

Aalborg Universitet

An Editor Calculus With Undo/Redo

Kjær, Rasmus Rendal; Lundbergh, Magnus Holm ; Nielsen, Magnus Mantzius; Hüttel, Hans

Published in:
Proceedings of 23rd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC)

DOI (link to publication from Publisher):
10.1109/SYNASC54541.2021.00023

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Kjær, R. R., Lundbergh, M. H., Nielsen, M. M., & Hüttel, H. (2021). An Editor Calculus With Undo/Redo. In C.
Schneider, M. Marin, V. Negru, & D. Zaharie (Eds.), Proceedings of 23rd International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing (SYNASC) (pp. 66-74). [9700397] IEEE. Proceedings - 2021
23rd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2021
https://doi.org/10.1109/SYNASC54541.2021.00023

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 19, 2022

https://doi.org/10.1109/SYNASC54541.2021.00023
https://vbn.aau.dk/en/publications/2ad49b92-f2f8-4b82-8644-5246d09cf18a
https://doi.org/10.1109/SYNASC54541.2021.00023

An Editor Calculus With Undo/Redo

Rasmus Rendal Kjær
Department of Computer Science, Aalborg University

Selma Lagerlöfs Vej 300, 9220 Aalborg Ø, Denmark

Magnus Holm Lundbergh
Department of Computer Science, Aalborg University

Selma Lagerlöfs Vej 300, 9220 Aalborg Ø, Denmark

Magnus Mantzius
Department of Computer Science, Aalborg University

Selma Lagerlöfs Vej 300, 9220 Aalborg Ø, Denmark

Hans Hüttel
Department of Computer Science, Aalborg University

Selma Lagerlöfs Vej 300, 9220 Aalborg Ø, Denmark

Abstract—Structure editors provide many potential usability
benefits to an end-user by allowing them to edit the AST repre-
sentation of a program rather than a textual representation of it.
In addition, they all but remove syntax errors by only allowing the
constructing of programs that are syntactically valid. However,
structure editors only rarely include undo/redo functionality into
the editor itself, and to the best of our knowledge, an underlying,
formal specification for undo/redo has yet to be developed. This
paper continues previous work on an editor calculus; we extend
the calculus with undo and redo and present a history-based
operational semantics of the extension. The history used an
underlying graph-based structure, containing a history of user
actions in the particular structure editor. We study the expressive
power of the calculus, give a simple proof of its Turing-power
and use the expressiveness result to show how our history-based
extension with undo and redo can be expressed in the original
editor calculus.

I. INTRODUCTION

Structure editors view documents not as text but as elements

of a formally defined syntax. An editor of this kind operates

directly on Abstract Syntax Trees (ASTs); a document is

constructed by applying operations that build an AST and

move within its structure. The approach arose in the setting

of programming environments and was pioneered by Cornell

Program Synthesizer [11] and the MENTOR [5] and CEN-

TAUR systems [3]. With this approach it becomes possible to

limit the expressiveness to what is syntactically sound in the

underlying language without limiting the expressive power of

the language to the user.

In a series of papers, Omar et al. have defined an editor

calculus called Hazelnut [9], [10] with a formal semantics that

describes edit actions on ASTs of a functional programming

language as well as the evaluation of incomplete programs and

a type system for typing the holes of incomplete programs.

Godiksen et al. [6] define another editor calculus for a

simple functional programming language with a resource-

aware type system which characterises safe edit sequences: If

a calculus expression is well-typed, it will build a syntactically

well-formed (possibly incomplete) program.

However, none of these calculi incorporate edit actions that

are commonly used. In particular, the useful and common

actions of undo and redo are absent. Undo/redo is a widely

used paradigm in user-oriented applications; its first use in a

programming environment was in the early work by Teitelman

[12] and has since become common in text editors in general.

Undo/redo is typically implemented by incorporating a notion

of history that tracks the specific actions that the user takes.

Undo and redo actions can then be performed by consulting the

history of edit actions; any action that is doable in the program

becomes reversible by performing an undo. This paradigm

allows the user to correct any errors that they might have

made while using the application. If an undo action itself was

an error, the user has the ability to reverse that undo with

an action known as redo. There are different approaches to

modelling the history: one can think of a linear history or

record all edit actions and undo/redo actions as a history tree.

The present paper introduces reversibility into the editor

calculus of Godiksen et al. [6] and studies the expressive

power of the extension within the setting of a branching

view of the edit history. While some structure editors such

as Scratch implement variations of undo/redo, to the best of

our knowledge, this is the first formal semantics of undo/redo

in this setting. In order to define the semantics, we take our

inspiration from the study of reversible computation, and in

particular in the work on reversible process calculus of Danos

and Krivine [4]. Godiksen et al. established that their original

editor calculus is Turing powerful; we give a much simpler

proof of this and use that result to show how our history-

based extension with undo and redo can be implemented in

the original editor calculus.

The remainder of our paper is structured as follows. Section

II describes the syntax of the editor calculus. Section III

defines the history-dependent semantics of the calculus. In

Section IV we study the expressive power of the editor

calculus. Section V is the conclusion and ideas for further

work.

II. SYNTAX

In this section we present the syntax of our editor calculus.

A. Abstract Syntax Trees

Expressions in the editor calculus modify expressions in a

functional programming language, so we present the syntax

of this language first. Programs are expressions in an applied

λ-calculus; as we must represent incomplete programs as well,

we introduce a notion of holes.

66

2021 23rd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)

978-1-6654-0650-5/21/$31.00 ©2021 IEEE
DOI 10.1109/SYNASC54541.2021.00023

For programs a ∈ Ast where Ast is the set of all ASTs,

their syntax is given by the formation rules

a ::= x | c | a1 a2 | λx.a | �a� | 〈a〉 | ��
The first term constructors are the usual ones from λ-calculus:

c ranges over a set of constants. λx.a denotes lambda abstrac-

tions, and a1a2 denotes application.

The remaining constructs are used in editing. A hole ��
represents a part of the program that is not yet constructed.

Program ASTs can be evaluated partially even with holes

present. Moreover, the syntax allows the use of breakpoints.

A breakpoint 〈a〉 is a node that will halt the evaluation of the

program AST once it is reached.

Finally, and importantly, the cursor �a� encapsulates a

subtree a, signifying the location at which editor expressions

operate.

We say that an AST is complete if it is devoid of holes and

breakpoints.

B. Editor expressions

Changes to the AST are made through editor expressions

E ∈ Edt. The syntax of these is given by the following

formation rules.

π ::= eval | undo | redo n | {D} | child n | parent
φ ::= ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | @D | ♦D | �D

E ::= π.E | φ⇒ E1|E2 | E1 ≫ E2 | rec x.E | x | 0
D ::= var x | const c | app | lambda x | break | hole

In this syntax, {D} represents substitutions in the AST,

while D ∈ Aam represents node modifiers. A node modifier

replaces the content encapsulated by the cursor with a hole, a

breakpoint or a subtree consisting of a term constructor whose

children are holes.

π ∈ Aep represents atomic prefix commands. For any

prefix π to an editor expression E in the form π.E, the

prefix will be evaluated before the expression. If it is not

a substitution {D}, a prefix π can either be eval, undo,

redo n, child n, or parent. The eval prefix command

evaluates an AST depth-first until arriving at a breakpoint.

Function application nodes are evaluated from left to right.

Editor expressions child n and parent signify movement

of the cursor in the AST. When child n is evaluated,

the cursor is moved to the nth child of the node currently

encapsulated by the cursor. When parent is evaluated, the

cursor is moved to the parent node.

The new constructs of the editor calculus studied in this

paper are undo, which reverses the last substitution, moving

the cursor to the position it had before the substitution was

done, and redo n which reverses an undo.

Conditional expressions φ ⇒ E1|E2 allow us to use the

shape of an AST to determine how it is supposed to be edited.

The intended meaning is that if the condition φ holds, E1 is

evaluated, and if it does not hold, E2 is evaluated instead.

Conditions φ ∈ Eed are given by a spatial logic [1] that

can describe the structure of an AST.

Logical expressions can be built using the Boolean con-

nectives ¬φ, φ1 ∧ φ2, and φ1 ∨ φ2 by means of the spatial

modalities @D, ♦D, and �D that allow us to inspect term

constructors, holes and breakpoints.

The modality @D is true iff the cursor is currently located

at node D. The modality ♦D is true iff D is in a sub-tree

of the tree that the cursor encapsulates, and finally �D is

true iff D is located in all subtrees in the tree that the cursor

encapsulates.

The sequential operator E1 ≫ E2 specifies that the editor

expression E1 is to be evaluated before editor expression E2,

such that E2 will only be evaluated when E1 has been reduced

to 0. The recursion construct rec x.E specifies that whenever

we reach an occurrence of the recursion variable x in the editor

expression E, x will be substituted by rec x.E. This allows

for recursive expressions.

Sometimes we will define an expression by a family of

defining equations {xi � ei(x1, . . . , xn) | 1 ≤ i ≤ n} where

the behaviour of the expression is that of the variable x1. Such

a family can be rewritten as a single recursion expression using

the Scott-Békic technique [2].

A variable x is defined by the expression rec x.E, and

when used outside such an expression, it is a free variable and

therefore undefined. To determine if free variables exist, we

introduces a property called closedness for editor expressions,

which is defined in Definition 1.

Definition 1. We say that a given editor expression E is
closed iff E holds no free variables. We define a function fv
as follows [6]:

fv(x) = {x}
fv(rec x.E) = fv(E) \ {x}

fv(π.E) = fv(E)

fv(φ⇒ E1|E2) = fv(E1) ∪ fv(E2)

fv(E1 ≫ E2) = fv(E1) ∪ fv(E2)

fv(0) = {∅}

Iff fv(E) = ∅, then E is closed.

In the following, we use the following shorthands for editor

expressions [6]:

φ1, φ2, ...⇒ E1, E2, ... � φ1 ⇒ E1|(φ2 ⇒ E2|...) (1)

φ⇒ E � φ⇒ E|0 (2)

π � π.0 (3)

III. SEMANTICS

We now define the semantics of editor expressions. First,

we define the logical semantics of conditions. The sections

that follow define the transition rules of editor expressions

and programs in our version of the λ-calculus.

67

A. Conditions

We define the satisfaction relation a |= φ which tells us if

a logical condition φ holds for an AST a. We do not present

the full definition of the satisfaction relation here, as most of

them are straightforward. The rules defining the relation for

the @D modality can be found in Figure 1.

[AT-VAR] x |= @(var y)

[AT-CONST] c |= @(const c)

[AT-HOLE] �� |= @hole

[AT-APP] â1 â2 |= @app

[AT-ABS]
λx.â |= @(lambda y)

[AT-BREAK] 〈â〉 |= @break

Fig. 1: Rules defining the satisfaction relation for the @D
modality

B. Cursor contexts

We represent the location of the cursor by means of cursor

contexts, denoted C. Cursor contexts are given by the forma-

tion rules

C ::= [·] | C â | â C | λx.C | 〈C〉

Here â is a cursor-less AST as given by the following

formation rules:

â ::= x | c | â1 â2 | λx.â | 〈â〉 | ��

Using these formation rules we can describe an AST a for

which the cursor points to the subtree a′ as C[a′]. That is, we

say that a = C[a′] if and only if replacing [·] with a′ in C

gives us a. We describe a′ as the open window of a, which is

the part of the AST that can be edited.

Usually, when describing the properties of the document

AST, it is important that there is only one cursor. ASTs with

this property are called well-formed.

Definition 2 (Well-formed ASTs). An AST a is well-formed
iff it is true that a = C[ȧ] for some cursor context C and AST
ȧ, where ȧ is derived from the following formation rules:

ȧ ::= �â� | λx.�â� | �â1� â2 | â1 �â2� | 〈�â�〉

C. Paths

The position of any node in an AST is given by its path,

which is a sequence of positions.

Definition 3 (Path). A path p ∈ Pth is defined by the
formation rules [6]:

T ::= one | two
p ::= p T | ε

We call T a singleton path.

Whenever an undo action is performed, we should move the

cursor to the last place where we performed a substitution. In

this case, we need to know the path from the root node to that

node. To this end we introduce the following useful function.

Definition 4. We define a function path(a),which computes
the path to the cursor in an AST from the root node.

path(a) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

one path(a1) if a = a1 â

two path(a1) if a = â a1

one path(a1) if a = λx.a1

one path(a1) if a = 〈a1〉
ε otherwise

The following definitions allows us to succinctly describe

large movements in an AST, and describe a cursor-less version

of an existing AST.

Definition 5. We define a
T
=⇒ a′ if a′ is a except that the cursor

has moved one level down along the singleton path T .
Let p = T1 . . . Tn−1. We write a1

p−→ an if a1
T1=⇒

a2 . . . an−1
Tn−
==⇒ an.

Definition 6. Given a well-formed AST a, we define the AST
a− as an AST similar to a, except that the cursor has been
removed, where the occurrence of �a′� in the AST is replaced
with a′.

Using Definition 5 and Definition 6, it is possible to move

the cursor along a specific path p in the AST by the movement

�a−�
p−→ a′, by removing the cursor from the AST, placing the

cursor at the root node, and moving the cursor along the path

p.

D. Structural Congruence

We identify expressions that have the same essential struc-

ture by means of a notion of structural congruence. The

transition [STRUCT] rule in the semantics that follows will

then guarantee that structurally congruent expressions have the

same behaviour.

Definition 7. As in [6], we define structural congruence,
denoted E1 ≡ E2, as the least congruence relation over editor
expressions that is closed under the axioms:

0 ≫ E ≡ E (4)

rec x.E ≡ E{rec x.E/x} (5)

The axiom (4) tells us that terminated components in a

sequential composition disappear and the control is passed

on to the continuation. The axiom (5) tells us that recursion

is carried out by unfolding recursive definitions: We evaluate

68

rec x.E by replacing all instances of the recursion variable

x in E with rec x.E.

E. Histories

In the transition system that we shall define, we refer to the

history of edit actions that have been performed.

When the user performs a substitution in the editor, they

should be able to undo it later, and also redo if undo has

been used. This places two requirements on the editor: its

substitutions must be reversible, and it must keep an ordered

memory of which changes have occurred in the AST.

Reversing a substitution is simply a matter of applying the

inverse substitution at the same place in the AST—where an

inverse substitution is a substitution that replaces the new

content with the old content.

A history is built around the tracking of substitutions. We do

this by recording the subtree that was added to the document

AST as well as the subtree that was consequently removed.

Definition 8. A delta is denoted δ ∈ Δ, where Δ =
Pth × Ast × Ast. An element δ ∈ Δ is represented as
δ = (p, a, a−1), representing a path p to a substitution, the
inserted subtree a, and the removed subtree a−1.

A history graph is a directed acyclic graph whose nodes

correspond to document ASTs. The edges are each labelled

with a delta and a natural number. These natural numbers

are needed for ordering the children of a node and for

distinguishing between different edit action occurrences that

involve the same delta.

For any given node v, its associated AST can be built from

the initial document by sequentially applying the substitutions

described by the edit actions of the deltas along the path from

the root node of the history graph to the node v.

Conversely, the initial document can be obtained from v by

using the substitutions defined by a−1 along the reverse path

from v to the root node of the graph.

Definition 9. A history graph is a directed acyclic graph H ⊆
VH × EH, where EH = VH × VH × N×Δ.

We use the degree of a node to enumerate the outgoing

edges of a node.

Definition 10. The degree of a node, denoted degH(v) is
defined as the number of outgoing edges of v in the history
graph H .

This is useful in the case where we construct new edges

through substitution editor expressions, to ensure that their

values are not identical to the values of previously created

edges.

To denote the child or parent of an edge, we use the

following notation:

Definition 11. We use H � v
δ−→i v′ to denote that for a

history graph H = (VH,EH), there exist nodes v, v′ ∈ VH,
and there exists an edge (v, v′, i, δ) ∈ EH.

This notation tells us that there exists an edge between v
and v′.

To create a new edge in the history graph, we use the

following notation:

Definition 12. We use H[v
δ�−→ v′] to denote a history H ′ =

(VH
′,EH

′) as an extension of the history H = (VH,EH)
such that:

VH
′ = VH ∪ {v′}

E′H = EH ∪ {(v, v′, degH(v) + 1, δ)}
Here, we create a new node v′ in the graph and connect it

through an edge to the node v containing the delta δ, where the

new node v′ represents a new change made to the document

AST.

When navigating the history graph, the convention shall be

to represent the currently active node v—the current state of

the edited document—and the history graph H simply as the

pair H = (H, v) for the sake of brevity.

F. The history-enabled transition system

We now introduce the transition system for editor expres-

sions (SE ,LE ,→), where the set of states SE = (Hst ×
VH)×Edt×Ast, the set of labels LE = Val∪Aep∪ {ε},
and transitions (→) have the form 〈H, E, a〉 α−→ 〈H′, E′, a′〉,
where E is a closed editor expression and a is a well-formed

AST.

These transition rules are extended versions of those found

in [6]. The extended transition rules for editor expressions can

be seen in full in Figure 2.

The transition rules for editor expressions make use of an

auxiliary labelled transition system for cursor movements and

substitutions. This system is of the form (Sπ,Lπ,→), where

the set of states Sπ = Ast is the set of ASTs, Lπ = Aep is

the set of labels, and where the rules for the transition relation

(→) are described by Figure 3 and Figure 4.

The transition rules for these auxiliary labelled transition

systems are identical to those found in [6].

G. Description of transition rules

Most rules in our semantics are simple extensions of those

of Godiksen et al. [6] insofar as the history is not directly

involved. We shall therefore focus on describing the rules that

consult the edit history, namely the rules for undo and redo.

a) Context rules: The contextual rules with which

we operate are different from those of Godiksen et al.

[6]. There, all changes to the AST are performed through

their (CONTEXT) rule. Instead, we split this into two

separate rules: [CONTEXT-M] for cursor movements, and

[CONTEXT-S] for substitutions. This allows us to track

substitutions in the history while ignoring cursor movements.

The [CONTEXT-S] rule describes how substitutions are

performed. By using the cursor context representation of

ASTs, the cursor is first located, and the substitution is

subsequently performed on the subtree encapsulated by the

cursor. We record the substituted subtree as well as the

69

replacement subtree in history, thus ensuring reversibility.

There is generally more than one way of viewing an AST

as a completed cursor context; by requiring that the cursor is

at the top of the open window in the [CONTEXT-S] rule, we

ensure that undo restores the substituted subtree at the correct

location.

The second side condition, H ′ = H[v
(path(C[a]), a, a′)�−−−−−−−−−−−−→ v′],

says that H ′ is H with an added node v′ connected to v by

an edge from v to v′. We label this edge with the path to the

cursor, the substituted subtree and the replacement subtree.

The [CONTEXT-M] rule allows for cursor movement in

the document AST. This rule calls on the transition rules for

cursor movement and is used in the case where π is child
n or parent.

Cursor movements do not modify the document as such,

rather they specify where in the document changes are to take

place. For this reason they do not interact with the document

history directly and recording them is therefore not necessary.

If the history was removed, [CONTEXT-S] and

[CONTEXT-M] combined would work similarly to the

(CONTEXT) rule from [6], which is self evident in the

case of [CONTEXT-M], as they are identical, save for the

history.

For [CONTEXT-S], removing the history, and the side

condition requiring a substitution, would also make it identical

to (CONTEXT), except that [CONTEXT-S] specifies the

exact position of the cursor, whereas (CONTEXT) does

not. However, specifying the position of the cursor here does

not modify its behavior; in both cases, substitutions can only

happen to the exact node that the cursor encapsulates, because

of how the substitution is defined in Figure 3.

b) Undo rule: The [UNDO] rule changes the current

node v into v′, representing movement back through the

history. This rule does not modify the history graph H and

no nodes are added, removed or modified; instead it reverts

the document back to a previous state.

A movement in the history graph results in a corresponding

change in the AST. Namely, the current AST a changes

into C[�a′�], where a′ is defined in the side condition H �
v′

(p, a′′, a′)−−−−−−→ v which states that there exists an edge from the

node v′ to v with δ = (p, a′′, a′) in the history graph.

The purpose of this rule is to remove a′′ from the AST and

substitute it with a′—the exact reverse of what [CONTEXT-S]

does. To define which parts of the AST that we do not wish to

modify, we use the cursor context C, which we define in the

side condition �a−�
p−→ C[�a′′�]. The notation a− is defined in

Definition 6, and is used to remove the cursor from the tree

a such that it can be put at the root of AST. The transition
p−→ then, as defined in Definition 5, places the cursor at the

location decided by the path p. This lets us define the cursor

context, which is all nodes in the AST a not encapsulated by

the cursor. This lets us move the cursor to the position before

the substitution.

c) Redo rule: The [REDO] rule describes how we can go

from a node representing a state v to a state v′ iff a valid path

(p, a′, a′′) through the nth outgoing edge from node v exists

and given that a, where the cursor has been moved to position

p, is equal to C[�a′′�]. Essentially, this transition substitutes

the subtree a′′ at path p in a with a′. These side conditions

ensure that you can only redo to a child node of the current

node in the history graph.

The [REDO]-rule is similar to the [UNDO]-rule in its

content and structure. This is because they are symmetrical

opposites, in the sense that they reverse each other; [UNDO]

moves backward in the history graph and removes changes to

the AST, while [REDO] moves forward in the history, and re-

enacts changes. These properties will be discussed and proven

later.

IV. THE EXPRESSIVE POWER OF THE EDITOR CALCULUS

In this section we investigate the expressive power of the

editor calculus. First, we give a simple proof that the calculus

is Turing-power. Next, we use this to show that our editor

calculus is no more powerful than that of [6]: The undo and

redo actions can be simulated by representing the edit history

directly in the AST.

A. Turing completeness

Godiksen et al. [6] mention in their paper that their version

of the editor calculus is Turing powerful. The proof of this (not

included in [6]) consists in an encoding of a simple imperative

while-language.

In this section, we give a much more straightforward proof;

we show that any two-counter machine can be expressed in

the original calculus. As we shall see in the following section,

the implication is that the calculus with undo and redo is

equiexpressive to the original calculus.

Two-counter machines were first defined in [8]. They are

very simple imperative programs that constitute a universal

model of computation.

A two-counter machine uses two integer-valued variables

called counters. Its behaviour is defined by a sequence of

labelled instructions of the following form.

• The Inc instruction: ci := ci + 1;goto k
• Dec: if ci = 0 then goto k1 else ci := ci−1;goto k2
• Halt instruction

Here, k,k1 and k2 are natural numbers that label instruc-

tions.

Formally, two-counter machines can be defined as follows.

Definition 13. A two-counter machine M is a mapping from a
finite set AddrM of natural numbers to the set of instructions:

{Inci,k | i ∈ {0, 1}, k ∈ AddrM ∪ {⊥}}
∪{Deci,k1,k2 | i ∈ {0, 1}, k1, k2 ∈ AddrM ∪ {⊥}}

We require that 0 ∈ AddrM .

A configuration of a two-counter machine is a triple

〈k,m0,m1〉. The initial configuration σI of a machine is

〈0, 0, 0〉.
The transition relation

l−→M (where l ∈ {inci, theni, elsei |
i ∈ {0, 1}}) is defined by the following inference rules.

70

[SEQ]
〈H, E1, a〉 α−→ 〈H′, E′1, a′〉

〈H, E1 ≫ E2, a〉 α−→ 〈H′, E′1 ≫ E2, a′〉
[EV AL]

a→ v

〈H,eval.E, a〉 v−→ 〈H, E, a〉

[COND-1]
a � φ

〈H, φ⇒ E1|E2, a〉 φ−→ 〈H, E1, a〉
[COND-2]

a � φ

〈H, φ⇒ E1|E2, a〉 ε−→ 〈H, E2, a〉

[STRUCT]
E1 ≡ E2 〈H, E2, a〉 α−→ 〈H′, E′2, a

′〉 E′2 ≡ E′1
〈H, E1, a〉 α−→ 〈H′, E′1, a′〉

[CONTEXT -S]
�a�

π−→ �a′�

〈(H, v), π.E,C[�a�]〉 π−→ 〈(H ′, v′), E, C[�a′�]〉
Where π �∈ {child n, parent, undo, redo, eval}

and H ′ = H[v
(path(C[a]), a, a′)�−−−−−−−−−−−−→ v′]

[CONTEXT -M]
a

π−→ a′

〈H, π.E,C[a]〉 π−→ 〈H, E, C[a′]〉 Where π ∈ {child n, parent}

[REDO]
〈(H, v),redo n.E, a〉 redo n−−−−→ 〈(H, v′), E, C[�a′�]〉

Where H � v
(p, a′, a′′)−−−−−−→n v′

and �a−�
p−→ C[�a′′�]

[UNDO]
〈(H, v),undo.E, a〉 undo−−−→ 〈(H, v′), E, C[�a′�]〉

Where H � v′
(p, a′′, a′)−−−−−−→ v ,

and �a−�
p−→ C[�a′′�]

Fig. 2: Transition rules for editor expressions

[V AR]
�â�

{var x}−−−−→ �x�
[HOLE]

�â�
{hole}−−−→ ����

[CONST]
�â�

{const c}−−−−−→ �c�
[APP]

�â�
{app}−−−→ ������

[BREAK-1]
â �= 〈â′〉

�â�
{break}−−−−→ �〈â〉�

[LAMBDA]
�â�

{lambda a}−−−−−−→ �λx.���
[BREAK-2]

�〈â〉� {break}−−−−→ �â�

Fig. 3: Transition rules for substitution

M(k) = Inci,k′ m′i = mi + 1 m′1−i = m1−i

〈k,m0,m1〉 inci−→M 〈k′,m′0,m′1〉

M(k) = Deci,k1,k2 mi = 0

〈k,m0,m1〉 theni−→M 〈k1,m0,m1〉

M(k) = Deci,k1,k2
mi > 0

m′i = mi − 1 m′1−i = m1−i

〈k,m0,m1〉 elsei−→M 〈k2,m′0,m′1〉

We write σ
l1···ln=⇒ M σ′ if σ

l1−→M · · · ln−→M σ′ for some

l1, . . . , ln. We also write σ =⇒M σ′ if σ =⇒M σ′ for some

s.

The machine M halts if there is a reduction sequence

σI =⇒M 〈⊥,m1,m2〉 for some m1,m2.

a) Encoding machine configurations: Let M be a pro-

gram for a two-counter machine. With no loss of generality,

we assume that the set of labels is an interval [0..n] for some

n, that the address 0 is the initial address, and that the address

n is the halt address.

The initial configuration of the machine is encoded as the

AST in Figure 5.

The left-hand side of the AST represents the current con-

figuration of the machine. It consists of a hole, which has

n − 1 breakpoints above it. If the cursor is placed below the

application, this encodes the current instruction as 0. Placing

the cursor below the top-most breakpoint encodes the address

71

[APPC-1]
�â1â2�

child 1−−−−→ �â1�â2
[APPC-2]

�â1â2�
child 2−−−−→ â1�â2�

[APPP -1]
�â1�â2

parent−−−→ �â1â2�

[APPP -2]
â1�â2�

parent−−−→ �â1â2� [BREAKP]
〈�â�〉 parent−−−→ �〈â〉�

[BREAKC]
�〈â〉� child 1−−−−→ 〈�â�〉

[ABSC]
�λx.â�

child 1−−−−→ λx.�â�
[ABSP]

λx.�â�
parent−−−→ �λx.â�

Fig. 4: Transition rules for cursor movements

�
�
��

�
�
��

lambda

app

Label i Counters

Fig. 5: An AST representing a two-counter machine

as 1, and so on and so forth.

On the right-hand side is an application, with two holes as

children. The number of breakpoints between the hole and the

application represent the value of the counters.

We denote an AST that encodes a configuration with the cur-

rent label k and counter values m:1 and m2 by a(k,m1,m2).
b) Encoding the behaviour: For each instruction of the

machine we introduce a recursion variable. This allows us

to describe an expression that defines the program of the

machine.

For every label i we introduce a recursively defined expres-

sion Pi(x), For the halt instruction with label n we let

Pn � 0

For every other label, the representation depends on the kind

of instruction. If the instruction is a Dec instruction, we define

Pi(x) � parent.@lambda =⇒
(child 2.child i ≫ @hole =⇒
(parent.parent.child 1.(child 1)k1) |
({break}≫parent.parent.child 1.(child 1)k2)

) | Pi+1(x) if Deci,k1,k2
∈M

If the instruction is an Inc instruction, we define

Pi(x) � parent.@lambda =⇒
(child 2.child i.

rec y.(@break =⇒ ((child 1).y ≫ parent) ≫
@hole =⇒ (break))

≫ parent.parent.child 1.(child 1)k)

| Pi+1(x) if Inci,k ∈M

The whole expression representing a program is then de-

fined as rec x.P0(x).
We have that this encoding is sound and complete. The

following theorems are both proved by induction in the length

of the transition sequences.

Theorem IV.1 (Soundness). If

〈k,m0,m1〉 →∗ 〈k′,m′0,m′1〉
then

〈Hε, P0, a(m0,m1)〉 α−→ 〈H′, E′, a(k′.m′0.m′1)〉
for some editor expression E′.

Theorem IV.2 (Completeness). If

〈Hε, P0, a(m0,m1)〉 α−→ 〈H′, E′, a(k′.m′0.m′1)〉
for some editor expression E′, then

〈k,m0,m1〉 →∗ 〈k′,m′0,m′1〉
B. Representing the history-based semantics

We can encode almost all of the extended editor calculus in

the simple calculus without undo and redo. The exception is

that the eval primitive cannot be represented. The reason

for this is that eval evaluates the entire AST; since we

represent the history as well as the current AST in a single

AST, evaluation of the entire tree does not make sense.

In the semantics of the original editor calculus, configura-

tions are of the form 〈E, a〉 and transitions are of the form

〈E, a〉 α−→ 〈E′, a′〉
We encode a configuration 〈H, E, a〉 from our semantics by

encoding each of its components.

We represent a history-AST pair 〈H, v〉 where v is the node

representing the current AST, as a single AST. An example is

shown in Figure 6. The AST associated with the current node

v is the immediate right subtree of an app term constructor.

We refer to this subtree as dec(v). The current node v, which

can be represented as a natural number, is the twice-left child

of the root. The history H is kept in the right subtree of the

left subtree. Each node of the history tree is encoded with

metadata that assigns a unique ID, and describes the child and

parents of the tree. We refer to this subtree as enc(H).

72

dec(v)

�
�

�
�
�

�
�

�
�

�
�
� �
�
�

�
�
�
�
�
��

�
�
�
�
�
� �
�
� �

�
�
�
�
� �
�
�

�
�
�
�
�� �

�
�
�
��

app

v

enc(v1)

enc(v2)

�
�

�
�
�

�
�
�
�

Fig. 6: The represention of a history-AST pair 〈H, a〉 where

H = ({v1, v2},EH), and the currently selected node is v

The idea of the encoding of E is to store the result of each

atomic edit action in the history, unless the action is undo or

redo. In these cases, we consult the history.

These operations on the encoding of the history are im-

plemented by means of the following collection of auxiliary

operations on subtrees.

copyto copies dec(v) to a new subtree in enc(H), adds v as

a child of the previous node; v becomes the current node

child (i) gets the ith child of v
parent gets the parent of v
copyfrom (i) replaces dec(v) with dec(vi) from the history

tree

Since the original editor calculus is Turing-powerful, we can

use it to implement each of these operations. One can either

store the subtrees directly or use a binary representation.

We use the auxiliary operations to encode the atomic edit

actions; the encoding is homomorphic wrt. composite editor

expressions. For a subset of editor expressions, they can be

encoded in the history-free semantics as follows.

enc(E) = E.copyto where E /∈ {eval,undo,redo}
enc(undo) = copyfrom(parent)

enc(redo n) = copyfrom(child(n))

V. CONCLUSIONS AND FURTHER WORK

A. Results

The present work extends the editor calculus of Godiksen

et al. [6] with a branching notion of undo/redo actions. To

the best of our knowledge, these systems have, prior to

the present paper, not yet been formalized. We do this by

introducing two new editor expressions: undo and redo,

and associated transition rules. undo reverts the document

(a possibly incomplete λ-calculus expression) to a prior state,

while redo reverts an undo.

Our semantics is history-based: we introduce a history graph

that records the modifications to the document, from which it

is possible to infer the state of the present document.

Our undo/redo system is fully reversible in the sense that,

for any given state, there exists exactly one prior state, such

that it is always possible to uniquely identify the prior state

that resulted in the current.

Godiksen et al. [6] show that their semantic is Turing-

powerful, but we provide an alternative, much simpler proof

of this by expressing a two-counter machine in the original

semantics. We use the expressive power of the original cal-

culus to embed an encoded version of the history graph into

the document; thereby allowing the two-counter machine to

emulate the history graph as defined by our semantics. This

result shows that the extended calculus is equiexpressive with

the original, that is, that every document expressible in the

original semantic is also expressible in the extended and vice-

versa. A notable exception is that of the eval-action, since its

semantics is that of evaluating the entire AST. As the encoding

stores the history graph in the AST, this would not make sense.

The undo/redo paradigm in the traditional sense is in-

teresting in its own right; however, our extension makes it

powerful still: Since undo and redo are introduced as first-

class editor expressions in the extended semantic, it is possible

and convenient to use these actions in a broader sense: undo
and redo can be executed conditionally, sequentially or recur-

sively to provide non-trivial functionality—directly in relation

to manipulating the history, or in the context of broader editor

expressions not necessarily related to the history, e.g. storing

and retrieving data. In this way our extension allows the

undo/redo paradigm to symbiotically integrate into the existing

structure editor calculus.

B. Future Work

A central aspect of [6] is that of a type system which guar-

antees that a well-typed editor expression can only produce a

well-typed program. A natural next step is to show that our

extension also has this safety property.

The eval-action is not covered in our expressiveness result,

but we conjecture that this can be dealt with by modifying

the semantics of eval, such that evaluation is relative to the

position of the cursor.

Another avenue for further work is to extend the notions of

undo and redo. Jakubec et al. [7] describes selective undo/redo

system as a system which allows the user to undo and redo

any action in the history in arbitrary order. Our history model

could be extended with a model for history that allows for

exactly that.

A selective undo/redo system is especially suited for this

editor calculus as the structure of the history graph provides

detailed information in deciding whether a particular selective

undo/redo makes sense in the context of the document. In

principle, by looking at the path of a delta, it can be switched

with another delta if none of the paths are sub-paths of each

other.

73

REFERENCES

[1] AIELLO, M., PRATT-HARTMANN, I. E., AND BENTHEM, J. F. V.
Handbook of Spatial Logics. Springer-Verlag, Berlin, Heidelberg, 2007.

[2] BEKIĆ, H. Definable operations in general algebras, and the theory of
automata and flowcharts. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1984, pp. 30–55.

[3] BORRAS, P., CLEMENT, D., DESPEYROUX, T., INCERPI, J., KAHN, G.,
LANG, B., AND PASCUAL, V. Centaur: The system. SIGSOFT Softw.
Eng. Notes 13, 5 (Nov. 1988), 14–24.

[4] DANOS, V., AND KRIVINE, J. Reversible communicating systems.
In International Conference on Concurrency Theory (2004), Springer,
pp. 292–307.

[5] DONZEAU-GOUGE, J. V., HUET, G., KAHN, G., T, W. K. A. I., LANG,
E. I., DTIC, T., SIGNIFICANT, C. A., DONZEAU-GOUGE, V., HUET,
G., KAHN, G., AND LANG, B. Programming environments based on
structured editors: The MENTOR experience. Tech. rep., 1980.

[6] GODIKSEN, C., HERRMANN, T., HÜTTEL, H., LAURIDSEN, M. K.,
AND OWLIAIE, I. A type-safe structure editor calculus. In Proceedings
of the 2021 ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation (2021), pp. 1–13.

[7] JAKUBEC, K., POLÁK, M., NEČASKỲ, M., AND HOLUBOVÁ, I.
Undo/redo operations in complex environments. Procedia Computer
Science 32 (2014), 561–570.

[8] MINSKY, M. L. Computation: Finite and infinite Machines. Prentice-
Hall, 1967.

[9] OMAR, C., VOYSEY, I., CHUGH, R., AND HAMMER, M. A. Live
functional programming with typed holes. Proc. ACM Program. Lang.
3, POPL (Jan. 2019).

[10] OMAR, C., VOYSEY, I., HILTON, M., ALDRICH, J., AND HAMMER,
M. A. Hazelnut: a bidirectionally typed structure editor calculus. ACM
SIGPLAN Notices 52, 1 (2017), 86–99.

[11] TEITELBAUM, T., AND REPS, T. The cornell program synthesizer: A
syntax-directed programming environment. Commun. ACM 24, 9 (Sept.
1981), 563–573.

[12] TEITELMAN, W. Automated programmering: The programmer’s assis-
tant.

74

