distribution network for which the developed approach guaran-
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experiments (both qualitative and quantitative) show that for a distribution network of a 
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sion plans can be effectively refined (in less than 600 s) and successfully carried out in 

changing weather conditions and after the occurrence of specific types of disturbances. 

The cases in which the computation time exceeds 600 s (see Table 1), mean that UAV can-

not continue the planned mission (i.e., following rule 3, therefore it should return to base 

and suspend its activity until the disturbance is gone.) 
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ments of the scale of the distribution network for which the developed approach guaran-

tees obtaining a reactive response in the online mode, i.e., in time t < 600 s. The conducted 

experiments (both qualitative and quantitative) show that for a distribution network of a 

size up to 90 delivery points and with a fleet of three UAVs (see Figure 10), the fleet mis-

sion plans can be effectively refined (in less than 600 s) and successfully carried out in 

changing weather conditions and after the occurrence of specific types of disturbances. 

The cases in which the computation time exceeds 600 s (see Table 1), mean that UAV can-

not continue the planned mission (i.e., following rule 3, therefore it should return to base 

and suspend its activity until the disturbance is gone.) 

t > 600
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ments of the scale of the distribution network for which the developed approach guaran-
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experiments (both qualitative and quantitative) show that for a distribution network of a 

size up to 90 delivery points and with a fleet of three UAVs (see Figure 10), the fleet mis-

sion plans can be effectively refined (in less than 600 s) and successfully carried out in 

changing weather conditions and after the occurrence of specific types of disturbances. 

The cases in which the computation time exceeds 600 s (see Table 1), mean that UAV can-

not continue the planned mission (i.e., following rule 3, therefore it should return to base 

and suspend its activity until the disturbance is gone.) 
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4. Discussion 

The NP-hard nature of the problem under consideration requires time-consuming 

calculations for most of the practical cases. The experiments allow for quantitative assess-

ments of the scale of the distribution network for which the developed approach guaran-

tees obtaining a reactive response in the online mode, i.e., in time t < 600 s. The conducted 

experiments (both qualitative and quantitative) show that for a distribution network of a 

size up to 90 delivery points and with a fleet of three UAVs (see Figure 10), the fleet mis-

sion plans can be effectively refined (in less than 600 s) and successfully carried out in 

changing weather conditions and after the occurrence of specific types of disturbances. 

The cases in which the computation time exceeds 600 s (see Table 1), mean that UAV can-

not continue the planned mission (i.e., following rule 3, therefore it should return to base 

and suspend its activity until the disturbance is gone.) 

t > 600
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4. Discussion 

The NP-hard nature of the problem under consideration requires time-consuming 

calculations for most of the practical cases. The experiments allow for quantitative assess-

ments of the scale of the distribution network for which the developed approach guaran-

tees obtaining a reactive response in the online mode, i.e., in time t < 600 s. The conducted 

experiments (both qualitative and quantitative) show that for a distribution network of a 

size up to 90 delivery points and with a fleet of three UAVs (see Figure 10), the fleet mis-

sion plans can be effectively refined (in less than 600 s) and successfully carried out in 

changing weather conditions and after the occurrence of specific types of disturbances. 

The cases in which the computation time exceeds 600 s (see Table 1), mean that UAV can-

not continue the planned mission (i.e., following rule 3, therefore it should return to base 

and suspend its activity until the disturbance is gone.) 

t > 600
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n—number of nodes (delivery points). K—size of the UAV fleet; TC—time of computation (s).
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3 12 76.51 13 102.72 15 122.54 

4 11 219.03 11 293.16 12 360.92 

60 

2 13 93.12 17 108.14 15 125.26 

3 15 157.14 16 253.91 17 300.65 

4 14 464.70 15 541.12 16 598.24 

70 

2 22 208.10 26 225.85 29 254.21 

3 21 221.42 22 322.41 24 448.48 

4  t > 600  t > 600  t > 600 

80 

2 20 302.48 29 345.20 29 386.21 

3 23 328.01 24 469.14 25 544.57 

4  t > 600  t > 600  t > 600 

90 

2 27 398.89 31 471.75  t > 600 

3 21 526.24  t > 600  t > 600 

4  t > 600  t > 600  t > 600 

100 

2 29 483.68 32 598.64  t > 600 

3  t > 600  t > 600  t > 600 

4  t > 600  t> 600  t > 600 

110 

2  t > 600  t> 600  t > 600 

3  t > 600  t > 600  t > 600 

4  t > 600  t > 600  t > 600 

𝑛—number of nodes (delivery points). 𝐾—size of the UAV fleet; 𝑇𝐶—time of computation (s). 
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—no solution allowed in time t < 600 s.

4. Discussion

The NP-hard nature of the problem under consideration requires time-consuming
calculations for most of the practical cases. The experiments allow for quantitative assess-
ments of the scale of the distribution network for which the developed approach guarantees
obtaining a reactive response in the online mode, i.e., in time t < 600 s. The conducted
experiments (both qualitative and quantitative) show that for a distribution network of a
size up to 90 delivery points and with a fleet of three UAVs (see Figure 10), the fleet mission
plans can be effectively refined (in less than 600 s) and successfully carried out in changing
weather conditions and after the occurrence of specific types of disturbances. The cases in
which the computation time exceeds 600 s (see Table 1), mean that UAV cannot continue
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the planned mission (i.e., following rule 3, therefore it should return to base and suspend
its activity until the disturbance is gone.)
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The obtained results indicate that the adopted limitations force planning solutions
consisting of many—in the considered experiments, not exceeding 35 sub-missions. The
number of sub-missions needed to be accomplished increases as weather conditions F (θ)
worsen (imposing energy consumption increase) and the size of the fleet U decreases.

The obtained results show that the computer implementation of the developed algo-
rithm (see Figure 4) within the constraint programming environment (e.g., IBM ILOG) will
allow us to build a computing engine (solver) that enables the creation of an interactive
decision support system. The set of questions that such a system could answer in the
currently considered version includes:

• Emergency flight plan determination (beyond the allowable range defined by the
weather change resistance functions Yk,l(θ)).

• Determining the flight plan in the event of a sudden change of orders (change of the
sequence Z(t)).

• Determining the flight plan in the event of a sudden change in the structure of the
distribution network—i.e., the appearance of new or cancelation of previously placed
orders (resulting in the change of network G(t) structure).

The conducted experiments have demonstrated that the proposed set of rules
(1–4 condition actions) enables the proposed system to work out a way (i.e., revised mission
plan) that guarantees the achievement of a given mission objective (implementation of a
given volume of supplies to a given number of consumers in a given time horizon H). It
means that deliveries continue to all delivery points with no risk of discharging the UAV’s
batteries. It is also worth emphasizing that our approach to the determining of reactive
plans did not lead to exceeding the set delivery date (i.e., the time horizon H) in any of the
analyzed cases.

The effectiveness of the developed method depends on the solvability of the devel-
oped problem CS (32). In general, this problem is NP-hard, which means that for larger
distribution networks, it is not possible to determine the mission plan in the online mode.
The use of non-linear energy consumption constraints (25)–(31) is mainly responsible for
this. The application of those constraints greatly increases the computational complexity
of the problem, but it allows the system to accurately determine the range of weather
conditions for which the designated mission is resistant (i.e., the battery is not discharged
prematurely). The possibility of reducing computational complexity is seen in the develop-
ment of constraints relaxation (25)–(31) to the form of linear equations. This will guarantee
the same (or similar) level of energy consumption estimation. The construction of this type
of constraint will be the subject of further research.
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The presented method and the model behind it can also provide a basis for solving
the more general problem of synthesis in which conditions (e.g., fleet size) are sought that
guarantee the safe implementation of the expected deliveries after the appearance of a set
of potential disturbances (changes in the weather, changes in orders, and changes in the
network structure). The development of a method enabling the synthesis of these types of
conditions constitutes a further direction for the conducted works.

5. Conclusions

In the future, UAVs may become a more frequent alternative to the use of traditional
trucks in last-mile logistics and help improve the sustainability of urban freight transport.
The delivery of goods in urban areas is subject to the occurrence of several disturbances.
The proposed system’s ability to combine proactive and reactive planning can better solve
real-life problems that arise in the field of urban freight transportation.

Our research contributes to the body of literature on planning and scheduling for
UAV fleets. We propose a reactive routing method to solve the problem of UAV fleet
mission planning in a dynamically changing environment. Such problems are often found
in practice but rarely investigated in the literature. We have considered plans for UAV
fleet missions in the event of weather changes beyond the previously predicted situation
and/or the previously agreed order fulfillment terms. The need to react in such situations
necessitates the establishment of condition-action rules that allow for the designation of
appropriate end-to-end routes and enable safe emergency completion of the mission or
its continuation in a modified version. For example, this may be the automatic navigation
of the UAV to a charging station, when its battery drops to a certain level. In such a
situation, when designating a route, it might be necessary to bypass the delivery point,
which refuses to accept the delivery, and to serve instead another previously unplanned
delivery point. Since the related problem of mission planning has proven to be NP-hard, a
constraint satisfaction-driven implementation has been proposed. A long-term objective
of this study is to develop dedicated DSS software. With this in mind, we employ the
declarative modeling framework, mostly because of its fast-prototyping capability. The
planned verification of the proposed approach will take place after obtaining the relevant
permission from authorities allowing us to fly in the area where Beyond Visual Line of
Sight (BVLOS) flights are permitted [23].

The main advantage of the proposed model is its open structure, which allows it to
take into account several variables and restrictions (e.g., related to the cost of a mission,
infrastructure of a distribution system, heterogeneity of UAVs, etc.). Computational results
show that the proposed approach is suitable for online applications.

Finally, it is worth emphasizing that the adopted model presupposes a thorough
knowledge of all environmental parameters in which a mission is carried out. In fact, many
parameters like flight speed, flight time, and maintenance of service time are uncertain
parameters. One of the advantages of the developed model is the possibility of its easy ex-
tension to the fuzzy variables based on Ordered Fuzzy Numbers (OFN) terminology [59,60].
The construction of such a model will be the subject of further research. In our future
research, we want to take into account the uncertain nature of the real-world variables
that are not deterministic. Thus, a fuzzy approach could be applied to the planning of a
UAV fleet’s mission, as it allows for a more accurate estimation of the timelines for deliver-
ies. Finally, the model might benefit from the addition of different aspects related to the
size of fleets with heterogeneous UAVs and the coordination of different fleets operating
independently in a shared area.
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