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Controlling the morphology of copper-silica

nanocomposites from laser ablation in liquid

Mallory G. John and Katharine Moore Tibbetts
Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA

Abstract

Synthesis of copper-silica nanocomposites with controllable morphology and

composition were produced with a one-step femtosecond reactive laser ablation

in liquid (fs-RLAL) technique. The composite nanomaterials were generated

by focusing femtosecond near-IR laser pulses onto a silicon wafer immersed in

an aqueous copper(II) nitrate solution, with the solution pH adjusted using ni-

tric acid or potassium hydroxide. Under acidic conditions (pH 3.0 and 5.4),

little copper was incorporated in the predominantly silica product (1.4 and 1.5

wt.%). These acidic conditions yielded large ⇠30�80 nm silica particles, with

some particles consisting of copper core/silica shell. In contrast, increasing the

solution pH to 10.4 resulted in extremely high Cu loading of 31.5 wt.% and a

composite product consisting of 1.5 nm copper clusters distributed throughout a

matrix of amorphous silica and copper phyllosilicate. The relationship between

the precursor solution pH and the product morphology and copper loading is

attributed to the point of zero charge (PZC) of silica, in which the high solution

pH allows for electrostatic adsorption to occur between the deprotonated silica

clusters from the ablated silicon wafer and the copper hydroxide dimer formed

in solution.

Keywords: reactive laser ablation in liquid, femtosecond laser, copper-silica

nanocomposite, copper phyllosilicate
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1. Introduction

Copper nanoparticles (Cu NPs) are valued for their low cost, high conduc-

tivity, and thermal stability, making them a popular alternative to rare earth

metals for biological sensing and imaging [1], antimicrobial applications [2],

inkjet-printable electronics [3], and catalysis [4]. In particular, the ability of

copper to access many oxidation states makes supported Cu NPs active cat-

alysts towards reactions such as electrochemical reduction [5], thermochemical

hydrogenation [6] and photochemical reduction [7] of CO2, photocatalytic degra-

dation of organic dyes [8], and other organic transformations [9–11].

While Cu NPs possess high catalytic activity and high temperature sta-

bility, a major bottleneck to using copper-based nanomaterials for catalysis is

the propensity for small Cu NPs to agglomerate, and for Cu surfaces to oxidize.

Support materials such as graphene, oxides, polymers, and metal-organic frame-

works (MOFs) are added to prevent agglomeration and surface oxidation, while

preserving the high catalytic activity of Cu NPs [4, 12, 13]. In particular, silica

has been used as a support material for various metal NPs due to the silanol sur-

face groups that enhance binding with metal NPs [4, 14]. The majority of syn-

thetic approaches to fabricating copper-silica nanostructures involve wet chem-

ical methods such as incipient wetness impregnation, deposition-precipitation,

strong electrostatic adsorption, and ammonia evaporation [4, 5, 11, 13–15]. In

these methods, the silica is either prepared by the Stöber method or purchased

commercial amorphous/fumed silica, and the copper is added in the form of

a salt complex. Copper-silica bonding is achieved by heating up the slurry or

solution, followed by calcining the finished product. A drawback of many of

these methods is that uneven distribution of the copper complex throughout

the silica often results in poorly dispersed Cu NPs with large size distributions

and low copper loading.

Laser ablation in liquid (LAL) has recently emerged as a robust alternative

synthesis route to myriad (supported) NPs that can overcome many challenges

inherent in wet-chemical synthesis [16–19]. LAL involves focusing intense laser
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pulses onto a solid target immersed in liquid, which produces a localized plasma

at the solid-liquid interface containing reactive electrons, radicals, and ions [20].

The plasma reaches transient temperatures exceeding 5000 K that cool on sub-

microsecond timescales due to the surrounding ambient liquid [21]. These highly

nonequilibrium conditions generate NPs comprised of the target material with

exotic metastable phases and bonding environments that are stable without

added capping agents, making them ideal for catalysis applications [16–18].

Because LAL generates nanomaterials under ambient conditions in water, it is

considered a ‘green’ and sustainable synthesis method [16, 22]. LAL of a Cu

target in various solvents have been widely used to synthesize Cu NPs with

solvent- and laser-dependent oxidation states and morphologies [23–26].

When LAL is carried out in a solution containing metal ions or other species

that interact with the ablated target atoms, the technique is referred to as

Reactive Laser Ablation in Liquid (RLAL) [16]. The first demonstration of

RLAL in 2008 produced Ag and Au NPs by ablating a silicon wafer immersed

in either Ag(NO3) or HAuCl4 aqueous solutions [27]. Since this initial work,

many metastable and unique bi- and multi-metallic nanostructures have been

reported. For instance, mixed-metal Pt-Co and Pt-Co-Cu oxide NPs for fuel

cell applications were synthesized by ablating a Co target immersed in Pt and

Cu metal salt solutions [28–30], and Ni-Fe layered hydroxides doped with Ti

and La for electrochemical water splitting were synthesized by ablation of Fe

powder in aqueous solutions of Ni, Ti, and La salts [31, 32]. Complex metal-

oxide mineral phases of copper and zinc were synthesized by RLAL of Zn or Cu

targets immersed in aqueous Zn or Cu salt solutions [33], and silica-supported

Au or Ag nanomaterials have been synthesized by ablating silicon wafers in

aqueous gold or silver salt solutions [27, 34–36]. Recently, we generated sub-3

nm Au NPs dispersed throughout a silica matrix by ablating a silicon wafer

immersed in a [AuCl4]
– solution using femtosecond laser pulses [36].

In this work we report the synthesis and characterization of copper-silica

nanocomposites generated from a femtosecond-RLAL (fs-RLAL) technique, in

which fs laser pulses are focused onto a silicon wafer immersed in Cu(NO3)2
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solutions under three pH conditions. The product morphology and Cu loading

on the silica were strongly dependent on the precursor solution pH, with the

highest copper loading achieved at pH 10.4. This pH-dependent copper loading

was reflected in the catalytic activity of the samples, determined using the

model reaction of catalytic para-nitrophenol reduction by sodium borohydride

[37]. We will discuss the role that the solution pH plays on the surface charge

of ablated silica species, and how surface interactions drive the formation of

different morphology and wt.% loading of Cu in the products.

2. Materials and Methods

2.1. Materials

Silicon wafers (n-doped, (111)-oriented, single side polished, 300 µm thick,

NOVA electronic materials), copper(II) nitrate, Cu(NO3)2 (Fisher), potassium

hydroxide, KOH (Fisher), nitric acid, HNO3 (Fisher), sodium borohydride,

NaBH4 (Acros Organics), and para-nitrophenol, PNP (Acros Organics) were

used as received. Stock and working solutions were prepared with purified wa-

ter from a Millipore Ultrapure water system (resistivity is 18.2 M⌦cm�1 at

25�C).

2.2. Sample Preparation

Working solutions of Cu(NO3)2 (2.0 mM) were prepared from a freshly pre-

pared aqueous stock solution (50 mM) and the pH was recorded as ⇠5.4. Either

HNO3 (1.0 mM) was added from a 10 mM stock solution or KOH (5.0 mM)

was added from a 200 mM stock, resulting in working solution pH values of 3.0

and 10.4, respectively. The working solution was transferred to a quartz cuvette

(3 mL) equipped with a stir bar, and a pre-cut silicon wafer was placed in the

cuvette and secured to one side.

fs-RLAL irradiation of the Si wafer immersed in the working solution was

conducted for 30 min while stirring (details of laser parameters in section 2.4),

followed by centrifugation for 15 min at 6,000 rpm (Thermo Fisher AccuSpin
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Micro 17). The supernatant was replaced with water and centrifuged a second

time for 15 min at 6,000 rpm. The resulting pellet was collected for either

characterization or redispersed in water and tested for its catalytic activity.

The following naming convention was used for all samples: Cu-silica-[solution

pH]. For example, Cu-silica-3.0 corresponds to the sample containing 2.0 mM

Cu(NO3)2 and 1.0 mM HNO3, with a pH of 3.0. Table 1 displays the sample

names and solution compositions for clarity.

Sample Solution Compositiona Initial Solution pH

Cu-silica-3.0 2 mM Cu(NO3)2 + 1 mM HNO3 3.0±0.1

Cu-silica-5.4 2 mM Cu(NO3)2 5.4±0.1

Cu-silica-10.4 2 mM Cu(NO3)2 + 5 mM KOH 10.4±0.2

Table 1: Sample, solution composition, and initial solution pH values for experiments. aall

solution prepared in DI water.

2.3. Catalytic Reduction of Para-nitrophenol

The catalytic reduction of para-nitrophenol (PNP) by NaBH4 was carried

out in a home-built in situ UV-vis spectrometer (details in section 2.4). In a

typical catalytic run, the collected pellet (details in section 2.2) was dispersed

in water (3.0 mL) and 300 µL of this solution was added to a cuvette containing

PNP (0.1 mM) and NaBH4 (10 mM) while stirring. The PNP was added from a

stock solution (1.5 mM) and the NaBH4 was added from a freshly prepared stock

solution (100 mM). The absorbance at 400 nm (as the para-nitrophenolate ion)

was recorded, and the reaction was considered complete when it had disappeared

completely. Data processing for the PNP reaction was conducted based on the

methods of Ref. [38] and details are provided in the Supplemental Information

(Fig. S1).

2.4. Instrumentation

The experimental laser setup has been described in detail in Refs. [36,

39, 40]. Briefly, a Ti:Sapphire regenerative amplifier delivering 7 mJ, 30 fs
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pulses with a bandwidth centered at 800 nm and a repetition rate of 1 kHz

was attenuated to 200 µJ for the ablation experiments. The 10⇥10⇥40 mm

quartz fluorescence cuvette containing the pre-cut silicon wafer was placed 10

mm before the focal point of a f = 50 mm lens. The converging beam propagates

through 9.7 mm of liquid to reach the 0.3 mm thick Si wafer. We note that no

white light was generated on the front face of the cuvette because the large initial

beam diameter of 11 mm and high numerical aperture of the focusing lens were

sufficient to eliminate any nonlinear optical effects until a few mm before the

Si-liquid interface. The spot size on the wafer was 85 µm diameter, measured

using an optical microscope of an ablated Si wafer. Under these conditions, the

laser fluence was 3.5 J cm�2 and peak intensity was 1.17⇥1014 W cm�2. The

cuvette was placed on a micro-stir plate (Thermo Scientific) mounted on x- and

y- motorized translation stages (Thorlabs), which moved in a zig-zag pattern at

a velocity of 0.5 mm/s.

PNP catalysis runs were carried out in a home-built in situ UV-vis spectrom-

eter, with a deuterium-tungsten light source (Ocean Optics, DH2000-DUV),

optical fibers, a sample holder for 10⇥10⇥40 mm cuvettes placed on a stir

plate (300 rpm stir rate), and a compact spectrometer (Ocean Optics HR4000).

Spectra were collected every 1.2 seconds using LabVIEW software (National

Instruments).

2.5. Characterization

Transmission Electron Microscopy (TEM) TEM images were collected

on a JEOL JEM-1230 TEM at 120 kV. High resolution TEM (HRTEM) images

and SAED patterns were collected on an FEI Titan 80�300 kV with a Gatan

794 Multi-Scan Camera. Samples were prepared by drop-casting the diluted

pellet onto a carbon-coated copper grid (100 mesh, Ted Pella, Inc.) and left to

dry for at least 24 hr at room temperature. Size distributions were determined

by measuring 300 individual particles from three separate parts of the grid

using ImageJ software. Gatan Microscopy Software Suite version 3.x was used

to determine the crystal lattices of the nanoparticles in the HRTEM images.
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Details on this process are included in the Supplemental Information (Fig. S2).

Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy

(SEM-EDX) SEM-EDX was carried out on a Hitachi FE SEM SU-70 (spa-

tial resolution 1.0 nm) equipped with an Energy Dispersive X-ray Spectroscopy

(EDX) detector. Images were obtained at 10 keV and elemental analysis was

conducted at 15 keV, with ZAF standardless quantification employed for EDS

measurements. Samples were prepared by drop casting the centrifuged pellets

onto conductive carbon tape stabilized on an aluminum stage, and drying under

vacuum at room temperature.

X-ray Photoelectron Spectroscopy (XPS) XPS was conducted on a

PHI VersaProbe III Scanning XPS Microprobe with a monochromatic Al k↵

X-ray source (1486.6 eV) run at 25 W and 15 KV, with a pass energy set to

112 eV for survey scans and 69 eV for high resolution spectra. A spot diameter

of 200 µm was irradiated using a take off angle of 90�, and a detector was

situated at an angle of 45�. Charge neutralization was achieved by employing

an ion gun and a flood gun during the analysis. Samples were prepared by drop

casting the centrifuged pellet onto conductive carbon tape. Sample analysis was

carried out using CasaXPS Software version 2.3.19PR1.0, employing Gaussian

and Lorentzian convolution to fit the spectral lines, and all high resolution

spectra were corrected by shifting the C1s peak at 284.8 eV.

X-ray Diffraction (XRD) XRD was conducted on a Panalytical Em-

pryrean Diffractometer with CuK↵ radiation (� = 0.15418 nm) at 40 kV and

45 mA, with scanning angle (2✓) of 10�90� and a gonio focusing geometry.

Samples were prepared for XRD analysis by drying the centrifuged pellet under

vacuum at room temperature.

Fourier Transform Infrared Spectroscopy (FTIR) FTIR analysis was

conducted on a Nicolet iS50 FTIR spectrometer equipped with a mid- and far-

IR-capable diamond ATR. Spectra were obtained using 32 scans in the range

of 4000 to 400 cm�1 with 5 cm�1 resolution. Samples were prepared for FTIR

analysis by drying the centrifuged pellet under vacuum at room temperature.
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3. Results

3.1. Characterization

The three Cu-silica products are visualized in the TEM images displayed

in Fig. 1a-c with detailed insets, and additional TEM images are reported

in the Supplemental Information (Fig. S3). While all three products contain

large spherical particles around ⇠70�100 nm in diameter, these particles are

most abundant in the Cu-silica-3.0 sample, and rarely seen in the Cu-silica-10.4

sample. Many of the spherical particles in the Cu-silica-3.0 and Cu-silica-5.4

samples are smooth throughout the entire particle, while some have a darker

core and lighter shell, indicative of a Cu-core and silica-shell structure (insets in

Fig. 1a and b). The Cu-silica-3.0 sample had very few core-shell particles. Size

distribution analysis was possible on only 43 particles, and histograms of the

core and outer diameter are displayed in Fig. S3 in the Supplemental Material.

The Cu-silica-5.4 had substantially more core-shell particles than the Cu-silica-

3.0 sample, with size distribution analysis displayed in Figure 1d.The inner

core had a mean diameter of 22.4±14.4 nm with sizes ranging from 2�63 nm,

and the outer shell mean was 32.1±14.8 nm with sizes ranging 12�84 nm in

diameter. The Cu-silica-10.4 sample exhibits completely different morphology

from the samples produced at lower pH (Fig. 1c). This product predominantly

contains small, 1.52±0.75 nm Cu NPs dispersed throughout a matrix made up

of long nano-needles and amorphous structures, along with a few large spherical

particles decorated with small Cu NPs (inset). A histogram of the Cu NPs is

displayed in Fig. 1e fit to a Gaussian distribution.

HRTEM images of the Cu-silica-5.4 and Cu-silica-10.4 products are displayed

in Fig. 2a and c with SAED patterns (Fig. 2b and d). HRTEM analysis

was not performed on the Cu-silica-3.0 sample due to the low number of core-

shell particles. The inset in the Cu-silica-10.4 HRTEM image shows a small

crystalline nanoparticle with lattice spacings measuring 2.13 Å corresponding to

the (200) plane of Cu2O [41]. The bottom inset of Fig. 2a shows the amorphous

structure of the silica. The SAED pattern in Fig. 2b has two faint diffraction
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Figure 1: TEM images of Cu-silica samples at pH 3.0 (a), pH 5.4 (b), and pH 10.4 with

histograms of Cu-silica-5.4 (e) and Cu-silica-10.4 (e).
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rings measuring 2.41 Å and 2.04 Å corresponding to the (111) plane of Cu2O

and the (111) plane of fcc-Cu [42]. The Cu-silica-5.4 sample in Fig. 2c had

some small crystalline nanoparticles with lattice spacings measuring 2.07 Å,

corresponding to the (111) plane of fcc-Cu. It was difficult to confirm that the

core of the core-shell particles was crystalline copper due to the thick amorphous

layer over top of it (bottom inset in Fig. 2c). The SAED pattern of the Cu-

silica-5.4 sample in Fig. 2d shows three faint rings with diameters 3.11 Å, 2.01

Å, and 1.14 Å, corresponding to the (111) plane of fcc-Si, the (111) and (311)

planes of fcc-Cu [41]. Our results are consistent with the Cu crystalline phases

generated by laser ablation of copper, in which the major phases of copper

generated included Cu2O and fcc-Cu [23–25].

Figure 2: HRTEM images of Cu-silica-10.4 (a) and Cu-silica-5.4 (c) with SAED patterns (b)

and (d), respectively.
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SEM-EDX analysis was performed on the three Cu-silica samples, with a

representative EDX spectrum of the Cu-silica-10.4 sample displayed in Fig. 3.

The peaks located at 0.525 keV, 0.950 keV, and 1.74 keV correspond to the O

K↵, Cu L↵, and Si K↵ lines. The inset graph shows the wt.% Cu, Si, and O

quantified in the samples, and Table 2 displays the numerical values of wt.% Cu,

Si, and O from EDX, XPS, and ICP-OES analysis. The Cu-silica-10.4 sample

contains the highest amount of Cu, about ten to twenty times the amount as the

Cu-silica-5.4 and Cu-silica-3.0 samples. The significantly higher Cu loading in

the Cu-silica-10.4 sample is corroborated by the ICP-OES and XPS results, also

displayed in Table 2. XPS data was converted from atomic %, with calculations

provided in Table S1 in the Supplemental Information. XPS analysis shows

significant surface oxidation of the three samples, which is compensated for

by the decrease in Cu content in the Cu-silica-10.4 sample, and decrease in Si

content in the other two samples. The copper content did not decrease between

EDX and XPS analysis for the Cu-silica-5.4 sample, suggesting that the copper

present within the top 10 nm of this sample is protected from surface oxidation.

Figure 3: SEM-EDX spectrum of representative Cu-silica-10.4 sample with inset of wt.% of

SiK, OK, and CuL for different pH solutions.
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ICP-OESa SEM-EDXa XPSbc

Sample Cu Cu Si O Cu Si O

Cu-silica-3.0 1.4±0.4 4.3±0.9 67.5±1.5 28.1±0.7 0.3±0.3 40.1±0.1 59.6±31

Cu-silica-5.4 1.5±0.1 2.6±0.4 86.5±2.1 11.0±1.7 2.6±2.0 45.9±0.9 51.5±6.8

Cu-silica-10.4 31.5±0.4 36.5±2.1 37.3±4.6 26.2±2.6 19.2±6.1 22.6±2.7 58.1±5.5

Table 2: weight % Cu from ICP-OES, weight % Cu, Si, and O from SEM-EDX, and XPS

analysis. aanalysis representative of entire sample material. banalysis representative of top

10 nm surface layer. cValues converted from atomic %, which is provided in Table S1 in the

Supplemental Information.

High resolution Cu2p3/2 and Si2p atomic orbital XP spectra are displayed

in Fig. 4a and b with the Cu-silica-10.4 spectra on the bottom panels and

the Cu-silica-5.4 and -3.0 samples on the top panels (a Si2p spectrum of silica

generated from ablating a silicon wafer in water is displayed in the Supplemental

Information). No Cu was detected in the Cu2p3/2 spectrum for the Cu-silica-3.0

sample. In the Cu2p3/2 spectra, a peak at 932.7 eV (purple) was deconvoluted

in both samples, which corresponds to either Cu0 (932.6 eV) or Cu+ as in

Cu2O (932.2 eV) [43–47]. The second peak around 934 eV in the Cu-silica-

5.4 sample (blue) corresponds to Cu2+ and matches that of a CuO species

[42, 48, 49]. In the Cu-silica-10.4 sample, this feature it is shifted to 935.3 eV

(black), corresponding to Cu2+ interacting with silica [11, 42]. In particular, this

feature matches the binding energy of copper phyllosilicate (Cu2Si2O5(OH)2,

Cu-PS) near 935�936 eV [11, 49, 50]. The peaks around 942�945 eV correspond

to shake up satellite features from the 2p!3d transition from the 3d9 ground

state electron configuration of Cu2+ [43, 44, 51]. This feature is strongly present

in the Cu-silica-10.4 sample, and only weakly visible in the Cu-silica-5.4 sample

due to its Cu low loading.

The Si2p atomic orbitals in Fig. 4b have several silicon species, with a large

peak centered around 103 eV corresponding to oxidized silica, and a small peak

near 99 eV (green) corresponding to Si0 [52, 53]. Within the large oxidized

silicon peak around 103 eV, two species are deconvoluted for all three samples-
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the peak at 103.5 eV (gray) corresponds to Si4+ of Si�O�Si tetrahedrally co-

ordinated silicon in amorphous silica [53–55], and the feature at 102.2 eV (dark

blue) corresponds to Si3+ in the form of Si2O3 [54, 55]. A third species was

deconvoluted in the Cu-silica-10.4 sample at 100.7 eV (dark green), close to the

101 eV binding energy of Si+ [54–56]. Such down-shifting of the Si binding

energy has been attributed to interaction of silica with Cu atoms [9, 57]. The

up-shifted Cu2+ peak and the down-shifted Si2+ peak suggest an interaction

where Cu is slightly positive and the Si is slightly negative.

Figure 4: High resolution XP spectra of Cu2p3/2 (a) and Si2p (b) atomic orbitals. Cu-silica

samples generated under same experimental conditions, with different pH solutions.

Figure 5 displays the FTIR spectra of the three samples along with a con-

trol silica-10.4 sample, generated by ablating a silicon wafer immersed in water

adjusted to pH 10.4 with KOH. The peaks at 800 and 1090 cm�1 in the con-

trol sample (gray) correspond to the symmetric and asymmetric stretching of

amorphous silica. These two bands are prominent in the Cu-silica-3.0 and -5.4

samples (red and blue), but the 800 cm�1 band is nearly absent Cu-silica-10.4

spectrum (magenta). Moreover, the 1090 cm�1 band is significantly down-

shifted to 968 cm�1. This shift corresponds to a shift in bonding environment
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from Si�O�Si to Si�O�Cu, due to the longer Cu-O bond length than Si-O

[57]. This band is also close to the 1024 cm�1 feature in Cu-PS [6, 58–60].

The Cu-silica-10.4 sample also has a weak feature that could be attributed to

Cu(OH)2 at 690 cm�1, Cu-PS at 670 cm�1, or both [6, 58–61]. The broadness

of this band and the weak intensity make it difficult to distinguish between

these copper structures. The peak around 1400 cm�1 that is present in the Cu-

silica-3.0 sample likely arises from the symmetric stretching vibration of nitrate

groups in Cu2NO3(OH) [62]. All samples have peaks around 1652 cm�1, which

corresponds to the O�H bending mode of adsorbed water [11, 62].

Figure 5: FTIR spectra of silica-pH 10.4 (generated from ablating Si wafer in water at pH

10.4), the Cu-silica-3.0, Cu-silica-5.4, and Cu-silica-10.4 samples.

XRD patterns of the Cu-silica-10.4 (magenta) and Cu-silica-5.4 (blue) sam-

ples are displayed in Fig. 6 compared to a control sample in which a silicon wafer

was ablated in water (black). All samples contain sharp, intense peaks located at
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28.4, 47.3, 56.1, 69.2, 76.4, and 88.1 2✓ corresponding to the (111), (222), (331),

(440), (533), and (640) planes of cubic silicon (ICDD: 04-012-7888). There is a

small, broad peak around 36 2✓ present only in the Cu-silica-10.4 sample that

corresponds to either the (111) CuO plane (35.6 2✓), the (111) plane of Cu2O

(36.5 2✓), or a Cu-PS structure [6, 58–60]. The inset shows the Gaussian peak

fit yielding a FWHM of 4.90 2✓ corresponding to a 1.78 nm diameter of the

crystalline nanoparticle, according to the Scherrer equation [63]. The FWHM

of the fcc-Si (111) peak at 28.4 2✓ was determined to be 0.25 2✓, yielding a

silicon crystalline diameter of 33.6 nm. The XRD pattern shows that there are

crystalline silicon particles present in these samples, consistent with the large

spherical particles visible in the TEM images in Fig. 1a. The absence of silica

in the XRD patterns supports the amorphous nature of the silica as evident in

the HRTEM images, Si2p XPS spectra, and FTIR spectra.

Figure 6: XRD patterns of Cu-silica-10.4, Cu-silica-5.4, and silica generated from laser ablation

of silicon wafer in water.
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3.2. Catalytic Activity

The catalytic reduction of para-nitrophenol (PNP) by sodium borohydride

was employed as a model reaction to compare the catalytic activity of the silica-

Cu samples. Because all samples were irradiated under the same laser condi-

tions and underwent the same post-synthesis processing procedure, we assume

the amount of silica present in all samples is equivalent, and the rate constants

reported reflect the catalytically active copper particles in the samples. There-

fore, the same volume of re-dispersed pellet was added to all PNP reactions.

Experimental details and calculations for determining the catalytic rate con-

stants have been described in detail elsewhere [36, 38] and are provided in the

Supplemental Information.

Briefly, the catalytic reduction of PNP to para-aminophenol (PAP) by sodium

borohydride follows pseudo-first order reaction kinetics due to the excess of

NaBH4 added to the reaction

PNP +NaBH4(xs)
Cu�silica�������! PAP. (1)

The para-phenolate ion absorbs strongly at 400 nm, allowing for the reaction

rate to be determined by monitoring its absorbance upon the addition of the

catalyst. The apparent rate constants, kapp (s�1) versus wt.% Cu from XPS

analysis are displayed in Fig. 7, with the different pH conditions labeled. There

is a linear relationship between the rate constant and the surface Cu content,

reflecting the high catalytic activity of the Cu-silica-10.4 sample which contains

the highest amount of surface Cu. While nearly no Cu was detected in the

Cu-silica-3.0 sample, it still possess catalytic activity, suggesting that the there

was Cu present in the sample, but in very small quantities.
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Figure 7: Apparent rate constant (kapp) versus at.% Cu from XPS analysis.

4. Discussion

Wet chemical approaches to fabricating oxide supported metal nanoparticles

emphasize the importance of choosing the support, metal precursor, and solution

pH for maximizing the metal loading [64]. Determining the point of zero charge

(PZC) of the support material aids in identifying the pH conditions for optimal

interaction between the metal complex and the oxide support [64, 65]. The

PZC of a material is the pH at which the hydroxyl groups that populate the

surface of an oxide have a neutral charge. When the pH is below the PZC of

the support, the hydroxyl groups are protonated, and when the pH is above the

PZC, the hydroxyl groups are deprotonated [13, 15, 64]. Silica has a PZC of

pH 4, so when the solution pH is above this value, cationic metal complexes in

solution can adsorb onto the negatively charged surface of the silica [15].

The copper loadings reported in Table 2 demonstrate the need for basic

pH to achieve high copper loading under our synthesis conditions; even in the

weakly acidic solution at pH 5.4, little copper was found in the product. In

contrast, the Cu-silica-10.4 sample had a high copper loading of 31.5 wt%; much
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higher than many previous reports using wet chemical techniques that typically

achieve around 10 wt.% [15, 65–69]. Previous investigations of pH-dependent

metal loading on silica that achieved copper loadings above 30 wt.% have formed

Cu-PS structures [10, 58, 70, 71], consistent with our results. However, the

wet-chemical synthesis methods used are considerably more time- and material-

consuming than our RLAL method. For instance, the method of Toupance et

al., in which a copper nitrate solution adjusted to pH 9 using ammonia mixed

with nonporous silica was stirred at room temperature for one week, required

100 times the amount of copper relative to our conditions to yield 36.6 wt.% Cu

with 4.5 nm Cu NPs [58].

In contrast to pre-synthesized fumed silica or nonporous silica spheres used in

wet chemical methods, our silica is produced in situ from laser ablation. As the

silicon atoms and clusters are ejected into solution, they may interact with other

nearby species including hydrated electrons and hydroxyl radicals, resulting in

oxidation to silica. Under basic conditions, nearby OH– ions may interact with

the oxidized silica clusters, deprotonating their surfaces [72]. The negatively

charged silica clusters attract nearby copper in the form of the bridged copper

hydroxide dimer, [Cu2(OH)2]
2+, which is formed in the pH range 6.5�10.5

[15, 73]. The abundance of deprotonated silica clusters generated from laser

ablation provide numerous sites for these copper complexes to interact with,

driving the high copper loading under basic conditions.

Figure 8 displays a graphical representation of the formation mechanisms

of the copper-silica materials under the different pH conditions. We note that

the solution pH decreased from 10.4 to 8.5 and 5.4 to 4.2 during synthesis of

the Cu-silica-10.4 and -5.4 samples, respectively. The two samples generated at

final solution pH less than pH 4 are shown above the ‘silica PZC 4.0’ line [13, 15]

in Fig. 8. Under these conditions, silica clusters ablated off of the Si wafer into

solution become protonated and repel the surrounding Cu2+ ions, leading to

low amounts of Cu incorporated into the product. While it is possible that a

small amount of Cu in the product dissolves in the acidic solution following laser

synthesis (see details in the Supporting Information), this process is unlikely to
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be the primary cause of low Cu incorporation because little Cu is incorporated

even at an initial pH of 5.4. For the particles in which Cu is incorporated into

the particles, segregation of the Cu-silica phases result in large Cu-core/silica-

shell particles with varying sizes and shell thicknesses. The formation of the

silica shell rather than silica core may be due to the higher surface energy of

silicon than copper in the liquid form. Synthesis of Cu-core/silica-shell parti-

cles by evaporating elemental Cu and Si using a high powered electron beam

resulted in phase segregation with the silicon shell forming around liquid Cu,

due to the higher surface energy of liquid silicon relative to liquid Cu [74, 75].

In contrast, the proposed formation mechanism of the Cu-silica-10.4 sample is

displayed below the line labeled ‘silica PZC 4.0’, where Cu-O-Si bonds form

due to the strong interaction between the deprotonated silica clusters and the

cationic copper hydroxide dimers. The morphology contains sheet- and needle-

like structures comprised of amorphous silica, copper phyllosilicate, or both,

decorated with sub-2 nm Cu clusters. The small size of the Cu particles likely

results from the strong interaction between the Cu nuclei and the silica clusters,

halting further Cu NP growth. The presence of sub-2 nm clusters dispersed

throughout the silica is similar to our recent report of fs-RLAL synthesis of sub-

3 nm Au NPs dispersed throughout a silica matrix under basic conditions [36].

Our observation of distinct copper-silica material structures using fs-RLAL at

different solution pH is consistent with previous RLAL studies showing a depen-

dence of Pt-Co NP properties on solution pH [29, 30] and suggests that solution

pH provides a generally applicable method to control nanomaterial properties

with RLAL.

5. Conclusion

We have synthesized copper-silica nanocomposites using a fs-RLAL approach,

with distinct copper-silica morphologies forming from different precursor solu-

tion pH conditions. The highest copper loading on silica of 31.5 wt.% achieved

with a precursor solution pH of 10.4 generated 1.52±0.75 nm Cu NPs well dis-
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Figure 8: Graphical representation of the pH dependent formation of Cu-silica samples

persed throughout an amorphous matrix. TEM, XPS, XRD, and FTIR analysis

are consistent with the coexistence of copper phyllosilicate and amorphous silica

in the matrix. Lower solution pH of 5.4 and 3.0 resulted in Cu-core/silica-shell

morphologies with Cu NP sizes ranging from 30�80 nm in diameter, and only

1.4–1.5 wt.% loading of Cu. The catalytic activity of the synthesized mate-

rials was proportional to the copper loading, with very low catalytic activity

toward the reduction of para-nitrophenol from the samples synthesized at pH

3.0 and 5.4, and much higher catalytic activity from the sample synthesized at

pH 10.4. The pH dependent compositions and morphologies of our copper-silica

nanocomposites are attributed to the interaction of positively charged Cu pre-

cursor species and ablated silica species. At low pH, protonation of silica clusters

results in copper and silica phase segregation, forming core-shell structures. At

high pH, the copper hydroxide dimer ion strongly interacts with deprotonated

silica clusters, resulting in sub-2 nm Cu clusters supported on a copper phyl-

losilicate/amorphous silica matrix. The results in this study demonstrate the

importance of understanding the effect of solution pH on the electronic charge

of ablated target material to allow for better control over the product morphol-

ogy. This approach to synthesizing Cu-silica composite nanomaterials provides
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valuable insight into designing RLAL reaction conditions for synthesizing addi-

tional metal-oxide nanocomposites with high metal loadings that may be used

for catalytic applications.
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