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Abstract: Safety issues related to the electrification of more electric aircraft (MEA) need to be
addressed because of the increasing complexity of aircraft electrical power systems and the growing
number of safety-critical sub-systems that need to be powered. Managing the energy storage systems
and the flexibility in the load-side plays an important role in preserving the system’s safety when
facing an energy shortage. This paper presents a system-level centralized operation management
strategy based on model predictive control (MPC) for MEA to schedule battery systems and exploit
flexibility in the demand-side while satisfying time-varying operational requirements. The proposed
online control strategy aims to maintain energy storage (ES) and prolong the battery life cycle, while
minimizing load shedding, with fewer switching activities to improve devices lifetime and to avoid
unnecessary transients. Using a mixed-integer linear programming (MILP) formulation, different
objective functions are proposed to realize the control targets, with soft constraints improving the
feasibility of the model. In addition, an evaluation framework is proposed to analyze the effects
of various objective functions and the prediction horizon on system performance, which provides
the designers and users of MEA and other complex systems with new insights into operation
management problem formulation.

Keywords: model predictive control; mixed-integer linear programming; multi-objective
optimization; energy storage management; load management; more electric aircraft; demand-
side flexibility

1. Introduction

Onboard power demands increase dramatically with the development of more electric
aircraft (MEA) and the replacement of traditional hydraulics and pneumatics by electrical
systems to achieve higher efficiency and less fuel burn [1]. Critical loads, which are
responsible for flight safety, such as flight surface actuators and environmental control
systems, must be powered in all flight scenarios regardless of high-power peaks or fault-
causing emergencies. The energy storage system (ESS) has an important role in MEA, not
only for supporting bus voltages, but also as a backup to deal with power shortages during
faults occurring in generation or transmission systems, or high-power peaks. In addition,
shedding of non-critical loads (e.g., passenger cabin lighting) is also used to reduce peak
power usage, helping to maintain power for safety-critical loads [2]. Intelligently combining
the load shedding with the ESS capabilities is essential for the safe onboard electrical power
system (EPS) operation.

Due to the complexity of MEA optimal operation management and the importance
of their safety and reliability resulting from an advanced operating strategy, considerable
attention is being devoted to developing suitable models and algorithms. Finite state
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machines are adopted in [3–5] to model the onboard DC-based EPS of MEA as a set of
states and transitions. In these studies, several sets of safety rules are defined to cope with
different failure cases to ensure uninterrupted power supply to the high priority loads.
However, this method relies on accurate measurements to change the operation state and
it is hard to integrate multiple operating goals. In addition, setting optimal rules can be
difficult for complex systems because of the large number of system states.

Heuristic and metaheuristic algorithms are also widely used to solve energy and load
management problems for microgrids (MGs), such as fuzzy logic algorithm [6–9], genetic al-
gorithms [10–12], particle swarm optimization [13–15], and evolutionary algorithms [16,17].
However, these approaches are not suitable for real-time application, since they might fall
into the trap of suboptimal solutions and can still be computationally intensive. Neural
networks, studied in [18,19], are fast but need training, hence are less capable of coping
with unexpected situations, and it can be difficult to verify their reliability for aircraft usage.

Recently, model predictive control (MPC) has drawn the attention of the power
system community for the control and operation management of MGs. MPC provides an
optimal operating strategy based on predicted future system trajectories, thereby avoiding
operating based on the worst-case scenarios with high costs. The inherent feedback
mechanism of MPC stemming from its receding horizon mechanism makes the system more
robust against uncertainty [20]. In [21,22], an MPC-based hierarchical control structure is
applied for achieving economic efficiency in residential MGs. In [23,24], MPC supervisory
control is used to compensate for the mismatch between the offline scheduling process and
the real-time operation of a hybrid PV-wind-battery MG. In this research, system models
are formulated as Mixed-Integer Linear Programming (MILP) problems. The MPC method
is adopted for battery management in hybrid electric vehicles (HEV) in [25,26], in which
the MPC controller attempts to minimize the vehicle equivalent fuel consumption and
the battery capacity fade at the same time. To enhance the battery lifespan and power
performance, references [27,28] propose an MPC approach to reduce the battery power
variation and maintain supercapacitors’ SOC at their desired values. In [29], the battery
capacity fading is described by an online least-squares identification method, and the
degradation cost function is used in the MPC scheme to increase the battery lifetime. Since
MPC has shown good performance for residential MGs and HEVs energy management,
researchers have been exploring the possibility of its application in MEA EPS. In the
application for MEA, on the one hand, the controller can cope with system future dynamics
with limited uncertainty, benefiting from the intrinsic corrective characteristic of MPC
due to the rolling horizon strategy. On the other hand, the system operational and time-
coupling constraints can be integrated into the MPC model. In [30], a hierarchical MPC
framework for a hybrid propulsion system is presented to minimize power generation costs
and delivery losses. However, the possibility of load shedding and system failure is not
considered. In [31], a rate-based MPC method is adopted for power-sharing between two
generators that are driven by the same engine. The optimal energy management based on
MPC by sharing power among different power sources for an onboard hybrid propulsion
system is studied in [32]. In [33,34], MPC is used for both power scheduling and load
shedding optimization to cope with scenarios with one generator and one transmission
cable failure. In [35,36], targeting energy management, hierarchical MPC controllers are
proposed to coordinate multi-timescale system dynamics of the onboard power system
from vehicle level to component level, where graph theory is adopted to model the multi-
physics behavior. However, in these papers, the MPC for battery management is not the
focus and the control problem is formulated without much detail about, for example, how
to cope with different control targets and increase algorithm feasibility, which has left
considerable scope for further investigation and analysis here. Hence, this paper aims to
address these issues in the proposed MPC strategy for MEA EPS.

In the aforementioned works of the MPC applications, the flexibility of the MPC
design including the objective function formulation, prediction horizon length, and the
weighting factors to prioritize different operating criteria and the related impacts to the
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system performance has been neglected by adopting empirical settings. Investigating how
these degrees of freedom can affect the control system performance will help to better
decide the settings of MPC to meet system requirements. This paper will contribute to this
investigation by designing a system-level MPC-based operation management strategy for
a MEA. The analysis in this study can be extended to other complex systems including
storage systems and load management.

In the studied system, the MPC controller aims to keep the battery energy storage
highly charged, with fewer power variations to prolong the battery life cycle, and to
minimize load shedding, with fewer contactor switching. Organizing these operating
criteria in the form of an appropriate objective function is essential for MPC optimization
models. However, the flexibility in the formulation of the objective functions adds to the
complexity of the design.

In this paper, to solve the multi-objective optimal operation management problem
of the MEA EPS, an MPC-based operation management strategy is introduced aiming at
intelligently managing the onboard energy storage systems and exploiting flexibility in the
demand-side while satisfying time-varying operational requirements. Different objective
functions are proposed with various cost function terms to reach the MEA operating goals,
where each objective function can perform differently for each control target. To evaluate
the designed control system performance, an evaluation index for each target is proposed to
quantify system performance for overall flight stages. All objective functions are evaluated
by the proposed indices with the prediction horizon changing from short to long; hence,
the impact of various prediction horizons for each objective function can be compared.
This evaluation procedure is conducted with the load profiles having different changing
frequencies and variations so that the analysis can consider different load cases. Based on
the proposed index for each target, a multi-objective evaluation index is also proposed as
an overall performance criterion, by which the final selection of the objective function and
the length of the prediction horizon can be performed.

In addition to analysis of the degrees of freedom in an MPC setting, this work also
improves the feasibility of the MPC-based control strategy to adapt the controller to real-
time operating conditions. On the one hand, soft constraints are introduced to cope with
the non-accurate estimation of the battery SOC. The optimization problem to be solved
by the control system is formulated as a MILP problem, which includes both objective
functions and system constraints related to the system power flow, energy conversion,
and connection constraints, benefitting from certainty for global optimal solutions [37].
As the system only operates normally when the MILP-MPC algorithm provides a feasible
solution, the algorithm should tolerate bounds exceeding situations (i.e., SOC exceeds
the target range). On the other hand, the real-time application requires that the sample
time of the MPC can meet the possible computation time variations when dealing with
different operating conditions. For each objective function, the worst-case values of the
maximum computation time are recorded for various prediction horizon lengths. The
sample time can be selected appropriately by considering the maximum computation time
at the design stage, which guarantees that the MPC can be adopted for online optimization
in real-time. Finally, a real-time test is conducted for the studied system, to verify the
real-time application of the proposed MPC-based operation management strategy.

The rest of this paper is organized as follows: the MEA system under consideration is
presented in Section 2 while the proposed MILP-MPC controller framework is introduced
in Section 3. The system model with different objective functions is proposed in Section 4.
In Section 5, the evaluation framework is set up, based on which, the performance for each
objective function is evaluated with the changing prediction horizon for two different load
profiles. The real-time analysis regarding the sample time selection is also presented in this
section. The real-time experiment setup and the results are presented in Section 6. Finally,
conclusions are drawn in Section 7.
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2. System Description

The EPS on the aircraft are normally symmetrically allocated for the left and right
sides [38]. Figure 1 presents the architecture for one side of EPS studied in this work,
and all the main symbols used in this paper are listed in Table 1. As can be seen in this
figure, the EPS includes a main source (MS) consisting of one generator connected to an
HV bus, an ESS, DC/DC power converters, and several loads. The MS powers the loads
connected to a low voltage (LV) bus. In this system, the ES, which consists of one battery,
one bidirectional DC/DC converter, and one contactor, is connected to the same LV bus, to
both maintain the bus voltage and supply the loads when faults result in insufficient power
available from the MS. It is worth mentioning that this paper focuses on the load and ES
management for the LV bus as an example to study the objective formulizations. However,
the proposed method can be applied to the HV side or other EPS architectures [39].
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Table 1. Nomenclature.

Parameters Cost Function Terms

k Time intervals, k∈Z≥0 JSLi
Cost function for minimizing total
load shedding

H Prediction horizon (s) JδLi
Cost function for minimizing
switching activities

Ts Sampling time (s) JPch
Cost function for maximining
charging power

T Total simulation time (s) JPdisch
Cost function for minimizing
discharging power

ηch/ηdisch
Battery charging/discharging
efficiency J∆

Cost function for keeping SOC
within the target range

Bcap Battery capacity (kWh) JSOC
Cost function for maximizing
SOC to the upper bound

Pmax
ch , Pmax

disch
Maximum charging/discharging
power (kW) JPbatt

Cost function for minimizing
battery power variations
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Table 1. Cont.

Parameters Cost Function Terms

LO/HI Lower/upper bounds of the
battery SOC target range Weighting factors

Pmax
in

Maximum input power from the
MS-side (kW) wS Weighting factor for JSLi

Pshed
Li (k)

The ith non-critical load power
(kW) wδ Weighting factor for JδLi

γLi
The priority of the ith non-critical
load wPch Weighting factor for JPch

NLi Total number of non-critical loads wPdisch Weighting factor for JPdisch

Pnonshed
Li (k) The ith critical load power (kW) w∆ Weighting factor for J∆

Continues Variables wSOC Weighting factor for JSOC

Pin(k) Input power from the MS-side
(kW) wPbatt Weighting factor for JPbatt

Pch(k) Battery charging power (kW) Evaluation Indices

Pdisch(k) Battery discharging power (kW) GSLi
Evaluation index for total load
shedding

Pbatt(k) Battery overall power (kW) GδLi
Evaluation index for contactor
status change

SOC(k) Battery state of charge GSOC
Evaluation index for battery
energy storage level

ε(k) Tolerance for lower bound of
battery SOC GPbatt

Evaluation index for battery
power variations

ϑ(k) Tolerance for upper bound of
battery SOC GSOCR, GSOCR

Evaluation index for SOC target
range: upper and lower range
bound correspondingly

Binary Variables Weighting factors for multi-objective evaluation index

SLi(k) Contactor connection status of the
ith non-critical load vS Weight for GSLi

ζch(k) Indicator for charging the battery vδ Weight for GδLi

ζdisch(k) Indicator for discharging the
battery vSOC Weight for GSOC

vPbatt Weight for GPbatt

vSOCR, vSOCR
Weight for GSOCR, GSOCR
correspondingly

The MEA loads can be classified into critical and non-critical loads. Critical loads
link with flight safety status and avionics systems, such as environment control system
and flight control system, etc. The non-critical loads are the other classes of loads that
provide a comfortable environment for passengers and some of them are more essential,
which are assigned with a higher priority. For example, the in-flight entertainment and
galley services are considered as a lower priority load compared to other non-critical loads
such as water and waste systems [40,41]. Therefore, in this study, three types of loads are
considered, namely, critical loads (Load1) which must be supplied under all circumstances,
high priority loads (Load2), which can be shed but should not where possible, and low
priority loads (Load3), which should be shed in preference to high priority loads when
load shedding is needed.

The control system is responsible for optimizing the control commands related to the
MS (Pin) and ES (Pbatt) as well as determining the connection/disconnection status of non-
critical loads (SLi) to guarantee power balance in the system while following operational
goals. To do so, the power from the MS and the battery should equal the required power
by the connected critical and non-critical loads, as shown below. In Equation (1), the
binary decision variable SLi(k) indicates that the entire load will be supplied/shed by
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connecting/disconnecting the associated switch and there is no partial shedding. However,
based on the load characteristics, it is straightforward to modify the model to shed part of
the load if required.

Pin(k)− Pbatt(k)−∑i SLi(k)Pshed
Li (k)−∑j Pnonshed

Lj (k) = 0 (1)

Pbatt(k) = Pch(k)− Pdisch(k) (2)

Equation (2) shows the battery power being equal to Pch(k) and Pdisch(k) during
charging and discharging time, respectively. The charging/discharging power of the
battery is the control command that needs to be determined by the EPS control system by
directly adjusting the Pin as load power changes. The SOC of the battery as the system
state variable is evaluated using the discrete dynamic equation in (3), which is essential for
predicting the future status of the ESS.

SOC(k + 1) = SOC(k) + Ts·ηch·
Pch(k)
Bcap

− Ts·
Pdisch(k)

ηdisch·Bcap
(3)

According to (1)–(3), the system model includes both continuous variables related
to the power from the MS and the ESS as well as binary variables representing the con-
nection/disconnection status of the noncritical loads. In addition, to avoid simultaneous
charging/discharging of the battery, additional binary variables are introduced to show
the charge/discharge status of the battery at each stage, which are formulized in (18)–(20)
in Section 4.2 as charging/discharging mode constraints. The system dynamics introduced
above together with operation limitations over the prediction horizon are considered as
constraints in an MPC-based controller, which is presented in detail in Section 4. The core
of the MPC strategy is a model of the system under control to predict the evolution of
system output over the desired horizon. Thus, the system model introduced in this section
is repeatedly updated based on the most recent information obtained from the system. In
addition, a prediction of the system load over the prediction horizon is required.

The MEA load can potentially be predicted by online machine learning-based methods
combining the adjustment of the flight stages, height, and historical data [24,42], which is
out of the scope of this study. In this paper, the sampled load profile is used for prediction
without adjustment for real-time flight power changes, and the deviations between the
predicted load and the real values are neglected to simplify the analysis.

3. MILP-MPC Controller Framework

The proposed MPC-based control architecture is represented in Figure 2. This paper
concentrates on the system-level MPC controller, with a slow time scale in the order of
1 min to optimize the long-term performance of the system. As can be seen in Figure 2, the
controller received the updated information of the system at the beginning of each control
cycle defined by the desired sampling time. This information includes the updated network
constraints, battery status, and the prediction of the load demands and associated priorities.

The control problem of the target MEA is formulated as a dynamic MILP optimization
problem, and the CPLEX solver [43] is used to solve the problem at each time step, guaran-
teeing to find an optimal solution for each time step. The MS-ES-L system is modeled as a
discrete-time dynamic system with sampling time Ts as introduced in the previous section.
The MILP-MPC controller framework is structured as follows.
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MILP-MPC Framework

As illustrated in Figure 2, at each time step k, k = 0, 1, . . . , N − 1, an online opti-
mization problem is solved over the finite prediction horizon H. The prediction horizon
indicates the time looking ahead in the future to evaluate the cost function subject to several
technical and operational constraints, which can be calculated as H = NTs [44]. The MPC
works based on a receding horizon scheme presented in Figure 2. At each time step k,
the MPC controller receives the updated status of the system and finds the solution of a
finite horizon optimization problem. The result is an optimal control sequence over the
optimization horizon. However, only the first sample of the optimal control sequence is
applied to the system, and the control problem is shifted to the next time step k + 1 as
shown in Figure 2. The MPC control procedure is explained in detail in the following
Algorithm 1. The controller aims to keep the battery energy storage highly charged, with
fewer power variations to prolong the battery life cycle, and to minimize load shedding,
with fewer contactor switching that need to be appropriately modeled in the MPC opti-
mization problem. The optimization problem including these operating criteria and system
constraints is introduced in the next section.

Algorithm 1. MILP-MPC controller.

(1) Update system state at time step k

(a) Initialize the model with the measured/estimated state of the components, e.g., SOC(k), load
power measurement PLi(k)

(b) Predict load demands over the prediction horizon H at each future sampling time Ts ,, e.g.,
PLi(k), PLi(k + 1), . . . , PLi(k + N − 1)

(2) Perform optimization: the high-level controller computes the optimal input sequence for the prediction
horizon H, based on the updated system status and the predictions of the future system behavior. The
optimal input sequence includes the decision of load shedding or not (SLi, k = 0, 1, . . . , N − 1, H = NTs)
and the input power reference on the MS-side Pin (k = 0, 1, . . . , N, H = NTs). The optimization problem
is solved using the CPLEX solver.

(3) Apply the first sample of the optimal control sequence.
(4) Set k = k + 1, go to step 1, and repeat the process with the new state.

4. Formulation of Objectives and Constraints in MPC

The MEA system control problem can be mathematically modeled using a set of
technical and operational constraints and objective functions. In this section, three different
objective functions are proposed for multiple control targets, and the system constraints
are introduced.
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4.1. Designing the Objective Functions

There are several control targets followed by the MEA system under study. Firstly,
the controller needs to minimize the total time for which loads are shed while maximizing
the time duration for which the energy stored in the battery is kept within the target
range (SOC(k) ∈ [LO, HI]). In addition, it needs to be ensured that the high priority loads
are less shed than the low priority loads. Regarding the load management, instead of
shedding/connecting loads continually, it is preferable to keep the contactors’ switching
activity as low as possible to prolong the components lifetime, and to avoid the transients
and instabilities in the system, even though this may potentially increase the total time for
which loads are disconnected. Moreover, the battery is preferred to be charged/discharged
smoothly rather than constantly changing the status between charging and discharging
modes to improve the life span of the battery [45]. Apart from load shedding targets, the
battery management-related goals could be formulated with different cost functions as well
as different weighting factors for battery charging/discharging power, maintaining battery
SOC, and minimizing battery power variation. The following three objective functions are
therefore proposed to formulate the desired operating criteria and to analyze the effects of
different cost functions on the system performance.

4.1.1. The First Proposed Objective Function (Obj1)

Obj1 in (4) denotes the first objective function combining the cost functions in (5)–(9)
for each target by different weighting factors wS, wδ, wPch, wPdisch, and w∆. Cost function (5)
indicates minimizing the total load shedding time by penalizing the shedding of loads with
the load priorities. The change in load connections (connected/disconnected) for each time
interval is minimized in (6). Since the energy stored in the battery can be calculated from
the net power flowing to the battery, the cost function (7) and (8) can lead to maximizing
the energy stored by penalizing the discharging and rewarding charging of the battery: the
cost function in (7) encourages the system to charge the battery with as much power as
is available, up to the rated value, while the cost function in (8) encourages the system to
avoid battery discharging by minimizing the discharging power for every time interval.
The charging speed of the battery can be changed by adopting different weighting factors
for (7) and (8). For example, when wPch > wS, the system will allow more load shedding to
use power from the MS to charge the battery. When wPdisch � wS � wPch, the system will
shed loads when the battery is needed, but the charging will be slow as the MS priority is
to supply loads rather than charging the battery.

Obj1 = wS JSLi + wδ JδLi + wPch JPch + wPdisch JPdisch + w∆ J∆ (4)

where
JSLi = ∑N−1

k=0 ∑NLi
i=1 γLi(1− SLi(k))/N∑NLi

i=1 γLi (5)

JδLi = ∑N−1
k=0 ∑NLi

i=1 |SLi(k + 1)− SLi(k)|/N·NLi (6)

JPch = ∑N−1
k=0 (Pmax

ch − Pch(k))/NPmax
ch (7)

JPdisch = ∑N−1
k=0 (Pdisch(k))/NPmax

disch (8)

J∆ = ∑N−1
k=0 (ε(k) + ϑ(k))/N (9)

For battery management, the battery SOC is preferred to be kept in a target range (LO,
HI) that can be modeled as a constraint. However, when there is a deviation between the
predicted load and the realized load, the battery SOC might be temporarily out of the target
range, which would prevent the solver from finding a feasible solution. Hence, rather
than enforcing this requirement as a hard constraint, two slack variables (ε(k) and ϑ(k))
are introduced to penalize the deviation of the battery SOC from the target’s lower and
upper bounds in the objective function as presented in (9). In this way, it is trying to keep
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the SOC within the target range or minimize the deviations. These variables are explained
further in Section 4.2 below.

4.1.2. The Second Proposed Objective Function (Obj2)

Adding the cumulative battery SOC to the objective function will increase the average
energy stored in the battery. Equation (8) represents a normalized cost function to increase
the battery SOC to be as close as possible to the upper bound. Hence, Obj2 in (10) is formed
by adding the battery SOC cost function to Obj1 in (4), with its weighting factor wSOC.
Compared to the cost for charging/discharging power in (7) and (8), including SOC in the
cost function will directly control SOC to maintain the desired reference value, which can
be adjusted according to the applications. In this work, the desired reference value is set to
be HI. Moreover, the charging will speed up more when longer prediction horizons are
selected, as the SOC is a time-accumulated value, reflecting the accumulated charge for the
whole prediction horizon.

Obj2 = wδ JδLi + wS JSLi + wSOC JSOC + wPch JPch + wPdisch JPdisch + w∆ J∆ (10)

where
JSOC = ∑N−1

k=0 |HI − SOC(k + 1)|/(N·HI) (11)

4.1.3. The Third Proposed Objective Function (Obj3)

The aforementioned objective functions control the energy stored in the battery. How-
ever, proposing a cost function to prolong the battery life is also important for aircraft
EPS for longer-term safe flights, for example, reducing the battery charging/discharging
current variations and reducing charging/discharging operations [18]. In this work, it is
assumed that the battery voltage has small deviations, so that reducing the battery charg-
ing/discharging current variations is equivalent to reducing the charging/discharging
power variations. This also reduces the charging/discharging operations to reduce the
charging cycle, which also benefits the battery lifetime. The cost for minimizing the battery
charging/discharging power change JPbatt is formulated by adding this prolonging battery
lifetime cost to (13), where Pbatt(k) = Pch(k) − Pdisch(k) presents the battery net power.
Obj3 represented in (12) is formulated by adding this prolonging battery lifetime cost to
Obj2 in (10) with the weighting factor wPbatt.

Obj3 = wδ JδLi + wS JSLi + wSOC JSOC + wPch JPch + wPdisch JPdisch + wPbatt JPbatt + w∆ J∆ (12)

where
JPbatt = ∑N−1

k=0 |Pbatt(k + 1)− Pbatt(k)|/N(Pmax
ch + Pmax

disch) (13)

4.2. System Constraints

(1) Power balance constraints

For the LV bus, the sum of power flowing into/out of it equals zero (Kirchhoff’s
Current Law for a given voltage), assuming no losses within the bus itself. Hence, for the
system presented in Figure 1, the power from the MS and the battery equals that required
by the connected critical and non-critical loads, which can be formulated as (1) and (2),
which is mentioned in Section 2.

(2) Storage dynamics

The battery SOC can be calculated from the charging/discharging power over time
using (3) presented in Section 2 [32].

(3) Hard and soft constraints of SOC

Battery SOC ∈ [0, 1], where SOC = 1 indicates a fully charged battery, while SOC = 0
corresponds to a depleted battery. In the aircraft, SOC is preferred to be kept within a target
range [LO, HI]. Therefore, upper and lower bounds are defined in (14), where LO = 0.3,
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HI = 0.9 is selected in this case, which could be presented as hard constraints for the
optimization.

0.3 ≤ SOC(k) ≤ 0.9 (14)

However, the hard constraints (14) increase the sensitivity of the algorithm to the
power fluctuations. Because SOC is related to the stored or released energy, which is
influenced by the power fluctuations, it is necessary to allow SOC to vary slightly outside
of this range in real situations, due to unpredicted power consumption variations. In this
case, the hard constraints (14) would prevent finding a feasible solution. Therefore, soft
constraints in (15)–(17) are proposed in our model to improve the feasibility of the solution
strategy of the MILP-MPC algorithm. Variables ε(k) and ϑ(k) are introduced to relax the
hard upper and lower bounds in (14). The maximum allowed deviation for both bounds is
0.1 in this case. By adding two large weight factors to ε(k) and ϑ(k) in the cost function as
presented in Obj1 (4) and (9), SOC will usually be kept within the target range [0.3, 0.9],
while allowing some tiny deviations when necessary.

0.3− ε(k) ≤ SOC(k) ≤ 0.9 + ϑ(k) (15)

0 ≤ ε(k) ≤ 0.1 (16)

0 ≤ ϑ(k) ≤ 0.1 (17)

(4) Charging/discharging mode constraints

The battery can be either charged or discharged by the system. Therefore, two binary
indicators are introduced to represent different modes in (18), (19), and (20), allowing the
modes to be treated differently.

ζch(k) + ζdisch(k) = 1, ζch(k), ζdisch(k) ∈ {0, 1} (18)

0 ≤ Pch(k) ≤ ζch(k)·Pmax
ch (19)

0 ≤ Pdisch(k) ≤ ζdisch(k)·Pmax
disch (20)

(5) Bounds of input power from the MS-side

The input power from the MS-side is limited by the maximum power that can be
transferred by the DC/DC converters, and these input power bounds are presented in (21)

0 ≤ Pin(k) ≤ Pmax
in (21)

5. Evaluation for Various Objectives

The objective functions designed in Section 4 lead to different control problems and
consequently different operating strategies for the MS-ES-L system, which are also im-
pacted by the prediction horizon and the load profile. To compare the differences caused by
these factors, an evaluation framework is proposed in this section to quantify the control
results for all flight stages. The overall flight time is T = M·Ts, where M is the total number
of time intervals. Moreover, to verify that the proposed method is suitable for real-time
applications, the computation time for the MILP-MPC controller should be less than the
sample time Ts. As the computation time can be impacted by the objective function formu-
lation, prediction horizon, and load samples, the impact of these factors on the computation
time is also studied in this section.

5.1. Model Parameters

The model parameters including the MS-ES-L system component parameters are
listed in Table 2, and the weighting factors are listed in Table 3. These weighting factors
are selected by the method proposed in [46]. The MILP-MPC controller sample time Ts is
selected as 1 min, the verification for the sample time selection will be demonstrated in
Section 5.3. The total flight time is 150 min.
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Table 2. Parameters for the MS-ES-L system.

Bcap 4 kWh Pmax
ch , Pmax

disch 4 kW

Pmax
in 4 kW ηch, ηdisch 90%

Pmax
Load 4 kW SOC(0) 0.3

Table 3. Weighting factors in objective functions.

wS 5 wδ 34.7

wSOC 16 w∆ 1e5

wPbatt 2 wPdisch 5.1

wPch 3.1 in Obj1, 2.8 in Obj2 and Obj3

For evaluating the load profile impacts on the results, two types of load profiles
are used. In Figure 3a, a randomly changing load profile is considered, while Figure 3b
demonstrates the load profiles based on different flight stages. The flight stages include
ground (pre-departure and taxiing-out), takeoff, climb, cruise, descent, landing, and taxiing-
in. Each load system requires a different amount of power at each flight stage. For example,
the cabin power demand reaches the highest level at the cruise stage, which can be several
times larger than the power demand at other stages. In addition, the power demand of
the environment control system increases dramatically as soon as the aircraft takes off and
keeps almost the same value for the following stages, while the landing gear only requires
power during ground, takeoff, landing, and taxiing-in stages [47,48]. Therefore, compared
to the load profiles in Figure 3a changing every minute, the profiles in Figure 3b change
much slower where each load level lasts at least for 15 min. However, an average load
power of 2 kW can be seen in both cases.
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5.2. Evaluation Indices

In the following subsections, eight evaluation indices are proposed. The control results
are evaluated by each of the proposed indices for both load scenarios when objectives
Obj1–Obj3 are adopted for prediction horizons H varying from 1Ts to 30Ts (N = 1, 2, . . . ,
30). Each index represents the corresponding quantified performance, and lower values
indicate better performance.
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5.2.1. Load Shedding Index

The normalized load shedding index quantifies the ratio of shed loads throughout the
whole flight time T = 150 min, as shown in (22).

GSLi = ∑M−1
k=0 ∑NLi

i=1 [γLi(1− SLi(k))]/(M·∑NLi
i=1 (γLi) ) (22)

In Figure 4, the load shedding index values are compared when adopting different
prediction horizons and objective functions, with case 1 and case 2 showing the results
for adopting different load profiles. For both load cases, the Obj2–3 have similar changes:
when the prediction horizon is short, load shedding remains lower than for Obj1, while the
load shedding increases quickly as the prediction horizon becomes longer, causing Obj2–3
to have more load shedding than Obj1 with long prediction horizons. Although the load
shedding for Obj1 also has an incrementally increasing tendency when N increases for the
second load case, the growth rate is much slower compared to Obj2–3. This difference
between Obj1 and Obj2–3 is caused by the cost function JSOC-more loads are shed to speed
up the SOC that accumulates when N increases.
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Comparing Obj2 and Obj3, when the loads frequently vary, as presented in case 1,
the load shedding for Obj3 increases at a higher rate than Obj2, while Obj3 has less load
shedding than Obj2 when N ≤ 6. This is caused by the cost function JPbatt in Obj3. By
changing the load shedding scheduling and adjusting the input power from MS, the battery
can be charged/discharged smoothly. Combining with JSOC, more load shedding will be
conducted as N increases so that the system keeps charging the battery with fewer power
fluctuations. When the load varies less, and slowly, as load profiles in case 2, the load
shedding curves for Obj2 and Obj3 are mostly overlapped, because the stable load profile
lacks the scheduling possibilities while the WF for JPbatt is small; hence, JSOC dominates
JPbatt in this case. Comparing the results for N = 9 in Figure 4, there is a sharp rise in the
index value at N = 10, which indicates that the shedding of high-priority loads is increased.

In summary, Obj1 has better performance in load shedding compared to Obj2–3 on
average. However, when the selected prediction horizon is not too long, e.g., N ≤ 9 in our
case, the Obj2–3 can have better load shedding performance.

5.2.2. Contactor Status Change Index

The average number of connection status changes for each contactor in the whole
period is presented in (23), where NLi indicates the total number of non-critical shed-
dable loads.

GδLi = ∑M−1
k=0 ∑NLi

i=1 |SLi(k + 1)− SLi(k)|/(M·NLi) (23)
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These index values are compared in Figure 5 when adopting different prediction
horizons and objective functions, with case 1 and case 2 showing the results for different
load profiles. In general, the change in contactor status is reduced as N increases in both
cases for Obj1–Obj3, while the curve for Obj1 in case 2 fluctuates the most. In both load
cases, the contactor change values for Obj2–3 decrease very quickly when N < 10 and then
keep a low level when the prediction horizon is longer. Moreover, when N is in this range,
compared with the results for load shedding in Figure 4, Obj2–3 also has good performance
for the load shedding index. This also benefits from the inclusion of JSOC, as it takes results
of power integration over time into consideration within the prediction horizon.
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Figure 5. Comparison of different prediction horizons and objective functions based on the contactor status change index
for two load cases.

It can be concluded that Obj2 and 3 perform better than Obj1 for maintaining the
contactor status in different load cases. Moreover, for the contactor status change index, a
very long prediction horizon is unnecessary for Obj2–3, saving computation time while
still achieving good results.

5.2.3. Battery Energy Storage Level Index

In aircraft applications, it is preferable to keep the battery highly charged to cope
with emergency cases and unforeseen situations. Hence, when designing the optimization
algorithms, the objective functions are designed to maximize the average energy stored in
the battery. The index (24) is proposed to evaluate the average level of the energy stored
during the studied scenarios.

GSOC = ∑M−1
k=0 |0.9− SOC(k)|/(M·0.9) (24)

Figure 6 shows the comparison of the GSOC index values with different prediction
horizons and objective functions, with case 1 and case 2 showing the results for adopting
different load profiles. In general, the energy storage level index value is reduced as N
increases in both cases for Obj1–Obj3, while for the load case 1, the index values for MILP
(N = 1) are less than the ones for MILP-MPC (N ≥ 2) when N ≤ 12 for Obj3, N ≤ 16 for
Obj2, and N ≤ 30 for Obj1. When N = 1, the contactor status changes will not impact
the optimization results for each time step. Combined with the frequently varying loads,
the SOC is therefore improved by shedding/connecting loads with high power demands
continuously. However, when N = 2, the number of contactor status changes is much
reduced (the index value is reduced by 1.3) compared to the value when N = 1. In the
meantime, the battery will be used for supporting loads even the loads’ demands could be
high, which slows down the SOC accumulation.
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Comparing the SOC changing rate for Obj1–3 with the MILP-MPC method, for both
load cases, Obj2 and 3 improve SOC level at a higher rate than Obj1 when N increases,
since both Obj2 and Obj3 benefit from the cost function JSOC to speed up the energy storage
in the long term. For load case 1, Obj3 speeds up the SOC accumulation with a higher rate
than Obj2, as the cost function JPbatt in Obj3 tends to keep the battery charging with few
power fluctuations.

This suggests that Obj3 has the best performance for the battery storage level index.
When adopting Obj3, the prediction horizon does not necessarily need to be selected too
long, as it charges the battery much faster than Obj1.

5.2.4. Battery Power Change Index

The battery life will be shortened when the battery power is frequently changed [18].
The index (25) is therefore proposed to calculate the total battery power change for all
flight stages.

GPbatt = ∑M−1
k=0 |Pbatt(k + 1)− Pbatt(k)|/M(Pmax

ch + Pmax
disch) (25)

Figure 7 presents the comparison of the battery power change index values with
different prediction horizons and objective functions, with case 1 and case 2 showing the
results for adopting different load profiles. In both load cases, for each N, Obj3 usually has a
better performance compared to Obj1, because Obj1 does not contain the cost function JPbatt
to minimize the power change. However, as Obj2 has the cost function JSOC in common
with Obj3 with relatively high WF, the index value curve of Obj2 has similar trends as
Obj3—the value is reduced to the minimum value and then slightly rises with variations
when N increases from 2 to 30. Because the load shedding and the reduction in the load
on/off changes can avoid the battery changing between the charging and discharging
modes, Obj2 and Obj3 perform similarly in these indices. By adding the cost function JPbatt
in Obj3, the charging power can be smoothed whenever it is possible. On the other hand,
when N increases (N > 20) to keep accumulating SOC, more power will be injected into the
battery, thereby increasing the battery charging power variation. Moreover, JPbatt and JSOC
can impact the results for load shedding and the contactor status changes, which results in
the battery power change fluctuations, as can be seen in Figure 7.
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Based on this comparison, Obj3 has the best performance for the index of battery
power change, which also indicates that this objective function is preferred when battery
life is important.

5.2.5. SOC Target Range Index

Since the soft constraints of SOC are introduced to improve the feasibility of the
solution strategy, the real SOC might exceed the target range of (0.3, 0.9). The SOC target
range index is built to evaluate the ratio of the outrange SOC by which the SOC is exceeded.
Equations (26) and (27) are considered for the upper and lower bounds respectively, where
S is the set of all time intervals that satisfy the desired ranges. The SOC can be out of range
in the following situations: (1) there are deviations between the predicted and realized load
which the controller cannot handle in time; or (2) the controller has a delay in sending and
receiving signals. In this section, the ideal situation is considered; hence, the SOC target
range index remains 0.

GSOCR = ∑k∈S:(SOC(k)>0.9) (SOC(k)− 0.9)/(1− 0.9) (26)

GSOCR = ∑k∈S:(SOC(k)<0.3) (0.3− SOC(k))/0.3 (27)

5.2.6. Index for Multi-Objective Problem

Although the performance of each objective function has been analyzed in (1)–(5) for
each index, the overall performance of each objective function concerning the length of
prediction horizon N still needs to be investigated. For a multi-objective problem with
conflicting cost functions, e.g., JSOC and JSLi, there are trade-offs among the evaluation
indices. Hence, weight parameters for each index are selected to represent the practical
requirements, i.e., priorities of each optimization target. The final overall index is formed
with the full knowledge of system performance throughout the whole operation, by using
the above-mentioned indices, which are combined with appropriate user-specified weight
parameters. The WFs utilized by the MPC to get the best overall results may differ from the
weights used in the final evaluation. A neural network-based method in [46] is adopted for
selecting WFs and weights in the overall index. The multi-objective evaluation index is
presented in (28) with the adopted weights listed in Table 4.

GMO = νSGSLi + νδGδLi + νSOCGSOC + vPbattGPbatt + νSOCRGSOCR + νSOCRGSOCR (28)
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Table 4. Weights for the multi-objective index.

vs 2.8 vδ 1.68

vSOC 1 vPbatt 0.4

vSOCR 104 vSOCR 104

Figure 8 presents the comparison of the proposed multi-objective evaluation index
values with different prediction horizons and objective functions, as case 1 and case 2
show the results for adopting different load profiles. The figure shows that Obj2 and 3
can provide the optimal solutions with a shorter prediction horizon compared with Obj1.
Compared to Obj2, Obj3 reaches a lower index value with a shorter horizon for load case
1. These results are heavily based on the selection of the weights for each index, but with
the adjustment of the weights by the users according to their application requirements, the
optimal objective function with a suitable prediction horizon can be selected.
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5.3. Discussion

To summarize the results of the comparison study performed in the previous section,
the best objective function for each evaluation index with short and long horizons are listed
in Table 5. In addition, the performance change based on horizon selections of the objective
functions in Section 5.2 is presented in the table.

Table 5. Objective function with the best performance and key features for each index when horizon changes.

Index Best Obj with a Short
Horizon

Best Obj with a Long
Horizon

Key Features of Performance
Tendency When Horizon

Increases

Combinations for Best
Performance

Load shedding Obj2–Obj3 Obj1

1. Performance of Obj1–Obj3 is
better when a shorter horizon
is applied (e.g., N < 10)
2. Performance of Obj2–Obj3 is
reduced rapidly after the
inflection point (N = 10) when
horizon increases

Obj2–Obj3 with a short
horizon (e.g., N < 10)
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Table 5. Cont.

Index Best Obj with a Short
Horizon

Best Obj with a Long
Horizon

Key Features of Performance
Tendency When Horizon

Increases

Combinations for Best
Performance

Contactor status
change Obj2–Obj3 Obj2–Obj3

1. Before the inflection point
(N = 5), the performance of
Obj1–Obj3 is improved rapidly
when the horizon increases
2. After the inflection point, the
performance has few changes
when the horizon increases

Obj2–Obj3 at and after
the inflection point (N
≥ 5)

Battery energy
storage level Obj3 Obj3

1. Performance of Obj1–Obj3 is
better when a longer horizon is
applied (e.g., N > 10)
2. Performance of Obj2–Obj3 is
improved rapidly after the
inflection point (N = 10) when
horizon increases

Obj3 with a long
horizon (e.g., N > 10)

Battery power
change Obj3 Obj3

1. Before the inflection point
(N = 13), the performance of
Obj2–Obj3 is improved when
the horizon increases
2. After the inflection point,
the performance of Obj2–Obj3
is reduced when the horizon
increases
3. Obj1 doesn’t show relativity
to horizon changes

Obj2–Obj3 at inflection
point (N = 13)

Multi-objective Obj2–Obj3 Obj1

1. Before the inflection point
(N = 9), the performance of
Obj2–Obj3 is improved when
the horizon increases
2. After the inflection point,
the performance of Obj2–Obj3
is reduced when the horizon
increases
3. Obj1 requires a long horizon
to improve the performance
(e.g., N > 25)

Obj2–Obj3 at inflection
point (N = 9)

6. Real-Time Experiment
6.1. Computational Time Analysis

For real-time MPC applications, computation time is the key issue to be considered,
as the time required to complete the computation should be less than the sampling time.
When adopting the CPLEX solver, the computation time is influenced by several factors:
(1) more complex models will often take longer time; (2) longer prediction horizons will
take longer time; and (3) different input values, such as different load data as inputs to the
MPC controller, can cause different computation times. Hence, to verify the MPC real-time
application, the worst-case analysis of the computation time is conducted for Obj1–3. For
each objective function and each N, the MPC controller will finally adopt 150 optimal
solutions (one sample at each time step), and the maximum computation time for the MPC
controller is recorded as the worst-case.

Figure 9 presents the maximum computation time GTmax changes for each objective
function with respect to N. In both load cases, the maximum computation time for Obj1–3
has similar incrementally increasing tendencies as N increases: when N ≤ 10, the com-
putation time is less than 0.2 s; when 10 < N ≤ 15, the computation time is less than 1s;



Sustainability 2021, 13, 13907 18 of 24

and when 15 < N, the computation time will go above 1 s with the maximum value of less
than 8 s. This indicates that the proposed MPC method could be adopted for real-time
applications with selected sample times Ts larger than 10 s, during which the optimization
would be completed, with the additional time being used for data measuring and commu-
nicating [49]. It is worth noting that a maximum computation time can be set in CPLEX. In
this case, if the solver ran out of time, it would return the best solution that has been found
in that time, rather than the optimal solution. In our case, Ts is set to 1 min because of the
following reasons:

(1) A 1-min sample time can provide the controller with enough time to obtain the
measured status and updated load prediction, complete the optimization, and send
the control signals to the system.

(2) The proposed MPC method is mainly designed for satisfying the long-term battery
SOC and load management requirements in the high-level control system. Since
the SOC and average loads will not change very much in a few seconds, the MPC
controller would not be required to update the control references frequently in small
time intervals in the order of seconds. On the other hand, if the MPC is required to run
every few seconds, to update the reference to cope with transients, the battery power
and loads might change with every load fluctuation, which might cause instability in
the system. In fact, instead of using MPC with long-term operating goals to act fast in
response to the transient load changes, another real-time controller is usually added
to the system at a lower control level, which will respond to the transient issues. This
is the future work of the authors that will be presented in the future work discussion.
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Figure 9. Comparison of the worst-case computation time of different prediction horizons and objective functions for two
load cases.

In summary, when adopting the proposed multi-objective evaluation index as the
index for our overall preferred performance, Obj3 will have the best performance with
a suitable prediction horizon (N = 7 and N = 9 for the corresponding load cases), with a
computation time of lower than 0.2 s.

6.2. Real-Time Test

A real-time experiment was implemented in the lab at the Aerospace Technology
Centre at the University of Nottingham, as presented in Figure 10. The MS-ES-L system
was implemented in dSPACE 1006 for real-time simulation. The MILP-MPC controller
was run in Matlab on a host PC, connected with the dSPACE. Every Ts, Matlab on the
host PC uses the XIL API interface to read the measured data from dSPACE, including the
load power PLi(k) and battery SOC(k). The MILP-MPC controller in Matlab takes these
values as inputs and calls the CPLEX solver to provide the optimal power reference on
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the MS side Pin(k) and load shedding SLi(k). Finally, these optimal values are sent to the
system implemented in dSPACE by the XIL API interface to realize real-time control. This
experiment validates the suitability of the proposed system-level control framework for
real-time implementation and the capability of the controller to provide the system with
optimal control commands at specified control intervals to achieve the desired operating
performance. It also verifies the coordination of the controller with the communication
interfaces and local controllers at the lower level. This configuration (using PC and dSPACE)
and using XIL API to read/write data and communicate between two levels, provides
the opportunity to test the two-level control structure in real-time. The physical system
and local controllers are running all the time and the system-level controller receives
measurements from the system and updates its control commands on a regular basis (every
one minute). In other words, they work in parallel. Otherwise, in a conventional series
implementation with a PC and non-real-time simulation, the system and local controllers
have to be stopped while running the system-level controller.
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Figure 10. Experimental setup.

The control results of MPC with Obj1–Obj3 for all flight stages were compared in this
experiment. During the flight, the loads were changed following the profile in Figure 3b.
According to the analysis in Section 5, the MPC for Obj3 performed best when N = 9
with a computation time of less than 0.2 s. To verify this analytic conclusion based on the
mathematical model, the MPC with Obj1–3 when N = 9 was applied in the experiment. The
performance of each objective function can be visualized by observing the SOC changes,
load shedding results, and battery power change. The real-time application of MPC was
also verified. It should be noted that the flight-time slot was scaled down from the 60 s to
3 s to experiment within 7.5 min instead of 150 min. The battery capacity was accordingly
scaled down to 0.2 kWh during the experiment. From both analyses in Figure 8 and
the experiment, Obj2 and Obj3 had the same control results when N = 9 for this load
profile. Hence, in the following comparisons, only the control results for Obj1 and Obj3 are
considered, to study the differences.

Figure 11 presents the SOC measurement results during the flight stages, while (a)
shows the results when MPC adopts Obj1, and (b) is related to Obj3. When Obj3 is adopted,
the battery SOC is kept within 0.4–0.6 for the most time intervals with a maximum value of
0.56, while SOC is kept within 0.3–0.36 for the most time intervals when adopting Obj1,
with a maximum value of 0.46. As the SOC is close to the lower limit when adopting Obj1,
the system will be less stable for coping with unexpected failure scenarios.
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The predicted and scheduled results for shedding of non-critical loads are presented in
Figure 12, indicating load shedding in the system when adopting Obj1 in (a) and Obj3 in (b).
The load contactors have more frequent on/off activities when adopting Obj1 compared to
the case of adopting Obj2. Moreover, when adopting Obj1, the minimum time for keeping
loads connected is 1 min, while Obj3 will keep loads connected for at least 8 min, which is
preferred for reducing transient issues. Although Obj3 has less load on/off activities, it
still has less load shedding time for both high and low priority loads: the load shedding
index for Load 2 is 0.317 with Obj1 compared to 0.299 with Obj3, while the load shedding
index value for Load 3 is 0.617 with Obj1 compared to 0.599 with Obj3. In conclusion, Obj3
outperforms Obj1 in both load shedding and switching activities in the experiment.
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The battery charging/discharging power measurements are presented in Figure 13,
where (a) presents the results with Obj1, while (b) presents the results with Obj3. Com-
paring the two figures, when adopting Obj3, the battery has fewer switching between the
charging and discharging modes, and the charging/discharging power is less changed
during each mode. In addition, the battery power curve with Obj1 has several transient
peaks, which happen when Load2 is connected/disconnected simultaneously with the
Load3 connection action being reversed. This verifies that Obj3 performs better in terms of
battery lifecycle as well as system stability.
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In summary, the MPC model with Obj1–3 proposed in Sections 3 and 4 is applicable
for real-time applications. In addition, it was found that the MPC with Obj3 performs
better than Obj1 in the real-time experiment when N is selected as 9 for the given load
profile. This supports the analysis and conclusions in Section 5.

This research inspires our future work when the system extends to the whole complex
MEA power system configuration, such as HV buses, APU, multiple bidirectional convert-
ers, etc. A hierarchical controller based on the MPC method is proposed to cope with more
operation constraints and scenarios, where the idea and findings mentioned in this work
are adopted to design the objective function. Moreover, the model proposed for optimiza-
tion in MPC can be extended to consider the effects of operating temperature and capacity
fading in the battery model, which requires optimizing the battery charging/discharging
power to reduce power losses and battery degradation. This topic will also be explored in
our future research.

7. Conclusions

This paper proposed a system-level MPC framework to optimize the control and
management of the energy storage and flexibility in the load-side for a MEA system.
Following the control targets, three different objective functions were presented, and the
importance of the different objective functions and prediction horizons was identified
by analyzing the simulation results with the proposed evaluation framework including
different performance indices. By assessing the impacts of different objectives, the paper
provided the readers with a reference for selecting the most applicable objective function
combination, as well as its potential impacts on deciding prediction horizons for different
use cases.
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