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This paper presents a self-scheduling framework, using a risk-constrained optimization model for the home en- 
ergy management system (HEMS), considering fixed, controllable, and interruptible loads, as a new contribution 
to earlier studies. The objectives are reducing the electricity bill and managing the risk of purchasing energy over 
on-peak hours and prosumer’s discomfort index (DI) due to shifting load to undesired hours. In this regard, the 
problem formulation is represented as a mixed-integer linear programming (MILP) model. Afterward, the pro- 
posed HEMS is promoted to a conditional value-at-risk (CVaR) model. The prosumer is equipped with an energy 
storage system and a solar photovoltaic (PV) panel. A substantial fraction of the load demand is controllable, 
and there is an inverter-based heating, ventilation, and air conditioning (HVAC), where HVAC is modeled as a 
variable-capacity interruptible load. The optimal scheduling of the loads is supposed to be done by the proposed 
HEMS, and the time-of-use (TOU) mechanism is utilized, including three price steps over the day. The results, ob- 
tained from thoroughly simulating the problem using household data, validate the performance of the presented 
HEMS in mitigating the amount of the electricity bill, while keeping the discomfort index of the prosumer at a 
desired level. 
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. Introduction 

.1. Background and motivation 

Today, demand response (DR) programs can be effectively imple-
ented together with the advancements in the area of home energy
anagement systems (HEMSs) and smart appliances, manufactured re-

ently. These home appliances have been manufactured with respect to
he protocols of the internet of things (IoT) [1] . Accordingly, the appli-
ation of IoT in smart homes has captured attention. To this end, one
mportant objective is the minimization of the amount of the energy bill
f such smart homes, while simultaneously keeping the discomfort level
f the prosumer at the desired level. 

Simultaneously with the advancements in the home appliances and
dding the interaction capability between the residential customers
nd electrical grid, HEMSs have been introduced to effectively and
fficiently modify the load profile of such consumers [2] . This con-
ept has already been comprehensively investigated. In this regard, a
ixed-integer nonlinear programming (MINLP) model was introduced
∗ Corresponding author. 
E-mail address: msjavadi@gmail.com (M.S. Javadi). 
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n [3] while the discomfort level of the consumer has been character-
zed by applying a penalty to the final schedule. The studied system
omprised of 10 home appliances, enabling the consumer to choose the
esired operational strategy. Moreover, a penalty would be applied in
ase the operation time of these assets is shifted to time intervals other
han those preferred by the consumer. The obtained results verified a
5% reduction in the daily energy bill of the customer. 

Ref. [4] utilized a risk-oriented model on the basis of the conditional
alue-at-risk (CVaR), addressing the uncertainties related to the energy
torage system, solar power generation, energy price, and load demand.
n this respect, incentive-based programs have been deployed to attract
he end-users and it has been concluded that a saving in the bill equal to
8% can be obtained. Ref. [5] presented a day-ahead scheduling frame-
ork for home appliances by using a new optimization method and ap-
lying different tariffs. 

A Comprehensive analysis of risk-based energy management has
een proposed in [6] while CVaR technique has been adopted to make
n efficient scheduling for cost minimization for dependent microgrid
nder normal and emergency operations. Ref. [7] proposed a multi-
bjective mixed-integer linear programming (MILP) framework for the
rticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Nomenclature 

Sets 
𝜔, 𝑁𝜔 Index/total number of scenarios 
𝑡, 𝑁𝑇 Index/total number of time intervals 
𝑖, 𝑁𝐴 Index/total number of home appliances 

Parameters 
𝜌𝜔 Probability of scenario 𝜔 

𝜋𝐺2 𝐻 

𝑡 
Grid to home electricity price ($/kWh) 

𝜋𝐻2 𝐺 
𝑡 

Home to grid electricity price ($/kWh) 
𝜎 Discomfort penalty factor ($) 
𝐵 𝑖,𝜔,𝑡 Baseline binary operation status 
Δ𝑡 Time interval 
𝜔 𝑠 Probability of scenario s 
𝐿 𝐵 𝑖,𝑏 Lower band of operation interval for controllable as- 

set i for baseline case 
𝑈 𝐵 𝑖,𝑏 Upper band of operation interval for controllable as- 

set i for baseline case 
𝐿 𝐵 𝑖,𝑠 Lower band of operation interval for controllable as- 

set i for DRP case 
𝑈 𝐵 𝑖,𝑠 Upper band of operation interval for controllable as- 

set i for DRP case 
𝑇 𝑖 Total plugging time for controllable asset i 
𝑃 𝑖 Rated power of controllable asset i (kW) 
𝑃 𝐶ℎ.,𝑚𝑎𝑥 Maximum charging power of storage unit 
𝑃 𝐷𝑖𝑠𝑐ℎ.,𝑚𝑎𝑥 Maximum discharging power of storage unit 
𝜂𝐶ℎ. Charging efficiency of the storage unit (%) 
𝜂𝐷𝑖𝑠𝑐ℎ. Discharging efficiency of the storage unit (%) 
𝜃𝑜𝑢𝑡 
𝜔,𝑡 

Outdoor temperature at time 𝑡 ( ◦F ) 
𝜇 Building insulation index 
𝜓 Thermal coefficient of building 
𝑃 𝐻𝑉 𝐴𝐶 Rated power of HVAC (kW) 
𝑃 
𝐷,𝐹 𝑖𝑥 
𝑡 

Fix demanded power at time t (kW) 
𝛼 Confidence level in CVaR model 
𝛽 Weighting factor in CVaR model 

Variables 
𝑃 𝐺2 𝐻 

𝜔,𝑡 
Grid to home power at time t , scenario 𝜔 (kW) 

𝑃 𝐻2 𝐺 
𝜔,𝑡 

Home to grid power at time t , scenario 𝜔 (kW) 
𝐷𝐼 + 

𝜔,𝑖 
Discomfort index obtained before the base line opera- 
tion for asset i , scenario 𝜔 

𝐷𝐼 − 
𝜔,𝑖 

Discomfort index obtained after the base line operation 
for asset i , scenario 𝜔 

𝑆 𝑖,𝜔,𝑡 Binary operation status of controllable loads 

𝑃 
𝐷,𝑆ℎ𝑖𝑓𝑡 

𝜔,𝑡 
Consumption power of the controllable asset 

𝑂 𝑁 𝑖,𝜔,𝑡 Turn on state of asset i , scenario 𝜔 and time t 
𝑂𝐹 𝐹 𝑖,𝜔,𝑡 Turn off state of asset i , scenario 𝜔 and time t 
𝑃 𝐶ℎ. 
𝜔,𝑡 

Charging power of storage unit (kW) 
𝑃 𝐷𝑖𝑠𝑐ℎ. 
𝜔,𝑡 

Discharging power of storage unit (kW) 
𝐼 𝐶ℎ. 
𝜔,𝑡 

Charging mode binary status 
𝐼 𝐷𝑖𝑠𝑐ℎ. 
𝜔,𝑡 

Discharging mode binary status 
𝐸 𝜔,𝑡 Stored energy in the storage unit (kWh) 
𝜃𝑖𝑛 
𝜔,𝑡 

Indoor temperature at time 𝑡 ( ◦F ) 
𝑃 
𝐷,𝐻𝑉 𝐴𝐶 
𝜔,𝑡 

HVAC consumption power at time t (kW) 

𝛿
(∼) 
𝑡 

Range selection status of HVAC 

Symbols and Abbreviations 
H2G Home to grid transactions 
G2H Grid to home transactions 
DRP Demand response program 

HVAC Heating, ventilation and air condi- 
tioning 

Ch., Dis. Charge and discharge 
w  

2 
max, min Maximum and minimum 

elf-scheduling of a HEMS, equipped with a battery, while applying the
ime-of-use (TOU) tariff. The results show the effectiveness of the model
n reducing the energy bill of the consumer and alleviating the peak load
emand. 

Furthermore, [8] employed the epsilon-constraint technique [ 9 , 10 ],
s an efficient multi-objective optimization tool to tackle the self-
cheduling problem of the HEMS in a MILP framework. The uncertain-
ies, caused by the intermittent renewable power generation within the
cheduling problem of a HEMS, have been addressed in [10] . The ob-
ained results indicate that the presented model can effectively mitigate
he monthly energy bill of the customer by 42%, despite the results are
ase-sensitive. A tri-objective optimization framework for microgrids
nergy management has been developed in [11] . The proposed multi-
bjective model has been investigated to evaluate the effect of demand
esponse on operation costs and peak to average ratio (PAR). In addition,
he customers’ comfort index has been selected as one of the objective
unctions. The results confirm that an increase in DR........ penetration
educes the PAR and operating costs and leads to a decrease in the cus-
omers’ comfort. Ref. [12] presented a stochastic optimization based
odel, aimed at minimizing the electricity bill and thermal discomfort

evel of consumers by using an HEMS, taking into consideration the load
emand of the heating, ventilation and air conditioning (HVAC) system.
n this regard, the uncertain parameters, relating to the outdoor temper-
ture, local power generation, load demand, energy price, and the num-
er of occupants have been modeled. The authors in [13] presented a
cheme for the optimal energy management of commercial buildings in
icrogrids. This scheme aimed to increase the resilience and minimize

he operating costs of these buildings, while making use of the CVaR
ethodology to assess the potential risk of various uncertainties within

he scheme. The uncertainties were associated with the electricity price
nd solar photovoltaic (PV) power generation. 

A multi-objective MILP model was developed by the authors of [14] .
n this model, both the thermal and ocular comfort of the consumers
ere considered. The ocular comfort was assessed through the illumi-
ance in the model home considering both daylight as well as artificial
ighting. Uncertainty regarding the solar PV generation and the energy
rice was considered in the time averaged stochastic model using the
xpected value on the objective function. This model did not consider a
isk measure to account for variation, which is a novel contribution of
ur proposed model. 

A framework for the coordinated operation of several residential
EMS to maximize the use of locally produced electricity while consid-
ring grid constraints was produced by [15] . The authors used a ADMM
odel and introduced both global and individual incentives to help in-

rease load modification by the consumers. 
A HEMS management scheme using robust optimization was devel-

ped by [16] . The model considered the comfort of the consumers and
onsidered uncertainties related to the energy price, load demanded and
V generation. 

Ben Slama incorporated V2G into a HEMS model and used a scenario
cheduling algorithm to meet the daily demand of a HEMS. The model
id not consider HVAC units or risk management strategies. However,
he model did consider travel times for the electric vehicle and climatic
onditions [17] . 

In [18] a multi-objective robust optimization approach, incorporat-
ng CVaR as a risk measure, was formulated for residential buildings.
he uncertainties addressed were demand and supply fluctuations. A
ILP model was developed to minimize the system’s total day-ahead

perating cost, including the generation costs for both heat and power,
s well as the costs associated with emissions. The model considered
arious domestic appliances, plug-in hybrid electric vehicles (PHEVs),
ind turbine, energy storage systems, combined heat and power (CHP)
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nits, and a boiler in order to satisfy the energy demand. A model
as developed by [19] for the HEMS in order to optimally manage

hermostatically-controlled loads (TCLs), PV, and battery systems. The
im was to minimize the operating costs of the TCLs, while maintaining
he indoor temperature at certain set points and using the TOU tariff. 

A dispatch strategy for the optimal management of HVAC systems
ithin smart buildings, considering the CVaR approach, has been devel-
ped in [20] . The strategy used a two-stage model to plan the dispatch
or the day-ahead operation of HVAC systems to minimize the electric-
ty consumption, while the second stage of the model sought to reduce
he power transaction with the utility grid in real-time. The model ad-
ressed uncertainties, relating to both power output of units and outdoor
emperature. The model considered the HVAC system of the building
s well as PV and energy storage systems. Thermal comfort constraints
ere taken into account through the predicated mean vote framework. 

The authors in [21] presented an energy management system for
esidential buildings, considering the energy hub concept. The model
imed to balance the performance and the resilience of the system, ad-
ressing different uncertainties. The authors made use of a flower polli-
ation algorithm. The authors used the TOU tariff and considered nat-
ral gas-fired units, PV systems, CHP units, and PHEVs. Residential de-
and response programs with distributed PV generation was developed

y [22] . The model used a dynamic electricity tariff and considered both
onsumer’s cost and comfort as objectives. The non-dominated sorting
enetic algorithm II (NSGA-II) was used, and the consumers were clas-
ified into several categories to ensure that a wide range of different
onsumers’ preferences were investigated. 

An optimization approach for the robust day-ahead operation of a
EMS, using the CVaR model, was presented in [23] . The model aimed

o reduce the risk, associated with the uncertainty around the real-time
nergy plan and PV power generation. The model used PV, PHEV, vari-
us domestic appliances within the smart home, and the TOU tariff. 

An optimal control strategy for energy storage systems within micro-
rids considering the CVaR was developed in [24] . The authors applied
wo methods based on the online rolling horizon control strategy, and
onsidered the uncertainty related to the electricity price and demand
rofiles. The online rolling horizon model predictive control strategy
epeatedly solved the optimization problem over a rolling window to
ncrease the robustness of the developed strategy. The authors consid-
red both commercial and residential buildings and used a TOU pricing
egime. 

A model was designed in [25] for the optimal energy management
f a smart home using a differential evolution algorithm. The model
sed PV systems, energy storage systems, and domestic appliances to
aximize the user’s comfort and minimize the peak-to-average ratio.
he authors considered a TOU tariff and demand-side uncertainties, as
ell as the volatile PV power generation. It is noteworthy that no risk
itigation tool was used. The authors of [26] implemented a dynamic

nergy management system, which used the real-time pricing and power
eneration forecasts from renewable energy systems to minimize the
perating cost of a smart home, as well as to maximize the amount of
enewable energy used. The power consumption of various domestic
ppliances, the electricity tariff, and the renewable power generation
ere taken into account in the model. 

A HEMS was proposed in [27] based on the voltage control for a
mart home to reduce the on-peak demand, and increase the energy
fficiency of the home. The objective was the minimization of the shift-
ng of appliances operation time. The model incorporated a PV system,
ind turbine and electric vehicles (EVs). The authors of [28] devised
 HEMS to help optimally schedule appliances, energy storage systems
nd generation units to reduce the operating cost as well the operat-
ng emissions. The authors used the CVaR risk management approach
nd optimized the system using a modified flower pollination algorithm
ombined with a MILP method. 

A hybrid energy management system was presented in [29] for in-
ustrial buildings located in microgrids. The objectives were to mini-
3 
ize the operating cost and the associated emissions. The hybrid method
onsisted of a flower pollination algorithm and a MILP approach. The
odel addressed internal combustion engines, fuel cells, PV systems,
Vs and energy storage systems for both deterministic and stochastic
onditions. The authors used a TOU tariff as well the CVaR approach. 

The most relevant literature consulted for this paper is summarized
n Table 1 below. This table provides a means to directly compare the
xisting literature and the proposed model. It can be seen that while
everal papers investigate aspects of the problem, none of them com-
rehensively address the problem as is done in the proposed model. 

Min- Minimize, Max- Maximize, MILP-Mixed Integer Linear Pro-
ramming, ADMM- Alternating Direction Method of Multipliers, PAR-
eak-to-average ratio 

.2. Novel contribution and paper outline 

This paper presents a MILP model for the inverter-based HVAC, as-
igned to the problem as an interruptible load. The HVAC is responsi-
le for controlling indoor temperature in the day-ahead self-scheduling
ramework, handled by the HEMS. 

The novel contribution of this paper is related to developing a MILP
odel for the risk-constrained self-scheduling problem of a residential
rosumer, seeking to mitigate the electricity bill by managing the elec-
rical energy consumption. Besides, the self-generation assets would be
tilized to reduce the end-user’s need to purchase energy during peak
ours. This paper proposes a MILP model for all types of loads, in a
omprehensive manner, and for the energy storage system. 

The remainder of this paper is structured as follows: The background
nd foundations of HEMSs are shown in Section 2 . Section 2 also con-
ains a discussion of the three load types studied. Section 3 presents the
athematical formulation of the self-scheduling HEMS using a MILP

ramework. The results, obtained from simulating various case studies,
re discussed in Section 4 . Lastly, Section 5 presents some relevant con-
lusions from the study. 

. Home energy management system 

The concept of HEMS can be effectively implemented in smart homes
ue to the recent developments in smart appliances and smart meters.
here are various home appliances in the house, each associated with an

ndividual functionality. All these appliances are categorized into three
eneral types of load demands. Fixed loads are the first type, showing
he load demand that cannot be shifted to other time slots. Hence, they
hould run without any interruption, like a refrigerator. 

Fixed loads are associated with different consumption patterns over
he day with respect to the type of the compressor. However, the end-
ser would not be able to change the consumption by shifting it to other
ime slots. 

The second category relates to those loads that can be controlled
uring the day with respect to the priorities of the consumer. It is note-
orthy that once these loads are plugged in, it would not be possible

o interrupt them during the operation. Controllable loads in the res-
dential sector mainly include dishwashers, spin dryers, and washing
achines. Such loads can be used in pre-determined time intervals, ac-

ording to the preferences of the consumer. 
The third load type corresponds to the interruptible loads, having the

apability to turn on/off several times a day. The HVAC is regarded as an
nterruptible load. The HVAC is supposed to control the indoor temper-
ture and provide the end-user with thermal comfort. This device can
urn on/off several times a day thanks to its technology. It should be
oted that the HVAC systems with thermostat are not categorized into
nterruptible loads. On the contrary, inverter-base HVAC systems are ca-
able of providing enhanced controllability, enabling the user to set the
emperature at different values, resulting in different power consump-
ions. Accordingly, an inverter-based HVAC system has been considered
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Table 1 

Summary table of relevant literature. 

Ref 
HVAC 
included 

Discomfort 
modelled Optimization type 

Risk measure 
considered Objective function Uncertainties considered 

[4] No No MILP CVaR Max profit Storage SoC, PV generation, energy price, load 
demand 

[5] No Yes Binary Particle 
Swarm 

No Min consumer costs None 

[7] No No MILP No Min consumer costs and peak 
load 

Load 

[8] No Yes MILP No Min consumer costs None 
[12] Yes No MILP No Max consumer benefit EV availability, wind power, and PV generation 
[13] Yes Yes Lyapunov 

optimization 
techniques 

No Min consumer costs Electricity price, temperature, renewable 
generation, demand, comfortable temperature 
level, and home occupancy state 

[14] Yes Yes MILP No Min consumer costs PV gen and energy price 
[15] No No ADMM None Min energy costs None 
[16] Yes No MILP Robust optimsation Max consumer profit Market prices PV generation 
[17] No No MILP None Min energy costs EV travel distance, weather conditions, and PV 

generation 
[18] No No Linear programming CVaR Min operational cost and max 

resilience 
Renewable generation, electricity price 

[19] Yes No MILP Robust optimization Min cost of day ahead operation Load 
[20] No No Linear Programming No Min operation costs None 
[21] Yes Yes MILP CVaR Min operation and maintenance 

costs 
PV output, temperature 

[22] No Yes Heuristic methods CVaR Min operation costs Solar generation and load 
[23] NO Yes Heuristic methods NO Max consumer satisfaction and 

min imported energy 
None 

[24] NO No MILP CVaR Min costs Energy price and generation 
[25] Yes No MILP CVaR Min costs Prices and load 
[26] No Yes Differential 

evolution 
No Min costs, reduce PAR and 

discomfort 
Load and PV generation 

[27] Yes No Linear programming No Min imported energy None 
[28] No No Linear programming No Min load shifting None 
[29] No No Hybrid Flower 

pollination and MILP 
CVaR Min costs and emissions PV generation, natural gas, electric network 

availability 
[30] Yes No Modified MILP CVaR Min energy cost and emissions Solar PV generation 
This Paper Yes Yes MILP CVaR Min consumer costs Solar PV generation 

Fig. 1. Overview of the HEMS elements considered in this study. 
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n this study, such that the temperature can be kept within a pre-given
esired indoor temperature range. 

The HEMS is illustrated in this paper in Fig. 1 , showing most of the
escribed devices. The HEMS is generally supposed to optimally sched-
le home appliances, while taking into consideration the preferences
4 
f the end-user. In this respect, the operating status of the home ap-
liances is determined by using the HEMS through a self-scheduling
ramework. The decision variables of the problem are the binary vari-
bles, specifying the operation statuses of the appliances. The proposed
elf-scheduling problem is modeled in the subsequent section. 

. HEMS problem formulation 

This section presents the mathematical model of the self-scheduling
roblem of the HEMS. The problem is first modeled as a conventional
tochastic optimization problem, and then it is developed into a risk-
riented optimization problem, using CVaR. It is noteworthy that both
roblems are modeled as a MILP problem. 

.1. Stochastic optimization model 

The objective in this case is to minimize the expected value of the
aily electricity bill of the end-user. The objective function is comprised
f two items, namely the cost due to transacting energy with the elec-
rical grid, and also the penalty applied due to shifting the load demand
o other intervals. In other words, the end-user’s discomfort is modeled
nd added to the objective function as a cost item. 

The presented self-scheduling problem is tackled as a stochastic MILP
roblem, aimed at minimizing the electricity bill of the end-user for one
ay, as follows: 

in 𝑍 = 

∑𝑁𝜔 

𝜔 =1 𝜌𝜔 

(∑NT 
𝑡 =1 

[
𝜋𝐺2 𝐻 

𝑡 
𝑃 𝐺2 𝐻 

𝜔,𝑡 
Δ𝑡 − 𝜋𝐻2 𝐺 

𝑡 
𝑃 𝐻2 𝐺 
𝜔,𝑡 

Δ𝑡 
])

Expe cted Cost of Grid − HEMS Tran sact ions 
+ 

∑𝑁𝜔 

𝜔 =1 𝜌𝜔 

(∑NA 
𝑖 =1 𝜎

[
𝐷 𝐼 + 

𝜔,𝑖 
+ 𝐷 𝐼 − 

𝜔,𝑖 

])
Expe cted Disc omfo rt Cost 

(1) 
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i  
s expression (1) shows, the first term is related to the costs due to im-
orting energy from the utility grid. The second item stands for the costs
ue to the potential discomfort occurring to the end-user for shifting the
oad demand to undesired time intervals. In (1) the probability the sce-
ario occurring is shown by 𝜌𝜔 . The power imported from the grid to
he home is shown by 𝑃 𝐺2 𝐻 

𝜔,𝑡 
and the power exported from the home is

epicted by 𝑃 𝐻2 𝐺 
𝜔,𝑡 

. The prices of electricity from the grid to the home

nd the home to the grid are shown by 𝜋𝐺2 𝐻 

𝑡 
and 𝜋𝐻2 𝐺 

𝑡 
. The discomfort

enalty parameter is shown by 𝜎. The discomfort for each asset before
he baseline operation is shown by 𝐷𝐼 + 

𝜔,𝑖 
while the discomfort after the

aseline operation is shown by 𝐷𝐼 − 
𝜔,𝑖 

. 
It is worth noting that for controllable loads the end-user is able to

hange the plug-in time and, accordingly, mitigate the electricity bill.
he mentioned problem is subject to different constraints as described
ereafter in detail. 

It is noteworthy that the HEMS operator is supposed to optimally
chedule the home appliances with respect to the preferences of the
nd-user and the TOU tariff. It should also be noted that the baseline
ime slots are characterized by using binary parameters, B i,t , and the
perating time slots, shifted, are characterized by using binary variables,
 i,t . 

In this respect, the binary string should be in accordance with the
ime slots, determined by the consumer for the operation. Thus, the
alue of the baseline binary operation status B i,t should be equal to “1 ″
or the mentioned time slots and “0 ″ for the remaining time slots, as
hown in (2). The lower and upper bands of each controllable assets for
he baseline case are shown by 𝐿 𝐵 𝑖,𝑏 and 𝑈 𝐵 𝑖,𝑏 respectively. 

 𝑖,𝜔,𝑡 = { 
0 
1 
0 

𝑡 < 𝐿 𝐵 𝑖,𝑏 

𝐿 𝐵 𝑖,𝑏 ≤ 𝑡 ≤ 𝑈 𝐵 𝑖,𝑏 

𝑡 > 𝑈 𝐵 𝑖,𝑏 

𝐵 𝑖,𝜔,𝑡 ∈ { 0 , 1 } (2) 

Moreover, the value of the binary operation status of controllable
ssets, S i,t, may be “1 ″ for the operation during permitted time slots, as
hown in (3). The lower and upper bands of each controllable assets for
he DRP case are shown by 𝐿 𝐵 𝑖,𝑠 and 𝑈 𝐵 𝑖,𝑠 respectively. 

The plug-in duration, relating to every controllable appliance, can
lso be specified by using (4)-(5). 

However, it should be noted that the total number of non-zero binary
arameters and binary variables should meet the operation duration of
he devices, denoted by T i . 

 𝑖,𝜔,𝑡 ≤ { 
0 
1 
0 

𝑡 < 𝐿 𝐵 𝑖,𝑠 

𝐿 𝐵 𝑖,𝑠 ≤ 𝑡 ≤ 𝑈 𝐵 𝑖,𝑠 

𝑡 > 𝑈 𝐵 𝑖,𝑠 

𝑆 𝑖,𝜔,𝑡 ∈ { 0 , 1 } (3) 

𝑁𝑇 

𝑡 =1 
𝐵 𝑖,𝜔,𝑡 = 𝑇 𝑖 ∀𝑖 = 1 , 2 , ., 𝑁𝐴, ∀𝜔 = 1 , 2 , ., 𝑁𝜔 (4)

𝑁𝑇 

𝑡 =1 
𝑆 𝑖,𝜔,𝑡 = 𝑇 𝑖 ∀𝑖 = 1 , 2 , ., 𝑁𝐴, ∀𝜔 = 1 , 2 , ., 𝑁𝜔 (5)

Eq (6) represents the controllable load demand, taking into account
he total plug-in statuses, relating to the controllable devices, with
he power consumption of the controllable asset is shown by 𝑃 𝐷,𝑆ℎ𝑖𝑓𝑡 

𝜔,𝑡 
.

q (7) indicates a straightforward relationship to model the on/off sta-
uses of the controllable loads. Switching on/off would be realized by
sing the changes in the status of the devices, e.g. from “1 ″ to “0 ″ . 

𝑁𝐴 

𝑖 =1 
𝑆 𝑖,𝜔,𝑡 𝑃 𝑖 = 𝑃 

𝐷,𝑆ℎ𝑖𝑓𝑡 

𝜔,𝑡 
(6) 

 𝑁 𝑖,𝜔,𝑡 − 𝑂𝐹 𝐹 𝑖,𝜔,𝑡 = 𝑆 𝑖,𝜔,𝑡 − 𝑆 𝑖,𝜔,𝑡 −1 ∀𝑡 > 1 (7)

Shifting the operation duration of controllable loads to before the
aseline slots can be observed in (8), while (9) corresponds to shifting
he operation duration of controllable loads to after the baseline slots. It
s noteworthy that the Euclidian distance metric is used to model these
5 
quations. The DI would take the value “0 ″ for the baseline slots, while
or the slots, over which it is shifted, it takes the value other than zero.
he total plugged in time for each asset is shown by 𝑇 𝑖 . 

𝐼 − 
𝑖,𝜔 

≥ 

1 
𝑇 𝑖 

[ 

𝑁𝑇 ∑
𝑡 =1 

𝑡 × 𝐵 𝑖,𝜔,𝑡 − 
𝑁𝑇 ∑
𝑡 =1 

𝑡 × 𝑆 𝑖,𝜔,𝑡 

] 

. (8)

𝐼 + 
𝑖,𝜔 

≥ 

1 
𝑇 𝑖 

[ 

𝑁𝑇 ∑
𝑡 =1 

𝑡 × 𝑆 𝑖,𝜔,𝑡 − 
𝑁𝑇 ∑
𝑡 =1 

𝑡 × 𝐵 𝑖,𝜔,𝑡 

] 

(9) 

The hourly operation of the electrical energy storage (EES) system
as been modeled through relationships (10)-(15) where the charging
nd discharging power at each time t is shown by 𝑃 𝐶ℎ. 

𝜔,𝑡 
and 𝑃 𝐷𝑖𝑠𝑐ℎ. 

𝜔,𝑡 
.

he maximum charging and discharging power for the storage unit are
hown by 𝑃 𝐶ℎ, 𝑚𝑎𝑥 

𝜔,𝑡 
and 𝑃 𝐷𝑖𝑠𝑐, 𝑚𝑎𝑥 

𝜔,𝑡 
, respectively. Binary variables ensur-

ng that the storage unit cannot charge, and discharge simultaneously
re given by 𝐼 𝐶ℎ. 

𝜔,𝑡 
and 𝐼 𝐷𝑖𝑠𝑐ℎ. 

𝜔,𝑡 
, respectively. The energy stored in the stor-

ge unit at time t is given by 𝐸 𝜔,𝑡 and depends on the energy storage in
he previous time period 𝐸 𝜔,𝑡 −1 plus any charging 𝑃 𝐶ℎ. 

𝜔,𝑡 
multiplied by the

harging efficiency 𝜂𝐶ℎ. minus any discharging power 𝑃 𝐷𝑖𝑠𝑐ℎ. 
𝜔,𝑡 

multiplied
he discharging efficiency 𝜂𝐷𝑖𝑠𝑐ℎ. . The minimum and maximum energy
tored in the storage unit are shown by 𝐸 

𝑚𝑖𝑛 and 𝐸 

𝑚𝑎𝑥 , respectively.
efs. [30–33] include detailed descriptions on these relationships. 

 ≤ 𝑃 𝐶ℎ. 
𝜔,𝑡 

≤ 𝐼 𝐶ℎ. 
𝜔,𝑡 

𝑃 
𝐶ℎ, 𝑚𝑎𝑥 
𝜔,𝑡 

(10)

 ≤ 𝑃 𝐷𝑖𝑠𝑐ℎ. 
𝜔,𝑡 

≤ 𝐼 𝐷𝑖𝑠𝑐ℎ. 
𝜔,𝑡 

𝑃 
𝐷𝑖𝑠𝑐, 𝑚𝑎𝑥 
𝜔,𝑡 

(11)

 ≤ 𝐼 𝐶ℎ. 
𝜔,𝑡 

+ 𝐼 𝐷𝑖𝑠𝑐ℎ. 
𝜔,𝑡 

≤ 1 (12)

 𝜔,𝑡 = 𝐸 𝜔,𝑡 −1 + 𝜂Ch . 𝑃 Ch . 
𝜔,𝑡 

△ 𝑡 − 1 
𝜂Disch . 

𝑃 Disch . 
𝜔,𝑡 

△ 𝑡 (13) 

 𝜔, 1 = 𝐸 𝜔,𝑁𝑇 (14) 

 

𝑚𝑖𝑛 
≤ 𝐸 ≤ 𝐸 

𝑚𝑎𝑥 (15)

The HVAC based on the inverter, studied in this paper, is modeled by
sing the relationships (16)-(20). In this respect, the constraint modeling
he dynamic indoor temperature is stated in the relationship (16), taking
nto consideration the impacts caused by the outdoor temperature, i.e.
out 
t , the impacts of insulation, i.e. μ, the building’s thermal coefficient,
.e. 𝜓 , as well as the power consumed by the HVAC [34] . Inequality
17) determines the convenience temperature range. The minimum and
aximum indoor are shown by 𝜃𝑚𝑖𝑛 and 𝜃𝑚𝑎𝑥 , respectively. 

Constraint (18) shows the value of the initial indoor temperature.
elationship (19) shows the precise power consumption, 𝑃 𝐷,𝐻𝑉 𝐴𝐶 

𝜔,𝑡 
, of

he HVAC system. It is worth mentioning that the studied inverter-based
VAC system is capable of operating at different power levels shown by
( 𝑛 ) 
𝜔,𝑡 

. As constraint (20) emphasizes, the HVAC should strictly work in
ne of the operating intervals, provided that it is turned on [35] . 

𝑖𝑛 
𝜔,𝑡 
= 𝜃𝑖𝑛 

𝜔,𝑡 −1 + 𝜇
(
𝜃𝑜𝑢𝑡 
𝜔,𝑡 
− 𝜃𝑖𝑛 

𝜔,𝑡 −1 

)
− 𝜓𝑃 𝐷,𝐻𝑉 𝐴𝐶 

𝜔,𝑡 
Δ𝑡 (16)

𝑚𝑖𝑛 
≤ 𝜃𝑖𝑛 

𝜔,𝑡 
≤ 𝜃𝑚𝑎𝑥 (17) 

𝑖𝑛 
𝜔, 1 = 𝜃

𝑖𝑛 
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 

(18) 

 

𝐷,𝐻𝑉 𝐴𝐶 
𝜔,𝑡 

= 
[
0 . 2 𝛿( 1 ) 

𝜔,𝑡 
+ 0 . 4 𝛿( 2 ) 

𝜔,𝑡 
+ 0 . 6 𝛿( 3 ) 

𝜔,𝑡 
+ 0 . 8 𝛿( 4 ) 

𝜔,𝑡 
+ 𝛿( 5 ) 

𝜔,𝑡 

]
𝑃 𝐻𝑉 𝐴𝐶 (19) 

( 1 ) 
𝜔,𝑡 
+ 𝛿( 2 ) 

𝜔,𝑡 
+ 𝛿( 3 ) 

𝜔,𝑡 
+ 𝛿( 4 ) 

𝜔,𝑡 
+ 𝛿( 5 ) 

𝜔,𝑡 
≤ 1∀𝜔 = 1 , 2 , ., 𝑁𝜔 (20)

The total power, demanded by the consumer at any of the time slots,
s determined by relationship (21). This equation takes into account the



M.S. Javadi, A.E. Nezhad, M. Gough et al. e-Prime - Advances in Electrical Engineering, Electronics and Energy 1 (2021) 100006 

p  

l  

w  

b

𝑃

3

 

H  

r  

o  

t
 

p  

u  

c  

C
 

m  

o  

a  

t  

s
 

l  

b  

s  

v  

I  

b  

s
 

(

𝑀  

𝐹

) 

𝐹

 

i  

m  

v  

p

∑
 

𝐽

 

s

4

 

s  

Table 2 

Specifications of the controllable loads [ 37 ] 

Appliances P i (kW) T i LB b UB b LB s UB s 

Dishwasher 2.5 4 19 22 15 33 
Washing Machine 3.0 3 19 21 16 23 
Spin Dryer 2.5 2 27 28 25 35 
Cooker Hub 3.0 1 17 17 16 17 
Cooker Oven 5.0 1 37 37 36 37 
Microwave 1.7 1 17 17 16 17 
Laptop 0.1 4 37 40 33 47 
Desktop Computer 0.3 6 37 42 31 47 
Vacuum Cleaner 1.2 1 19 19 18 33 
Electric Vehicle 3.5 6 37 42 31 47 

Table 3 

Technical parameters of the EES system. 

𝐸 min 𝐸 0 𝑃 Ch . , max 𝑃 Disch . , max 𝜂Ch . 𝜂Disch . 

(kWh) (kWh) (kWh) (kW) (kW) – –
4.0 0.35 2.0 0.5 0.5 0.95 0.90 

Table 4 

Parameters of the HVAC system. 

𝜃max 𝜃min 𝜃0 𝜇 ψ 𝑝 HVAC 

( ◦F ) ( ◦F ) ( ◦F ) – ( ◦F∕kWh ) ( kW ) 
80 50 73 0.9 8.0 2.8 

o  

t  

v  

t  

a  

t  

t
 

d  

a  

b  

p  

a  

g
 

m  

a  

t  

s
 

c  

M  

D  

l  

t  

p  

o  

s  

a
 

p  

f  

s

4

 

a  
ower generated by the solar PV system ( 𝑃 𝑃𝑉 
𝜔,𝑡 
) , demanded by the fixed

oads ( 𝑃 𝐷, Fix 
𝜔,𝑡 

) , controllable loads ( 𝑃 𝐷,𝑆ℎ𝑖𝑡𝑓 
𝜔,𝑡 

) , the HVAC ( 𝑃 𝐷,𝐻𝑉 𝐴𝐶 
𝜔,𝑡 

) , as
ell as the EES system ( 𝑃 𝐶ℎ. 

𝜔,𝑡 
𝑎𝑛𝑑 𝑃 𝐷𝑖𝑠𝑐ℎ. 

𝜔,𝑡 
) . The proposed MILP model can

e tackled by using the existing commercial solvers, such as CPLEX. 

 

𝐺2 𝐻 

𝜔,𝑡 
+ 𝑃 𝑃𝑉 

𝜔,𝑡 
− 𝑃 𝐻2 𝐺 

𝜔,𝑡 
= 𝑃 𝐷,𝐹 𝑖𝑥 

𝜔,𝑡 
+ 𝑃 𝐷,𝑆ℎ𝑖𝑡𝑓 

𝜔,𝑡 
+ 𝑃 𝐷,𝐻𝑉 𝐴𝐶 

𝜔,𝑡 
+ 
[
𝑃 𝐶ℎ. 
𝜔,𝑡 

− 𝑃 𝐷𝑖𝑠𝑐ℎ. 
𝜔,𝑡 

]
(21) 

.2. Risk-based stochastic optimization model 

The main objective of the risk-based stochastic self-scheduling of the
EMS is to minimize the total operating cost, taking into account the

isk of the studied scenarios. Hence, the objective function is comprised
f the expected value of the total cost, Z , considering the item relating
o the risk. 

The function F 1 states the expected value of the costs due to the
ower transaction with the utility and the penalty for the DI of the end-
ser. The function F 2 shows the risk due to the incremental power pur-
hase from the utility grid and the DI. 𝛽 is the weighting factor in the
VaR model, interpreting the significance of the risk. 

In case 𝛽= 0, the model would turn into a risk-neutral optimization
odel, similar to that of the base case. In case 𝛽= 1, the model focuses

n minimizing the risk. In this way, the problem would be tackled as
 risk-averse model. In other words, 𝛽 indicates the trade-off between
he expected value of the cost and the cost variability for the studied
cenarios. 

Another key parameter in the CVaR is 𝛼, showing the confidence
evel. The higher the value of 𝛼, the more conservative the model would
e. The value of 𝛼 is considered as 90% in this paper. By taking into con-
ideration 𝛼 ∈ (0, 1), the CVaR model would be tackled as the expected
alue of the cost more than the (1 − 𝛼)-quantile of the cost distribution.
n case all scenarios of the cost have the same probability, the CVaR can
e obtained as the expected value of the cost in the (1 − 𝛼) ×100% worst
cenarios. 

The objective function in this case is modeled by using relationships
22)-(24). 

𝑖𝑛 𝑍 = ( 1 − 𝛽) 𝐹 1 + 𝛽𝐹 2 (22)

 1 = 
𝑁 𝜔 ∑
𝜔 =1 

𝜌𝜔 

( 

𝑁𝑇 ∑
𝑡 =1 

[
𝜋𝐺2 𝐻 
𝑡 

𝑃 𝐺2 𝐻 
𝜔,𝑡 

Δ𝑡 − 𝜋𝐻2 𝐺 
𝑡 

𝑃 𝐻2 𝐺 
𝜔,𝑡 

Δ𝑡 
]) 

+ 
𝑁 𝜔 ∑
𝜔 =1 

𝜌𝜔 

( 

𝑁𝐴 ∑
𝑖 =1 

𝜎

[
𝐷𝐼 + 

𝜔,𝑡 
+ 𝐷𝐼 − 

𝜔,𝑡 

]
(23) 

 2 = 

1 
1 − 𝛼

𝑁 𝜔 ∑
𝜔 =1 

𝜌𝜔 𝐽 𝜔 + 𝜒 (24) 

It is noted that the constraints are similar to those of the base case,
.e., relationships (2)-(21). Constraints (25) and (26) are the comple-
entarity constraints of the CVaR model. It is noteworthy that J 𝜔 is a

ariable, showing the difference between 𝜒 and the cost in scenario 𝜔 ,
rovided that this difference is greater than zero. 

𝑁𝑇 

𝑡 =1 

[
𝜋𝐺2 𝐻 

𝑡 
𝑃 𝐺2 𝐻 

𝜔,𝑡 
Δ𝑡 

]
+ 

𝑁𝐴 ∑
𝑖 =1 

𝜎

[
𝐷 𝐼 + 

𝜔,𝑡 
+ 𝐷 𝐼 − 

𝜔,𝑡 

]
− 𝜒 ≤ 𝐽 𝜔 (25)

 𝜔 ≥ 0 (26) 

The next section presents the comprehensive results obtained from
imulating two case studies. 

. Simulation results 

This section provides the comprehensive results obtained for the self-
cheduling problem of the HEMS. The objectives are the minimization
6 
f the total cost and the risk due to purchasing power over on-peak in-
ervals, and the end-user’s DI, due to the load shifting to undesired inter-
als. The data of the fixed and controllable loads are available in [36] for
he sake of making a numerical comparison. Furthermore, Tables 2 , 3
nd 4 represent the data of the controllable loads, EES system, and also
he indoor temperature settings, respectively. It should be noted that the
ime resolution of the scheduling is 30 min. 

Fig. 2 illustrates the per unit (pu) solar PV power generation. Fig. 3
epicts the outdoor temperature scenarios as a function of solar irradi-
nce and other meteorological parameters. The energy price is applied
ased on the TOU tariff, including three tariffs for the off-peak, shoulder-
eak, and on-peak intervals, as reported in [8] . The simulation results
re obtained by using the CPLEX solver by IBM, implemented in the
eneral algebraic modeling system (GAMS) software. 

A sensitivity analysis has also been carried out to optimally deter-
ine the capacity of the solar PV panel to operate together with other

ssets. The cost relates to the capital cost of the PV panel, and the main-
enance of the inverters of the EES system and solar PV panel. The sen-
itivity analysis results are shown in Fig. 4 . 

It is noteworthy that the fixed costs of the PV panel and battery are
alculated for one day and added to the electricity bill of the end-user.
oreover, it is assumed that the end-user is willing to participate in the
R........ program and, accordingly, the objective function of the prob-

em is the minimization of the electricity bill. In other words, the elec-
ricity bill is obtained in the risk-neutral case, and DI equal to zero. The
roblem is studied for one year, considering the energy consumption
n workdays and weekends in different seasons. The simulation results
how that the optimal capacities of the battery and PV panel are 4 kWh
nd 3 kW, respectively, as shown in Fig. 4 . 

Two different case studies are addressed to study the self-scheduling
roblem of the HEMS. The first case proposes a deterministic framework
or the problem, while the second case investigates the problem by using
tochastic programming and CVaR model. 

.1. Case 1: deterministic self-scheduling model 

The mean values of the solar power generation and outdoor temper-
ture are considered as reference values in this case, and simulation is
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Fig. 2. Photovoltaic power generation scenarios for 
a 1-kW panel [ 38 ] 

Fig. 3. Outdoor temperature scenarios. 

Fig. 4. Sensitivity analysis on the installed PV panel capacity. 
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one by using Eq (1) - (21) . In this respect, ρω = 1 , and the number of sce-
arios is 1, i.e., N ω = 1 . The total amounts of energy consumption of fixed
oads and controllable loads are 9.96 kWh and 29.05 kWh, respectively.
he net solar energy generation by the 3-kW PV panel is 18.89 kWh. 

It is worth noting that 78.31% of the solar energy generation occurs
uring the on-peak intervals, 15.67% occurs during shoulder-peak peri-
ds, and 6.02% occurs during off-peak intervals, which can potentially
itigate the cost by $0.66. As the selling price is considered 85% of the
urchase price, the revenue of the end-user from selling energy to the
rid would be $0.56. 
7 
However, saving in the electricity bill would vary with respect to the
articipation of the end-user in the DR........ program, the utilization of
he battery, and also the energy consumption of the HVAC system. 

The simulation is done for two scenarios. In the first scenario, the
nd-user is willing to shift the operation time of the controllable loads
nd reduce the electricity bill as much as possible. It should be noted
hat it would not be possible to completely shift the loads supposed to
perate over the on-peak intervals. Nevertheless, the reduction in the
lectricity bill is still substantial. The electricity bill in this case is equal
o 0.44 $/day. 

Fig. 5 illustrates the power consumptions of the fixed loads, control-
able loads, and HVAC system. Moreover, the solar power generation,
nd charging and discharging power of the battery are shown in Fig. 5 .
t is noteworthy that the solar power generation and discharging power
f the battery have been shown with a negative sign. As can be observed,
 significant fraction of the controllable load has been shifted to the off-
eak and shoulder-peak intervals. The battery also delivers power to the
ome during on-peak intervals, and it is charged during the initial hours
f the day and late in the evening. In the second scenario, it is assumed
hat the end-user does not tend to shift the load demand. As a result, the
peration statuses of the assets would be in accordance with Table 2 . 

The energy consumption of the HVAC system is approximately sim-
lar to that of the first case. As Fig. 6 shows, controllable loads are used
ainly during on-peak and shoulder-peak time slots. On the other hand,

he solar power generation reaches its maximum amount over the on-
eak intervals. The battery also absorbs the surplus power generation
ith respect to the lower selling price, compared to the purchase price.
hus, the charging/discharging pattern of the battery would be a little
ifferent from the previous case. 

If the total load demand is more than 3 kW, the battery discharges
ower to the system, and in case the power delivered by the battery
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Fig. 5. Optimal operation strategy of HEMS ( 𝜎= 0.0). 

Fig. 6. Optimal operation strategy of HEMS ( 𝜎= 0.1). 
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Table 5 

Expected discomfort index for different penalty 
factors. 

𝛽 𝜎= 0.00 𝜎= 0.01 𝜎= 0.03 𝜎= 0.05 
0.00 30.00 13.86 11.00 0.00 
0.25 29.80 12.40 10.86 0.00 
0.50 29.60 12.10 9.60 0.00 
0.75 29.20 11.90 8.40 0.00 
1.00 28.92 11.84 7.00 0.00 
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𝜎  
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e  

w  
s lower than the load demand of the end-user, the battery is charged.
owever, the HEMS sells the surplus power to the grid over on-peak

ime intervals, as it is economically justified. The electricity bill in this
ase would be $0.85. 

It is worth mentioning that the electricity bill will increase to $1.54
f there are no solar PV panel and battery. This cost can be reduced to
1.12 by applying the DR. program. Consequently, installing the solar
V panel and a battery, besides participating in the DR. program, would
rovide the end-user with the opportunity to pay the minimum amount
or the electricity bill. 

.2. CVaR-Constrained stochastic self-scheduling 

In this case, the risk-based problem of stochastic self-scheduling of
he HEMS is performed. In this respect, the model, proposed through re-
ationships (2)-(21) and (22)-(26), is investigated. The objective of this
ase is to minimize the total cost, taking into account the risk of the in-
remental cost due to purchasing power over the on-peak time slots, and
he end-user’s discomfort. In this regard, a sensitivity analysis has been
ade on the penalty factor, 𝜎, and the weighting factor of the CVaR, 𝛽.
able 5 represents the obtained results, showing that raising the value of
would alleviate the risk due to load shifting. Moreover, by increasing

he penalty factor, related to the end-user’s discomfort, the risk due to
oad shifting is reduced. It is noted that if 𝜎= 0.05, the DI would increase
uch that the end-user does not tend to shift the load demand. In this
ase, the cost would be minimized by optimally operating the battery. 

Fig. 7 indicates the power consumed by the fixed loads, controllable
oads, and the HVAC system in the risk-neutral state. Since 𝛽= 0 in this
8 
ase, any variation in the cost shows the tendency of the end-user to
articipate in the DR........ program. Hence, the reduction in the cost,
esulting from the optimal operation of the battery and load shifting,
as been investigated. The simulation results show that if the end-user
ntends to minimize the electricity bill by participating in the DR........
rogram, i.e., 𝜎= 0.00, a substantial fraction of the load demand would
e shifted to the shoulder-peak and off-peak intervals at hours 7–9, and
1–24. If 𝜎= 0.01, the end-user is reluctant to shift the load demand
uring intervals 13–14, and accordingly, the cost would increase, pro-
ortionally. 

Fig. 8 demonstrates the expected value of the electricity bill and
VaR for different values of 𝛽. It should be noted that 𝛼= 0.90 and
= 0.00 in this case. The obtained results show that if 𝛽= 0, i.e., the
isk-neutral case, the electricity bill would take its minimum value. The
lectricity bill would increase by increasing the value of 𝛽, while the risk
ould considerably drop. It should also be noted that the risk is due to
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Fig. 7. Expected power consumed by home appli- 
ances for risk neutral condition considering different 
penalty for DI. 

Fig. 8. The expected cost versus CVaR analysis for 
different values of 𝛽. 

Fig. 9. The stored energy in the battery for different 
scenarios ( 𝛽= 0 and 𝜎= 0). 
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urchasing power over the on-peak time intervals, and the end-user is
illing to minimize the load shifting. 

The amount of energy, stored in the battery for different scenarios, is
llustrated in Fig. 9 . In this regard, 𝛽= 0 and 𝜎= 0.00. The optimal charg-
ng/discharging pattern of the battery is in a way that it absorbs power
uring the intervals with low prices, and it injects power to the sys-
em during time intervals 15–20 to supply the load demand. The energy
tored in the battery reaches its maximum value over the hours with
eak prices, since the solar power generation is considerably high. As a
esult, it is not needed to discharge the battery since the HVAC system
s supplied by the PV system. 

Fig. 10 indicates the indoor temperature. As can be observed, the
VAC system controls the indoor temperature in a way to satisfy the
9 
nd-user’s preferences. The highest oscillation in the indoor temperature
ccurs during hours 7–16. However, the indoor temperature does not
eviate from the permitted range [50–80] F. 

. Conclusion 

This paper investigated the self-scheduling problem of smart homes,
oth in deterministic and stochastic frameworks. The home appliances
ere modeled as fixed, controllable, and interruptible loads, and the op-
rating pattern of each load was modeled as a binary string, facilitating
he modeling procedure. The presented model was formulated as a MILP
roblem, seeking to minimize the daily energy bill of the consumer,
hile meeting the consumer’s preferences for the operation of control-
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Fig. 10. Indoor temperature. 
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able and interruptible loads. In this respect, the inverter-based HVAC
ystem was characterized as an interruptible load, supposed to keep the
ndoor temperature within the desired range. The energy price was also
etermined according to the TOU tariff. The optimization model was
isk-oriented and represented based on the CVaR, while the objective
unction of the problem was promoted with respect to the risk due to
he energy purchase and the prosumer’s DI, resulting from load shifting.
he flexibility of the prosumer to mitigate the operating costs was con-
iderable due to the self-generation and strategic saving by the storage
ystem. A sensitivity analysis was also carried out to optimally deter-
ine the capacity of the solar PV panel and storage system of the studied

mart home. Afterward, the impacts of different parameters of the CVaR
nd optimization model on the total cost reduction and prosumer’s DI
ere investigated. The obtained results showed that the HEMS could

ffectively result in alleviating the electricity bill of the prosumer by
aking into account different parameters, related to the prosumer’s DI,
olar power generation, and the strategic energy storage system. Fur-
hermore, the simulation results showed that the indoor temperature
as within the permitted range for every scenario and case studies, and

he energy consumption of the HVAC was associated with the minimum
ariation. In other words, the other appliances can be optimally oper-
ted, while maintaining the indoor temperature at a desired level. The
ensitivity analysis carried out on the impact of parameters 𝜎 and 𝛽
n the DI, verified that any increase in these parameters would lead
o a reduction in the expected DI of the prosumer. On the other hand,
he electricity bill of the prosumer would increase. The main findings
f this paper can be briefly stated as follows: (i) presenting an MILP
odel for the self-scheduling problem of the HEMS could lead to a

omputationally-efficient framework, resulting in the optimal solution;
ii) the self-scheduling capability, besides the strategic energy storage
nd transacting power with the utility grid, could effectively lead to
itigating the electricity bill; (iii) the electricity bill reduction mainly
epends upon shifting controllable loads; also, the interruptible load had
 relatively fixed performance in different scenarios, while maintaining
he indoor temperature at a desired level; (iv) the HEMS could efficiently
lleviate the electricity bill of the prosumer through optimally schedul-
ng the charging/discharging plans of the EV and other controllable and
nterruptible loads. 
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