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ABSTRACT

Machine learning based singing voice models require large
datasets and lengthy training times. In this work we present
a lightweight architecture, based on the Differentiable Dig-
ital Signal Processing (DDSP) library, that is able to output
song-like utterances conditioned only on pitch and ampli-
tude, after twelve hours of training using small datasets
of unprocessed audio. The results are promising, as both
the melody and the singer’s voice are recognizable. In
addition, we explore the unused latent-𝑧 vector in DDSP
to improve the lyrics. Furthermore, we present two zero-
configuration tools to train new models, including our ex-
perimental models. Our results indicate that the latent-𝑧
improves both the identification of the singer as well as the
comprehension of the lyrics.

1. INTRODUCTION

Human voice is one of the oldest musical instruments [1].
Before the Deep Learning era [2], high-quality singing
synthesis was carried out either by the spectral models [3],
based on perception, or the physical models [4], based on
production and articulation. Combining the spectral mod-
els with deep learning, the Differentiable Digital Signal
Processing [5] (DDSP) library by Google’s Magenta team
became a powerful toolkit for audio-related machine learn-
ing. The first published examples of DDSP were focused
on timbre transfer from monophonic instruments.

In this paper we present the DDSP architecture and apply
it to a more complex, expressive instrument: the human
voice. We check the suitability of the DDSP for singing
voice synthesis. By constructing small size databases, ex-
perimenting with the model parameters and configurations,
and by training the resulting models only for about twelve
hours, we obtain singing-like outputs, which clearly re-
semble to original singers / speakers. However, the lyrics
are incomprehensible because we don’t have a language
model. When we condition the model on the MFCC of the
original audio, the results improve, promising intelligibil-
ity. Our contribution also enhances the documentation of
the library and provides two zero-configuration notebooks
for experimentation.

This paper is organized as follows. In Sec 2, we introduce
the context of neural singing synthesis. Next we provide a
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detailed look at the DDSP architecture for timbre transfer.
In Sec. 4, we introduce our experiments together with the
data sets and model configurations, and the improved re-
sults we have obtained by adding the latent-𝑧 vector. In the
next section, we discuss our observations. We finally draw
our conclusions and indicate areas of further research.

2. BACKGROUND

In neural singing synthesis, the Deep Neural Network
(DNN) receives a list of pitches and the lyrics as input,
and outputs a signal modeling a specific voice. It is a prob-
lem closely related to the speech synthesis, however more
challenging because of more diverse sets of pitches and
intensities, different vowel durations, and other attributes
specific to singing.

Gómez et al. [6] revised many data-driven deep learning
models for singing synthesis. A thoughtful remark in that
paper is that the black-box characteristics of deep learn-
ing models make it very difficult to gain knowledge re-
lated to the acoustics and expressiveness of singing. Even
if deep learning techniques are general and can learn from
almost any arbitrary corpus, it is necessary to advocate for
explainable models to break the black-box paradigm.

The DDSP library is a set of tools released by Google’s
Magenta team. DDSP is set to bring explainability and
modularity in neural audio synthesis [5]. The idea behind
DDSP is ”to combine the interpretable structure of clas-
sical DSP elements (such as filters, oscillators, reverbera-
tion, envelopes...) with the expressivity of deep learning.” 1

To avoid a common misunderstanding, DDSP is not an ar-
chitecture per se, but a set of signal-processing tools that
can be incorporated into modern automatic differentiation
software. Many examples of DDSP relate to singing input,
therefore we provide an overview in this section.

Several papers extended the DDSP specifically for speech
and singing synthesis [7–9]. In [7], the model is condi-
tioned on the phoneme level using an Automatic Speech
Recognition (ASR) system to extract the phonemes of
the training set and use them as additional conditioning
data. In [8], the authors synthesize spoken speech us-
ing the DDSP architecture with a model conditioned on
mel-spectrograms, instead of using raw audio. The loss
function is also adapted to use mel-spectrograms trying to
mimic the way human perception works. In [9], the authors
propose using MIDI data modified by an LSTM network,
to obtain continuous pitch and loudness contours that will
be fed into the DDSP architecture.

1 https://magenta.tensorflow.org/ddsp
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Figure 1. Timbre transfer architecture used in this work.
Adapted from [5].

2.1 DDSP Overview

Phase alignment poses a problem when generating audio
in deep learning; that problem is present when frames are
used, either in the time- or the frequency-domain. An au-
toregressive model does not present this problem, but in-
stead is harder to train due to the amount of data needed,
and due to the interplay between audio perception, wave
shape and loss. In fact, two wave shapes with very differ-
ent losses can be perceived as sounding exactly the same.

One possible solution is the use of audio oscillators or
vocoders that perform analysis and synthesis. In analy-
sis, interpretable parameters such as f0 or loudness are
extracted, and in synthesis the generative algorithm uses
these parameters to construct the synthetic sound. DDSP
disentangles them by a series of classical Digital Signal
Processing (DSP) modules as feed-forward functions al-
lowing, efficient implementation on GPUs.

3. DDSP AND TIMBRE TRANSFER

The architecture used in this work is based on the
”solo instrument” setup proposed for timbre transfer in [5]
and shown in Fig 1. The network is presented an audio file.
f0 and loudness are extracted and fed to the decoder, which
produces the parameters for a harmonic synthesizer and for
a subtractive synthesizer. The audio from both synthesiz-
ers is combined and presented as the final output. During
the training phase, the loss is computed using different res-
olution spectrograms from the original and the resulting
signal. In the following, we describe the modules used.

The encoder transforms the incoming audio into latent
vectors, in this case, two interpretable features: the funda-
mental frequency and the perceived loudness of the mono-
phonic input audio. The DDSP library does not require a
specific method to generate the f0 and loudness vector, but
expects arrays of float values, sampled at 250 Hz.

f0 can be generated synthetically, but the DDSP library
includes examples using CREPE [10] and DDSP-inv [11].
The f0 latent vector is fed directly to the additive syn-
thesizer. This allows to disentangle the fundamental fre-
quency and facilitates the model to respond to frequencies
unseen during the training.

Loudness can also be generated synthetically, but the
DDSP library includes a utility function to compute the
perceptual loudness of the audio, applying A-weighting
curves to the power spectrogram.

The decoder (Figure 2, top) is an RNN that receives the
latent vectors (f0 and loudness) and outputs the control pa-
rameters required by the synthesizers: the amplitudes of
the harmonics, and the transfer function for the FIR filter.
The RNN is fairly generic, as the DDSP authors empha-
size that the quality of the results comes from the DDSP
modules, not from the complexity of the neural network.

The latent vectors are preprocessed by a Multilayer Per-
ceptron (MLP) (Fig. 2, bottom), which comprises a block
of three layers (Dense, Normalization and ReLU layers) re-
peated three times. The output of the MLP is connected to
a 512-cell GRU layer which is connected to a second MLP
with the same structure and finally passed to two dense lay-
ers that will provide the parameters for the synthesizers.

Figure 2. Decoder architecture (top) and MLP structure
(bottom). Adapted from [5].

To synthesize audio, the DDSP library uses Spectral
Modelling Synthesis (SMS), a technique proposed by
Serra and Smith [3], where the sound is modeled as two
components: an additive or harmonic synthesizer, where a
series of sinusoids is combined, and a subtractive synthe-
sizer where the residual component is modeled as filtered
noise. The DDSP library implements a differentiable ver-
sion of the SMS, with an additional constraint: all the fre-
quencies are integer multiples of f0. The expressiveness
of this technique is a consequence of the high number of
parameters needed. With the default configuration (60 har-
monics, 65 noise magnitudes and 1 amplitude), sampled at
250Hz, 1 second of audio yields (60+65+1)*250 = 31,500
dimensions vs 16,000 audio samples.

The additive (harmonic) synthesizer models the har-
monic part of the signal 𝑥(𝑛) as a sum of 𝐾 sinusoids,
with amplitudes 𝐴𝑘(𝑛) and instantaneous phases 𝜑𝑘(𝑛).

𝑥(𝑛) =
𝐾∑︁

𝑘=1

𝐴𝑘(𝑛) sin(𝜑𝑘(𝑛)). (1)

We can further expand 𝐴𝑘(𝑛) into a global amplitude 𝐴(𝑛)
and a normalized distribution 𝑐(𝑛) of amplitudes for the
harmonic components, so that 𝐴𝑘(𝑛) = 𝐴(𝑛)𝑐𝑘(𝑛). Then
Equation (1) can be rewritten as

𝑥(𝑛) = 𝐴(𝑛)
𝐾∑︁

𝑘=1

𝑐𝑘(𝑛) sin(𝜑𝑘(𝑛)), (2)



Proceedings of the 18th Sound and Music Computing Conference, June 29th – July 1st 2021

185

The instantaneous phase is described as

𝜑𝑘(𝑛) = 2𝜋
𝑛∑︁

𝑚=0

𝑘𝑓0(𝑚) + 𝜑0,𝑘 (3)

where 𝜑0,𝑘 is the initial phase for the harmonic 𝑘.
To reconstruct the additive signal at audio sample rate,

f0 is upsampled using bilinear interpolation, and the am-
plitude and harmonic distribution are smoothed using an
overlapping Hamming window centered on each frame.

The subtractive synthesizer models the residual com-
ponent, the difference between the original signal and the
signal from the additive synthesizer. If we assume that the
residual component is stochastic, it can be modeled as fil-
tered white noise, using a time-varying filter. The filter is
applied in the frequency-domain, to avoid phase distortion.
For every frame 𝑙, the network outputs 𝐻𝑙, the frequency-
domain transfer function of the FIR filter. The convolution
is applied as a multiplication in the frequency-domain (Eq.
4), and then an Inverse Discrete Fourier Transform (IDFT)
is applied to recover the filtered signal (Eq. 5):

𝑌𝑙 = 𝐻𝑙𝐷𝐹𝑇 (𝑥𝑙), (4)
𝑦𝑙 = 𝐼𝐷𝐹𝑇 (𝑌𝑙). (5)

Training the autoencoder means finding a set of param-
eters for the synthesizers that minimize the reconstruction
loss i.e., minimize the difference between the output and
input signals. A sample-wise loss measure is not recom-
mended, as two similar waveforms can be perceived as
having a very different sound. The spectral loss 𝐿 –the
difference between the spectrograms of the input (𝑆) and
output (𝑆) signals– is perceptually better, but there is a
compromise between time and frequency.

To solve this problem, a multi-scale spectral loss is de-
fined. Instead of using a single pair of spectrograms (𝑆, 𝑆),
the loss is defined as the sum of different spectral losses
𝐿𝑖 where 𝑖 is the FFT size. Moreover, the linear magni-
tude losses are sensitive to the peaks, whereas logarithmic
magnitude losses are sensitive to the quiet regions of the
signals. Therefore the loss is defined as 𝐿 =

∑︀
𝑖 𝐿𝑖, with

𝑖 ∈ (2048, 1024, 512, 256, 128, 64), where

𝐿𝑖 = ||𝑆𝑖 − 𝑆𝑖||1 + ||𝑙𝑜𝑔(𝑆𝑖)− 𝑙𝑜𝑔(𝑆𝑖)||1 (6)

4. EXPERIMENTS AND RESULTS

Our first experiment 2 is a simple test to check if the system
is correctly set up. The second experiment tries to deter-
mine if the model is able to learn single from single- and
multiple-voice datasets. The third experiment explores the
effect of training the model using the same dataset, with
different sets of parameters for the spectral synthesizer.
The last experiment introduces a encoded representation
of the Mel Frequency Cepstrum Coefficients. Tables 1, 2
and 3 describe the datasets we used.

2 Our notebooks and configuration files are available at https://
github.com/juanalonso/DDSP-singing-experiments.
Example results (audio and spectrograms) are at https://
juanalonso.github.io/DDSP-singing-experiments/.

Name Speaker / Singer Gender Type Language
alba Alba Female Spoken Spa
mrallsop Scott Allsop Male Spoken Eng
eva Eva Páez Female Sung Eng, Spa
belen Belén Chanes Female Sung Spa
servando Servando Carballar Male Sung Spa
voices2 belen + eva Female Sung Eng, Spa
voices3 belen + eva + servando Mixed Sung Eng, Spa
felipe vi King Felipe VI Male Spoken Spa

Table 1. Dataset metadata.

Name Source
alba Scrapped from https://albalearning.com/
mrallsop Scrapped from https://tinyurl.com/mrallsop
eva Provided by singer
belen Provided by singer
servando Provided by singer
voices2 Provided by singers
voices3 Provided by singers
felipe vi Scrapped from https://tinyurl.com/felipe-vi

Table 2. Dataset sources.

To test the model, we used a fragment of ’Over the rain-
bow’ as sung by Lamtharn (Hanoi) Hantrakul as the origi-
nal audio presented to the model. This melody is also used
in the DDSP [5] examples.

4.1 Pre-evaluation

A quick test of the system has been carried out to reproduce
the timbre transfer experiments while checking the validity
of our setup. In this test we have used the same material as
in the original paper 3 , generating the dataset and training
the model for 30k steps using the standard configuration
file solo instrument.gin (60 sine waves, 65 noise
magnitudes, reverb and batch size of 16).

The estimated f0 is transposed up two octaves, to better
match the pitch range of the violin, and the loudness is at-
tenuated 20dB. Two reconstructions are produced, the first
one with no additional information, and the second one us-
ing masking and statistical amplitude adjustment. These
reconstructions are shown in Fig. 3.

3 Movements II, III, IV, VI and VIII from the Bach Violin Partita no.1
BWM 1002, as played by John Garner at https://musopen.org/
music/13574-violin-partita-no-1-bwv-1002/

Figure 3. Over the rainbow as sung by Lamtharn (Hanoi)
Hantrakul (top) and reconstructed by our version of the vi-
olin model (+2oct, -20dB), using no statistical information
(middle) and with statistical information (bottom).
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Name Avg. pitch Duration Active audio
alba 53.76 1:24:29 0:53:28
mrallsop 48.42 0:25:41 0:23:51
eva 64.10 0:18:34 0:16:23
belen 62.39 0:10:16 0:06:24
servando 55.08 0:11:02 0:08:31
voices2 63.59 0:28:50 0:22:47
voices3 61.75 0:39:52 0:31:17
felipe vi 50.93 0:13:32 0:08:35

Table 3. Audio properties of the datasets. Active audio is
the duration after removing parts of the original file where
audio is lower than -52dB for more than 200ms. This is
only a reference value and it is not used for training.

The violin model works as expected. The resulting audio
is equivalent to the audio produced by the original model,
which is trained for 20k extra steps with a batch size of 32.

4.2 Different datasets trained on the same parameters

4.2.1 Single voice model

To generate the models for singing voices, we are using
seven datasets (see Table 1), obtained from speakers and
singers, both male and female, in different languages. No
audio source separation software is used. The datasets eva,
belen and servando are raw vocal tracks recorded by pro-
fessional singers and have been kindly provided by the per-
formers upon request of the authors. These tracks were not
specifically recorded for this work, they were previously
recorded for existing and upcoming music records. Two
additional datasets have been created by combining the au-
dio files from the eva and belen datasets (voices2) and the
eva, belen and servando datasets (voices3). The rest of the
datasets (mrallsop, alba and felipe vi) has been scrapped
form the web. Files longer than five minutes have been
split into three to four-minute chunks. Other than that, the
original audio has not been transformed in any way, keep-
ing all the original characteristics: silences, different vol-
ume levels, background noise, etc.

The models are trained for 40k steps each, using the
notebook 01 train. Each model has been trained us-
ing singing.gin, a modified version of the standard
configuration file. The losses after training (Fig. 4, top)
are all in the range [4.987, 5.437] as recommended in [5].
There are no significant differences between the losses in
the spoken and sung datasets. The servando model, whose

Name Gender Type Loss
servando male sung lyrics 6.984
belen female sung lyrics 5.114
eva female sung lyrics 4.987
mrallsop male spoken speech 5.437
alba female spoken speech 5.142
voices2 female sung lyrics 5.415
voices3 mixed sung lyrics 6.143

Table 4. List of datasets used for training the model and
loss value after 40k steps.

loss is considerably higher, is an exception. The only ap-
parent difference with the rest of datasets is that servando’s
source audio is hard-clipped / compressed at 0dB, with a
smaller dynamic range than the other voices, which present
a wider range of amplitudes and compression values.

The output is generated by executing notebook 02 run.
The pitch shift is chosen manually by comparing the mean
MIDI pitch of the dataset with the mean MIDI pitch of the
melody. The loudness shift is handpicked after comparing
different settings. The threshold and quiet parameters are
adjusted manually depending on how much noise bleeds
into the silent parts of the original audio. The values cho-
sen for each example are shown in the audio web page.

4.2.2 Multiple voices model

The model voices2 combines the source audio from belen
and eva, both female singers. It is trained for 40k steps.
The loss, after training is 5.415, higher than the loss of
both of the datasets (belen=5.114, eva=4.987), as shown
in Fig. 4, bottom. This result is expected, as we are train-
ing the model with the same number of steps as the single
voice models but, in this case, the model needs to learn
two different timbres, with different loudness and slightly
different MIDI mean pitches (belen=62.39, eva=64.10).

When the model is used, the resulting audio is a combi-
nation of the individual voices. Depending on the f0 and
loudness, the model outputs a succession of fragments by
the original singers. The transition is smooth: only one
voice is perceived at a concrete frame.

The model voices3 combines the source audio from be-
len, eva and servando. It is trained for 40k steps: the model
must learn three timbres, and one of them is more differ-
ent from the other two (servando, loss=6.984, MIDI mean
pitch=55.08) The peculiarities of the servando dataset pe-
nalize the training, and thus the model presents a higher
loss than voices2.

Fig. 4, bottom, shows that the loss of voices3 (6.143) is
lower than the loss of the servando model (6.984). We at-
tribute this effect to an imbalanced dataset: the duration
of servando’s source audio is 11 minutes and 02 seconds,
whereas belen’s and eva’s source audio combined is 28
minutes and 50 seconds.

In this experiment, the voice mixing capabilities of the
model are more pronounced than in the previous experi-
ment. The mean MIDI pitch of the example song is 51.30.
Considering that the mean MIDI pitches of the servando,
belen and eva datasets on Table 4 are, respectively 55.08,
62.39 and 64.10, we can expect that when rendering the
audio, the model will generate a mix of the nearest-pitched
voices. This is the case: when using the example frag-
ment without transposing, the resulting melody is a mix
of servando’s and belen’s voice. If the example fragment
is transposed an octave higher (MIDI pitch of 63.30) the
resulting melody is a mix of belen’s and eva’s voice. To
demonstrate this effect, six examples have been uploaded
to the audio page, using different sets of preprocessing pa-
rameters.
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(a) Five independent datasets: dotted lines represent speech datasets.

(b) Hybrid dataset, with voices2 and voices3.

Figure 4. Spectral loss for the different datasets

Use statistics Yes
Mask threshold 1

Quiet 20
Autotune 0

Octave shift +1
Loudness shift -10dB

Table 5. f0 and loudness preprocessing parameters.

4.3 Single dataset, different spectral parameters

In this experiment, we want to understand how the param-
eters of the spectral synthesizer affect the learning process
and the results. We will be using the eva dataset –since its
model has the lowest loss after training– to train the model
using a range of spectral configurations.

We chose three values for the harmonic component (20,
60 and 100 sinusoidal waves). 60 is the default value pro-
vided in the configuration files. 100 is the maximum value
a model can be trained without getting out of memory er-
rors, and 20 is the symmetrical lower bound (60− (100−
60)). For the noise component we chose 10, 35 and 65
noise magnitudes, 65 being the default value.

Nine models are generated, one for each combination of
harmonic components and noise magnitudes. Each model
is trained for 20k steps, using the same configuration file
we used in the previous sections (singing.gin). f0 and
loudness are preprocessed using the handpicked parame-
ters from Section 4.2.1 and shown in Table 5.

As can be observed in Fig. 5, to decrease the spectral
loss, the amount of noise magnitudes is more relevant than

the number of harmonic components. Perceptually, more
models and tests are needed. On an informal test where
three users with no musical training were presented pairs
of the snippet ’way up high’ (seconds 7 to 11 in the origi-
nal audio) rendered with different parameters, there was no
agreement on which ”sounded better”. The only exception
was snippet h:20 n:10, where the subjects remarked it was
the worst sounding of the pair. All subjects commented on
listening fatigue due to being exposed to the same melody.

Observing the spectrograms of the reconstructions in
Fig. 6, the examples with the lowest number of noise mag-
nitudes (𝑛 = 10) show the model trying to reconstruct the
high frequency noise with the harmonic model (faint sinu-
soids in the spectrograms).

4.4 Adding the latent-z

For our last experiment, we expand the singing.gin
configuration (Fig. 7) to include a time-varying encoding
of the Mel Frequency Cepstral Coefficients (MFCC) to un-
derstand how this additional encoding affects the model’s
output. This representation is specially well suited for
the human voice, as it mimics the non-linearity of hu-
man sound perception and helps model the timbre [12].
The MFCC are encoded using a normalization layer and a
512-unit GRU, reducing the dimensionality from 30 coeffi-
cients to a 16-dimensional latent vector, at 125 frames per
second and then upsampled to 250 frames, to match the
sampling rate of the f0 and loudness vectors. To decode
this vector, the same MLP architecture shown in Fig. 2,
bottom, is used, and concatenated with the preprocessed f0
and loudness vectors.
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Figure 5. Total (spectral) loss for the eva dataset, using different parameters for the spectral synthesizer. h is the number of
harmonic components; n is the number of noise magnitudes.

Figure 6. Spectrogram of the original audio (’way up
high’, seconds 7-11). left column, and spectrograms of the
model’s output with different spectral parameters.

Figure 7. Timbre transfer architecture with latent-𝑧.
Adapted from [5].

To generate the z models, we used the belen and mrall-
sop datasets and a new dataset, felipe vi, extracted from
Felipe VI’s, King of Spain, 2020 Christmas speech (male
spoken voice, Spanish) As with the previous datasets, fe-
lipe vi is used ”as is”, without any kind of preprocessing.
A new configuration file (singing z.gin) is also used,
and it is available at the GitHub repository. This configu-
ration file inherits all the values from singing.gin and
includes the z encoder.

The models are trained for 25k steps. As shown in Figure
8, with the additional encoding, the loss function increases
(from 5.310 to 6.322 in the case of the belen dataset and
from 5.634 to 8.011 in the mrallsop dataset) This is an ex-
pected behavior, as the model now needs to fit additional
parameters. The loss value for the felipe vi z model is low
enough (5.514) to be in the range of the non-z models.

5. RESULTS AND DISCUSSION

The architecture proposed in [5] is powerful enough to per-
form timbre transfer and to produce surprising results even
if the dataset is small (10-15 minutes of audio). The train-
ing, using the Colab environment, is fast and it works out
of the box, with the GPU infrastructure ready. All the re-
quired libraries (CREPE, TensorFlow, Apache Beam. etc.)
are available without version conflicts.

In singing voice synthesis, we challenged the model
(small datasets, unprocessed audio, etc.), but the quality
of the results surprised us. Of course, in no way the output
of the model is going to be mistaken for a human, but the
model’s ability to produce such good results with no ad-
ditional conditioning is very promising and opens several
avenues for exploration, research and creative usage.

With the addition of the z-encoder, the quality of pro-
duced audio is increased, becoming almost intelligible.
The right vowels start appearing, and the babbling effect
is reduced substantially. The resulting timbre is halfway
between the instrument timbre and the original timbre.

This architecture makes very difficult to estimate the per-
formance of a model. As we have noticed, the training
loss of the servando model is quite high, compared with
the rest, but when analyzing the dataset, nothing stands
out as the cause of this value. Similar datasets (speaking,
male voice) such as felipe vi z and mrallsop z present very
different losses (5.514 versus 8.011 respectively), but the
quality of the resulting audio is comparable.

5.1 Problems

5.1.1 Babbling and stuttering

We are forcing the model to recreate sung lyrics. The
model needs to learn the timbre of the voice, how to ex-
trapolate previously unheard pitches and the flow of the
language. The current architecture manages to extract the
timbre and to correlate f0 and loudness with sounds, but
it lacks the ability to learn the sequences of phonemes
that constitute speech. Even with more comprehensive
datasets, where all the possible combinations of phonemes
and pitches could be present, without additional condition-
ing (phonetic, text, etc.) the model will try to make up what
to say, and the produced audio will be just a better-quality
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Figure 8. Spectral loss for the three z models. The dotted lines are included for reference, and represent loss function for
the two related non-z models.

version of this stuttering and nonsensical babbling.
During the development of this work, the audio has been

presented to several listeners who knew the original singers
(belen, servando) and they all found the results unsettling,
due to this kind of babbling. They recognized the speaker,
but the babbling and stuttering were compared to listen-
ing to a person having suffered a stroke that impaired the
language centers of the brain.

5.1.2 Silence

If the dataset does not include silences (for example, the
dataset used to train the violin model) the resulting model
has difficulties trying to recreate them and will resort to
generate some very low notes. This can be mitigated by
adding some transitions to and from silence and by fine
tuning the preprocessing parameters, which right now it
is a manual process dependent on the input audio and the
model. The datasets used in this work do not present this
problem, since the original material includes pauses and
therefore, the network can recreate possible silences.

The example on the audio page shows this phenomenon
particularly well. On the one hand, the original audio, a
staccato synthesizer riff, is played as legato. On the other
hand, the silence that occurs at seconds 3 and 9 is reinter-
preted as a pair of low-pitched tones. Even tweaking the
preprocessing parameters, we can mitigate the low tones,
but not suppress them.

5.1.3 Pitch artifacts

The accuracy of the output pitches depends on the f0 es-
timation. If the estimation made by the CREPE model is
wrong, the output will include wrong notes. We have de-
tected several cases where CREPE estimates a very high
pitch with high confidence, so the preprocessor cannot
mask it. In those cases, the resulting audio will include
a squeal, a quick glissando to the estimated high pitch.

To avoid this, we can substitute CREPE for another algo-
rithm, or use a symbolic notation, such as MIDI, to gener-
ate the f0 vector. In that case, we risk having a monotonous
voice, and we would need to add some modulation (e.g.,
amplitude or frequency modulation) to make it more natu-
ral sounding.

5.1.4 DDSP maturity

Although the possibilities of these libraries are immense,
exploring them is a challenging task for two major reasons.
The first one is the lack of information about the most com-
plex processes, how some of its modules work and how to
modify the workflow to add new functionalities. Despite
open-sourcing the code in GitHub, the tutorials and demos
barely scratch the surface. The second problem is that, be-
cause the libraries are still under active development, some
of the updates are missing information about the release
changes and are not as stable as expected. These, however
are expected in any open source library.

6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

The DDSP library opens up a lot of possibilities for audio
synthesis. The work presented here allows us to get a better
understanding on how the DDSP library works, especially
when used for timbre transfer. It achieves two goals:

1. Test the validity of the DDSP architecture to gen-
erate a singing voice. The tests carried out on
the architecture have used unfavorable data (no pre-
processing, background noises, small datasets, etc.),
and even so, the network could generate audio sim-
ilar to the human voice, with enough features to be
recognized as belonging to a specific singer.

2. Create an easy-to-use environment to facilitate
model training and timbre transfer to end users.
The notebooks provided will help the SMC commu-
nity to ease the learning curve of this architecture
and get familiar with the advantages and nuisances
of the library. Since the GitHub repository includes
some of the models used in this work, curious users
can just interact with them, without needing to create
their own datasets. Also, as per today (March 2021)
our models are compatible with the ones made avail-
able by Google (flute, violin...) so they can be used
interchangeably.
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6.2 Future Work

In order to create a more refined model which is capable
of synthesizing much realistic utterances with lyrics repli-
cation (and thus avoiding the gibberish / stuttering effect)
additional work must be done in the following areas:
Conditioning: As noted in Section 5.1.1, the phonetic out-
put is made up by the model, without any reference to real
speech. The current architecture does not condition the
output in any other data than pitch and loudness, missing
additional information present in sung lyrics. To get the
nuances of human singing and model the lyrics, we need
to include additional conditioning on the language level,
for example, the phonetic conditioning proposed in [7].
Use representations more suitable to voice synthesis:
The default architecture proposed in the DDSP is generic,
designed for monophonic musical instruments. Using mel-
spectrograms as proposed in [8], instead of using raw au-
dio or by postprocessing the harmonic and the noise com-
ponents of the transformed audio to balance the voiced and
unvoiced parts of the speech [7], results could be improved.
Use synthesizers more suitable to voice modeling: As
stated previously, by using Spectral Modelling Synthesis,
we get a very expressive synthesizer at the expense of pro-
ducing twice as much data per second as the sampled au-
dio. However, other synthesizers can provide a more com-
pact representation, resulting in a smaller model which will
be faster to train and run. The authors are currently work-
ing on implementing both an AM and a 2-operator FM
differentiable synthesizer. These simple synthesizers will
provide us a better understanding of the capabilities and
nuances of a differentiable synth, its performance, how to
integrate them in the existing toolchain, and how to modify
the model architecture to fit different synthesizers.
Preprocessing of f0: Even if the model is able to transfer
the timbre perfectly, following the ”Garbage in, garbage
out” concept, the quality of the output will be affected by
the quality of the latent vectors. If the pitch estimation is
not accurate, the resulting audio will present pitch artifacts.
A quick solution can be to extract f0 from MIDI. While
the resulting f0 is going to be precise, it is going to lack
expressiveness. Solutions as the one proposed in [9] can
add expressiveness to the MIDI data.
Explore the creative possibilities of the model: The cre-
ative possibilities offered by the DDSP architecture are
immense, either with low fidelity, glitchy results as ex-
plored in this work, or with more realistic results by ap-
plying additional conditioning. Some of the possibilities
are pitch- and time-shifting, lyric translation, voice mor-
phing, change of singing style (e.g., to and from opera,
pop, blues), tremolo and vibrato removal or addition, to
name just a few. Working with clean data and synthesizing
singing in different (or fictional) languages would be also
interesting for the future.
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