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1  Introduction

Graph theory is a branch of discrete mathematics. It can be defined as the study of graphs, which are structures made of a 
collection of points and lines. We will begin with some definitions.

Definition 1. A graph is made up of a set of vertices (points) and a set of edges (lines).

Figure 1 is an example of a graph with 5 vertices and 7 edges. When we count the amount of vertices and edges a graph 
has, we describe the order and the size of the graph.

Definition 2. The order, v, of a graph is defined as the number of vertices on the graph and the size, e, of the graph is 
defined as the number of edges.

In Figure 1, the order of the graph would be 5 and the size of the graph would be 7. In this graph, A, B, C, D, and E are 
vertices and f, g, h, i, j, k, and l are edges.

Figure 1: General graph with v = 5 and e = 7

Definition 3. Vertices joined by an edge are called adjacent vertices. The edge between two vertices is called an 
incident edge to the vertices at its endpoints.

For example, in Figure 1, A and B are adjacent vertices, and g is incident to vertices A and B. Vertices C and E 
are non-adjacent. Figure 1 is an example of a connected graph. A connected graph is a graph where every pair of 
vertices are joined together by a sequence of vertices and edges.

 Graphs are often used to model real world situations by representing connections and relationships between 
any given number of objects. Graph theory is used in many fields other than mathematics, like chemistry, biol- ogy,  
and computer science [6].  For example in chemistry,  graphs are used to represent molecules and study atoms. In 
biology, graph theory is used to represent movement between regions where species exist. This can be useful when 
studying breeding patterns or tracking the spread of diseases. In com- puter science, graphs represent networks and 
are used for the development of various algorithms, which can analyze graphs and solve important problems. The 
Internet is also a great example of a graph, where Internet links are the edges and the pages they lead to are the 
vertices.
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2  Graph  Labeling

Graph labeling is an important area of graph theory. Graph labeling is the assignment of labels, usually represented 
by integers, to the vertices or the edges of a graph, and sometimes both. Graph labelings were first introduced 
in the 1960s as a tool for making progress on proving a conjecture about subgraphs [3]. The first type of graph 
labeling that was introduced is now known as graceful labeling. Since then, many other graph labelings have 
been introduced. For example, graceful labelings were coined by Solomon Golomb after originally being named 
β-labelings by Alexander Rosa in 1967 [1]. To determine a graceful labeling, distinct labels are assigned to the 
vertices of the graph from the integer set { 0, 1, 2, ..., e} . Each edge is labeled with the absolute difference of the 
incident vertex labels.  If all of the edges of the graph are labeled with distinct integers from the set  {1, 2, ..., e }, 
then the labeling is considered graceful. There are many more types of graph labelings that are not discussed here.

 Graph labeling is extremely important, not only in the field of math- ematics, but especially in ordinary 
life. Adding labels to a graph can be beneficial because they give us extra information about a situation, like the 
distance between two stops on a mail route or the cost of traveling the most efficiently. Some contemporary uses of 
graph labeling that have substantially impacted the modern world we live in include the global positioning system 
(GPS), Google searches, and public transportation. The GPS can create the quickest route from one location to 
another, Google searches sort informa- tion and track site visits, and sensible, efficient routes are devised for public 
transportation [6]. Other types of labelings are edge-graceful labelings, har- monious labelings, and even graph 
coloring, which resolved the renowned Four-Color Problem of graph theory.

 Graph labeling is an interesting technique used by mathematicians, com- puter scientists, chemists and 
biologists in important fields like graph the- ory, coding theory, astronomy, circuit design, missile guidance, 
communica- tion network addressing, data base management, compound chemistry, and biotelemetry. It is so 
interesting, in fact, that in the past 50 years, over 200 graph labeling techniques have been studied in over 2500 
papers [3]. At ap- proximately one paper per week, these numbers alone show how influential graph labeling has 
been, and continues to be.

3  Vertex-Magic Labeling

In this paper, we will study magic labelings. Magic labelings were first intro- duced by Sedláček in 1963 [3]. At this 
time, the labels on the graph were only assigned to the edges. In 1970, Kotzig and Rosa defined what are now known 
as edge-magic total labelings, where both the vertices and the edges of the graph are labeled. Following this in 
1999, MacDougall, Miller, Slamin, and Wallis introduced the idea of vertex-magic total labelings. There are many 
different types of magic labelings. In this paper will focus on vertex-magic total labelings.

3.1  Definitions and History

We will begin with a few definitions.

Definition 4. A vertex-magic total  labeling  (VMTL)  is  a  labeling  such that the vertices and edges are 
assigned consecutive integers between 1 and v + e, where v is the order of the graph (number of vertices) and e 
is the size of the graph (number of edges).

Labels are assigned to graphs with the purpose of summing to the magic number of the graph.

Definition 5. When the sum of the labels of a vertex and its incident edges results in the same integer for each vertex, 
we have a vertex-magic graph. This sum is called the magic number, k, of the graph. A raph is magic if at least one 
labeling exists.
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Figure 2: Vertex-Magic Total Labeling on a Kite Graph

In Figure 2, we see that v = 13 and e = 13 because the graph has 13 vertices and 13 edges. The integer labels 
that produce a VMTL of this graph are  {1, 2, 3, ..., v + e} . In other words, the labels on this graph are all integers    
{1, 2, 3, ..., 26} . Since the sum of the labels of each vertex with the labels of its incident edges is 41, we see that the 
magic number, k, of this graph is 41.

 Graphs can have multiple magic numbers. In this case, any of the magic numbers can have vertex-magic 
labelings. As we see in Figure 3 below, we have the same graph with labelings for four different magic numbers, 
namely 9, 10, 11 and 12.

Figure 3: Graphs with Vertex-Magic Total Labelings of Four Different Magic Numbers

 Some graphs have different labelings that result in the same magic num- ber. The graph in Figure 4 has 
magic number k = 13. We can see that the labels on each of the graphs are arranged differently. For example, 
on the graph on the left of the figure, 4 and 6 are integers labeled on the edges of the graph and 2 and 8 are integers 
labeled on the vertices of the graph. However, on the graph on the right, 4 and 6 are integers labeled on the 
vertices, and 2 and 8 are integers labeled on the edges. Nevertheless, on both graphs in Figure 4, the labels of 
each of the vertices and their incident edges sum to 13.

Figure 4: Two Different Vertex- Magic Total Labelings of the Same Magic Number 13
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3.2   Important Results

In order to find a magic labeling of a connected graph, we need to know what integer to try as a magic number. There 
is no way that we can try every possible integer as a magic number of each graph. So, we can eliminate some magic 
number possibilities by finding the range of magic numbers for a given graph. For example, a magic graph cannot have 
a magic number that is less than v + e. Suppose we have a magic number less than v + e. If we add the labels of a vertex 
with its incident edges where one of these labels is v + e, the sum of the labels will exceed v + e. In this instance, we 
would no longer have a VMTL, and so a vertex-magic graph cannot have  a magic number that is less than v + e. This 
gives a lower bound  of  the  magic  number. On the contrary, a magic graph cannot have a magic number that is 
greater than the sum of the set of all possible labels. This is impossible because we would not be labeling the vertices 
on the opposite sides of all of the edges of the graph. We would be ignoring the fact that each edge must be incident 
to two vertices. This gives an upper bound of the magic number.

Assume some graph G has a VMTL. Define Vsum to be the sum of all vertex labels and Esum the sum of all edge 
labels of any graph G. The follow- ing lemma gives us a useful formula for the magic number of vertex-magic graph. 
Lemma 1. ([2, 5]) If G is a vertex-magic graph with v vertices and e edges, then

Proof. Let ui be a vertex of G and k(ui) be the sum of the labels of ui and all of its incident edges. We want to 
find the sum of k(ui) for all i. To do this, we need to add the edge and vertex labels at each vertex of the graph. 
Now, we know that each edge is incident to two vertices on any graph G. Hence, as we add the labels of each vertex 
and its incident edges, we will count each edge twice. So, when we sum each vertex with its incident edges we get 
Vsum + Esum + Esum. On the other hand, since we know that G is a vertex-magic graph, we have that k(ui) is k. So, we 
multiply k by the number of vertices, v. We obtain vk, the sum of all edge labels. Thus, we have shown

Vsum + Esum + Esum = vk.

Now, we know that we label the vertices and edges of the graph by 1, 2, 3, ..., (v+ e) by definition. Therefore, we 
have that the sum of all of the labels of the graph are equal to

Thus, we can substitute this into Vsum + Esum + Esum = vk to give
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Finally we have

as we divide by v

Solving the formula from Lemma 1 for Esum gives

It is shown to be useful throughout the next few sections, as we use the for- mula to deduce which labels can be placed 
on the edges of a graph.

It is shown to be useful throughout the next few sections, as we use the for- mula to deduce which labels can be placed 
on the edges of a graph.

The conclusion of Lemma 1 above can help us find better upper and lower bounds for the magic number of a graph. 
The next theorem gives us upper and lower bounds for possible magic numbers of graphs.

Theorem 1. ([2, 5]) Let G be a graph with v vertices and e edges. If G is a vertex-magic graph, then the magic 
number, k, is bounded such that

The following proof is from [2].

Proof. From Lemma 1, we have that

The minimum Esum occurs when the labels 1 through e are assigned to the edges of the graph. So we have that,
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The maximum Esum occurs when the labels v + 1 through v + e are assigned to the edges of the graph. Thus,

It follows that,

Then we substitute in for Esum which gives

Then we should perform the appropriate operations to isolate k between the inequality to obtain its bounds. 
Hence,

This inequality is important because it shows that a vertex-magic graph with v vertices and e edges has a bounded 
magic number, k. In Figure 3, the graph with v = 3 vertices and e = 3 edges has the magic number bounds

Each magic number possibility in the bounds turns out to be a magic number of this graph. As you can see in Figure 
3, there is a VMTL for each of the magic numbers.

The aim of this project is to explore vertex-magic total labelings on dif- ferent graph classes. We will discuss path 
graphs and crown graphs and show some of their labelings. We arrive at a result for a specialized vertex-magic total 
labeling of crown graphs. 

4  Labeling Vertex-Magic Graphs

To construct vertex-magic total labelings on different graph classes, we go through a series of steps. Generally, we find 
the graph’s upper and lower bounds for a magic number, k, and calculate our Esum for a chosen k. We can then form 
partitions of Esum  depending on how many edges the graph has.   We then work to find a VMTL with the possible edge 
labels.   We focus the labeling methods of this paper primarily on path graphs and crown graphs, more specifically.
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4.1  Path Graphs 

In this section, we will discuss path graphs, their properties, and some details that allow us to find magic labelings 
for them.

Definition 6. The path graph, Pn, is defined as a graph with n vertices that are listed in an order such that 
consecutive vertices are adjacent.

A path graph Pn has n vertices and n - 1 edges. The figure below is an example of a labeled vertex-magic path 
graph with order 7 and size 6.

Figure 5: Vertex-Magic Total Labeling of P7 with Magic Number 16

We will find a vertex-magic labeling for P5. We have that v = 5 and e = 4.

Using Theorem 1, we have

11 ≤ k ≤ 15.

So the magic number bounds for P5 are 11 ≤ k ≤ 15. . We should choose a magic number to focus on for a magic 
labeling. Let k be one of the magic numbers in our bounds. We will choose k = 11 in this example. The formula for 
Esum following Lemma 1 gives 

Esum = 10.

This implies that we need combinations of integers that sum to 10 for the edge labels of the graph. Thus, the only 
possible edge labels are the smallest labels, {1, 2, 3, 4} . We obtain the vertex-magic labeling shown in Figure 6 below.

Figure 6: Vertex-Magic Total Labeling of P5 with Magic Number 11

Notice the connection between the labelings for P5 and P7. The vertices have a distinct pattern which help us find the 
labelings of odd path graphs. 

Theorem 2. Consider Pn where n is odd. There exists a VMTL with vertex l abels assigned by
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 and edge labels assigned by

Proof. Let Pn be a path graph with n defined as an odd integer. Now, consider the four cases for labeling the vertices 
of a path graph using the definitions given for vi and ei. When i = 1, the sum of the label of the vertex and its 
incident edges is 

When i is even, the sum is

Then when i is odd and i ≠ 1, i ≠ n, the sum is

Finally, when i = n, the sum is

Recall that the sum of each vertex and its incident edges must be equal to have a vertex-magic labeling, by definition. 
Thus, since all of the possible cases of vertex sums arrive at the same result, we have shown that the two functions that 
label the vertices and edges of odd path graphs give a vertex- magic labeling.

There is more to be said about the vertex-magic labeling shown in Figure

6. By definition, this labeling is a VMTL, but there is something even more special about it. If you look to the edges 
of the path, you see that the smallest labels are used as edge labels.  This introduces a special type of VMTL for P5 
in Figure 6, namely, an E-super vertex-magic total labeling.

Definition 7.  An  E-super  vertex-magic  total  labeling is  a  VMTL  where the smallest possible labels, 1, 2, . . . , e, are 
used as labels for the graph’s edges.

Unlike odd path graphs, it is impossible to find an E-super VMTL when a path is even. This is because the sum 
of the smallest possible labels we assign to the edges of an even path will never equate to a possible Esum. It has 
been shown that the path graph Pn has a VMTL when n > 2 [4], and Pn has an E-super VMTL if and only if n 
is odd and n ≥ 3 [7].

4.2 Crown Graphs

Here, we will discuss a new graph class. Then we will find a vertex-magic labeling for the class.

Definition 8. A crown graph, denoted Hn, is a graph with 2n vertices, where the vertices are partitioned into two 
sets of size n, {u1, u2, . . . , un} and

{v1, v2, . . . , vn}. The vertices ui and vj are adjacent when i /= j.
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To determine the size of Hn, we notice that the graph has n - 1 edges that are incident to each of its vertices. 
When we multiply n - 1 by the total number of vertices, 2n, we obtain the number of edges incident to all vertices, 
2n(n 1). Then we must divide by 2 because the edges of the graph are counted twice. This gives us

n(n − 1),

the count of all of the edges, or the size of some crown graph Hn. Figure 7 is an example of a crown graph H5. 

Figure 7: Crown Graph H5

We will find a vertex-magic labeling for crown graph H3. We have that v = 6

and e = 6. Using Theorem 1, we have

16.5 ≤ k ≤ 22.5.

Since k must be an integer, we round up to the next integer on the lower bound and down on the upper bound. Thus, the graph’s 
magic number bounds are

17 ≤ k ≤ 22.

Let k = 17. The Esum formula following Lemma 1 gives

Esum = 24.

We consider combinations of edge labels that sum to 24.  We should choose 6 edge labels and 6 vertex labels, 
and their positions on the graph so that the graph has a VMTL. We use labels 1, 2, ..., (v + e) for any VMTL. To 
determine the possible edge labels, we can create partitions of the Esum  with 6 numbers each, for the edge labels. 
We can start by picking the small- est possible labels on the edges, integers {1, 2, ..., 6} . We find that we can not 
use the smallest labels because these edge labels do not sum to 24. In- stead, we can use one of the following three 
possible sets of integers as edge labels:    {1, 2, 3, 5, 6, 7} , { 1, 2, 3, 4, 5, 9} , or    {1, 2, 3, 4, 6, 8} . If we use the set 
{1, 2, 3, 5, 6, 7} , we obtain the labeling in Figure 8 below. This is the next smallest possible Esum of the crown graph 
H3. 

Figure 8: Vertex-Magic Labeling of H3 with Magic Number 17 
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Now we will look at another crown graph labeling.  In Figure 9, we have a VMTL of H4, which we see that we can 
label to be an E-super VMTL. There are many other E-super VMTLs of H4 that we will see in support of Conjecture 
1 towards the end of the paper. In the next section, we will give a result about E-super VMTLs for crown graphs.

Figure 9: E-Super VMTL of H4 with Magic Number 36 

4.2.1   Crown Graph Results

As seen above in Figure 9, we have that it is possible to generate E-super VMTLs for even crown graphs Hn with n 
≥ 4, where a vertex-magic labeling exists. E-super VMTLs do not exist for any crown graph Hn with odd n.

Theorem 3. For the crown graph Hn, n ≥ 4, if there exists an E-super vertex-magic total labeling, then n is even.

Proof. For any crown graph Hn, we have that v = 2n and e = n(n − 1).

Assume there exists a VMTL for Hn. By Lemma 1 we have

By definition of E-super VMTL,

So it follows by substitution that

The magic number, k, must be an integer. When n is even, k is an integer.

We have evidence that there are many VMTLs of H4. A few of these labelings are shown in Figure 10. We expect that 
this will happen for other even crown graphs as well.
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Figure 10: Three additional E-Super VMTL of H4 with Magic Number 36

Conjecture 1.  If n ≥ 4 is even, then there exists an E-super vertex-magic total labeling of crown graph Hn.

We have shown in Theorem 3 that for any even n ≥ 4, it is possible for there to exist an E-super VMTL of crown 
graph Hn, but one will never exist for any odd n. This theorem does not guarantee that an E-super VMTL  
exists, but we conjecture that every even crown graph Hn with n ≥ 4 will have a VMTL, based on computational 
evidence. 
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