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A B S T R A C T   

In this paper, a flexibility oriented stochastic scheduling framework is presented to evaluate short-term reliability 
and economic of islanded microgrids (MGs) under different incentive-based DR (IBDR) programs. A multi-period 
islanding constraint is considered to prepare the MG for a resilient response once a disturbance occurs in the 
main grid. Also, a multi-segment optimal power flow (OPF) approach is used to model the IBDR actions and 
reserve resources. Moreover, uncertainties associated with electricity prices, loads, renewable generation, calls 
for reserve as well as uncertainties of islanding duration of the MG are considered. The ultimate goal of the MG 
operator is to maximize its expected profit under a certain level of security and reliability in conjunction with the 
minimization of energy procurement costs of customers. The MG’s economy and reliability indices are studied 
considering normal operation and resilient condition based on appliances characteristics, customers’ and oper-
ator’s behaviors. The proposed model can effectively manage MGs operation in both normal and resilient con-
ditions in order to improve economic and reliability indices. Numerical results demonstrate that by 
implementing IBDR, in cases of normal and resilient operation, the expected profit of the MG operator increases 
about 4% and 2.7% and reliability indicator improved 60% and 56%, respectively.   

1. Introduction 

Over the past years and as a response to climate changes and energy 
crisis, utilization of renewable energy resources (RESs) has been widely 
increased around the world [1]. In a power system with a high pene-
tration of renewable generation, power mismatch between supply and 
demand increases due to the intermittent nature of such uncertain re-
sources. In traditional power systems, some solutions such as backup 
generation, energy storage systems (ESSs), or curtailment (in part) of 
wind and solar power have been employed to mitigate supply–demand 
imbalance [1,2]. 

However, in smart modern power systems, in addition to conven-
tional solutions for power mismatch compensation, demand side man-
agement (DSM) techniques are frequently used as they can provide a 
great opportunity for power/energy regulation and relieve risks asso-
ciated with operation of renewable-based energy systems[3,4]. DSM 

provides several financial and technical benefits for power system op-
erators by improving the operation of RESs and enabling cost saving for 
end-use customers [5]. In this regard, demand response (DR) as a main 
option of DSM strategy is recognized to mitigate the imbalance by 
stimulating consumers to modify their demand profile through varying 
electricity prices or incentive payments in order to reduce their elec-
tricity bills [6,7]. 

Implementing of DR programs can also play an important role in 
reliable operation of microgrids (MGs) where the uncertainties of RESs 
and stochastic behaviors of customers have a significant impact on the 
reliability and security, especially when MGs enter to islanded operation 
[8]. This subject has been investigated in several literatures and the 
results have confirm that the implementation of DR programs not only 
brings great profits to MGs, but also enhance their reliability through 
mitigating peak demand and proper management of renewable gener-
ation units [8–10]. Therefore, DR is known as a system reliability 
resource that can procure spinning reserve for system reliability 
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enhancement [11]. 
Some studies have attempted to model the effects of DR participants 

on network reliability. DR participants and dynamic line ratings (DLR) 
for optimum power network reliability and ageing have been addressed 
in [12]. When expected energy not supplied (EENS) and expected total 
network ageing (ETNA) are considered together, the reliability model is 
more cost-effective [12]. In [13], the effects of network ageing towards 
its reliability have been modelled considering wind integration plants. 
These studies modelled the effects of network ageing towards its reli-
ability and mainly applied for real-time operation management of 
overhead lines at transmission level. 

The ability to operate in islanded mode is the most salient feature of 
MGs when a disturbance occurs in the upstream grid. The impact of 
prevailing uncertainty of islanding events on optimal scheduling of MGs 
has been studied in a significant number of literatures [14–16]. In [14], 
a resiliency-oriented MG optimal scheduling model has been presented 
aiming to minimize the MG load curtailment by efficiently scheduling 
available resources when supply of power from the main grid is inter-
rupted for an extended period of time. Prevailing operational un-
certainties in load, RESs power, and the main grid supply interruption 
time and duration are considered and captured using a robust optimi-
zation method. In [15], a two-stage stochastic problem has been 
modeled for optimal scheduling of resilient MGs. In that model, the 
operation cost of MGs is minimized while taking into account the pre-
vailing uncertainties associated with wind power, electric vehicles 
(EVs), and real-time market prices are also taken into account in that 

work. A two-stage adaptive robust optimization model has been pro-
posed in [16] for scheduling of MGs considering islanding operation 
mode. In that model, operating cost of MG is minimized under the worst- 
case scenarios associated with RESs generation and islanding durations. 
In [17], a resiliency-oriented stochastic framework has been presented 
for MG scheduling to minimize the operation cost and reduce the 
mandatory load shedding under the weather-related incidents. In the 
mentioned studies, reliability issues are not considered when islanding 
events occur. Moreover, the impact of uncertain factors such as islanding 
events and DR participants on system reliability are not addressed. 

This paper presents a flexibility-oriented stochastic framework for 
joint energy and reserve scheduling of resilient MGs considering 
incentive-based DR (IBDR) programs. Risk constraints are added to the 
mathematical scheduling formulation to control the uncertainties asso-
ciated with electricity prices, loads, renewable generation, calls for 
reserve and islanding duration of the MG. The impacts of the operator 
behavior and also incentive price factor are studied on short-term reli-
ability of the MG in different cases. The existing reliability evaluation 
techniques are more focused on steady-state (time-independent) reli-
ability evaluation and have been successfully applied in power system 
planning and expansion [18,19]. In this paper, short-term reliability of 
resilient MGs is studied considering islanding duration of the MG in the 
short term scheduling. The proposed method provides an accurate 
model for the MG operator to evaluate the reliability and arrange reserve 
for maintaining secure operation of MG considering islanding duration 
in the short terms. The proposed method can provide some references 

Nomenclature 

Indices and sets 
t, h Index of time slot, t = 1, 2,…, NT. 
s Index of scenario, s = 1, 2,…, NS. 
g Index of DG units, g = 1, 2,…, NG. 
w Index of wind turbines, w = 1, 2,…, NW. 
k Index of energy storage system, k = 1, 2,…, NK. 
j Index of load groups, k = 1, 2,…, NJ. 
n, r Indices of buses 
α1,t , α2,t Cost coefficients of DG unit g. 
(.),t, s At time t in scenario s. 
(.)

max,(.)min Upper and lower limits of variable (.). 

Parameters and constants 
DS

j,t , (Dj,t,s) Scheduled demand (power consumption) of the j-th 
group of customer (kW). 

PS
g,t , (Pg,t,s) Scheduled power (power generation) of DG unit g (kW). 

PrDA
t (PrRT

t,s ) Day-ahead (real-time) market prices ($/kWh). 
ρj,t Total rate of electricity ($/kWh). 
β Risk-aversion parameter. 
α Per unit confidence level. 
Prup

g,t(Prdn
g,t) Bid of up (down)-spinning reserve submitted by DG unit g 

at time t ($/kWh). 
Prup

j,t (Prdn
j,t ) Bid of up (down)-spinning reserve submitted by the j-th 

group of customer at time t ($/kWh). 
Prnon

g,t Bid of non-spinning reserve submitted by DG unit g at time 
t ($/kWh). 

incj,t ,(penj,t) Incentive (penalty) rate considered in IBDR program 
($/kWh). 

PrVoll
j,t Value of lost load ($/kWh). 

Ej,t,t , (Ej,t,h) Self (cross) demand elasticity. 
λSU

g,t ,(λ
SD
g,t ) Start-up (Shut-down) cost of DG unit g at time t ($). 

RUg,(RDg) Ramp-up (ramp-down) rates of DG unit g. 

UTg, (DTg) Minimum up (down) time of DG unit g. 
Gl,(Bl) Conductance (Susceptance) of line l. 
πs Probability of scenario s. 

Variables 
pDA

t,s Exchange power between the MG and the main grid in the 
DA market (kW). 

pshed
j,t,s (qshed

j,t,s ) Active (reactive) power of load shedding of customers in 
group j (kW). 

Rup
g,t(Rdn

g,t) Reserve up/down service provided by DG unit g (kW). 
Rup

j,t (Rdn
j,t ) Reserve up/down service provided by customers in group j 

(kW). 
Rnon

g,t Non-spinning reserve provided by DG unit g (kW). 
rup
g,t,s(rdn

g,t,s) Up- and down spinning reserves deployed by DG g (kW). 
rup
j,t,s(rdn

j,t,s) Up- and down spinning reserves deployed by customers in 
group j (kW). 

θt,s (Vt,s) Voltage angle and amplitude. 
ηs Auxiliary variable for calculating the CVaR ($). 
ξ Value-at-risk ($). 
ug,t,s Commitment status of DG unit g, {0, 1}. 
yg,t,s(zg,t,s) Start-up (shutdown) indicator of DG g, {0, 1}. 
INC(ΔDj,t) Total incentive payment for load reduction of customer j 

participated in IBDR program ($) 
PEN(ΔDj,t) Total penalty charge of customer j ($) 
B(Dj,t) Income of customer j when participate in IDBR program 

during t-th hour ($) 
Sc

j,t Benefit of customer j when participate in IDBR program ($) 
LOLj,t,s Loss of load of customer j at time t and scenario s (kW). 
EIRt Energy index of reliability. 
EDNSt Expected demand not served at time t. 
VLR (IVLR) Value of voluntary (involuntary) load reduction. 
EDNSVLR

t Expected demand not served stemmed from VLR. 
EDNSIVLR

t Expected demand not served stemmed from IVLR.  
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for short-term dispatching and operation of resilient MG and the effect of 
DR programs for its reliability improvement. To evaluate the true effects 
of IBDR programs on the MG reliability, optimal power flow (OPF) 
approach is employed to the problem formulation. The careful evalua-
tion of reliability and economic indices of MGs considering emergency 
conditions is very important. In this way, the MG operator can effec-
tively check the status of reliability indicators in different situations and 
make necessary decisions. 

Various sensitivity analyses on the risk parameters and incentive 
factors in both normal and resiliency conditions are carried out to 
validate the short-term reliability of the MG in different states. The re-
sults of this research demonstrate that the proposed scheduling and 
pricing schemes can effectively manage opportunistic demand and 
enhance system reliability, thus have the potential to improve the 
penetration of wind generation. Also, the results confirm that the pro-
posed stochastic strategy can help to the operators to effectively manage 
the MGs operation in the unscheduled island mode. 

The novel contributions of this paper are threefold: 

• A flexibility-oriented stochastic framework is proposed for joint en-
ergy and reserve scheduling of resilient MGs. The proposed model 
handles the prevailing uncertainties of islanding duration, compo-
nent contingency as well as prediction errors of loads, day-ahead 
(DA) and real time (RT) market prices, renewable power genera-
tion and reserve provision.  

• To assess the effect of DR on the reliability, two new reliability-based 
indices are defined to compare the MG operation in normal operation 
and resilient condition.  

• The impacts of the operator behavior and incentive price factor on 
economy and reliability indices are investigated via a sensitivity 
analysis. 

The rest of the paper is organized as follows. Section 2 describes the 
proposed stochastic scheduling framework. In Section 3, mathematical 
formulations are presented. Numerical analysis and results are given in 
Section 4 and Section 5 concludes the paper. 

2. Flexibility-oriented stochastic scheduling framework 

In this study, a flexibility-oriented stochastic framework is presented 
for MG scheduling, in which, the main objective is maximizing the ex-
pected profit of the MG operator by optimal scheduling of both demand 
and supply side resources. The MG includes a few dispatchable DGs and 
RESs that supply number of local customers. It is assumed that the MG 
has the capability of communicating with the end-users and controlling 
their responsive loads when it is needed. Each customer has a number of 
electrical devices which some of them are essential and some others are 
flexible and manageable. The MG operates normally in grid-connected 
mode and goes to islanding mode when a disturbance occurs in the 
upstream. A reconnection to the main grid is established once the 
disturbance is cleared. 

However, the disturbance occurring time and period are not pre-
determined for the MG operator. During islanding duration, the MG’s 
resources should be scheduled in such a way that the loads be supplied 
with minimum interruption. Therefore, a realistic islanding constraint 
should be implemented in scheduling problem to consider all probable 
disturbances in any time. In other words, a resilient operation with 
adequate online generation resources would be performed for all 24 h of 
a scheduling horizon. Moreover, the operator should try to anticipate 
unbalanced power of the MG by implementing IBDR program and 
providing required balancing power during all time periods. Based on 
this program, when the MG reliability encounters high-risk operation or 
in the periods with higher energy prices, the proposed method relies on 
providing incentive prices to the customers in order to reduce their 
energy procurement costs. Meanwhile, the customers participate in 
IBDR programs and reduced their consumption to achieve more 

incentives or energy credits. 
In this study, the customers can participate in two different IBDR 

plans including interruptible/curtailable (I/C) programs and capacity 
market programs (CAP). In I/C programs, customers receive a rate dis-
count or bill credit to reduce their demand when contingencies are 
triggered. Also, the customers will be penalized if they do not commit 
themselves to the agreement. Moreover, in CAP, customers should 
supply pre-determined load reductions on demand and are subjected to 
penalties if they do not respond properly to load reduction commands. 

In smart grids, in addition to DG units, responsive loads can provide 
spinning reserve to improve the system reliability. Customers’ energy 
bills decrease when they provide reserve services, because reserve 
generation would be freed up to supply energy. When responsive loads 
allocate reserve, they should be able to rapidly curtail a part of their 
demand in response to an event or contingency. This option requires 
responsive loads with storage and control capability, a communication 
system that tells the loads when to respond, and monitoring to ensure 
that the load response is obtained. 

The MG operator clears DA, RT and spinning reserve (SR) markets 
using a market-clearing procedure to obtain the share of providing 
balancing power of each customer and the reserve services in each time 
slot. In the decision-making process, the operator may face sources of 
uncertainty including RESs power generation, load demand, availability 
of responsive loads, calls for reserve, DA, RT and SR market prices and 
also the MG islanding durations. An optimal power flow (OPF) model is 
implemented in the market clearing program to consider network con-
straints, properly, to determine energy credit earned by customers, 
values of voluntary load reductions (VLR), involuntary load reductions 
(IVLR), EENS and other economy and reliability indicators. After 
determining the incentive prices of the MG, the optimal balancing power 
of consumers in response to these prices and their reserve provision 
capacity are also determined such a way that to maximize benefits of 
consumers. 

3. Mathematical formulation 

3.1. Uncertainties characterization and modeling procedure 

Two major classes of uncertainties are considered in this study. The 
first class that is called normal operation uncertainty including un-
certainties associated with prediction errors of loads, electricity price, 
renewable power generation and call for reserve. The values of sto-
chastic variables at each hour would be equal to the forecasted value at 
that hour plus an error that is randomly generated based on the distri-
butions obtained from historical data [20]. At first, normal probability 
distribution functions (PDFs) are used to model prediction errors of the 
first class uncertainties, and then Monte-Carlo simulation (MCS) [20] is 
applied to generate numerous scenarios based on random sampling from 
related PDFs. 

In this study, DG units and DR can provide reserve services to the MG 
operator. Such reserve services are traded by purchasing options to buy 
reserves at predetermined prices by paying premiums. These reserves 
include call and deploy options to address underproduction and over-
production. To estimate the possible call for reserve, normal distribution 
function is considered in this study. Forecasting errors of this stochastic 
variable is modeled with PDF for each interval (in this case 24 PDF) with 
a zero-mean normal distribution and different standard deviations. The 
MG operator may call the responsive loads and DG units for providing 
reserve, when it required reserve services. If the MG operator accepts the 
bid of reserves submitted by each of the units and DR, the mentioned 
units and DR receive a capacity payment for being on stand-by. If that 
unit or DR is called to deploy their services, they will receive in payment 
in real time. This behavior of unit and DR is uncertain and its distribu-
tion are modelled with normal PDF as shown in Fig. 1 that each PDF is 
divided into seven discrete intervals with different probability levels. As 
observe, the mean values are equivalent to the forecasted values of the 
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reserve provided by reserve resources in each time period. MCS method 
is used to generate a large number of scenarios indicating the uncertain 
parameters based on hourly PDFs of call for reserve. 

The second class of uncertainties, which deemed as contingency- 
based uncertainties, include two groups: uncertainty of islanding dura-
tion events and contingency of the MG’s components, such as DG units. 
Islanding duration is unknown in case of unscheduled islanding events 
and may not be determined with certainty. However, the associated 
probability distribution can be estimated from historical data, Monte 
Carlo simulations or any credible source of information [9]. The un-
certainties of islanding duration are represented via an appropriate 
scenario set that are extracted from historical data. This scenario set has 
different possibilities of unscheduled islanding duration and the esti-
mated probability of occurrence. In this study, normal PDF is considered 
to model the associated randomness of unscheduled islanding durations. 
For example, normal PDF for modeling forecasting errors of unsched-
uled islanding durations with mean of 12:00 h and standard deviation of 
one hour [9]. 

The second group of the contingency-based uncertainties is consid-
ered with a two state reliability model. In this model random forced 
outages of DG units as contingency of the MG’s components is consid-
ered based on the 2-state Markov model {0, 1}, in which 0 represents the 
working state and 1 shows the fault state. Assuming that λ (fault rate) 
and the μ (repair rate) of the two state components are constant, and 
then the working time and fault repairing time of the components are 
exponentially distributed [21]. Assuming also that the component is in 
the working state initially (t = 0), the component probability of each 
state at time t,ρ(t), is [21]: 

πh(t) = [1 − πh(t), πh(t)] =
[

μ
λ + μ +

λ
λ + μe− (λ+μ)t,

λ
λ + μ (1 − e− (λ+μ)t)

]

(1)  

where 1-πh(t) is the working condition probability of the component at t, 
πh(t) is the probability of fault state of the component at t. 

Based on the above discussion, a set of NA scenarios is created for 
normal operation uncertainties (i.e. uncertainties of RESs generation, 
demand load, call for reserve and energy prices) and a set of NB scenarios 
is created for contingency-based uncertainties (i.e, uncertainties of 
islanding duration events and random forced outages of DG units). These 
two groups of scenarios are combined based on the scenario tree [22]. 
The probability of the corresponding combined scenario would be 
determined based on the multiplication of the probability related to the 
scenario of the two groups assuming that the two uncertainties are in-
dependent. The total number of scenarios considering all uncertain pa-
rameters would equal to N = NA × NB with occurrence probability of 
πs = πnor.πcon, where, πnor and πcon are occurrence probability of normal 
scenario s and occurrence probability of contingency-based, 

respectively. 

3.2. Model of IBDR programs 

Participation of responsive loads in IBDR programs is modeled based 
on the incentives and penalties imposed to the customers. When 
customer j participates in IBDR program, its hourly demand changes 
from initial value (Dint

j,t ) to a modified level (Dj,t), as: 

Dj,t = Dint
j,t +ΔDj,t (2) 

In this case, the total revenue of customer j participated in IBDR 
based on the hourly incentive rate, incj,t, is calculated as: 

INC(ΔDj,t) = incj,t × (Dint
j,t − Dj,t) (3) 

Also, the penalty payments of customer j who (that) do not respond 
or satisfy its pre-defined contract is obtained as follows: 

PEN(ΔDj,t) = penj,t × [Lc
j,t − (Dint

j,t − Dj,t)] (4)  

where, Lc
j,t and penj,t are respectively predetermined level of contract of 

customer j and penalty factor at time period t. As mentioned before, 
customer j changes demand to maximize its total benefits which are 
difference between incomes from consuming electricity and incurred 
costs. By assuming B(Dj,t) be the income of customer j during t-th hour, 
the benefit of customer j, Sc

j,t, at time t will be as follows: 

Sc
j,t = B(Dj,t) − Prj,tDj,t + INC(ΔDj,t) − PEN(ΔDj,t) (5) 

To maximize the benefit of customer j, 
∂Sc

j,t
∂Dj,t 

should be equal to zero, 
therefore: 

∂B(Dj,t)

∂Dj,t
− Prj,t +

∂INC(ΔDj,t)

∂Dj,t
−

∂PEN(ΔDj,t)

∂Dj,t
= 0 (6) 

By replacing the (3) and (4) into (6) and differentiating the equation 
and moving the last three terms to the right side of the equality, Eq. (7) is 
obtained. 

∂B(Dj,t)

∂Dj,t
= Prj,t + incj,t + penj,t (7) 

The customer marginal benefit from the use of Dj,t kWh of electrical 
energy can be calculated as follows [23]: 

B(Dj,t) =

∫ Dj,t

0
ρj,t∂d (8)  

where, ρj,t is the total rate of electricity. By comparing (7) and (8), the 
below equality should be satisfied: 

ρj,t = Prj,t + incj,t + penj,t (9) 

Based on economics theory, the demand-rate elasticity at time t is 
defined as the demand sensitivity with respect to the price at time [24]. 

Ej,t,t =
ρint

j,t

Dint
j,t

∂Dj,t

∂ρj,t
(10)  

where Et,t is self-elasticity coefficient, which shows the effect of price 
change in time period t on demand change at the same time. For time 
varying loads, cross-time elasticity relates the effect of price change at 
one point in time to consumptions at other time periods and it defined by 
following relation [24]: 

Ej,t,h =
ρint

j,h

Dint
j,t

∂Dj,t

∂ρj,h
(11) 

By substituting (9) to (10) and (11), the following relation is ob-
tained based on self and cross elasticity coefficients. 

0 2

0.3830
0.24170.2417

0.06060.0606

2 33

0.00620.0062

Forecasted Error

Probablity
Density

Fig. 1. Discretization of the probability distribution of the call for reserves.  
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∂Dj,t

Dint
j,t

= Ej,t,h
∂Prj,h + ∂incj,h + ∂penj,h

Prj,h + incj,h + penj,h
(12) 

By integrating of (12) over the scheduling horizon, the following 
equations are obtained as: 
∫ Dj,t

Dint
j,t

∂Dj,t

Dj,t
=
∑NT

h=1
Ej,t,h

[∫ Prj,t

Print
j,t

∂Prj,h

Prj,h + incj,h + penj,h

+

∫ incj,h

0

∂incj,h

Prj,h + incj,hx + penj,h
+

∫ penj,h

0

∂penj,h

Prj,h + incj,h + penj,h

]

(13)  

ln

(
Dj,t

Dint
j,t

)

=
∑NT

h=1
Ej,t,h

[

ln

(
Prj,h + incj,h + penj,h

Print
j,h + incj,h + penj,h

)

+ ln
(

Prj,h + incj,h + penj,h

Prj,h + incj,h

)

+ ln
(

Prj,h + incj,h + penj,h

Prj,h + penj,h

)]

(14) 

By simplification of (10), the level of responsive loads after partici-
pating in IBDR programs is calculated as follow: 

Dj,t = Dint
j,t

⎧
⎨

⎩

∏NT

h=1

⎡

⎣

(
Prj,h + incj,h + penj,h

)
3

(Print
j,h + incj,h + penj,h)(Prj,h + incj,h)(Prj,h + penj,h)

⎤

⎦

Ej,t,h
⎫
⎬

⎭

(15)  

3.3. Short-term reliability evaluation procedures 

To evaluate short-term operating reliability of the MG, the indices of 
expected demand not served at time t (EDNSt) and the energy index of 
reliability (EIRt) are implemented that are defined as follow: 

EDNSt =
∑NJ

j=1

∑NS

s=1
πsLOLj,t,s (16)  

EIRt = 1 − EDNSt/(
∑NJ

j=1

∑NS

s=1
Dj,t,s) (17) 

Here, the index of EDNSt is redefined as expected demand not served 
stemmed from VLR (EDNSVLR

t ) and as expected demand not served 
stemmed from IVLR (EDNSIVLR

t ). These two indices are defined as follow: 

EDNSVLR
t =

∑NJ

j=1

∑NS

s=1
πsVLRj,t,s (18)  

EDNSIVLR
t =

∑NJ

j=1

∑NS

s=1
πsIVLRj,t,s (19) 

To get more insight into the MG reliability, indices of DR are defined 
to improve VLR (DRSVLR

t ) and IVLR (DRSIVLR
t ) as follows: 

DRSVLR
t = (EDNSVLR,No− DR

t − EDNSVLR,DR
t )/

∑NJ

j=1

∑NS

s=1
Dj,t,s (20)  

DRSIVLR
t = (EDNSIVLR,No− DR

t − EDNSIVLR,DR
t )/

∑NJ

j=1

∑NS

s=1
Dj,t,s (21) 

Superscripts of DR and No-DR in EDNSt denote the state of with and 
without applying DR programs, respectively. These indices can give a 
clear picture of the share of DR participants to provide ancillary services 
and assess the ability of applying DR on the MG reliability improvement. 
Higher values of DRSVLR

t and DRSIVLR
t shows a significant impact of DR 

participant on the decrement of voluntary and involuntary load reduc-
tion, and as the result, causes more improvement of the system reli-
ability operation. 

3.4. Objective function (OF) 

The objective is maximizing expected profit of the MG operator (EP) 
considering the conditional value at risk (CVaR) under different levels of 
risk aversion as follow: 

Max :OF = EP+ βCVaR (22)  

EP =
∑NT

t=1

∑NS

s=1

∑NJ

j=1
πs
(
Dj,t,s − VLRj,t,s − IVLRj,t,s

)
Prj,t,s

−
∑NT

t=1

∑NS

s=1
πs[PDA

t PrDA
t,s + (PRT

t,s − PDA
t )PrRT

t,s − λt,s]

−
∑NT

t=1

∑NG

g=1

∑NS

s=1
πs[CDG

g,t.s + SUCg,t,syj,t,s + SDCg,t,szg,t,s]

−
∑NT

t=1

∑NG

g=1
πs(Rup

g,tPrup
g,t + Rdn

g,tPrdn
g,t)

−
∑NT

t=1

∑NJ

j=1
πs(Rup

j,t Prup
j,t + Rdn

j,t Prdn
j,t )

−
∑NT

t=1

∑NJ

j=1

∑NS

s=1
πs(PrVLR

j,t VLRj,t,s + PrIVLR
j,t IVLRj,t,s)

(23) 

The first term of (22) represents the revenue by selling energy to 
local customers, the second term represents the revenue of the bids in 
the electricity market, the third term denotes the operation costs of 
conventional DG units and their start-up and shut down costs, the fourth 
and the fifth terms represent the spinning reserve costs of DGs and DR, 
respectively. Finally, the sixth term denotes the expected cost of 
voluntary and involuntary load shedding during time scheduling. The 
VLR and IVLR are valued at PrVLR

j,t and PrIVLR
j,t that are dependent on the 

general load type and the point of connection. It should be noted that, in 
the second term of (22) when PDA

t is positive/negative, the MG is selling/ 
buying power to/from the DA market, and PDA

t PrDA
t,s denotes the MG’s 

revenue/cost by selling/buying electricity to/from the DA market at 
time t and scenario s. Similarly, when PRT

t,s − PDA
t is positive/negative, the 

MG is selling/purchasing power to/from the RT market, and (PRT
t,s − PDA

t )

PrRT
t,s shows the MG’s revenue/cost by selling/purchasing electricity to/ 

from the RT market at time t and scenario s. Here, auxiliary variable λt,s 

is used to denote the penalty that occurs when the RT power exchange 
deviates from the DA power scheduling, i.e. (PDA

t − PRT
t,s )PrRT

t,s [25]. 
As presented in (22), risk-averse parameter β is introduced to 

construct risk aversion model to minimize the uncertainty influence on 
the decision-making problem. The mathematical definition of CVaR for 
a discrete distribution and at a certain confidence level α ∈ (0, 1) is given 
as [22]: 

CVaR = ξ+
1

1 − α
∑NS

s=1
πsηs (24)  

Subject to : EP+ ξ⩾ηs; ∀s (25) 

CVaR represents the expected cost of a predetermined portion of the 
worst (in our case most costly) possible scenarios. On these bases, CVaR 
is applied to measure the risk of different candidate schedules in this 
paper. Based on the behavior of the MG operator, parameter β is chosen 
that allows it to make a balance between the expected cost and CVaR, 
and made optimal decision making strategy under different conditions. 
When β = 0 (risk-neutral case), the expected cost is minimized ignoring 
the risk of cost. As the value of β increases, the operator becomes more 
risk-averse, in the sense that it minimizes both the expected cost and 
CVaR. 
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3.5. Network and market constraints 

The presented optimization problem is subject to the following 
network and market constraints: 

1) Constraints of active and reactive power balance: Equations (26) and 
(27) present respectively limits of active and reactive power balance in 
node n at time t and scenario s. 

Pn
g,t,s +Pn

w,t,s − Dn
j,t,s +VLRn

j,t,s + IVLRn
j,t,s

=
∑NB

r=1

{GL
n,r[V

2
n,t,s − Vn,t,sVr,t,scos(θn,t,s − θr,t,s)]

− BL
n,rVn,t,sVr,t,ssin(θn,t,s − θr,t,s)}

(26)  

Qn
g,t,s +Qn

w,t,s − Qn
j,t,s +VQRn

j,t,s + IVQRn
j,t,s

=
∑NB

r=1

{− BL
n,r[V

2
n,t,s − Vn,t,sVr,t,scos(θn,t,s − θr,t,s)]

− GL
n,rVn,t,sVr,t,ssin(θn,t,s − θr,t,s)}

(27) 

2) Constraints of responsive loads: These constraints include limits of 
scheduled demand (28), scheduled upward spinning reserve (29) and 
scheduled downward spinning reserve (30), actual demand loads (31), 
as well as limits of deployed upward reserve (32) and deployed down-
ward reserve (33). 

Dmin
j,t ⩽DS

j,t⩽Dmax
j,t (28)  

0⩽Rup
j,t ⩽DS

j,t − Dmin
j,t (29)  

0⩽Rdn
j,t ⩽Dmax

j,t − DS
j,t (30)  

0⩽rup
j,t,s⩽Rup

j,t (31)  

0⩽rdn
j,t,s⩽Rdn

j,t (32)  

DS
j,t = Dj,t,s − rup

j,t,s + rdn
j,t,s (33) 

3) Constraints of operating of dispatchable DG units: These con-
straints include limits of power capacity of DG g (34), start-up cost limit 
(35), shut-down cost limit (36) as well as ramping up limit (37) and 
ramping down limit (38), [26,27]. 

Pmin
g ug,t,s⩽Pg,t,s⩽Pmax

g ug,t,s (34)  

SUCg,t,s⩾λSU
g,t (ug,t,s − ug,t− 1,s) (35)  

SDCg,t,s⩾λSD
g,t (ug,t− 1,s − ug,t,s) (36)  

Pg,t,s − Pg,t− 1,s⩽RUg(1 − yg,t,s)+Pmin
g yg,t,s (37)  

Pg,t− 1,s − Pg,t,s⩽RDg(1 − zg,t,s)+Pmin
g zg,t,s (38) 

Constraint (35) denotes SUCg,t,s is equal to λSU
g,t ifug,t,s = 1 andug,t− 1,s =

0, i.e., if unit g is started up in period t, and 0 otherwise. Moreover, (36) 
represents SDCg,t,s is equal to λSD

g,t ifug,t− 1,s = 1 andug,t,s = 0, i.e., if unit g is 
shut-down in period t, and 0 otherwise. Start-up and shut-down binary 
variables related to the commitment status of unit g as follows: 

yg,t,s − zg,t,s = ug,t,s − ug,t− 1,s (39)  

yg,t,s + zg,t,s⩽0 (40) 

In addition, up and down services allocated by unit g are limited by 
(41) and (42), respectively. Also, limits of deployed upward and 
downward reserves are presented by (43) and (44), respectively. Finally, 
the decomposition of DGs output power is determined as (45). 

0⩽Rup
g,t⩽Pmax

g ui,t − PS
g,t (41)  

0⩽Rdn
g,t⩽PS

g,t − Pmin
g ui,t (42)  

0⩽rUp
g,t,s⩽RUp

g,t (43)  

0⩽rDn
g,t,s⩽RDn

g,t (44)  

Pg,t,s = PS
g,t + rUp

g,t,s − rDn
g,t,s (45)  

3.6. Solution methodology 

Fig. 2 represents the solution methodology of the proposed 
flexibility-oriented scheduling problem. First of all, historical data of 
loads, market prices, RESs and calls for reserves are collected and a 
numerous scenarios are generated based on their prediction errors. Also, 
another set of scenarios are generated based on contingencies of DG 
units and islanding durations of the MG. In this study, MCS is applied to 
generate the scenarios that represent the mentioned uncertain param-
eters based on the corresponding distribution functions [20]. 

The obtained scenarios of different parameters are combined to 
provide the completed set of uncertain inputs. Moreover, some certain 
inputs such as DGs’ data, MG’s topology and limits of DR and RESs 
should be determined by the MG operator as an input data. These certain 
and uncertain inputs are simultaneously given to the optimization 
scheduling problem. Before running the scheduling problem, the risk- 
averse parameter and incentive price factor should be set on the desir-
able value to manage the uncertainties and demand side resources, 
respectively. Selection of these parameters depends on the operator 
behavior and the customers characteristics. As it can be observed, the 
scheduling process includes two stages. In the first stage, decisions 
related to the units commitment and reserve capacity and trading energy 
from the electricity market are made for DA. In the second stage, de-
cisions associated with the economic dispatch of DG units, IBDR 
implementation, deployed reserves of DGs and DR as well as VLR and 
IVLR are determined. 

Update wind output power, loads, market prices and reserve services 

Contingency-based uncertainties 
Random forced outages of MG's 

components 

Normal operation uncertainties 
 Hourly load, wind power, market 
prices and calls for reserve service 

based on forecasted data

Characterization of Uncertainty

Reduce the number of scenarios
to  a limited set using K-means 

algorithms 

Generate scenario based on normal 
operation and contingency-based 

uncertainties

Scenario generation and reduction  

Determine first stage decisions 
in DA market clearing

Solve the DA scheduling problem 
under the proposed stochastic 

optimization

First Stage: Day-ahead scheduling problem

Determine second stage 
decisions in RT market clearing

Solve the RT scheduling problem 
under the proposed stochastic 

optimization

Second Stage: Real-time scheduling problem

Dispatch of DG units, IBDR implementation, deployed reserves of DGs 
and DR, calculate the VLR and IVLR  index and the EDNS index and etc. 

Final Results

Fig. 2. Solution methodology of the proposed two-stage flexibility-oriented 
scheduling problem. 
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4. Case study and test results 

4.1. Case study description 

The presented approach is implemented to do the scheduling of the 
test MG shown in Fig. 3, [28] over a daily time horizon. The MG com-
prises of five controllable DG units including two micro turbines (MT1 
and MT2), two fuel cells (FC1 and FC2) and one diesel engine (DE) that 
their technical data are presented in Table 1 [28]. As shown in Fig. 2, the 
MG supplies 200 aggregated residential loads within eight groups of 
customers that are equipped with house energy management and con-
trollers (Hex MCs) to enable automated connectivity to end-use cus-
tomers’ control systems. The forecasted values of total demand of eight 
groups of customers, output power of wind turbines (WTs) as well as DA 
electricity price is considered as shown in Fig. 4. The hourly DA elec-
tricity price extracted from the Nordpool market [29]. The forecast er-
rors related to load, wind power, electricity price and call for reserve are 
assumed to be 10%, and the positive and the negative balancing prices 
are assumed to be 0.9 PrDA

t,s and 1.1 PrDA
t,s , respectively. Furthermore, the 

price of up/down spinning reserve services of DGs and DR resources in 
time t are considered to be 0.2 PrDA

t,s and 0.15 PrDA
t,s , respectively. 

The optimization problem is investigated for two different operation 
conditions of the MG, namely normal condition (without considering 
islanding contingencies of the MG), and resilient condition (considering 
islanding contingencies). 

In this paper, each uncertain parameter is modelled with 100 

scenarios, and the result total number of combined scenarios is 108 

scenarios. Then, these original scenarios are reduced to 200 scenarios by 
using K-means algorithm [30] for computational tractability. The results 
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management controllers 
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 Switch
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MG Operator

Hex MCs
Load 1

Hex MCs
Load 5
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Hex MCs
Load 7

Hex MCs
Load 3

Hex MCs
Load 4

Hex MCs
Load 6 Load 8

LC

Data flow EMS & HexMCs
Data flow EMS & DG Units
Power flow

LC Local controller of DGs 
House energy Hex MCs

Fig. 3. Structure of the studied MG.  

Table 1 
Technical data of dispatchable dg units.  

SD Cost 
($) 

SU Cost 
($) 

Operation Cost 
($/kWh) 

Pmax 

(kW) 
Pmin 

(kW) 
DGs 
Type  

0.08  0.09 0.9 150 25 MT1  

0.08  0.09 1 150 25 MT2  

0.09  0.16 2.4 100 20 FC1  

0.09  0.16 2.6 100 20 FC2  

0.08  0.12 3.1 150 35 GE  

0 2 4 6 8 10 12 14 16 18 20 22 24
0
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Fig. 4. The hourly forecasted values of aggregated loads, wind power and 
electricity price. 
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are obtained on a PC with 4 GB of RAM and Intel Core i7@2.60 GHz 
processor with GAMS software and CPLEX solver [31]. The relative gap 
is set to be 10-4. The computation time in different cases is less than 5 
min. 

4.2. Results and discussions 

This section analyzes the impact of implementing IBDR programs on 
the normal and resilient MG based on the economy and reliability 
indices. 

Expected profit, payment cost of customers, reserve costs of DGs and 
DR as well as reliability indices with and without considering resiliency 
conditions in different incentive factor ηINC are presented in Table 2. It is 
assumed that ηINC varies from 0 to 50% of the DA price. In higher 
incentive prices, the customers’ power consumption profile is better 
adjusted and the expensive DG units are not committed and therefore 
the operating costs of DGs decrease and then expected profit increases. 

When incentive price grows, the customers receive more incentives 
and so their payment costs as electricity bills decrease, substantially. In 
higher ηINC, both DGs and DR resources allocate more reserve capacity 
and so cost of reserve provision increases. In fact, when ηINC increases, 
generation of DGs reduces and therefore they can allocate more spinning 
reserve capacities. The result of this table shows that when the resiliency 
is taken into account, the expected profit is decreased mainly due to 
higher operation cost of DG units. Considering the resiliency condition, 
there is a higher probability of mismatch between supply and demand, 
which in turn necessitates more reserve capacity. 

The efficient frontiers in normal condition and with considering 
resiliency for casesηINC = 0 andηINC = 0.5 are depicted in Fig. 5. As it can 
be observed, when incentive is considered, both the expected profit and 
the CVaR decrease in all risk-averse conditions. When a resilient 
scheduling according to the credible islanding contingencies is consid-
ered (Fig. 5 (b)), the expected profit decreases and the CVaR increases in 
comparison with the normal operations (Fig. 5 (a)). Comparing the re-
sults in different risk-aversion parameter β, it is understood that the risk 
seeking degree of operator has different effects on the profit and the 
CVaR. It means that by applying invective prices in risk-neutral case (i.e. 
β = 0) the profit and the CVaR have less variation rather than those of in 
risk-averse case (i.e. β = 20). 

Fig. 6 shows hourly DRSVLR and DRSIVLR in different incentive prices. 
As it can be seen from Fig. 6 (a), with choosing higher incentive prices, 
more customers participate in IBDR program and more voluntary load 
reductions occurs in peak periods, where the reliability of the MG en-
dangers. As shown in Fig. 6 (b), when MG offers higher incentive prices, 
values of involuntary load reductions decrease, and consequently, the 
values of DRSIVLR decrease and the reliability of the MG improves. Also, 
for almost all cases, DRSIVLR experiences less variation during peak pe-
riods of the day, where DRSVLR faces more changes. 

Fig. 7 shows the role of πIVLR on the IVLR index in both normal and 
resiliency conditions. Noted that πIVLR is defined as the average constant 
cost value that customers will lose due to the loss of one kWh of energy 
for one hour [32]. 

As it can be seen, almost during all hours of the day, by increasing 
πIVLR much more load reduction occurs. However, during peak hours (i. 
e. 11:00–14:000 and 20:00–22:00) that the customers reduce their de-
mand under incentive prices, values of DRSIVLR

t index has lower values. 
High IVLR during peak hours imposes extreme costs on the MG operator, 
who can use IBDR programs to mitigate such excessive costs through 
incentive payments. As observed in resilient condition, values of DRSIVLR

t 
index are less than those in normal operation in most periods that the 
main grid connection is lost. 

5. Conclusions 

In this paper, a flexibility-oriented stochastic model was presented 
for scheduling of MGs to address the effect of IBDR programs on the 
economy and reliability indices, simultaneously. Uncertainties associ-
ated with loads, renewables, electricity prices, calls for reserve, as well 
as uncertainties of islanding duration of the MG were addressed, and 
their effects were controlled by the CVaR tool. The uncertain behavior of 
the customers on different reliability indices in both normal operation 
and resiliency condition were investigated. The proposed model was 

Table 2 
Economic indexes of the MG in different incentive prices.  

ηINC  Resilience condition Indexes      

0.5 0.4 0.3 0.2 0.1 0   
1103 1095 1085 1078 1068 1062 No resiliency Expected profit ($) 
1050 1047 1042 1037 1032 1022 With resiliency  
1339 1572 1863 2152 2441 2728 No resiliency Payment of customers ($) 
1358 1593 1883 2178 2451 2742 With resiliency  
1256 1273 1292 1312 1330 1351 No resiliency Cost of DGs ($) 
1380 1393 1405 1421 1437 1461 With resiliency  
122 119 115 109 105 102 No resiliency Cost of DGs reserve ($) 
139 134 129 124 119 115 With resiliency  
32 29 27 25 23 21 No resiliency Cost of DR reserve ($) 
37 33 30 29 27 25 With resiliency  
738 649 560 471 343 0 No resiliency VLR (kW) 
738 649 560 471 343 0 With resiliency  
11.5 12.8 14.1 16.4 18.7 29.2 No resiliency EDNS (kW) 
16.4 17.8 19.7 22.2 24.5 37.1 With resiliency   

(a) 

(b) 

Fig. 5. Efficient frontier, (a) without resiliency, and (b) with resiliency.  
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applied to a typical MG and various sensitivity analyses on the incentive 
prices and reliability indices were carried out to validate the model in 
different states. Numerical results showed that by increasing incentive 
rate ηINC to 0.5, the expected profit of the MG operator could increase 
about 4%, and reliability index of EDNS could improve 60% in case of no 
resiliency condition. When the resiliency condition was taken into ac-
count, the expected profit and EDNS improved 2.7% and 56%, respec-
tively. Improvements in other reliability indices by increasing incentive 
rate in both normal and resilient operation of the MG were also ach-
ieved. Also, in most time periods the values of reliability index DRSIVLR

t 
in normal operation were less than those of in resilient operation. 

In further research, the presented model will be extended to inves-
tigate reliability and resiliency of multi-MGs and will focused on the 
coordination method of different responsive load models with different 
time scales on resiliency of multi-MGs. Also, coordination schemes at 
transmission and distribution levels will be elaborated in further works, 
e.g., through leveraging DLR mechanism, for better system operation 
management and facilitating reliable distributed resources integration. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

References 

[1] Vahedipour-Dahraie M, Rashidizadeh-Kermani H, Anvari Moghaddam A, 
Guerrero JM. Stochastic Risk-Constrained Scheduling of Renewable-Powered 
Autonomous Microgrids With Demand Response Actions: Reliability and Economic 
Implications. IEEE Trans on Ind Appli 2020;56(2):1882–95. 

[2] Rashidizadeh-Kermani H, Vahedipour-Dahraie M, Shafie-khah M, Catalão JPS. 
A bi-level risk-constrained offering strategy of a wind power producer considering 
demand side resources. Int J Electr Power Energy Syst 2019;104:562–74. 

[3] Saki R, Rokrok E, Abedini M, Doostizadeh M. Risk-averse microgrid cluster 
switching approach for improving distribution system characteristics considering 
uncertainties of renewable energy resources. IET Rene Power Gene 2020;14(11): 
1997–2006. 

[4] Liu W, Qi D, Wen F. Intraday Residential Demand Response Scheme Based on Peer- 
to-Peer Energy Trading”. IEEE Trans Ind Informat 2020;16(3):1823–35. 

[5] Mahboubi-Moghaddam E, Nayeripour M, Aghaei J. Reliability constrained decision 
model for energy service provider incorporating demand response programs. Appl 
Energy 2016;183:552–65. 
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Fig. 6. Effect of different incentive prices on hourly DRSVLR and DRSIVLR.  
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