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ABSTRACT 

 
Detailing the Genetic and Environmental Influences Shared Between 
Conventional and Electronic Cigarette Use Across Measures of Initiation and Past 
12-Month Use 
 
By James Samuel Clifford, MS, Ph.D. 
 
A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor 
of Philosophy at Virginia Commonwealth University 
 

Virginia Commonwealth University 2021 
 

Director: Elizabeth Prom-Wormley, MPH, Ph.D. 
Assistant Professor 

Division of Epidemiology 
Department of Family Medicine and Population Health 

 
Introduction. Tobacco use continues to be a public health crisis with nearly 500,000 

Americans suffering premature mortality directly attributable to tobacco use in 2014. 

Tobacco use, particularly among those who are nicotine dependent, has been 

associated with a host of negative health outcomes such as various cancers and 

cardiovascular system deficits. New research and development efforts have created 

new nicotine delivery systems whose health consequences are not yet fully understood 

such as electronic cigarettes. It is possible there are shared genetic and environmental 

factors that influence an individual’s liability to initiate cigarette or electronic cigarette 

use, as both systems are designed to deliver nicotine. 

Objective. The purpose of this study is to detail the shared genetic and environmental 

liability toward electronic and conventional cigarette initiation, or current use, and how to 

best measure these concepts to ensure consistency and reliability of results.  

Methods. Four studies were used to help resolve the genetic and environmental 

influences that underlie cigarette and electronic cigarette initiation. The first study 
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(Adolescents and Young Adult Twin Study) to estimate the degree to which genetic and 

environmental factors for ECIG and CIG initiation were shared. Chapter 4 examined 

specific variants in the form of genome-wide association analysis (Genes for Good). 

Chapter 4 also addressed overlap via the use of genome-wide polygenic scores to 

quantify the degree of molecular overlap between these phenotypes (GWAS and 

Sequencing Consortia of Alcohol and Nicotine). The third study quantified a known 

environmental exposure for both CIG and ECIG use while also probing a potential 

environmental moderator (Population Assessment of Tobacco and Health). Meanwhile, 

the fourth study examines how genetically informative samples have measured 

cigarette use and shows the heterogeneity of results as a function of measure used. 

Further, this fourth study offers advice for future studies of electronic cigarettes and how 

best to quantify electronic cigarette use. 

Results. The first study detected significant contributions of shared genetic and 

environmental factors shared between CIG and ECIG initiation. The twin study 

suggested there was significant overlap between cigarette and electronic cigarette 

initiation in regards to additive genetic variance. The scoping review of tobacco use 

measures in genetically informative samples reported that how individual studies 

measured different aspects of tobacco use lead to different genome-wide significant 

results. Aggregating genetic effects by biological function lead to greater consistency of 

results. Replication of GWAS results at a gene or biological function level rather than 

replicating individual SNPs lead to more consistent results. The third study did not 

detect any genome-wide significant association for ECIG initiation in self-identified white 

participants. Genome-wide polygenic scores reported no association between 
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conventional cigarette initiation and electronic cigarette initiation. Statistical evidence of 

a weak interaction between electronic cigarette coupon receipt, income level, and 

conventional cigarette use was reported. 

Conclusions. These analyses showed there is genetic and environmental overlap 

between CIG and ECIG initiation.   
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CHAPTER 2: USE OF A TWIN STUDY TO QUANTIFY THE GENETIC AND 

ENVIRONMENTAL INFLUENCES SHARED BETWEEN ELECTRONIC CIGARETTE 

AND CIGARETTE INITIATION 

 

Introduction. The use of electronic cigarettes (ECIG) continues to rise in the United 

States, especially among adolescents and young adults. Therefore, it is necessary to 

better understand factors associated with ECIG initiation. However, it is unclear whether 

genetic and environmental factors influence the initiation of ECIGs. Further, the degree 

to which genetic and environmental factors influences are shared between ECIG 

initiation and conventional cigarette (CIG) initiation is unknown. 

Methods.  A sample of young adult twins ages 15-20 (N = 858 individuals; 421 complete 

twin pairs) was used to estimate the genetic and environmental influences on the 

liability of initiation unique to ECIG and CIG as well as the degree to which these factors 

are shared between the two. Approximately 20% of participants ever initiated ECIG use 

and 19% initiated CIG. 11% of the sample had initiated dual use of both products.   

Results. The combined contributions of additive genetic and shared environmental 

influences were non-significant, while unique environmental influences were significant, 

for CIG (ACC = 0.19 [95% CI = 0-0.79], p = 0.57; CCC = 0.42 [95% CI = 0-0.70], p = 0.13; 

ECC = 0.39 [95% CI = 0.18-0.57], p < 0.001) and ECIG (AEC = 0.25 [95% CI = 0-0.83, p 

= 0.44; CEC = 0.42 [95% CI = 0-0.73], p = 0.12; EEC = 0.32 [95% CI = 0.14-0.56], p < 

0.001). There was a significant phenotypic correlation between ECIG and CIG initiation 

(r = 0.72, p < 0.001). This correlation was due to significant contributions due to unique 

environmental factors shared between ECIG and CIG initiation (re = 0.87, p = 0.01, 95% 
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CI = 0.50-0.99). However, genetic factors shared between ECIG and CIG initiation were 

not statistically significant.  

Conclusions. These results suggest that both genetic and environmental influences are 

important for ECIG initiation among adolescents and young adults.  
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CHAPTER 3: TOBACCO USE MEASURES IN GENETICALLY INFORMATIVE 

SAMPLES: HETEROGENITY AND RECOMMENDATIONS FOR FUTURE STUDIES 

Introduction. Many genetically-informative studies, (e.g., twin study designs and 

genome-wide association studies [GWAS}), have been conducted to examine a variety 

of phenotypes. Though twin studies consistently report significant additive genetic 

effects for tobacco use, GWAS have been plagued with inconsistent results. This may 

be due in part to the heterogeneity of measures for tobacco use. A scoping review was 

evaluated how tobacco use has been measured in previously published studies using 

genetically-informative samples.  

Methods. Four databases (PubMed, EMBASE, PsychINFO, and CINAHL) were 

searched with terms from three concepts (tobacco use, genetically-informative designs, 

tobacco measurement), producing 310 articles. Of those, 87 directly used a twin design 

or GWAS (or a variation of GWAS) to examine tobacco use. Articles were then 

classified as one of five tobacco use classifications: initiation, quantitative measures of 

smoking, nicotine metabolism, nicotine dependence, or smoking cessation. Biological 

relevance of significant GWAS results was assessed and summarized using the 

Database for Annotation, Visualization, and Integrated Discovery (DAVID). 

Results. Variants within genes responsible for nicotinic acetylcholine receptor function 

(e.g., CHRNA3, CHRNB4, CHRNA5) as well as nicotine metabolism (CYP2A6) were 

consistently associated with most measures of tobacco use.   

Conclusions. Although GWAS results were highly variable, gene-level reporting of results 

informed by biological function produced greater consistency and improved interpretation across 

studies. 



 xiv 

CHAPTER 4: ELECTRONIC CIGARETTE GENOME-WIDE ASSOCIATION AND 

POLYGENIC SCORES AMONG SELF-IDENTIFIED WHITE PARTICIPANTS: TEST 

OF OVERLAPPING GENETIC INFLUENCES WITH CONVENTIONAL CIGARETTE 

INITIATION 

Introduction. Three studies have used genome-wide association data to produce 

polygenic scores (GPS) or CIG initiation to test its relationship with ECIG use. However, 

these studies have mainly focused on young adults (age 18-25 years old). 

Nevertheless, ECIG initiation occurs across adulthood, but the role of genetic factors 

associated with this outcome remains inconsistent. Some of the genetic variants 

associated with CIG initiation are also expected to influence ECIG initiation since both 

products contain nicotine. Tests for genetic association of ECIG initiation that take 

advantage of the genetic factors associated with CIG initiation may help to clarify the 

etiology of nicotine dependence which begins with initiation of products containing 

nicotine. In particular, specific genetic variants associated with ECIG initiation in adults 

have not yet been identified. Similarly, genetic variants contributing to ECIG and CIG 

initiation across adulthood have also not been identified although this information is 

needed to understand the etiology of nicotine dependence.  

Methods. Data from the Genes for Good (G4G) study, a population-based sample of 

American adults aged 18-93 (N =15,881) were used. Two GWAS were conducted on 

lifetime CIG and ECIG initiation to test for genetic associations across all loci in the 

genome. Additionally, a GPS for CIG initiation was generated and used to test the 

degree to which there was polygenic overlap between CIG and ECIG initiation.  
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Results. No genome-wide significant associations were detected for ECIG or CIG 

lifetime initiation. However, there were four SNPs for ECIG lifetime initiation which 

approached genome-wide significance (locations summarized as chromosome number: 

base pair number- 13:32403784, OR = 0.62, p = 7.49 x 10-7; 2:115364757, OR = 1.28, p 

= 5.19 x10-7; 15:49010393, OR = 0.44, p = 8.01 x 10-7; 6:33902823, OR = 0.79, p = 1.75 

x 10-7).  No significant polygenic association was detected between polygenic scores 

calculated for CIG lifetime initiation in GSCAN with ECIG lifetime initiation as measured 

in G4G. 

Conclusions. This first-ever GWAS of ECIG lifetime initiation identified two SNPs in 

novel genes for tobacco use. There was no evidence for overlapping genetic factors for 

CIG and ECIG lifetime initiation. Replication is strongly encouraged because these 

results have low power to detect statistically significant genetic effects. 
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CHAPTER 5: THE EFFECT OF COUPON RECEIPT ON THE RELATIONSHIP 

BETWEEN INCOME AND PAST 12-MONTH ELECTRONIC AND CONVENTIONAL 

CIGARETTE USE IN ADULTS 

Introduction. Lower household income levels have been associated with electronic 

cigarette (ECIG) or conventional cigarette (CIG) use. However, it is unclear whether this 

relationship changes with the receipt of ECIG or CIG coupons in adults.  

Methods.  Data from Wave 3 of the Population Assessment of Tobacco and Health (N = 

28,148) was used to test the association between tobacco use and income in adults. 

Associations were tested using multinomial logistic regression. 

Results. Income level was significantly associated with CIG-exclusive and dual use, but 

not ECIG-exclusive use. Receipt of ECIG coupons was associated with past 12-month 

ECIG use (aOR = 1.40; 95% CI = 1.05-1.88), CIG use (aOR = 5.69; 95% CI = 5.08-

6.38), and dual use (aOR = 7.61; 95% CI = 6.75-8.58). Receipt of CIG coupons was an 

independent risk factor for ECIG-exclusive (aOR = 2.32, 95% CI = 1.74-3.10) or dual 

use (aOR = 2.62, 95% CI = 2.10-3.28), but protective against CIG-exclusive use (aOR = 

0.74, 95% CI = 0.59-0.92). There was evidence of weak moderation between receipt of 

ECIG coupons and CIG-exclusive use. Individuals with household incomes between 

$50,000 and $99,999 (aOR = 2.51; 95% CI = 1.50-4.16) were more likely to be CIG 

users if they received ECIG coupons relative to those who do not receive ECIG 

coupons. 

Conclusions. Individuals with lower levels of income may be at greater risk for dual use 

of ECIG and CIG as well as CIG-exclusive use. Additionally, receipt of CIG and ECIG 

coupons appears to be an independent risk factor for past 12-month use of tobacco.  
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Chapter 1: General introduction 
 

The Importance of the Problem 
 
Nicotine consumption through electronic cigarette (ECIG) use is an ongoing public 

health issue in adults that contributes to morbidity and premature mortality. In 2014, 

there were 500,000 American adults ages 18 and over whose deaths were attributed to 

nicotine use 1. ECIG use is also associated with mortality and morbidity 2. From 2015 to 

2017, 2,035 emergency room visits were due to explosions or burns from ECIGs 3. 

Further, 68 deaths have been attributed to the e-cigarette, or vaping, product use 

associated lung injury (EVALI) as of 2020 4. ECIGs contain many chemicals including 

propylene glycol (a respiratory irritant), volatile organic compounds (VOC, associated 

with greater cancer risk) 5, and polycyclic aromatic hydrocarbons (PAH, mutagenic and 

carcinogenic properties) 6. Compared to CIG users, ECIG-exclusive users showed lower 

levels of the 5 major classes of tobacco product constituents (tobacco-specific 

nitrosamines, metals, PAHs, VOCs, and nicotine) though still more than non-smokers 7. 

Nevertheless, epidemiologic studies of ECIGs have reported that the odds of chronic 

obstructive pulmonary disease (COPD) and asthma increase with ECIG use 8. ECIGs 

also contain nicotine, which has been associated with many negative health outcomes 

cardiovascular disease 9, psychiatric disorder 10, and substance use disorder 11. 

Nicotine may also be associated with numerous types of cancers (e.g., gastrointestinal, 

pancreatic, breast, and lung) 12–15.  Further, nicotine is an addictive substance, which 

encourages continued use of ECIGs. 7 
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What are Electronic Cigarettes and How Do They Work? 
 
ECIGs are a nicotine delivery system that aerosolizes an e-liquid cartridge containing 

nicotine and a flavor (such as mint, tobacco, or candy) using a power source and an 

electronic heating element 16. An ECIG is activated by pulling air through the 

mouthpiece or pressing an activation button. Upon activation, a battery engages the 

electronic heating element which aerosolizes the e-liquid. Therefore, ECIGs were 

previously marketed and are sometimes considered by conventional cigarette (CIG) 

users as “healthier” products because additional chemicals such as tar are not 

produced or are present in lower concentrations compared to CIGs 17,18.  

 ECIGs have undergone several alterations since they were first sold in the United 

States in 2007 (Figure 1.1). First generation ECIGs were designed to have the look and 

feel of a conventional cigarette, leading to the term “cig-a-like”. Most of these first-

generation devices were designed to be used once and then discarded 19. Second 

generation devices allowed users to refill the tanks for additional e-liquid, leading to 

reusable ECIGs. Third generation ECIGs were designed to be the most accessible and 

allow the user to have the greatest opportunity for personalization and customization. 

Users can vary the voltage, wattage, and power of the device along with additional 

peripheral enhancements such as being able to charge a cell phone with the device 19. 

The most recent version of ECIG devices, the fourth generation, are designed to use 

pods (i.e., cartridges containing e-liquid) and dock with the device (i.e., adjoining the e-

liquid containing pod with the mouthpiece).  

ECIG devices are broken down into two general categories of devices, open and 

closed systems (Figure 1.1) 20. Open system devices allow the user to reload the device 
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with their choice of e-liquid, which may contain different levels of nicotine (including 

having no nicotine) and flavors.  Importantly, open systems allow for additional user 

modifications. Batteries can also be modified creating more aerosolization per pull (i.e., 

low-ohm device) 21. These modifications make it harder to standardize the amount of 

nicotine consumed in open systems. Therefore, open system ECIG use may lead to 

greater nicotine consumption and an increased likelihood of nicotine dependence 22. 

Closed systems cannot generally be modified by the user. Generally, these are single 

use products designed to be discarded after use and not refilled with new liquids. Single 

use, preloaded, “cig-a-likes” are examples of closed systems (Figure 1.1). Many first-

generation devices are closed systems, though closed systems are not limited to first-

generation, having gained in popularity in recent years.  The most popular closed 

system ECIG to date in the United States is JUUL (Figure 1.1). JUUL administers 

nicotine through “pods”, small cartridges that contain standardized amounts of nicotine 

and a heating coil that cannot be replaced 23. JUUL use has increased dramatically, 

doubling from 2018 to 2019, and several reports of harmful use in adolescents and 

young adults were reported at that time 24.  Further, some reports indicate the average 

JUUL user was exposed to much larger amounts of nicotine compared to CIG users 25, 

leading the CDC and FDA to carefully review the product in 2019 26. 

 

Figure 1.1. Common ECIG Devices Showing the Evolution from First Generation 
(Cig-A-Likes) to Fourth Generation Cartridge Devices (JUUL).  
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The Etiology of Nicotine Dependence for Combustible Cigarette Use Motivates Study of 

Initiation and Dependence due to Electronic Cigarette Use 

 The Diagnostic and Statistical Manual, 4th Edition (DSM-IV) defines nicotine 

dependence (ND) as a maladaptive pattern of nicotine use that leads to clinically 

relevant impairment or distress. There were four criteria that contributed to ND: 1) 

tolerance, 2) withdrawal, 3) consuming a larger amount of nicotine than originally 

planned, and 4) difficulty in quitting use 27. The DSM-5 was released in 2013 and 

renamed ND as tobacco use disorder (TUD) 28. The DSM-5 definition of TUD, while 

significantly overlapping with the DSM-IV definition of ND, removed the criteria of 

“difficulty in quitting” while adding an item related to craving 11. As there is significant 

overlap between these definitions, and most research to date has been conducted using 

the DSM-IV definition, this dissertation will continue to use the term “nicotine 

dependence” rather than the updated “tobacco use disorder”. 

Nicotine dependence is considered an acquired disease of the brain since 

nicotine can cross the blood brain barrier 29. Further, nicotine can activate several 

neurobiological pathways that function across several brain structures once in the brain, 

including: reward/saliency, inhibitory control and executive function, and motivation 

(Volkow 2014). Nicotine activates the dopaminergic pathway which has been reported 

to be associated with craving as well as activates the reward pathway associated with 

dopamine leading to feelings of euphoria. Rewarding feelings created via activation of 

this pathway create a feedback loop as the use of nicotine increases to create 

pleasurable feelings, which leads to increased use of nicotine.  
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Several additional neurotransmitters contribute to nicotine dependence. Nicotine 

activates neurotransmitters that influence arousal, attention, and motivations, including 

acetylcholine 30 and norepinephrine 31 which explains the motivating aspects of nicotine 

use. Neurotransmitters that engage the learning and memory systems are also 

influenced by nicotine. These neurotransmitters including serotonin 32, glutamate 33, and 

gamma-aminobutyric acid (GABA) 34, influence ND by helping the body remember the 

rewarding feelings from nicotine use. 

 The development of ND has generally been studied across several stages of CIG 

use behaviors (Figure 1.2). All stages of smoking behaviors and the development of ND 

require an individual to engage in smoking initiation before transitioning to other stages. 

After initiation, individuals may transition into regular smoking wherein they smoke 

consistently. Regular smoking has many definitions with some definitions being tied to 

the number of cigarettes smoked in one’s lifetime, daily cigarette use, or most 

commonly asking participants to self-identify as a regular or current smoker 35,36. Some 

regular smokers become nicotine dependent, as defined above and indicated via 

reliable and validated measures of ND, from CIG use due to consistent exposure to 

nicotine. Finally, individuals may transition to smoking cessation, a process whereby a 

smoker transitions into becoming a non-smoker. Successful cessation is defined as the 

abstinence of further tobacco use. As cessation is a process, individuals can relapse 

and return to regular smoking or nicotine dependence. Cessation is typically defined in 

research studies via self-identified smoking status (i.e., current or former smoker) 37. A 

time frame is sometimes attached to smoking status (e.g., “Have you smoked a 

cigarette in the past 6 months?”) 38. Individuals who achieve cessation may relapse into 
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CIG use after abstaining for a period of time and then begin the cessation process 

again. Common measures of these nicotine phenotypes are presented in Table 1.1. 

Each phenotype has multiple measures which are used to assess these conceptual 

behaviors.

 

Figure 1.2. Stages of Commonly Measured Smoking Behaviors Corresponding to 
the Development of Nicotine Dependence and Smoking Abstinence 
 
 Nicotine dependence is common in American adults. A study of the NESARC-III 

(National Epidemiologic Survey on Alcohol and Related Conditions, 3rd Wave; data 

collected 2012-2013) estimated that 14% of Americans were currently nicotine 

dependent 39. NESARC-III did not include questions on ECIGs, but rather exposure to 

nicotine via combustible (CIG or cigar use) or oral administration (e.g., snuff, dip) only. 

To date, most work detailing the progression of nicotine use and dependence has been 

conducted on CIG use behaviors 40–45. However, the prevalence of CIG use is at its 

lowest point among American adults and is increasing for ECIGs. Between 2010 and 

2013, the prevalence of adult CIG initiation decreased from 8.9% to 5.4% and ECIG 

initiation rates increased from 1.8% to 13% 46. Rates of ND have been stable over the 

same time frame. These trends suggest that any population-level reduction in CIG use 

may reflect a shift to ECIG use. 
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Table 1.1. Common Measures of Cigarette Use Behaviors 
Conceptual Measure Operational Measures 
Initiation 
 

• “Have you ever smoked cigarettes?” (Rhee, 2003) 
• “At what age did you start smoking?” (Heath, 1999) 

Regular or Current 
Smoking 

 
 

• “Do you smoke cigarettes now?” (True 1997 
• “During the last 30 days, how many (if any) have you 

used electronic cigarettes?” (McCabe, 2017) 
• “During the past 30 days, on how many days did you use 

e-cigarettes?” (Selya, 2017) 

Nicotine Dependence 

• Fagerström Test for Nicotine Dependence (FTND) 
• Nicotine Dependence Syndrome Scale (NDSS) 
• DSM-III/DSM-IV Nicotine Dependence Symptom Count 

or Diagnosis 

 

Smoking Cessation & 
Abstinence 
 

• Current smoking status (Current vs former)  
• eCO (expired carbon monoxide) verified 
• Abstinence for a period of time (e.g., 6 months) 

 

 ECIG use is also associated ND, although there are currently few studies that 

have established this conclusion in comparison with CIG use 47. The prevalence of ND 

due specifically to ECIG use in adults is currently unclear in the US. However, a study of 

twelfth-grade students in Los Angeles, California reported that 16.7% of ECIG-exclusive 

users reported some level of ND dependence arising from ECIG use 48. Additionally, a 

recent study of ND using a measure of “time to first cigarette” reported that ND in 

participants who use ECIGs was less than that of CIG users (i.e., participants could wait 

longer to use their ECIG than those who used CIGs). Past 30-day JUUL use was 

associated with at least some level of dependence in a sample of college students 22. 

The mean score for nicotine dependence, using the Penn State Electronic Cigarette 

Dependence Index (PSECDI), was 7.8. Individuals who score below a 4 on the PSECDI 

are not considered to be nicotine dependent. Most individuals in this study had at least 
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low levels (i.e., scores greater than 4) of dependence. This study also reported that the 

level of dependence was unrelated to other tobacco product use, such as CIGs. 

Further, replacing CIG use with ECIG did not change the overall dependence level of 

the user among dual users 49. A systematic review reported increased levels of ND in 

adolescent participants who used fourth generation pod-based ECIGs. While these 

studies report lower levels of ND are associated with ECIG use compared to CIG use, 

other work has suggested ECIGs are as addictive, if not more so, as CIGs 50. These 

results highlight the inconsistency of research results for ND as arises from ECIG use. 

 The most common ECIG use measurement that parallel those of CIG use and 

relate to the development of ND are summarized in Table 1.2. ECIG initiation is 

measured similarly to CIG initiation, by asking participants if they have ever used an 

ECIG. One notable difference is in asking individuals if they own an ECIG, as users 

must purchase a device to use (though this method does not capture individuals who 

may have used a peer’s device). Current ECIG use is also measured similarly to CIG 

use. Most often this is accomplished by asking participants to report if they had used 

ECIGs in the past 30 days. However, ECIGs present novel challenges compared to CIG 

measurement. CIGs are unable to be user modified so there is less variability, whereas 

ECIG measurement should consider characteristics of the device as well as nicotine 

concentration of e-liquid used. Utilizing standardized ECIGs (i.e., giving research 

participants the same device and e-liquid) will reduce variability due to user 

modifications, particularly in randomized controlled trials. Further, puffing behaviors may 

be investigated with attachable mouthpieces for ECIGs which measure puff duration, 

volume, puff count, flow rate, and inter-puff intervals. These measurements require 
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additional hardware and software to gather data.  While measurement of ND due to 

ECIG use is still being investigated, several measures (e.g., PSECDI, e-FTND) have 

been validated.  

Table 1.2. Common Measures of Electronic Cigarette Use Behaviors  
Conceptual Measure Operational Measures 
Lifetime ECIG Initiation 
 

• “Have you ever used an electronic cigarette, even one or 
two puffs?” (O’Loughlin 2017) 

• “Have you ever tried one of the following substances, 
devices, etc.?” followed by a list, including ECIG 
(Hammond 2017) 

Regular or Current ECIG 
Use 

 
 

• “In the last 30 days, did you use any of the following? 
(Mark all that apply)” (Hammond, 2017) 

• “During the last 30 days, how many (if any) have you 
used electronic cigarettes?” (McCabe, 2017) 

• “During the past 30 days, on how many days did you use 
e-cigarettes?” (Selya, 2017) 

Nicotine Dependence 

 

• Penn State Electronic Cigarette Dependency Index 
(PSECDI) 

• Electronic Wisconsin Inventory of Smoking Dependence 
Motives (eWISDM) 

• Electronic Fagerström Test for Nicotine Dependence 
(eFTND) 

• E-Cigarette Dependence Scale (EDS) (Morean, 2018) 

 

The Epidemiology of Adult ECIG Initiation Emphasizes the Need for Study with CIG 

Initiation 

This dissertation focuses on the study of ECIG and CIG initiation for several 

reasons. First, ECIG initiation often co-occurs with CIG initiation in adults. In 2017, 

20.3% of US adults (aged 18+) initiated ECIG use 51. Of those individuals, 21.6% 

reported currently using ECIGs at least some days 52. Daily ECIG use has increased 

between 2016 (6.8%) and 2017 (7.5%) among adults in the United States 52. Further, 

the lifetime prevalence of ECIG initiation among young adults (18-24) doubled between 
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2013 and 2014 from roughly 7% to nearly 14%. ECIG initiation is associated with 

subsequent CIG initiation among never smokers (OR = 3.62, 95%CI = 2.42-5.41) 46,53, 

and the reverse is also true: previous CIG initiation is associated with subsequent ECIG 

initiation (OR = 3.54, 95% CI = 1.68-7.45) 54. 

Second, there are yet undetailed dynamic patterns related to the dual use of 

ECIG and CIGs. These two products are commonly used together, and users may 

switch between the two products. Consequently, current studies of ECIG use 

necessitate the inclusion of CIG use and vice versa. Similarly, studies that have not 

modeled dual use accurately may have produced biased estimates, limiting the 

knowledge of studies that have examined these phenotypes. Further, it is unclear if 

ECIGs are used by individuals who would have otherwise remained tobacco-naïve.  

Third, as summarized above there is substantial overlap in the associations 

between ND with ECIG and CIG initiation. This is likely due to an etiology that is shared 

between ECIG and CIG that begins with the initiation of these products and that may 

continue into the development of ND. Consequently, it is important to first detail the 

factors involved with ECIG initiation and to identify those factors that may overlap with 

CIG initiation to fully understand the etiology of ND resulting from ECIG use in the 

future. Understanding the genetic and environmental influences that are shared 

between CIG and ECIGs will ensure a greater understanding of why they are used 

together. 
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Environmental and Genetic Factors Associated with CIG Use May Also Influence ECIG 
Use 
 

To date, genome-wide association studies report significant genetic associations 

between multiple CIG use behaviors with loci in several genes. One set of genes, the 

nicotinic acetylcholine receptor gene cluster (e.g., CHRNA2, CHRNA5, CHRNB4), are 

consistently associated with multiple phenotypes of smoking behavior including CIG 

initiation, cigarettes per day (CPD), current smoking, and ND 55. These genes encode 

for receptor polypeptides that respond to acetylcholine, but for which nicotine is also an 

agonist. In addition, CYP2A6 is often associated with quantitative measures of smoking 

(e.g., CPD) and is involved with the metabolism of nicotine via oxidation 56. The 

serotonin transporter genes (e.g., SLC03A1) are also associated with ND. These genes 

are responsible for transporting serotonin from the synaptic cleft back into the 

presynaptic neuron 57. Further, preliminary evidence from polygenic association studies 

of ECIG and CIG initiation in young adults (aged 18 to 25 years) suggests that similar 

genes impact ECIG and CIG initiation. Genome-wide polygenic scores (i.e., the 

aggregate molecular genetic effect from measured and imputed markers) associated 

with CIG initiation were also associated with ECIG initiation (OR = 1.24, 95% CI = 1.14-

1.34, p < 0.001) 58. Thus, identifying the genetic factors and biological pathways 

associated with ECIG initiation could guide future studies on ECIG behaviors including 

ND. 

 Several environmental factors have also been implicated in increasing the risk of 

CIG initiation. These include positive peer opinions towards smoking 59,60, income levels 

61, low parental monitoring 62,63, and high exposure to tobacco advertising 64,65. These 

factors have also been reported to increase the likelihood of ECIG initiation 66–68.  
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 Economic factors are particularly important in the development of CIG and ECIG 

initiation. Economic factors such as income, educational attainment, and health 

insurance status may disproportionately impact individuals in society, causing more 

harm to individuals with fewer resources 69,70. For instance, tobacco users with less 

income spend a larger portion of their resources on tobacco compared to people with 

more income. Consequently, the economic factors of household income and coupon 

use are particularly useful for understanding ECIG and CIG initiation. 

 Income has previously been associated with CIG use 46. Previous research 

suggests that the association between ECIG and income is similar. ECIG initiation is 

more expensive than CIG initiation as one must purchase the device prior to initiating 

use, which may prevent some lower income individuals from starting to use the device. 

However, mediating or moderating factors may impact this relationship, such as coupon 

receipt or use to reduce the initial cost burden.  

There are several avenues tobacco companies use to increase the usage of their 

products. Coupons are a known method to reduce the cost of cigarette use. Previous 

research indicates that individuals who receive coupons are more likely to start using 

CIGs and ECIGs 71. Further studies have reported that possessing any type of 

promotional material (e.g., ball caps, t-shirts, or posters) for alternative tobacco 

products, such as ECIGs, is associated with increased odds of initiation of those 

products 72. However, it remains unclear how coupon receipt of tobacco products 

impacts the initiation of different tobacco products (i.e., is receipt of CIG coupons 

associated with ECIG initiation and vice versa). 
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Knowledge Gaps 

To date, there are two important gaps in knowledge that are necessary to reduce 

the impact of ECIGs on ND. First, the relative degree to which genetic and 

environmental influences ECIG lifetime initiation is currently unknown, particularly 

among adults. Preliminary research has shown there may be genetic overlap between 

CIG and ECIG initiation using genome-wide association data, but this work has only 

been performed in young adults (those aged 24 or younger). It remains unknown if 

these influences are also relevant for a sample of adults. Adults remain an understudied 

population in genetically-informed studies as well as epidemiological studies of ECIG or 

CIG initiation. Prior studies of ECIG or CIG initiation have only assessed age of 

initiation. Further, most studies of ECIG and CIG use/initiation focus on adolescent 

samples, perhaps due to the more malleable nature of this stage of development (i.e., 

environmental factors are more influential for younger ages compared to older ages 

when genetic factors are more influential). However, the rates of tobacco naïve adults 

CIG and ECIG initiation remain above 10% for those aged 18-21. In contrast, there has 

been a slight increase in the prevalence in initiation those between the ages of 20-29  73 

indicating that individuals will still initiate use beyond adolescence. Further, many adults 

who initiate ECIGs may do so to address and reduce CIG use. Consequently, factors 

that influence ECIG initiation in adulthood may likely be similar to those of CIG initiation.  

Second, few specific genetic and environmental factors influencing CIG and 

ECIG lifetime initiation have been identified. This is in part due to: 1) inconsistency of 

genetic epidemiology studies for CIG use, 2) a lack of synthesis of results across these 

study designs, and 3) few genetic epidemiology studies of tobacco products beyond 
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CIGs. Operational measures of tobacco use vary between studies, which contributes to 

the inconsistency of results. Without a synthesis of the available results, it is unknown 

which specific genetic variants are relevant for CIG and ECIG initiation. Additionally, 

specific environmental factors also remain undetailed for ECIG and CIG initiation. 

 

Using Multiple Study Designs to Detail the Shared Genetic and Environmental Factors 

for ECIG and CIG Lifetime Initiation 

Table 1.3. Knowledge Gaps, Research Questions, and the Chapters Addressed 
in the Dissertation 

Knowledge Gap 1: Quantify the relative 
contribution of genetic and environmental 
factors toward ECIG and CIG initiation 

• Chapter 2: Are there shared latent 
genetic and environmental factors for 
CIG and ECIG initiation in a sample 
of twins? 
 

• Chapter 4: Are the genetic factors 
that are associated with CIG initiation 
also associated with ECIG initiation? 

Knowledge Gap 2: Which specific genetic 
and environmental factors are associated 
with CIG and ECIG initiation 

• Chapter 3: Are there overlapping 
results in genetically informed studies 
of tobacco use? Are there ways to 
synthesize results which will lead to 
more consistent results? 
 

• Chapter 5: To what degree are 
environmental factors (receipt of 
coupons and income) associated with 
CIG use also associated with ECIG 
and dual use? 

 

This dissertation will address the aforementioned knowledge gaps by 

characterizing the relative contribution of genetic and environmental factors associated 

with lifetime ECIG initiation as well as those shared with lifetime CIG initiation using 

three different study designs.  For this dissertation lifetime CIG and ECIG initiation is 
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defined as having ever used either product at any time throughout an individual’s life. 

These studies utilized secondary data and therefore, operationalization of these 

conceptual variables may differ between original studies (i.e., ever use may actually 

have been assessed with, “Have you smoked at least 100 cigarettes in your lifetime?”). 

A summary of the knowledge gaps as well as specific research questions and the 

chapters where they are addressed are summarized in Table 1.3.  

Chapter 2 uses a sample of adolescent and young adult twins (mean age = 19.2, 

SD = 1.3, age range = 17.6-22.4) to assess the degree to which genetic and 

environmental effects influence ECIG initiation and to what degree are these influences 

shared with CIG initiation. Chapter 4 expands on results from Chapter 2 by testing for 

genetic association with CIG and ECIG initiation across loci through the genome using  

genome-wide polygenic scores in a community-based sample of adults (ages 18-93). 

This chapter uses a genome-wide association study (GWAS) approach to study ECIG 

and CIG initiation and answer the following questions: 1) Are there any genetic loci that 

are associated with ECIG initiation? and 2) Do the genetic factors that contribute to CIG 

initiation also contribute to ECIG initiation in a sample of adults? A GWAS is a study 

design that utilizes genetic data from a genetic marker to test for a statistical association 

between the marker and a phenotype. A significant association suggests that the 

genotype co-occurs with the phenotype more often than expected by chance41. Chapter 

5 also builds on results from Chapter 2 by estimating the degree to which environmental 

factors (e.g., income and coupon use) are associated with CIG and ECIG past 12-

month use. Past 12-month use is a relevant phenotype to study due to its proximity to 

CIG initiation as shown in figure 1.2. Chapter 5 uses an epidemiological sample of 
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American adults (age: 18-99) to detail a shared environmental factor (income). Chapter 

5 answers the questions: 1) are ECIG-exclusive and dual users similar to CIG-exclusive 

users in terms of income and tobacco use? and 2) do coupons, a known method for 

reducing the cost of tobacco use, moderate the relationship between income and 

tobacco use? Taken together, these results will begin to detail the etiology of CIG and 

ECIG use in developmental stages beyond adolescence.  

To address the second knowledge gap, Chapter 3 uses a scoping review 

approach to reflect on the current state of measurement and conclusions on tobacco 

products for use in genetic epidemiology studies. A scoping review is a review designed 

to examine the body of literature. This aim will also address gaps in environmental 

influences toward ECIG initiation in Chapter 5. Accurately modeling the outcome 

variable will detail how this environment changes across products. A potential 

moderator will further characterize how this environmental influence changes across a 

second environmental factor. This knowledge is expected to make the production of 

knowledge for ECIG use more efficient in the future.  
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CHAPTER 2: USE OF A TWIN STUDY TO QUANTIFY THE GENETIC AND 

ENVIRONMENTAL INFLUENCES SHARED BETWEEN ELECTRONIC CIGARETTE 

AND CIGARETTE INITIATION1 

 

INTRODUCTION 

Electronic cigarette (ECIG) initiation is associated with conventional cigarette 

(CIG) initiation in adolescents and young adults 74–77.  A recent meta-analysis reported 

that individuals who engaged in any ECIG use were 3.5 times more likely to initiate CIG 

use compared to those who did not use ECIG 53. This is a major public health concern 

as both CIG and ECIG use exposes individuals to nicotine, the addictive component of 

both smoke and ECIG aerosol, which may lead to nicotine dependence. In addition to 

the addictive nature of nicotine, tobacco use is also associated with several negative 

health outcomes such as cancer and cardiovascular impairments 78.  

Epidemiological studies have identified several factors, such as peer group use, 

that are associated with both CIG initiation 79  and ECIG initiation 80. However, the 

degree to which these factors are shared between ECIG and CIG initiation remains 

unresolved.  If overlap exists in risk factors for CIG and ECIG initiation, similar public 

health messaging and interventions may influence the initiation of both products. 

Genetic epidemiological study designs have the potential to provide clarity on the 

influence of shared risk factors for CIG and ECIG initiation. 

  

                                                        
1 1 This chapter has been modified from the original manuscript published in Nicotine and Tobacco 
Research, DOI: 10.1093/ntr/ntaa201  
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Genetic Epidemiology of Electronic Cigarette and Conventional Cigarette Initiation 

Twin Concordance Studies and Adoption Studies. Early studies of twins 

calculated twin concordance rates to quantify familial aggregation of smoking. 

Concordance rates are a measure of probability, asking the question if one twin starts 

smoking, what is the probability that the other twin begins using 81? Early twin studies 

on smoking initiation (SI) reported higher concordance rates in monozygotic (MZ; 

identical) twin pairs compared to dizygotic (DZ; fraternal) pairs, which suggested that 

genetic influences play a role in SI 82. However, the degree to which these factors 

influenced smoking was not able to be estimated.   

Two adoption studies have examined smoking initiation 83,84. Adoption studies 

use data from adoptive children and examine their similarity to biological parents versus 

adoptive parents. Another possible comparison is between adoptees and their biological 

or adoptive siblings.  Children adopted away from biological parents still resembled their 

biological parents (r = 0.21) more closely than their adoptive parents (r = -0.02) in 

regard to smoking behaviors. While these designs are powerful to untangle genetic and 

shared environmental effects, a major limitation of these early studies was their small 

sample size 83. Furthermore, it may be difficult to ascertain biological parents for 

participation. Therefore, while these study designs are powerful, it is unlikely they will 

have appropriate sample sizes to provide stable estimates. 

 

Classical Twin Studies. Since the 1970s, the “classical twin study design” (CTD) 

has been used to estimate the magnitude of genetic and environmental effects on SI of 

CIG. The CTD uses data from monozygotic (MZ) and dizygotic (DZ) twin pairs to 
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partition the total variance of a phenotype into the proportion of the contribution due to 

genetic and environmental influences.  MZ twins share 100% of their genes while DZ 

twins share, on average, 50% of their segregating genes. This design can be used to 

estimate additive genetic influences (A - effects of alleles at every contributing locus); 

shared environmental effects (C - influence of all the environmental effects shared by 

twin pairs); and unique environmental effects (E - influence of all the environmental 

effects not shared by members of twin pair, which make the twins less similar and 

includes measurement error) 85.  

The CTD is subject to the following conceptual assumptions. First, twins are 

assumed to be subject to the equal environments assumptions (i.e., both twins 

experience the environment in the same manner) 86,87. Second, the CTD assumes 

random mating of adults in the population. Random mating is defined as choosing a 

partner not based on any sort of identifying characteristic (such as political preference) 

that may also be due to genetic factors 81. Third, the CTD assumes that there is no 

influence due to gene by environment interaction or gene-environment correlation 88. 

To date, 16 twin studies have investigated the genetic and environmental 

contributions toward smoking initiation of CIG.   

 

Lifetime Ever Smoking Initiation. Twin studies most consistently (8 out of 16) 

studied SI, by asking participants to self-identify as initiators (e.g., “Have you ever tried 

a cigarette”). These studies reported a significant contribution of A to the total variance 

of SI (36-78%). However, when asked whether they smoked one or two puffs (e.g., 

“Have you ever tried a cigarette, even one or two puffs”) in addition to the ever use 



 36 

question, the estimate of A dropped to 15%. Shared environmental effects (C) ranged 

from 7% to 24% of the total variance when measured with a self-reported ever use 

question. If ‘even one or two puffs’ was added to the question probing lifetime ever use, 

the estimate for C increased to 70% of the total variance.  

 

Initiation of Regular Smoking. Three twin studies examined the initiation of 

regular smoking via self-report (3/16). Overall, there was a significant effect of A on the 

initiation of regular smoking. One estimate of A was 49% of the total variance when 

measuring initiation of regular smoking as self-reported regular smoking initiation (e.g., 

“Have you ever been a regular smoker?”). Two twin studies89,90 examined SI by asking 

if participants identified as a regular smoker (“Have you smoked cigarettes regularly for 

at least one month?”), which reported A to be between 62%-72%, slightly higher than 

the previous estimate, but still within the 95% confidence interval of the first estimate. 

 

Age of Smoking Initiation. Four additional studies examined the age of SI. These 

studies estimated substantial contribution due to A, ranging between 51% and 62% 91–

94. Further, estimates of C were between 31% to 53%.  

 

Genetic and Environmental Influences on Smoking Initiation Vary Over Time. 

Twin studies of CIG tobacco, and other substances, have shown that the effect of 

additive genetic and shared environmental factors changes over time 95,96. In general, 

shared environmental factors played a large role in SI during adolescence, and were 

less of a factor in young adulthood (i.e. college-aged individuals, 18-22), and even less 



 37 

of a factor as one entered adulthood (age 23+) suggesting that genetic influences may 

be more prominent in young adults. In one of the first studies to examine this effect, 

Tully and colleagues reported a five-fold reduction in the proportion of variance due to C 

in nicotine dependence symptoms while the proportions due to A increased by a factor 

of two between the ages of 15 and 21 97. Other mega-analyses have reported C was 

most influential around ages 14-15 with A steadily increasing from age 15 onwards 95.  

 

Sex Differences in Smoking Initiation. There are consistent sex differences in the 

prevalence of CIG initiation which may be due in part to sex differences in the 

contribution of genetic and environmental factors. There are differences by sex in the 

prevalence of SI 98–100. Phenotypically, women over the age of 16 more often initiate 

cigarette use (59.8%) compared to men (50.3%) 101. Additionally, prior twin studies 

indicate genetic and environmental differences also exist by sex. A meta-analysis of 17 

twin studies reported a larger contribution of additive genetic effects in women 

compared to men (Awomen =0.55, Amen = 0.37). This study reported a significantly larger 

contribution of shared environmental factors in men compared to women (Amen = 0.49, 

Awomen = 0.24)  102. These estimates were significantly different from one another, 

suggesting quantitative sex differences (i.e., the magnitude of the effect of additive 

genetic influence differs between men and women) in sources of variation for SI.  

Additional studies also report differences in the magnitude of ACE estimates for 

SI by sex. A study of Australian twins reported similar results with smaller estimates of A 

for men (Amen = 0.22) compared to women (Awomen = 0.63 for women; at the same time, 

C was larger for men (Cmen = 0.42) compared to women (Cwomen = 0.11) 103. In another 
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study of Australian adult twins, Morley and colleagues estimated similar estimates of A 

for men (Amen = 0.63) and women (Awomen = 0.54) for SI 104.  Research utilizing adults 

from the United States has also provided additional evidence of the sex differences 

(Amen ranging 0.48-0.72, while Awomen estimates ranged from 0.32-0.63), continuing to 

suggest there are differences between men and women in the US 105–107. This pattern is 

also present in other countries as reported by a study of Finish adult twins which 

reported larger estimates of A for men (Amen = 0.59) compared to women (Awomen = 

0.35) 108. More recent mega-analysis of 11 studies consisting of data from 19,313 twin 

pairs analyses have reported sex differences for genetic and environmental effects (for 

age 12 twins, Awomen = 0.60, Amen = 0.40; Cwomen = 0.05, Cmen = 0.10). However, these 

estimates were not statistically significant (18-year olds Awomen = 0.30, Amen = 0.45; 

Cwomen = 0.10, Cmen = 0.10) until after puberty (i.e., ages 15 and older). Consequently, 

although there are sex differences in estimates of genetic and environmental effects, 

they are only significant at later ages. Estimates of genetic and environmental 

contributions at young ages (ages 12, 13, and 15) produced non-significant estimates 

while older teens (14-18, excluding age 15) reported significant effects. Further 

complicating the results, this sex difference is no longer present as teens transition into 

young adulthood (age = 19)  

 

Genetic and Environmental Factors Are Shared Between Initiation of CIG and 

Other Substances. Twin studies of SI and the use of other tobacco products report 

significant genetic overlap. When examining SI and the initiation of snus (a variant of 

dry snuff popular in parts of Europe where it is legal, similar to dipping tobacco in 
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America) data from Norwegian twins suggested similar, but not identical, genetic 

influences for both delivery systems (rg = 0.82, ACIG = 0.77 ASNU = 0.54) 109. CIG use 

has also been associated with other substances beyond tobacco. Alcohol and SI have 

been identified as sharing genetic overlap with the genetic correlation being estimated 

at 0.68 (95% CI = 0.61-0.74) in one study of adult twins 110,111. Additional studies 

reported a significant genetic correlation between ND and cannabis use, such that 

roughly 50% of the genetic variance was shared between those phenotypes 112. 

Therefore, these studies suggest the importance of genetic and environmental factors 

shared across tobacco products and possibly other substances, suggesting there may 

be common factors for substance use, in addition to unique factors for each substance.  

In all, prior studies on the genetic and environmental contributions toward CIG 

initiation indicated: (1) significant additive genetic (i.e., the effect of alleles at every 

contributing locus) and shared environmental influences (i.e., the effect of 

environmental factors that increase similarity between members of twin pairs), (2) the 

magnitude of these influences changed across development (i.e., shared environmental 

influences have substantial contributions during adolescence and young adulthood 

which decrease into older adulthood), and (3) the presence of significant sex differences 

in genetic and environmental contributions 8-11.  

To date, most twin studies of tobacco products focus on CIG use; however, 

recent population-level studies indicate that more adolescents and young adults using 

ECIGs over CIGs 5. These tobacco products are often used together suggesting that 

using one product will increase the odds of using another product 113. Not every 

individual who uses ECIGs will use CIGs, thus it is currently unclear whether different 
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genetic and environmental influences contribute to CIG and ECIG initiation or whether 

risk factors are shared between ECIG and CIG. We address this knowledge gap in a 

twin study of adolescents and young adults. Specifically, we explore: (1) the degree to 

which there is a correlation between ECIG and CIG initiation, (2) the degree to which 

the correlation between ECIG and CIG initiation is due to shared genetic and 

environmental influences, and (3) the degree to which genetic and environmental 

influences are specific to ECIG initiation.  

 

METHODS 

Data and Study Population. 

 Data were obtained from participants in the Adolescent and Young Adult Twin 

Study (AYATS), a US longitudinal cohort study of twins aged 15-20 (average age at 

wave 1 = 17.22, SD = 1.28; wave 2 = 19.23, SD = 1.33). Data were collected on 860 

individuals via web-based questionnaires over two waves (Wave 1: March 2012 – 

December 2016; Wave 2: May 2016 – November 2019). A total of 858 individuals (421 

complete twin pairs: 160 MZ pairs, 261 DZ pairs) who had tobacco use data were 

included in the analysis. The majority of the sample was female (56%), European-

American (90%), had an average annual parental income greater than $35,000 per year 

(60%), and most parents (68%) had earned a Bachelor’s degree or higher.  

Tobacco Use Measures. Lifetime ECIG initiation was measured at both waves 

using a 4-item ordinal variable which asked, “On how many occasions, in your lifetime, 

have you used an e-cigarette (assume one use is about 15 puffs or lasts around 10 

minutes)?”  Participants indicating any level of use during Wave 1 or Wave 2 were 
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considered to have initiated ECIG at some point in their lifetime and were coded as 1. 

Participants who did not initiate in Wave 1 and Wave 2 were considered not to have 

engaged in lifetime initiation and were coded as 0. Lifetime CIG initiation was a binary 

variable that asked, “Do you currently or have you ever smoked cigarettes?”  

Participants indicating initiation during either Wave 1 or Wave 2 were considered to 

have initiated CIG at some point in their lifetime and were coded as 1. Participants who 

did not initiate in Wave 1 and Wave 2 were coded as 0. 

 

Statistical Analysis.  A CTD was used to study the contribution of genetic and 

environmental influences for binary traits. Twin modeling for binary traits builds on the 

principles of model development using continuous data. In a univariate genetic analysis 

of continuous data, the total phenotypic variance underlying the liability (VP) of an 

outcome.  

The expectations of twin member resemblance for MZ and DZ pairs can be 

summarized as a path diagram which can be used for the calculation of the phenotypic 

variance and variances due to genetic and environmental influences as well as the 

covariances between individual twins within pairs (Figure 2.1). The expected covariance 

in a twin model can be summarized with “Wright’s Rules” for path analysis114,115. There 

are six rules: 1) the covariance is calculated as the sum of all possible paths between 

two variables, where each path represents the product of all path coefficients in the 

chain, 2) after moving forward along a single-headed arrow, moving backward is illegal, 

3) a path can contain at most one double-headed arrow, 4) each variable can be 

crossed only once per path, 5) whenever changing direction (from upstream to 
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downstream) multiply the path by the variance of the upstream variable (in Figure 2.1, 

all variances are set to 1 and denoted with a double-headed arrow that returns to the 

latent variable), and 6) loops are not allowed.  

The latent influences due to A, C, and E are represented by circles, which have a 

variance of one (denoted by double headed arrows above each circle). The paths a11, 

c11, and e11 represent the paths from the latent influences that contribute to the 

measured total phenotypic variance for each of the twins (represented as squares). The 

genetic correlation between members of an MZ pair is equal to 1 because MZ twin on 

average share 100% of their genetic material. The genetic correlation between 

members of DZ pair is equal to 0.5 because they share, on average, 50% of their 

genetic material. Therefore, the genetic covariance shared between members of a twin 

pair (represented as the double headed arrow between the A latent influences) is given 

a value of either 1 for MZ twins or 0.5 for DZ twins. Members of MZ and DZ twin pairs 

are assumed to share the same degree of common environmental influences and as 

such the correlation for C latent influences is one. Path tracing rules can be used to 

translate the path diagram into formulas to calculate means, variances, and covariances 

that can be used to estimate A, C, and E. First, the estimate of VA for a single member 

of a twin pair is represented using the a11 path as: a*1* a, which is equal to a2. VC and 

VE are similarly estimated as c2 and e2, respectively.  The total phenotypic variance (VP) 

is decomposed as the sum of the variances due to additive genetic (VA), common 

environmental (VC), and unique environmental (VE) influences (Equation 2.1).  

 

!"# = %& +	%) +	%*         Eq. 2.1    
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Figure 2.1. Univariate classical twin model used to estimate additive genetic (A), 
shared environmental (C), and unique environmental (E) influences. 
 
 
The covariances between members of twin pairs are estimated as:  

  covMZ = a2 + c2       (2.2) 

  covDZsame-sex = 0.5a2 + c2      (2.3) 

 covDZopposite-sex = 0.5rga2 + c2     (2.4) 

Estimation of A, C, and E from the CTD model using continuous data was 

modified for the study of the binary measures ECIG and CIG initiation. Such models 

adopt a threshold model approach, which describes discrete traits to have an underlying 

normal distribution of liability (e.g., susceptibility for endorsing an item measured as a 

probability with a Z-score distribution). Liability is measured as a series of ordered 

categories characterized by phenotypic discontinuities that occur when the liability 

reaches a given threshold. In other words, the thresholds differentiate those with and 

without the trait. Since the underlying trait is continuous in nature, the prevalence of the 
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trait under study can be used to estimate the threshold. For instance, if 1000 individuals 

were sampled and 120 had the trait of interest, a threshold could be put on the normal 

distribution so the area under the curve to the right of the threshold would be equal to 

12% (120/1000; the prevalence of the trait in the sample). Therefore, modeling 

thresholds allows binary or ordinal data to be treated as continuous data 116.   

 

Figure 2.2. Bivariate genetic model used to estimate genetic and environmental 
contributions. a11 and a22 represent unique sources of additive genetic variance 
for electronic and conventional cigarette initiation respectively. a21 represents the 
overlapping additive genetic variance.  ECI = ECIG Initiation, CCI = CIG Initiation. 
 
 

Bivariate Genetic Modeling. The univariate twin model (Figure 2.1) was extended 

to evaluate two phenotypes simultaneously (a bivariate model; Figure 2.2). A bivariate 

model allows for possible overlap in genetic (A) and common (C) and unique (E) 

environmental factors between two traits and the estimation of genetic or environmental 

correlations. 

 A bivariate genetic model was implemented using a Cholesky factorization to 

determine how much of the covariance between ECIG and CIG initiation could be 

explained by shared genetic and environmental factors 85 (Figure 2.3). This is a method 
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of triangular decomposition of the genetic and environmental sources of variance where 

the first variable is assumed to be influenced by a latent factor that also explains some 

or all of the variance in the second variable. For each source of variance, the second 

variable is also explained by a latent factor that is uncorrelated with the first factor (path 

a22; Figure 2.2). The diagonal elements in the genetic matrix (e.g., paths a11 and a22; 

Figure 2.2) in a Cholesky factorization estimate the variances of a specific variable while 

the off-diagonal element (path a21; Figure 2.2) estimates how much of the variance of 

the second variable is shared with the first variable.   

 The same path rules that guided the covariance in a univariate model apply in 

the bivariate model. Using Figure 2.3 as a guide, the expectation of A is slightly 

changed. Instead of one path to get between both latent additive genetic variables there 

are two. The first comes from the additive genetic variance alone: a11*1*a11 = a112 (in the 

case of MZ twins). However, there is now a secondary pathway starting from the 

second phenotype of twin 1 (here CCI – T1). Pathway a21 leads from CCI – T1 to A for 

ECI, then around the covariance between twin 1 and twin 2 and back down pathway 

a11, leading to a total expectation for MZ twins of a112 +a11*a21. Similarly, the effect of C 

can be expected to consist of c112 +c11*c21 for both MZ and DZ twins.  

Genetic and environmental correlations between ECIG and CIG initiation were 

estimated to evaluate the degree to which genetic and environmental factors overlap 

between the initiation of ECIG and CIG.  Standardized genetic and environmental 

covariances (covA, covC, covE) were also estimated to detail the degree to which genetic 

or environmental factors contributed to the phenotypic correlation (rp) between ECIG 

and CIG initiation. The phenotypic correlation is equal to the sum of the standardized 
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genetic (covA) and environmental (covC and covE) covariances (+,-./0 = 	1234 + 1235 +

	1236). The standardized genetic correlation between two measures is defined in 

equation 2.5:  

+7,9 =
479

:47 × 49
																																																																																																					Eq. 2.5 

where Axy is the genetic covariance between ECIG ever use and CIG ever use, 

and Ax and Ay represent the genetic variances of ECIG and CIG ever use.  

The statistical significance of the genetic and environmental covariances was 

assessed by comparing the model fit of the full bivariate model to that of three 

submodels in which the genetic (pathway a21) or environmental (pathway c21 or pathway 

e21) paths between ECIG and CIG initiation were separately set to zero (difference in df 

= 1). Under certain conditions, such differences are asymptotically distributed as a chi-

square distribution with one degree of freedom 85.  A fourth sub-model tested the 

significance of the phenotypic correlation by setting all genetic and environmental cross 

paths between ECIG and CIG initiation to zero (difference in df = 3). 

All analyses were performed in R 3.4.1 117 using the OpenMx package 2.8.3 118, 

and missing data were addressed using full-information maximum-likelihood estimation. 

We chose a priori to retain and report all parameters in the model. Estimates from a full 

ACE model will be more accurate than simplified models. Further, attempts at 

parsimony result in oversimplification of the models rather than a more accurate 

representation of the data. Consequently, reporting a potentially oversimplified model 

might result in future research that may ignore an important source of variance 119.  
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RESULTS 

Descriptive Statistics  

Approximately 24% of the sample had initiated ECIG use while 19% had initiated 

CIG use, and 11% had initiated dual use. Males had a significantly higher prevalence of 

CIG (23.9%) and ECIG (22.5%) initiation compared to females (CIG- 14.2% and ECIG- 

12.5%). There was a moderate to large cross-twin correlation for ECIG initiation (rMZ = 

0.65, 95% CI = 0.42-0.89; rDZ = 0.55, 95% CI = 0.33-0.77). A similar pattern was 

observed for CIG initiation (rMZ = 0.62, 95% CI = 0.38-0.86; rDZ = 0.52, 95% CI = 0.30-

0.74).  

 

Table 2.1. Summary Statistics of AYATS Sample 
 Males 

N (%) 
Females 

N (%) 
Total 
N (%) 

Tobacco Initiation 
    ECIG 
    CIG 

 
51 (22.5) 
88 (23.9) 

 
42 (12.5) 
70 (14.2) 

 
92 (20.2) 

159 (18.5) 
Race 
    African-American 
    European-American 
    Latino 

 
24 (6.4) 

340 (90.4) 
12 (3.2) 

 
40 (8.0) 

435 (87.3) 
23 (4.6) 

 
64 (7.3) 

775 (88.7) 
35 (4.0) 

Parental Education 
    HS/GED 
    Associate’s 
    Bachelor’s 
    Master’s 
    Doctorate 
    Other 

 
47 (12.7) 
35 (9.5) 

145 (39.2) 
111 (30.0) 

16 (4.3) 
16 (4.3) 

 
85 (17.6) 
68 (14.1) 

182 (37.8) 
105 (21.8) 

24 (5.0) 
18 (3.7) 

 
132 (15.5) 
103 (12.1) 
327 (38.4) 
216 (25.4) 

40 (4.7) 
34 (4.0) 

 

Tests of Twin Model Assumptions 

 Prior to genetic analysis, several data-related assumptions were tested to 

ensure that such genetic modeling would be plausible. Assumptions were tested to 

ensure that there were no significant differences in thresholds by twin order, zygosity 
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and sex prior to genetic modeling. Model assumptions were tested by equating 

threshold estimates to be the same for twin one and twin two, then equating threshold 

estimates to be the same for MZ and DZ twins, and finally making the thresholds 

equivalent between males and females. Each of these models was tested against a 

saturated model, or the model where all parameters could be estimated.  

Submodel expectations were evaluated through a series of model fit 

comparisons against the saturated bivariate model. First, measures of model fit were 

estimated between the saturated model and each submodel. Model fit is measured by 

comparing measures of likelihood (i.e., negative two log-likelihood, -2LL). Model fit 

represents a measure of how well the model tested explains the data collected. Model 

fit comparisons between models are assessed by estimating the difference in model fit 

between two models, which produces a value that can be interpreted as a test with a 

Chi-square distribution and having degrees of freedom equal to the difference between 

the number of parameters between the two. A non-significant result would be 

interpreted as the submodel fitting the data equally well as the full model (i.e., there is 

no significant difference between the two models). The model with fewer parameters 

would be retained as this fits the criteria laid forth by Neale and Cardon for the best 

model. Second, a value of model parsimony estimated as AIC (Akaike Information 

Criterion) was used to examine which model is the most parsimonious 85. The model 

with the lowest AIC value is considered to be the simplest model.  

 Evaluating models by comparing model fit and parsimony applies the four 

criteria of a good model as summarized by Neale and Cardon (1992): 1) a model 

provides a good fit to the data, 2) the model is consistent, 3) the model is simple, and 4) 
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the model has statistically significant parameter estimates. If the model does not provide 

a good fit to the data, then the model needs to be modified 85. Further, a model that is 

not consistent with biometrical theory (such as a model that has dominance effects, but 

not additive genetic effects, Falconer 1990) may not be a good model. Simple models 

are easier to falsify and are more informative than complex models. Finally, any non-

significant parameter should be removed from the model as it does not add to the 

model’s ability to explain the data.  

A saturated bivariate model was used as the base comparison model. A 

saturated model estimates the means, variances, and covariances for all variables (CIG 

and ECIG initiation in both members of a twin pair, both zygosity groups, and for males 

and females), and therefore each possible pathway is estimated in a saturated model.  

  Three bivariate models were fit to test the assumptions inherent in the twin study 

(Table 2.2). Model 1 tested a saturated model where all parameters were free to vary 

across twin order, zygosity, and sex. Model 2 equated the thresholds across twin order 

as a test of birth order (i.e., whether thresholds could be equated across twin order to 

assess the randomness of assigning twins to be the first or second twin). There was no 

significant difference in model fit between this model and the saturated model (p = 

0.42). Model 3 equated the thresholds across the zygosities as a test of consistency 

between MZ and DZ twins on their ECIG and CIG initiation (i.e., whether thresholds 

could be equated across zygosity in same sex pairs). There was no significant 

difference between this model and the saturated model (p = 0.07).  
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Table 2.2. Summary of Tests of Twin Model Assumptions 
Model 

Number 
Model 

Comparison EP DF -2LL AIC Δ-2LL p 
1 - 50 1385 1110.16 -1659.84 - - 
2 2 vs 1 40 1395 1120.40 -1669.60 10.15 0.42 
3 3 vs 1 32 1403 1137.71 -1668.29 27.55 0.07 

Model 1- Saturated 
Model 2- Equate Twin 1/Twin 2 Thresholds 
Model 3- Equate Twin1/Twin 2 Thresholds and MZ/DZ Thresholds 
EP = Estimated Number of Model Parameters; DF = Degrees of Freedom; -2LL = 
Model Fit as Measured by the Negative Two Log Likelihood; AIC = Model Parsimony 
as Measured by Akaike Information Criteria 

 

 Tests of Sex Differences. A series of models were fitted to test the significance of 

sex differences in the magnitude and nature of genetic and environmental factors (Table 

2.3).  A full model included separate parameter estimates for each sex, as well as a 

parameter for the correlation between factors in males and females (Figure 2.3). There 

was no significant loss of model fit when the bivariate genetic model with all sources of 

genetic and environmental sex differences was compared to the saturated model (Table 

2.3, Model 4, p = 0.51). Therefore, all subsequent tests of genetic and environmental 

influences were compared against this model.  Model 5 (Table 2.3) tested the 

equivalence of thresholds across sex (i.e., male threshold is equal to the female 

threshold). The fit of Model 5 was not significantly different from that of Model 4 (p = 

0.63). Model 7 tested the significance of the genetic correlation between additive 

genetic factors in males and females (rg) by fixing it to 1, thus testing qualitative sex 

differences or whether the same set of genes contributes to liability in males and 

females. The fit of Model 7 was not statistically different from Model 4 (p = 0.11).  Model 

6 tested whether the A, C and E parameters could be equated for females and males as 

a test of quantitative sex differences to determine whether the magnitude of genetic and 
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environmental influences is the same across the sexes. There was no significant loss of 

fit using this model (Table 2.3, p = 0.06) compared to a model that did estimate the 

sexes separately (Model 4). Finally, Model 8 tested the bivariate ACE model without any 

additional genetic and environmental sex differences (Figure 2.2). No significant 

differences in model fit were detected between Model 8 and either Model 4 (Table 2.3, p 

= 0.51) or Model 1 (saturated model, Table 2.3, p = 0.20). Consequently, a model 

without any sex differences was used to assess the magnitude of genetic and 

environmental effects on CIG and ECIG intiation. 
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(A) 

 

(B) 

 

(C) 

Figure 2.3. Bivariate Models of Sex-Specific Models, Panel A Shows Male Pairs, 
Panel B Shows Female Pairs, Panel C Shows Opposite Sex Pairs  
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Table 2.3. Summary of Tests of Genetic and Environmental Sex Differences  
Model  

Number 
Model 

Comparison EP DF -2LL AIC Δ-2LL p 
4 4 vs 1 23 1412 1136.35 -1687.65 26.19 0.51 
5 5 vs 4 21 1414 1137.27 -1690.73 0.92 0.63 
6 6 vs 4 12 1423 1155.65 -1690.35 19.31 0.06 
7 7 vs 4 11 1424 1154.68 -1693.32 18.33 0.11 
8 8 vs 1 13 1422 1154.03 -1689.97 43.87 0.20 

Model 4: Bivariate genetic model estimating all sources of genetic and environmental sex 
differences 
Model 5: Equate thresholds by sex 
Model 6: Test of Quantiative Sex Differences- Equate path estimates by sex  
(Am/Cm/Em = Af/Cf/Ef) 
Model 7: Test of Qualitative Sex Differences- Set rg to 1 
Model 8: Bivariate ACE model without any genetic and environmental sex differences 
EP = Estimated Number of Model Parameters; DF = Degrees of Freedom; -2LL = Model Fit 
as Measured by the Negative Two Log Likelihood; AIC = Model Parsimony as Measured by 
Akaike Information Criteria 

 

Bivariate Genetic Model Testing. Tests of genetic and environmental covariance 

between CIG and ECIG initiation indicated no significant differences in models where 

a21 to zero (Model 2, Table 2.4, Figure 2.2) or setting c21 to zero (Model 3, Table 2.4, 

Figure 2.2). However, setting the e21 cross path to zero did result in a significant 

difference in model fit (Model 4, Table 2.4, p = 0.01). There was no significant difference 

when dropping either all A or all C influences (i.e., Models 5, paths a11, a21, and a22 

were set to zero, for Model 6 paths c11, c21, and c22 were set to zero, Table 2.4). 

However, when both A and C influences were dropped simultaneously (i.e., all a and c 

paths were set to 0, Model 7), the models fit significantly worse when compared to the 

full bivariate ACE model (Model 1, Table 2.4; p < 0.001). 
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Table 2.4. Bivariate Modeling Fit Statistics  
Model 

Number Model Name EP DF -2LL AIC Δ-2LL p 
1 Bivariate ACE 13 1422 1154.03 -1689.97 - - 
2 Test of CovA 12 1423 1155.18 -1690.82 1.15 0.28 
3 Test of CovC 12 1423 1156.97 -1689.03 2.95 0.09 
4 Test of CovE 12 1423 1160.46 -1685.54 6.43 0.01 
5 CE Model 10 1425 1155.18 -1694.82 1.15 0.76 
6 AE Model 10 1425 1159.71 -1690.29 5.68 0.13 
7 E Model 7 1428 1213.18 -1642.82 59.15 < 0.001 

Note. EP = number of estimate parameters; df = degrees of freedom; -2LL = negative two 
log likelihood, a measure of model fit; AIC = Akaike Information Criteria; Δ-2LL = difference 
of -2LL 

 

 Common environmental influences accounted for a non-significant proportion of 

the variance in the liability of ECIG and CIG initiation (ECIG: C = 0.42, 95% CI = 0-0.73, 

p = 0.12; CIG: C = 0.42, 95% CI = 0-0.70, p = 0.13). In addition, the contribution of 

additive genetic influences on the initiation of both delivery systems was non-significant 

(ECIG: A = 0.25, 95% CI = 0-0.83, p = 0.44; CIG: A = 0.19, 95% CI = 0-0.79, p = 0.57) 

(Table 2.4).  

There was a strong phenotypic correlation between ECIG and CIG initiation (r = 

0.77, p < 0.001). This phenotypic correlation was due to non-significant common 

environmental covariance (covC = 0.23, p = 0.32), non-significant additive genetic 

covariance (covA = 0.23, p = 1), and significant unique environmental covariance (covE 

= 0.31, p = 0.01). The unique environmental correlation (rE = 0.87, p = 0.01) was 

significant between both delivery systems (Table 2.5) 
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Table 2.5. Standardized Genetic and Environmental Parameter Estimates 
for Electronic (ECIG) and Conventional Cigarette (CIG) Initiation 
Parameter Estimate (95% CI) p-value 
ECIG Initiation   
   A 0.25 (0 – 0.83) 0.44 
   C 0.42 (0 – 0.73) 0.12 
   E        0.32 (0.14 – 0.56) < 0.001 
   
CIG Initiation   
   A 0.19 (0 – 0.79) 0.57 
   C 0.42 (0 – 0.70) 0.13 
   E        0.39 (0.18 – 0.57) < 0.001 
   
Shared Parameters   
   covA 0.23 (0 – 0.43) 1 
   covC 0.23 (0 – 0.52) 0.32 
   covE 0.31 (0.14 – 0.45) 0.01 
   rg 0.76 (0 – 0.99) 1 
   rc 0.68 (0 - 1.0) 0.32 
   re 0.87 (0.50 – 0.99) 0.01 
covA- genetic covariance; covC- shared environmental covariance; covE- unique 
environmental covariance; rg – genetic correlation; rc- shared environmental 
correlation; re- unique environmental correlation 

  

DISCUSSION 

This is the first study to investigate the genetic and environmental contributions 

to the liability for ECIG initiation and explore the degree to which genetic and 

environmental factors influencing ECIG initiation are shared with CIG initiation. There 

was evidence for familial resemblance - likely a combination of additive genetic and 

shared environmental effects - on ECIG initiation. Additionally, there was substantial 

shared influences of unique environmental factors shared between both delivery 

systems.  

The prevalence of ECIG initiation (~24%) in the current study was similar to 

those reported in other studies collected during a similar time frame (18.7% in 2014) 75. 

However, the prevalence of CIG initiation was higher compared to national estimates 
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(19% vs. an average prevalence of 9.9% during 2011-2015) and may reflect regional 

preferences for CIG use (e.g., Virginia, North Carolina). There was also a strong 

association between ECIG and CIG initiation, which is supported by prior research 

which indicates that ECIG users are more likely to engage in CIG use 53,77,120.  

 

Genetic and Environmental Factors Influence ECIG as well as CIG Initiation.   

The magnitude of the estimates for the genetic and environmental contributions 

toward CIG initiation were similar to those previously reported in a mega-study of 

adolescents 95. The magnitude of A from prior studies are generally smaller (range: 0.10 

– 0.40) than estimates of C (range: 0.40 – 0.80) 95. There was a similar pattern in the 

magnitude of genetic and environmental influences (A = 0.19 and C = 0.42) for CIG as 

well as ECIG initiation (A = 0.25 and C = 0.42).  

Additionally, although genetic and shared environmental correlations (i.e. rG, rC) 

across ECIG and CIG initiation were individually not significant, their combined effects 

were. Similarly, though estimates of A and C were non-significant, models which did not 

include both sources of variance fit significantly worse than models that did, suggesting 

that both A and C are important factors of ECIG and CIG initiation.  

 

Unique Environmental Factors Influence Electronic Cigarette Initiation and Have 

Overlap with Conventional Cigarette Initiation.  

 There were significant contributions of unique environmental factors specific to 

ECIG initiation, as well as significant shared influences of unique environmental factors 

contributing to ECIG and CIG initiation.  Possible factors include peer smoking and 
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opinions towards nicotine products 62 as well as exposure to tobacco marketing 64. 

Consequently, unique environmental factors are important for tobacco initiation and may 

be shared across delivery systems. 

GWAS of CIG initiation has provided many insights into the molecular genetic 

architecture of CIG use. A recent meta-analysis of 1.2 million individuals reported 378 

variants that were associated with CIG initiation 121. However, a more recent GWAS of 

smoking initiation in ~800,000 individuals only reported 12 loci that were associated with 

CIG initiation 122. There are several genes that are consistently reported in the 

molecular genetics literature of tobacco use. The nicotinic acetylcholine receptor 

(nAChR) genes (e.g., CHRNA4, CHRNB2) have consistently shown a significant 

association with SI 123.  These genes are able to be bound to and excited by nicotine, 

mimicking the action of choline.  

Recent results using polygenic scores of cigarette use suggest that there is 

significant overlap in the genetic influences of ECIG and CIG initiation. For example, 

one study of participants in the Netherlands Twin Registry, reported a significant 

association between a polygenic risk score (PRS) for cigarettes per day, as calculated 

by summary statistics from the Tobacco and Genetics Consortium (TAG) and lifetime 

use of ECIGs such that ex-smokers had roughly 43% greater odds of initiating ECIGs 

124. Further investigation using the Avon Longitudinal Study of Parents and Children 

(ALSPAC) reported a positive association between a PRS for CIG initiation (as 

calculated from the GWAS and Sequencing Consortia for Alcohol and Nicotine) and 

ECIG ever use such that individuals were 24% more likely to be an ECIG initiator based 

on their PRS 58. Both of these samples utilized adults (Allegrini mean age = 45; Khouja 
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age of data collection = 24) rather than adolescents or blended samples. There should 

be no bias for the changing effects of A and C across age due to the retrospective 

nature of the data (i.e., reporting on childhood behaviors as an adult). By reporting 

significant associations between PRS generated from CIG use and ECIG initiation, 

there appears to be confirmation that there is some genetic overlap between CIG and 

ECIG use.  

These results should be evaluated in light of the following limitations. First, the 

majority of participants identified as European-American race/ethnicity, and results from 

this study may not generalize to other racial/ethnic populations. Second, this study used 

self-report data which may be subject to reporter bias. Third, we used measures of 

lifetime ECIG and CIG initiation which do not capture the complexities of long-term use 

(e.g., quantity/frequency). Nevertheless, many genetic epidemiological studies have 

focused on CIG initiation and have consistently identified similar results regarding the 

factors involved with this first step in nicotine dependence. Fourth, the power to detect 

significant additive genetic effects and genetic correlations was limited as a result of 

sample size and prevalence of ECIG/CIG initiation.  

These results provide preliminary evidence for genetic and environmental 

influences involved in ECIG initiation as well as significant shared influences between 

ECIG and CIG initiation. More recent research has provided additional evidence from 

molecular genetics regarding the shared influences in genetic factors between ECIG 

and CIG. Two recent papers have reported the use of polygenic risk scores (PRS) 

generated for CIG initiation, that are significantly associated with ECIG initiation 58,124. 

Thus, the evidence is mounting that genetic factors that influence the liability toward 
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CIG initiation may also play a role in ECIG initiation. However, there is not one hundred 

percent shared influences in the genetic variants that influence these phenotypes. 

Further research is needed to characterize which variants are unique and shared 

between ECIG and CIG initiation.   
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CHAPTER 3: SCOPING REIVEW OF TOBACCO USE MEASURES IN 

GENETICALLY-INFORMATIVE SAMPLES: RECOMMENDATIONS FOR FUTURE 

TOBACCO RESEARCH 

 

INTRODUCTION 

Tobacco use is a significant risk factor for several chronic conditions (e.g., lung cancer 

and cardiovascular disease) and remains a global public health concern 78. Many 

individuals continue to engage in CIG use. However, the rates of CIG use in the US 

population have reached their lowest ever level125. CIG use often leads to the 

development of Tobacco Use Disorder (TUD), defined as tobacco use leading to 

dependence on nicotine—the addictive chemical in tobacco 126.  

 There is a large amount of heterogeneity in tobacco use measures.  

Several different instruments have measured the several stages of tobacco use: 

initiation of use, progression to regular smoking, and nicotine dependence 27. The 

variation of measurement within a stage has led to several gaps in understanding 

across the etiology and remission of TUD as well as for each smoking behavior. In 

particular, measurement variation for tobacco product use is likely to have implications 

in the conclusions of recent and future genetic epidemiologic studies of tobacco use and 

TUD particularly for new and emerging tobacco products (such as electronic cigarettes, 

ECIGs). As inconsistent findings for CIG use may be due in part to measurement 

issues, future work in ECIGs (and other novel tobacco use products) should anticipate 

these concerns. Genetic epidemiology results may be inconsistent because of the 

measurement heterogeneity of tobacco use across studies. Meta-analysis of published 
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studies produces standardized results across studies. However, they have the potential 

to mask the degree of measurement variability and may not motivate careful 

consideration of the kinds of results that are produced specifically for a given measure.  

This concern is particularly important for researchers as they consider new data 

collection and are faced with making choices of the types of measurements to include in 

a study. Therefore, it is necessary to systematically evaluate the magnitude and quality 

of study results produced using genetic epidemiology study designs. Although some 

prior meta-analysis and systematic reviews of CIG use have been reported using twin 

studies, the most recent was conducted in 2017 95 and have not evaluated genetic and 

environmental influences for other tobacco products. 

The issue of measurement heterogeneity leading to variation in results may also 

have important implications for genome-wide association studies (GWAS).  If the 

outcome, or phenotype of interest, is poorly defined two problems may occur. First, the 

parameter estimates of the magnitude of associations generated from GWAS may be 

biased. This would lead to differences in estimates of heritability from GWAS compared 

to those generated from twin studies. Second, heterogeneity in outcome measurement 

may lead to inconsistent results across GWAS. Further, this would lead to an inability to 

replicate GWAS results.  

This study seeks to aggregate and summarize results across two sets of results. 

The first set focuses on results from specific studies of tobacco use. These studies 

include variance component estimates from twin studies, and single marker variants 

from GWAS.  This will provide insight into the range of the influence of genetic factors 

across tobacco use phenotypes. The second set focuses on summarizing the biological 
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relevance of GWAS results. It is possible that conclusions about biological function 

derived from GWAS results may be dependent on phenotype measure. However, to 

date, there has been relatively little effort to broadly aggregate and reflect on the 

functional relevance of GWAS results across published studies of tobacco use. 

Consequently, it may be helpful to aggregate GWAS results by summarizing the known 

downstream biological products of genetic variants to establish the functional relevance 

of GWAS results for genetic variants (e.g., mRNA production, gene expression, and 

protein). Functional relevance may provide novel insights into the treatment of disorders 

by pharmacological means. Aggregating and synthesizing GWAS results within the 

context of functional relevance does not rely on the consistent replication of specific 

genetic variants of the genome. Instead, a summary of results related to functional 

relevance produces detail on biological pathways. For example, a study examined 

GWAS results for childhood onset asthma, reporting biological pathways involved with 

the immune system 127.  This type of information produces biological context to motivate 

future pathways for study.  

There is fair amount of heterogeneity in the results of genetic epidemiologic 

studies of tobacco use because the measurement of tobacco use is heterogeneous. 

However, it is unclear if different operational measures of the same conceptual variable 

will lead to differing results (i.e., the detection of significant results across different SNPs 

or genes). Thus, the goal of this chapter is to summarize the genetic epidemiology 

results for two major study designs—twin studies and genome-wide association studies. 

These study designs were prioritized because twin studies provide the rationale for 

continuing to examine a phenotype for genetic variants. This will be done via first 



 63 

providing twin study results as a basis for proceeding to GWAS designs. Secondly, 

functional relevance will be reported for significant published GWAS results. 

Recommendations for future studies will be outlined to conclude this chapter. 

 

METHODS 

A series of searches in four databases was performed (PubMed, EMBASE, PsychINFO, 

and CINAHL) to identify potential articles of interest. Article requirements included: (1) 

published in English, (2) published between the years 1982 (the first year a genetically-

informative analysis was performed for tobacco use) and 2020, and (3) conducted using 

human subjects. The search was performed on 20 May 2020. Searches focused on 

articles satisfying three different concepts were created, each with unique search terms 

(tobacco product, tobacco use measurement, and genetically-informative studies).  

 The tobacco product concept reflects the different types of tobacco products that 

could be used by individuals. We wanted to capture all studies that examined tobacco 

products. The purpose of this concept was to capture each tobacco product to ensure 

that lesser known or used products (e.g., snus, hookahs, chewing tobacco) were 

included and not the most often studied products (e.g., combustible or conventional 

cigarettes). Tobacco products were searched using the following search terms: 

cigarette, conventional cigarette, combustible cigarette, electronic cigarette, chewing 

tobacco, hookah, cigar, snus, polytobacco use, comorbidity, and polysubstance. These 

terms returned 345,709 potential articles.  

  A tobacco use measurement concept was used to quantify the behaviors that 

are related to tobacco use. This concept was used to define the way researchers 
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previously conceptualized tobacco use behaviors to ensure all possible studies that may 

have studied tobacco use as an outcome measure (not a covariate) were found and 

included in the search. The search for this concept utilized the following terms: 

cigarettes per day, cessation, pack-years, initiation, ever use, current use, age of 

initiation, nicotine dependence, withdrawal symptoms, former smokers, current smoker, 

withdrawal, cravings, heaviness of smoking index, initial subjective experiences with 

tobacco use, number of puffs, over 100 cigarettes, smoking status, cotinine level, NNAL 

(4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol) level, and Fägerström Test for Nicotine 

Dependence. This concept lead to 482,151 potential articles.  

 A genetically-informed studies concept was used to reflect studies that utilized 

genetically informative study designs, either through molecular, familial, or statistical 

genetic methods. This review is only interested in studies that addressed genetic 

influences (with or without environmental influences).  Therefore, the search addressing 

this concept focused on the following terms: twin, family-based, genetic association, 

candidate gene, genotype, GWAS, co-twin design, consortia-based GWAS, genome 

wide association, genome wide, PheWAS, adoption studies, gene-environment 

interaction, epigenetic – methylation, epigenetic – miRNA, epigenetic – acetylation, 

heritability, multivariate, development. This concept returned 608,086 potential articles 

of interest. This study further focused on GWAS and twin studies for two reasons. First, 

twin studies are the first step for genetic epidemiologic studies, with results informing 

the degree to which latent genetic factors are associated with a phenotype. GWAS then 

examines measured genetic effects in an effort to pinpoint where in the genome the 

association comes from. Thus, these two designs form a logical dyad. Secondly, 
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tobacco use needed to be an outcome rather than an exposure or covariate. Many 

studies of more recent technologies (e.g., methylation or epigenetic studies) consider 

tobacco as an exposure rather than an outcome and are therefore not relevant for this 

review.  

 Utilizing the Concepts 

While each concept returned hundreds of thousands of potential articles, they only 

returned articles based on their individual concept (e.g., the tobacco product concept 

only returned articles that addressed tobacco products). However, this strategy did not 

account for the overlap with the genetically-informative concept. Therefore, we 

combined each of the results from the three previous concepts and retained only those 

articles that were present in each of the concept searches. We retained 16,778 articles 

that were focused on tobacco products (i.e., from the tobacco product concept) and 

were genetically informed. Of those, 6,096 articles were present in all three concepts. 

The resulting 6,096 articles were then uploaded to the Rayyan application to facilitate 

the review of abstracts 128.  

 Article inclusion criteria included: written in the English language, use of a 

genetically-informative study design, and a tobacco use measure as the outcome (i.e., 

not as a covariate or main exposure variable). Agreement across two out of three 

research assistants was required to include an article into this review.  Any disputes that 

could not be resolved by those authors were decided upon by the lead author (JSC). 

This resulted in 492 articles deemed relevant for data extraction. Fifty-five articles were 

removed from the data extraction process (Figure 1) as a result of duplications (i.e., 

published online the year prior to journal publication and were erroneously counted as 
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separate articles). An additional set of 127 articles were removed because they were 

abstracts from conference proceedings, were not available in English, or were 

review/commentary articles. This resulted in 310 articles relevant for data extraction 

(Figure 1). Some studies measured tobacco use multiple ways (e.g., initiation and 

cigarette quantity), therefore a single article may be referenced several times 

throughout this review. Further, results were limited to those articles that utilized a 

genome-wide association analysis or some variation of that design, leaving 87 articles.  

Data Extraction 

Data from the 87 articles were extracted with a team of researchers including 

undergraduate and graduate students. Articles were binned into sets of 20 by year of 

publication and disseminated to team members. In consultation with colleagues who 

had previously conducted systematic reviews, a data extraction spreadsheet was 

designed (Appendix S3.1) which detailed various aspects of the articles such as sample 

size, age range, any subsamples the study examined, the conceptual variable, and the 

operational variable. The spreadsheet was then refined to only include relevant 

information for this review (Appendix S3.2). After data extraction was completed, 

another team member reviewed to ensure all relevant data were captured during the 

extraction process. Finally, data were summarized based on the conceptual measure of 

nicotine use. In other words, all studies that examined smoking initiation were collated 

into a separate spreadsheet from studies that examined nicotine dependence. These 

conceptual measures are not mutually exclusive, and studies could be represented in 

multiple tobacco use behaviors.  

 



 67 

 Aggregating and Translating GWAS Results to Understand Biological Relevance  

Following the extraction of relevant markers from the GWAS studies, gene lists were 

run through DAVID (The Database for Annotation, Visualization, and Integrated 

Discovery) to extract biological pathways which appeared more often than expected as 

denoted by Fisher’s Exact test 129–131. DAVID is a data-mining tool which extracts the 

biological pathways that are represented by the genes with which DAVID is given from 

the GWAS results. This organization of biological pathways is accomplished by 

examining the co-occurrences across multiple bioinformatic platforms that curate details 

on the functional annotation of genes relevant to a SNP-based result (i.e., gene 

name/aliases, molecular function, and biological role).  

DAVID results produce four different classes of results. The first class is a 

“Category”. This class provides information on the bioinformatic platforms from which 

the results were extracted. DAVID probes publically available bioinformatic platforms 

including (but not limited to): BioCarta 

(https://www.hsls.pitt.edu/obrc/index.php?page=URL1151008585), Kyoto Encyclopedia 

of Genes and Genomes (KEGG; https://www.genome.jp/kegg/), GO (GOTERM; 

http://geneontology.org), and UniProtKB keyword (UP_KEYWORD; UniProtKB 

keyword). The second class is “Term”, which describes the actual functional relevance 

within the pathway, such as “cell signaling”. Term details the pathway’s relevance based 

on evaluation of results across bioinformatic platforms which are not mutally exlcusive 

(i.e., the term could appear in multiple platforms). The third class of results is “Genes”. 

This column provides the genes that enriched, or occur more often than expected by 

chance, for that particular term, such as cell signaling. The final class for the results is 
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the p value calculated for the Fisher’s Exact Test to determine if a gene or gene list is 

significantly associated with a term. 

GWAS results for phenotypes were submitted to DAVID analysis if they were 

either (1) conducted in at least three independent published GWAS studies or (2) 

conducted in GWAS consortia consisting of at least three separate samples. DAVID 

reported pathways that were significant at 0.05 using a Benjamini-Hochberg False 

Disovery Rate. Single nucleotide polymorphisms (SNPs) that were reported to be 

genome-wide significant (p < 10-8) in the original GWASs were included in DAVID 

analyses.  

 

RESULTS 

1. Smoking Initiation 

Twin Studies  

 Twin studies give a broad estimate of the extent to which a phenotype is 

influenced by genetic variants. In brief (see Chapter 2), twin studies estimate additive 

genetic (A), shared environmental (C), and unique environmental (E) effects by 

decomposing the covariance shared between two twins. As monozygotic (MZ, or 

identical) twins are presumed to shared 100% of their genetic effects, as well as 100% 

of the shared environmental influences, the only differences that could arise between 

these twins are due to unique environmental influences or measurement error. 

However, dizygotic (DZ, or fraternal) twins are assumed to only share, on average, 50% 

of their genomes but 100% of the shared environment. Thus, any differences in DZ 

twins could arise from either genetic or unique environmental influences. Comparison of 
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the covariances from the different zygosity groups allows the decomposition of variance 

into A, C, and E estimates. Twin models may also be extended to model non-additive 

genetic variance (D) in lieu of C influences as D and C are confounded 132. The choice 

to model C or D is driven by the correlation pattern of MZ and DZ twins 133. An rMZ 

greater than two times that of rDZ would necessitate modeling D rather than C. In total, 

14 studies examined smoking initiation (SI) within a twin design. 

 Lifetime Ever Smoking Initiation. A common way used to measure SI is by asking 

if the participant has ever smoked. Rhee and colleagues reported if 1,062 twin and 

sibling pairs had ever used cigarettes and reported significant additive genetic (A = 

0.24), non-additive genetic (D = 0.08), and shared environmental influences (C = 0.34) 

134. Similarly, Maes et al. (2004) used data from 6,805 twins from the Virginia Twin 

Registry focused on whether they had ever used a cigarette 135. They reported 

significant genetic effects (A = 0.75) and unique environmental effects (E = 0.25). Vink 

and colleagues also asked a sample of Finnish twins (N = 10,063) if they had ever 

smoked a cigarette 135,136. They reported significant genetic (A = 0.36), shared 

environmental (C = 0.56), and unique environmental influences (E = 0.07) in this 

European sample.  

Further research has examined SI through the use of lifetime ever smoking but 

stratified the results by different self-reported race/ethnicity groups. Sartor and 

colleagues studied SI from an American sample of 3,553 twins of European descent 

and 945 twins of African descent 137. They reported significant genetic (A = 0.50) and 

unique environmental influences (E = 0.46) and nonsignificant shared environmental 
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effects (C = 0.04) in twins of African descent. In the twins of European descent, there 

were significant influences of A (0.51) and E (0.12) but nonsignificant C (0.24). 

 Some researchers examined lifetime ever smoking by adding a threshold of the 

number of cigarettes a participant needed to have smoked in their lifetime before 

classifying them as initiating smoking. Hamilton and colleagues asked if participants in 

their study had smoked more than 100 cigarettes in their lifetime, meaning if an 

individual had smoked less than 100 cigarettes they would be considered a non-smoker 

107. In this study of 32,359 American twin pairs, male pairs were reported to have 

significant genetic (A = 0.71), shared environmental (C = 0.12) and unique 

environmental influences (E = 0.17). Female twin pairs also reported significant genetic 

(A = 0.32), shared environmental (C = 0.48) and unique environmental influences (E = 

0.21). Similarly, McCaffery, examining a group of 9,414 American twins who had served 

in the Vietnam War, categorized individuals as initiators if they had smoked more than 

100 cigarettes in their lifetime 138. They reported significant genetic (A = 0.49), shared 

environmental (C = 0.29) and unique environmental effects (E = 0.22) in this sample. 

 Finally, in a mega-analysis using raw data from multiple samples, Maes and 

colleagues defined SI as having ever had a cigarette, even one or two puffs 95. In this 

multi-country study of adolescent (aged 10-19) twins (N = 19,313), the researchers 

reported changing impacts of additive genetic and shared environmental influences of 

the developmental period. Specifically, shared environmental influences played a larger 

role at younger ages (C = 0.70 at age 13 and 0.40 at age 19) while additive genetic 

influences played less of a role at younger ages (A = 0.15 at age 13 and 0.45 at age 

19).  



 71 

 Initiation of Regular Smoking. One of the first twin studies of SI derived smoking 

initiation by asking an individual to categorize themselves as ever being a smoker or 

not. The research aggregated three twin cohorts (Australian twins, 3,808 pairs; Virginia 

twins, 2,145 pairs; and a study from the AARP consisting of 3,620 twin pairs) 139. 

Researchers reported significant genetic effects (A for men = 0.83; for women A = 0.50) 

and nonsignificant shared environmental effects for men (C = 0.01), but significant for 

women (C = 0.29). A different study in 2006 examined SI as individuals having been a 

regular smoker (self-identified) versus those who did not identify as a regular smoker in 

14,472 Australian twins and siblings 90. Similar to the aforementioned study, Morley 

reported significant genetic effects (A = 0.59 for females; A = 0.63 for males) and 

unique environmental effects (E = 0.17 for female; E = 0.19 for males), as well as small 

but significant shared environmental effects (C = 0.04 for females; C = 0.07 for males). 

Finally, Kendler and colleagues asked participants to identify themselves as regular 

smokers by asking if they had regularly smoked for at least one month in their lifetime 

109. In this sample of 1,103 Norwegian twin pairs, there were significant additive genetic 

(A = 0.79) and unique environmental influences (E = 0.21) to the initiation of regular 

smoking.  

 Smoking Initiation Derived from Smoking Status. An initial study of SI used 

whether an individuals, 7,375 male-male twin pairs who served in the Vietnam War, was 

a current smoker or not as their initiation variable 92. Participants were classified as 

smokers if they currently smoked, and had smoked at least 100 cigarettes in their 

lifetime, or if individuals had smoked at least 100 cigarettes but were not current 

smokers. These individuals were compared to individuals who reported not using 100 
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cigarettes in their lifetime. Researchers reported a significant effect of additive genetic 

influences (A = 0.70) and unique environmental influences (E = 0.30), but no effect due 

to shared environmental influences.  

Wills and colleagues used a measure of smoking status that asked twins to 

report how many cigarettes they smoke in a day breaking up smoking by either 1-19 

cigarettes per day or more than 20 per day 140. They also asked twins to report if they 

used to or only occasionally smoke cigarettes. These groups were aggregated into a 

smoking initiator category and compared against individuals who never smoked. They 

reported significant genetic (A = 0.43), shared environmental (C = 0.39), and unique 

environmental influences (E = 0.18) in this sample of 850 American twin pairs. 

 Age of Smoking Initiation. An early twin study of SI assessed the age the twins 

started smoking by asking, “At what age did you start smoking?”91 Using 3,810 adult 

twins from the Australian Twin Registry, Heath and colleagues reported significant 

genetic effects and unique environmental influences in both a sample of young twins 

(age at assessment was less than 30; A = 0.62, E = 0.38) and an older cohort (age at 

assessment greater than 30; A = 0.51, E = 0.49). During the same timeframe, Kendler 

and colleagues used a sample of 1,898 Virginian female twins to assess age of SI, 

though they used a slightly different question 141. Kendler and colleagues asked when 

they started regular smoking with regular smoking defined as a pattern of cigarette use 

such that the participant smoked at least 7 cigarettes per week for one month. They 

reported significant genetic (A = 0.78), shared environmental (C = 0.07), and unique 

environmental influences (E = 0.15). 
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Genome-Wide Association Studies of Smoking Initiation 

 Genome-wide association studies (GWAS) examine a series of genetic markers 

across the genome. A genetic association is a single test of association which uses 

genotypic data from a genetic marker to test for statistical associations between a 

genetic variant (e.g., single nucleotide polymorphism, SNP) at a specific locus and CIG 

initiation. A GWAS expands this test to thousands of genetic markers that test for 

associations with CIG initiation with SNPs across located throughout the genome. 

These designs typically genotype a number of markers (generally between 500,000 and 

1 million markers) and exploit linkage disequilibrium (the non-random segregation of 

alleles) to impute up to 30 million markers 142. This study design allows researchers to 

identify specific genetic variants associated with phenotypes of interest. There were 12 

GWAS that identified “Smoking Initiation” as an outcome and of these, 5 use data with 

relatively small sample sizes (N = 1,114-8,842). A known limitation of GWAS of complex 

polygenic phenotypes is that they require sample sizes of greater than 20,000 143 

because the effect sizes that are often detected are very small (e.g., OR < 1.3). 

Consequently, most single-sample GWAS generally do not have the statistical power 

necessary to detect significant genetic associations with genome-wide data, and only 

one was a single-sample study 144. In response to this limitation, seven 122,145–150 studies 

used a multi-sample approach in which GWAS data was aggregated from a few 

samples 147 or a GWAS was conducted in a single discovery sample and tested for 

replication of results in additional samples 146,148. Many of these studies have suffered 

from low power to detect statistically significant results at a genome-wide level. 

Nevertheless, these single-sample studies are the foundation by which GWAS on 
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tobacco use were expanded, and as such we briefly summarize published results using 

these approaches in addition to study designs. 

 

Single- and Multi- Sample GWAS 

 Lifetime Ever Smoking Initiation. A study of Japanese participants ages 20-89 

(Biobank Japan Projects, N = 165,456) used a measure of lifetime ever smoking 

initiation using an item on length of smoking in life (“How many years do/did you 

smoke?”) 144. Responses to this item were categorized as ever versus never smokers. 

One SNP with a genome-wide significant association was detected in men and women 

(rs117036946). This SNP is located in DLC1. Two additional genome-wide significant 

associations were detected in analyses of males only. These intergenic variants are 

located between CXCL12 and TMEM72-AS1 (rs117097449) as well as GALR1 and 

SALL3 (rs77105140) and their biological function is unclear.  

 Initiation of Regular Smoking. No single-sample GWAS reported results on 

initiation of regular smoking. Two multi-sample GWAS have been conducted. One multi-

sample GWAS reported results on lifetime initiation of regular smoking 145 (“Have you 

ever smoked cigarettes/bidis regularly in the past?”). None of the reported results 

achieved genome-wide significance (p <= 5 x 10-8). However, seven loci with suggestive 

results (p < 1x10-6) were identified in men. Six of these loci were located in the 

SLC39A11 region. This gene encodes a protein belonging to the ZIP, a Zinc transporter 

gene which is responsible for moving zinc in and out of the cell, transporter family 151. In 

women, 14 loci with suggestive results were identified. Two of these loci were located 
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on the X chromosome and chromosome 15 in the region between SLCO3A1 and 

ST8SIA2 genes and as such biological function is as yet unknown. 

 A second study used a single smoking status item and coded two different ways 

to measure SI in the discovery sample (N = 8,842 Korean participants, ages 40-69). The 

first SI measure was a binary trait related to lifetime regular cigarette use (i.e., never 

versus having regular cigarette smoking experiences) 149.   

 

 Smoking Initiation Derived from Smoking Status. No single-sample GWAS has 

reported on smoking initiation measured as smoking status.  Four multi-sample studies 

have reported lifetime ever smoking initiation using a measure of current smoking status 

and categorized participants as “ever versus never smokers”. The first study used a 

discovery sample (N = 3,497) and three additional replication samples (N = 7,863) that 

measured SI in a similar fashion. No suggestive genetic associations at p ≤ 1x10-6 were 

detected. Twenty-two genetic associations at p ≤ 1x10-4 were detected. Of these, the 

single nucleotide polymorphisms (SNPs) with the lowest p-values were rs4423615 (p = 

5.3 x 10-5). This SNP is located in GRB14, a gene involved in the tyrosine kinase 

signaling pathway.  It is possible that GRB14 is involved in the development type 2 

diabetes 152. There was also an association with rs10794595 (p = 4.3 x10-6). This SNP 

is not located in a gene nor in linkage disequilibrium with any other SNP 148.  

 The second study combined data from two samples using a measure of lifetime 

ever use as ever versus never use (N = 4,611) 147. No suggestive genetic associations 

at p ≤ 1x10-6 were detected.  Seven genetic associations at p ≤ 1x10-5 were detected, 

although none of the variants identified were located in known gene regions 148.  
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 The third study used a single smoking status item in the discovery sample (N = 

8,842 Korean participants, ages 40-69) and analyzed the original four-level smoking 

status, treating it as an ordinal categorical variable (i.e., “never”, “former”, “light”, and 

“habitual”) 149. The replication samples assessed SI as age of smoking onset in the two 

replication samples (N = 402 African American participants, N = 200 European 

American participants, ages 21 and older). Although three loci located in RGS17 were 

detected for SI derived from smoking status in the discovery sample, these associations 

did not extend to the replication samples.  

 A fourth multi-sample study of US military veterans (N = 286,118, Million 

Veterans Program, mean age = 64.4, 55.0% were between ages 50-69) used a 

measure of smoking status for being an ever smoker (past or current) versus never 

smoker as a single study and meta-analyzed their results with those from a consortium 

(GSCAN) 122. Results from single study analyses identified 12 genome-wide significant 

associations. Of these, eight had been identified in previous GWAS studies of SI 

(rs12044362, rs1004787, rs11581459, rs1474011, rs6438208, rs11724738, 

rs78875955, and rs7126748). Additionally, three were also replicated in meta-analysis 

(rs11581459, rs1004787, rs6438208). These SNPs are located within or near genes 

responsible whose products are responsible for regulation of gene expression 

(LINC01360, long intergenic non-protein coding RNA; CAMKMT 153, calmodulin-lysine 

N-methyltransferase; and ZBTB20 154, zinc finger and BTB domain containing 20).  

 Age of Smoking Initiation. Matoba et al. 2019 studied common variants in 30,418 

Japanese participants 144. Age of smoking initiation was measured by subtracting the 

number of years the participant had smoked from the age at the time the interview or 
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the age at the time they quit smoking. This value was then log transformed. There were 

no significant associations when data from men and women were analyzed jointly. In 

females, there was a genome-wide significant association for one intergenic locus 

(rs6718569, p = 3.6x10-9) between LINC01793 and MIR4432HG.  

 Four multi-sample GWAS have reported this outcome. The first multi-sample 

GWAS used data from adults ages 44-67 (Finnish Twin Cohort Study, N = 1,114) and 

reported results on four measures of age of smoking initiation (age at first puff [“How old 

were you the very first time you smoked even a puff of a cigarette?”], age of first 

cigarette [“How old were you the first time you smoked a whole cigarette?”], age of 

onset of weekly smoking [“How old were you when you first smoked a cigarette at least 

once a week for at least two months in a row?”], age of onset of daily smoking [“How old 

were you when you first smoked cigarette every day or nearly every day for at least two 

months in a row?”]) 146. Three SNPs located in the intergenic region between NACKAP5 

and MGAT5 were associated with age of weekly smoking. However, these associations 

were not detected in the replication sample (Finnish twin study [FT12], N = 869 and an 

Australian twin family sample [NAG-OZALC], N = 4,425). A second study assessed as 

age of smoking onset in a discovery sample (N = 8,842 Korean participants) and two 

replication samples (N = 402 African American participants, N = 200 European 

American participants). No suggestive genetic associations at p ≤ 1x10-6 were detected. 

  Results from a meta-analysis of the three samples identified 6 SNPs with genetic 

associations (p ≤ 1x10-4) in males. Of these, two (rs7747583, p = 2.03x10-5 and 

rs2349433, p = 3.09x10-5) were in the regulator region of RGS17 (G-protein Signaling 

17) a gene whose product regulates gene expression 149.   
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 The third study used data from two samples (Prostate, Lung, Colon, and Ovarian 

Trial and the Nurses Health Study, N = 4,611) of adults ages 55 and above 147.  No 

suggestive genetic associations at p ≤ 1x10-6 were detected. However, associations 

were detected with two SNPs (rs11082304, p = 6.0x10-6 and rs17050782, p = 8.4x10-6) 

in genes whose products are responsible for cell proliferation and/or differentiation 

(CABLES1) and gene expression (SETD7) 147.  

 Siedlinski et al. 2011 studied common variants in a four-cohort study of 3,397 

patients of European ancestry with COPD (mean age = 65) 150. Age of initiation was 

measured as using either a case Report Form or modified versions of the American 

Thoracic Society /Division of Lung Diseases Respiratory Disease Questionnaire 155. 

Eight loci had suggestive associations at p<1x10-6. Of these, three highly correlated 

SNPs (rs9380362, rs7743060, rs769051) were in an intergenic region between BAK1 

and ZBTB9.  

 

Consortia-Based GWAS 

 Meta-analyses of consortia containing many individual samples with similarly 

measured smoking behaviors have been used to overcome issues of low statistical 

power to detect genome-side significant associations in GWAS. Consortia-based 

approaches typically differ from multi-sample approaches using pre-identified data 

analysis plans agreed upon by individual study teams as well as sharing and meta-

analyzing results across studies within the consortium. Five consortia-based studies of 

smoking initiation have been reported. These represent the largest studies of tobacco 

use outcomes to date and have the strongest statistical power to detect significant 
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genetic associations. Below, we detail seven consortia-based studies and the results 

that were prioritized by smoking initiation phenotype. When reported, estimates of 

heritability are also included.  

 Lifetime Ever Smoking Initiation. No consortia-based GWAS has been conducted 

on a measure of lifetime ever smoking initiation.  

 Initiation of Regular Smoking. Five consortia-based GWAS studies measured 

initiation of regular smoking by distinguishing lifetime ever use of 100 or more 

cigarettes. One of the first studies to use a consortium-based used a consortium of 

European ancestry-based studies (Tobacco and Genetics Consortium, 16 studies, N = 

74,053). Eight genome-wide significant associations were identified 156 (Table 4.1). All 

the SNPs identified were in BDNF, a gene whose product (Brain-Derived Neurotrophic 

Factor) is responsible for maintaining neuronal survival and neuronal plasticity.  

Although Brain-Derived Neurotrophic Factor was initially determined to function within 

the striatum, it has been reported to be widely expressed in cortical and subcortical 

regions of the brain 157–161.  

 A study of African American adults (Study of Tobacco in Minority Populations 

Genetics Consortium, 13 studies, N = 32,389) ages 20-75 detected no genome-wide 

significant associations for SI 162.  

 A study of European ancestry samples of adults (GWAS and Sequencing 

Consortium of Alcohol and Nicotine Use, 29 studies, N = 1,232,091) 163  identified 378 

genome-wide significant variants. Smoking initiation was harmonized across studies 

from three types of measures (i.e., “Have you smoked over 100 cigarettes over the 

course of your life?”; “Have you ever smoked every day for at least a month?”; and 
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“Have you ever smoked regularly?”).  This study reported the significant genetic variants 

that were identified explained 7.8% of the variance for SI. Of the variants identified, 

those with known biological function included a variant near PPP1R1B (protein 

phosphatase 1 regulatory subunit 1B). The product of PPP1R1B affects synaptic 

plasticity and reward-based learning in the striatum. Similarly, variants involved in the 

pathways related to glutamate processes were identified. Additionally, pathways 

involved in SI also included sodium-, potassium-, and calcium- voltage-gated channels 

which are important for neuronal excitability and signaling. Other identified variants were 

determined to be important in the pathway related to dopamine neurotransmitter 

release.  

 A study of European and African ancestry adults (17 studies, N = 146,117) 

focused on genome-wide associations with low-frequency, nonsynonymous and 

putative loss-of-function exonic variants 164. A total of 93 loci associated with initiation of 

regular smoking and having genome-wide significance were detected. The heritability 

for initiation of regular smoking explained by all SNPs in the study was 14%. The 

variation due to rare coding variants explained 2.2% of the phenotypic variance. 

Therefore, rare coding variants explained 15.7% of the of the SNP heritability. Novel 

variants with the strongest statistical evidence were identified in rs2232423 (ZSCAN12), 

rs35891966 (NAV2), and rs6265 (BDNF). Additionally, a suggestive SNP association 

and tests of gene-based association detected a significant association with HEATR5A. 

BDNF is a protein coding gene which produces brain-derived neurotrophic factor 

(BDNF). BDNF promotes survival and differentiation of neuronal populations during 

mammalian development. It is widely expressed in the adult nervous system as well as 
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in non-neural tissues, including the thymus, heart, and lung 165,166. Further, it acts as a 

regulator of activity-dependent neurotransmission and plasticity in adults 157,160,161,167,168. 

NAV2 is a protein coding gene whose product (neuron navigator 2) is responsible in 

part for neuronal development and neurite outgrowth 169–171. It is highly expressed in the 

brain (frontal cortex), kidney and liver, as well as other locations. ZSCAN12 is a protein 

coding gene whose product (zinc finger and SCAN domain containing 12) is involved in 

DNA binding and transcriptional regulation. It is moderately expressed throughout the 

body. HEATR5A is a protein coding gene whose product (HEAT repeat containing 5A) 

is moderately expressed throughout the body. Generally, a HEAT repeat refers to a 

protein tandem repeat structural motif. Further, this structural motif is commonly found 

in four proteins (huntingtin, elongation factor 3, protein phosphatase 2A, and yeast 

kinase TOR1, HEAT) 172,173. HEAT repeats form extended super-helical structures 

which are involved in intracellular transport. 

 One study of adults ages 18 and over focused on associations with rare coding 

variants 174. This study used data from a discovery cohort and 61 replication cohorts, 

consisting of three consortia (N = 346,813). The phenotypic variance explained by the 

rare variants were 0.53%. Further, out of 40 variants with genome-wide significant 

associations detected in a combined analysis of discovery and replication cohorts, novel 

associations with three SNPs were also detected in initial analysis in the discovery 

sample. These SNPs are in BORCS7 (rs7096169), SMG6 (rs216195), and TMEM182 

(rs6738833). An additional non-novel association was detected in both discovery and 

replication samples for a SNP (rs462779) in a gene (REV3L) that encodes a protein 

which protects DNA from damage. Similarly, the products of SMG6 and TMEM182 are 
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responsible for downstream regulation of gene expression for other genes. BORCS7 is 

a protein coding gene and its product (BLOC-1 related complex subunit 7) is part of a 

multi-subunit complex that regulates lysosome positioning and cell function related to 

regulation of cell spreading and motility. Further, BORCS7 is expressed throughout the 

body, including the brain. Prior studies report expression in adult neurons and 

astrocytes 175. 

 Smoking Initiation Derived from Smoking Status. No consortia-based studies of 

smoking initiation derived from smoking status were identified.  

 Age of Smoking Initiation.  Four consortia-based GWAS measured age of 

smoking initiation. All studies used self-report.  

 Furberg et al (TAG consortium) 2010163 studied common variants in 24,114 

European ancestry participants. Age of smoking initiation measured the age the 

participant started smoking cigarettes. Some studies studied the age at which the 

participant first tried smoking, even one or two puffs. Others measured the age the 

participant began smoking regularly. No genome-wide significant associations were 

detected.  

 David et al. 2012 162 studied common variants in 15,547 African American 

participants. Age of initiation was measured two different ways.  Some studies 

measured as the age at which smoking was first attempted. Other samples measured 

as the age at which participants began smoking regularly. Three highly correlated SNPs 

(rs1678618, rs12445577, and rs1612028) located in SPOCK2 had a suggestive 

association (p < 1x10-6) with age of initiation. The product of SPOCK2 (SPARC 

[Osteonectin], Cwcv And Kazal Like Domains Proteoglycan 2, also known as testican-2) 
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is a protein which binds with glycosaminoglycans to form part of the extracellular matrix. 

It is expressed across several tissues and has particularly high levels of expression in 

the brain and lung. Further, it is expressed prominently in normal brain, and its 

expression levels decrease as tumor grade in this area increases.  

 Liu et al 2019 163 studied common variants in 341,427 European ancestry 

participants. Age of smoking initiation was measured as “At what age did you begin 

smoking regularly?” Alternatively, other studies used a combination of “How long have 

you smoked?” and “What is your current age?” to derive a continuous measure for age 

of regular smoking initiation. Ten loci were associated at a level of genome-wide 

significance. The total SNP heritability was 5%. Of the 10 loci identified, 7 were located 

within intronic regions of genes (rs72853300- TEX41, rs12611472- CUL3, rs7559982- 

WDPCP, rs11915747- CADM2, rs13136239- MAML3, rs624833- ADD1, rs1403174- 

MAD1L1). TEX41 is a long-noncoding RNA gene. 

 Brazel et al 2019 164 focused on associations with rare coding variants in 124,590 

adults. Age of smoking initiation was conceptualized as the age at which an individual 

started smoking cigarettes regularly. Studies used items such as: “At what age did you 

begin smoking regularly?” Alternatively, other studies used a combination of “How long 

have you smoked?” and “What is your current age?” to derive a continuous measure for 

age of regular smoking initiation. Three loci were associated at a level of genome-wide 

significance (rs12493563- CADM2, rs8082191- ACCN1, rs442467- MACROD2). The 

total SNP heritability was 6% and the heritability due to the detected rare variants was 

1.1%. Therefore, rare variants accounted for 18% of the SNP heritability for age of 

smoking initiation.  
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Functional Analysis. DAVID analyses reported 15 biological pathways that were 

significantly associated with genome-wide significant SNPs for SI. Five pathways were 

associated with the synapse and cell junctions. These two pathways included CHRNA4 

among 14 other genes (FOCAD, TENM2, GRID2, NLGN1, CADM2, NRXN1, MAGI2, 

DIXDC1, GRIK4, CABP1, GRIN2B, DPP4, OLFM1, TRIM9, SDK1, GRIN2A, ADAM15, 

DLC1, CTNNA2, ERC2, CBLN4, LRRC4C). Five pathways were associated with the 

immune system, specifically immunoglobulins. These pathways impact the adhesion of 

the immunoglobulins rendering them less effective176. In total 14 genes were associated 

with this system (ROBO2, LINGO1, NEGR1, CADM2, DCC, NTM, PXDNL, SEMA3F, 

PTPRF, IGSF11, PTPRD, SDK1, NCAM1, CNTN4, LRRC4C, OPCML). Two other 

pathways related to transmembrane structure, proteins that span the membrane of the 

cell. More than 80 genes were associated with these pathways. Seven genes, including 

CHRNA4 and BDNF, were associated with a pathway that control ligand-gated ion 

channels. Finally, three other pathways, with over 50 genes, involved in the nucleus and 

transcription within the nucleus were associated. These genes implicate either signaling 

between cells (i.e., synapse functions, cell junctions, transmembrane structure), 

transcription within the nucleus, or immune system response (Table 3.1). 
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Table 3.1. DAVID-Identified Gene Clusters and Biological Systems for Smoking Initiation 
Category Term Genes p 

UP_KEYWORDS Synapse 

TENM2, GRID2, NLGN1, CHRNA4, CADM2, NRXN1, MAGI2, GRIK4, 
CABP1, GRIN2B, OLFM1, TRIM9, SDK1, GRIN2A, ERC2, CBLN4, 

LRRC4C 0.008 

UP_KEYWORDS Cell junction 

FOCAD, TENM2, GRID2, NLGN1, CHRNA4, CADM2, NRXN1, MAGI2, 
DIXDC1, GRIK4, CABP1, GRIN2B, DPP4, OLFM1, TRIM9, SDK1, 

GRIN2A, ADAM15, DLC1, CTNNA2, ERC2, CBLN4, LRRC4C 0.022 

INTERPRO 
IPR013098: 

Immunoglobulin I-set 
ROBO2, LINGO1, NEGR1, DCC, NTM, PXDNL, PTPRF, PTPRD, SDK1, 

NCAM1, CNTN4, LRRC4C, OPCML 0.002 

INTERPRO 

IPR003598: 
Immunoglobulin 

subtype 2 
ROBO2, LINGO1, NEGR1, CADM2, DCC, NTM, PXDNL, SEMA3F, 

PTPRF, IGSF11, PTPRD, SDK1, NCAM1, CNTN4, LRRC4C, OPCML 0.005 

UP_SEQ_FEATURE 
domain: Ig-like C2-

type 3 
ROBO2, PTPRD, SDK1, NEGR1, DCC, NTM, NCAM1, PXDNL, CNTN4, 

PTPRF, OPCML 0.015 

SMART SM00408: IGc2 
ROBO2, LINGO1, NEGR1, CADM2, DCC, NTM, PXDNL, SEMA3F, 

PTPRF, IGSF11, PTPRD, SDK1, NCAM1, CNTN4, LRRC4C, OPCML 0.037 

UP_KEYWORDS Transmembrane helix 

THSD7B, GIMAP2, XYLT1, TMEM261, IGF1R, HS6ST3, EDNRA, 
CHCHD3, NOMO2, ENTPD1, EPHA7, SEMA6D, VRK2, CDYL, HLA-G, 
INPP4B, ADAM15, ADGRB2, ADGRB3, YME1L1, GPM6A, TMEM161B, 

CHRNA4, PCDH15, CACNA1D, EFNA5, TMEM242, DPP4, RHOT2, 
GRIN2A, GALR1, RNF217, CDH23, LRRC4C, ST3GAL1, BTN2A2, 

BDNF, CADM2, PTCH1, ST8SIA2, EDEM1, SLC4A10, GRIN2B, IGSF11, 
PTPRD, SDK1, FAM163A, TBXAS1, SLC26A7, CSPG5, FAT3, TMEM18, 

XKR6, DDR1, ROBO2, ALK, RYR2, NRP1, TENM2, MCTP1, TENM3, 
RNF13, TMEM110-MUSTN1, GRIK4, TMEM182, SPPL3, ELFN1, 

PTPRF, CLYBL, PTPRG, IMMP2L, SGCD, GRM8, CNGA3, GRID2, EED, 
TRPC4, DCC, ELOVL3, SLC39A11, ELOVL7, SORCS3, CDH12, 

SMIM21, ST6GALNAC3, OR10A6, CHST3, TMEM55A, NFAT5, NLGN1, 
FOCAD, SLC24A4, SLC24A3, NRXN1, TMPRSS3, PTGER3, NRXN3, 
SEZ6, NRXN2, SPG7, ERBB3, HECTD4, NCAM1, CNNM2, KCNJ3, 

LINGO1, PCDH9, SYT14, SLC28A3 0.037 
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Table 3.1 (continued).  DAVID-Identified Gene Clusters and Biological Systems for Smoking Initiation 

Category Term Genes p 

UP_KEYWORDS Glycoprotein 

DDR1, ROBO2, ALK, NRP1, TENM2, TENM3, ITPRIP, RNF13, THSD7B, 
CPXM2, XYLT1, GRIK4, TMEM182, CLU, ELFN1, PTPRF, IGF1R, 

PTPRG, HS6ST3, EDNRA, SGCD, GRM8, NOMO2, POSTN, ENTPD1, 
GRID2, EPHA7, DCC, SEMA6D, ELOVL3, SORCS3, HLA-G, OLFM1, 

ADAM15, ADGRB2, ADGRB3, CDH12, MAPT, ST6GALNAC3, OR10A6, 
HIST1H2BD, CHST3, GPM6A, SLC24A4, TMEM161B, NLGN1, ITIH3, 

SLC24A3, CHRNA4, NRXN1, NTM, TMPRSS3, PTGER3, NRXN3, 
PCDH15, SEZ6, NRXN2, CACNA1D, SEMA3F, EFNA5, THBS4, DPP4, 
IGSF21, GRIN2A, BRINP1, ERBB3, GALR1, SPOCK2, CDH23, NCAM1, 

CNNM2, ST3GAL1, KCNJ3, OPCML, LINGO1, BTN2A2, NEGR1, 
PCDH9, BDNF, CADM2, ST8SIA2, PTCH1, EDEM1, PXDNL, GRIN2B, 

PTPRD, IGSF11, SDK1, CSPG5, FAT3, CNTN4, CBLN4 0.030 

GOTERM_MF_DIRECT 

GO:0050839~cell 
adhesion molecule 

binding 
PTPRD, NLGN1, POSTN, TENM2, TENM3, CADM2, NRXN1, NRXN3, 

NRXN2 0.004 

GOTERM_BP_DIRECT 
GO:0007416~synapse 

assembly GPM6A, SDK1, NLGN1, BDNF, NRXN1, SPOCK2, NRXN3, NRXN2 0.042 

UP_KEYWORDS 
Ligand-gated ion 

channel RYR2, GRIN2A, GRID2, CHRNA4, GRIK4, CNGA3, GRIN2B 0.030 

UP_KEYWORDS Nucleus 

ZBTB20, CLU, IKZF4, RPS6KA4, CHCHD3, PPP4R2, SALL3, GRAP2, 
CHEK2, ZNF207, MACROD2, BTRC, SMARCC1, EBF1, RFX3, ARID5B, 

HDGFRP2, VRK2, TNNI3K, CDYL, OVOL1, DGKZ, POU3F2, FOXP1, 
CAMKMT, MAML3, TOX, MAD1L1, HIST1H2BD, KHDRBS3, CUL3, 

TSHZ1, NOLC1, FOXO3, FHIT, PHF21A, ZSCAN12, ZNF789, CAMTA1, 
ZNF423, IP6K2, PHC2, ZFHX3, CPSF6, SMAD3, BCL11B, BCL11A, 
ZBTB16, CEP350, RANBP17, MICAL2, FOXN3, ZBTB9, ICK, DAZL, 
MLLT10, MSRA, LSM8, KIF4B, TMEM18, BRWD1, RERE, BARHL2, 
TENM2, BNC2, RNF13, BNC1, CELF2, SETD7, CHD3, AFF3, SMG6, 

ZNF407, SIX3, REV3L, ZNF644, EED, RMI1, SLC39A11, NAV2, MED27, 
MMS22L, NAV3, RARB, RBM20, NFAT5, CTDP1, ZBTB46, NOL4, 

FGD2, TRA2B, POLR2F, FPGT-TNNI3K, IGF2BP2, CTNNA2, ASCC3, 
RUNX1T1, MCRS1, CABLES1, WWP2, ZIC4, CHFR, REST, KANSL1 0.030 
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Table 3.1 (continued).  DAVID-Identified Gene Clusters and Biological Systems for Smoking Initiation 

Category Term Genes p 

UP_KEYWORDS Transcription 

RERE, BARHL2, TENM2, BNC2, BNC1, SETD7, ZBTB20, CHD3, 
AFF3, IKZF4, CHCHD3, SALL3, CHEK2, ZNF407, SIX3, ZNF644, 
SMARCC1, EED, LMO3, EBF1, ARID5B, RFX3, CDYL, OVOL1, 
MED27, POU3F2, FOXP1, RARB, MAML3, NFAT5, KHDRBS3, 
ZBTB46, TSHZ1, FOXO3, FHIT, PHF21A, ZSCAN12, ZNF789, 

POLR2F, CAMTA1, ASCC3, ZNF423, RUNX1T1, ZFHX3, SMAD3, 
BCL11B, BCL11A, ZBTB16, MCRS1, FOXN3, ZBTB9, MLLT10, 

REST, TMEM18, BRWD1 0.030 

UP_KEYWORDS 
Transcription 

regulation 

RERE, BARHL2, TENM2, BNC2, BNC1, SETD7, ZBTB20, CHD3, 
AFF3, IKZF4, CHCHD3, SALL3, CHEK2, ZNF407, SIX3, ZNF644, 
SMARCC1, EED, LMO3, EBF1, ARID5B, RFX3, CDYL, OVOL1, 
MED27, POU3F2, FOXP1, RARB, MAML3, NFAT5, KHDRBS3, 
ZBTB46, TSHZ1, FOXO3, FHIT, PHF21A, ZSCAN12, ZNF789, 

CAMTA1, ASCC3, ZNF423, RUNX1T1, ZFHX3, SMAD3, BCL11B, 
BCL11A, ZBTB16, MCRS1, FOXN3, ZBTB9, MLLT10, REST, 

BRWD1 0.037 
Note. Category refers to the original database or resource where the term originates. Term refers to the detailed function in 
an annotation source. 
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Conclusions. SI is complex, polygenic trait with many genes influencing the 

phenotype. Genes that are responsible for acetylcholine receptor function  (e.g., 

CHRNA4) were consistently associated via the DAVID analysis with SI.  

  

2. Nicotine Metabolism 

Almost 90% of nicotine is metabolized in the liver into six metabolites 177. Approximately 

70-80% of nicotine metabolizes to cotinine (the primary nicotine metabolite) and as 

such, most studies focus on this metabolite. The production of cotinine occurs in two 

steps: the first is metabolizing to nicotine-Δ1′ (5′)-iminium ion with cytochrome P450 2A6 

(CYP2A6), and the second step involves catalyzing the nicotine iminium ion by a 

cytoplasmic aldehyde oxidase. These processes are predominately driven by the 

Cytochrome P450 enzymes (e.g., CYP2A6, Figure 3.1). Cotinine is excreted through 

urine, blood, and saliva. Salivary cotinine is highly correlated with blood cotinine making 

salivary cotinine measurement is a less invasive and cost-effect method of measuring 

cotinine 178. Urinary cotinine is generally four to six times more concentrated, making 

urinary cotinine a more sensitive measure of cotinine 179. Cotinine has a half-life of 

roughly 20 hours but is detectable for up to a week after exposure to nicotine. The 

process of metabolizing cotinine occurs across three separate pathways (Figure 3.1). 

Although there are 6 metabolites derived from nicotine, genetically-informed studies of 

metabolism have focused on cotinine, 3’-hydroxycotinine and its downstream metabolite 

3’-hydroxycotinine glucuronide, 5’-hydroxycotinine, and cotinine glucuronide. The first 

step utilizes CYP2A6 and CYP2A13 enzymes to produce 3’-hydroxycotinine; and 5 
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enzymes from the UDP-glucuronosyltransferase family (UGT1A4, UGT1A9, UGT2B7, 

UGT2B4, and UGT2B15) to produce 3’-hydroxycotinine glucuronide. The highest 

concentrations of this metabolite are found in urine. A third metabolite, cotinine 

glucuronide, is produced when UGT1A1, UGT1A4, UGT1A9, and UGT2B10 enzymes 

act on cotinine to produce cotinine glucuronide. 5’-hydroxycotinine is produced from 

CYP2A6 and is frequently detected in urine. These products are all metabolites of 

cotinine, which allows for an estimation of the rate of nicotine metabolism. A nicotine 

metabolite ratio (NMR) is also able to be calculated as the ratio of cotinine to 

3’hydroxycotinine.  

 

Figure 3.1. Nicotine Metabolism Pathway with Enzymes Responsible for the 
Pathways. 
 
Twin Studies. 

 One twin study of nicotine metabolism has been published 180. This study used blood 

and urine samples to assess cotinine. Additive genetic influences (A) accounted for 

nearly 60% of the variance in nicotine metabolism in twins, while unique environmental 

influences (E) accounted for the remaining 40% with no shared environmental 
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influences. Further examination of the twin correlations (rMZ = 0.68, rDZ = 0.25) also 

suggested some non-additive genetic effects, such as dominance effects (as evidenced 

by the DZ twin correlation being less than half of the rMZ, or 0.34), contributing to 

nicotine metabolism. This study did not have the power to detect non-additive effects 

and encouraged further research to study this source of variance.  

 

Single and Multi-Sample Genome-Wide Association Studies of Nicotine Metabolism  

One single-sample GWAS was conducted using nicotine metabolism as the outcome 

variable and reported 1,732 genome-wide significant associations 181. This study 

examined nicotine metabolism as measured by cotinine glucuronide. Specifically, the 

outcome was defined as the ratio of cotinine glucuronide to total cotinine (similar to the 

NMR) which was associated with 1,241 SNPs at the genome-wide significant level. In 

an effort to reduce the number of associations, researchers used the genome-wide 

significant SNPs in a stepwise regression to determine which SNPs accounted for the 

majority of the variance. Of the 1,241 SNPs associated with cotinine glucuronidation, 15 

were associated after running stepwise regression. Four of these SNPs were in or near 

UGT2B10 (on chromosome 4) which encodes for the enzyme UDP-

glucuronosyltransferase 2B10, which is responsible for the glucuronidation of both 

nicotine and cotinine. The strongest single SNP association was for rs115765562 (p = 

1.6 x 10-155), an intergenic location on chromosome 4. This SNP is highly correlated with 

a UGT2B10 splice site variant, rs116294140, which together with rs6175900 (Asp67Tyr) 

explains 24.3% of the variation in cotinine glucuronidation 182. Further results indicated 

FAM107B (Family with Sequence Similarity 107 Member B), CERS3 (Ceramide 
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Synthase 3), and SLC2A14 (Solute Carrier Family 2 Member 14) had intronic variants 

associated with nicotine metabolism. All other reported results were in intergenic 

regions. 

In addition to cotinine glucuronidation, this study also examined nicotine 

glucuronidation, which is defined as the ratio of nicotine N-glucuronide to total nicotine. 

Using this definition of the outcome, 492 SNPs showed genome-wide significance. After 

putting genome-wide significant SNPs into the regression model, two SNPs remained 

significant after the stepwise regression procedure. Both significant SNPs were intronic 

variants. The first was located on chromosome 4 in UGT2B10, the same gene 

associated with cotinine glucuronidation. The other significant SNP was intronic to 

SHFM1 (Split hand/foot malformation type 1), which encodes for 26S proteasome 

complex subunit DSS1. It is thought this protein plays a role in the completion of the cell 

cycle. 

One GWAS was conducted using a multi-sample (5 studies, N = 5,185 

participants) GWAS design 183. This study reported 1,267 genome-wide significant hits 

for NMR, COT, and 3HC. These SNPs were all located on either chromosome 4 or 

chromosome 19. Those on chromosome 4 were all located within TMPRSS11E gene 

(Transmembrane Serine Protease 11E), a novel finding for nicotine metabolism. 

Previous studies of this gene have indicated a role in cognition 184. The findings on 

chromosome 19 were tightly linked to CYP2A6 with the most significant two SNPs being 

located within this gene. Additionally, there were several highly significant SNPs either 

near CYP2A6 (rs113288603) or near the CYP2B6 gene. Both CYP genes have 

previously been reported to be significant with substance metabolism 37,185–189.  



 92 

Functional Analysis. No DAVID analysis was performed for nicotine metabolism 

because only two studies examined the phenotype. 

 

3. Quantitative Measures 

The goal of measuring smoking quantity is to establish an estimate of the amount of 

nicotine exposure. Nicotine content in typical conventional cigarettes is generally 

regulated in the United States. A typical cigarette sold in the US contains approximately 

11mg of nicotine 190. Consequently, one of the most common ways (5 of 5 reported 

studies) of measuring regular smoking is to measure the number of cigarettes smoked 

per day (CPD). This value can be transformed into the number of cigarettes consumed 

during other time frames (e.g., per week, month, or year) (1 of 5 GWASs). Other studies 

have also examined maximum cigarettes smoked per day when the participant was at 

maximum smoking levels (1 of 5 studies). Most studies (4/5) chose to bin the CPD 

measure either as a binary variable based on a threshold (e.g., smoking at least 10 

cigarettes per day) or binned into other categories (e.g., 1-10 CPD, 11-20, 21-30, etc.; 1 

out of 5 studies).  

 

Twin Studies 

 Continuous Measures of Cigarettes per Day. To date, 7 adult twin studies have 

measured CPD. In general, these studies indicate a higher proportion of variance due to 

genetic factors compared to measures of smoking initiation. A study of Dutch twins ages 

12-24 (mean age = 17.7, N = 1,676 twin pairs) reported a substantial estimate of 

additive genetic influences (A = 0.86, 95% CI = 0.70-0.94) and a much smaller 
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contribution due to shared environmental effects (C = 0.54, 95% CI 0.25-0.95) for 

average number of cigarettes smoked per day 191. Similarly, in a study of Australian 

twins, researchers used average number of cigarettes smoked per day as the measure 

of CPD and reported significant genetic (A = 0.40) and shared environmental effects (C 

= 0.12) 104. A study of US twins (N = 94 pairs) also used average number of cigarettes 

smoked as the outcome; however, this study also asked twins to report their average 

CPD for the year they smoked the heaviest. This study reported significant genetic (A = 

0.40) but no shared environmental effects 106. Further research in a sample of African-

American adults with a mean age of 46.9 (SD = 13.9; N = 200 same-sex twin pairs) 

reported a significant heritability for pack-years of smoking, though this estimate was 

lower than when measured as continuous CPD (A = 0.43) (Whitfield 2007). These 

results provide evidence of genetic influences on cigarette quantity using a continuous 

measure.  

Ordinal Measures of Cigarettes per Day. Other studies have chosen various 

ways of categorizing smoking quantity twins from the Netherlands (N = 3,657 pairs; 

average age 28.7 years for DZ twins and 24.7 for MZ twins) by categorizing CPD into 5 

ordinal bins; the study reported significant genetic (A = 0.51) and shared environmental 

effects (C =0.30) 136. Another study of Finnish twins (N = 9,880 pairs; age range 24-88) 

dichotomized smoking quantity with the threshold of smoking 20 cigarettes per day. This 

study reported significant genetic effects (A = 0.54) but no shared environmental effects. 

A final US study examined CPD as a continuous measure from 1,078 twin pairs (aged 

18-25) and reported significant genetic (A = 0.50) but not shared environmental 
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influences 192. Regardless of the measure of quantity smoked, there was relatively 

consistent agreement in the estimate of A with a range of roughly 0.40 to 0.54.  

 

Single and Multi-Sample Genome-Wide Association Studies of Quantitative Measures 

The earliest GWAS of smoking quantity were conducted in 2014-2015 with low sample 

sizes (N ranged from ~ 500 individuals to a little over 5,000) 146,193. Unsurprisingly, these 

early studies did not report any genome-wide significant associations. These studies 

examined cigarettes smoked per day, the maximum number of cigarettes smoked per 

day, and the average number of cigarettes smoked per day; with each measure self-

reported by participants. Further, these studies were of the single-sample or multi-

sample nature, with the multi-sample study utilizing a discovery and replication sample 

(both N < 400 participants, massively underpowered).  

A more recent single-sample GWAS completed in an older adult sample194 (age 

range: 62-81) was also underpowered (N = 2,063) but did report genome-wide 

significant associations between several variants and cigarettes per day. Three variants 

(rs4300632, rs11074386, rs11074388) in the gene CLEC19A (C-Type Lectin Domain 

Family 10 Containing 19A) were associated at the genome-wide level. This gene plays 

a role in carbohydrate bonding (the oxidation of one or more hydroxy groups).  

 A multi-sample (N = 3 samples) study of middle to older adults (age range: 44-

81; N = 13,551) also reported genome-wide significant associations between the 

number of cigarettes smoked per day with CHRNA3, CHRNA5, and CHRNB4 195. These 

genes code for different subunits of the nicotinic acetylcholine receptors (nAChR). 

However, all the resulting receptors react to nicotine as an acetylcholine agonist, 
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compelling the receptor to react. Additional results from this study included the 

aminoglycoside phosphotransferase domain-containing protein 1 (AGPHD1), which aids 

in the transferring of phosphorous-containing groups and lysine degradation. In addition, 

iron responsive element binding protein 2 (IREB2) which assists in regulating the 

translation and stability of mRNAs that affect iron homeostasis was significantly 

associated with smoking quantity.  

 Another study assessed smoking quantity by asking participants the number of 

cigarettes smoked and then categorized participants as never smokers, former 

smokers, nondaily smokers, and daily smokers 196. This multi-sample (N = 2) study and 

used data from 12,804 Hispanic participants ages 18-74. Similar to prior GWASs, this 

study reported genome-wide significant associations between their measure of nicotine 

use (i.e., self-reported category) and the nAChR genes, specifically CHRNA3, 

CHRNA5, and CHRNB4. Importantly, this study provides convergent evidence that the 

nAChR gene cluster is important when examining the molecular genetic influences on 

quantitative measures of smoking 196.  

 

Consortia-Based Genome-Wide Association Results of Quantitative Measures 

One consortium has examined CPD, though the consortia was small by current 

standards (N = 5,354). This study did not report any genome-wide significant results for 

the CPD phenotype. 

 

 Functional Analysis. DAVID analysis identified 19 pathways with significant 

association with genome-wide significant SNPs related to quantitative measures of 
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nicotine (e.g., cigarettes per day). Each of these associated pathways included the 

genes CHRNA3, CHRN5, and CHRNB4. PARD3 and TMC5 were also represented in 

two pathways each. In general, these pathways were involved in the behavioral 

response to nicotine as well as acetylcholine receptor action. These actions included ion 

channel activity (i.e., transmembrane transfer of an ion via the channel that opens when 

a specific ligand has been bound by the channel complex) as well as ion transport (i.e., 

directed movement of charged atoms). Genes that are involved in acetylcholine 

receptor action (e.g., CHRNA2) have previously been associated with GWAS results for 

quantitative measures of smoking such as CPD. 
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Table 3.2.  DAVID-Identified Gene Clusters and Biological Systems for Cigarettes Per Day 

Category Term Genes p 

GOTERM_BP_DIRECT 
GO:0035095~behavioral response to 

nicotine CHRNA3, CHRNB4, CHRNA5 7.78E-04 

GOTERM_BP_DIRECT GO:0006811~ion transport CHRNA3, CHRNB4, CHRNA5, TMC5 0.00125425 

INTERPRO 
IPR002394:Nicotinic acetylcholine 

receptor CHRNA3, CHRNB4, CHRNA5 0.00157543 

GOTERM_MF_DIRECT 
GO:0004889~acetylcholine-activated 

cation-selective channel activity CHRNA3, CHRNB4, CHRNA5 9.25E-04 

GOTERM_MF_DIRECT 
GO:0015464~acetylcholine receptor 

activity CHRNA3, CHRNB4, CHRNA5 9.25E-04 

GOTERM_CC_DIRECT 
GO:0005892~acetylcholine-gated 

channel complex CHRNA3, CHRNB4, CHRNA5 0.00274975 

GOTERM_MF_DIRECT GO:0042166~acetylcholine binding CHRNA3, CHRNB4, CHRNA5 9.25E-04 

INTERPRO 
IPR027361:Nicotinic acetylcholine-

gated receptor, transmembrane domain CHRNA3, CHRNB4, CHRNA5 0.00157543 

GOTERM_BP_DIRECT 
GO:0007271~synaptic transmission, 

cholinergic CHRNA3, CHRNB4, CHRNA5 0.00476613 

GOTERM_MF_DIRECT 
GO:0015276~ligand-gated ion channel 

activity CHRNA3, CHRNB4, CHRNA5 0.00134041 

GOTERM_BP_DIRECT 
GO:0098655~cation transmembrane 

transport CHRNA3, CHRNB4, CHRNA5 0.00603842 
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Table 3.2 (continued).  DAVID-Identified Gene Clusters and Biological Systems for Cigarettes Per Day 
Category Term Genes p 

INTERPRO 
IPR018000:Neurotransmitter-gated ion-

channel, conserved site CHRNA3, CHRNB4, CHRNA5 0.00212964 

INTERPRO 
IPR006029:Neurotransmitter-gated ion-

channel transmembrane domain CHRNA3, CHRNB4, CHRNA5 0.00212964 

INTERPRO 
IPR006201:Neurotransmitter-gated ion-

channel CHRNA3, CHRNB4, CHRNA5 0.00212964 

INTERPRO 
IPR006202:Neurotransmitter-gated ion-

channel ligand-binding CHRNA3, CHRNB4, CHRNA5 0.00212964 

UP_KEYWORDS Ion channel CHRNA3, CHRNB4, CHRNA5, TMC5 0.02406641 

UP_KEYWORDS Ligand-gated ion channel CHRNA3, CHRNB4, CHRNA5 0.02406641 

KEGG_PATHWAY 
hsa04080:Neuroactive ligand-receptor 

interaction CHRNA3, CHRNB4, CHRNA5, PARD3 0.0212414 

GOTERM_CC_DIRECT GO:0030054~cell junction CHRNA3, CHRNB4, CHRNA5, PARD3 0.03088171 
Note. Category refers to the original database or resource where the term originates. Term refers to the detailed 
function in an annotation source. 
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4. Nicotine Dependence 

Researchers have long been concerned with classification of nicotine 

dependence (ND) and have several valid and reliable tools with which to do so. The 

most common (2 of 5 studies) of these scales is the Fagerström Test for Nicotine 

Dependence (FTND) 197, also referred to more recently as the Fagerström Test for 

Cigarette Dependence (FTCD; 1 of 5 studies) 198,199. Further, researchers have also 

used the time to first cigarette in the morning (TTFC) as a proxy for ND, as it is 

assumed that individuals who are more dependent will need a cigarette sooner (typically 

within five minutes of waking) than individuals who use but aren’t dependent (1 of 5 

studies). Finally, symptoms of ND (spent a great deal of time getting, using or getting 

over effects of CIG; used CIG more often or in larger amounts than intended; built up a 

tolerance so that the same amount of CIGs has less effect than before; CIG use kept 

you from working, going to school, taking care of children, or engaging in recreational 

activities; CIG use caused emotional or psychological problems; CIG use caused health 

problems; wanted or tried to stop or cut down CIG use), as defined by the American 

Psychiatric Association 200 the DSM-IV-TR, binned into categories based on the sum of 

symptoms has been used (1 of 5 studies) to assess ND.  

 

Twin Studies of Nicotine Dependence 

Fagerström Test for Nicotine Dependence.  Three twin studies examining ND via 

the FTND have most often been used to estimate A, C, and E for ND. A study of 

Virginia twins (N = 6,805; age range = 20-59) reported significant genetic effects (A = 

0.67) but no shared environmental effects 135. A contemporary study was completed in a 
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sample of Dutch twins (N = 1,572, mean age = 30.2) and reported similar findings 201. 

Specifically, this study found significant genetic effects (A = 0.75) but no influences due 

to shared environmental effects 201. A study of Swedish twins (N = 5,040; age range = 

22-57) reported lower, but significant effect, of additive genetic influences (A = 0.39, 

95% CI = 0.29-0.49) 202. Consistent with the previous studies, there was no effect of 

shared environmental influences.  

DSM Symptoms. Three twin studies used the DSM definition of ND. Typically, 

twin studies have examined the number of symptoms rather than using the diagnosis of 

ND. Twin studies are often an initial study design employed in genetic epidemiology and 

the DSM is constantly evolving. As such, twin studies may have used different versions 

of the DSM to assess the symptoms. An older study of Vietnamese twins from the US 

(N = 9,414; age range: 35-53) utilized the Mental Health Diagnostic Interview Schedule 

III-revised (DIS-III-R) which is a standardized interview based on the DSM-III-R 138. 

Nicotine dependence was assessed as an ordinal variable with 3 bins based on a sum 

score of symptoms endorsed: 0-2 symptoms (no dependence), 3-4 symptoms (mild 

dependence), 5-7 symptoms (high/severe dependence). This study reported significant 

genetic (A = 0.55, 95% CI = 0.40-0.61) and smaller shared environmental factors (C = 

0.04; 95% CI = 0.00-0.17). 

More recent research transitioned to using the DSM-IV for examining nicotine 

dependence. A study conducted in 2016 utilized 7,285 Australian twins with a mean age 

of roughly 30 to examine ND 203. A sum score of ND items from the DSM-IV (range 0-7) 

was used. This study reported significant genetic effects (A = 0.57, 95% CI = 0.43-0.71) 

and nonsignificant effects of the shared environment (C = 0.02, 95% CI = -0.10-0.14). 
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Another study utilizing the DSM-IV used the diagnosis of ND, which they defined as 

having 3 or more symptoms (of the 7 total) in the past 12-months. Using a sample of 

5,580 Australian twins (age range: 11-18), this study reported significant genetic effects 

(A = 0.56, 95% CI = 0.40-0.63) but no shared environmental 204 . 

Heaviness of Smoking Index. Heaviness of smoking index (HSI) is an index of 

two items, the time to first cigarette and cigarettes smoked per day 205, which was used 

by one twin study. The HSI showed a greater influence of genetic effects (A = 0.71) than 

when ND was measured via the FTND 204. There was no significant effect of shared 

environmental factors for the HSI. 

 

Single and Multi-Sample Genome-Wide Association Studies of Nicotine Dependence 

Fagerström Test for Nicotine Dependence. GWAS that have studied ND have 

been multi-sample in nature (four in total), with only one single sample study employed. 

The first GWAS was published in 2012 206, using the FTCD (Fagerström Test for 

Cigarette Dependence) as the measure of ND. Participants (N = 3,365) were selected 

from samples under the SAGE project, including the Collaborative Genetic Study of 

Nicotine Dependence (COGEND), the Collaborative Study on the Genetics of 

Alcoholism (COGA), and the Family Study of Cocaine Dependence (FSCD). The 

authors report seven genome-wide significant associations all in or near CHRNB3 on 

chromosome 8 with an additional three variants suggestive (p < 10-7). The most 

significant association was rs1451240 and was protective against ND (OR = 0.65; 95% 

CI = 0.56-0.76, p = 2.44 x 10-8).  
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 The FTND was used to quantify ND in a multi-sample (N = 2) study with 7,646 

individuals 207. This study reported 67 genome-wide significant associations (Table 

S3.3). Nearly all (58 number of 66 variants) of the detected variants were located on 

chromosome 14. There were four significant associations on chromosome 8. 

Additionally, two variants with significant associations were located on chromosome 18. 

The two results on chromosome 18 were intergenic, with no known function. Other 

results on chromosome 8 were all located within DLC1, Deleted in Liver Cancer 1 which 

has been implicated in hepatocellular carcinomas. The majority of the associations on 

chromosome 14 were located within FAM179B (most significant SNP: rs114962601, p = 

6.53 x 10-10), which has been implicated in the function of primary cilia (an organelle in 

eukaryotic cells which serve as sensory organelles).  Three additional genes were 

implicated in addition to FAM179B. KLHL28, Kelch Like Family Member 28, which 

influences protein binding and has been shown to be differentially expressed in neural 

tissue 208. C14orf18, chromosome 14 open reading frame 18, a gene with currently 

uncharacterized function. FANCM, Fanconi anemia complementation group M, a gene 

responsible for DNA repair. PRPF39, pre-mRNA processing factor 39, which is involved 

in processing of RNA and mRNA.  

DSM. The most current GWAS for ND as measured using DSM criteria was a 

single sample study of twins from Finland using DSM-IV diagnosis as well as symptom 

count 194. This study of 1,715 individuals (mean age: 55) reported 2 genome-wide 

significant associations. The most significant association was detected for a SNP 

located on chromosome 18 which is in the SLC14A2 gene (rs117354958, p = 3.55 x 10-

8). The product of this gene is the solute carrier family 14 member 2 protein. It has been 
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implicated in protein binding as well as urea transport. The other significant SNP was 

located in AP2A2, rs369708413, p = 6.58 X 10-8. The product of this gene, adaptor 

related protein complex 2 subunit alpha 2 (AP2A2) is a protein that assists in other 

protein binding and transport. 

 

Consortia-Based Genome-Wide Association Results of Nicotine Dependence 

One consortia-based based GWAS examined both the FTND and the time to first 

cigarette (TTFC) in the morning 209. For the FTND, there was only one significant variant 

(rs16969968) located in the CHRNA5 gene, highlighting again the important of the 

nAChR genes. This study further examined gene sets (defined a priori) and reported the 

CHRNA3-CHRNB4-CHRNA5 gene set was statistically associated with FTND (p = 3.96 

x 10-19).  

 When examining the TTFC phenotype, similar results emerged. The previous 

SNP from CHRNA5 (rs16969968) was also highly associated with TTF (6.21 x 10-9); 

however, there were additional variants significantly associated with TTFC. These 

included SNPs from SORBS2 (sorbin and SH3 domain containing 2, rs28567706; 

involved in cellular structure and RNA binding), AA333164 (rs117029742, a long non-

coding RNA with unknown function), and BG182718 (rs10133756, a long non-coding 

RNA with unknown function). When examining gene sets, there were two sets that were 

associated with TTFC. The first was the same CHRNA3-CHRNB4-CHRNA5 gene set 

that was associated with the FTND (6.21 x 10-9). Also, the gene set CHRNB3-CHRNA6 

was significantly associated with TTFC (8.83 x 10-8), providing further evidence for the 

role of the nAChR genes.  
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Functional Analysis. DAVID analyses of genome-wide significant SNPs for 

nicotine dependence identified 30 significantly associated pathways (Table 3.3). Each 

significant pathway was represented with several of the nAChR genes (e.g., CHRNA3, 

CHRNB4). As such, it is unsurprising that the significantly associated pathways (13 

pathways) overwhelmingly were involved in some sort of acetylcholine activity including 

binding, ion channel activation, or gate control (all Benjamini-Hochberg p < 1.06 x 10-6). 

Other associated pathways were involved with the behavioral or molecular response to 

nicotine which is reasonable given that nicotine acts as an agonist of the nAChRs. This 

leads to excess dopamine in the reward pathways of the brain, culminating in 

pleasurable feelings, which may help explain the dependence on the drug. Further 

network enrichments were found in postsynaptic cell membrane function and neural 

9495276,118 individuals from the Million Veterans Project (MVP; age range = 58-64) and 

also categorized individuals as ex-smokers on the basis of self-reported questions (i.e., 

current versus former) 122. This study reported 8 genome-wide significant SNPs. 4 of 

these SNPs were in intergenic regions (rs11210228, rs34735365, rs77648866, 

rs112270518), 1 was in the 5’ untranslated regions (5’UTR) of CHRNA2 (rs2565060), 

and the other 3 were intronic to various genes. These intronic SNPs were located on 

DRD2 (rs61902807), CYP2A6 (rs56113850), and CHRNA4 (rs6011779), genes which 

have been implicated in various tobacco use phenotypes. 
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Table 3.3.  DAVID-Identified Gene Clusters and Biological Systems for Nicotine Dependence 
Category Term Genes p 

INTERPRO IPR002394:Nicotinic acetylcholine receptor 

CHRNA3, CHRNB4, CHRNB3, CHRNA5, 
CHRNA4, CHRNA6 5.31E-09 

GOTERM_MF_DIREC

T 

GO:0004889~acetylcholine-activated cation-

selective channel activity 

CHRNA3, CHRNB4, CHRNB3, CHRNA5, 
CHRNA4, CHRNA6 9.33E-09 

GOTERM_MF_DIREC

T GO:0015464~acetylcholine receptor activity 

CHRNA3, CHRNB4, CHRNB3, CHRNA5, 
CHRNA4, CHRNA6 9.33E-09 

GOTERM_CC_DIREC

T 

GO:0005892~acetylcholine-gated channel 

complex 

CHRNA3, CHRNB4, CHRNB3, CHRNA5, 
CHRNA4, CHRNA6 1.74E-08 

INTERPRO 

IPR027361:Nicotinic acetylcholine-gated 

receptor, transmembrane domain 

CHRNA3, CHRNB4, CHRNB3, CHRNA5, 
CHRNA4, CHRNA6 1.31E-08 

GOTERM_MF_DIREC

T GO:0042166~acetylcholine binding 

CHRNA3, CHRNB4, CHRNB3, CHRNA5, 
CHRNA4, CHRNA6 1.21E-08 

GOTERM_BP_DIRECT 

GO:0007271~synaptic transmission, 

cholinergic 

CHRNA3, CHRNB4, CHRNB3, CHRNA5, 
CHRNA4, CHRNA6 3.73E-07 

GOTERM_MF_DIREC

T 

GO:0015276~ligand-gated ion channel 

activity 

CHRNA3, CHRNB4, CHRNB3, CHRNA5, 
CHRNA4, CHRNA6 5.15E-08 

GOTERM_BP_DIRECT 

GO:0098655~cation transmembrane 

transport 

CHRNA3, CHRNB4, CHRNB3, CHRNA5, 
CHRNA4, CHRNA6 7.25E-07 

INTERPRO 

IPR018000:Neurotransmitter-gated ion-

channel, conserved site 

CHRNA3, CHRNB4, CHRNB3, CHRNA5, 
CHRNA4, CHRNA6 1.71E-07 

INTERPRO 

IPR006029:Neurotransmitter-gated ion-

channel transmembrane domain 

CHRNA3, CHRNB4, CHRNB3, CHRNA5, 
CHRNA4, CHRNA6 1.71E-07 

INTERPRO 

IPR006201:Neurotransmitter-gated ion-

channel 

CHRNA3, CHRNB4, CHRNB3, CHRNA5, 
CHRNA4, CHRNA6 1.71E-07 
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Table 3.3 (continued).  DAVID-Identified Gene Clusters and Biological Systems for Nicotine Dependence 
Category Term Genes p 

INTERPRO 

IPR006202:Neurotransmitter-gated ion-

channel ligand-binding 

CHRNA3, CHRNB4, CHRNB3, CHRNA5, 

CHRNA4, CHRNA6 1.71E-07 

UP_KEYWORDS Ligand-gated ion channel 

CHRNA3, CHRNB4, CHRNB3, CHRNA5, 

CHRNA4, CHRNA6 1.06E-05 

GOTERM_BP_DIRECT 

GO:0035095~behavioral response to 

nicotine CHRNA3, CHRNB4, CHRNA5, CHRNA4 1.50E-05 

UP_KEYWORDS Cell junction 

CHRNA3, CHRNB4, CHRNB3, CHRNA5, 

CHRNA4, DLC1, CHRNA6, SORBS2, 

TMEM163, DSC3 1.65E-05 

UP_KEYWORDS Postsynaptic cell membrane 

CHRNA3, CHRNB4, CHRNB3, CHRNA5, 

CHRNA4, CHRNA6 1.93E-04 

GOTERM_BP_DIRECT 

GO:0007274~neuromuscular synaptic 

transmission CHRNB3, CHRNA5, CHRNA4, CHRNA6 3.43E-04 

UP_KEYWORDS Synapse 

CHRNA3, CHRNB4, CHRNB3, CHRNA5, 

CHRNA4, CHRNA6, TMEM163 2.81E-04 

GOTERM_CC_DIREC

T GO:0045211~postsynaptic membrane 

CHRNA3, CHRNB4, CHRNB3, CHRNA5, 

CHRNA4, CHRNA6 5.57E-04 

GOTERM_BP_DIRECT GO:0035094~response to nicotine CHRNB4, CHRNB3, CHRNA4, CHRNA6 8.01E-04 

GOTERM_BP_DIRECT GO:0007165~signal transduction 

CHRNA3, CHRNB4, CHRNB3, CHRNA5, 

CHRNA4, DLC1, PDE2A, CHRNA6, 

APOL3, VAV2 8.01E-04 

KEGG_PATHWAY 

hsa04080:Neuroactive ligand-receptor 

interaction 

CHRNA3, CHRNB4, CHRNB3, CHRNA5, 

CHRNA4, CHRNA6 9.27E-04 

GOTERM_CC_DIREC

T GO:0030054~cell junction 

CHRNA3, CHRNB4, CHRNB3, CHRNA5, 

CHRNA4, CHRNA6, TMEM163 0.00137524 

UP_KEYWORDS Ion channel 

CHRNA3, CHRNB4, CHRNB3, CHRNA5, 

CHRNA4, CHRNA6 0.00321989 
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Table 3.3 (continued).  DAVID-Identified Gene Clusters and Biological Systems for Nicotine Dependence 
Category Term Genes p 

KEGG_PATHWAY hsa04725:Cholinergic synapse CHRNA3, CHRNB4, CHRNA4, CHRNA6 0.00736798 

GOTERM_BP_DIRECT GO:0006811~ion transport CHRNA3, CHRNB4, CHRNA5, CHRNA4 0.02273874 

UP_KEYWORDS Cell membrane 

SLC14A2, CHRNA3, CHRNB4, CHRNB3, 

CHRNA5, CHRNA4, CHRNA6, PDE2A, 

SORBS2, AP2A2, RPE65, DSC3, 

MFSD2A 0.01730657 

UP_KEYWORDS Transport 

CHRNA3, CHRNB4, SLC14A2, CHRNB3, 

CHRNA5, CHRNA4, CHRNA6, AP2A2, 

APOL3, MFSD2A 0.02228539 

UP_KEYWORDS Ion transport 

CHRNA3, CHRNB4, CHRNB3, CHRNA5, 

CHRNA4, CHRNA6 0.02793515 

Note. Category refers to the original database or resource where the term originates. Term refers to the detailed 
function in an annotation source. 
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5. Smoking Cessation 

Smoking cessation (SC) is the final point on the smoking continuum, 

representing abstinence from tobacco use. As cessation is a process, it is possible for 

individuals to relapse and return to regular smoking or nicotine dependence. Abstinence 

is rarely achieved on the first cessation attempt. Cessation is a process and may have 

several episodes of relapse or returning to regular smoking and nicotine dependence 

210. 

Twin Studies 

One study has examined SC in a twin study design 211. This study examined the 

genetic and environmental influences on failed SC (i.e., an individual who attempted to 

quit, but relapsed) attempts. This study of 4,112 twins from the Vietnam Era Registry 

estimated significant genetic effects on failed smoking cessation attempts (A = 0.54, 

95% CI = 0.40-0.62).  Variance due to shared environmental influences did not 

significantly contribute to SC. 

 

Single and Multi-Sample Genome-Wide Association Studies of Smoking Cessation 

 Two GWASs have been performed using single samples. The first was from a sample 

of Bangladeshi adults (N = 5,354) aged between 18 and 75 years old 145. Measuring SC 

as a self-reported smoking status (i.e., current or former smoker), researchers reported 

no genome-wide significant findings. The other single sample GWAS utilized 286,118 

individuals from the Million Veterans Project (MVP; age range = 58-64) and also 

categorized individuals as ex-smokers on the basis of self-reported questions (i.e., 

current versus former) 122. This study reported 8 genome-wide significant SNPs. 4 of 
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these SNPs were in intergenic regions (rs11210228, rs34735365, rs77648866, 

rs112270518), 1 was in the 5’ untranslated regions (5’UTR) of CHRNA2 (rs2565060), 

and the other 3 were intronic to various genes. These intronic SNPs were located on 

DRD2 (rs61902807), CYP2A6 (rs56113850), and CHRNA4 (rs6011779), genes which 

have been implicated in various tobacco use phenotypes.  

 

Consortia-Based Genome-Wide Association Results of Smoking Cessation 

Three separate consortia examined SC, all categorizing former smokers using self-

report. The Tobacco and Genetic Consortium was the first to analyze smoking 

cessation using data from 16 studies (N = 74,053) 156. They reported one genome-wide 

significant SNP on DBH (rs3025343, p = 3.56 x 10-8). The GWAS and Sequencing 

Consortium of Alcohol and Nicotine (GSCAN) also performed a GWAS on SC with a 

larger sample (N = 547,219) from 24 different studies 163. GSCAN reported 24 genome-

wide significant SNPs for SC. Half (12) of these significant SNPs were intergenic. Two 

SNPs were intronic to CHRNA4 (rs6011779, rs4809543) with another intronic to 

CHRNA5 (rs518425). Additionally, there was one SNP that was intronic to CYP2A6 

(rs56113850). Other genes with genome-wide significant SNPs (one each) were DBH 

(rs1611124), SOX6 (rs7109376), SEMA6D (rs591143), ISL2 (rs3866543), PDE1C 

(rs7778443), IRF4 (rs12203592), KLHDC8B (rs7617480), and PPP6C (rs12378015). A 

final consortium used data from 61 studies (N = 622,409; N = 121,543 former smokers) 

to examine smoking cessation 174. This study reported two genome-wide significant 

SNPs for smoking cessation on TOB2 (transducer of ERBB2; rs202664) and CCDC141 

(Coiled-Coil Domain Containing 141; rs150493199).  TOB2 is involved in the regulation 
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of the cell cycle progression (i.e., from cell formation to cell death), while CCDC141 is 

involved with cell adhesion.  

Functional Analysis. Functional analysis of five studies conducted with DAVID 

indicated 41 significantly associated pathways involved in smoking cessation (Table 

3.4). Similar to other tobacco use phenotypes, acetylcholine related pathways were 

significantly associated. Pathways dealing with acetylcholine receptor structure and 

activity were associated with CHRNA3, CHRNB4, CHRNA5, CHRNA4, and CHRNA6, 

including the most associated pathway which was associated with the nicotinic 

acetylcholine receptor (p = 6.11 x 10-7). A secondary pathway related to chemical 

synaptic transmission was associated with CHRNA5, CHRNA4, CHRNA6, LPAR3, and 

DBH. Thus, two general pathways emerged from the DAIVD analysis. Most pathways 

were involved in neuronal signaling, either via receptor or ligand gate control and 

synaptic functions. Another set of pathways was associated with iron and oxygen flow. 

These pathways were also associated with Cytochrome P450, an enzyme encoded by 

CYP2A6, previously associated with smoking cessation.
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Table 3.4.  DAVID-Identified Gene Clusters and Biological Systems for Smoking Cessation 
Category Term Genes p 

INTERPRO 
IPR002394:Nicotinic acetylcholine 

receptor 
CHRNA3, CHRNB4, CHRNA5, CHRNA4, 

CHRNA6 6.11E-07 

GOTERM_CC_DIRECT 
GO:0005892~acetylcholine-gated 

channel complex 
CHRNA3, CHRNB4, CHRNA5, CHRNA4, 

CHRNA6 1.47E-06 

INTERPRO 

IPR027361:Nicotinic acetylcholine-
gated receptor, transmembrane 

domain 
CHRNA3, CHRNB4, CHRNA5, CHRNA4, 

CHRNA6 1.06E-06 

GOTERM_MF_DIRECT 
GO:0004889~acetylcholine-activated 

cation-selective channel activity 
CHRNA3, CHRNB4, CHRNA5, CHRNA4, 

CHRNA6 1.24E-06 

GOTERM_MF_DIRECT 
GO:0015464~acetylcholine receptor 

activity 
CHRNA3, CHRNB4, CHRNA5, CHRNA4, 

CHRNA6 1.24E-06 

GOTERM_MF_DIRECT GO:0042166~acetylcholine binding 
CHRNA3, CHRNB4, CHRNA5, CHRNA4, 

CHRNA6 1.40E-06 

GOTERM_BP_DIRECT 
GO:0007271~synaptic transmission, 

cholinergic 
CHRNA3, CHRNB4, CHRNA5, CHRNA4, 

CHRNA6 1.80E-05 

GOTERM_BP_DIRECT 
GO:0035095~behavioral response to 

nicotine CHRNA3, CHRNB4, CHRNA5, CHRNA4 1.80E-05 

GOTERM_MF_DIRECT 
GO:0015276~ligand-gated ion 

channel activity 
CHRNA3, CHRNB4, CHRNA5, CHRNA4, 

CHRNA6 4.08E-06  
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Table 3.4 (continued).  DAVID-Identified Gene Clusters and Biological Systems for Smoking Cessation 
Category Term Genes p 

INTERPRO 
IPR018000:Neurotransmitter-gated 

ion-channel, conserved site 
CHRNA3, CHRNB4, CHRNA5, CHRNA4, 

CHRNA6 6.30E-06 

GOTERM_BP_DIRECT 
GO:0098655~cation transmembrane 

transport 
CHRNA3, CHRNB4, CHRNA5, CHRNA4, 

CHRNA6 3.05E-05 

INTERPRO 
IPR006029:Neurotransmitter-gated 
ion-channel transmembrane domain 

CHRNA3, CHRNB4, CHRNA5, CHRNA4, 
CHRNA6 6.30E-06 

INTERPRO 
IPR006201:Neurotransmitter-gated 

ion-channel 
CHRNA3, CHRNB4, CHRNA5, CHRNA4, 

CHRNA6 6.30E-06 

INTERPRO 
IPR006202:Neurotransmitter-gated 

ion-channel ligand-binding 
CHRNA3, CHRNB4, CHRNA5, CHRNA4, 

CHRNA6 6.30E-06 

UP_KEYWORDS Ligand-gated ion channel 
CHRNA3, CHRNB4, CHRNA5, CHRNA4, 

CHRNA6 2.34E-04 

GOTERM_BP_DIRECT GO:0035094~response to nicotine CHRNB4, CREB1, CHRNA4, CHRNA6 8.14E-04 

UP_KEYWORDS Postsynaptic cell membrane 
CHRNA3, CHRNB4, CHRNA5, CHRNA4, 

CHRNA6 0.00188089 

KEGG_PATHWAY hsa04725:Cholinergic synapse 
CHRNA3, CHRNB4, CREB1, CHRNA4, 

CHRNA6 0.00896826 

GOTERM_CC_DIRECT GO:0045211~postsynaptic membrane 
CHRNA3, CHRNB4, CHRNA5, CHRNA4, 

CHRNA6 0.00471956 

GOTERM_BP_DIRECT GO:0007626~locomotory behavior CHRNA3, CHRNB4, CHRNA4, DBH 0.00767406 

GOTERM_BP_DIRECT 
GO:0007268~chemical synaptic 

transmission CHRNA5, CHRNA4, CHRNA6, LPAR3, DBH 0.00781503 
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Table 3.4 (continued).  DAVID-Identified Gene Clusters and Biological Systems for Smoking Cessation 

 

Category Term Genes p 

KEGG_PATHWAY 
hsa04080:Neuroactive ligand-receptor 

interaction 
CHRNA3, CHRNB4, CHRNA5, CHRNA4, 

CHRNA6, LPAR3 0.01462578 

GOTERM_BP_DIRECT 
GO:0007274~neuromuscular synaptic 

transmission CHRNA5, CHRNA4, CHRNA6 0.01438218 

GOTERM_BP_DIRECT GO:0006811~ion transport CHRNA3, CHRNB4, CHRNA5, CHRNA4 0.01438218 

UP_KEYWORDS Synapse 
CHRNA3, CHRNB4, CHRNA5, CHRNA4, 

CHRNA6 0.01144954 

UP_KEYWORDS Ion channel 
CHRNA3, CHRNB4, CHRNA5, CHRNA4, 

CHRNA6 0.01144954 

GOTERM_MF_DIRECT GO:0005506~iron ion binding 
CYP2A7, CYP2A6, CYP2B6, EGLN2, 

ACO2 0.00106543 

GOTERM_MF_DIRECT 

GO:0016705~oxidoreductase activity, 
acting on paired donors, with 

incorporation or reduction of molecular 
oxygen CYP2A7, CYP2A6, CYP2B6, EGLN2 0.00106543 

UP_KEYWORDS Monooxygenase CYP2A7, CYP2A6, CYP2B6, DBH 0.00377331 

GOTERM_MF_DIRECT 
GO:0008392~arachidonic acid 

epoxygenase activity CYP2A7, CYP2A6, CYP2B6 0.00228772 

GOTERM_MF_DIRECT 

GO:0016712~oxidoreductase activity, 
acting on paired donors, with 

incorporation or reduction of molecular 
oxygen, reduced flavin or flavoprotein 

as one donor, and incorporation of one 
atom of oxygen CYP2A7, CYP2A6, CYP2B6 0.00228772 
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Table 3.4 (continued).  DAVID-Identified Gene Clusters and Biological Systems for Smoking Cessation 

 

Category Term Genes p 

GOTERM_BP_DIRECT 
GO:0019373~epoxygenase P450 

pathway CYP2A7, CYP2A6, CYP2B6 0.00781503 

UP_KEYWORDS Iron 
CYP2A7, CYP2A6, CYP2B6, EGLN2, 

ACO2 0.01092355 

GOTERM_MF_DIRECT 
GO:0008395~steroid hydroxylase 

activity CYP2A7, CYP2A6, CYP2B6 0.00623443 

INTERPRO 
IPR002401:Cytochrome P450, E-

class, group I CYP2A7, CYP2A6, CYP2B6 0.02314858 

INTERPRO 
IPR017972:Cytochrome P450, 

conserved site CYP2A7, CYP2A6, CYP2B6 0.02715231 
INTERPRO IPR001128:Cytochrome P450 CYP2A7, CYP2A6, CYP2B6 0.02929044 

UP_KEYWORDS Oxidoreductase 
CYP2A7, CYP2A6, CYP2B6, EGLN2, 

DBH 0.04642428 

UP_KEYWORDS Signal 

CCDC134, CHRNA3, CHRNB4, 
TNFRSF6B, HSPA5, CHRNA5, LAMB2, 
CHRNA4, SEMA6D, CHRNA6, PLA2G3, 

DBH, CYP2A7, CYP2B6, ENPP2, NUCB2 7.12E-04 

UP_SEQ_FEATURE signal peptide 

CCDC134, CHRNA3, CHRNB4, 
TNFRSF6B, HSPA5, CHRNA5, LAMB2, 
CHRNA4, SEMA6D, CHRNA6, PLA2G3, 

ENPP2, NUCB2 0.03475165 

KEGG_PATHWAY 
hsa04080:Neuroactive ligand-receptor 

interaction 
CHRNA3, CHRNB4, CHRNA5, CHRNA4, 

CHRNA6, LPAR3 0.01462578 
Note. Category refers to the original database or resource where the terms orient.  Term refers to a detailed item in an 
annotation source. 
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Conclusion. Several individual genes have been reported to be associated with 

smoking cessation. However, functional analysis identified pathways relevant for 

acetylcholine receptor structure and activity were significantly associated with smoking 

cessation. This is consistent result as all phenotypes with DAVID analysis have 

identified this gene cluster and action as relevant for smoking phenotypes.  

 

6. Other Tobacco Product Use.  

Snus 

Snus are an alternative tobacco product that are popular in Europe and are similar to 

chewing tobacco or dip. In contrast to chewing tobacco, snus are more finely cut with 

some being in powder form inside pouches or loose for later packaging by the user. 

Snus expose individuals to nicotine which may lead users to nicotine dependence and 

other negative health outcomes 212. A twin study of nicotine dependence, as measured 

by the FTND, was conducted using 5,040 Swedish male twins 202. This study reported 

significant additive genetic (0.32; 95% CI = 0.23-0.41) and unique environmental (0.68, 

95% CI = 0.59-0.77) influences. This study also evaluated the twins ND arising from 

CIG use and found similar estimates of A (0.39) and E (0.61). 

 Another twin study of Norwegian twins (N = 3,862) asked about two phenotypes 

related to snu use: initiation and quantity of use 109. Initiation was assessed as, “Have 

you ever used snus regularly for at least a month?” while quantity was probed with, 

“When you used snus the most, how many times per day did you use it?” Using these 

definitions, researchers reported significant genetic effects for both initiation (0.51) and 
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quantity used (0.55), as well as significant shared environmental influences (0.29 for 

initiation and 0.23 for quantity). 

 

Electronic Cigarettes 

 Electronic cigarettes (ECIG) are just beginning to be evaluated in the genetic 

epidemiology literature. As of May 2020, studies of ECIGs remain sparse; however, 

there have been several studies examining differing aspects of ECIG use. A recent twin 

of ECIG initiation defined as self-reported ever use of ECIGs reported genetic (A = 0.25) 

and shared environmental (C = 0.42) contributions to ECIG initiation as well as overlap 

in these factors with CIG initiation (rg = 0.76, rc = 0.68) 213. 

To date, no GWAS studies have been conducted of ECIG use. However, other 

studies58,124 have used GWAS data to generate polygenic risk scores (PRS) and study 

ECIG use 214. Both studies examining PRS used self-reported ever use without any 

additional caveats to classify individuals as initiators or not. In addition, one study 

examined the age of initiation as a secondary outcome. Both studies created PRSs for 

conventional cigarette initiation (SI; and CPD in the case of Allegrini) and then applied 

those scores in a secondary (target) data set to examine if genetic influences on 

cigarettes could also indicate if those influences also impact ECIG ever use. While no 

influence was detected for the SI PRS and ECIG ever use, there was a significant 

finding between CPD PRS and ECIG ever use in the Allegrini study. In contrast, Khouja 

and colleagues reported a significant effect of SI PRS and ECIG ever use (OR = 1.24), 

though they did not examine CPD to generate PRS. Taken together, these results 

provide an unclear answer to the genetic overlap between CIG and ECIG use.  
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CONCLUSIONS AND RECOMMENDATIONS 

This paper has demonstrated how measurement of tobacco phenotypes has led to 

inconsistent results in GWAS and twin study designs. It was generally expected that the 

same genetic association results would be identified regardless of measure, particularly 

in studies of consortia or single studies with sufficiently large sample sizes. However, 

this did not occur. The high variability in tobacco use measures within a specific 

behavior (e.g., regular smoking, nicotine dependence) has multiple measures for 

quantifying a specific form of tobacco use. It is expected that among the many other 

limitations of different genetic influences than if another measure had been used.  

 

Areas of Results Consistency  

 The nicotine acetylcholine receptor genes were consistently associated with 

various facets of nicotine use such as quantitative measures of smoking (e.g., CPD), 

nicotine dependence, and smoking cessation. Additionally, the CYP2A6 gene was 

significantly associated with several nicotine use phenotypes including: nicotine 

metabolism and smoking cessation. These consistent results indicate that genetic 

influences are impactful; however, the inconsistent results suggest the genetic 

architecture is more complex. Aggregating genetic effects may help elucidate how 

genetics contribute to complex phenotypes. 

 Consistent findings from GWAS identify biological functions that may help explain 

their repeated associations with tobacco use. Genes responsible for acetylcholine 

receptor activity was associated for nearly every tobacco use phenotype. Further, ligand 

gate ion-channel activity was also consistently associated. These biological pathways 
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help explain the addictive properties of nicotine. Each leads to increased 

neurotransmitters (such as dopamine, glutamate, and GABA) in the brain which lead to 

rewarding sensations.  

 Genome-wide significant SNPs combined by these biological functions which 

may lead to more consistent interpretations of results than seeking to replicate the same 

variant. Genes, rather than SNPs, in a biological pathway are reported which help lead 

to more consistent interpretation of GWAS results. For instance, while specific SNPs 

may not be replicated across phenotypes, each tobacco use phenotype was associated 

with cell signaling and receptor structure or function. This consistency has been 

demonstrated in this paper via the use of DAVID annotation and the identification of 

pathways significantly associated, or over-represented, for a similar set of genes. For 

example, the nicotinic acetylcholine receptor genes were consistently associated with 

DAVID pathways for most of the conceptual phenotypes examined here. However, it 

should be noted that DAVID relies on published associations of genetic variants and 

biological function. It is possible that the results presented here are not comprehensive 

due to publishing bias.  

Further, this functional annotation would allow for multiple phenotypes to be 

examined in each paper. Looking at individual smoking behaviors in the continuum (i.e., 

only focusing on smoking initiation or nicotine dependence) is not logical as facets of 

tobacco use build upon one another (e.g., one cannot be a regular smoker without 

having initiated smoking) 215. Many biological pathways were shared across nicotine 

phenotypes, such as coding for receptors which influence the transmembrane ion 

channels. The nAChR genes were consistently identified with each nicotine use 
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phenotype as were biological pathways for gate control and receptor binding. These 

results suggest that there is biological plausibility for overlap between each nicotine 

phenotype. Therefore, future GWAS should examine multiple behaviors rather than 

several single tobacco use behaviors. 

 

Limitations of GWAS in Tobacco Use 

In addition to issues related to inconsistencies of tobacco measurement, there 

are other general limitations in GWAS designs. These studies often suffer from weak 

statistical power due to small samples (N~ 1,000) 143,216. Small sample sizes may lead 

to biased estimates of effect and/or inconsistent results across studies. One solution to 

increase sample sizes is through consortia and meta-analyses of substance use 

phenotypes.  However, studies contributing to consortia often vary slightly in how they 

operationalize and measure tobacco use (e.g., studies of smoking cessation may use 

differing definitions of successful cessation based on the length of time since last 

smoking). This leads to challenges in the ability to test the same measures across 

samples. Many consortia currently use secondary data, but as more data is collected, 

especially involving novel products, it would be advantageous to utilize the same 

operational definitions of tobacco use stages. To date, GWAS results have produced 

inconsistent results as would be expected due to outcome measurement heterogeneity. 

Many studies report genome-wide significant SNPs that have not been replicated in 

other studies. 

 GWAS results are reported as SNP ID (e.g., rs number, or chromosome and 

base pair), followed by the gene in which the SNP is present (if applicable, some 
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variants may be in intergenic regions), and the measure of association (i.e., beta value 

or odds ratio) with an associated p value and confidence interval. Sometimes 

researchers will also choose to report the chromosome, arm, and location of the 

significant SNP (e.g., Chr13p5.5). There may be an inconsistency of results when 

reporting in this manner as rs numbers may change based on the build used for the 

reference genome. It is also difficult to aggregate results in a meaningful manner as 

direct replication of a particular SNP may be difficult. Other methods of aggregating 

results are needed for determining relevance of GWAS analyses. 

 

Recommendations for Future Studies of Tobacco Use in Genetically-Informative 

Samples 

 Future studies should continue to examine differences between major groupings 

of the population. For instance, twin studies report differing effects of additive genetic 

influences based on sex. However, only two GWAS144,162 studies examined molecular 

effects by sex. Likewise, twin studies have demonstrated different influences of A on 

smoking phenotypes by race/ethnicity. However, two GWAS 196,207explicitly examined 

racial differences. Genetic influences also change as an individual ages; however, only 

6 GWAS 122,145,181,195,217,218 explicitly looked at age groups. These GWASs typically 

chose older individuals (age > 45 years) as participants whereas younger individuals 

were grouped in with the entire age spectrum (ages 18+). Future studies should 

continue to stratify GWAS results by environmental influences that have previously 

identified as associated with tobacco use whenever feasible. Lower levels of income 

have been associated with greater rates of tobacco use when compared with individuals 
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at higher income levels. Likewise, other SES variables (such as educational attainment) 

have been associated with higher tobacco use. Other environmental variables beyond 

demographic variables should also be examined, including exposure to marketing. 

Individuals who receive coupons for tobacco products are more likely to use tobacco 

products. Similarly, individuals who are exposed to marketing promotions are more 

likely to use tobacco products compared to people who are not 219.  

Further, more standardized data collection of tobacco use phenotypes is needed. 

The movement to standardize phenotypic data collection in genetic studies continues to 

grow. Different measures of tobacco use have led to inconsistent results in GWAS of 

tobacco use. Consistently identifying the phenotype with the same operational 

measures of tobacco use across studies may help increase the statistical power via 

ensuring the same operational measures are used without needing to harmonize data 

during analysis. This could also lead to greater phenotypic refinement in appropriate 

samples, leading to a greater chance of detecting and replicating genetic influences. 

Reducing the heterogeneity in measurement will allow for consortia to be built faster 

and with more ease, as well as allowing meta-analyses to occur more efficiently. 

Multiple measures could also be used to evaluate the phenotypes to ensure that studies 

capture all variations of the phenotype. 

 Additional attention should be paid to phenotypes that may be missing from the 

current measures of tobacco use. GWAS results of smoking cessation generally 

focused on current versus former smoking status. However, no analyses have been 

conducted with nicotine withdrawal as the outcome measure. Likewise, there was no 

analysis for time to failure of cessation (i.e., duration of abstinence during an attempt to 
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quit smoking). Future GWAS should report on multiple phenotypes in the smoking 

continuum rather than focusing on very specific behaviors. 

  

 ECIG Recommendations. Results from studies of CIG use should be used to 

guide future studies of ECIG use. There are four recommendations for future studies of 

genetically informative samples when it comes to measuring tobacco use as administer 

via ECIGs. First, biological confirmation of smoking status whenever feasible is needed, 

through expired CO for CIG users and through plasma/urine cotinine levels for both CIG 

and ECIG users 220,221. ECIG users may not know if their e-liquid contains nicotine or 

not 222,223. Therefore, nicotine exposure would not be captured by self-report. Biological 

confirmation of recent tobacco use should help distinguish those currently use versus 

those who have not, leading to greater external validity of results. Future research 

should examine if salivary COT levels are feasible for large scale epidemiological 

studies compared to plasma/urine COT. Another important factor to consider, as 

tobacco use progresses into the ECIG era, is how to handle dual use of CIG and ECIG 

products. Other research has shown that dual users of CIG and ECIG are a distinct 

class of tobacco user (see Chapter 5) and future research needs to appropriately model 

this relationship. GWAS moving forward will need to consider this possibility. While 

outcome group assignment may seem straight forward, dual users need to be 

considered a distinct class of user. Future work should delineate exactly how dual users 

are distinct; for example, how much time must an individual use both products to be 

considered a dual user? How long after cessation of one product is one still considered 
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to be a dual user?  These questions need to be addressed to ensure accurate results 

are generated.     

  Misclassifying individuals as CIG or ECIG users when they are dual users may 

lead to biased estimates. Future GWAS should take this into account and run 

multinomial regressions rather than logistic models. While it is possible to account for 

other tobacco product use as a covariate in the regression, it is not optimal when 

compared to running multinomial models. Absent running multinomial regression, 

results could be stratified on tobacco use (CIG-exclusive, ECIG-exclusive, and dual 

use) which would also present results for each specific tobacco use group. 

ECIG research should probe participants to report at what concentration of 

nicotine a participant’s e-liquid is set at to allow for greater accuracy in the estimation of 

nicotine used by an individual. Though there are after-market modifications to ECIG 

devices which change the amount of nicotine administered, knowing the concentration 

will allow researchers to estimate how much nicotine is being used 21. 

Finally, results from genetically informed studies should continue to report on 

functional relevance for tobacco use. Functional relevance may be closely related to 

clinical relevance which may lead to real world changes by focusing therapies on 

interrupting the biological pathways from genetic influence to exposure. Continued 

investigations of functional relevance with polygenic methods may help identify 

pathways that significantly contribute to tobacco use. 

The area of tobacco use is currently evolving as novel tobacco use devices 

continue to be introduced into the market. Consequently, genetic epidemiological 

studies across tobacco products are also rapidly evolving. For example, an update to 
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ECIGs involves heat-not-burn products (e.g., IQOS) which were introduced in the 

United States in 2019 224. Such rapid evolution in product development has implications 

for the study of nicotine dependence in genetically informative samples. ECIG remain a 

highly popular product and the measures used in genetic epidemiology studies need to 

keep pace. In particular, given the variability in CIG initiation results, effectively 

measuring ECIG initiation should be a high priority. For example, is it enough to classify 

an individual as an ECIG user if they only use a friend’s device or must they own their 

own device in order to be classified as a user? Similarly, what about individuals who use 

ECIG devices but use e-liquid that is nicotine-free? These are important issues as 

different definitions of an ECIG user may yield differing results as happened with CIG 

samples. 
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CHAPTER 4: ELECTRONIC CIGARETTE GENOME-WIDE ASSOCIATION AND 

POLYGENIC SCORES AMONG SELF-IDENTIFIED WHITE PARTICIPANTS: TEST 

OF OVERLAPPING GENETIC INFLUENCES WITH CONVENTIONAL CIGARETTE 

INITIATION  

 

INTRODUCTION 

The genetic factors that influence conventional cigarette (CIG) initiation may also 

influence electronic cigarette (ECIG) initiation. Results from Chapter 2 suggest a 

significant overlap in additive genetic influences between ECIG initiation and CIG 

initiation in young adults. Chapter 3 summarized several previously reported genetic loci 

that contribute to CIG initiation. Further, prior studies using genome-wide polygenic 

scores (GPS) demonstrate the genetic overlap between CIG initiation and ECIG 

initiation 58,225. This suggests that similar genes contribute to the liability of CIG as well 

as ECIG initiation and encourages additional study to detect specific genetic loci 

associated with ECIG initiation by taking advantage of the genetic overlap shared 

between CIG and ECIG use.   

 

The Role of Age on CIG and ECIG Initiation  

The age of CIG and ECIG initiation for tobacco use is increasing, with more 

individuals initiating in young adulthood as compared to adolescence 226. The proportion 

of individuals who initiated CIGs in young adulthood (age 18-23) more than doubled 

from 20.6% (2002) to 42.6% in 2018. Similarly, the prevalence of ECIG initiation is 

increasing among adults. For example, the prevalence of ECIG initiation at age 18 was 
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estimated at 8.3%. That prevalence grew to 33.8% by age 25 in analysis of the 

Population Assessment of Tobacco and Health (PATH) study 227. Additionally, twin 

studies report that genetic influences on CIG smoking initiation are larger at older ages 

compared to younger ages (age range = 12 to 18, see Chapter 3) 95,228,229. While the 

role of genetic influences on ECIG initiation in adults remains unclear (see Chapters 2 

and 3), the epidemiological evidence suggests that it will be important to study adults 

across the life course rather than only addressing younger users. Further, given the 

trends related to increasing magnitude of genetic effects on CIG initiation as age 

increases, such patterns may also apply to ECIG initiation. Therefore, although 

substantial effort related to the study of CIG and ECIG initiation is focused on young 

adults (ages 18-24) and adolescents (ages 12-17), study of the etiology underlying CIG 

and ECIG initiation across adulthood is necessary. 

 

Genome-Wide Association Studies Identify Specific Genetic Loci Contributing to CIG 

Initiation 

Prior genome-wide association studies (GWAS) have identified genetic variants in 

several loci (i.e., specific locations in the genome) that are associated with CIG initiation 

(see Chapter 3 for an in-depth discussion). A genetic association is a single test of 

association which uses genotypic data from a genetic marker to test for statistical 

associations between a genetic variant (e.g., single nucleotide polymorphism, SNP) at a 

specific locus and CIG initiation. A GWAS expands this test to thousands of genetic 

markers that test for associations with CIG initiation with SNPs across located 

throughout the genome. Therefore, GWAS produces results that identify specific 
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locations within the genome that are associated with an outcome (i.e., phenotypes such 

as CIG and ECIG initiation).   

 To date, 12 GWASs have consistently identified significant associations between 

SNPs located in the nicotinic acetylcholine receptor genes (e.g., CHRNA3, CHRNB4), 

with various tobacco use behaviors, including initiation 122,144,145,147–150,162–164,174,217,230 

(Chapter 3). These genes encode subunits of nicotinic acetylcholine neuronal receptors 

which mediates fast signal transmission at synapses. Neuronal nicotinic acetylcholine 

receptors reside on all neurons and their influences function throughout the brain 231. 

Neuronal nicotinic acetylcholine receptors are activated by acetylcholine and nicotine 

(and other drugs). When nicotine binds to a nicotinic acetylcholine receptor, it acts as an 

agonist to potentiate receptor activation. Activation of nicotinic acetylcholine receptors 

allows sodium (Na+) into the neuron and results in production of several 

neurotransmitters, including dopamine, acetylcholine, glutamate, GABA, epinephrine, 

norepinephrine, and serotonin (Figure 4.1) 232. Acetylcholine contributes to the reward 

pathway (along with pathways relating to attention, memory, and arousal 233–235) leading 

to rewarding sensations. Addiction is also enhanced through acetylcholine-mediated 

craving for euphoric feelings produced by this neurotransmitter. Further, consistent 

evidence has emphasized the role of dopamine, glutamate, and GABA resulting from 

nicotine exposure which are responsible for information processing, memory, and 

emotions232. Glutamate, which is the brain’s primary excitatory neurotransmitter 236, is 

released in several brain structures such as the ventral tegmental area (VTA) after 

nicotine exposure and regulates the dopaminergic neurons. Increased firing of 

dopaminergic neurons in the VTA stimulates dopamine release in the nucleus 
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accumbens (NAc), which leads to rewarding feelings arising from the mesolimbic 

system. ECIGs contain nicotine and been reported to change glutamate and dopamine 

levels in mice 237, which is expected to be mediated by nicotinic acetylcholine receptors 

and the genetic variants that influence their function. 

 

 

Figure 4.1. Nicotine Acts as an Agonist for Acetylcholine Receptors. Nicotine 
binds to and stimulates the acetylcholine receptor (1), which allows sodium (Na+) 
into the presynaptic neuronal cell (2), which stimulations the calcium ion channel 
to open (3) releasing Ca2+, potentiating the cell to release neurotransmitters (4) 
into the synapse. Figure adapted from Price & Martinez, 2019 238.  
 
 

CYP2A6 has been associated with several CIG use behaviors including regular 

smoking, nicotine dependence, and smoking cessation. CYP2A6 encodes the 

Cytochrome P450 A6 enzyme. This enzyme is responsible for metabolizing nicotine and 

cotinine via oxidation 189,239 (see Chapter 3: Nicotine Metabolism). Further, CYP2A6 is 

necessary for moving nicotine through the body while the nAChR gene cluster is 

responsible for rewarding sensations arising from tobacco use. Taken together, prior 
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GWAS results have identified several important loci within genes that have biological or 

psychological function associated with CIG use. However, it remains unknown if these 

same genes play a role in ECIG initiation and use. 

 

Use of Genome-Wide Polygenic Scores Addresses Limitations of GWAS  

The concept of “polygenic” factors was first discussed by Sir Ronald Fisher as 

the influence of many genes making small contributions to a phenotype240, has been 

confirmed throughout the GWAS era142,241, and has led to the recent development and 

study of genome-wide polygenic scores (GPS). A GPS reflects the average genetic 

contribution for a phenotype across all measured loci. This approach was developed 

because large-scale GWAS demonstrated significant associations of hundreds of 

common variants that contribute small effects to many complex phenotypes 142,240,242–

245, including CIG initiation (e.g., GWAS and Sequencing Consortium for Alcohol and 

Nicotine, GSCAN, 163). Common variants of small effect are most likely the cause of 

genetic variation in complex traits 142,242,246 (e.g., outcomes that are due to many genetic 

and environmental influences). To date, many GWASs have been underpowered due to 

small sample sizes247 which limits the ability to detect genetic influences of small effect 

sizes. Therefore, GWAS may often fail to capture the variation from genes of small 

effect 248. The use of GPS to aggregate genetic variants with small effects (i.e., variants 

with odds ratios less than 1.3) is expected to reflect a more accurate representation of 

multiple genetic influences on an outcome 249–251.   

Studies of GPS use summary statistics (i.e., β values and p values) generated 

from GWAS of large “discovery” samples with sample sizes that have sufficient power to 
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detect genome-wide significant genetic associations (N > 100,000). Discovery samples 

generally refer to single sample studies (e.g., UK BioBank) or a consortium of several 

studies that have appropriate sample sizes to conduct GWAS (e.g., GSCAN). After 

summary statistics are generated in the discovery sample, they can be applied in 

smaller “target” samples that would otherwise be underpowered to detect genetic 

effects (N ~ 1,000) 248,252. The generation of GPS from a discovery sample and its 

application of summary statistics to a target sample relies on the assumption that both 

samples contain participants from the same ancestral group. “Ancestral groups” refer to 

populations of humans whose biological ancestors come from similar geographic 

regions (e.g., Europe) and experience common evolutionary selection migration 

patterns and selection pressures over several generations. Consequently, individuals 

within a specific ancestral group have largely similar distributions of allele frequencies at 

most loci throughout the genome. To date, most GWAS studies are conducted in 

samples with European ancestry groups. Therefore, GPS generation is most often 

conducted in these populations because they have reliably similar allele distributions 

across discovery and target samples 253–255. 

Genome-wide polygenic scores were first used to examine common genetic 

variation and its influence on schizophrenia 256. Using data from the International 

Schizophrenia Consortium (ISC), polygenic scores were calculated for schizophrenia 

and applied in independent samples provided by the Molecular Genetics of 

Schizophrenia (MGS) consortium. The polygenic scores performed adequately, 

explaining roughly 3% of the variance for schizophrenia in the European sample of 

MGS. However, the clinical utility of a polygenic score was deemed insufficient to 
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increase diagnostic accuracy 257. More recent research has shown improvement in the 

predictive probability of GPS, though not enough to warrant use in clinical settings 258. 

The improvement of the predictive probability of GPS has suggested that with more 

research, clinical utility could be found 258–262.     

 

CIG GPS Influences on Psychiatric Phenotypes 

Significant genetic overlap has been reported between CIG GPS for various CIG 

phenotypes and other psychiatric outcomes. CIG GPS has been associated with 

smoking initiation, explaining nearly 5% of the variance in one study 263. Similarly, a 

GPS constructed for CPD was associated with CPD 264. GPS for CIG initiation have 

also been associated with non-tobacco related phenotypes. GPS for late onset CIG 

initiation has also been associated with schizophrenia. Individuals who initiated CIG use 

later in life were at an increase in the odds of reporting a diagnosis of schizophrenia 265. 

In addition, GPS for having ever been a regular smoker have been associated with 

externalizing behaviors, with being a regular smoker associated with an increase in the 

odds of reporting externalizing behaviors 266. Further, GPS for age of CIG initiation has 

been associated with age of regular alcohol drinking, which suggests there may be 

overlap with substance use 267. These results suggest that overlap exists between 

genetic influences for CIG initiation and multiple psychiatric disorders, including other 

substance use beyond CIGs. It is therefore expected that some genetic influences may 

be shared between CIG and ECIG initiation.  
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Associations between CIG GPS and ECIG Initiation 

To date, three GPS studies have been conducted on ECIG initiation. Allegrini 

and colleagues utilized the Tobacco and Alcohol Genetics (TAG) to create GPS for CIG 

initiation (SI; defined as having smoked 100 or more cigarettes in an individual’s 

lifetime) and cigarettes per day (CPD)124. These scores were then applied to a target 

sample of Netherlands twins who used ECIGs. While the GPS for SI wasn’t significantly 

associated with ECIG use, the GPS calculated from the CPD phenotype was 

associated. Specifically, the GPS was significantly associated with ECIG initiation 

among ex-smokers (OR = 1.43) and never smokers (OR = 1.35). These results suggest 

that there may be some association between genetic influences for CIG and ECIG use; 

however, the authors acknowledge their study may have been underpowered to detect 

genetic effects and recommended additional studies.  

More recently, GPS for CIG initiation were created from the GWAS and 

Sequencing Consortium of Alcohol and Nicotine (GSCAN) and used to study their 

association with ECIG initiation 58. A significant association was detected between GPS 

for CIG initiation and ECIG initiation by age 24 (OR = 1.24, 95% CI = 1.14-1.34, p < 

0.001). Importantly, a separate analysis was conducted to ensure that the GPS for CIG 

initiation was associated with CIG initiation in their target sample (OR = 1.29, 95% CI = 

1.19-1.39, p < 0.001), confirming the GPS for CIG initiation was associated with the 

same phenotype in an independent sample. Taken together, these two analyses show 

that the genetic influences which are important for CIG initiation are also meaningful for 

ECIG initiation.  
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A similar analysis was conducted in the United States utilizing a GPS for regular 

CIG use and cigarettes per day calculated from GSCAN and applied to ECIG use in a 

sample of college students 225. This study reported a significant associated with CIG 

regular use and ECIG initiation (OR = 1.27, 95% CI = 1.19-1.36, p < 0.001) among 

individuals of European descent. While this study did not model CIG initiation as a GPS, 

it provides additional preliminary evidence that genetic influences of other CIG 

phenotypes (quantity of use, regular cigarette use) are also shared with ECIG initiation.  

This study builds on the previous results in two ways. First, the molecular genetic 

variants that may contribute to ECIG initiation remain unknown. Several genome-wide 

association studies (GWAS) have been conducted on the initiation of CIG use.  

However, it is unknown if the same variants identified for CIG initiation will also be 

significant with ECIG initiation. These analyses will first detail the molecular genetic 

contribution to ECIG lifetime initiation in a sample of US adults, aged 18-93. Second, 

current results suggest there may be some overlapping genetic influences in a sample 

of young adults, ages 18-25 (e.g., see Chapter 2) 58,225. Analyses in this chapter build 

on the prior results by using data from a community-based sample of unrelated adults 

(age 18-93) to examine genetic overlap within a larger age range. Taken together these 

analyses answer two research questions: 1) are there any specific variants that are 

significantly associated with lifetime ECIG initiation across adulthood and 2) are the 

molecular genetic influences shared between ECIG and CIG lifetime initiation? 
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METHODS 

Study Description 

 Data from the Genes for Good (G4G) study were used. The G4G study uses a 

community-based sample of active Facebook users in the United States aged 18 and 

older (N = 81,476). In brief, Facebook users participated in the G4G project through a 

Facebook-specific application (i.e., a third-party add on to the base Facebook page).  

Participants were taken through a consent process after adding the application to their 

profile. Participants who used the G4G application on Facebook answered survey 

questions regarding a variety of behaviors and lifestyles including: sleep, personality, 

exercise, and drug use (including tobacco, alcohol, marijuana, and other illicit 

substances). Surveys were divided into two broad categories: 1) health history surveys 

(baseline surveys focused on behaviors prior to G4G participation) and 2) health 

tracking surveys (daily behavior tracking from the previous day, such as how many 

alcoholic drinks they consumed or number of cigarettes smoked). Participants 

completed surveys at any time and chose the modules they wanted to answer. 

Participants were recruited via “snowball recruiting”; where individuals are recruited 

through their peer group (e.g., parents, friends, Facebook groups) via posts that are 

shared about the participants engagement with G4G (e.g., “I just completed a health 

tracking survey for Genes for Good!”).  

 A subset of G4G participants also volunteered to give a sample of their DNA via 

a mailed saliva collection kit (N = 27,469). To be included, participants must have 

answered the health history survey as well as a minimum of 15 health tracking surveys 

of their choice. Participants received a free genetic ancestry report and access to their 
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raw genetic data via a secure (i.e., encrypted) file transfer point (SFTP) over the 

internet.  

As of 18 June 2019, 81,476 individuals had signed up to use the G4G application 

and completed at least one survey. Of these, 27,469 individuals had been genotyped 

(33.7%). Data from 20,231 genotyped participants were available at the time of data 

release. For purposes of this study, individuals were limited to self-identified ancestral 

(SIA) White participants only (N = 15,881). SIA White participants reduced the influence 

of possible population stratification on analyses. Population stratification is a source of 

confounding in GWAS, conceptualized as a phenomenon that arises due to differing 

selection pressures placed on non-random mating populations. This selection leads to 

differing allele frequencies between ancestral groups 268. Different allele frequencies 

may lead to spurious relationships being detected between genetic markers and 

phenotypes 269.  

Measures of CIG and ECIG Initiation. Two items assessed lifetime CIG and 

ECIG initiation. CIG lifetime initiation was treated as a dichotomous variable, probed as, 

“Have you ever tried a cigarette?” ECIG lifetime initiation was treated as a dichotomous 

variable and measured as, “Do you smoke e-cigarettes?”  

 Genotyping. Participant DNA was genotyped across approximately 600,000 

SNPs using the Illumina Infinium CoreExome-24 v1.0 or v1.1 arrays 163. Genotyping 

was completed on nonsynonymous exonic variants (i.e., a mutation that alters the 

protein coded for by the amino acid sequence), as well as a panel of common genome-

wide markers. Additional markers were also genotyped including missense (i.e., 

mutation of coding for an amino acid), loss-of-function (i.e., mutation leading to less, or 
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no, function), potential lipid- and myocardial infarction-associated variants, height-

associated variants, stop-gain variants (i.e., a mutation that stops transcription 

prematurely) in 96 genes with loci potentially implicated in type 2 diabetes, blood lipid 

levels, Alzheimer’s disease, nicotine/alcohol metabolism, and other serious but treatable 

health conditions. Additionally, Neanderthal SNPs from the 1000 Genomes Project, and 

ancestry informative markers were also genotyped. Genotypes for approximately 30 

million additional variants were imputed using Minimac3 270 using the 1000 Genomes 

Phase 3 271 panel as a reference panel. Imputation is an important step because it 

allows for additional markers to be imputed, increasing the number of genetic markers. 

These additional markers allow for a more complete interrogation of the genome, above 

and beyond the directly observed genotypes.  

 Quality Control.  Standard data quality control (QC) procedures were 

implemented before data analysis (Figure 4.2). This included removing individuals 

which had excessive missing data (greater than 5% missing) and individuals who were 

cryptically related (i.e., unknown to either researcher and/or participants that two 

individuals were biologically related) to one another (p > 0.05, 0 participants removed). 

Individuals with increased heterozygosity rates, defined as more than three standard 

deviations from the mean were removed (0 individuals. Heterozygosity rate is the 

proportion of an individual’s genome that is heterozygous (i.e., they have one copy of 

the dominant and recessive allele). Only SIA White participants were used for this 

study, leaving an analytic sample of 15,881 participants after per-individual QC. Further 

participants were removed due to missing phenotypic data (85 missing CIG data, 86 
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missing ECIG data), leaving 15,796 CIG initiators and 15,795 ECIG initiators for 

analyses. 

QC was also done on a per-SNP basis. SNPs were removed if they significantly 

violated Hardy-Weinberg Equilibrium (HWE; p < 10-8, 395 markers removed) as were 

SNPs with excessive missingness (> 5%, 125,044 markers removed). Violations of 

HWE suggest that there may be influences (e.g., assortative mating, genetic drift, or 

founder effects) impacting the frequency of a particular genotype 272. Two other 

commonly used QC measures were not utilized: sex checking and INFO score pruning. 

INFO scores were not included with the data transfer from the G4G study staff. In 

general, GWAS analyses are limited to high performing SNPs (INFO score >= 0.5) to 

ensure the highest possible quality of data. Additionally, information was not sent 

regarding the X chromosome which would be used to check the self-reported sex 

versus the biological sex of participants. Instead of genetic data regarding the 

participants, self-reported sex was utilized as a covariate in subsequent GWAS 

analyses. After completing the per-marker QC, 7,252.506 markers were available for 

analysis. 
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Figure 4.2. Flowchart of Quality Control Procedures and Number of SNPs and 
Individuals Removed.  
 
Genome-Wide Polygenic Score Calculation. GPS are calculated from a discovery, or 

training, sample for CIG lifetime initiation. This sample is made up of individuals who are 

unrelated to the target sample. Markers in this training sample are ranked by their 

association with the phenotype, generally measured by p values 273. The measure of 

association (e.g., beta values) are then summed across the markers that are associated 

at a given level (e.g., all markers with p values less than 0.01, 0.05, or 0.10) as shown 

in the formula below.  

!"# =	&'(
)

(
!( 

where '( is equal to the beta coefficient that is associated with genetic variant !( for the 

ith person. Therefore, a GPS is the summed effect (of participants running from i to n) for 

all measured genetic variants. 
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GPS for this study was generated for CIG initiation from summary statistics 

provided by GSCAN163. GPS were generated via PRS-CS, a freely available Python-

based software 274. PRS-CS (Polygenic Risk Score with Continuous Shrinkage) is a 

relatively new program that calculates GPS under a Bayesian regression framework 

rather than the frequentist framework presented above. Using this Bayesian framework, 

the SNP prior probabilities are subject to continuous shrinkage as follows: 

*+|-+~/00,3-+4,																				-+~5 

where	*+ is the effect size of the jth SNP which is contingent on a mixing distribution (g) 

and the variance is multiplied by 3 a scaling parameter (10-6, 10-4, 10-2, 1, or 

autoscaling). Using a known LD reference panel (in this analysis, the European sample 

from 1000 Genomes), individual level regression models are able to put a posterior 

probability on each SNP in the sample (assuming the SNPs are overlapping). This 

continuous shrinkage removes the need for p value pruning as is commonplace in non-

Bayesian programs (e.g., PRSice-2, PLINK). Continuous shrinkage reduces the priors 

towards the average effect for the SNP. This shrinkage is updated iteratively constantly 

shrinking the priors as new information is added. For this study, the amount of variance 

explained (Nagelkerke R2) was calculated for both a null model (i.e., a model that uses 

all terms outside of the GPS in a logistic regression) and a model with the GPS, with the 

two models then compared 275. 

GSCAN summary statistics were calculated on individuals of European ancestry 

only 276. The use of summary statistics to calculate GPS works best within a single 

ancestral group and predicting across ancestry groups (i.e., any non-European ancestry 

group) may lead to biased estimates 277,278. 



 140 

Covariates. Several covariates were included in the statistical analyses. These items 

have previously been associated with CIG and ECIG use in other peer reviewed 

studies. Previous research has reported a difference between males and females in 

terms of ECIG use 279,280. Sex was included as a dichotomous variable (male vs. 

female). Age has also been associated with ECIG use with younger ages using ECIGS 

more than older individuals 281. Age was assessed as a ten-level ordinal variable with 

age binned into 10 year gaps after age 21 by G4G study staff. Education has been 

associated with ECIG use with individuals of higher education being less likely to use 

ECIG compared to individuals with lower education 46. Education was recoded into a 

four-level ordinal item with bins reflecting: 1) less than high school (HS), 2) HS 

Graduate, GED, or Some College, 3) Associate’s Degree, and 4) College Graduate or 

More.  The analytic sample was restricted to SIA White individuals, so there was no 

additional variable to denote race in the GWAS, though the first 7 Principal Components 

were adjusted for (see below). To account for dual use, opposite tobacco product use 

(i.e., ECIG users’ CIG use) was used as a covariate.  

 

Analytic Strategy 

 Univariate GWAS was conducted using standard methodologies via PLINK v1.9 72. 

GWAS involves a series of regressions wherein each measured SNP (both genotyped 

and imputed) is regressed on the outcome of interest.  

Ancestry Principal Components Analysis. PLINK v1.9 (--pca) was used to 

calculate ancestry PCs among G4G SIA White participants to further address the 

possibility of population stratification, even within SIA White individuals. Prior to running 
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the PCA, SNPs were restricted to those that were overlapping with the 1KG reference 

genome (NSNP = 80,104; Figure 4.3. Seven ancestry PCs were retained to account for 

the majority of the variance of ECIG initiation (Figure 4.4). Seven PCs were retained 

rather than the first 10 as the scree plot of PCs suggested that after 7, no significant 

additional proportion of variance was explained (Figure 4.4).  

 

 

Figure 4.3. Three-Dimensional Plot of the First Three Principal Components for 
Self-Identified White Participants.  
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Figure 4.4. Proportion of Variance (y-axis) Explained by the SIA White Principal 
Components (x-axis). 
  

Predictive Probability of GPS 

The area under the curve (AUC) was generated from a receiver operator characteristic 

(ROC) curve to examine the predictive probability utility of the GPS (i.e., how well does 

a model with GPS accurately predict an individual’s ECIG use) 282,283. The ROC curve 

was calculated by comparing a binary outcome (Y, or ECIG initiation) with a continuous 

predictor (X, or GPS). In a ROC curve, each level of X is evaluated as a candidate cut 

point which will discriminate an individual’s classification on the binary Y (i.e., an ECIG 

user or not). These predicted classifications are then compared with the observed value 
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of Y, from which the number of true positives and false positives can be computed. The 

sensitivity (i.e., the probability that an observation with a positive outcome is correctly 

classified as positive [sensitivity = True Positives /(True Positive + False Negatives)]) 

and specificity (i.e., the probability that an observation with a negative outcome is 

correctly classified as negative [specificity = True Negatives/(True Negatives + False 

Positives)]) may then be calculated and graphed against one another with the x-axis 

being the false positive rate (1 – specificity) and the y-axis being the true positive rate 

(sensitivity). The ROC then calculates the AUC, or the probability of accurate outcome 

group assignment based on the regression results 250,284. 

 

RESULTS 

Sample Representativeness  

In general, participants who were genotyped were less likely to have used either CIGs 

or ECIGs (6.6% of those genotyped were ECIG users while 8.4% of those not 

genotyped were, 68.2% of genotyped participants were CIG users while 72.3% of non-

genotyped participants used CIGs; Table 4.1). Genotyped individuals differed from 

ungenotyped participants in several respects: they were more likely to fall in the age 22-

30 age group (37.6% vs 35.7% respectively).; had a larger proportion of men (29.7% vs 

22.8%); were more likely to be college graduates (18.6% vs 14.7%); and more likely to 

have health insurance (92% vs 90%). All differences were significant at the p < 0.001 

level. These analyses suggest there are systematic differences in participants who were 

genotyped compared to those who were not. 
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Table 4.1. Descriptive Statistics for Genotyped vs Not Genotyped Participants 
 Genotyped 

N (%) 
Not Genotyped 

N (%) 
ECIG 
    Yes 
    No 

 
1,299 (6.6) 

18,274 (93.4) 

 
2,978 (8.4) 

32,545 (91.6) 

CIG 
    Yes 
    No 

 
13,358 (68.2) 
6,216 (31.8) 

 
25,676 (72.3) 
9,849 (27.7) 

Sex 
    Male 
    Female 

 
5,837 (29.7) 
13,847 (70.3) 

 
8,241 (22.8) 
27,908 (77.2) 

Age Range 
    18-21 
    22-30 
    31-40 
    41-50 
    51-60 
    61-70 
    70+ 

 
1,143 (5.8) 

7,404 (37.6) 
5,597 (28.4) 
2,416 (12.3) 
1,854 (9.4) 
986 (5.0) 
284 (1.4) 

 
2,279 (6.3) 

12,834 (35.7) 
10,110 (28.1) 
5,050 (14.0) 
3,516 (9.8) 
1,776 (4.9) 
379 (1.1) 

Education 
    Less than HS 
    HS Grad/GED/Some College 
    Associate’s Degree 
    College Graduate or More 

 
387 (2.0) 

7,642 (38.8) 
7,998 (40.6) 
3,656 (18.6) 

 
953 (2.6) 

16,279 (45.0) 
13,624 (37.7) 
5,310 (14.7) 

Insurance Status 
    Covered 
    Not Covered 
    I Don’t Know 

 
18,118 (92.0) 
1,430 (7.3) 
135 (0.7) 

 
32,536 (90.0) 
3,373 (9.3) 
257 (0.7) 

Note. All χ2 statistics significant at p < 0.001. 
 

 Conventional Cigarettes. The majority of participants who were asked “Have you 

ever tried a cigarette?”  responded “Yes” (N = 11,058; 70%; Table 4.2). Lifetime 

initiators of CIG were more female (72.1%) compared to non-initiators (69%). A greater 

proportion of initiators were older (34.7% were over 41) compared to non-initiators 

(21.3%). Initiators also reported less education (82% of initiators had an Associate’s 

Degree or lower) compared to non-initiators (78.6% had an Associate’s Degree or 
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lower. Finally, initiators reported fewer participants without health insurance (7.4%) 

compared to non-initiators (5.7%). All differences were significant at the p < 0.001 level. 

These results suggest differences between initiators and non-initiators of CIGs across 

several important variables. 

 

Table 4.2. Descriptive Statistics of CIG Lifetime Initiation 
 CIG Initiation 
 Yes 

N (%) 
No 

N (%) 
Sex 
    Male 
    Female 

 
3,084 (27.9) 
7,974 (72.1) 

 
1,458 (31.0) 
3,281 (69.0) 

Age Range 
    18-21 
    22-30 
    31-40 
    41-50 
    51-60 
    61-70 
    70+ 

 
236 (2.1) 

3,449 (31.2) 
3,533 (31.9) 
1,640 (14.8) 
1,278 (11.6) 

720 (6.5) 
292 (1.8) 

 
490 (10.3) 

2,133 (45.0) 
1,110 (23.4) 

445 (9.4) 
335 (7.1) 
174 (3.7) 
52 (1.1) 

Education 
    Less than HS 
    HS Grad/GED/Some College 
    Associate Degree 
    College Graduate or More 

 
207 (1.9) 

4,391 (39.7) 
4,474 (40.5) 
1,985 (18.0) 

 
79 (1.7) 

1,592 (33.6) 
2,055 (43.4) 
1,013 (21.4) 

Insurance Status 
    Covered 
    Not Covered 
    I Don’t Know 

 
10,187 (92.1) 

823 (7.4) 
47 (0.4) 

 
4,437 (93.6) 

268 (5.7) 
34 (0.7) 

Note. All χ2 statistics significant at p < 0.001. 
 

Electronic Cigarette Initiation. ECIG lifetime initiation was measured with, “Do 

you smoke e-cigarettes?” to which almost 7% of participants (N = 1,050; 6.6%; Table 

4.3) reported they had initiated ECIGs. Most ECIG lifetime initiators were between the 

ages of 22-30 (36.7%) or 31-40 (34.3). Likewise, ECIG lifetime initiators had lower 

education levels (6.9% were a College Graduate) compared to non-initiators (19.8% 



 146 

had a College Degree). Finally, a greater proportion of ECIG lifetime initiators did not 

have insurance coverage (11.8%) compared to participants who did not initiate ECIGs 

(6.6%). All differences were significant at the p < 0.001 level. These results suggest 

differences between ECIG initiators versus non-initiators across several important 

variables.  

 
Table 4.3. Descriptive Statistics of ECIG Lifetime Initiation 
 ECIG Initiation 
 Yes 

N (%) 
No 

N (%) 
Sex 
    Male 
    Female 

 
386 (36.8) 
664 (63.2) 

 
4,156 (28.2) 
10,590 (71.8) 

Age Range 
    18-21 
    22-30 
    31-40 
    41-50 
    51-60 
    61-70 
    70+ 

 
49 (4.7) 

385 (36.7) 
360 (34.3) 
138 (13.1) 

88 (8.4) 
24 (2.3) 
6 (0.6) 

 
677 (4.6) 

5,197 (35.2) 
4,282 (29.0) 
1,947 (13.2) 
1,525 (10.3) 

870 (5.9) 
248 (1.7) 

Education 
    Less than HS 
    HS Grad/GED/Some College 
    Associate’s Degree 
    College Graduate or More 

 
33 (3.1) 

590 (56.2) 
355 (33.8) 

72 (6.9) 

 
253 (1.7) 

5,393 (36.6) 
6,173 (41.9) 
2,926 (19.8) 

Insurance Status 
    Covered 
    Not Covered 
    I Don’t Know 

 
917 (87.3) 
124 (11.8) 

9 (0.1) 

 
13,706 (93.0) 

967 (6.6) 
72 (0.5) 

Note. All χ2 statistics significant at p < 0.001. 
 

Dual Use of ECIG and CIG. ECIG and CIGs are often used concurrently, known 

as dual use. G4G participants were rarely ECIG-exclusive initiators (0.3%) with most 

people having initiated CIGs only (63.6%; Table 4.4). Nearly 30% of participants had 

tried both products. These results suggest that ECIG-exclusive initiation is rare. 
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Table 4.4. Distribution of Tobacco Lifetime Initiation Among Self-Identified 
White Participants with Genotypic Data  

 N % 
Tobacco Lifetime Initiation 
     No Initiation 
     CIG-Exclusive Initiation 
     ECIG-Exclusive Initiation 
     Dual Use Initiation 

 
1,008 

10,082 
45 

4,706 

 
6.4 

63.6 
0.3 

29.7 
 

Main Results 

CIG Initiation 

There were no genome-wide significant associations (Figure 4.5). However, three SNPs 

had suggestive associations (p ! 1 x 10-6). The first genome-wide suggestive SNP was 

in an intergenic region on chromosome 18 (18:61021122, OR = 1.24, p = 2.5 x 10-7) 

between HMGN1P31 (High Mobility Group Nucleosome Binding Domain 1 Pseudogene 

31) and CDH20 (Cadherin 20).  Neither of these genes has been associated with 

tobacco use in prior literature. The second suggestive SNP was on chromosome 2 

(chromosome identification number: base pair location- 2:84368347, OR = 0.88, p = 

9.11 x 10-7) near the gene SUCLG1 (Succinyl-CoA ligase GDP/ADP-forming subunit 

alpha). No significant associations between this gene and tobacco use have been 

reported to date. The final genome-wide suggestive SNP was located on chromosome 

11 (11:42405437, OR = 0.63, p = 7.24 x 10-7) near the LINC0240 (Long Non-Coding 

RNA 2740) gene. This gene has not been associated with tobacco use in prior studies.  
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Figure 4.5 Manhattan Plot of CIG Initiation Adjusted for Covariates. 

  

ECIG Initiation 

 Similar to the CIG results, no SNP reached genome-wide significance in the ECIG 

GWAS, though there were four SNPs reached the genome-wide suggestive threshold (p 

! 1 x 10-6; Figure 4.6). The most significant SNP was on chromosome 13 located in the 

N4BP2L1 gene (NEDD4 Binding Protein 2 Like 1, 13:32403784, OR = 0.62, p = 7.49 x 

10-7). This gene has previously been linked to several cancers, including breast cancer 

285. One SNP located on chromosome 2 (2:115364757) in the DPP10 (Dipeptidyl 

Peptidase Like 10) gene was genome-wide suggestive (OR =1.28, p  = 5.19 x10-7). This 

gene has previously been linked to asthma, a respiratory disease 286,287.  A third SNP on 

chromosome 15 (15:49010393) within the SECISBP2L (SECIS Binding Protein 2 Like) 
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gene was genome-wide suggestive (OR = 0.44, p = 8.01 x 10-7). This gene has not 

been associated with tobacco use or a possible health consequence of tobacco use. 

Finally, a SNP on chromosome 6 (6:33902823) was genome-wide suggestive (OR = 

0.79, p = 1.75 x 10-7); however, this SNP is located in an uncharacterized location 

(LOC105375026).  

 

Figure 4.6. Manhattan Plot of ECIG Initiation Adjusted for Covariates. 
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GPS Results  

Raw GPS values had very little variance (Figure 4.7a). Consequently, GPS were 

transformed into z-scores to have adequate range of variation (Figure 4.7b) as 

recommended by Choi and colleagues 252,288,289. 

 

Figure 4.7. Distribution of Raw (Panel A) and Transformed (Panel B) Genome-wide 
Polygenic Scores.  
 

There was no significant association between GPS and ECIG initiation after 

controlling for cross tobacco product use, insurance status, education level, income 

level, gender, and the first 7 ancestry PCs before or after the transformation. A null 

model was calculated wherein all predictors were added to a logistic regression except 

for the GPSs (Nagelkerke R2 = 0.0595) and compared against a model with the GPSs 

and all covariates (Nagelkerke R2 = 0.0596). The difference in Nagelkerke R2  between 

the models was 0.0001, suggesting a very small amount of the variance was explained 

with the addition of the GPS. The AUC analysis showed the model performed fairly well 

(AUC = 0.75, Figure 4.8). Additionally, there was decent discrimination for ECIG 

A
A 

B 



 151 

initiation290 (AUC >= 0.70 is the threshold for acceptable discrimination). However, the 

difference in Nagelkerke R2 suggests that this association is due to the covariates rather 

than the GPS. 

 

Figure 4.8. Receiver Operator Curve from the Full Model, Including Genome-wide 
Polygenic Score. 
 
 
DISCUSSION  

This is the first GWAS of ECIG use to date. Genome-wide significant SNPs were not 

detected for either CIG initiation or ECIG initiation after accounting for covariates. These 

results are typical of GWAS results in small samples (this sample N = 15,881).  Further, 

GPS calculated from CIG initiation in a large training sample were not significantly 

associated with ECIG initiation in the test sample after adjusting for covariates. 

 This study found phenotypic similarities to other published reports. ECIG initiation 

has been reported to be near 40% in wave 4 of the Population Assessment of Tobacco 
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and Health (PATH) 291. Importantly, this study did not differentiate between dual and 

exclusive use, so it possible the majority of participants were dual users similar to G4G. 

Similarly, Spit for Science (S4S) reported nearly 41% of participants had initiated ECIG, 

though dual use was not account for. It is unsurprising that this is a higher proportion 

than G4G as S4S is focused on college aged participants. Younger participants use 

ECIGs more frequently than older age ranges 292. Further, these estimates of ECIG use, 

when considering dual users, is in line with Khouja and colleagues estimate from 

ALSPAC (ECIG initiation = 30%) 58. Further, this study reported 64% of participants had 

initiated CIG use, similar to the G4G study 58. Dual use was higher in this sample with 

95% of ECIG initiators also engaging in CIG initiation. Prevalence of ECIG-exclusive 

initiation was reported at 0.3% in G4G, which is similar to ECIG-exclusive initiation in 

PATH (0.4%) 293. 

 

Genome-Wide Suggestive SNPs for CIG and ECIG Initiation 

There were no genome-wide significant SNPs for CIG initiation; however, there 

were two genome-wide suggestive SNPs. The most significant SNP was an intergenic 

region of chromosome 18 (18:61021122), with the nearest gene being CDH20 

(Cadherin 20). Previous research has utilized SNPs in this gene to create a genotype 

score for successful smoking cessation in a clinical trial of nearly 500 smokers 

examining nicotine replacement therapy 294. On the other side of this intergenic location, 

this SNP is bounded by HMGN1P31 (High Mobility Group Nucleosome Binding Domain 

1 Pseudogene 31), a gene with an unknown function and has not been associated with 

substance use in previous research. 
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Likewise, no SNP reached genome-wide significance for ECIG initiation after 

accounting for covariates. However, several genes were genome-wide suggestive. The 

most intriguing of these suggestive markers was 2:115364757 in the DPP10 gene. 

DPP10 has previously been associated with asthma, a common respiratory disease 

which is also associated with ECIG initiation 295–297. This biologically plausible gene 

should be marked for further investigation, especially with the rise of EVALI (E-cigarette 

or vaping associated lung injury 298,299.  

 That no SNP reached genome-wide significance is not unexpected in this study. 

GWASs require large sample sizes due to the small effect sizes of SNPs of common 

variation (MAF > 1%). While the G4G is a large sample, it is still underpowered to detect 

such small effects. Post-hoc power analyses indicated that this sample had about 5% 

power to detect genetic effects, with nearly 300,000 participants needed to reach 80% 

power. Further, ECIG-exclusive initiation in this study was estimated at 0.3%. To detail 

ECIG exclusive initiation in GWAS, using this proportion as a starting point, a sample 

size of more than 39 million participants would be needed. Future research efforts 

should continue to build larger data sets, ensuring greater statistical power to detect 

small effects from common variation. In addition, ensuring that all ancestries are 

represented in the analyses will increase sample size and increase external validity.  

 

Association between Genome-Wide Polygenic Scores and ECIG Use 

This study reported no significant association between the GPS for CIG initiation and 

ECIG initiation in a community-based sample. To date, three other studies have 

examined CIG GPS and ECIG initiation with inconsistent results. The initial study of CIG 
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initiation GPS did not find an association overall between CIG GPS and lifetime ECIG 

initiation in a small sample (N ~ 4,000) of twins from the Netherlands. When analyses 

were stratified by past tobacco use, a significant association was reported for former 

smokers of CIG 124. A more recent study reported a significant association between 

lifetime CIG initiation GPS and ECIG initiation in a sample of young adults (age = 24) 

from the UK 58. The final study did not examine a lifetime CIG initiation GPS, but did 

report significant associations with other GPS built from other CIG phenotypes 

(cigarettes per day, regular cigarette use) in an American college aged sample (18-25) 

225. Therefore, it would be advantageous for future studies to examine multiple facets of 

the smoking rather than focusing in on one behavior. 

 While there was no statistical association between the GPS and ECIG initiation, 

the model still performed adequately. Compared to model with only covariates and 

phenotypic variables, a model with GPS altered the Nagelkerke R2 by less than 0.01%. 

However, as shown in Figure 4.9, the area under the curve is sufficient to be classified 

as adequately predictive of ECIG use. Most likely this association is drive by the dual 

use of ECIG and CIG use. The prevalence of ECIG-exclusive use is extremely small 

(0.3% of the sample) which is in line with other published research (e.g., Population 

Assessment of Tobacco and Health ECIG-exclusive lifetime initiation is 0.4% 

(unweighted)) 293. Additionally, all the phenotypic covariates included in the model have 

previously been associated with ECIG use, leading to a model that accurately predicts 

ECIG use without genotypic data. 

 This study has several limitations. First, the proportion of ECIG-exclusive use 

was very low (0.3%). This suggests that any genetic variants may be masked by dual 
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initiation of ECIG and CIGs. This was accounted for in these analyses by using the 

opposite tobacco product as a covariate in regression models. Models that included 

genetic risk did not significantly alter the AUC suggesting that there is no additional 

information gained by using PRS in this sample. Secondly, even though the GPS takes 

into account variants with small effects, it is possible that these variants were not 

captured. This would lead to an incomplete picture of the genetic architecture shared 

between CIG and ECIG initiation. Thirdly, these analyses were limited to SIA White 

participants. Technological improvements have been made to allow for cross-ancestry 

estimate of GPS via PRS-CSx 300. Future studies should continue to examine ancestral 

groups other than those of European descent 

This study also demonstrated several strengths in addition to the limitations. The 

large sample size for GPS generation met the minimum for statistical power 273. Further, 

this study replicated previous null findings of CIG GPS and ECIG lifetime initiation 124. 

Lastly, the proportions of tobacco use were similar to other published reports 

The DPP10 gene, a novel gene for ECIG initiation, was identified as genome-

wide suggestive. While this study was underpowered to detect genetic effects via 

GWAS, this gene should be marked for replication in other samples with greater power. 

Particular attention should be paid to this possible gene due to its previous association 

with respiratory diseases. These preliminary results report that this gene is associated 

with increased odds of ECIG use (OR = 1.29). This gene may play a role in the 

emergence of EVALI cases and should continue to be researched. 
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CHAPTER 5: THE EFFECT OF COUPON RECEIPT ON THE RELATIONSHIP 

BETWEEN INCOME AND PAST 12-MONTH ELECTRONIC AND CONVENTIONAL 

CIGARETTE USE IN ADULTS 

 

INTRODUCTION 

 Tobacco use is more common among individuals at lower income levels. In 2016, 

approximately 32% of households with an annual income of less than $20,000 per year 

used tobacco products for at least some days. In comparison, approximately 12% of 

households making more than $100,000 per year used tobacco products 301. 34 million 

Americans were estimated to live in poverty (e.g., annual household income of $24,339 

for a family with two adults and two children) 302 in 2013-2014.  Consequently, tobacco 

use may affect a significant proportion of the American population who are also 

financially vulnerable. 

 

The Association between Income and Tobacco Use 

CIG use creates a greater health burden and financial stress on low-income individuals 

compared to individuals with higher levels of income 303. Individuals at lower income 

levels spend a greater proportion of their income on tobacco products 304. Further, CIG 

use as well as ECIG use, are risk factors for several chronic diseases (e.g., cancers, 

cardiovascular disease), and these conditions impact individuals at lower income levels 

more severely 305,306. Low-income populations are also less likely to have access to 

health insurance or health care compared to individuals at higher levels of income. 

Individuals who do not have health insurance tend to have worse health outcomes than 
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individuals with health insurance and generally receive worse quality health care 

compared to those with health insurance 307. Low-income populations are particularly 

vulnerable to the negative consequences of tobacco use as a result of an increased 

immediate financial burden resulting from regular tobacco expenditures. Previous 

research has reported significant associations between CIG-exclusive use and dual use 

such that individuals with lower incomes were more likely to be users (Friedman & Horn, 

2019). There are no reported significant associations between ECIG-exclusive use and 

income (Friedman & Horn, 2019).  

  

Initial ECIG Price Point as an Obstacle to Initiation 

Coupons produced by tobacco companies are a cigarette expenditure minimizing 

strategy (CEMS) that can reduce immediate costs precluding tobacco initiation and use. 

CEMS reduces the immediate purchase cost of various forms of tobacco use. Engaging 

in coupon use as a CEMS has been associated with increased use of tobacco products 

308. For example, receipt of coupons was associated with greater odds of CIG initiation 

309, smoking relapse 310, and switching to regular smoking from experimental use 311 in 

adolescents and young adults.  This strategy has been more widely used in low-income 

populations to reduce the cost of CIG use 312,313.  

 The use of coupons as a CEMS is likely to extend to ECIG use since they require 

a large initial investment to purchase the device. For example, rechargeable ECIG 

starter kits typically range from $25-$150 or more while the liquid refill kits cost $50-$75 

monthly 314. Therefore, the cost of ECIG may prevent lower income individuals from 

accessing this product 315. Receipt of ECIG coupons and marketing materials was 
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associated with an increased likelihood of trying ECIGs by reducing the purchase price 

of these devices 316,317. Consequently, lower income populations may use CEMS to help 

defray the initial price point of initiating ECIG use. However, to date, it is unclear the 

degree to which this strategy is used across all income levels or whether the receipt of 

coupons moderates this association. 

Although low income and use of CEMS have been associated with CIG-exclusive 

and ECIG-exclusive use, it remains unclear whether receipt of coupons focused on a 

particular tobacco delivery system is also associated with the dual use of ECIG and CIG 

in adults. Likewise, it is unclear if income is associated with dual use. It is unclear 

whether receipt of coupons is associated with specific patterns of ECIG and CIG use 

(i.e., exclusive product use or dual ECIG and CIG use). This study has two aims: (1) 

describe the relationship between income and tobacco use, as categorized by product-

exclusive use or dual use of ECIG and CIGs, and (2) detail how this relationship varies 

with receipt of coupons for ECIGs or CIGs.  We anticipate that (1) the relationship 

between income and tobacco use will be similar to previously reported associations 

(Freidman & Horn, 2019), a significant association will be noted for all modalities of 

tobacco use (CIG/ECIG-exclusive and dual use) and (2) the association between 

tobacco use and income will receipt be stronger in low income groups and non-

significant in higher income groups.  
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METHODS 

Study Population 

Data for this study were drawn from the publicly available files from Wave 3 of the 

Population Assessment of Tobacco and Health (PATH; N = 28,148) 318. Described in 

detail elsewhere 319, PATH is a nationally representative longitudinal study of tobacco 

use and health. Our analytic sample consisted of adults aged 18-99 who had complete 

data on tobacco use, income, and coupon receipt. Most participants were White 

(77.7%) and Female (52.0%, Table 5.1). 

 

Variables 

 Tobacco Use. Tobacco use, the outcome variable, was recoded into a 4-level 

variable. If a participant reported not using ECIGs or CIGs in the past 12-months, they 

were coded as a non-user. If an individual marked they had used CIGs in the past 12-

months, but not ECIGs, they were coded as a CIG-exclusive user. The reverse is also 

true, reporting that one had used ECIGs in the past 12-months but not CIGs returned an 

ECIG-exclusive user. Finally, if the participant reported using both ECIGs and CIGs in 

the past 12-months, they were coded as a dual user.  

 Income. Income was divided into a 5-level ordinal variable, using the following 

prompt, “Which of the following categories best describes your total household income 

in the past 12 months?” Responses included: less than $10,000, $10,000-$24,999, 

$25,000-$49,999, $50,000-$99,999, and $100,000 or more as defined by the PATH 

study staff.   
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Receipt of Coupons. Coupon and promotion materials were probed with the 

following items: “In the past 12 months, received discounts or coupons for any of the 

following products: Cigarettes?” to which participants could endorse or not endorse and 

“In the past 12 months, received discounts or coupons for any of the following products: 

E-cigarettes or other electronic nicotine products (including e-liquid)?” to which 

individuals could endorse or not endorse. Each of these items was treated as binary 

with response options of yes or no. 

Covariates. Several demographic factors (age, gender, race, education), which 

have previously been associated with ECIG as well as CIG use 320 were included as 

covariates. Gender was included as a PATH derived binary variable, representing male 

and female response options. Education was recoded into a four-level ordinal variable 

defined as less than high school, high school graduate or GED, some college, and 

bachelor’s degree or higher. The race was captured as a three-level, PATH-defined 

nominal variable defined as White, Black, or Other. Age was measured in PATH as a 

seven-level ordinal variable: 18-24, 25-34, 35-44, 45-54, 55-64, 65-74, and 75+.  

 

Statistical Analysis 

Descriptive statistics were used to summarize the characteristic of the study 

participants. Multinomial regression was used to assess the association between 

income and past 12-month tobacco use. ECIG and CIG use do not necessarily occur 

independently of one another and dual use of these products is common 321–323. 

McMillian and colleagues (2015) reported about a third of daily and non-daily smokers 

or CIGs reported they were also using ECIGs 113. Consistent with other research, dual 
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users of these delivery systems may represent a distinct group from delivery system 

specific groups 324, and as such, this study applied multinomial modeling to take this 

unique group into account.  

Moderation Analysis 

 To assess whether receiving coupons modifies the relation between income and 

tobacco use, preliminary moderation analysis was performed.  To date, it remains 

unclear how coupons may influence the income and tobacco use association. One 

possible avenue for investigation is to test whether or not coupons moderate the 

association. Conceptually, a moderation analysis tests whether the moderating variable 

(M, coupon receipt) influences the direct relationship between the independent variable 

(X, income) and dependent variable (Y, tobacco use; Figure 5.1). M can moderate the 

relationship by either increasing or decreasing the magnitude of the pathway, between 

variables X and Y as shown in Figure 5.1, via pathway b from M to the relationship of X 

and Y. Previous research has reported that redeeming coupons was associated with a 

reduction in the odds of past 30-day abstinence of CIG use 325. Though researchers did 

not explicitly model moderation, this may suggest that using coupons may influence the 

pathway by creating a situation where lower income is not prohibitive of CIG use. 

Explicitly modeling the moderation by coupons may reveal additional insight into why 

individuals with lower incomes disproportionately use tobacco products. It is 

conceivable that using a CEMS, such as coupons, may lead to greater uptake or 

continued use of a tobacco product. They may also influence an individual to switch 

administration routes or use both products simultaneously. CEMS seeks to minimize the 
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amount of money spent on a tobacco product; therefore, a moderating relationship may 

exist between income and tobacco use coupons.  

Figure 5.1. Conceptual Model for Moderation Analysis. 

Multinomial regression approach allows the separation of the outcome variable 

into groups of CIG-exclusive users, ECIG-exclusive users, dual users, and non-users 

and allows for comparisons to be made between unordered groups. Multinomial 

regression reduces the possibility of misclassification bias by separating the delivery 

systems used by participants, including those participants who dual used both systems 

so dual users are not represented as both ECIG and CIG-exclusive users. All models 

were run in SAS 9.4 (SAS Inc., Cary, NC) and accounted for the complex survey design 

with PROC SURVEYLOGISTIC. Additionally, these analyses were adjusted for age, 

race, gender, and education level as these have been previously associated with ECIG 

and CIG use 326. Replicate weights were estimated using Fay’s variant of balanced 

repeated replication 327 as detailed in the PATH User Guide. Additionally, preliminary 

moderation analyses, with coupons as the moderator variable, were conducted to 

determine how coupon receipt may influence the tobacco use and income relationship. 

Moderation was tested in SAS by the addition of an interaction term between income 

and coupon receipt as well as through stratification of results based on coupon receipt.  

Income
(X)

Tobacco 
Use
(Y)

Coupon 
Receipt

(M)

a

b
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RESULTS 

Descriptive Statistics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.1. Summary Statistics for PATH Wave 3 
Variable N Weighted % 
Tobacco Use 
   Non-User 
   CIG-exclusive 
   ECIG-exclusive 
   Dual User 

 
14,548 
8,171 
1,373 
4,056 

 
72.4 
17.5 
2.6 
7.5 

Income 
   < $10,000 
   $10,000-$24,999 
   $25,000-$49,999 
   $50,000-$99,999 
   > $100,000    

 
4,634 
5,686 
5,975 
5,866 
3,917 

 
11.6 
19.1 
22.8 
26.7 
19.8 

ECIG Coupon Receipt 
   Yes 
   No 

 
1,078 

26,962 

 
3.4 

96.6 
CIG Coupon Receipt 
   Yes 
   No 

 
4,869 

23,171 

 
12.2 
87.8 

Gender 
   Male 
   Female 

 
13,788 
14,334 

 
48.0 
52.0 

Race 
   White 
   Black 
   Other 

 
19,899 
4,494 
2,951 

 
77.7 
12.5 
9.89 

Education 
   < HS 
   HS Grad/GED 
   Some College 
   College grad or higher 

 
3,714 
8,547 
9,724 
6,025 

 
11.1 
28.2 
31.7 
28.0 

Age 
  18-24 
  25-34 
  35-44 
  45-54 
  55-64 
  65-74 
  75+ 

 
8,453 
5,824 
3,972 
3,804 
3,389 
1,891 
813 

 
12.4 
17.5 
16.1 
17.2 
17.2 
12.3 
7.3 
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Approximately 27.6% of all participants engaged in some form of lifetime tobacco 

use. Of these, 9,544 (20.1%) used CIG or ECIG in the last 12 months. Most participants 

engaged in CIG-exclusive use (17.5%). Most participants had an annual household 

income of $50,000- $99,999 per year (26.7%). Approximately 3.4% of participants 

received ECIG coupons and 12.2% received CIG coupons (Table 5.1). 328,329 

Table 5.2 Description of Participants Receiving Coupons  
 Any Coupon Receipt  
 
Variable 

Yes 
N (Row %) 

No 
N (Row %) 

 
p-value 

Tobacco Use 
    Non-User 
    CIG  
    ECIG 
    Dual User 

 
1,085 (7.5) 

2,573 (31.7) 
177 (13.0) 

1,442 (35.8) 

 
13,432 (92.5) 
5,551 (68.3) 
1,189 (87.0) 
2,591 (64.2) 

< 0.001 

Income 
    < $10,000 
    $10,000 - $24,999 
    $25,000 - $49,999 
    $50,000 - $99,999 
   > $100,000 

 
1,050 (22.8) 
1,301 (23.0) 
1,287 (21.6) 
1,020 (17.4) 
411 (10.5) 

 
3,565 (77.2) 
4,367 (77.0) 
4,678 (78.4) 
4,842 (82.6) 
3,501 (89.5) 

< 0.001 

Sex 
    Male 
    Female 

 
2,360 (17.2) 
2,912 (20.4) 

 
11,357 (82.8) 
11,385 (79.6) 

< 0.001 

Race 
    White 
    Black 
    Other 

 
4,010 (20.2) 
727 (16.3) 
462 (15.7) 

 
15,832 (79.8) 
3,742 (83.7) 
2,474 (84.3) 

< 0.001 

Age 
    18-24 
    25-34 
    35-44 
    45-54 
    55-64 
    65-74 
    75+ 

 
981 (11.6) 

1,377 (23.7) 
948 (24.0) 
962 (25.4) 
738 (21.9) 
225 (12.0) 

46 (5.7) 

 
7,449 (88.4) 
4,429 (76.3) 
3,009 (76.0) 
2,821 (74.6) 
2,632 (78.1) 
1,656 (88.0) 
765 (94.3) 

< 0.001 

Education 
    < HS 
    HS Grad/GED 
    Some College 
    College grad or higher 

 
762 (20.6) 

1,814 (21.3) 
2,013 (20.7) 
681 (11.3) 

 
2,932 (79.4) 
6,704 (78.7) 
7,692 (79.3) 
5,335 (88.7) 

< 0.001 
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Individuals with household incomes of $50,000 and higher comprised nearly half 

of non-tobacco users (46.6%). Participants in the lowest income category (less than 

$10,000) represented 22.7% of all tobacco users. The second highest income group 

(those making between $50,000 and $99,999; Table 5.3) had the lowest frequency of 

tobacco use. Receipt of coupons, either for ECIG or CIG products, was well spread out 

with nearly equal distributions among the four lowest income categories. Individuals in 

the highest income category reported the lowest prevalence of coupon receipt (Table 

5.3). 

 
Table 5.3. Distribution of Tobacco Use and Coupon Receipt by Income Category 
 Less than 

$10,000 
$10,000-
$24,999 

$25,000-
$49,999 

$50,000-
$99,999 

 $100,000  
or more 

Variable N % N % N % N % N % 
Tobacco Use           
   Non-Use 1,734 13.0 2,365 17.8 3,016 22.6 3,474 26.1 2,737 20.5 
   CIG-Exclusive  1,874 24.4 2,068 27.0 1,717 22.4 1,392 18.2 617 8.1 
   ECIG-Exclusive  192 24.4 265 21.2 299 23.9 287 22.9 209 16.7 
   Dual Use 834 21.8 988 25.8 943 24.6 713 18.6 354 9.2 
Coupon Receipt           
   ECIG  144 13.9 224 21.6 260 25.1 258 24.9 151 14.6 
   CIG  1,012 21.6 1,231 26.3 1,202 25.7 911 19.5 325 6.9 

 

Modeling Results 

CIG-Exclusive Use. Relative to non-tobacco users, income was significantly 

associated with CIG-exclusive use across all income levels after adjusting for 

covariates. Lower levels of household income were more strongly associated with past 

12-month CIG use, with decreasing but still significant ORs for higher income levels 

relative to those making more than $100,000 (aOR<10k = 4.01, 95% CI = 3.38-4.76; 

aOR50-99k = 1.43, 95% CI = 1.24-1.65; Table 5.4). for addition to this significant 

association, CIG coupon receipt was associated with a roughly 25% decrease in the 
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odds of CIG use (aORCoupons = 0.74 95% CI = 0.59-0.92; Table 5.4). The association 

between income and CIG use also remained significant after also estimating the effect 

of ECIG coupon receipt (OR= 5.69, 95% CI = 5.08-6.38; Table 5.4). Lower levels of 

income were more strongly associated with past 12-month CIG use, and attenuated but 

still significant increases in the odds as the income level rose (aOR<10k = 3.60, 95% CI = 

3.02-4.29; aOR50-99k = 1.30, 95% CI = 1.12-1.51; aORECIGCoupons = 5.69, 95% CI = 5.08-

6.38; Table 5.4)  

ECIG-Exclusive Use. Relative to non-tobacco users, income was not significantly 

associated with ECIG-exclusive use across all income levels (Table 5.4).  This 

association remained non-significant after adjusting for covariates and ECIG coupon 

receipt. However, there was a statistically significant association between CIG coupon 

receipt and ECIG-exclusive past 12-month use (aORCoupons = 2.32, 95% CI = 1.74-3.10; 

Table 5.4). Likewise, there was no significant association between income and ECIG 

use after accounting for covariates and ECIG coupon receipt, though there was a 

significant association between ECIG past 12-month use and ECIG coupons 

(aORECIGCoupons = 1.40, 95% CI = 1.05-1.88; Table 5.4). 

Dual Use. Relative to non-tobacco users, income was significantly associated 

with dual use across all income levels after adjusting for covariates. Similar to CIG use, 

the magnitude of the association was the highest as the lowest income level and 

attenuated, but remained significant, as the income level increased (aOR<10k = 3.65, 

95% CI = 2.97-4.48; aOR50-99k = 1.51, 95% CI = 1.23-1.86; Table 5.4). This association 

remained significant after adjusting for CIG coupon (OR = 2.62, 95% CI = 2.10-3.28; 

Table 5.4) or ECIG coupon receipt (OR =7.61, 95% CI = 6.75-8.58; Table 5.4). 



 167 

Table 5.4. Parameter Estimates for Association between income and Past 12-Month 
Tobacco Use by ECIG and CIG Coupon Receipt 
 CIG User 

aOR (95% CI) 
ECIG User 

aOR (95% CI) 
Dual User 

aOR (95% CI) 
CIG Coupon Receipt 

Income  
   > $100,000 
   < $10,000 
   $10,000-$24,999 
   $25,000-$49,999 
   $50,000-$99,999 

 
Reference 

4.01 (3.38-4.76) 
3.02 (2.57-3.53) 
2.00 (1.70-2.26) 
1.43 (1.24-1.65) 

 
Reference 

1.00 (0.73-1.26) 
1.10 0.82-1.47) 
1.03 (0.77-1.37) 
0.88 (0.68-1.15) 

 
Reference 

3.65 (2.97-4.48) 
3.13 (2.61-3.75) 
2.34 (1.95-2.82) 
1.51 (1.23-1.86) 

Coupon Receipt 
   No 
   Yes 

 
Reference 

0.74 (0.59-0.92) 

 
Reference 

2.32 (1.74-3.10) 

 
Reference 

2.62 (2.10-3.28) 
ECIG Coupon Receipt 

Income  
   > $100,000 
   < $10,000 
   $10,000-$24,999 
   $25,000-$49,999 
   $50,000-$99,999 

 
Reference 

3.60 (3.02-4.29) 
2.73 (2.33-3.21) 
1.77 (1.53-2.05) 
1.30 (1.12-1.51) 

 
Reference 

0.98 (0.72-1.33) 
1.10 (0.82-1.47) 
1.02 (0.77-1.36) 
0.88 (0.68-1.15) 

 
Reference 

3.23 (2.62-3.99) 
2.77 (2.29-3.34) 
2.07 (1.71-2.51) 
1.34 (1.08-1.67) 

Coupon Receipt 
    No 
    Yes 

 
Reference 

5.69 (5.08-6.38) 

 
Reference 

1.40 (1.05-1.88) 

 
Reference 

7.61 (6.75-8.58) 
Note. The outcome reference group is Non-User; all estimates adjusted for age, race, gender, 
education level, and complex survey design; bolded values indicate p < 0.05 

 

Moderation. No statistically significant moderation of CIG coupon receipt was 

detected for associations between income and any tobacco product (F(12, 100) = 1.73, 

p > 0.05). However, there was evidence of moderation by ECIG coupon receipt on the 

relationship between income and CIG use (F(12,100) = 2.73, p < 0.001). Stratified 

analyses revealed a weak statistically significant relationship (aOR = 2.51, 95% CI = 

1.50-4.16) for those who smoked CIG and received ECIG coupons for participants 

making between $50,000 and $99,999 (Table 5.5).  
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Table 5.5. Parameter Estimates of Past 12-Month CIG Use by ECIG Coupon Receipt Stratified 
by Income Level 
 < $10,000 $10,00-$24,999 $25,000-

$49,999 
$50,000-
$99,999 

> $100,000 

 b (SE) 
aOR (95% CI) 

b (SE) 
aOR (95% CI) 

b (SE) 
aOR (95% CI) 

b (SE) 
aOR (95% CI) 

b (SE) 
aOR (95% CI) 

Receipt 
   No 
   Yes 

 
Reference 

-0.11 (0.34) 
0.89 (0.46-1.75) 

 
Reference 
0.38 (0.27) 

1.46 (0.85-2.50) 

 
Reference 
0.05 (0.23) 

1.05 (0.67-1.65) 

 
Reference 
0.91 (0.26) 

2.51 (1.50-4.16) 

 
Reference 
0.18 (0.26) 

1.19 (0.71-2.00) 
Note. The outcome reference group is Non-User; all estimates adjusted for age, race, gender, 
education level, and complex survey design; bolded values indicate p < 0.05 

 

 

 

Figure 5.2. Proportion of CIG-Exclusive Users by Income Level and ECIG Coupon 
Receipt. 
 

DISCUSSION 

This study evaluated whether receipt of product-specific coupons influences the 

association between tobacco use and income in a nationally-representative sample. 

The results from this study indicate that the patterns of association between income and 

tobacco use vary across products. Further, receipt of coupons was independently 
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associated with tobacco use, with receipt of ECIG coupons associated with a reduction 

in the odds of CIG and dual use. 

The prevalence of CIG-exclusive use in this sample (17.5%) was similar to that of other 

studies (approximately 14%) 330. Additionally, the estimated prevalence of ECIG 

exclusive use in Wave 3 PATH was 2.6%, which was similar to those previously 

reported in other nationally representative samples (1.3% in 2014-2016 NHIS; 4.5% 

2016 BRFSS) 52,326. There was also a higher prevalence of dual use (7%) compared to 

previous reports (2.7% from Friedman & Horn, 2019), but similar to other nationally 

representative samples (7.0% 2016 BRFSS; 52). The difference in the prevalence of 

ECIG-exclusive use and dual use may be due to the more recent collection for Wave 3 

of PATH (2016-2017) compared to previous analyses (National Health Information 

Survey 2014-2016; Friedman & Horn, 2019) as ECIG-exclusive use has become more 

common over time in adults 18-25 113. Further, ECIG use among existing CIG users 

(dual use) has also been increasing 331.  

 

Associations between Income and CIG-Exclusive Use and Dual Use  

Participants with incomes of less than $10,000 were at greater odds of past 12-month 

CIG use compared to individuals making more than $100,000. as income increased the 

magnitude of the association was reduced. These results are similar to previous studies 

of income and tobacco use 61,113. Tobacco is thusly used disproportionately by 

individuals with fewer means to indulge. One method promoted for reducing tobacco 

use is via raising taxes 332,333. Therefore, monetary restrictions (e.g., raising taxes) may 

disproportionately affect more individuals of lower income.  
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Participants making less than $100,000 per year had a greater odds of past 12-

month dual use of ECIG and CIG, compared to participants making more than $100,000 

per year. These results are similar to the pattern previously reported for CIG-exclusive 

use 61,326. This pattern of association may be due to individuals adding ECIG use to their 

existing CIG use 334. As CIG users experiment with ECIGs, it is likely that their patterns 

of tobacco use should most resemble CIG-exclusive users because they likely continue 

to engage in CIG use.  

 There was no significant association between ECIG-exclusive use and income, 

as has been reported in other studies 326. ECIG use is generally perceived as a 

“healthier alternative” to CIG use 335.  Prior literature has also reported individuals with 

lower income are less likely to engage in positive health behaviors (e.g., smoking 

cessation) compared to individuals with higher income 336–338. ECIGs have been 

marketed products to reduce harmful exposure to the carcinogens in CIG 339 although it 

is unclear whether these products have been successful for this purpose. Nevertheless, 

many CIG users perceive ECIG to be safer than CIG 340. Therefore, among CIG users, 

ECIG use may be considered a positive health behavior. However, it is possible that 

lower income smokers do not use ECIGs as harm reduction tools because this belief 

does not offset the initial higher price of ECIGs. Preferably, individuals would choose 

not to use tobacco at all; however, using a less harmful product may result in the 

reduction of lost time and money due to illness attributable to tobacco use. This study 

provides some initial evidence that reducing the price point of ECIGs via coupons is 

associated with greater use of ECIGs. 
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Receipt of Coupons Associated with Varying Patterns Nicotine Use  

Receipt of CIG coupons was associated with greater odds of ECIG-exclusive and dual 

use; however, receipt of CIG coupons was associated with a 26% reduction in the odds 

of CIG-exclusive use (Table 3). It is possible that providing consumers with coupons 

means providing them with coupons for all products, including ECIGs, from the 

manufacturer. In this sample, 62% of participants who received CIG coupons also 

received ECIG coupons. Thus, individuals may be encouraged to switch to dual or 

ECIG-exclusive use through the receipt of coupons in manufacturer packs rather than 

for a specific product. Further research should continue to examine how coupons are 

received and utilized by consumers.  

 Receipt of ECIG coupons was associated with greater odds of all forms of 

tobacco use: ECIG-exclusive use, CIG-exclusive, and dual use. Previous research has 

reported that individuals who receive coupons from tobacco companies are more likely 

to report that tobacco companies care about their health and try to make cigarettes as 

safe as possible 341.  Exposure to tobacco marketing materials and coupon receipt has 

been associated with an increased willingness of an individual to try ECIGs or CIGs 342, 

thus increasing the odds of initiation of these tobacco delivery systems. Despite this, the 

prevalence of CIG use is decreasing 343 while ECIG use is increasing 344. Further 

analysis should focus on how coupon receipt influences transitions from product-

exclusive use to dual use, though the long-term health benefits or risks of ECIGs have 

yet to be detailed 345.   

The receipt of ECIG coupons was showing an association with greater odds of all 

tobacco use, additional models were tested to investigate whether ECIG coupons 



 172 

moderated the relationship between income and tobacco use. Significant statistical 

evidence of a weak interaction between income and ECIG coupons was detected. 

Further investigation showed that the moderating effect was driven by individuals 

making $50,000-$99,999 such that receipt of ECIG coupons was associated with a 

decrease in CIG use. Participants at lower incomes may have transitioned into a higher 

income category, but remained in the opt-in group for coupons (i.e., they continued to 

receive coupons). Individuals may also transition from user to non-user as they move 

into different income groups, thus rendering a negative effect of coupon receipt. Future 

studies should examine how transitioning between income groups impacts tobacco use.  

Previous research has reported on the possibility that receipt of coupons may 

contribute to the disparity in smoking by socioeconomic status. Other studies have 

shown that tobacco companies use direct marketing to target individuals, specifically 

women of low SES 329,346. Tobacco companies have used strategies such as coupons to 

market their products for over 40 years. More recent research has shown that coupon 

saving is considerably high among adolescents and young adults, creating another 

barrier to smoking cessation for these populations 347. Though these analyses do not 

allow for any conclusions to be drawn about the potential for targeting individuals with 

low income, future research should examine possible disparities in the receipt of ECIG 

coupons and determine if ECIG couponing resembles traditional CIG couponing.  

 

Limitations 

One major limitation of this study is the inability to distinguish who redeemed and 

who simply received coupons or promotional items. Previously reported research has 
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demonstrated that individuals who receive coupons are different from those who do not 

348. Coupon receivers tend to be white, middle aged (25-44), sexual minority females 

with higher levels of nicotine dependence 348. Couponing, in the United States, is limited 

to an “opt-in” situation whereby individuals must agree to receive coupons which may 

indicate significant differences between those who do and do not receive coupons346,349. 

Future studies should continue to examine those individuals who receive coupons and 

how these coupons (particularly those for ECs) may influence tobacco use, especially in 

terms of tobacco use maintenance, tobacco product switching, and tobacco use 

cessation. Studies should also focus on the receipt of promotional material that takes 

place where individuals do not need to opt-in. These places may be bars, restaurants, 

or other private spaces where brand ambassadors are distributing promotional materials 

(e.g., t-shirts, keychains), samples, or coupons.  

These analyses were conducted cross-sectionally, using only wave 3 of PATH. 

Future studies should probe how coupons influence transitions from product-specific 

use to dual use or vice versa. The moderation analysis is likely underpowered to detect 

a significant statistical interaction due to the small sample size since only 3.4% of the 

sample had received ECIG coupons 350. As receipt of coupons becomes more common, 

it may be the case that larger sample sizes will be available to replicate and confirm this 

preliminary finding. There is also a causal assumption in moderation analysis such that 

the exposure of interest causes the outcome of interest (pathway a in Figure 5.1); future 

research should expand on these findings by modeling moderation in a longitudinal 

analysis. Finally, future studies should continue to study the possible moderation by 
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using more refined exposure group assignments, such as detailing if the participants 

actually used the coupons or merely received them.  

 

Strengths 

This study also has several strengths along with the above limitations. First, this study 

used data from a nationally representative sample of non-institutionalized individuals 

living in the United States. Appropriate statistical modeling allowed for all individuals 

who completed the questions regarding income, couponing, and tobacco use to be 

included while also accounting for the complex sampling design of PATH. Therefore, 

the results from the current study is more generalizable to broader population. 

Secondly, we used a multinomial logistic regression approach which allowed the 

outcome groups to be separated by using patterns to avoid misclassification and bias of 

model estimates. The use of multinomial logistic regression allowed for the groups of 

users to be modeled simultaneously and allowed for more accurate estimates of current 

(past 12-month) CIG-exclusive, ECIG-exclusive, and dual use prevalence in the United 

States. Lastly, these analyses accounted for the product-specific couponing and 

produced interesting results: ECIG coupons had a competing effect on the past 12-

month CIG-exclusive use, and may represent an opportunity for individuals to 

experiment with ECIGs and possible switch products. Future studies need to account 

for the product being advertised and not just general advertisements or coupons and 

better understand the influence of the coupons on the potential switching between CIG-

exclusive and ECIG or dual use. 
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 Measuring income on an ordinal scale is an additional strength that builds upon 

previous research. Utilizing the PATH derived income variable allows for a more 

nuanced view of income rather than the more common use of a percentage of the 

federal poverty level (FPL). Previous research around income and tobacco use has 

focused on FPL as the level of measurement for income 113,326,351. By focusing on the 

level of income (e.g., less than $10,000 versus greater than $100,000) rather than the 

percentage of FPL, a clearer picture of the association between income and tobacco 

use emerges. Regardless of the level of measurement for income, the same pattern is 

clear: lower levels of income are associated with greater odds of tobacco use relative to 

individuals with higher income. Specifically, relative to the highest income group, each 

income group shows an association with tobacco use suggesting that no income group 

is being targeted for tobacco use though this targeting may be present in targeting of 

communities rather than individuals 352. Further research should continue to resolve the 

association between income and tobacco use by measuring income as a continuous 

measure as well as modeling individual income within the context of the larger 

neighborhood environment.  

 

Public Health Implications 

Since the Tobacco Master Settlement Agreement of 1998, tobacco companies have 

reduced, or ceased, their public advertising practices; however, direct mail marketing 

remains a primary means for tobacco companies to communicate with their consumers 

353. Previous research has shown individuals who receive coupons for tobacco products 

are less likely to successfully cease tobacco use 325 as well as increase the odds of 
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progression of smoking to regular or daily smoking from experimental use 354. These 

results may suggest that advertising of ECIGs may result in fewer individuals using 

CIGs exclusively and might foster switching to dual use. For those who are considering 

ECIG use as a harm reduction tool to CIG use 355, exposure to advertising may offer an 

opportunity to engage in ECIG use. However, effort should continue to be expended on 

promoting the notion that there is no safe tobacco product when compared to no 

product use.  
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CHAPTER 6: DISCUSSION 

 

This chapter summarizes and synthesizes the results from the research previously 

detailed in Chapters 2 through 5. It is divided into two sections that address the major 

knowledge gaps of this dissertation as identified in Chapter 1 (Introduction). The first 

knowledge gap set out to quantify the relative degree to which genetic and 

environmental influences impact ECIG lifetime initiation and to what degree are those 

factors shared with CIG initiation. While there was statistical evidence of genetic overlap 

there was no detection of genome-wide significant molecular genetic effect in the 

GWAS. The second knowledge gap was addressed by examining specific genetic and 

environmental factors associated with CIG and ECIG initiation. Specific genes and 

biological pathways were found to associated with several CIG phenotypes. Income (a 

specific environmental influence) was associated with CIG and dual use, but not ECIG-

exclusive use, suggesting dual users represent a distinct class of tobacco user. 

  

Knowledge Gap 1 Results: Preliminary Evidence of Genetic and Environmental Overlap 

for CIG and ECIG Initiation  

This dissertation estimated the degree to which there were overlapping genetic and 

environmental factors shared between CIG and ECIG initiation. Chapter 2 used a twin 

study of adolescents and young adults and detected significant overlap in additive 

genetic (rg = 0.76, p = 1), shared environmental influences (rc = 0.68, p = 0.32), and 

unique environmental influences (rE = 0.87, p = 0.01) between CIG and ECIGs. While 

these estimates were non-significant, dropping these parameters resulted in worse 
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model fit, suggesting that these parameters cannot be excluded in bivariate models of 

ECIG and CIG initiation. Chapter 4 extended twin study results by examining genetic 

overlap using a genome-wide polygenic score (GPS) for CIG initiation to determine 

whether there was significant genetic overlap in measured genetic variants with ECIG 

initiation. Analyses did not identify any significant specific genetic variants that 

contributed to both phenotypes. However, power analyses showed this study did not 

have adequate power to detect genetic effects. Nevertheless, prior studies have 

reported significant association between a GPS for CIG use and ECIG initiation in a 

sample of young adults (age = 24) from the UK. Additional studies have reported 

significant associations with GPS for other CIG use behaviors (e.g., regular cigarette 

use) and ECIG initiation 58,124,225. Therefore, additional research is needed in 

appropriate samples to probe the overlapping genetic influences of CIG and ECIG 

initiation. Additionally, these studies reported prevalence rates of ECIG initiation similar 

to those identified in Genes for Good (Genes for Good = 30.0%, other samples = 4.7%, 

Netherlands Twin Registry – 37.3%, S4S-EUR). Further study is recommended in 

significantly larger samples (N~ 300,000) with appropriate power to verify the genetic 

effects that are shared between ECIG and CIG initiation 356.  
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Translating Results from Knowledge Gap 1 for Public Health: Advancing Future Public 

Health Strategies to Influence ECIG Initiation by Characterizing Genetic and 

Environmental Overlap with CIG Initiation 

 

Results addressing Knowledge Gap 1 suggest that factors influencing CIG initiation may 

also impact ECIG initiation. Consequently, it is possible that previous smoking 

prevention efforts may also impact ECIG use. For example, previous research has 

shown an association between peer group attitudes and CIG and ECIG use67,357. Peers 

have previously been targeted by public health prevention efforts for CIG use 358–360. 

These strategies may be modified to target ECIG use rather than CIG. Therefore, 

exploring the degree to which strategies that limit CIG initiation may also limit ECIG 

initiation because similar genetic and environmental influences impact ECIG initiation as 

CIG.  

 

Knowledge Gap 2 Results: Income and Coupon Receipt 

Chapter 5 assessed the association between a specific environmental factor 

(income) on CIG and ECIG use. These results reflected other published results of 

income and CIG or ECIG use 46. Specifically, those with lower income had greater odds 

of CIG use. However, there was no significant association with ECIG use. Additionally, 

moderation was tested to determine if the receipt of coupons influenced the association 

between income and tobacco use. There was a statistically weak, but significant, 

interaction between ECIG coupons and income and the odds of past 12-month CIG use; 

receiving ECIG coupons led to a two and half time increase in the odds of using CIGs in 
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the past 12 months. However, the sample size was quite small which necessitates 

further research into this possible association with larger samples 350.  

 

Translating Income and Moderation of Coupon Results for Public Health. 

Coupon receipt was associated with greater odds of all forms of tobacco use 

(product-exclusive and dual use). Cross-product coupon receipt was associated with an 

increase in the odds of being a user of the other product (CIG users who received ECIG 

coupons OR = 5.69, 95% CI = 5.08-6.38; ECIG users who received CIG coupons OR = 

2.32, 95% CI = 1.74-3.10). Individuals who received ECIG coupons were more likely to 

use CIGs as well as ECIGs. This could be due to several reasons. First, tobacco 

coupon receipt is an opt-in scenario in the United States. People must willingly sign up 

to receive coupons and marketing materials from tobacco companies. Second, coupon 

receipt of any tobacco product may prime an individual to use tobacco regardless of the 

delivery form 361,362. This priming effect has been established for CIG use and is used in 

state-sponsored counter programming to tobacco marketing initiatives 363. Further 

research is needed to understand coupon receipt (i.e., what makes individuals opt-in to 

coupons), if individuals are being target, and the effect coupon receipt has on switching 

from a product exclusive users to a dual user. 

The trend of coupon receipt increasing the odds of tobacco use did not hold true 

for receipt of CIG coupons and past 12-month CIG use. Receipt of CIG coupons was 

associated with a roughly 25% reduction in the odds of past 12-month CIG-exclusive 

use (OR = 0.74, 95% CI = 0.59-0.92). All other coupon receipt was associated with 

increased odds of tobacco use (Chapter 5, Table 5.4). It is possible that individuals are 
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being pushed from CIG-exclusive use to dual use as receipt of CIG coupons was 

associated with a more than two and half fold increase in the odds of dual use. This 

may happen as consumers are given coupons for all products for a particular 

manufacturer when they agree to receive marketing (i.e., signing up for Marlboro 

marketing may also expose the consumer to marketing for JUUL and IQOS, as all are 

manufactured by Philip Morris). Further research is needed to understand how 

individuals are receiving and using coupons from tobacco companies.  

 

Translation for Public Health 

Public health professionals are interested in preventing the morbidity and 

premature mortality associated with tobacco use. Detailing this specific environment 

(knowledge gap 2) has led to two innovations, one for prevention and one for research, 

that may be utilized by public health professionals. First, individuals who receive 

coupons may be priming themselves for additional tobacco use 361,362. Prevention efforts 

could focus on negating this priming effect by including material for smoking cessation 

along with the marketing material. Second, smoking cessation studies should consider 

how individuals transition from ECIG-exclusive user to non-user and the similarities this 

trajectory may have with CIG use. Additional research should also consider how dual 

users move toward smoking cessation: how can individuals quickly cease use of both 

products? Perhaps it is easier to cease use of one product compared to the other, which 

would inform future cessation efforts as to which product to focus on first. Further 

research is needed to understand the dynamics of CIG and ECIG use. 
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Knowledge Gap 2 Results: Genome-Wide Association Study 

 Chapter 4 used GWAS to determine whether there were specific genetic variants 

that were associated with ECIGs. No GWAS results reached genome-wide significance, 

but there were several variants that were genome-wide suggestive. Further, one SNP in 

these suggestive results was in a biologically plausible pathway linked to respiratory 

disease. Therefore, further investigation of this variant is encouraged in samples that 

are adequately powered to detect genetic effects. Additionally, as the prevalence of 

ECIG use is low, oversampling for ECIG-exclusive users is encouraged to further 

investigate. Similar to other published GWAS of CIG initiation (see Chapter 3 for further 

detail), there were no genome-wide significant associations detected in this small 

sample.  

 

Translating Genetic Association Results for Public Health. 

A suggestive SNP in DPP10 was reported from the univariate GWAS. This gene 

should be marked for further investigation with ECIG use. This gene has previously 

been associated with asthma, a respiratory disease364–366. EVALI (ECIG or Vaping 

Associated Lung Injury) has become a health concern for individuals using ECIGs298. 

This gene may contribute to EVALI as DPP10 is already active within the respiratory 

system. Further research with adequately powered samples is encouraged, especially 

as EVALI prevalence increases and the rate of initiation of ECIGs continues to increase. 

These results suggest that novel methods of aggregating GWAS results may 

lead to more actionable findings (Chapter 3). GWAS was aggregated by biological 

function via DAVID in this dissertation. This aggregation show consistency among 
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GWAS results that were otherwise somewhat inconsistent. Aggregating in this fashion 

provides biological insights which may lead to novel treatment development for nicotine 

use.  

 

Additional Results and Lessons for Future Research and Public Health 

The following sections summarize additional insights that were established from 

this work to advance genetic epidemiological research of ECIGs and tobacco more 

broadly: 1) inconsistent GWAS results may be due, in part to inconsistent measurement 

of tobacco use phenotypes and, 2) modeling of tobacco use must consider how dual 

users impact the results so as to not report biased estimates of effect. 

 

Inconsistent Genetic Epidemiological Studies of CIG Use Encourages Careful 

Measurement of ECIG Use for Similar Study Designs.  

Chapter 3 demonstrated how measures that operationalize a conceptual variable 

for tobacco use may lead to different results. For example, an adult sample (18 and 

older) using DSM symptom count reported a significant association with AP2A2 for ND 

194. In contrast, another adult sample (18 and older) using the FTCD identified an 

association between ND and a different gene, CHRNB3206. These results show that the 

measure may influence the results even though both of these studies were mostly likely 

underpowered. These results encourage thoughtful consideration of the measures 

needed to study a phenotype of interest in the study design phase.  In addition, using 

more than one measure for a particularly important phenotype may be necessary for 

future study aggregation for meta-analysis or for comparisons against other published 
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results. While measurement may not address all limitation of GWAS, this is an important 

facet that is correctable.  

Future studies of ECIG use should pay attention to the lessons learned from 

genetic epidemiological studies of CIG use, particularly as measurement of ECIG use is 

under active development. For instance, a standardized definition of ECIG initiation is 

strongly encouraged. Individuals may be misclassified as never users if they are 

required to meet a threshold (e.g., owning a vape, or using one container of e-liquid). 

Chapter 3 discusses how the inconsistency of results are due, in part, to differing 

definitions of smoking initiation. For example, DLC1 was significantly associated with SI 

when asking individuals to classify themselves as ever versus never smoker 144.  

However, when smoking initiation was defined as smoking more than 100 cigarettes in 

one’s lifetime, this gene was not associated with SI164. ECIG researchers are advised to 

not repeat these mistakes to increase the consistency of results. Several measures 

have been developed to measure ECIG-related nicotine dependence including the Penn 

State Electronic Cigarette Dependence Index (PS-ECDI) and the e-cigarette Wisconsin 

Inventory of Smoking Dependence Motives (e-WISDM) among others 367. As multiple 

instruments are developed in parallel, there is risk of future inconsistencies for 

genetically-informed ECIG research. It is impossible to stop the development of multiple 

measures of ECIG use especially as this area of study is in its infancy. Given this 

reality, future studies may need to consider the progression of genetic epidemiology 

studies of CIG use and the related inconsistency of results. Further, researchers must 

pay careful attention to the operationalization of their variables and ensure they are 

captured the conceptualized variable adequately if multiple measures are developed.   
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Measurement, as detailed in Chapter 3, is a key component that requires more 

thorough thought in the study design phase. Moving forward, it would be best to 

standardize operational measures of conceptual tobacco behaviors, especially as it 

applies to ECIG use. ECIGs represent a novel tobacco product that appears to share 

similar genetic and environmental influences with CIG use. Therefore, ECIG 

researchers should take heed of the lessons learned from years of CIG research and 

agree to common items that could be used to assess various facets of ECIG use. There 

are currently fewer measures of ND arising from ECIG use 368 compared to ND from 

CIG use. Reducing these measures to a single instrument may be advantageous in 

future studies of ECIG use, particularly in genetic epidemiology. Which measure 

researchers choose to assess ND arising from ECIGs with may lead to inconsistent 

results. 

Environmental factors, like genetic factors, have been consistently identified with 

tobacco use. For instance, having peers who use CIG increases the likelihood that one 

will use CIGs themselves 357. Similarly, policies impact the expression of nicotine 

dependence. The proliferation and ease of access to pharmacological treatments (e.g., 

the patch, nicotine gum) have led to a decrease in nicotine dependence, though 

additional avenues should also be examined 369. These environmental factors present 

ways for modifying the risk of tobacco use in a low-risk, high-reward fashion (i.e., 

Changing a policy or ensuring one’s child is not associating with those who use could 

drastically reduce tobacco use). However, the measures of nicotine use may be slightly 

different, compared to genetic research, as environmental studies may have the time 

and ability to dig further into tobacco use. Though beyond the scope of this dissertation, 
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additional time and consideration should be placed into the measurement of 

environments during the study design phase. Measurement of environmental influences 

is also an important step in genetically informed studies, although beyond the scope of 

this paper. Environmental measures should also be given as much attention as how the 

outcome and genetics are measured. 

 

The Importance of Modeling Tobacco Use Carefully  

Chapter 5 showed how dual users are phenotypically similar to CIG-exclusive 

users as it pertains to income level and tobacco use. Specifically, the magnitude of 

associations between of income and CIG-exclusive use (OR<10k = 4.01, 95% CI= 3.38-

4.76) was similar that of dual users (OR<10k = 3.65, 95% CI = 2.97-4.48). Generally, 

lower income levels were significantly associated with higher odds of dual and CIG-

exclusive use compared to individuals making $100,000 or more per year. In contrast, 

no statistically significant association between ECIG-exclusive use and income and use 

was detected (OR<10k = 1.00, 95% CI =0.73-1.26). These results suggest CIG users that 

dual users are adding ECIG use to their existing behaviors. The patterns of association 

with income differed by class of CIG/ECIG user: 1) Non-users, 2) CIG-exclusive users, 

3) ECIG-exclusive users, and 4) dual users. These results agree with previously 

published results of CIG and ECIG use and income. Further, ECIG use was not 

associated with income 46. Therefore, it is important to include dual use as a category of 

tobacco user as the pattern of association changes between tobacco use categories. 

Examining CIG or ECIG use needs to include cross product use in the statistical 

analysis due to exposure to nicotine via two avenues, which may be used in concert. 
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This is of particular concern over other tobacco forms due to the high prevalence of dual 

use among CIG and ECIG users. Dual use was estimated to be 7.5% (weighted) in 

chapter 5. Therefore, there are many users who engage in both product use. Use of 

other tobacco products should be used as a covariate in any regression (i.e., ECIG use 

should be a covariate for models of CIG use) to account for dual use. Multinomial 

regression should be preferred whenever possible. 

  

Recommendations for Future Work 

 Future studies should continue to explore the genetic overlap between CIG and 

ECIG use. While no statistically significant genetic overlap was detected between CIG 

and ECIG initiation using GPS in Chapter 4, there is still a suggestion of genetic effects 

for both CIG and ECIG use using a twin study in Chapter 2. However, there remains 

inconsistencies when comparing measured genetic effects to estimates of heritability 

from twin studies. This may be due to two reasons. First, the parameter estimates of the 

magnitude of associations generated from GWAS may be biased. This would lead to 

differences in estimates of heritability from GWAS compared to those generated from 

twin studies. In general, these molecular genetic estimates are well short of the 

heritability estimated by twin studies 370. There are several reasons as to why this 

occurs. It may be that the genetic liability is not inherited in an additive fashion but may 

be the result of non-additive genetic effects (e.g., epistasis or gene-environment 

interaction). Further, epigenetic processes (the influence of environmental factors that 

do not involve actual alterations in the DNA, but are involved with differential expression 

of the genes) rather than genetic effects may influence the heritability of certain 
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phenotypes 371.  Second, heterogeneity in outcome measurement may lead to 

inconsistent results across GWAS. Further, this would lead to an inability to replicate 

GWAS results. It is also possible that the traits are misclassified (i.e., labeling one an 

ECIG user, when they are actually a dual user) leading to measurement error which 

would produce inconsistent results 372,373. Tobacco use is more complex and difficult to 

assess than other clinical phenotypes that have reported many significant GWAS 

results (e.g., height). Height is a phenotype that is unmistakable (i.e., height can be 

accurately ascertained) and unable to be hidden. Tobacco use is more covert compared 

to height, relies on self-report, and is subject to social desirability bias. Therefore, it may 

be more difficult to detect and measure though both phenotypes are polygenic and 

complex 374. 

 

Final Conclusions of Dissertation 

There were three conclusions that could be applied to future genetic epidemiologic 

studies of ECIG initiation and use. First, latent genetic effects were established through 

a twin study. While this study was small, the results suggest that there are significant 

genetic influences on ECIG initiation. Therefore, genetic association studies should 

continue to be investigated for its association with ECIG initiation and use. A second 

study probed molecular measured genetic effects that were both unique to ECIG and 

shared with CIG initiation. While this study did not report significant effects, there was a 

genome-wide suggestive association that was detected in univariate analysis of ECIG. 

This SNP resides in a gene with biological plausibility related to nicotine function which 

should be investigated further. These two study designs provided convergent evidence 
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that genetic influences are important for ECIG initiation. More research is required to 

understand the precise nature of these genetic effects. ECIGs expose individuals to 

nicotine creating the possibility of nicotine dependence arising in ECIG users. Nicotine 

has been linked to many negative health outcomes 375. ECIG use is growing in 

popularity 281,376. Therefore, understanding how individuals initiate use may help 

prevention efforts for ECIGs, stopping the possible exposure to nicotine and possible 

development of nicotine dependence.  

 This dissertation also showed consistency in GWAS results. A DAVID analysis of 

results from a scoping review of the literature provided consistency of results. These 

consistencies arose from gene- and biological pathway levels rather than SNPs. The 

results suggest that aggregating GWAS results would result in more replication of 

results (i.e., rather than replicating SNPs, replicating genes or biological pathways). 

Aggregating genetic effects in this manner may guide future research target specific 

genes and pathways which will lead to creating understanding of the biological and 

potential prevention and cessation targets.  

 This dissertation also probed an environmental influence in addition to genetic 

effects. These results suggest that modeling of CIG and ECIG use needs to account for 

cross-product use. Future studies of CIG and ECIG also need to account for this dual 

use, otherwise the study results will be biased. 

 Therefore, although these results are limited by the sample sizes and prevalence 

of ECIG initiation, they provide preliminary evidence that genetic influences are 

associated with ECIG use. Further, specific environmental influences may not impact 

ECIG users in the same manner as CIG users. Further genetic epidemiologic 
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investigation is warranted and encouraged from these results. However, future results 

should attempt to aggregate genetic effects with plausible biological pathways. These 

results also encourage additional study of ECIG use to increase the health and wellness 

of society. ECIG use is increasing and continues to expose users to nicotine and the 

negative health effects associated with this exposure. It is possible other specific 

environments will be identified that influence CIG and ECIG use in the same manner. 

Prevention and cessation efforts built around these environments for CIG could be 

modified and applied to ECIG use.  
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APPENDIX A. Supplementary Tables for Chapter 3. 

 

Due to the large tables created from Chapter 3, supplementary tables S3.1 to S3.5 are 

available online at: 

https://osf.io/nzgf9/?view_only=23911760b4ad4188aa2e4024b5a9090c 
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STATISTICAL CODE 
 
### ANALYSIS FOR CHAPTER 2 
.#####--------------------#### 
##### Equating Sexes  Elelctronic Cigarettes ####   
#####--------------------#### 
 
#rm(list=ls()) 
 
#source('http://openmx.psyc.virginia.edu/getOpenMx.R') 
setwd('C:/Users/cliffordjs/Desktop/Research Projects/Adolescent and Young Adult Twin 
Study/6. Liz Edits') 
#rm(list = ls(all = TRUE)) 
source("C:/Users/cliffordjs/Desktop/Super wicked important R 
files/GenEpiHelperFunctions.R") 
source("C:/Users/cliffordjs/Desktop/Super wicked important R files/miFunctions.R") 
#source('http://openmx.ssri.psu.edu/getOpenMx.R') 
#omxGetNPSOL() 
 
require(MASS) 
require(OpenMx) 
require(psych) 
require(polycor) 
mxOption( NULL, "Default optimizer","CSOLNP" ) 
 
 
# Call data, NAs = NA 
 
setwd('C:/Users/cliffordjs/Desktop/Research Projects/Adolescent and Young Adult Twin 
Study/0. Raw Data') 
 
# was twindata2019.csv 
 
data2<-read.csv("TwinData4.csv", header=T,na.strings=c("9999", "NA")) 
names(data2) 
table(data2$zyg2) 
 
 
###----------------------------------------------------### 
###             UNIVARIATE FOR EC                      ### 
###----------------------------------------------------### 
 
 
# set the number of variables per twin (nv) and total variables per twin pair (ntv) for 
automation 
vars      <- c("ecigEver3")  
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#vars      <- c("cccigEver3", "ecigEver3")   #reverse order of variables to see if same 
results emerge 
nv        <- 1          # number of variables 
ntv       <- nv*2       # number of total variables 
selVars   <- paste(vars,c(rep("_T1",nv),rep("_T2",nv)),sep="")  
nth <- 1  # Number of thresholds per variable (only for binary data) 
 
# Subset the data to only the things I need 
twinDatauni  <- data2[,c(selVars,'zyg2')] 
describe(twinDatauni) 
summary(twinDatauni) 
dim(twinDatauni) 
 
#twinData2<-na.omit(twinData) 
#summary(twinData2) 
#dim(twinData2) 
twinDataBin <-twinDatauni 
dim(twinDataBin) 
table(twinDataBin$zyg2) 
 
# Factorize Ordinal Variables using the mxFactor option 
twinDataBin[,c(1,2)]  <- mxFactor(twinDataBin[,c(1,2)], levels = c(0:nth)) 
 
# 1=MZM, 2= MZF, 3=DZM, 4=DZF, 5=ODZ 
#Vars      <- c("cccigEver3")  
#nv        <- 1          # number of variables 
#ntv       <- nv*2       # number of total variables 
#selVars   <- paste(Vars,c(rep("_T1",nv),rep("_T2",nv)),sep="")  
 
# Select Data for Analysis 
mzfData    <- subset(twinDataBin, zyg2==2, selVars) 
dzfData    <- subset(twinDataBin, zyg2==4, selVars) 
mzmData    <- subset(twinDataBin, zyg2==1, selVars) 
dzmData    <- subset(twinDataBin, zyg2==3, selVars) 
dzoData    <- subset(twinDataBin, zyg2==5, selVars) #males = T1, females = T2 
 
 
polychor(mzfData$ecEver3_T1,mzfData$ecEver3_T2, std.err=T) 
polychor(mzmData$ecEver3_T1,mzmData$ecEver3_T2, std.err=T) 
polychor(dzfData$ecEver3_T1,dzfData$ecEver3_T2, std.err=T) 
polychor(dzmData$ecEver3_T1,dzmData$ecEver3_T2, std.err=T) 
polychor(dzoData$ecEver3_T1,dzoData$ecEver3_T2, std.err=T) 
 
 
# Set Starting Values / 
svLTh     <- 0.8    # start value for first threshold 
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svITh     <- 1       # start value for increments 
#svTh      <- c(0.7,1,0.7,1) 
svTh      <- matrix(rep(c(svLTh,(rep(svITh,nth-1)))),nrow=nth,ncol=ntv)     # start value 
for thresholds 
lbTh      <- matrix(rep(c(-3,(rep(0.001,nth-1))),nv),nrow=nth,ncol=ntv)     # lower bounds 
for thresholds 
 
#svTh      <- c(1,1)                    # start value for thresholds 
svPa      <- .4                        # start value for path coefficient 
svPaD     <- vech(diag(svPa,nv,nv))    # start values for diagonal of covariance matrix 
svPe      <- .8                        # start value for path coefficient for e 
svPeD     <- vech(diag(svPe,nv,nv))    # start values for diagonal of covariance matrix 
lbPa      <- .00001                     # start value for lower bounds 
lbPaD     <- diag(lbPa,nv,nv)          # lower bounds for diagonal of covariance matrix 
lbPaD[lower.tri(lbPaD)] <- -2         # lower bounds for below diagonal elements 
lbPaD[upper.tri(lbPaD)] <- NA          # lower bounds for above diagonal elements 
 
 
# Set Starting Values 
aLabs     <- paste("a",rev(nv+1-sequence(1:nv)),rep(1:nv,nv:1),sep="") 
cLabs     <- paste("c",rev(nv+1-sequence(1:nv)),rep(1:nv,nv:1),sep="") 
eLabs     <- paste("e",rev(nv+1-sequence(1:nv)),rep(1:nv,nv:1),sep="") 
var1thM     <- paste("var1M","_th",1:nth, sep="")  
var2thM     <- paste("var2M","_th",1:nth, sep="") 
var1thF     <- paste("var1F","_th",1:nth, sep="")  
var2thF     <- paste("var2F","_th",1:nth, sep="") 
 
thUB      <- 2 
 
# ------------------------------------------------------------------------------ 
# PREPARE MODEL 
 
# ACE Model 
# Create Algebra for expected Mean Matrices to include differing thresholds for males 
and females 
meanG     <- mxMatrix( type="Zero", nrow=1, ncol=ntv, name="meanG" ) 
threGm     <- mxMatrix( type="Full", nrow=1, ncol=ntv, free=TRUE, values= svTh,  
                        labels=c(var1thM,var2thM), name="threGm",lbound=-2, ubound=2 ) 
threGf     <- mxMatrix( type="Full", nrow=1, ncol=ntv, free=TRUE, values=svTh,  
                        labels=c(var1thF,var2thF), name="threGf",lbound=-2, ubound=2  ) 
threGmf     <- mxMatrix( type="Full", nrow=1, ncol=ntv, free=TRUE, values=svTh,  
                         labels=c(var1thM,var2thM,var1thF,var2thF), name="threGmf", lbound=-
2, ubound=2  ) 
# Create Matrices for Path Coefficients 
pathA     <- mxMatrix( type="Lower", nrow=nv, ncol=nv, free=TRUE, values=c(0.2), 
#replacing svPaD 



 223 

                       label=aLabs, lbound=lbPaD, name="a" )  
pathC     <- mxMatrix( type="Lower", nrow=nv, ncol=nv, free=TRUE, values=c(0.4),  
                       label=cLabs, lbound=lbPaD, name="c" ) 
pathE     <- mxMatrix( type="Lower", nrow=nv, ncol=nv, free=TRUE,  
                       values=0.4, label=eLabs, lbound=lbPaD, name="e" ) 
 
# Create Algebra for Variance Comptwonts 
covA      <- mxAlgebra( expression=a %*% t(a), name="A" ) 
covC      <- mxAlgebra( expression=c %*% t(c), name="C" )  
covE      <- mxAlgebra( expression=e %*% t(e), name="E" ) 
 
# Create Algebra for expected Variance/Covariance Matrices in MZ & DZ twins 
covP      <- mxAlgebra( expression= A+C+E, name="V" ) 
covMZ     <- mxAlgebra( expression= A+C, name="cMZ" ) 
covDZ     <- mxAlgebra( expression= 0.5%x%A+ C, name="cDZ" ) 
expCovMZ  <- mxAlgebra( expression= rbind( cbind(V, cMZ), cbind(t(cMZ), V)), 
name="expCovMZ" ) 
expCovDZ  <- mxAlgebra( expression= rbind( cbind(V, cDZ), cbind(t(cDZ), V)), 
name="expCovDZ" ) 
 
# Create Algebra for Standardization 
matI      <- mxMatrix( type="Iden", nrow=nv, ncol=nv, name="I") 
invSD     <- mxAlgebra( expression=solve(sqrt(I*V)), name="iSD") 
 
# Calculate genetic and environmental correlations 
corA      <- mxAlgebra( expression=solve(sqrt(I*A))%&%A, name ="rA" ) #cov2cor() 
corC      <- mxAlgebra( expression=solve(sqrt(I*C))%&%C, name ="rC" ) 
corE      <- mxAlgebra( expression=solve(sqrt(I*E))%&%E, name ="rE" ) 
 
## Calculate Phenotypic Correlation ## 
corP      <- mxAlgebra (expression=solve(sqrt(I*V)) %*% V %*% solve(sqrt(I*V)), 
name="rP") 
 
## Calculate Standardized Covariances ## 
stCovA    <- mxAlgebra (solve(sqrt(I*V)) %*% A %*% solve(sqrt(I*V)), name="stCovA") 
stCovC    <- mxAlgebra (solve(sqrt(I*V)) %*% C %*% solve(sqrt(I*V)), name="stCovC") 
stCovE    <- mxAlgebra (solve(sqrt(I*V)) %*% E %*% solve(sqrt(I*V)), name="stCovE") 
 
 
# Constrain Variance of Binary Variables 
matUnv    <- mxMatrix( type="Unit", nrow=nv, ncol=1, name="Unv1" ) 
var1      <- mxConstraint( expression=diag2vec(V)==Unv1, name="Var1" ) 
 
# Create Algebra for Variance Components 
rowVC     <- rep('VC',nv) 
colVC     <- rep(c('A','C','E','SA','SC','SE'),each=nv) 
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estVC     <- mxAlgebra( expression=cbind(A,C,E,A/V,C/V,E/V), name="VC", 
dimnames=list(rowVC,colVC)) 
 
# Create Confidence Interval Objects 
ciACE  <- mxCI(c("stCovA","stCovC", "stCovE"))# 
"VC[1,seq(1,3*nv,nv),(2,seq(1,3*nv,nv)),(2,seq(2,3*nv,nv)))]" ) 
 
# Data objects for Multiple Groups 
dataMZf   <- mxData( observed=mzfData, type="raw" ) 
dataDZf   <- mxData( observed=dzfData, type="raw" ) 
dataMZm   <- mxData( observed=mzmData, type="raw" ) 
dataDZm   <- mxData( observed=dzmData, type="raw" ) 
dataDZo   <- mxData( observed=dzoData, type="raw" ) 
 
# Expectation objects for Multiple Groups 
expMZf    <- mxExpectationNormal( covariance="expCovMZ", means="meanG",  
                                  dimnames=selVars, thresholds = "threGf") 
expDZf    <- mxExpectationNormal( covariance="expCovDZ", means="meanG",  
                                  dimnames=selVars, thresholds = "threGf" ) 
expMZm    <- mxExpectationNormal( covariance="expCovMZ", means="meanG",  
                                  dimnames=selVars, thresholds = "threGm" ) 
expDZm    <- mxExpectationNormal( covariance="expCovDZ", means="meanG",  
                                  dimnames=selVars, thresholds = "threGm" ) 
expDZo    <- mxExpectationNormal( covariance="expCovDZ", means="meanG",  
                                  dimnames=selVars, thresholds = "threGmf" ) 
funML     <- mxFitFunctionML() 
 
# Combine Groups 
parsZf    <- list( pathA, pathC, pathE,  
                   covA, covC, covE, covP, corA, corC, corE, corP, stCovA, stCovC, stCovE, 
                   meanG, threGf, matI, invSD, matUnv ) 
parsZm    <- list( pathA, pathC, pathE,  
                   covA, covC, covE, covP, corA, corC, corE, corP, stCovA, stCovC, stCovE, 
                   meanG, threGm, matI, invSD, matUnv ) 
parsZmf   <- list( pathA, pathC, pathE,  
                   covA, covC, covE, covP, corA, corC, corE, corP, stCovA, stCovC, stCovE, 
                   meanG, threGmf, matI, invSD, matUnv ) 
 
modelMZf  <- mxModel( parsZf, meanG, covMZ, expCovMZ, dataMZf, expMZf, funML, 
name="MZf" ) 
modelDZf  <- mxModel( parsZf, meanG, covDZ, expCovDZ, dataDZf, expDZf, funML, 
name="DZf" ) 
modelMZm  <- mxModel( parsZm, meanG, covMZ, expCovMZ, dataMZm, expMZm, 
funML, name="MZm" ) 
modelDZm  <- mxModel( parsZm, meanG, covDZ, expCovDZ, dataDZm, expDZm, 
funML, name="DZm" ) 
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modelDZo  <- mxModel( parsZmf, meanG, covDZ, expCovDZ,dataDZo, expDZo, 
funML, name="DZo" ) 
multi     <- mxFitFunctionMultigroup( c("MZf","DZf","MZm","DZm","DZo") ) 
EcUniAceModel  <- mxModel( "EcUniAce", parsZf, parsZm, parsZmf, 
                            modelMZf, modelDZf, modelMZm, modelDZm, modelDZo, multi,  
                            estVC, ciACE) 
 
EcUniAceFit <-mxRun(EcUniAceModel, intervals = F) 
EcUniAceFit <-mxTryHardOrdinal(EcUniAceFit, intervals = F) 
EcUniAceFit$algebras 
 
#tableFitStatistics(QualAceFit, EcUniAceFit) 
 
 
# Confidence Intervals 
 
EcUniAceFit2 <-mxTryHardOrdinal(EcUniAceFit, intervals = T) 
summary(EcUniAceFit2, verbose=T) 
 
   
  # Test of A 
  EcUniNoA <- EcUniAceFit2 
  EcUniNoAModel<- omxSetParameters(EcUniNoA, labels=c( "a11"), free=FALSE, 
values=0 )  
  EcUniNoAfit<- mxTryHardOrdinal(EcUniNoAModel, intervals = T) 
  tableFitStatistics(EcUniAceFit, EcUniNoAfit) 
   
 
  # Test of C 
  EcUniNoC <- EcUniAceFit2 
  EcUniNoCModel<- omxSetParameters(EcUniNoC, labels=c( "c11"), free=FALSE, 
values=0 )  
  EcUniNoCFit<- mxTryHardOrdinal(EcUniNoCModel, intervals = F) 
  tableFitStatistics(EcUniAceFit, EcUniNoCFit) 
   
  EcUniNoC2 <- EcUniNoCFit 
  EcUniNoCModel2<- omxSetParameters(EcUniNoC2, labels=c( "c11"), free=FALSE, 
values=0 )  
  EcUniNoCFit2<- mxTryHardOrdinal(EcUniNoCModel2, intervals = F) 
  tableFitStatistics(EcUniAceFit, EcUniNoCFit2) 
   
   
   
  # Test of E 
  EcUniNoE <- EcUniAceFit2 
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  EcUniNoEModel<- omxSetParameters(EcUniNoE, labels=c("a11", "c11"), 
free=FALSE, values=0 )  
  EcUniNoEModelFit<- mxTryHardOrdinal(EcUniNoEModel, intervals = F) 
  tableFitStatistics(EcUniAceFit, EcUniNoEModelFit) 
   
  ECallmodels<-list(EcUniNoAfit,EcUniNoCFit,EcUniNoEModelFit) 
  tableFitStatistics(EcUniAceFit, ECallmodels)   
 
   
   
  ###---------------------------------------------------### 
  ###             Testing model assumptions for EC      ### 
  ###---------------------------------------------------### 
   
  # set the number of variables per twin (nv) and total variables per twin pair (ntv) for 
automation 
  Vars      <- c("ecigEver3")  
  nv        <- 1          # number of variables 
  ntv       <- nv*2       # number of total variables 
  selVars   <- paste(Vars,c(rep("_T1",nv),rep("_T2",nv)),sep="")  
  nth <- 1  # Number of thresholds per variable (only for ordinal data) 
   
   
  mzData_1 <- subset(twinDataBin, zyg2 %in% c(1,2), select = selVars) 
  dzData_1 <- subset(twinDataBin, zyg2 %in% c(3,4,5), select = selVars) 
  # Set Starting Values 
  svLTh     <- -1.5    # start value for first threshold 
  svITh     <- 1       # start value for increments 
  svTh      <- matrix(rep(c(svLTh,(rep(svITh,nth-1)))),nrow=nth,ncol=nv)     # start value 
for thresholds 
  lbTh      <- matrix(rep(c(-3,(rep(0.001,nth-1))),nv),nrow=nth,ncol=nv)     # lower bounds 
for thresholds 
  svCor     <- .5      # start value for correlations 
  lbCor     <- -0.99   # lower bounds for correlations 
  ubCor     <- 0.99    # upper bounds for correlations 
   
  labThMZ   <- c(paste("t",1:nth,"MZ1",sep=""),paste("t",1:nth,"MZ2",sep="")) 
  labThDZ   <- c(paste("t",1:nth,"DZ1",sep=""),paste("t",1:nth,"DZ2",sep="")) 
   
  # ------------------------------------------------------------------------------ 
  # PREPARE MODEL 
   
  # Saturated Model 
  # Algebra for expected Mean & Threshold Matrices in MZ & DZ twins 
  meanG     <- mxMatrix( type="Zero", nrow=1, ncol=ntv, name="meanG" ) 
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  thinMZ    <- mxMatrix( type="Full", nrow=nth, ncol=ntv, free=TRUE, values=svTh, 
lbound=lbTh, labels=labThMZ, name="thinMZ" ) 
  thinDZ    <- mxMatrix( type="Full", nrow=nth, ncol=ntv, free=TRUE, values=svTh, 
lbound=lbTh, labels=labThDZ, name="thinDZ" ) 
  inc       <- mxMatrix( type="Lower", nrow=nth, ncol=nth, free=FALSE, values=1, 
name="inc" ) 
  threMZ    <- mxAlgebra( expression= inc %*% thinMZ, name="threMZ" ) 
  threDZ    <- mxAlgebra( expression= inc %*% thinDZ, name="threDZ" ) 
   
  # Algebra for expected Variance/Covariance Matrices in MZ & DZ twins 
  corMZ     <- mxMatrix( type="Stand", nrow=ntv, ncol=ntv, free=TRUE, values=svCor, 
lbound=lbCor, ubound=ubCor, labels="rMZ", name="corMZ" ) 
  corDZ     <- mxMatrix( type="Stand", nrow=ntv, ncol=ntv, free=TRUE, values=svCor, 
lbound=lbCor, ubound=ubCor, labels="rDZ", name="corDZ" ) 
   
  # Data objects for Multiple Groups 
  dataMZ   <-mxData( observed=mzData_1, type="raw" ) 
  dataDZ   <-mxData( observed=dzData_1, type="raw" ) 
   
  # Objective objects for Multiple Groups 
  expMZ     <- mxExpectationNormal( covariance="corMZ", means="meanG", 
dimnames=selVars, thresholds="threMZ" ) 
  expDZ     <- mxExpectationNormal( covariance="corDZ", means="meanG", 
dimnames=selVars, thresholds="threDZ" ) 
  funML     <- mxFitFunctionML() 
   
  # Combine Groups 
  modelMZ   <- mxModel( "MZ", meanG, corMZ, thinMZ, inc, threMZ, dataMZ, expMZ, 
funML ) 
  modelDZ   <- mxModel( "DZ", meanG, corDZ, thinDZ, inc, threDZ, dataDZ, expDZ, 
funML ) 
  multi     <- mxFitFunctionMultigroup( c("MZ","DZ") ) 
  ciCor     <- mxCI( c('MZ.corMZ','DZ.corDZ' )) 
  ciThre    <- mxCI( c('MZ.threMZ','DZ.threDZ' )) 
  twinSatOrdModel   <- mxModel( "EC Cigs", modelMZ, modelDZ, multi, ciCor, ciThre ) 
   
  # ------------------------------------------------------------------------------ 
  # RUN MODEL 
   
  # Run Saturated Model 
  twinSatOrdFit     <- mxRun( twinSatOrdModel, intervals=T ) 
  twinSatOrdSum     <- summary( twinSatOrdFit ) 
  twinSatOrdSum  
  round(twinSatOrdFit$output$estimate,4) 
   
  # Generate Saturated Model Output 
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  rMZ       <- twinSatOrdFit$MZ.corMZ$values[2,1] 
  rDZ       <- twinSatOrdFit$DZ.corDZ$values[2,1] 
  tMZ       <- twinSatOrdFit$MZ.threMZ$result 
  tDZ       <- twinSatOrdFit$DZ.threDZ$result 
   
  twinSatOrdOS      <- twinSatOrdSum$observedStatistics 
  twinSatOrdDF      <- twinSatOrdSum$degreesOfFreedom 
  twinSatOrdNP      <- length(twinSatOrdSum$parameters[[1]]) 
  twinSatOrdLLL     <- twinSatOrdFit$output$Minus2LogLikelihood 
  twinSatOrdAIC     <- twinSatOrdSum$AIC 
   
  mxCompare(twinSatOrdFit) 
   
  # ------------------------------------------------------------------------------ 
  # RUN SUBMODELS 
   
  # Constrain expected Thresholds to be equal across twin order 
  eqThresTwinModel    <- mxModel(twinSatOrdFit, name="eqThresTwin" ) 
  eqThresTwinModel    <- omxSetParameters( eqThresTwinModel, 
label=c("t1MZ1","t1MZ2"), free=TRUE, values=svLTh, newlabels='t1MZ' ) 
   
  eqThresTwinModel    <- omxSetParameters( eqThresTwinModel, 
label=c("t1DZ1","t1DZ2"), free=TRUE, values=svLTh, newlabels='t1DZ' ) 
   
  eqThresTwinFit      <- mxRun( eqThresTwinModel, intervals=F ) 
  eqThresTwinSum      <- summary( eqThresTwinFit ) 
  eqThresTwinLLL      <- eqThresTwinFit$output$Minus2LogLikelihood 
  mxCompare(twinSatOrdFit, eqThresTwinFit) 
   
  # Constrain expected Thres to be equal across twin order and zygosity 
  eqThresZygModel     <- mxModel(eqThresTwinModel, name="eqThresZyg" ) 
  eqThresZygModel     <- omxSetParameters( eqThresZygModel, 
label=c("t1MZ","t1DZ"), free=TRUE, values=svLTh, newlabels='t1Z' ) 
   
   
  eqThresZygFit       <- mxRun( eqThresZygModel, intervals=F ) 
  eqThresZygSum       <- summary( eqThresZygFit ) 
  eqThresZygLLL       <- eqThresZygFit$output$Minus2LogLikelihood 
  mxCompare(eqThresTwinFit, eqThresZygFit) 
   
  # ------------------------------------------------------------------------------ 
   
  # Print Comparative Fit Statistics 
  SatNested <- list(eqThresTwinFit, eqThresZygFit) 
  mxCompare(twinSatOrdFit, SatNested) 
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  tableFitStatistics(twinSatOrdFit, SatNested) 
   
   
   
  ###---------------------------------------------------### 
  ###             Testing Sex Difference EC             ### 
  ###---------------------------------------------------### 
  # Select Data for Analysis 
  mzfData    <- subset(twinDataBin, zyg2==2, selVars) 
  dzfData    <- subset(twinDataBin, zyg2==4, selVars) 
  mzmData    <- subset(twinDataBin, zyg2==1, selVars) 
  dzmData    <- subset(twinDataBin, zyg2==3, selVars) 
  dzoData    <- subset(twinDataBin, zyg2==5, selVars) #fm 
   
  # Set Starting Values 
  svLTh     <- -1.5    # start value for first threshold 
  svITh     <- 1       # start value for increments 
  svTh      <- matrix(rep(c(svLTh,(rep(svITh,nth-1)))),nrow=nth,ncol=nv)     # start value 
for thresholds 
  lbTh      <- matrix(rep(c(-3,(rep(0.001,nth-1))),nv),nrow=nth,ncol=nv)     # lower bounds 
for thresholds 
  svCor     <- .5      # start value for correlations 
  lbCor     <- -0.99   # lower bounds for correlations 
  ubCor     <- 0.99    # upper bounds for correlations 
   
  labThMZ   <- c(paste("t",1:nth,"MZ1",sep=""),paste("t",1:nth,"MZ2",sep="")) 
  labThDZ   <- c(paste("t",1:nth,"DZ1",sep=""),paste("t",1:nth,"DZ2",sep="")) 
  mvar1th     <- paste("mvar1","_th",1:nth, sep="")  
  mvar2th     <- paste("mvar2","_th",1:nth, sep="") 
  fvar1th     <- paste("fvar1","_th",1:nth, sep="")  
  fvar2th     <- paste("fvar2","_th",1:nth, sep="") 
  dzvar1th     <- paste("dzvar1","_th",1:nth, sep="")  
  dzvar2th     <- paste("dzvar2","_th",1:nth, sep="") 
  thUB      <- 2 
   
  # ------------------------------------------------------------------------------ 
  # PREPARE MODEL 
   
  # General non-scalar ACE Model 
  # Matrices declared to store a, c, and e Path Coefficients 
  pathAf    <- mxMatrix( "Lower", nrow=nv, ncol=nv, free=TRUE, ubound = 0.99, lbound 
= -0.99, values=.6, label="af11", name="af" )  
  pathCf    <- mxMatrix( "Lower", nrow=nv, ncol=nv, free=TRUE, ubound = 0.99, lbound 
= -0.99, values=.6, label="cf11", name="cf" ) 
  pathEf    <- mxMatrix( "Lower", nrow=nv, ncol=nv, free=TRUE, ubound = 0.99, lbound 
= -0.99, values=.6, label="ef11", name="ef" ) 
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  pathAm    <- mxMatrix( "Lower", nrow=nv, ncol=nv, free=TRUE, ubound = 0.99, lbound 
= -0.99, values=.6, label="am11", name="am" )  
  pathCm    <- mxMatrix( "Lower", nrow=nv, ncol=nv, free=TRUE, ubound = 0.99, lbound 
= -0.99, values=.6, label="cm11", name="cm" ) 
  pathEm    <- mxMatrix( "Lower", nrow=nv, ncol=nv, free=TRUE, ubound = 0.99, lbound 
= -0.99, values=.6, label="em11", name="em" ) 
  pathRa    <- mxMatrix( "Lower", nrow=1, ncol=1, free=TRUE,  values=1, label="ra11", 
name="ra", ubound=1, lbound=0 ) 
   
  # Matrices generated to hold A, C, and E computed Variance Components 
  covAf     <- mxAlgebra( af %*% t(af), name="Af" ) 
  covCf     <- mxAlgebra( cf %*% t(cf), name="Cf" )  
  covEf     <- mxAlgebra( ef %*% t(ef), name="Ef" ) 
  covAm     <- mxAlgebra( am %*% t(am), name="Am" ) 
  covCm     <- mxAlgebra( cm %*% t(cm), name="Cm" )  
  covEm     <- mxAlgebra( em %*% t(em), name="Em" ) 
   
  # Algebra to compute total variances and standard deviations (diagonal only) 
  covPf     <- mxAlgebra( Af+Cf+Ef, name="Vf" ) 
  covPm     <- mxAlgebra( Am+Cm+Em, name="Vm" ) 
   
  # Algebras generated to hold Parameter Estimates and Derived Variance Components 
  colVarsZf <- c('Af','Cf','Ef','SAf','SCf','SEf') 
  estVarsZf <- mxAlgebra( cbind(Af,Cf,Ef,Af/Vf,Cf/Vf,Ef/Vf), name="VarsZf", 
dimnames=list(NULL,colVarsZf)) 
  colVarsZm <- c('Am','Cm','Em','SAm','SCm','SEm') 
  estVarsZm <- mxAlgebra( cbind(Am,Cm,Em,Am/Vm,Cm/Vm,Em/Vm), 
name="VarsZm", dimnames=list(NULL,colVarsZm)) 
   
  # Algebra for expected Mean and Variance/Covariance Matrices in MZ & DZ twins 
  meanGf    <- mxMatrix( type="Full", nrow=1, ncol=ntv, free=TRUE, values=20, 
label="meanf", name="expMeanGf" ) 
  meanGm    <- mxMatrix( type="Full", nrow=1, ncol=ntv, free=TRUE, values=20, 
label="meanm", name="expMeanGm" ) 
  meanGfm   <- mxMatrix( type="Full", nrow=1, ncol=ntv, free=TRUE, values=20, 
label=c("meanf","meanm"), name="expMeanGfm" ) 
  covMZf    <- mxAlgebra( expression= rbind( cbind(Vf, Af+Cf), cbind(Af+Cf, Vf)), 
name="expCovMZf" ) 
  covDZf    <- mxAlgebra( expression= rbind( cbind(Vf, 0.5%x%Af+Cf), 
cbind(0.5%x%Af+Cf, Vf)), name="expCovDZf" ) 
  covMZm    <- mxAlgebra( expression= rbind( cbind(Vm, Am+Cm), cbind(Am+Cm, 
Vm)), name="expCovMZm" ) 
  covDZm    <- mxAlgebra( expression= rbind( cbind(Vm, 0.5%x%Am+Cm), 
cbind(0.5%x%Am+Cm, Vm)), name="expCovDZm" ) 
  CVfm      <- mxAlgebra( expression= ra%x%(af%*%t(am))+cf%*%t(cm), name="CVfm" 
) 
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  CVmf      <- mxAlgebra( expression= ra%x%(am%*%t(af))+cm%*%t(cf), name="CVmf" 
) 
  covDZo    <- mxAlgebra( expression= rbind( cbind(Vf, CVfm), cbind(CVmf, Vm)), 
name="expCovDZo" ) 
  Inc     <- mxMatrix( type="Lower", nrow=nth, ncol=nth, free=F, values=1, name="Inc" ) 
   
  # MALES 
  ThreM    <-mxMatrix( type="Full", nrow=nth, ncol=nv, free=c(T, T), values=, 
labels=cbind(mvar1th, mvar2th), lbound=-2, ubound=thUB, name="ThreM") 
  ExpThreM   <- mxAlgebra( expression= cbind( ( Inc %*% ThreM  ),  
                                              ( Inc %*% ThreM  ) ), name="ExpThreM" ) 
  # FEMALES 
  ThreF    <-mxMatrix( type="Full", nrow=nth, ncol=nv, free=c(T, T), values=, 
labels=cbind(fvar1th, fvar2th), lbound=-2, ubound=thUB, name="ThreF") 
  ExpThreF   <- mxAlgebra( expression= cbind( ( Inc %*% ThreF  ),  
                                              ( Inc %*% ThreF  ) ), name="ExpThreF" ) 
  ## OS 
   
  ThreOS    <-mxMatrix( type="Full", nrow=nth, ncol=nv, free=c(T, T), values=, 
labels=cbind(dzvar1th, dzvar2th), lbound=-2, ubound=thUB, name="ThreOS") 
  ExpThreOS   <- mxAlgebra( expression= cbind( ( Inc %*% ThreOS  ),  
                                               ( Inc %*% ThreOS  ) ), name="ExpThreOS" ) 
   
   
  # Data objects for Multiple Groups 
  dataMZf   <- mxData( observed=mzfData, type="raw" ) 
  dataDZf   <- mxData( observed=dzfData, type="raw" ) 
  dataMZm   <- mxData( observed=mzmData, type="raw" ) 
  dataDZm   <- mxData( observed=dzmData, type="raw" ) 
  dataDZo   <- mxData( observed=dzoData, type="raw" ) 
   
  # Expectation objects for Multiple Groups 
  expMZf    <- mxExpectationNormal( covariance="expCovMZf", means="expMeanGf", 
dimnames=selVars, thresholds = "ExpThreF" ) 
  expDZf    <- mxExpectationNormal( covariance="expCovDZf", means="expMeanGf", 
dimnames=selVars, thresholds = "ExpThreF" ) 
  expMZm    <- mxExpectationNormal( covariance="expCovMZm", 
means="expMeanGm", dimnames=selVars, thresholds = "ExpThreM" ) 
  expDZm    <- mxExpectationNormal( covariance="expCovDZm", 
means="expMeanGm", dimnames=selVars, thresholds = "ExpThreM" ) 
  expDZo    <- mxExpectationNormal( covariance="expCovDZo", 
means="expMeanGfm", dimnames=selVars, thresholds = "ExpThreOS" ) 
  funML     <- mxFitFunctionML() 
   
  # Combine Groups 
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  parsZf    <- list( pathAf, pathCf, pathEf, covAf, covCf, covEf, covPf, estVarsZf, ThreF, 
ExpThreF, Inc ) 
  parsZm    <- list( pathAm, pathCm, pathEm, covAm, covCm, covEm, covPm, 
estVarsZm, ThreM, ExpThreM, Inc ) 
  parsZfm   <- list( pathRa, CVfm, CVmf, ExpThreOS, Inc, ThreOS) 
  modelMZf  <- mxModel( parsZf, meanGf, covMZf, dataMZf, expMZf, funML, 
name="MZf" ) 
  modelDZf  <- mxModel( parsZf, meanGf, covDZf, dataDZf, expDZf, funML, 
name="DZf" ) 
  modelMZm  <- mxModel( parsZm, meanGm, covMZm, dataMZm, expMZm, funML, 
name="MZm" ) 
  modelDZm  <- mxModel( parsZm, meanGm, covDZm, dataDZm, expDZm, funML, 
name="DZm" ) 
  modelDZo  <- mxModel( parsZf, parsZm, parsZfm, meanGfm, covDZo, dataDZo, 
expDZo, funML, name="DZo" ) 
  multi     <- mxFitFunctionMultigroup( c("MZf","DZf","MZm","DZm","DZo") ) 
  QualAceModel  <- mxModel( "QualACE", modelMZf, modelDZf, modelMZm, 
modelDZm, modelDZo, multi ) 
   
   
  QualAceFit <-mxTryHardOrdinal(QualAceModel, intervals = F) 
  summary(QualAceFit) 
   
  ## Coerce threshold to be equal 
   
   
  eqthres   <-mxModel(QualAceFit, name = "Equal Threshold") 
  eqthres   <-omxSetParameters( eqthres, label="mvar1_th1", free=TRUE, values=0.5, 
newlabels="var1_th1")                  
  eqthres   <-omxSetParameters( eqthres, label="fvar1_th1", free=TRUE, values=0.5, 
newlabels="var1_th1")   
  eqthres   <-omxSetParameters( eqthres, label="dzvar1_th1", free=TRUE, values=0.5, 
newlabels="var1_th1")  
  
  eqthresfit<-mxTryHardOrdinal(eqthres, intervals = F) 
  summary(eqthresfit) 
  tableFitStatistics(QualAceFit, eqthresfit) 
   
   
  ## Coerce males and females to be equal 
   
  eqsex   <-mxModel(QualAceFit, name = "Equal sexes") 
  eqsex   <-omxSetParameters( eqsex, label="am11", free=TRUE, values=0.04, 
newlabels="a11")                  
  eqsex   <-omxSetParameters( eqsex, label="af11", free=TRUE, values=0.04, 
newlabels="a11")   
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  eqsex   <-omxSetParameters( eqsex, label="cm11", free=TRUE, values=0.5, 
newlabels="c11")  
  eqsex   <-omxSetParameters( eqsex, label="cf11", free=TRUE, values=0.5, 
newlabels="c11")  
  eqsex   <-omxSetParameters( eqsex, label="em11", free=TRUE, values=0.3, 
newlabels="e11")  
  eqsex   <-omxSetParameters( eqsex, label="ef11", free=TRUE, values=0.3, 
newlabels="e11")  
   
  eqsexfit<-mxTryHardOrdinal(eqsex, intervals = F) 
  tableFitStatistics(QualAceFit, eqsexfit) 
   
  ## NO sex 
   
  nosex   <- omxSetParameters(eqsex, labels="ra11", name="No Sex Effects", 
free=FALSE, values=0.5 )  
  nosexfit<- mxTryHardOrdinal(nosex, intervals = F) 
  nested <-list(eqthresfit, eqsexfit, nosexfit) 
  tableFitStatistics(QualAceFit, nested) 
   
   
  ###----------------------------------------------------### 
  ###             UNIVARIATE FOR CC                      ### 
  ###----------------------------------------------------### 
   
  mxOption(NULL, "Default optimizer", "CSOLNP") 
  # set the number of variables per twin (nv) and total variables per twin pair (ntv) for 
automation 
  vars      <- c("cccigEver3")  
  #vars      <- c("cccigEver3", "ecigEver3")   #reverse order of variables to see if same 
results emerge 
  nv        <- 1          # number of variables 
  ntv       <- nv*2       # number of total variables 
  selVars   <- paste(vars,c(rep("_T1",nv),rep("_T2",nv)),sep="")  
  nth <- 1  # Number of thresholds per variable (only for binary data) 
   
  # Subset the data to only the things I need 
  twinDatauni  <- data2[,c(selVars,'zyg2')] 
  describe(twinDatauni) 
  summary(twinDatauni) 
  dim(twinDatauni) 
   
  #twinData2<-na.omit(twinData) 
  #summary(twinData2) 
  #dim(twinData2) 
  twinDataBin <-twinDatauni 
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  dim(twinDataBin) 
  table(twinDataBin$zyg2) 
   
  # Factorize Ordinal Variables using the mxFactor option 
  twinDataBin[,c(1,2)]  <- mxFactor(twinDataBin[,c(1,2)], levels = c(0:nth)) 
   
  # 1=MZM, 2= MZF, 3=DZM, 4=DZF, 5=ODZ 
  #Vars      <- c("cccigEver3")  
  #nv        <- 1          # number of variables 
  #ntv       <- nv*2       # number of total variables 
  #selVars   <- paste(Vars,c(rep("_T1",nv),rep("_T2",nv)),sep="")  
   
  # Select Data for Analysis 
  mzfData    <- subset(twinDataBin, zyg2==2, selVars) 
  dzfData    <- subset(twinDataBin, zyg2==4, selVars) 
  mzmData    <- subset(twinDataBin, zyg2==1, selVars) 
  dzmData    <- subset(twinDataBin, zyg2==3, selVars) 
  dzoData    <- subset(twinDataBin, zyg2==5, selVars) #males = T1, females = T2 
   
  polychor(mzfData$cccever3_T1,mzfData$cccever3_T2, std.err=T) 
  polychor(mzmData$cccever3_T1,mzmData$cccever3_T2, std.err=T) 
  polychor(dzfData$cccever3_T1,dzfData$cccever3_T2, std.err=T) 
  polychor(dzmData$cccever3_T1,dzmData$cccever3_T2, std.err=T) 
  polychor(dzoData$cccever3_T1,dzoData$cccever3_T2, std.err=T) 
   
   
  # Set Starting Values / 
  svLTh     <- 0.8    # start value for first threshold 
  svITh     <- 1       # start value for increments 
  #svTh      <- c(0.7,1,0.7,1) 
  svTh      <- matrix(rep(c(svLTh,(rep(svITh,nth-1)))),nrow=nth,ncol=ntv)     # start value 
for thresholds 
  lbTh      <- matrix(rep(c(-3,(rep(0.001,nth-1))),nv),nrow=nth,ncol=ntv)     # lower bounds 
for thresholds 
   
  #svTh      <- c(1,1)                    # start value for thresholds 
  svPa      <- .4                        # start value for path coefficient 
  svPaD     <- vech(diag(svPa,nv,nv))    # start values for diagonal of covariance matrix 
  svPe      <- .8                        # start value for path coefficient for e 
  svPeD     <- vech(diag(svPe,nv,nv))    # start values for diagonal of covariance matrix 
  lbPa      <- .00001                     # start value for lower bounds 
  lbPaD     <- diag(lbPa,nv,nv)          # lower bounds for diagonal of covariance matrix 
  lbPaD[lower.tri(lbPaD)] <- -2         # lower bounds for below diagonal elements 
  lbPaD[upper.tri(lbPaD)] <- NA          # lower bounds for above diagonal elements 
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  # Set Starting Values 
  aLabs     <- paste("a",rev(nv+1-sequence(1:nv)),rep(1:nv,nv:1),sep="") 
  cLabs     <- paste("c",rev(nv+1-sequence(1:nv)),rep(1:nv,nv:1),sep="") 
  eLabs     <- paste("e",rev(nv+1-sequence(1:nv)),rep(1:nv,nv:1),sep="") 
  var1thM     <- paste("var1M","_th",1:nth, sep="")  
  var2thM     <- paste("var2M","_th",1:nth, sep="") 
  var1thF     <- paste("var1F","_th",1:nth, sep="")  
  var2thF     <- paste("var2F","_th",1:nth, sep="") 
   
  thUB      <- 2 
   
  # ------------------------------------------------------------------------------ 
  # PREPARE MODEL 
   
  # ACE Model 
  # Create Algebra for expected Mean Matrices to include differing thresholds for males 
and females 
  meanG     <- mxMatrix( type="Zero", nrow=1, ncol=ntv, name="meanG" ) 
  threGm     <- mxMatrix( type="Full", nrow=1, ncol=ntv, free=TRUE, values= svTh,  
                          labels=c(var1thM,var2thM), name="threGm",lbound=-2, ubound=2 ) 
  threGf     <- mxMatrix( type="Full", nrow=1, ncol=ntv, free=TRUE, values=svTh,  
                          labels=c(var1thF,var2thF), name="threGf",lbound=-2, ubound=2  ) 
  threGmf     <- mxMatrix( type="Full", nrow=1, ncol=ntv, free=TRUE, values=svTh,  
                           labels=c(var1thM,var2thM,var1thF,var2thF), name="threGmf", 
lbound=-2, ubound=2  ) 
  # Create Matrices for Path Coefficients 
  pathA     <- mxMatrix( type="Lower", nrow=nv, ncol=nv, free=TRUE, values=c(0.2), 
#replacing svPaD 
                         label=aLabs, lbound=lbPaD, name="a" )  
  pathC     <- mxMatrix( type="Lower", nrow=nv, ncol=nv, free=TRUE, values=c(0.4),  
                         label=cLabs, lbound=lbPaD, name="c" ) 
  pathE     <- mxMatrix( type="Lower", nrow=nv, ncol=nv, free=TRUE,  
                         values=0.4, label=eLabs, lbound=lbPaD, name="e" ) 
   
  # Create Algebra for Variance Comptwonts 
  covA      <- mxAlgebra( expression=a %*% t(a), name="A" ) 
  covC      <- mxAlgebra( expression=c %*% t(c), name="C" )  
  covE      <- mxAlgebra( expression=e %*% t(e), name="E" ) 
   
  # Create Algebra for expected Variance/Covariance Matrices in MZ & DZ twins 
  covP      <- mxAlgebra( expression= A+C+E, name="V" ) 
  covMZ     <- mxAlgebra( expression= A+C, name="cMZ" ) 
  covDZ     <- mxAlgebra( expression= 0.5%x%A+ C, name="cDZ" ) 
  expCovMZ  <- mxAlgebra( expression= rbind( cbind(V, cMZ), cbind(t(cMZ), V)), 
name="expCovMZ" ) 
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  expCovDZ  <- mxAlgebra( expression= rbind( cbind(V, cDZ), cbind(t(cDZ), V)), 
name="expCovDZ" ) 
   
  # Create Algebra for Standardization 
  matI      <- mxMatrix( type="Iden", nrow=nv, ncol=nv, name="I") 
  invSD     <- mxAlgebra( expression=solve(sqrt(I*V)), name="iSD") 
   
  # Calculate genetic and environmental correlations 
  corA      <- mxAlgebra( expression=solve(sqrt(I*A))%&%A, name ="rA" ) #cov2cor() 
  corC      <- mxAlgebra( expression=solve(sqrt(I*C))%&%C, name ="rC" ) 
  corE      <- mxAlgebra( expression=solve(sqrt(I*E))%&%E, name ="rE" ) 
   
  ## Calculate Phenotypic Correlation ## 
  corP      <- mxAlgebra (expression=solve(sqrt(I*V)) %*% V %*% solve(sqrt(I*V)), 
name="rP") 
   
  ## Calculate Standardized Covariances ## 
  stCovA    <- mxAlgebra (solve(sqrt(I*V)) %*% A %*% solve(sqrt(I*V)), name="stCovA") 
  stCovC    <- mxAlgebra (solve(sqrt(I*V)) %*% C %*% solve(sqrt(I*V)), name="stCovC") 
  stCovE    <- mxAlgebra (solve(sqrt(I*V)) %*% E %*% solve(sqrt(I*V)), name="stCovE") 
   
   
  # Constrain Variance of Binary Variables 
  matUnv    <- mxMatrix( type="Unit", nrow=nv, ncol=1, name="Unv1" ) 
  var1      <- mxConstraint( expression=diag2vec(V)==Unv1, name="Var1" ) 
   
  # Create Algebra for Variance Components 
  rowVC     <- rep('VC',nv) 
  colVC     <- rep(c('A','C','E','SA','SC','SE'),each=nv) 
  estVC     <- mxAlgebra( expression=cbind(A,C,E,A/V,C/V,E/V), name="VC", 
dimnames=list(rowVC,colVC)) 
   
  # Create Confidence Interval Objects 
  ciACE  <- mxCI(c("stCovA","stCovC", "stCovE"))# 
"VC[1,seq(1,3*nv,nv),(2,seq(1,3*nv,nv)),(2,seq(2,3*nv,nv)))]" ) 
   
  # Data objects for Multiple Groups 
  dataMZf   <- mxData( observed=mzfData, type="raw" ) 
  dataDZf   <- mxData( observed=dzfData, type="raw" ) 
  dataMZm   <- mxData( observed=mzmData, type="raw" ) 
  dataDZm   <- mxData( observed=dzmData, type="raw" ) 
  dataDZo   <- mxData( observed=dzoData, type="raw" ) 
   
  # Expectation objects for Multiple Groups 
  expMZf    <- mxExpectationNormal( covariance="expCovMZ", means="meanG",  
                                    dimnames=selVars, thresholds = "threGf") 
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  expDZf    <- mxExpectationNormal( covariance="expCovDZ", means="meanG",  
                                    dimnames=selVars, thresholds = "threGf" ) 
  expMZm    <- mxExpectationNormal( covariance="expCovMZ", means="meanG",  
                                    dimnames=selVars, thresholds = "threGm" ) 
  expDZm    <- mxExpectationNormal( covariance="expCovDZ", means="meanG",  
                                    dimnames=selVars, thresholds = "threGm" ) 
  expDZo    <- mxExpectationNormal( covariance="expCovDZ", means="meanG",  
                                    dimnames=selVars, thresholds = "threGmf" ) 
  funML     <- mxFitFunctionML() 
   
  # Combine Groups 
  parsZf    <- list( pathA, pathC, pathE,  
                     covA, covC, covE, covP, corA, corC, corE, corP, stCovA, stCovC, stCovE, 
                     meanG, threGf, matI, invSD, matUnv ) 
  parsZm    <- list( pathA, pathC, pathE,  
                     covA, covC, covE, covP, corA, corC, corE, corP, stCovA, stCovC, stCovE, 
                     meanG, threGm, matI, invSD, matUnv ) 
  parsZmf   <- list( pathA, pathC, pathE,  
                     covA, covC, covE, covP, corA, corC, corE, corP, stCovA, stCovC, stCovE, 
                     meanG, threGmf, matI, invSD, matUnv ) 
   
  modelMZf  <- mxModel( parsZf, meanG, covMZ, expCovMZ, dataMZf, expMZf, funML, 
name="MZf" ) 
  modelDZf  <- mxModel( parsZf, meanG, covDZ, expCovDZ, dataDZf, expDZf, funML, 
name="DZf" ) 
  modelMZm  <- mxModel( parsZm, meanG, covMZ, expCovMZ, dataMZm, expMZm, 
funML, name="MZm" ) 
  modelDZm  <- mxModel( parsZm, meanG, covDZ, expCovDZ, dataDZm, expDZm, 
funML, name="DZm" ) 
  modelDZo  <- mxModel( parsZmf, meanG, covDZ, expCovDZ,dataDZo, expDZo, 
funML, name="DZo" ) 
  multi     <- mxFitFunctionMultigroup( c("MZf","DZf","MZm","DZm","DZo") ) 
  CcUniAceModel  <- mxModel( "CcUniAce", parsZf, parsZm, parsZmf, 
                             modelMZf, modelDZf, modelMZm, modelDZm, modelDZo, multi,  
                             estVC, ciACE) 
   
  CcUniAceFit <-mxRun(CcUniAceModel, intervals = F) 
  CcUniAceFit <-mxTryHardOrdinal(CcUniAceFit, intervals = F) 
  CcUniAceFit$algebras 
   
   
  # Confidence Intervals 
 
  CcUniAceFitCIs <- mxTryHardOrdinal(CcUniAceFit, intervals = T) 
  summary(CcUniAceFitCIs, verbose=T) 
  #CcUniAceFitCIs$algebras 
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    # Test of A 
  CcUniNoA <- CcUniAceFit 
  CcUniNoAModel<- omxSetParameters(CcUniNoA, labels=c( "a11"), free=FALSE, 
values=0 )  
  CcUniNoAfit<- mxTryHardOrdinal(CcUniNoAModel, intervals = T) 
  tableFitStatistics(CcUniAceFit, CcUniNoAfit) 
   
   
  # Test of C 
  CcUniNoC <- CcUniAceFit 
  CcUniNoCModel<- omxSetParameters(CcUniNoC, labels=c( "c11"), free=FALSE, 
values=0 )  
  CcUniNoCFit<- mxTryHardOrdinal(CcUniNoCModel, intervals = F) 
  tableFitStatistics(CcUniAceFit, CcUniNoCFit) 
   
   
  # Test of E Only Model 
  CcUniNoE <- CcUniAceFit 
  CcUniNoEModel<- omxSetParameters(CcUniNoE, labels=c("a11","c11"), free=FALSE, 
values=0 )  
  CcUniNoEModelFit<- mxTryHardOrdinal(CcUniNoEModel, intervals = F) 
  tableFitStatistics(CcUniAceFit, CcUniNoEModelFit) 
   
  CCallmodels<-list(CcUniNoAfit,CcUniNoCFit,CcUniNoEModelFit) 
tableFitStatistics(CcUniAceFit, CCallmodels)   
 
 
 
 
###---------------------------------------------------### 
###             Testing model assumptions for CC      ### 
###---------------------------------------------------### 
 
# set the number of variables per twin (nv) and total variables per twin pair (ntv) for 
automation 
Vars      <- c("cccigEver3")  
nv        <- 1          # number of variables 
ntv       <- nv*2       # number of total variables 
selVars   <- paste(Vars,c(rep("_T1",nv),rep("_T2",nv)),sep="")  
nth <- 1  # Number of thresholds per variable (only for ordinal data) 
 
mzData_1 <- subset(twinDataBin, zyg2 %in% c(1,2), select = selVars) 
dzData_1 <- subset(twinDataBin, zyg2 %in% c(3,4,5), select = selVars) 
# Set Starting Values 
svLTh     <- -1.5    # start value for first threshold 
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svITh     <- 1       # start value for increments 
svTh      <- matrix(rep(c(svLTh,(rep(svITh,nth-1)))),nrow=nth,ncol=nv)     # start value for 
thresholds 
lbTh      <- matrix(rep(c(-3,(rep(0.001,nth-1))),nv),nrow=nth,ncol=nv)     # lower bounds 
for thresholds 
svCor     <- .5      # start value for correlations 
lbCor     <- -0.99   # lower bounds for correlations 
ubCor     <- 0.99    # upper bounds for correlations 
 
labThMZ   <- c(paste("t",1:nth,"MZ1",sep=""),paste("t",1:nth,"MZ2",sep="")) 
labThDZ   <- c(paste("t",1:nth,"DZ1",sep=""),paste("t",1:nth,"DZ2",sep="")) 
 
# ------------------------------------------------------------------------------ 
# PREPARE MODEL 
 
# Saturated Model 
# Algebra for expected Mean & Threshold Matrices in MZ & DZ twins 
meanG     <- mxMatrix( type="Zero", nrow=1, ncol=ntv, name="meanG" ) 
thinMZ    <- mxMatrix( type="Full", nrow=nth, ncol=ntv, free=TRUE, values=svTh, 
lbound=lbTh, labels=labThMZ, name="thinMZ" ) 
thinDZ    <- mxMatrix( type="Full", nrow=nth, ncol=ntv, free=TRUE, values=svTh, 
lbound=lbTh, labels=labThDZ, name="thinDZ" ) 
inc       <- mxMatrix( type="Lower", nrow=nth, ncol=nth, free=FALSE, values=1, 
name="inc" ) 
threMZ    <- mxAlgebra( expression= inc %*% thinMZ, name="threMZ" ) 
threDZ    <- mxAlgebra( expression= inc %*% thinDZ, name="threDZ" ) 
 
# Algebra for expected Variance/Covariance Matrices in MZ & DZ twins 
corMZ     <- mxMatrix( type="Stand", nrow=ntv, ncol=ntv, free=TRUE, values=svCor, 
lbound=lbCor, ubound=ubCor, labels="rMZ", name="corMZ" ) 
corDZ     <- mxMatrix( type="Stand", nrow=ntv, ncol=ntv, free=TRUE, values=svCor, 
lbound=lbCor, ubound=ubCor, labels="rDZ", name="corDZ" ) 
 
# Data objects for Multiple Groups 
dataMZ   <-mxData( observed=mzData_1, type="raw" ) 
dataDZ   <-mxData( observed=dzData_1, type="raw" ) 
 
# Objective objects for Multiple Groups 
expMZ     <- mxExpectationNormal( covariance="corMZ", means="meanG", 
dimnames=selVars, thresholds="threMZ" ) 
expDZ     <- mxExpectationNormal( covariance="corDZ", means="meanG", 
dimnames=selVars, thresholds="threDZ" ) 
funML     <- mxFitFunctionML() 
 
# Combine Groups 
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modelMZ   <- mxModel( "MZ", meanG, corMZ, thinMZ, inc, threMZ, dataMZ, expMZ, 
funML ) 
modelDZ   <- mxModel( "DZ", meanG, corDZ, thinDZ, inc, threDZ, dataDZ, expDZ, 
funML ) 
multi     <- mxFitFunctionMultigroup( c("MZ","DZ") ) 
ciCor     <- mxCI( c('MZ.corMZ','DZ.corDZ' )) 
ciThre    <- mxCI( c('MZ.threMZ','DZ.threDZ' )) 
twinSatOrdModel   <- mxModel( "CC Cigs", modelMZ, modelDZ, multi, ciCor, ciThre ) 
 
# ------------------------------------------------------------------------------ 
# RUN MODEL 
 
# Run Saturated Model 
twinSatOrdFit     <- mxRun( twinSatOrdModel, intervals=T ) 
twinSatOrdSum     <- summary( twinSatOrdFit ) 
twinSatOrdSum  
round(twinSatOrdFit$output$estimate,4) 
 
# Generate Saturated Model Output 
rMZ       <- twinSatOrdFit$MZ.corMZ$values[2,1] 
rDZ       <- twinSatOrdFit$DZ.corDZ$values[2,1] 
tMZ       <- twinSatOrdFit$MZ.threMZ$result 
tDZ       <- twinSatOrdFit$DZ.threDZ$result 
 
twinSatOrdOS      <- twinSatOrdSum$observedStatistics 
twinSatOrdDF      <- twinSatOrdSum$degreesOfFreedom 
twinSatOrdNP      <- length(twinSatOrdSum$parameters[[1]]) 
twinSatOrdLLL     <- twinSatOrdFit$output$Minus2LogLikelihood 
twinSatOrdAIC     <- twinSatOrdSum$AIC 
 
mxCompare(twinSatOrdFit) 
 
# ------------------------------------------------------------------------------ 
# RUN SUBMODELS 
 
# Constrain expected Thresholds to be equal across twin order 
eqThresTwinModel    <- mxModel(twinSatOrdFit, name="eqThresTwin" ) 
eqThresTwinModel    <- omxSetParameters( eqThresTwinModel, 
label=c("t1MZ1","t1MZ2"), free=TRUE, values=svLTh, newlabels='t1MZ' ) 
 
eqThresTwinModel    <- omxSetParameters( eqThresTwinModel, 
label=c("t1DZ1","t1DZ2"), free=TRUE, values=svLTh, newlabels='t1DZ' ) 
 
eqThresTwinFit      <- mxRun( eqThresTwinModel, intervals=F ) 
eqThresTwinSum      <- summary( eqThresTwinFit ) 
eqThresTwinLLL      <- eqThresTwinFit$output$Minus2LogLikelihood 
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mxCompare(twinSatOrdFit, eqThresTwinFit) 
 
# Constrain expected Thres to be equal across twin order and zygosity 
eqThresZygModel     <- mxModel(eqThresTwinModel, name="eqThresZyg" ) 
eqThresZygModel     <- omxSetParameters( eqThresZygModel, label=c("t1MZ","t1DZ"), 
free=TRUE, values=svLTh, newlabels='t1Z' ) 
 
 
eqThresZygFit       <- mxRun( eqThresZygModel, intervals=F ) 
eqThresZygSum       <- summary( eqThresZygFit ) 
eqThresZygLLL       <- eqThresZygFit$output$Minus2LogLikelihood 
mxCompare(eqThresTwinFit, eqThresZygFit) 
 
# ------------------------------------------------------------------------------ 
 
# Print Comparative Fit Statistics 
SatNested <- list(eqThresTwinFit, eqThresZygFit) 
mxCompare(twinSatOrdFit, SatNested) 
 
tableFitStatistics(twinSatOrdFit, SatNested) 
 
#####--------------------#### 
##### Equating Sexes  CC ####   
#####--------------------#### 
 
# 1=MZM, 2= MZF, 3=DZM, 4=DZF, 5=ODZ 
 
Vars      <- c("cccigEver3")  
nv        <- 1          # number of variables 
ntv       <- nv*2       # number of total variables 
selVars   <- paste(Vars,c(rep("_T1",nv),rep("_T2",nv)),sep="")  
# Subset the data to only the things I need 
twinDatauni  <- data2[,c(selVars,'zyg2')] 
describe(twinDatauni) 
summary(twinDatauni) 
dim(twinDatauni) 
 
#twinData2<-na.omit(twinData) 
#summary(twinData2) 
#dim(twinData2) 
twinDataBin <-twinDatauni 
dim(twinDataBin) 
table(twinDataBin$zyg2) 
 
# Factorize Ordinal Variables using the mxFactor option 
twinDataBin[,c(1,2)]  <- mxFactor(twinDataBin[,c(1,2)], levels = c(0:nth)) 
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# Select Data for Analysis 
mzfData    <- subset(twinDataBin, zyg2==2, selVars) 
dzfData    <- subset(twinDataBin, zyg2==4, selVars) 
mzmData    <- subset(twinDataBin, zyg2==1, selVars) 
dzmData    <- subset(twinDataBin, zyg2==3, selVars) 
dzoData    <- subset(twinDataBin, zyg2==5, selVars) #fm 
 
# Set Starting Values 
svLTh     <- -1.5    # start value for first threshold 
svITh     <- 1       # start value for increments 
svTh      <- matrix(rep(c(svLTh,(rep(svITh,nth-1)))),nrow=nth,ncol=nv)     # start value for 
thresholds 
lbTh      <- matrix(rep(c(-3,(rep(0.001,nth-1))),nv),nrow=nth,ncol=nv)     # lower bounds 
for thresholds 
svCor     <- .5      # start value for correlations 
lbCor     <- -0.99   # lower bounds for correlations 
ubCor     <- 0.99    # upper bounds for correlations 
 
labThMZ   <- c(paste("t",1:nth,"MZ1",sep=""),paste("t",1:nth,"MZ2",sep="")) 
labThDZ   <- c(paste("t",1:nth,"DZ1",sep=""),paste("t",1:nth,"DZ2",sep="")) 
var1th     <- paste("var1","_th",1:nth, sep="")  
var2th     <- paste("var2","_th",1:nth, sep="") 
thUB      <- 2 
 
# ------------------------------------------------------------------------------ 
# PREPARE MODEL 
 
# General non-scalar ACE Model 
# Matrices declared to store a, c, and e Path Coefficients 
pathAf    <- mxMatrix( "Lower", nrow=nv, ncol=nv, free=TRUE, ubound = 0.99, lbound = 
-0.99, values=.6, label="af11", name="af" )  
pathCf    <- mxMatrix( "Lower", nrow=nv, ncol=nv, free=TRUE, ubound = 0.99, lbound = 
-0.99, values=.6, label="cf11", name="cf" ) 
pathEf    <- mxMatrix( "Lower", nrow=nv, ncol=nv, free=TRUE, ubound = 0.99, lbound = 
-0.99, values=.6, label="ef11", name="ef" ) 
pathAm    <- mxMatrix( "Lower", nrow=nv, ncol=nv, free=TRUE, ubound = 0.99, lbound 
= -0.99, values=.6, label="am11", name="am" )  
pathCm    <- mxMatrix( "Lower", nrow=nv, ncol=nv, free=TRUE, ubound = 0.99, lbound 
= -0.99, values=.6, label="cm11", name="cm" ) 
pathEm    <- mxMatrix( "Lower", nrow=nv, ncol=nv, free=TRUE, ubound = 0.99, lbound 
= -0.99, values=.6, label="em11", name="em" ) 
pathRa    <- mxMatrix( "Lower", nrow=1, ncol=1, free=TRUE,  values=1, label="ra11", 
name="ra", ubound=1, lbound=0 ) 
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# Matrices generated to hold A, C, and E computed Variance Components 
covAf     <- mxAlgebra( af %*% t(af), name="Af" ) 
covCf     <- mxAlgebra( cf %*% t(cf), name="Cf" )  
covEf     <- mxAlgebra( ef %*% t(ef), name="Ef" ) 
covAm     <- mxAlgebra( am %*% t(am), name="Am" ) 
covCm     <- mxAlgebra( cm %*% t(cm), name="Cm" )  
covEm     <- mxAlgebra( em %*% t(em), name="Em" ) 
 
# Algebra to compute total variances and standard deviations (diagonal only) 
covPf     <- mxAlgebra( Af+Cf+Ef, name="Vf" ) 
covPm     <- mxAlgebra( Am+Cm+Em, name="Vm" ) 
 
# Algebras generated to hold Parameter Estimates and Derived Variance Components 
colVarsZf <- c('Af','Cf','Ef','SAf','SCf','SEf') 
estVarsZf <- mxAlgebra( cbind(Af,Cf,Ef,Af/Vf,Cf/Vf,Ef/Vf), name="VarsZf", 
dimnames=list(NULL,colVarsZf)) 
colVarsZm <- c('Am','Cm','Em','SAm','SCm','SEm') 
estVarsZm <- mxAlgebra( cbind(Am,Cm,Em,Am/Vm,Cm/Vm,Em/Vm), name="VarsZm", 
dimnames=list(NULL,colVarsZm)) 
 
# Algebra for expected Mean and Variance/Covariance Matrices in MZ & DZ twins 
meanGf    <- mxMatrix( type="Full", nrow=1, ncol=ntv, free=TRUE, values=20, 
label="meanf", name="expMeanGf" ) 
meanGm    <- mxMatrix( type="Full", nrow=1, ncol=ntv, free=TRUE, values=20, 
label="meanm", name="expMeanGm" ) 
meanGfm   <- mxMatrix( type="Full", nrow=1, ncol=ntv, free=TRUE, values=20, 
label=c("meanf","meanm"), name="expMeanGfm" ) 
covMZf    <- mxAlgebra( expression= rbind( cbind(Vf, Af+Cf), cbind(Af+Cf, Vf)), 
name="expCovMZf" ) 
covDZf    <- mxAlgebra( expression= rbind( cbind(Vf, 0.5%x%Af+Cf), 
cbind(0.5%x%Af+Cf, Vf)), name="expCovDZf" ) 
covMZm    <- mxAlgebra( expression= rbind( cbind(Vm, Am+Cm), cbind(Am+Cm, Vm)), 
name="expCovMZm" ) 
covDZm    <- mxAlgebra( expression= rbind( cbind(Vm, 0.5%x%Am+Cm), 
cbind(0.5%x%Am+Cm, Vm)), name="expCovDZm" ) 
CVfm      <- mxAlgebra( expression= ra%x%(af%*%t(am))+cf%*%t(cm), name="CVfm" ) 
CVmf      <- mxAlgebra( expression= ra%x%(am%*%t(af))+cm%*%t(cf), name="CVmf" ) 
covDZo    <- mxAlgebra( expression= rbind( cbind(Vf, CVfm), cbind(CVmf, Vm)), 
name="expCovDZo" ) 
Inc     <- mxMatrix( type="Lower", nrow=nth, ncol=nth, free=F, values=1, name="Inc" ) 
 
# MALES 
ThreM    <-mxMatrix( type="Full", nrow=nth, ncol=nv, free=c(T, T), values=, 
labels=cbind(mvar1th, mvar2th), lbound=-2, ubound=thUB, name="ThreM") 
ExpThreM   <- mxAlgebra( expression= cbind( ( Inc %*% ThreM  ),  
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                                            ( Inc %*% ThreM  ) ), name="ExpThreM" ) 
# FEMALES 
ThreF    <-mxMatrix( type="Full", nrow=nth, ncol=nv, free=c(T, T), values=, 
labels=cbind(fvar1th, fvar2th), lbound=-2, ubound=thUB, name="ThreF") 
ExpThreF   <- mxAlgebra( expression= cbind( ( Inc %*% ThreF  ),  
                                            ( Inc %*% ThreF  ) ), name="ExpThreF" ) 
## OS 
 
ThreOS    <-mxMatrix( type="Full", nrow=nth, ncol=nv, free=c(T, T), values=, 
labels=cbind(dzvar1th, dzvar2th), lbound=-2, ubound=thUB, name="ThreOS") 
ExpThreOS   <- mxAlgebra( expression= cbind( ( Inc %*% ThreOS  ),  
                                             ( Inc %*% ThreOS  ) ), name="ExpThreOS" ) 
 
 
# Data objects for Multiple Groups 
dataMZf   <- mxData( observed=mzfData, type="raw" ) 
dataDZf   <- mxData( observed=dzfData, type="raw" ) 
dataMZm   <- mxData( observed=mzmData, type="raw" ) 
dataDZm   <- mxData( observed=dzmData, type="raw" ) 
dataDZo   <- mxData( observed=dzoData, type="raw" ) 
 
# Expectation objects for Multiple Groups 
expMZf    <- mxExpectationNormal( covariance="expCovMZf", means="expMeanGf", 
dimnames=selVars, thresholds = "ExpThreF" ) 
expDZf    <- mxExpectationNormal( covariance="expCovDZf", means="expMeanGf", 
dimnames=selVars, thresholds = "ExpThreF" ) 
expMZm    <- mxExpectationNormal( covariance="expCovMZm", 
means="expMeanGm", dimnames=selVars, thresholds = "ExpThreM" ) 
expDZm    <- mxExpectationNormal( covariance="expCovDZm", 
means="expMeanGm", dimnames=selVars, thresholds = "ExpThreM" ) 
expDZo    <- mxExpectationNormal( covariance="expCovDZo", means="expMeanGfm", 
dimnames=selVars, thresholds = "ExpThreOS" ) 
funML     <- mxFitFunctionML() 
 
# Combine Groups 
parsZf    <- list( pathAf, pathCf, pathEf, covAf, covCf, covEf, covPf, estVarsZf, ThreF, 
ExpThreF, Inc ) 
parsZm    <- list( pathAm, pathCm, pathEm, covAm, covCm, covEm, covPm, 
estVarsZm, ThreM, ExpThreM, Inc ) 
parsZfm   <- list( pathRa, CVfm, CVmf, ExpThreOS, Inc, ThreOS) 
modelMZf  <- mxModel( parsZf, meanGf, covMZf, dataMZf, expMZf, funML, 
name="MZf" ) 
modelDZf  <- mxModel( parsZf, meanGf, covDZf, dataDZf, expDZf, funML, name="DZf" 
) 
modelMZm  <- mxModel( parsZm, meanGm, covMZm, dataMZm, expMZm, funML, 
name="MZm" ) 



 245 

modelDZm  <- mxModel( parsZm, meanGm, covDZm, dataDZm, expDZm, funML, 
name="DZm" ) 
modelDZo  <- mxModel( parsZf, parsZm, parsZfm, meanGfm, covDZo, dataDZo, 
expDZo, funML, name="DZo" ) 
multi     <- mxFitFunctionMultigroup( c("MZf","DZf","MZm","DZm","DZo") ) 
QualAceModel  <- mxModel( "QualACE", modelMZf, modelDZf, modelMZm, 
modelDZm, modelDZo, multi ) 
 
 
QualAceFit <-mxTryHardOrdinal(QualAceModel, intervals = F) 
summary(QualAceFit) 
 
## Coerce threshold to be equal 
 
 
eqthres   <-mxModel(QualAceFit, name = "Equal Threshold") 
eqthres   <-omxSetParameters( eqthres, label="mvar1_th1", free=TRUE, values=0.5, 
newlabels="var1_th1")                  
eqthres   <-omxSetParameters( eqthres, label="fvar1_th1", free=TRUE, values=0.5, 
newlabels="var1_th1")   
eqthres   <-omxSetParameters( eqthres, label="dzvar1_th1", free=TRUE, values=0.5, 
newlabels="var1_th1")  
 
eqthresfit<-mxTryHardOrdinal(eqthres, intervals = F) 
summary(eqthresfit) 
tableFitStatistics(QualAceFit, eqthresfit) 
 
## Coerce males and females to be equal 
 
eqsex   <-mxModel(QualAceFit, name = "Equal sexes") 
eqsex   <-omxSetParameters( eqsex, label="am11", free=TRUE, values=0.04, 
newlabels="a11")                  
eqsex   <-omxSetParameters( eqsex, label="af11", free=TRUE, values=0.04, 
newlabels="a11")   
eqsex   <-omxSetParameters( eqsex, label="cm11", free=TRUE, values=0.5, 
newlabels="c11")  
eqsex   <-omxSetParameters( eqsex, label="cf11", free=TRUE, values=0.5, 
newlabels="c11")  
eqsex   <-omxSetParameters( eqsex, label="em11", free=TRUE, values=0.3, 
newlabels="e11")  
eqsex   <-omxSetParameters( eqsex, label="ef11", free=TRUE, values=0.3, 
newlabels="e11")  
 
eqsexfit<-mxTryHardOrdinal(eqsex, intervals = F) 
tableFitStatistics(QualAceFit, eqsexfit) 
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## NO sex 
 
nosex   <- omxSetParameters(eqsex, labels="ra11", free=FALSE, values=0.5, 
name="No sex Effects" )  
nosexfit<- mxTryHardOrdinal(nosex, intervals = F) 
nested <-list(eqthresfit,eqsexfit, nosexfit) 
tableFitStatistics(QualAceFit, nested) 
 
 
 
 
###----------------------------------------------------### 
###             BIVARIATE ANALYSIS                     ### 
###----------------------------------------------------### 
 
# set the number of variables per twin (nv) and total variables per twin pair (ntv) for 
automation 
vars      <- c("ecigEver3", "cccigEver3")  
#vars      <- c("cccigEver3", "ecigEver3")   #reverse order of variables to see if same 
results emerge 
nv        <- 2          # number of variables 
ntv       <- nv*2       # number of total variables 
selVars   <- paste(vars,c(rep("_T1",nv),rep("_T2",nv)),sep="")  
nth <- 1  # Number of thresholds per variable (only for binary data) 
 
# Subset the data to only the things I need 
twinData  <- data2[,c(selVars,'zyg2')] 
describe(twinData) 
summary(twinData) 
dim(twinData) 
 
#twinData2<-na.omit(twinData) 
#summary(twinData2) 
#dim(twinData2) 
twinDataBin <-twinData 
dim(twinDataBin) 
table(twinDataBin$zyg2) 
 
# Factorize Ordinal Variables using the mxFactor option 
twinDataBin[,c(1,3)]  <- mxFactor(twinDataBin[,c(1,3)], levels = c(0:nth)) 
twinDataBin[,c(2,4)]  <- mxFactor(twinDataBin[,c(2,4)], levels = c(0:nth)) 
 
 
# Twin correlations 
 
mzdat <- subset(twinDataBin, zyg2==c(1) | zyg2 ==2, selVars) 
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dzdat <- subset(twinDataBin, zyg2==c(3) | zyg2 ==4 | zyg2==5, selVars) 
 
polychor(mzdat$ecEver3_T1, mzdat$ecEver3_T2,std.err = T) 
.65+(1.96*.12) 
.65-(1.96*.12) 
polychor(mzdat$cccever3_T1, mzdat$cccever3_T2,std.err = T) 
.62+(1.96*.12) 
.62-(1.96*.12) 
 
polychor(dzdat$ecEver3_T1, dzdat$ecEver3_T2,std.err = T) 
.55+(1.96*.11) 
.55-(1.96*.11) 
polychor(dzdat$cccever3_T1, dzdat$cccever3_T2,std.err = T) 
.52+(1.96*.11) 
.52-(1.96*.11) 
 
# 1=MZM, 2= MZF, 3=DZM, 4=DZF, 5=ODZ 
#Vars      <- c("cccigEver3")  
#nv        <- 1          # number of variables 
#ntv       <- nv*2       # number of total variables 
#selVars   <- paste(Vars,c(rep("_T1",nv),rep("_T2",nv)),sep="")  
 
# Select Data for Analysis 
mzfData    <- subset(twinDataBin, zyg2==2, selVars) 
dzfData    <- subset(twinDataBin, zyg2==4, selVars) 
mzmData    <- subset(twinDataBin, zyg2==1, selVars) 
dzmData    <- subset(twinDataBin, zyg2==3, selVars) 
dzoData    <- subset(twinDataBin, zyg2==5, selVars) #males = T1, females = T2 
 
# Set Starting Values / 
svLTh     <- 0.8    # start value for first threshold 
svITh     <- 1       # start value for increments 
#svTh      <- c(0.7,1,0.7,1) 
svTh      <- matrix(rep(c(svLTh,(rep(svITh,nth-1)))),nrow=nth,ncol=ntv)     # start value 
for thresholds 
lbTh      <- matrix(rep(c(-3,(rep(0.001,nth-1))),nv),nrow=nth,ncol=ntv)     # lower bounds 
for thresholds 
 
#svTh      <- c(1,1)                    # start value for thresholds 
svPa      <- .4                        # start value for path coefficient 
svPaD     <- vech(diag(svPa,nv,nv))    # start values for diagonal of covariance matrix 
svPe      <- .8                        # start value for path coefficient for e 
svPeD     <- vech(diag(svPe,nv,nv))    # start values for diagonal of covariance matrix 
lbPa      <- .00001                     # start value for lower bounds 
lbPaD     <- diag(lbPa,nv,nv)          # lower bounds for diagonal of covariance matrix 
lbPaD[lower.tri(lbPaD)] <- 0         # lower bounds for below diagonal elements 
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lbPaD[upper.tri(lbPaD)] <- NA          # lower bounds for above diagonal elements 
 
 
# Set Starting Values 
aLabs     <- paste("a",rev(nv+1-sequence(1:nv)),rep(1:nv,nv:1),sep="") 
cLabs     <- paste("c",rev(nv+1-sequence(1:nv)),rep(1:nv,nv:1),sep="") 
eLabs     <- paste("e",rev(nv+1-sequence(1:nv)),rep(1:nv,nv:1),sep="") 
var1thM     <- paste("var1M","_th",1:nth, sep="")  
var2thM     <- paste("var2M","_th",1:nth, sep="") 
var1thF     <- paste("var1F","_th",1:nth, sep="")  
var2thF     <- paste("var2F","_th",1:nth, sep="") 
 
thUB      <- 2 
 
# ------------------------------------------------------------------------------ 
# PREPARE MODEL 
 
# ACE Model 
# Create Algebra for expected Mean Matrices to include differing thresholds for males 
and females 
meanG     <- mxMatrix( type="Zero", nrow=1, ncol=ntv, name="meanG" ) 
threGm     <- mxMatrix( type="Full", nrow=1, ncol=ntv, free=TRUE, values= svTh,  
                        labels=c(var1thM,var2thM), name="threGm",lbound=-2, ubound=2 ) 
threGf     <- mxMatrix( type="Full", nrow=1, ncol=ntv, free=TRUE, values=svTh,  
                        labels=c(var1thF,var2thF), name="threGf",lbound=-2, ubound=2  ) 
threGmf     <- mxMatrix( type="Full", nrow=1, ncol=ntv, free=TRUE, values=svTh,  
                         labels=c(var1thM,var2thM,var1thF,var2thF), name="threGmf", lbound=-
2, ubound=2  ) 
# Create Matrices for Path Coefficients 
pathA     <- mxMatrix( type="Lower", nrow=nv, ncol=nv, free=TRUE, 
values=c(0.7,0.5,0), #replacing svPaD 
                       label=aLabs, lbound=lbPaD, name="a" )  
pathC     <- mxMatrix( type="Lower", nrow=nv, ncol=nv, free=TRUE, 
values=c(0.8,0.6,0.8),  
                       label=cLabs, lbound=lbPaD, name="c" ) 
pathE     <- mxMatrix( type="Lower", nrow=nv, ncol=nv, free=TRUE,  
                       values=svPeD, label=eLabs, lbound=lbPaD, name="e" ) 
 
# Create Algebra for Variance Comptwonts 
covA      <- mxAlgebra( expression=a %*% t(a), name="A" ) 
covC      <- mxAlgebra( expression=c %*% t(c), name="C" )  
covE      <- mxAlgebra( expression=e %*% t(e), name="E" ) 
 
# Create Algebra for expected Variance/Covariance Matrices in MZ & DZ twins 
covP      <- mxAlgebra( expression= A+C+E, name="V" ) 
covMZ     <- mxAlgebra( expression= A+C, name="cMZ" ) 



 249 

covDZ     <- mxAlgebra( expression= 0.5%x%A+ C, name="cDZ" ) 
expCovMZ  <- mxAlgebra( expression= rbind( cbind(V, cMZ), cbind(t(cMZ), V)), 
name="expCovMZ" ) 
expCovDZ  <- mxAlgebra( expression= rbind( cbind(V, cDZ), cbind(t(cDZ), V)), 
name="expCovDZ" ) 
 
# Create Algebra for Standardization 
matI      <- mxMatrix( type="Iden", nrow=nv, ncol=nv, name="I") 
invSD     <- mxAlgebra( expression=solve(sqrt(I*V)), name="iSD") 
 
# Calculate genetic and environmental correlations 
corA      <- mxAlgebra( expression=solve(sqrt(I*A))%&%A, name ="rA" ) #cov2cor() 
corC      <- mxAlgebra( expression=solve(sqrt(I*C))%&%C, name ="rC" ) 
corE      <- mxAlgebra( expression=solve(sqrt(I*E))%&%E, name ="rE" ) 
 
## Calculate Phenotypic Correlation ## 
corP      <- mxAlgebra (expression=solve(sqrt(I*V)) %*% V %*% solve(sqrt(I*V)), 
name="rP") 
 
## Calculate Standardized Covariances ## 
stCovA    <- mxAlgebra (solve(sqrt(I*V)) %*% A %*% solve(sqrt(I*V)), name="stCovA") 
stCovC    <- mxAlgebra (solve(sqrt(I*V)) %*% C %*% solve(sqrt(I*V)), name="stCovC") 
stCovE    <- mxAlgebra (solve(sqrt(I*V)) %*% E %*% solve(sqrt(I*V)), name="stCovE") 
 
 
# Constrain Variance of Binary Variables 
matUnv    <- mxMatrix( type="Unit", nrow=nv, ncol=1, name="Unv1" ) 
var1      <- mxConstraint( expression=diag2vec(V)==Unv1, name="Var1" ) 
 
# Create Algebra for Variance Components 
rowVC     <- rep('VC',nv) 
colVC     <- rep(c('A','C','E','SA','SC','SE'),each=nv) 
estVC     <- mxAlgebra( expression=cbind(A,C,E,A/V,C/V,E/V), name="VC", 
dimnames=list(rowVC,colVC)) 
 
# Create Confidence Interval Objects 
ciACE  <- mxCI(c("rA", "rC", "rE", "stCovA","stCovC", "stCovE"))# 
"VC[1,seq(1,3*nv,nv),(2,seq(1,3*nv,nv)),(2,seq(2,3*nv,nv)))]" ) 
 
# Data objects for Multiple Groups 
dataMZf   <- mxData( observed=mzfData, type="raw" ) 
dataDZf   <- mxData( observed=dzfData, type="raw" ) 
dataMZm   <- mxData( observed=mzmData, type="raw" ) 
dataDZm   <- mxData( observed=dzmData, type="raw" ) 
dataDZo   <- mxData( observed=dzoData, type="raw" ) 
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# Expectation objects for Multiple Groups 
expMZf    <- mxExpectationNormal( covariance="expCovMZ", means="meanG",  
                                  dimnames=selVars, thresholds = "threGf") 
expDZf    <- mxExpectationNormal( covariance="expCovDZ", means="meanG",  
                                  dimnames=selVars, thresholds = "threGf" ) 
expMZm    <- mxExpectationNormal( covariance="expCovMZ", means="meanG",  
                                  dimnames=selVars, thresholds = "threGm" ) 
expDZm    <- mxExpectationNormal( covariance="expCovDZ", means="meanG",  
                                  dimnames=selVars, thresholds = "threGm" ) 
expDZo    <- mxExpectationNormal( covariance="expCovDZ", means="meanG",  
                                  dimnames=selVars, thresholds = "threGmf" ) 
funML     <- mxFitFunctionML() 
 
# Combine Groups 
parsZf    <- list( pathA, pathC, pathE,  
                   covA, covC, covE, covP, corA, corC, corE, corP, stCovA, stCovC, stCovE, 
                   meanG, threGf, matI, invSD, matUnv ) 
parsZm    <- list( pathA, pathC, pathE,  
                   covA, covC, covE, covP, corA, corC, corE, corP, stCovA, stCovC, stCovE, 
                   meanG, threGm, matI, invSD, matUnv ) 
parsZmf   <- list( pathA, pathC, pathE,  
                   covA, covC, covE, covP, corA, corC, corE, corP, stCovA, stCovC, stCovE, 
                   meanG, threGmf, matI, invSD, matUnv ) 
 
modelMZf  <- mxModel( parsZf, meanG, covMZ, expCovMZ, dataMZf, expMZf, funML, 
name="MZf" ) 
modelDZf  <- mxModel( parsZf, meanG, covDZ, expCovDZ, dataDZf, expDZf, funML, 
name="DZf" ) 
modelMZm  <- mxModel( parsZm, meanG, covMZ, expCovMZ, dataMZm, expMZm, 
funML, name="MZm" ) 
modelDZm  <- mxModel( parsZm, meanG, covDZ, expCovDZ, dataDZm, expDZm, 
funML, name="DZm" ) 
modelDZo  <- mxModel( parsZmf, meanG, covDZ, expCovDZ,dataDZo, expDZo, 
funML, name="DZo" ) 
multi     <- mxFitFunctionMultigroup( c("MZf","DZf","MZm","DZm","DZo") ) 
BivBinAceModel  <- mxModel( "BivBinACE", parsZf, parsZm, parsZmf, 
                            modelMZf, modelDZf, modelMZm, modelDZm, modelDZo, multi,  
                            estVC, ciACE) 
 
BivBinAceFit <-mxRun(BivBinAceModel, intervals = F) 
BivBinAceFit <-mxTryHardOrdinal(BivBinAceFit, intervals = F) 
BivBinAceFit2 <- mxTryHardOrdinal(BivBinAceFit, intervals = F) 
BivBinAceFit3 <- mxTryHardOrdinal(BivBinAceFit2, intervals = F) 
BivBinAceFit4 <- mxTryHardOrdinal(BivBinAceFit3, intervals = F) 
BivBinAceFit5 <- mxTryHardOrdinal(BivBinAceFit4, intervals = F) 
BivBinAceFit6 <- mxTryHardOrdinal(BivBinAceFit, intervals = F) 
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summary(BivBinAceFit6, verbose = T) 
BivBinAceFit6$algebras 
 
#BivBinAceFit7 <- mxBootstrap(BivBinAceFit6) 
#summary(BivBinAceFit7) 
#BivBinAceFit7b <- mxBootstrap(BivBinAceFit7, replications = 1000) 
#summary(BivBinAceFit7b) 
#BivBinAceFit7b$algebras 
 
#BivBinAceFit7c <- mxBootstrap(BivBinAceFit7b, replications = 1500) 
#summary(BivBinAceFit7c) 
#BivBinAceFit7c$algebras 
 
#BivBinAceFit7d <- mxBootstrap(BivBinAceFit7c, replications = 2000) 
#summary(BivBinAceFit7d) 
#BivBinAceFit7d$algebras 
# Confidence Interval calculation below 
 
# Test of covA 
BivBinAceModel8 <- BivBinAceFit6 
BivBinAceModel8<- omxSetParameters(BivBinAceModel8, labels=c( "a21"), 
free=FALSE, values=0 )  
BivBinAceFit8<- mxTryHardOrdinal(BivBinAceModel8, intervals = F) 
tableFitStatistics(BivBinAceFit6, BivBinAceFit8) 
 
#BivBinAceFit8a <- omxRunCI(BivBinAceFit8) 
summary(BivBinAceFit8, verbose=F) 
#BivBinAceFit8$algebras 
 
 
# Test of covC 
BivBinAceModel9 <- BivBinAceFit6 
BivBinAceModel9<- omxSetParameters(BivBinAceModel9, labels=c( "c21"), 
free=FALSE, values=0 )  
BivBinAceFit9<- mxRun(BivBinAceModel9, intervals = F) 
tableFitStatistics(BivBinAceFit6, BivBinAceFit9) 
 
 
# Test of covE 
BivBinAceModel10 <- BivBinAceFit6 
BivBinAceModel10<- omxSetParameters(BivBinAceModel10, labels=c("e21"), 
free=FALSE, values=0 )  
BivBinAceFit10<- mxTryHardOrdinal(BivBinAceModel10, intervals = F) 
tableFitStatistics(BivBinAceFit6, BivBinAceFit10) 
 
# Test of rP 
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BivBinAceModel11 <- BivBinAceFit6 
BivBinAceModel11<- omxSetParameters(BivBinAceModel11, labels="a21", 
free=FALSE, values=0 ) 
BivBinAceModel11<- omxSetParameters(BivBinAceModel11, labels="c21", 
free=FALSE, values=0 ) 
#BivBinAceModel11<- omxSetParameters(BivBinAceModel11, labels="e21", 
free=FALSE, values=0 )  
BivBinAceFit11<- mxTryHardOrdinal(BivBinAceModel11, intervals = F) 
 
tableFitStatistics(BivBinAceFit6, c(BivBinAceFit8, BivBinAceFit9, BivBinAceFit10, 
BivBinAceFit11)) 
 
# Test of covA/A 
#BivBinAceModel12 <- BivBinAceFit7a 
#BivBinAceModel12<- omxSetParameters(BivBinAceModel12, labels="a22", 
free=FALSE, values=0 )  
#BivBinAceFit12<- mxTryHardOrdinal(BivBinAceModel12, intervals = F) 
 
 
# Confidence Intervals 
mxOption(NULL, "Default optimizer", "CSOLNP") 
BivBinAceFit7a <- omxRunCI(BivBinAceFit7d) 
summary(BivBinAceFit7a, verbose=T) 
BivBinAceFit7a$algebras 
 
 
# Test of CE model 
 
BivBinAceModel12 <- BivBinAceFit6 
BivBinAceModel12<- omxSetParameters(BivBinAceModel12, labels=c( "a11","a21", 
"a22"), free=FALSE, values=0, name = "CE model" )  
BivBinAceFit12<- mxTryHardOrdinal(BivBinAceModel12, intervals = F) 
summary(BivBinAceFit12, verbose=T) 
tableFitStatistics(BivBinAceFit6, BivBinAceFit12) 
 
# Test of AE Model 
BivBinAceModel13 <- BivBinAceFit6 
BivBinAceModel13<- omxSetParameters(BivBinAceModel13, labels=c( "c11","c21", 
"c22"), free=FALSE, values=0, name = "AE model" )  
BivBinAceFit13<- mxTryHardOrdinal(BivBinAceModel13, intervals = F) 
tableFitStatistics(BivBinAceFit6, BivBinAceFit13) 
 
# Test of E Model 
BivBinAceModel16 <- BivBinAceFit6 
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BivBinAceModel16<- omxSetParameters(BivBinAceModel16, 
labels=c("a11","a21","a22", "c11","c21", "c22"), free=FALSE, values=0, name = "E 
model" )  
BivBinAceFit16<- mxTryHardOrdinal(BivBinAceModel16, intervals = F) 
tableFitStatistics(BivBinAceFit6, BivBinAceFit16) 
 
bivnested <-list(BivBinAceFit12, BivBinAceFit13,BivBinAceFit16) 
tableFitStatistics(BivBinAceFit6, bivnested) 
 
 
 
# Test of E crosspaths Model 
BivBinAceModel17 <- BivBinAceFit6 
BivBinAceModel17<- omxSetParameters(BivBinAceModel17, labels=c("a21","c21"), 
free=FALSE, values=0, name = "E model" )  
BivBinAceFit17<- mxTryHardOrdinal(BivBinAceModel17, intervals = T) 
summary(BivBinAceFit17, verbose=T) 
tableFitStatistics(BivBinAceFit6, BivBinAceFit17) 
 
BivBinAceModel18 <- BivBinAceFit17 
BivBinAceFit18<- mxTryHardOrdinal(BivBinAceModel18, intervals = T) 
summary(BivBinAceFit18, verbose=T) 
 
BivBinAceModel19 <- BivBinAceFit18 
BivBinAceFit19<- mxTryHardOrdinal(BivBinAceModel19, intervals = T) 
summary(BivBinAceFit19, verbose=T) 
 
 
# Using CE model, testing of C21 
 
BivBinAceModel14 <- BivBinAceModel12 
BivBinAceModel14<- omxSetParameters(BivBinAceModel14, labels=c( "c21"), 
free=FALSE, values=0, name = "CE model No C21" )  
BivBinAceFit14<- mxTryHardOrdinal(BivBinAceModel14, intervals = F) 
tableFitStatistics(BivBinAceFit12, BivBinAceFit14) 
 
# Using CE model, testing of E21 
 
BivBinAceModel15 <- BivBinAceModel14 
BivBinAceModel15<- omxSetParameters(BivBinAceModel15, labels=c( "e21"), 
free=FALSE, values=0, name = "CE model No Cross Paths" )  
BivBinAceFit15<- mxTryHardOrdinal(BivBinAceModel15, intervals = F) 
tableFitStatistics(BivBinAceFit14, BivBinAceFit15) 
tableFitStatistics(BivBinAceFit12, BivBinAceFit15) 
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###------------------------------------------### 
###             Correlated Factors Model     ### 
###------------------------------------------### 
 
mxOption( NULL, "Default optimizer","CSOLNP" ) 
 
# Create Functions to assign labels 
laLower   <- function(la,nv) { paste(la,rev(nv+1-sequence(1:nv)),rep(1:nv,nv:1),sep="_") 
} 
laSdiag   <- function(la,nv) { paste(la,rev(nv+1-sequence(1:(nv-1))),rep(1:(nv-1),(nv-
1):1),sep="_") } 
laFull    <- function(la,nv) { paste(la,1:nv,rep(1:nv,each=nv),sep="_") } 
laDiag    <- function(la,nv) { paste(la,1:nv,1:nv,sep="_") }  
laSymm    <- function(la,nv) { paste(la,rev(nv+1-sequence(1:nv)),rep(1:nv,nv:1),sep="_") 
} 
 
# Create Algebra for expected Mean Matrices to include differing thresholds for males 
and females 
meanG     <- mxMatrix( type="Zero", nrow=1, ncol=ntv, name="meanG" ) 
threGm     <- mxMatrix( type="Full", nrow=1, ncol=ntv, free=TRUE, values= svTh,  
                        labels=c(var1thM,var2thM), name="threGm",lbound=-2, ubound=2 ) 
threGf     <- mxMatrix( type="Full", nrow=1, ncol=ntv, free=TRUE, values=svTh,  
                        labels=c(var1thF,var2thF), name="threGf",lbound=-2, ubound=2  ) 
threGmf     <- mxMatrix( type="Full", nrow=1, ncol=ntv, free=TRUE, values=svTh,  
                         labels=c(var1thM,var2thM,var1thF,var2thF), name="threGmf", lbound=-
2, ubound=2  ) 
 
# Matrices a, c, and e to store a, c, and e path coefficients 
pathA    <- mxMatrix( type="Diag", nrow=nv, ncol=nv, free=TRUE, values=.5, 
label=laDiag("a",nv), lbound=.0001, name="a" ) 
pathC   <- mxMatrix( type="Diag", nrow=nv, ncol=nv, free=TRUE, values=.5, 
label=laDiag("c",nv), lbound=.0001, name="c" ) 
pathE    <- mxMatrix( type="Diag", nrow=nv, ncol=nv, free=TRUE, values=.5, 
label=laDiag("e",nv), lbound=.0001, name="e" ) 
 
 
pathRa   <- mxMatrix( type="Stand", nrow=nv, ncol=nv, free=TRUE, values=.4, 
label=laSdiag("ra",nv), lbound=-1, ubound=1, name="Ra" ) 
pathRc   <- mxMatrix( type="Stand", nrow=nv, ncol=nv, free=TRUE, values=.4, 
label=laSdiag("rc",nv), lbound=-1, ubound=1, name="Rc" ) 
pathRe  <- mxMatrix( type="Stand", nrow=nv, ncol=nv, free=TRUE, values=.4, 
label=laSdiag("re",nv), lbound=-1, ubound=1, name="Re" ) 
 
# Matrices A, C, and E compute variance components      
      
covA     <- mxAlgebra( expression=a %*% (Ra) %*% t(a), name="A" ) 
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covC     <- mxAlgebra( expression=c %*% (Rc) %*% t(c), name="C" ) 
covE     <- mxAlgebra( expression=e %*% (Re) %*% t(e), name="E" ) 
 
# Create Algebra for expected Variance/Covariance Matrices in MZ & DZ twins 
covP      <- mxAlgebra( expression= A+C+E, name="V" ) 
covMZ     <- mxAlgebra( expression= A+C, name="cMZ" ) 
covDZ     <- mxAlgebra( expression= 0.5%x%A+ C, name="cDZ" ) 
expCovMZ  <- mxAlgebra( expression= rbind( cbind(V, cMZ), cbind(t(cMZ), V)), 
name="expCovMZ" ) 
expCovDZ  <- mxAlgebra( expression= rbind( cbind(V, cDZ), cbind(t(cDZ), V)), 
name="expCovDZ" ) 
 
matI      <- mxMatrix( type="Iden", nrow=nv, ncol=nv, name="I" ) 
invSDm    <- mxAlgebra( expression=solve(sqrt(I*V)), name="iSD" ) 
 
## Calculate Standardized Covariances ## 
stCovA    <- mxAlgebra (solve(sqrt(I*V)) %*% A %*% solve(sqrt(I*V)), name="stCovA") 
stCovC    <- mxAlgebra (solve(sqrt(I*V)) %*% C %*% solve(sqrt(I*V)), name="stCovC") 
stCovE    <- mxAlgebra (solve(sqrt(I*V)) %*% E %*% solve(sqrt(I*V)), name="stCovE") 
 
 
# Data objects for Multiple Groups 
dataMZf   <- mxData( observed=mzfData, type="raw" ) 
dataDZf   <- mxData( observed=dzfData, type="raw" ) 
dataMZm   <- mxData( observed=mzmData, type="raw" ) 
dataDZm   <- mxData( observed=dzmData, type="raw" ) 
dataDZo   <- mxData( observed=dzoData, type="raw" ) 
 
# Expectation objects for Multiple Groups 
expMZf    <- mxExpectationNormal( covariance="expCovMZ", means="meanG",  
                                  dimnames=selVars, thresholds = "threGf") 
expDZf    <- mxExpectationNormal( covariance="expCovDZ", means="meanG",  
                                  dimnames=selVars, thresholds = "threGf" ) 
expMZm    <- mxExpectationNormal( covariance="expCovMZ", means="meanG",  
                                  dimnames=selVars, thresholds = "threGm" ) 
expDZm    <- mxExpectationNormal( covariance="expCovDZ", means="meanG",  
                                  dimnames=selVars, thresholds = "threGm" ) 
expDZo    <- mxExpectationNormal( covariance="expCovDZ", means="meanG",  
                                  dimnames=selVars, thresholds = "threGmf" ) 
funML     <- mxFitFunctionML() 
 
 
# Algebras generated to hold Parameter Estimates and Derived Variance Components 
colVarsZ <- paste(selVars,rep(c('A','C','E','SA','SC','SE'),each=nv),sep="") 
estVarsZ <- mxAlgebra( cbind(A,C,E,A/V,C/V,E/V), name="VarsZ", 
dimnames=list(NULL,colVarsZ)) 
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# Combine Groups 
makeModel  <- function(name) { 
  parsZf    <- list( pathA, pathC, pathE, pathRa, pathRc, pathRe, covA, covC, covE, 
covP, estVarsZ ) 
  parsZm    <- list( pathA, pathC, pathE, pathRa, pathRc, pathRe, covA, covC, covE, 
covP, estVarsZ ) 
  modelMZf  <- mxModel( parsZf ,meanG, covMZ, dataMZf, expCovMZ, funML, 
name="MZf" ) 
  modelDZf  <- mxModel( parsZf, meanG, covDZ, dataDZf, expCovDZ, funML, 
name="DZf" ) 
  modelMZm  <- mxModel( parsZm, meanG, covMZ, dataMZm, expCovMZ, funML, 
name="MZm" ) 
  modelDZm  <- mxModel( parsZm, meanG, covDZ, dataDZf, expCovDZ, funML, 
name="DZm" ) 
  modelDZo  <- mxModel( parsZmf, meanG, covDZ, expCovDZ,dataDZo, expCovDZ, 
funML, name="DZo" ) 
  minus2ll  <- mxAlgebra( MZf.objective+ DZf.objective+ MZm.objective+ DZm.objective, 
name="m2LL" ) 
  name      <- mxModel( name, parsZf, parsZm, modelMZf, modelDZf, modelMZm, 
modelDZm, minus2ll) 
   
}  
corrfactormodel <- makeModel("Correlated Factor Model") 
 
 
 
# Combine Groups 
parsZf    <- list( pathA, pathC, pathE, pathRa, pathRc, pathRe, 
                   covA, covC, covE, covP, corA, corC, corE, corP, stCovA, stCovC, stCovE, 
                   meanG, threGf, matI, invSD, matUnv ) 
parsZm    <- list( pathA, pathC, pathE, pathRa, pathRc, pathRe, 
                   covA, covC, covE, covP, corA, corC, corE, corP, stCovA, stCovC, stCovE, 
                   meanG, threGm, matI, invSD, matUnv ) 
parsZmf   <- list( pathA, pathC, pathE, pathRa, pathRc, pathRe, 
                   covA, covC, covE, covP, corA, corC, corE, corP, stCovA, stCovC, stCovE, 
                   meanG, threGmf, matI, invSD, matUnv ) 
 
modelMZf  <- mxModel( parsZf, meanG, covMZ, expCovMZ, dataMZf, expMZf, funML, 
name="MZf" ) 
modelDZf  <- mxModel( parsZf, meanG, covDZ, expCovDZ, dataDZf, expDZf, funML, 
name="DZf" ) 
modelMZm  <- mxModel( parsZm, meanG, covMZ, expCovMZ, dataMZm, expMZm, 
funML, name="MZm" ) 
modelDZm  <- mxModel( parsZm, meanG, covDZ, expCovDZ, dataDZm, expDZm, 
funML, name="DZm" ) 
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modelDZo  <- mxModel( parsZmf, meanG, covDZ, expCovDZ,dataDZo, expDZo, 
funML, name="DZo" ) 
multi     <- mxFitFunctionMultigroup( c("MZf","DZf","MZm","DZm","DZo") ) 
corrfactormodel  <- mxModel( "Correlated Factors", parsZf, parsZm, parsZmf, 
                            modelMZf, modelDZf, modelMZm, modelDZm, modelDZo, multi,  
                            estVC, ciACE) 
 
# ------------------------------------------------------------------------------ 
# RUN MODEL 
 
#  
corrfactorfit   <- mxRun(corrfactormodel) 
summary(corrfactorfit) 
corrfactorfit$algebras 
 
corrfactorfit2<-mxTryHardOrdinal(corrfactorfit) 
summary(corrfactorfit2) 
corrfactorfit2$algebras 
 
corrfactornoc <-corrfactorfit 
corrfactornoc <-omxSetParameters(corrfactornoc, labels = "rc_2_1", free=F, values=0) 
corrfactornocfit <-mxTryHardOrdinal(corrfactornoc, intervals = F) 
tableFitStatistics(corrfactorfit2, corrfactornocfit) 
 
corrfactornoa <-corrfactorfit 
corrfactornoa <-omxSetParameters(corrfactornoa, labels = "ra_2_1", free=F, values=0) 
corrfactornoafit <-mxTryHardOrdinal(corrfactornoa, intervals = F) 
tableFitStatistics(corrfactorfit2, corrfactornoafit) 
 
 
# Confidence Intervals 
 
corrfactorfit3 <- omxRunCI(corrfactorfit2) 
summary(corrfactorfit3, verbose=T) 
corrfactorfit3$algebras 
 
 
 
corrfactorfit4 <- omxRunCI(corrfactorfit3) 
summary(corrfactorfit4, verbose=T) 
 
 
 
###--------------------------------------------------------### 
###                   Bivariate Model Assumptions          ### 
###--------------------------------------------------------### 
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# ------------------------------------------------------------------------------------------------------------------
---- 
 
# PREPARE DATA 
 
# Select Variables for Analysis 
 
Vars      <- c('ecigEver3', 'cccigEver3')  
nv        <- 2          # number of variables 
ntv       <- nv*2       # number of total variables 
selVars   <- paste(Vars,c(rep("_T1",nv),rep("_T2",nv)),sep="")  
 
# Specify Thresholds for Ordinal Variables  
## nth: number of thresholds; fcat: first category; lcat: last category; ncat: number of 
categories; 
nth1      <- 1 ;  fcat1     <- 0 ;  lcat1     <- fcat1+nth1 ;  ncat1     <- nth1+1 
nth       <- max(nth1) 
 
# Specify Arguments for Threshold Matrices 
## lth: lowest threshold; ith: increment;  
lth1      <- 0 ;  ith1      <-  0 ;   
lth2      <- 0 ;  ith2      <-  0 ;   
thFree    <- c(rep(T,nth1),rep(F,nth-nth1)) 
 
#thValues  <- matrix(rep(c(lth1,(rep(ith1,nth-1)),lth2,(rep(ith2,nth-1)),lth3,(rep(ith3,nth-
1))),nv),nrow=nth,ncol=nv) 
thValues  <- matrix(c(lth1,(rep(ith1,nth-1)),lth2,(rep(ith2,nth-1))),nrow=nth,ncol=nv) 
thLBound  <- matrix(rep(c(-3,(rep(0.001,nth-1))),nv),nrow=nth,ncol=nv) 
#thLBound  <- matrix(c(-3,0, -3,0, -3,0),nrow=nth,ncol=nv) 
 
 
# Select Data for Analysis 
twinData  <- data2[,c(selVars,'zyg2')] 
#twinData  <- FTall[,c(selVars,'zygroup5')] 
describe(twinData) 
twinDataBin <- twinData 
 
# Factorize Ordinal Variables 
twinDataBin[,c(1,nv+1)]  <- mxFactor(twinDataBin[,c(1,nv+1)], levels = c(0:nth1)) 
twinDataBin[,c(2,nv+2)]  <- mxFactor(twinDataBin[,c(2,nv+2)], levels = c(0:nth1)) 
#twinDataBin[,c(3,nv+3)]  <- mxFactor(twinDataBin[,c(3,nv+3)], levels = c(0:nth3)) 
 
# Create Datasets by Zygosity- 5 group 
dataBinMZm  <- subset(twinDataBin, zyg2==1, selVars) 
dataBinMZf  <- subset(twinDataBin, zyg2==2, selVars) 
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dataBinDZm  <- subset(twinDataBin, zyg2==3, selVars) 
dataBinDZf  <- subset(twinDataBin, zyg2==4, selVars) 
dataBinDZo  <- subset(twinDataBin, zyg2==5, selVars) 
 
# Set Starting Values 
svLTh <- -1.5 # start value for first threshold 
svITh <- 1 # start value for increments 
svTh <- matrix(rep(c(svLTh,(rep(svITh,nth-1)))),nrow=nth,ncol=nv) # start value for 
thresholds 
lbTh <- matrix(rep(c(-3,(rep(0.001,nth-1))),nv),nrow=nth,ncol=nv) # lower bounds for 
thresholds 
svCor <- .5 # start value for correlations 
lbCor <- -0.99 # lower bound for correlations 
ubCor <- 0.99 # upper bound for correlations 
 
# Create Labels 
labThMZM <- labTh("MZM",selVars,nth) 
labThDZM <- labTh("DZM",selVars,nth) 
labThMZF <- labTh("MZF",selVars,nth) 
labThDZF <- labTh("DZF",selVars,nth) 
labThDZO <- labTh("DZO",selVars,nth) 
 
labThZ <- labTh("Z",selVars,nth) 
labCrMZM <- labSdiag("corMZM",ntv) 
labCrDZM <- labSdiag("corDZM",ntv) 
labCrMZF <- labSdiag("corMZF",ntv) 
labCrDZF <- labSdiag("corDZF",ntv) 
labCrDZO <- labSdiag("corDZO",ntv) 
labCrZ <- labSdiag("corZ",ntv) 
 
# ------------------------------------------------------------------------------------------------------------------
---- 
# PREPARE MODEL 
# Create Algebra for expected Mean & Threshold Matrices 
meanG <- mxMatrix( type="Zero", nrow=1, ncol=ntv, name="meanG" ) 
thinMZM <- mxMatrix( type="Full", nrow=nth, ncol=ntv, free=thFree, values=svTh, 
lbound=lbTh, labels=labThMZM, name="thinMZM" ) 
thinDZM <- mxMatrix( type="Full", nrow=nth, ncol=ntv, free=thFree, values=svTh, 
lbound=lbTh, labels=labThDZM, name="thinDZM" ) 
thinMZF <- mxMatrix( type="Full", nrow=nth, ncol=ntv, free=thFree, values=svTh, 
lbound=lbTh, labels=labThMZF, name="thinMZF" ) 
thinDZF <- mxMatrix( type="Full", nrow=nth, ncol=ntv, free=thFree, values=svTh, 
lbound=lbTh, labels=labThDZF, name="thinDZF" ) 
thinDZO <- mxMatrix( type="Full", nrow=nth, ncol=ntv, free=thFree, values=svTh, 
lbound=lbTh, labels=labThDZO, name="thinDZO" ) 
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inc <- mxMatrix( type="Lower", nrow=nth, ncol=nth, free=FALSE, values=1, name="inc" 
) 
threMZM <- mxAlgebra( expression= inc %*% thinMZM, name="threMZM" ) 
threDZM <- mxAlgebra( expression= inc %*% thinDZM, name="threDZM" ) 
threMZF <- mxAlgebra( expression= inc %*% thinMZF, name="threMZF" ) 
threDZF <- mxAlgebra( expression= inc %*% thinDZF, name="threDZF" ) 
threDZO <- mxAlgebra( expression= inc %*% thinDZO, name="threDZO" ) 
 
# Create Algebra for expected Correlation Matrices 
corMZM <- mxMatrix( type="Stand", nrow=ntv, ncol=ntv, free=TRUE, values=svCor, 
lbound=lbCor, ubound=ubCor, labels=labCrMZM, 
                    name="corMZM" ) 
corDZM <- mxMatrix( type="Stand", nrow=ntv, ncol=ntv, free=TRUE, values=svCor, 
lbound=lbCor, ubound=ubCor, labels=labCrDZM, 
                    name="corDZM" ) 
corMZF <- mxMatrix( type="Stand", nrow=ntv, ncol=ntv, free=TRUE, values=svCor, 
lbound=lbCor, ubound=ubCor, labels=labCrMZF, 
                    name="corMZF" ) 
corDZF <- mxMatrix( type="Stand", nrow=ntv, ncol=ntv, free=TRUE, values=svCor, 
lbound=lbCor, ubound=ubCor, labels=labCrDZF, 
                    name="corDZF" ) 
corDZO <- mxMatrix( type="Stand", nrow=ntv, ncol=ntv, free=TRUE, values=svCor, 
lbound=lbCor, ubound=ubCor, labels=labCrDZO, 
                    name="corDZO" ) 
 
# Create Data Objects for Multiple Groups 
dataMZM <- mxData( observed=dataBinMZm, type="raw" ) 
dataDZM <- mxData( observed=dataBinDZm, type="raw" ) 
dataMZF <- mxData( observed=dataBinMZf, type="raw" ) 
dataDZF <- mxData( observed=dataBinDZf, type="raw" ) 
dataDZO <- mxData( observed=dataBinDZo, type="raw" ) 
 
# Create Expectation Objects for Multiple Groups 
# Note- Means are set to zero and the thresholds change.  So,everyone can have the 
same meanG but the thresholds vary. 
 
expMZM <- mxExpectationNormal( covariance="corMZM", means="meanG", 
dimnames=selVars, thresholds="threMZM" ) 
expDZM <- mxExpectationNormal( covariance="corDZM", means="meanG", 
dimnames=selVars, thresholds="threDZM" ) 
expMZF <- mxExpectationNormal( covariance="corMZF", means="meanG", 
dimnames=selVars, thresholds="threMZF" ) 
expDZF <- mxExpectationNormal( covariance="corDZF", means="meanG", 
dimnames=selVars, thresholds="threDZF" ) 
expDZO <- mxExpectationNormal( covariance="corDZO", means="meanG", 
dimnames=selVars, thresholds="threDZO" ) 
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funML <- mxFitFunctionML() 
 
# Create Model Objects for Multiple Groups 
modelMZM <- mxModel( meanG, corMZM, thinMZM, inc, threMZM, dataMZM, expMZM, 
funML, name="MZM" ) 
modelDZM <- mxModel( meanG, corDZM, thinDZM, inc, threDZM, dataDZM, expDZM, 
funML, name="DZM" ) 
modelMZF <- mxModel( meanG, corMZF, thinMZF, inc, threMZF, dataMZF, expMZF, 
funML, name="MZF" ) 
modelDZF <- mxModel( meanG, corDZF, thinDZF, inc, threDZF, dataDZF, expDZF, 
funML, name="DZF" ) 
modelDZO <- mxModel( meanG, corDZO, thinDZO, inc, threDZO, dataDZO, expDZO, 
funML, name="DZO" ) 
 
multi <- mxFitFunctionMultigroup( c("MZM", "DZM", "MZF", "DZF", "DZO") ) 
 
# Create Confidence Interval Objects 
ciCor <- mxCI( c('MZM.corMZM','DZM.corDZM', 'MZF.corMZF','DZF.corDZF', 
'DZO.corDZO'  )) 
#ciThre <- mxCI( c('MZ.threMZ','DZ.threDZ' )) 
 
# Build Saturated Model with Confidence Intervals 
modelSAT <- mxModel( "BivSAT", modelMZM, modelDZM, modelMZF, modelDZF, 
modelDZO, multi, ciCor ) 
modelSAT <- mxOption(modelSAT, "mvnRelEps", 1e-3) 
# ------------------------------------------------------------------------------------------------------------------
---- 
# RUN MODEL 
# Run Saturated Model 
mxOption( NULL, "Default optimizer","CSOLNP" ) 
 
fitSAT <- mxRun( modelSAT, intervals=FALSE) 
fitSAT <- mxTryHardOrdinal(fitSAT, intervals=FALSE, scale=0.5 ) 
sumSAT <- summary( fitSAT ) 
# Print Goodness-of-fit Statistics & Parameter Estimates 
fitGofs(fitSAT) 
fitEsts(fitSAT) 
mxGetExpected( fitSAT, c("thresholds","covariance")) 
options("max.print"=1100) 
summary(fitSAT, verbose =TRUE) 
# ------------------------------------------------------------------------------------------------------------------
---- 
# RUN SUBMODELS 
# Constrain expected Thresholds  
# to be equal across Twin Order 
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modelETO <- mxModel( fitSAT, name="threeETOo" ) 
 
## CIGS 
  modelETO <- omxSetParameters( modelETO, 
label=c("t1MZMcccigEver3_T2","t1MZMcccigEver3_T1"), free=T, values=svLTh, 
newlabels='t1MZMcccigEver3', strict=F ) 
  modelETO <- omxSetParameters( modelETO, 
label=c("t1DZMcccigEver3_T2","t1DZMcccigEver3_T1"), free=T, values=svLTh, 
newlabels="t1DZMcccigEver3" , strict=F)  
  modelETO <- omxSetParameters( modelETO, 
label=c("t1MZFcccigEver3_T2","t1MZFcccigEver3_T1"), free=T, values=svLTh, 
newlabels="t1MZFcccigEver3" , strict=F) 
  modelETO <- omxSetParameters( modelETO, 
label=c("t1DZFcccigEver3_T2","t1DZFcccigEver3_T1"), free=T, values=svLTh, 
newlabels="t1DZFcccigEver3", strict=F )  
  modelETO <- omxSetParameters( modelETO, 
label=c("t1DZOcccigEver3_T2","t1DZOcccigEver3_T1"), free=T, values=svLTh, 
newlabels="t1DZOcccigEver3", strict=F )  
 
## ECIGS 
  modelETO <- omxSetParameters( modelETO, label=c("t1MZMecigEver3_T1", 
"t1MZMecigEver3_T2"), free=T, values=svITh, newlabels="t1MZMecigEver3", strict=F ) 
  modelETO <- omxSetParameters( modelETO, label=c("t1DZMecigEver3_T1", 
"t1DZMecigEver3_T2"), free=T, values=svITh, newlabels="t1DZMecigEver3", strict=F )  
  modelETO <- omxSetParameters( modelETO, label=c("t1MZFecigEver3_T1", 
"t1MZFecigEver3_T2"), free=T, values=svITh, newlabels="t1MZFecigEver3", strict=F ) 
  modelETO <- omxSetParameters( modelETO, label=c("t1DZFecigEver3_T1", 
"t1DZFecigEver3_T2"), free=T, values=svITh, newlabels="t1DZFecigEver3", strict=F )  
  modelETO <- omxSetParameters( modelETO, label=c("t1DZOecigEver3_T1", 
"t1DZOecigEver3_T2"), free=T, values=svITh, newlabels="t1DZOecigEver3", strict=F ) 
 
modelETO <-  mxOption(modelETO, "mvnRelEps", 1e-3) 
fitETO <- mxTryHardOrdinal( modelETO, intervals=F) 
fitGofs(fitETO); fitEsts(fitETO) 
 
# Constrain expected Thresholds to be equal across Twin Order and Zygosity 
modelETZ <- mxModel( fitETO, name="twoETZo" ) 
modelETZ<- omxSetParameters(modelETZ, label=c("t1MZMcccigEver3", 
"t1MZFcccigEver3", "t1DZFcccigEver3","t1DZMcccigEver3", "t1DZOcccigEver3"), free = 
T, values=svITh, newlabels="t1cccigEver3", strict=F)   
modelETZ<- omxSetParameters(modelETZ, label=c("t1MZMecigEver3", 
"t1MZFecigEver3", "t1DZFecigEver3","t1DZMecigEver3", "t1DZOecigEver3"), free = T, 
values=svITh, newlabels="t1ecigEver3", strict=F) 
fitETZ <- mxTryHardOrdinal( modelETZ, intervals=F ) 
fitGofs(fitETZ); fitEsts(fitETZ) 
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# Print Comparative Fit Statistics 
satNested <- list(fitETO,fitETZ) 
tableFitStatistics(fitSAT, satNested) 
 
 
#####--------------------#### 
##### Equating Sexes     ####   
#####--------------------#### 
 
 
# set the number of variables per twin (nv) and total variables per twin pair (ntv) for 
automation 
vars      <- c("ecigEver3", "cccigEver3")  
#vars      <- c("cccigEver3", "ecigEver3")   #reverse order of variables to see if same 
results emerge 
nv        <- 2          # number of variables 
ntv       <- nv*2       # number of total variables 
selVars   <- paste(vars,c(rep("_T1",nv),rep("_T2",nv)),sep="")  
nth <- 1  # Number of thresholds per variable (only for binary data) 
 
# Subset the data to only the things I need 
twinData  <- data2[,c(selVars,'zyg2')] 
describe(twinData) 
summary(twinData) 
dim(twinData) 
 
#twinData2<-na.omit(twinData) 
#summary(twinData2) 
#dim(twinData2) 
twinDataBin <-twinData 
dim(twinDataBin) 
table(twinDataBin$zyg2) 
 
# Factorize Ordinal Variables using the mxFactor option 
twinDataBin[,c(1,3)]  <- mxFactor(twinDataBin[,c(1,3)], levels = c(0:nth)) 
twinDataBin[,c(2,4)]  <- mxFactor(twinDataBin[,c(2,4)], levels = c(0:nth)) 
 
 
# Twin correlations 
 
mzdat <- subset(twinDataBin, zyg2==c(1) | zyg2 ==2, selVars) 
dzdat <- subset(twinDataBin, zyg2==c(3) | zyg2 ==4 | zyg2==5, selVars) 
 
# 1=MZM, 2= MZF, 3=DZM, 4=DZF, 5=ODZ 
#Vars      <- c("ecigEver3", "cccigEver3")  
#nv        <- 2          # number of variables 
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#ntv       <- nv*2       # number of total variables 
#selVars   <- paste(Vars,c(rep("_T1",nv),rep("_T2",nv)),sep="")  
 
# Select Data for Analysis 
mzfData    <- subset(twinDataBin, zyg2==2, selVars) 
dzfData    <- subset(twinDataBin, zyg2==4, selVars) 
mzmData    <- subset(twinDataBin, zyg2==1, selVars) 
dzmData    <- subset(twinDataBin, zyg2==3, selVars) 
dzoData    <- subset(twinDataBin, zyg2==5, selVars) #males = T1, females = T2 
 
# Set Starting Values / 
svLTh     <- 0.8    # start value for first threshold 
svITh     <- 1       # start value for increments 
#svTh      <- c(0.7,1,0.7,1) 
svTh      <- matrix(rep(c(svLTh,(rep(svITh,nth-1)))),nrow=nth,ncol=ntv)     # start value 
for thresholds 
lbTh      <- matrix(rep(c(-3,(rep(0.001,nth-1))),nv),nrow=nth,ncol=ntv)     # lower bounds 
for thresholds 
 
#svTh      <- c(1,1)                    # start value for thresholds 
svPa      <- .4                        # start value for path coefficient 
svPaD     <- vech(diag(svPa,nv,nv))    # start values for diagonal of covariance matrix 
svPe      <- .8                        # start value for path coefficient for e 
svPeD     <- vech(diag(svPe,nv,nv))    # start values for diagonal of covariance matrix 
lbPa      <- .00001                     # start value for lower bounds 
lbPaD     <- diag(lbPa,nv,nv)          # lower bounds for diagonal of covariance matrix 
lbPaD[lower.tri(lbPaD)] <- 0         # lower bounds for below diagonal elements 
lbPaD[upper.tri(lbPaD)] <- NA          # lower bounds for above diagonal elements 
 
 
# Set Starting Values 
aLabs     <- paste("a",rev(nv+1-sequence(1:nv)),rep(1:nv,nv:1),sep="") 
cLabs     <- paste("c",rev(nv+1-sequence(1:nv)),rep(1:nv,nv:1),sep="") 
eLabs     <- paste("e",rev(nv+1-sequence(1:nv)),rep(1:nv,nv:1),sep="") 
mvar1th     <- paste("mvar1","_th",1:nth, sep="")  
mvar2th     <- paste("mvar2","_th",1:nth, sep="") 
fvar1th     <- paste("fvar1","_th",1:nth, sep="")  
fvar2th     <- paste("fvar2","_th",1:nth, sep="") 
#dzvar1th    <-paste("var1DZ", "_th", 1:nth, sep="") 
#dzvar2th    <-paste("var2DZ", "_th", 1:nth, sep="") 
 
 
thUB      <- 2 
 
# ------------------------------------------------------------------------------ 
# PREPARE MODEL 
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# General non-scalar ACE Model 
# Matrices declared to store a, c, and e Path Coefficients 
pathAf    <- mxMatrix( "Lower", nrow=nv, ncol=nv, free=TRUE, ubound = 0.99, lbound = 
-0.99, values=.6, label=c("af11", "af21", "af22"), name="af" )  
pathCf    <- mxMatrix( "Lower", nrow=nv, ncol=nv, free=TRUE, ubound = 0.99, lbound = 
-0.99, values=.6, label=c("cf11", "cf21", "cf22"), name="cf" ) 
pathEf    <- mxMatrix( "Lower", nrow=nv, ncol=nv, free=TRUE, ubound = 0.99, lbound = 
-0.99, values=.6, label=c("ef11", "ef21", "ef22"), name="ef" ) 
pathAm    <- mxMatrix( "Lower", nrow=nv, ncol=nv, free=TRUE, ubound = 0.99, lbound 
= -0.99, values=.6, label=c("am11", "am21", "am22"), name="am" )  
pathCm    <- mxMatrix( "Lower", nrow=nv, ncol=nv, free=TRUE, ubound = 0.99, lbound 
= -0.99, values=.6, label=c("cm11", "cm21", "cm22"), name="cm" ) 
pathEm    <- mxMatrix( "Lower", nrow=nv, ncol=nv, free=TRUE, ubound = 0.99, lbound 
= -0.99, values=.6, label=c("em11", "em21", "em22"), name="em" ) 
pathRa    <- mxMatrix( "Lower", nrow=1, ncol=1, free=TRUE,  values=1, label="ra11", 
name="ra", ubound=1, lbound=0 ) 
 
# Matrices generated to hold A, C, and E computed Variance Components 
covAf     <- mxAlgebra( af %*% t(af), name="Af" ) 
covCf     <- mxAlgebra( cf %*% t(cf), name="Cf" )  
covEf     <- mxAlgebra( ef %*% t(ef), name="Ef" ) 
covAm     <- mxAlgebra( am %*% t(am), name="Am" ) 
covCm     <- mxAlgebra( cm %*% t(cm), name="Cm" )  
covEm     <- mxAlgebra( em %*% t(em), name="Em" ) 
 
# Algebra to compute total variances and standard deviations (diagonal only) 
covPf     <- mxAlgebra( Af+Cf+Ef, name="Vf" ) 
covPm     <- mxAlgebra( Am+Cm+Em, name="Vm" ) 
 
# Algebras generated to hold Parameter Estimates and Derived Variance Components 
colVarsZf <- c('Af','Cf','Ef','SAf','SCf','SEf') 
estVarsZf <- mxAlgebra( cbind(Af,Cf,Ef,Af/Vf,Cf/Vf,Ef/Vf), name="VarsZf", 
dimnames=list(NULL,colVarsZf)) 
colVarsZm <- c('Am','Cm','Em','SAm','SCm','SEm') 
estVarsZm <- mxAlgebra( cbind(Am,Cm,Em,Am/Vm,Cm/Vm,Em/Vm), name="VarsZm", 
dimnames=list(NULL,colVarsZm)) 
 
# Algebra for expected Mean and Variance/Covariance Matrices in MZ & DZ twins 
#meanGf    <- mxMatrix( type="Full", nrow=1, ncol=ntv, free=TRUE, values=20, 
label="meanf", name="expMeanGf" ) 
#meanGm    <- mxMatrix( type="Full", nrow=1, ncol=ntv, free=TRUE, values=20, 
label="meanm", name="expMeanGm" ) 
#meanGfm   <- mxMatrix( type="Full", nrow=1, ncol=ntv, free=TRUE, values=20, 
label=c("meanf","meanm"), name="expMeanGfm" ) 
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meanGf    <- mxMatrix( type="Zero", nrow=1, ncol=ntv, label="meanf", 
name="expMeanGf" ) 
meanGm    <- mxMatrix( type="Zero", nrow=1, ncol=ntv, label="meanm", 
name="expMeanGm" ) 
meanGfm   <- mxMatrix( type="Zero", nrow=1, ncol=ntv, label=c("meanf","meanm"), 
name="expMeanGfm" ) 
covMZf    <- mxAlgebra( expression= rbind( cbind(Vf, Af+Cf), cbind(Af+Cf, Vf)), 
name="expCovMZf" ) 
covDZf    <- mxAlgebra( expression= rbind( cbind(Vf, 0.5%x%Af+Cf), 
cbind(0.5%x%Af+Cf, Vf)), name="expCovDZf" ) 
covMZm    <- mxAlgebra( expression= rbind( cbind(Vm, Am+Cm), cbind(Am+Cm, Vm)), 
name="expCovMZm" ) 
covDZm    <- mxAlgebra( expression= rbind( cbind(Vm, 0.5%x%Am+Cm), 
cbind(0.5%x%Am+Cm, Vm)), name="expCovDZm" ) 
CVfm      <- mxAlgebra( expression= ra%x%(af%*%t(am))+cf%*%t(cm), name="CVfm" ) 
CVmf      <- mxAlgebra( expression= ra%x%(am%*%t(af))+cm%*%t(cf), name="CVmf" ) 
covDZo    <- mxAlgebra( expression= rbind( cbind(Vf, CVfm), cbind(CVmf, Vm)), 
name="expCovDZo" ) 
Inc     <- mxMatrix( type="Lower", nrow=nth, ncol=nth, free=F, values=1, name="Inc" ) 
 
# MALES 
ThreM    <-mxMatrix( type="Full", nrow=nth, ncol=nv, free=c(T, T), values=, 
labels=cbind(mvar1th, mvar2th), lbound=-2, ubound=thUB, name="ThreM") 
ExpThreM   <- mxAlgebra( expression= cbind( ( Inc %*% ThreM  ),  
                                            ( Inc %*% ThreM  ) ), name="ExpThreM" ) 
# FEMALES 
ThreF    <-mxMatrix( type="Full", nrow=nth, ncol=nv, free=c(T, T), values=, 
labels=cbind(fvar1th, fvar2th), lbound=-2, ubound=thUB, name="ThreF") 
ExpThreF   <- mxAlgebra( expression= cbind( ( Inc %*% ThreF  ),  
                                            ( Inc %*% ThreF  ) ), name="ExpThreF" ) 
## OS 
 
ThreOS    <-mxMatrix( type="Full", nrow=nth, ncol=nv, free=c(T, T), values=, 
labels=cbind(mvar1th ,fvar2th), lbound=-2, ubound=thUB, name="ThreOS") 
ExpThreOS   <- mxAlgebra( expression= cbind( ( Inc %*% ThreOS  ),  
                                             ( Inc %*% ThreOS  ) ), name="ExpThreOS" ) 
 
 
# Data objects for Multiple Groups 
dataMZf   <- mxData( observed=mzfData, type="raw" ) 
dataDZf   <- mxData( observed=dzfData, type="raw" ) 
dataMZm   <- mxData( observed=mzmData, type="raw" ) 
dataDZm   <- mxData( observed=dzmData, type="raw" ) 
dataDZo   <- mxData( observed=dzoData, type="raw" ) 
 
# Expectation objects for Multiple Groups 
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expMZf    <- mxExpectationNormal( covariance="expCovMZf", means="expMeanGf", 
dimnames=selVars, thresholds = "ExpThreF" ) 
expDZf    <- mxExpectationNormal( covariance="expCovDZf", means="expMeanGf", 
dimnames=selVars, thresholds = "ExpThreF" ) 
expMZm    <- mxExpectationNormal( covariance="expCovMZm", 
means="expMeanGm", dimnames=selVars, thresholds = "ExpThreM" ) 
expDZm    <- mxExpectationNormal( covariance="expCovDZm", 
means="expMeanGm", dimnames=selVars, thresholds = "ExpThreM" ) 
expDZo    <- mxExpectationNormal( covariance="expCovDZo", means="expMeanGfm", 
dimnames=selVars, thresholds = "ExpThreOS" ) 
funML     <- mxFitFunctionML() 
 
# Combine Groups 
parsZf    <- list( pathAf, pathCf, pathEf, covAf, covCf, covEf, covPf, estVarsZf, ThreF, 
ExpThreF, Inc ) 
parsZm    <- list( pathAm, pathCm, pathEm, covAm, covCm, covEm, covPm, 
estVarsZm, ThreM, ExpThreM, Inc ) 
parsZfm   <- list( pathRa, CVfm, CVmf, ExpThreOS, Inc, ThreOS) 
modelMZf  <- mxModel( parsZf, meanGf, covMZf, dataMZf, expMZf, funML, 
name="MZf" ) 
modelDZf  <- mxModel( parsZf, meanGf, covDZf, dataDZf, expDZf, funML, name="DZf" 
) 
modelMZm  <- mxModel( parsZm, meanGm, covMZm, dataMZm, expMZm, funML, 
name="MZm" ) 
modelDZm  <- mxModel( parsZm, meanGm, covDZm, dataDZm, expDZm, funML, 
name="DZm" ) 
modelDZo  <- mxModel( parsZf, parsZm, parsZfm, meanGfm, covDZo, dataDZo, 
expDZo, funML, name="DZo" ) 
multi     <- mxFitFunctionMultigroup( c("MZf","DZf","MZm","DZm","DZo") ) 
QualAceModel  <- mxModel( "QualACE", modelMZf, modelDZf, modelMZm, 
modelDZm, modelDZo, multi ) 
 
 
QualAceFit <-mxTryHardOrdinal(QualAceModel, intervals = F) 
summary(QualAceFit) 
 
## Coerce threshold to be equal across variables, see around line 500 
 
 
eqthres   <-mxModel(QualAceFit, name = "Equal Thresholds") 
#eqthres   <-omxSetParameters( eqthres, label=c("mvar1_th1", "mvar2_th1"), 
free=TRUE, values=0.5, newlabels="var_th1")   
#eqthres   <-omxSetParameters( eqthres, label=c("fvar1_th1", "fvar2_th1"), free=TRUE, 
values=0.5, newlabels="var_th1")   
eqthres   <-omxSetParameters( eqthres, label=c("mvar1_th1", "fvar1_th1"), free=TRUE, 
values=0.5, newlabels="var1_th")   



 268 

eqthres   <-omxSetParameters( eqthres, label=c("mvar2_th1", "fvar2_th1"), free=TRUE, 
values=0.5, newlabels="var2_th")   
 
 
eqthresfit<-mxTryHardOrdinal(eqthres, intervals=F) 
 
satNested <- list(eqthresfit) 
tableFitStatistics(QualAceFit, satNested) 
 
## Coerce males and females to be equal 
 
eqsex   <-mxModel(eqthresfit, name = "Equal sexes") 
eqsex   <-omxSetParameters( eqsex, label=c("am11", "am21", "am22"), free=TRUE, 
values=0.04, newlabels=c("a11", "a21", "a22")   )               
eqsex   <-omxSetParameters( eqsex, label=c("af11", "af21", "af22"), free=TRUE, 
values=0.04, newlabels=c("a11", "a21", "a22")  ) 
eqsex   <-omxSetParameters( eqsex, label=c("cm11", "cm21", "cm22"), free=TRUE, 
values=0.5, newlabels=c("c11", "c21", "c22"))  
eqsex   <-omxSetParameters( eqsex, label=c("cf11", "cf21", "cf22"), free=TRUE, 
values=0.5, newlabels=c("c11", "c21", "c22"))  
eqsex   <-omxSetParameters( eqsex, label=c("em11", "em21", "em22"), free=TRUE, 
values=0.3, newlabels=c("e11", "e21", "e22") ) 
eqsex   <-omxSetParameters( eqsex, label=c("ef11", "ef21", "ef22"), free=TRUE, 
values=0.3, newlabels=c("e11", "e21", "e22") ) 
 
eqsexfit<-mxTryHardOrdinal(eqsex, intervals = F) 
tableFitStatistics(QualAceFit, eqsexfit) 
 
## NO sex 
 
nosex   <- omxSetParameters(eqsex, labels="ra11", free=FALSE, values=0.5, 
name="No sex Effects" )  
#nosex   <- omxSetParameters(eqsex, labels="meanf", free=T, values=0, 
newlabels="meanm", name="No sex Effects" )  
nosexfit<- mxTryHardOrdinal(nosex, intervals = F) 
nested <-list(eqthresfit,eqsexfit, nosexfit) 
tableFitStatistics(QualAceFit, nested) 
parameterSpecifications(nosexfit) 
 
 
 
# Check BivBinACEFIT is equal to nosex model 
 
testmodel<-omxSetParameters(BivBinAceFit6, labels=c("var1M_th1", "var1F_th1"), free 
=T, values = 0.3, newlabels="var1_th", name="Testing Model") 
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testmodel<-omxSetParameters(testmodel, labels=c("var2M_th1", "var2F_th1"), free =T, 
values = 0.2, newlabels="var2_th") 
 
testfit<-mxTryHardOrdinal(testmodel, intervals=F) 
tableFitStatistics(nosexfit, testfit) 
 
# Test of covA 
BivBinAceModel8 <- BivBinAceFit6 
BivBinAceModel8<- omxSetParameters(BivBinAceModel8, labels=c( "a21"), 
free=FALSE, values=0 , name = "Test of CovA")  
BivBinAceFit8<- mxTryHardOrdinal(BivBinAceModel8, intervals = F) 
tableFitStatistics(BivBinAceFit6, BivBinAceFit8) 
 
#BivBinAceFit8a <- omxRunCI(BivBinAceFit8) 
#summary(BivBinAceFit8, verbose=F) 
#BivBinAceFit8$algebras 
 
 
# Test of covC 
BivBinAceModel9 <- BivBinAceFit6 
BivBinAceModel9<- omxSetParameters(BivBinAceModel9, labels=c( "c21"), 
free=FALSE, values=0, name = "Test of CovC" )  
BivBinAceFit9<- mxTryHardOrdinal(BivBinAceModel9, intervals = F) 
tableFitStatistics(BivBinAceFit6, BivBinAceFit9) 
 
 
# Test of covE 
BivBinAceModel10 <- BivBinAceFit6 
BivBinAceModel10<- omxSetParameters(BivBinAceModel10, labels=c("e21"), 
free=FALSE, values=0, name="Test of CovE" )  
BivBinAceFit10<- mxTryHardOrdinal(BivBinAceModel10, intervals = F) 
tableFitStatistics(BivBinAceFit6, BivBinAceFit10) 
 
# Test of rP 
BivBinAceModel11 <- BivBinAceFit6 
BivBinAceModel11<- omxSetParameters(BivBinAceModel11, labels="a21", 
free=FALSE, values=0, name = "Test of rP" ) 
BivBinAceModel11<- omxSetParameters(BivBinAceModel11, labels="c21", 
free=FALSE, values=0 ) 
#BivBinAceModel11<- omxSetParameters(BivBinAceModel11, labels="e21", 
free=FALSE, values=0 )  
BivBinAceFit11<- mxTryHardOrdinal(BivBinAceModel11, intervals = F) 
 
tableFitStatistics(BivBinAceFit6, c(BivBinAceFit8, BivBinAceFit9, BivBinAceFit10, 
BivBinAceFit11)) 
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# Test of CE model 
 
BivBinAceModel12 <- BivBinAceFit6 
BivBinAceModel12<- omxSetParameters(BivBinAceModel12, labels=c( "a11","a21", 
"a22"), free=FALSE, values=0, name = "CE model" )  
BivBinAceFit12<- mxTryHardOrdinal(BivBinAceModel12, intervals = F) 
summary(BivBinAceFit12, verbose=T) 
tableFitStatistics(BivBinAceFit6, BivBinAceFit12) 
 
# Test of AE Model 
BivBinAceModel13 <- BivBinAceFit6 
BivBinAceModel13<- omxSetParameters(BivBinAceModel13, labels=c( "c11","c21", 
"c22"), free=FALSE, values=0, name = "AE model" )  
BivBinAceFit13<- mxTryHardOrdinal(BivBinAceModel13, intervals = F) 
tableFitStatistics(BivBinAceFit6, BivBinAceFit13) 
 
# Test of E Model 
BivBinAceModel16 <- BivBinAceFit6 
BivBinAceModel16<- omxSetParameters(BivBinAceModel16, 
labels=c("a11","a21","a22", "c11","c21", "c22"), free=FALSE, values=0, name = "E 
model" )  
BivBinAceFit16<- mxTryHardOrdinal(BivBinAceModel16, intervals = F) 
tableFitStatistics(BivBinAceFit6, BivBinAceFit16) 
 
bivnested <-list(BivBinAceFit12, BivBinAceFit13,BivBinAceFit16) 
tableFitStatistics(BivBinAceFit6, bivnested) 
 
 
 
# Test of E crosspaths Model 
BivBinAceModel17 <- BivBinAceFit6 
BivBinAceModel17<- omxSetParameters(BivBinAceModel17, labels=c("a21","c21"), 
free=FALSE, values=0, name = "E model" )  
BivBinAceFit17<- mxTryHardOrdinal(BivBinAceModel17, intervals = T) 
summary(BivBinAceFit17, verbose=T) 
tableFitStatistics(BivBinAceFit6, BivBinAceFit17) 
 
BivBinAceModel18 <- BivBinAceFit17 
BivBinAceFit18<- mxTryHardOrdinal(BivBinAceModel18, intervals = T) 
summary(BivBinAceFit18, verbose=T) 
 
BivBinAceModel19 <- BivBinAceFit18 
BivBinAceFit19<- mxTryHardOrdinal(BivBinAceModel19, intervals = T) 
summary(BivBinAceFit19, verbose=T) 
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# Using CE model, testing of C21 
 
BivBinAceModel14 <- BivBinAceModel12 
BivBinAceModel14<- omxSetParameters(BivBinAceModel14, labels=c( "c21"), 
free=FALSE, values=0, name = "CE model No C21" )  
BivBinAceFit14<- mxTryHardOrdinal(BivBinAceModel14, intervals = F) 
tableFitStatistics(BivBinAceFit12, BivBinAceFit14) 
 
# Using CE model, testing of E21 
 
BivBinAceModel15 <- BivBinAceModel14 
BivBinAceModel15<- omxSetParameters(BivBinAceModel15, labels=c( "e21"), 
free=FALSE, values=0, name = "CE model No Cross Paths" )  
BivBinAceFit15<- mxTryHardOrdinal(BivBinAceModel15, intervals = F) 
tableFitStatistics(BivBinAceFit14, BivBinAceFit15) 
tableFitStatistics(BivBinAceFit12, BivBinAceFit15) 
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## ANALYSIS FOR CHAPTER 4 
 
## Title: Genes for Good phenotypic data cleaning and analysis 
## Author: James Clifford (cliffordjs@vcu.edu) 
 
 
require(car) 
require(polycor) 
require(gmodels) 
setwd("~/Desktop/G4G_Data") 
getwd() 
 
samp <- read.table("masked-id-pass-samples.txt", header = F) 
samp[,1]  <- as.character(samp[,1]) 
dim(samp) 
 
## Read in the main outcome data  
## Tobacco use 
tobdata<-read.csv("~/Desktop/G4G_Data/G4G_tobacco.csv", header=T, na.strings = "") 
dim(tobdata) 
names(tobdata) 
 
tobdata<-subset(tobdata, user_id %in% samp[,1]) 
dim(tobdata) 
 
 
table(tobdata[,9], useNA = 'always') 
table(tobdata[,22], useNA = 'always')   
 
newtobdat<-subset(tobdata, user_id %in% samp[,1]) 
dim(newtobdat) 
table(newtobdat[,6]) 
table(newtobdat[,22]) 
 
table(newtobdat[,6], newtobdat[,22]) 
ans<-polychor(newtobdat[,6], newtobdat[,22]) 
pchisq(ans$chisq, ans$df, lower.tail=T) 
 
## Get the EC data into a format with just ID and EC ever use 
ecdata <-tobdata[,c(1,22)] 
names(ecdata) 
 
## Add in column for family id (user ID) as this column is required for PLINK 
ecdata2<-cbind(famid=ecdata$user_id, ecdata) 
head(ecdata2) 
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## Recode from string variables into numeric 
## 1 = No, 2 = Yes. This is consistent with PLINK pheno file notation 
ecdata2$e_cigs<-recode(ecdata2$e_cigs, "'No' = 1; 'Yes'= 2") 
head(ecdata2) 
table(ecdata2[,3]) 
 
## Write EC phenotype file to space delimited text 
#write.table(ecdata2, file = "G4G_ecuse.txt", sep = " ", col.names=F, row.names=F, 
quote=F) 
 
 
## Repeating previous steps but with CC ever use 
ccdata <-tobdata[,c(1,6)] 
head(ccdata) 
 
## Add in column for family id (user ID) as this column is required for PLINK 
ccdata2<-cbind(famid=ccdata$user_id, ccdata) 
head(ccdata2) 
 
## Recode from string variables into numeric 
## 1 = No, 2 = Yes. This is consistent with PLINK pheno file notation 
ccdata2$ever_tried_cig<-recode(ccdata2$ever_tried_cig, "'No' = 1; 'Yes'= 2") 
head(ccdata2) 
table(ccdata2[,3]) 
 
## Write CC phenotype file to space delimited text 
#write.table(ccdata2, file = "G4G_ccuse2.txt", sep = " ", col.names=F, row.names=F, 
quote = F) 
 
 
## Create new R object for phenotypic analyses 
 
phenodat<-tobdata[,c(1,6,22,28,29,30)] 
names(phenodat) 
 
 
# Recode tobacco varaibles 
phenodat$ever_tried_cig<-recode(phenodat$ever_tried_cig, "'No' = 1; 'Yes'= 2") 
phenodat$e_cigs<-recode(phenodat$e_cigs, "'No' = 1; 'Yes'= 2") 
 
table(phenodat[,2]) 
table(phenodat[,3]) 
 
## Parents smoke 
table(phenodat[,4]) 
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phenodat$parents_smoke<-recode(phenodat$parents_smoke, "'Neither 
smokes/smoked'=1; 'Yes, both'=2;'Yes, one of them' =2") 
table(phenodat[,4]) 
 
## Friends smoke 
table(phenodat[,5]) 
phenodat$friends_smoke<-recode(phenodat$friends_smoke, "'None of them smoke'=1; 
'Yes, a few' = 2; 'Yes, most of them'=2") 
table(phenodat[,5]) 
 
## Friends smoke under 18 
table(phenodat[,6]) 
phenodat$friends_smoke_under_18<-recode(phenodat$friends_smoke_under_18, 
"'None of them smoked'=1; 'Yes, a few' = 2; 'Yes, most of them'=2") 
table(phenodat[,6]) 
 
 
 
## Read in the demographic data, note there are two separate demo files 
demodata<-read.csv("~/Desktop/G4G_Data/G4G_demos_a.csv", header=T, na.strings 
= "") 
dim(demodata) 
names(demodata) 
demodatasmall<-demodata[,c(1,3,4,28,38,39,41)] 
dim(demodatasmall) 
names(demodatasmall) 
 
# recode Health insurance, 1= Yes, 2 = No, 3 = I don't know 
demodatasmall$insure_r <-recode (demodatasmall[,7], "'I do not know' = 3; 'No'=2; 
'Yes'=1") 
table(demodatasmall$insure_r ) 
 
# recode gender, male = 1, female =2 
demodatasmall$gender_r <-recode(demodatasmall[,2], "'female'=2; 'male'=1") 
table(demodatasmall$gender_r) 
 
# Recode education 
demodatasmall$education_r<-recode(demodatasmall[,5], "'No high school diploma or 
GED'=1;'Some college but no degree'=2;'High school graduate or GED'=2; 
                                   'Associates degree'=3; 'Bachelors degree (such as  BA, AB, BS, 
or BBA)'=3;'Masters degree or higher (such as MA, MS, MBA, PhD, MD, and so on)'=4 
                                   ") 
 
table(demodatasmall$education_r) 
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demodata2<-read.csv("~/Desktop/G4G_Data/G4G_demos2.csv", header=T, na.strings 
= "") 
dim(demodata2) 
names(demodata2) 
demodata2small<-demodata2[,c(1,3,4,19, 14,15,13)] 
dim(demodata2small) 
names(demodata2small) 
 
 
# recode Health insurance, 1= Yes, 2 = No, 3 = I don't know 
demodata2small$insure_r <-recode (demodata2small[,7], "'I do not know' = 3; 'No'=2; 
'Yes'=1") 
table(demodata2small$insure_r ) 
 
# recode gender, male = 1, female =2 
demodata2small$gender_r <-recode(demodata2small[,2], "'female'=2; 'male'=1") 
table(demodata2small$gender_r) 
 
# Recode education, < HS, some college, college degree, master or higher 
 
demodata2small$education_r<-recode(demodata2small[,5], "'No high school diploma or 
GED'=1;'Some college but no degree'=2;'High school graduate or GED'=2; 
                                   'Associate degree'=3; 'Bachelor degree (like a  BA, AB, BS, or 
BBA)'=3;'Master degree or higher (such as MA, MS, MBA, PhD, MD, and so on)'=4 
                                   ") 
 
table(demodata2small$education_r) 
 
 
 
totaldemo<-rbind(demodatasmall, demodata2small) 
dim(totaldemo) 
names(totaldemo) 
 
## recode age range 
totaldemo$age_range_r<-recode(totaldemo[,3], "'18-21' =1; '21-30'=2;'30-40'=3;'40-
50'=4; 
                              '50-60'=5;'60-70'=6; '70+'=7") 
table(totaldemo[,11]) 
 
### Filter out individuals without Genetic data 
 
demofilt<-subset(totaldemo, user_id %in% samp[,1]) 
dim(demofilt) 
 
# Remove phenotypic duplicates 
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finaldemo<-subset(demofilt, !duplicated(demofilt[,1])) 
table(finaldemo[,2], useNA = 'always') 
dim(finaldemo) 
 
# filter pheno data to Whte only data 
racedemo<-totaldemo[totaldemo$race == "White" | totaldemo$race=="White or 
European",] 
dim(racedemo) 
 
 
whiteIDs<-(racedemo[,1]) 
head(whiteIDs) 
whiteIDs<-as.data.frame(whiteIDs) 
head(whiteIDs) 
 
whitepheno<-subset(finaldemo, user_id %in% whiteIDs[,1]) 
dim(whitepheno) 
# 15,927 individuals 
 
# Find out dual users in Whites 
whitetob<-subset(phenodat, user_id %in% whiteIDs[,1]) 
table(whitetob$e_cigs, whitetob$ever_tried_cig) 
 
# 1008 never users 
# 45 ECIG exclusive 
# 4706 dual users 
# 10082 CIG exclusive 
 
# Find genotyped participants' tobacco use 
 
tobuse<-subset(phenodat, user_id %in%finaldemo[,1]) 
dim(tobuse) 
names(tobuse) 
table(tobuse$e_cigs, tobuse$ever_tried_cig) 
 
 
## Add in PCs 
setwd("/Users/jamesclifford/Desktop/G4G/PCA") 
 
pca<-read.table("plink_pca_test_white.eigenvec") 
 
# remove extra column 
pca <-pca[,-1] 
 
# set names 
names(pca)[1] <- "IID" 
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names(pca)[2:ncol(pca)] <- paste0("PC", 1:(ncol(pca)-1)) 
head(pca) 
dim(pca) 
names(pca) 
 
## remove individuals who aren't present 
finalgen<-subset(pca, IID %in% finaldemo[,1]) 
dim(finalgen) 
# 15881 
 
## Take only first 7 PCs 
finalgen<-finalgen[,c(1:8)] 
names(finalgen) 
# Combine PCs with phenotypic data 
names(whitepheno)[1]<-"IID" 
 
whitefinal<-merge(whitepheno, finalgen, by ="IID") 
 
dim(whitefinal) 
# 15,881 individuals 
names(whitefinal) 
 
## Write Covariate file with only white participants 
 
 
# write.table(finalcovars, "G4G_white_covars.txt", quote=F, row.names=F, 
col.names=F) 
# test<-read.table("G4G_white_covars.txt") 
# head(test) 
 
 
## Write covariate file with ECIG use 
 
names(whitetob)[1] <- "IID" 
ecigtest<-whitetob[,c(1,3)] 
 
whiteecigfinal<-merge(whitefinal, ecigtest, by = "IID") 
dim(whiteecigfinal) 
names(whiteecigfinal) 
# 15798 
 
whiteecigfinal<-whiteecigfinal[,c(1,1,8:19)] 
 
# write.table(whiteecigfinal, "G4G_white_ECIG_covars.txt", quote=F, row.names=F, 
col.names=F) 
# test2<-read.table("G4G_white_ECIG_covars.txt") 
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# head(test2) 
 
## Write covar file with CIG use 
 
cigtest<-whitetob[,c(1,2)] 
 
whitecigfinal<-merge(whitefinal, cigtest, by = "IID") 
dim(whitecigfinal) 
names(whitecigfinal) 
# 15798 
 
whitecigfinal<-whitecigfinal[,c(1,1,8:19)] 
 
# write.table(whitecigfinal, "G4G_white_CIG_covars.txt", quote=F, row.names=F, 
col.names=F) 
# test3<-read.table("G4G_white_CIG_covars.txt") 
# head(test3) 
 
## Add in ECIG and CIG data 
 
tobdata2<-merge(ecdata2, ccdata2, by = "user_id") 
dim(tobdata2) 
# 20105 
 
names(tobdata2) 
tobdata2<-subset(tobdata2, select = c("user_id", "e_cigs", "ever_tried_cig")) 
head(tobdata2) 
 
tobdata3<-subset(tobdata2, user_id %in%whitefinal[,1]) 
dim(tobdata3) 
#15798 
 
names(tobdata3)[1]<-"IID" 
## Merge phenotypic/PC data with tobacco data 
 
finaldata<-merge(tobdata3, whitefinal, by = "IID") 
dim(finaldata) 
# 15798 
names(finaldata) 
 
 
### Create Table 1 
 
require(table1) 
finaldata$age_range_r <- factor(finaldata$age_range_r, levels = 1:7, 
                                  labels=c("18-21", "22-30", "31-40", "41-50", "51-60", 



 279 

                                           "61-70", "70+")) 
finaldata$education_r <-factor(finaldata$education_r, levels=1:4, labels=c("Less than 
HS", 
                                                                               "HS Grad/GED/Some College", 
"Associates Degree", "College Graduate or More")) 
 
finaldata$insure_r    <-factor(finaldata$insure_r, levels=1:3, labels=c("Covered", "Not 
Covered", "I Dont Know")) 
 
finaldata$gender_r    <-factor(finaldata$gender_r, levels = 1:2, labels=c("Male", 
"Female")) 
 
finaldata$ever_tried_cig<-factor(finaldata$ever_tried_cig, levels = 1:2, labels=c("No", 
"Yes")) 
finaldata$e_cigs<-factor(finaldata$e_cigs, levels = 1:2, labels=c("No", "Yes")) 
 
 
label(finaldata$age_range_r)      <- "Age Range" 
label(finaldata$education_r)      <- "Education Level" 
label(finaldata$insure_r)         <- "Insurance Status" 
label(finaldata$gender_r)         <- "Sex" 
 
table1(~ gender_r+age_range_r+ education_r+ insure_r|ever_tried_cig, data=finaldata, 
overall=F) 
table1(~ gender_r+age_range_r+ education_r+ insure_r|e_cigs, data=finaldata, 
overall=F) 
table(finaldata$e_cigs) 
table(finaldata$ever_tried_cig) 
 
 
## Bivariate 
 
### CIG 
 
CrossTable(finaldata$gender_r, finaldata$ever_tried_cig, chisq=T) 
 
## p < 0.0001 
 
CrossTable(finaldata$age_range_r,  finaldata$ever_tried_cig,chisq=T) 
 
## p < 0.0001 
 
CrossTable(finaldata$education_r,  finaldata$ever_tried_cig,chisq=T) 
 
## p < 0.0001 
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CrossTable(finaldata$insure_r,  finaldata$ever_tried_cig,chisq=T) 
 
## p < 0.0001 
 
 
### ECIG 
 
CrossTable(finaldata$gender_r,  finaldata$e_cigs,chisq=T) 
 
## p < 0.0001 
 
CrossTable(finaldata$age_range_r, finaldata$e_cigs, chisq=T) 
 
## p < 0.0001 
 
CrossTable(finaldata$education_r, finaldata$e_cigs, chisq=T) 
 
## p < 0.0001 
 
CrossTable(finaldata$insure_r, finaldata$e_cigs, chisq=T) 
 
## p < 0.0001 
 
### CIG x ECIG 
 
finaldata$ever_tried_cig<-factor(finaldata$ever_tried_cig, levels = 1:2, labels=c("No", 
"Yes")) 
finaldata$e_cigs<-factor(finaldata$e_cigs, levels = 1:2, labels=c("No", "Yes")) 
 
 
CrossTable(finaldata$e_cigs, finaldata$ever_tried_cig, chisq=T) 
 
(4694*1005)/(45*100052) 
## Crude OR = 1.048; those who smoke cigarettes are ~4% more likely to use ECIGs 
than 
## non-smokers 
 
## create genotype or not and rerun bivaraite with that 
 
totaldemo$geno<-ifelse(totaldemo$user_id %in% samp[,1], 2, 1) 
 
# Remove phenotypic duplicates 
totaldemo<-subset(totaldemo, !duplicated(totaldemo[,1])) 
#table(totaldemo[,2], useNA = 'always') 
dim(totaldemo) 
table(totaldemo$geno) 
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## Label for easy readin' 
totaldemo$age_range_r <- factor(totaldemo$age_range_r, levels = 1:7, 
                                labels=c("18-21", "22-30", "31-40", "41-50", "51-60", 
                                         "61-70", "70+")) 
totaldemo$education_r <-factor(totaldemo$education_r, levels=1:4, labels=c("Less than 
HS", 
                                                                           "HS Grad/GED/Some College", 
"Associates Degree", "College Graduate or More")) 
 
totaldemo$insure_r    <-factor(totaldemo$insure_r, levels=1:3, labels=c("Covered", "Not 
Covered", "I Dont Know")) 
 
totaldemo$gender_r    <-factor(totaldemo$gender_r, levels = 1:2, labels=c("Male", 
"Female")) 
 
totaldemo$geno        <-factor(totaldemo$geno, levels=1:2, labels = c("Not Genotyped", 
"Genotyped")) 
 
 
CrossTable(totaldemo$gender_r, totaldemo$geno, chisq=T) 
 
## p < 0.0001 
 
CrossTable( totaldemo$age_range_r,totaldemo$geno, chisq=T) 
 
## p < 0.0001 
 
CrossTable(totaldemo$education_r, totaldemo$geno, chisq=T) 
 
## p < 0.0001 
 
CrossTable(totaldemo$insure_r,totaldemo$geno,  chisq=T) 
 
## p < 0.0001 
 
 
tobdata_geno<-read.csv("~/Desktop/G4G_Data/G4G_tobacco.csv", header=T, 
na.strings = "") 
 
 
## Get the EC data into a format with just ID and EC ever use 
genoecdata <-tobdata_geno[,c(1,22)] 
names(genoecdata) 
 
## Recode from string variables into numeric 
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## 1 = No, 2 = Yes. This is consistent with PLINK pheno file notation 
genoecdata$e_cigs<-recode(genoecdata$e_cigs, "'No' = 1; 'Yes'= 2") 
head(genoecdata) 
table(genoecdata[,2]) 
 
 
## Repeating previous steps but with CC ever use 
genoccdata <-tobdata_geno[,c(1,6)] 
head(genoccdata) 
 
## Recode from string variables into numeric 
## 1 = No, 2 = Yes. This is consistent with PLINK pheno file notation 
genoccdata$ever_tried_cig<-recode(genoccdata$ever_tried_cig, "'No' = 1; 'Yes'= 2") 
head(genoccdata) 
table(genoccdata[,2]) 
 
newtobgen<-merge(genoccdata, genoecdata, by = "user_id") 
dim(newtobgen) 
 
genodat<-merge(newtobgen, totaldemo, by = "user_id") 
dim(genodat) 
# 55,104 
 
genodat$ever_tried_cig<-factor(genodat$ever_tried_cig, levels = 1:2, labels=c("No", 
"Yes")) 
genodat$e_cigs<-factor(genodat$e_cigs, levels = 1:2, labels=c("No", "Yes")) 
 
 
CrossTable(genodat$e_cigs,genodat$geno,  chisq=T) 
 
CrossTable( genodat$ever_tried_cig,genodat$geno, chisq=T) 
 
 
 
## Overlap of ECIG and CIG use 
names(genodat) 
dim(genodat) 
table(genodat$ever_tried_cig, genodat$e_cigs) 
CrossTable(genodat$ever_tried_cig, genodat$e_cigs, chisq=T) 
 
 
 
### COMMAND LINE CODES AND BASH SCRIPTS 
 
## Plink QC for Genes for Good (G4G) 
## Using 1000 Genomes (1KG) as reference panel 
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## Note that though this is written in R, there are very few R commands 
## Author: James Clifford (cliffordjs@vcu.edu) with special thanks/acknowledgments 
## to Dr Roseann Peterson 
 
 
## Remove duplicate SNPs 
 
/vcu_gpfs2/home/cliffordjs/bin/./plink --bfile 
/vcu_gpfs2/home/GfG/cleangenetic/Filtered/merged --list-duplicate-vars --suppress-first 
--make-bed --out /vcu_gpfs2/home/GfG/cleangenetic/Filtered/merged_pruned 
 
## Merge reference and data  
 
/vcu_gpfs2/home/cliffordjs/bin/./plink --bfile /vcu_gpfs2/home/GfG/refgenome/1kg --
bmerge /vcu_gpfs2/home/cliffordjs/g4g_geno --allow-no-sex --geno 0.05 --make-bed --
out /vcu_gpfs2/home/GfG/refgenome/1kg_merged 
 
## 2504 individuals in 1KG 
## 20231 in G4G 
## 1.28.21 this is throwing several errors: multiple variants for rs #, multiple 
chromosomes for variant, 
## variant '.'? 
## variants with multiple positions: rs9442277, rs571228985 
## rs6658405  
## SNPs with multiple chromosomes: rs2789523, rs554199249, . 
# Tried flipping on .missnp file, no good 
 
 
## How many SNPs overlap 1KG and G4G 
 
## Genotyping rate 
/vcu_gpfs2/home/cliffordjs/bin/./plink --bfile 
/vcu_gpfs2/home/GfG/refgenome/1kg_merged 
-- freq --out merge_genoRate 
 
## Total genotyping rate is 
 
# Light QC on overlapping SNPs 
# limit 1KG to overlapping SNPs 
 
/vcu_gpfs2/home/cliffordjs/bin/./plink --bfile /vcu_gpfs2/home/GfG/refgenome/1kg  
--extract /vcu_gpfs2/home/GfG/refgenome/1kg_merged --allow-no-sex --make-bed --out 
/vcu_gpfs2/home/GfG/refgenome/1kg_g4gsnps 
 
# Light QC --mind 0.05 --geno 0.5 --maf 0.01 --hwe 0.0000000005 (5xe-10) 
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/vcu_gpfs2/home/cliffordjs/bin/./plink --bfile 
/vcu_gpfs2/home/GfG/refgenome/1kg_g4gsnps 
--mind 0.05 --geno 0.05 --maf 0.01 --hwe 0.0000000005 --allow-no-sex --make-bed 
--out /vcu_gpfs2/home/GfG/refgenome/1kg_g4gsnps_qc 
 
 
## PCA 
setwd("/vcu_gpfs2/home/cliffordjs") 
 
data1<-read.table("chr22_illumina.txt") 
data2<-read.table("chr22_g4g.txt") 
 
test<-merge(data1, data2) 
head(test) 
dim(test) 
# 5130 SNPs 
 
data1<-read.table("chr21_illumina.txt") 
#4407 SNPs 
 
data2<-read.table("chr21_g4g.txt") 
# 7027 SNPs 
 
test<-merge(data1, data2) 
head(test) 
dim(test) 
 
# 4345 SNPs 
 
data1<-read.table("illumina_snp_ids.txt") 
# 547667 
 
data2<-read.table("G4G_snpids2.txt") 
 
# 313085 
 
test<-merge(data1, data2) 
head(test) 
dim(test) 
 
# 308,985 SNPs 
 
## Looking at G4G and 1KG 
 
require(data.table) 
require(dplyr) 
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data1<-fread("1kg_snpids.txt", header=F) 
#data1<-as.data.frame(data1) 
# 84,358,431 
 
#data2<-read.table("G4G_snpids2.txt") 
data2<-fread("G4G_snpids2.txt", header=F) 
 
# 313085 SNPs 
 
test<-inner_join(data1, data2) 
head(test) 
dim(test) 
 
# 312,304 SNPs 
 
 
## Create list of new snp ids for 1 kg 
# awk '{print $2,$1":"$4":"$6":"$5}' 1kg.bim >> 1kg_ids2.txt 
 
# Remove Duplicates 
#  
# --allow-extra-chr 
# --bfile /vcu_gpfs2/home/GfG/refgenome/1kg 
# --exclude /vcu_gpfs2/home/GfG/refgenome/1kg_dups_id.txt 
# --make-bed 
# --out /vcu_gpfs2/home/GfG/refgenome/1kg_dupsremoved 
 
 
# update SNP namesta 
 
# --allow-extra-chr 
# --bfile /vcu_gpfs2/home/GfG/refgenome/1kg_dupsremoved 
# --make-bed 
# --out 1kg_updated_ids 
# --update-name /vcu_gpfs2/home/GfG/refgenome/1kg_ids.txt 
 
 
# Run in plink 
 
#./plink --bfile /vcu_gpfs2/home/GfG/cleangenetic/Filtered/merged3 --extract  
# /vcu_gpfs2/home/cliffordjs/overlapping_gfg_1kg.txt --make-bed --out 
1KG_G4G_merge  
# --allow-no-sex 
 
 
# Genotyping rate 
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# ./plink --bfile /vcu_gpfs2/home/GfG/cleangenetic/Filtered/1KG_G4G_merge --freq --
out  
# /vcu_gpfs2/home/GfG/cleangenetic/Filtered/merge_genoRate 
 
 
 
# Limit 1KG to overlapping SNPs 
# ./plink --bfile /vcu_gpfs2/home/GfG/refgenome/1kg_update_ids  \ 
# --extract /vcu_gpfs2/home/GfG/cleangenetic/Filtered/1KG_G4G_merge.bim --allow-
no-sex --make-bed  
# --out /vcu_gpfs2/home/GfG/refgenome/1kg_G4Gsnps --allow-extra-chr 
 
# 229,934 variants and 2504 people pass filters and QC. 
 
# Light QC --mind 0.05 --geno 0.05 --maf 0.01 --hwe 0.0000000005 (5.0xe-10) 
# ./plink --bfile /vcu_gpfs2/home/GfG/refgenome/1kg_G4Gsnps --mind 0.05 --geno 0.05 
--maf 0.01 --hwe 0.0000000005  
# --keep-allele-order --chr 1-22 \ 
# --allow-no-sex --make-bed --out /vcu_gpfs2/home/GfG/refgenome/1kg_G4Gsnps_qc 
 
# 27,618 removed due to HWE 
# 3,978 removed due to MAF 
 
# 198,338 variants and 2504 people pass filters and QC. 
 
# Prune SNps 
# ./plink --bfile /vcu_gpfs2/home/GfG/refgenome/1kg_G4Gsnps_qc 
# --indep-pairwise 1500 150 0.2 --allow-no-sex --keep-allele-order  
# --out /vcu_gpfs2/home/GfG/refgenome/1kg_G4Gsnps_qc_prune02   
 
# after pruning: 118,224 of 198,338 variants removed 
 
 
### Quick check G4G quality overlap SNPs 
# Light QC --mind 0.05 --geno 0.05 --maf 0.01 --hwe 0.0000000005 (5.0xe-10) 
# ./plink --bfile /vcu_gpfs2/home/GfG/cleangenetic/Filtered/merged3 --extract 
/vcu_gpfs2/home/GfG/cleangenetic/Filtered/1KG_G4G_merge.bim --mind 0.05 --geno 
0.05 --maf 0.01 --hwe 0.0000000005 --keep-allele-order --chr 1-22 \ 
# --allow-no-sex --make-bed --out 
/vcu_gpfs2/home/GfG/cleangenetic/Filtered/G4G_1kgSNPs_qc 
 
# 0 removed to missing genotype data 
# 0 removed due to HWE 
# 8 removed due to MAF 
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# 229,924 variants and 20231 people pass filters and QC 
 
## Create 1KGP-G4G bed file on pruned 0.2 
#./plink --bfile /vcu_gpfs2/home/GfG/refgenome/1kg_G4Gsnps --extract 
/vcu_gpfs2/home/GfG/refgenome/1kg_G4Gsnps_qc_prune02.prune.in   
# --allow-no-sex --keep-allele-order --make-bed --out 
/vcu_gpfs2/home/GfG/cleangenetic/Filtered/G4G_1kgSNPs_qc_pruned 
 
# 80,114 variants and 2504 people pass filters and QC. 
 
 
### Create Pedind file 
setwd('/Users/jamesclifford/Desktop/G4G/PCA/') 
# add row number to make sure order has not changed  
#awk '{print $0 "\t" NR}' G4G_1kgSNPs_qc_pruned_newids.fam > 
G4G_1kgSNPs_qc_pruned_fam_NR.txt 
#scp 
cliffordjs@fenn.vcu.edu:/vcu_gpfs2/home/GfG/refgenome/G4G_1kgSNPs_qc_pruned_f
am_NR.txt /Users/jamesclifford/Desktop/G4G/PCA 
fam<-read.table('/Users/jamesclifford/Desktop/G4G/PCA/Old 
files/G4G_1kgSNPs_qc_pruned_fam_NR.txt', header=F)      
colnames(fam)<-c("FID", "IID", "V3" ,"V4" ,"V5" ,"V6" ,"Index") 
head(fam) 
dim(fam) 
# Add G4G IDs 
#awk '{print $1 "\t" $2 "\t" "G4G"}' G4G_1kgSNPs_qc.fam > G4G_ID.txt 
#scp cliffordjs@fenn.vcu.edu:/vcu_gpfs2/home/GfG/cleangenetic/Filtered/G4G_ID.txt 
/Users/jamesclifford/Desktop/G4G/PCA 
g4g<-read.table('/Users/jamesclifford/Desktop/G4G/PCA/Old files/G4G_ID.txt', header = 
F) 
colnames(g4g)<-c("FID", "IID", "pop") 
head(g4g) 
dim(g4g) 
 
# 1KGP IDs 
kgp<-read.table('/Users/jamesclifford/Desktop/G4G/PCA/Old files/1KGP_pop.txt', 
header = T) 
colnames(kgp) 
#"IID" "fam" "pop" 
kgpID<-subset(kgp, select=c(fam, IID, pop)) 
colnames(kgpID)<-c("FID","IID", "pop") 
 
# merge here to remove extra samples from 1kgp_pop.txt 
 
table(kgpID$pop) 
# 3500 ppl 
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dim(fam) 
 
require(dplyr) 
 
test<-inner_join(fam, kgpID, by =c("IID", "FID")) 
dim(test) 
# returns 824 people, should be 2504 
 
 
test<-merge(fam, kgpID, by=c("IID", "FID"),all.x=T, no.dups = T) 
dim(test) 
table(test$pop, useNA="always") 
#1680 NAs? 
 
 
testIDS<-subset(test, select=c(FID, IID, pop)) 
dim(testIDS) 
 
## new ID file from website 
## https://github.com/WeiYang-BAI/Impu-Reference-Panel-
Reconstruction/blob/master/1000GP_Phase3.sample 
 
kgp2<-read.table('1kg_pops.txt', header=T) 
dim(kgp2) 
names(kgp2) 
 
kgp2IDS<-subset(kgp2, select=c("ID", "ID", "POP")) 
colnames(kgp2IDS)<-c("FID","IID", "pop") 
dim(kgp2IDS)   
names(kgp2IDS) 
table(kgp2IDS$pop) 
 
test<-merge(fam, kgp2IDS, by=c("IID", "FID"),all.x=T, no.dups = T) 
dim(test) 
head(test) 
table(test$pop, useNA="always") 
 
testIDS<-subset(test, select=c(FID, IID, pop)) 
dim(testIDS) 
table(testIDS$pop, useNA = 'always') 
# Merge 1KGP pop data 
pops<-rbind(testIDS,g4g)  
dim(pops) 
names(pops) 
table(pops$pop, useNA = 'always') 
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# Do a merge and keep all x 
#fam_pops<-merge(fam, pops, all.x=T, by=c("IID")) 
fam_pops<-merge(fam, pops, all.y=T, by=c("IID")) 
table(fam_pops$pop) 
table(is.na(fam_pops$pop)) 
colnames(fam_pops) 
pedindI<-subset(fam_pops, select=c(FID.y, IID, V3, V4, V5, pop, Index)) 
#write.table(pedindI, 
file="/Users/jamesclifford/Desktop/G4G/PCA/1KGP_G4G_pop_index.txt", row.names = 
T, col.names = T, quote=F) 
# Confirmed Index 
pedind<-subset(fam_pops, select=c(FID.y, IID, V3, V4, V5, pop)) 
#write.table(pedind, 
file="/Users/jamesclifford/Desktop/G4G/PCA/1KGP_G4G_qc_pruned.pedind", 
row.names = F, col.names = F, quote=F) 
 
## GWAS  
CIG 
 
PLINK v1.90b6.18 64-bit (16 Jun 2020) 
Options in effect: 
  --allow-no-sex 
  --bfile /vcu_gpfs2/home/GfG/cleangenetic/Filtered/merged3 
  --covar /vcu_gpfs2/home/cliffordjs/G4G_white_ECIG_covars.txt 
  --keep /vcu_gpfs2/home/cliffordjs/G4G_white_ids.txt 
  --logistic hide-covar 
  --out 
/vcu_gpfs2/home/GfG/cleangenetic/Filtered/Adjust_Assoc/ECIG_adjusted_hidecovar_
White_CC_phenocovars_pc 
s 
  --pheno /vcu_gpfs2/home/GfG/cleanphenotypic/G4G_ccuse2.txt 
 
 
ECIG 
 
PLINK v1.90b6.18 64-bit (16 Jun 2020) 
Options in effect: 
  --allow-no-sex 
  --bfile /vcu_gpfs2/home/GfG/cleangenetic/Filtered/merged3 
  --covar /vcu_gpfs2/home/cliffordjs/G4G_white_CIG_covars.txt 
  --keep /vcu_gpfs2/home/cliffordjs/G4G_white_ids.txt 
  --logistic hide-covar 
  --out 
/vcu_gpfs2/home/GfG/cleangenetic/Filtered/Adjust_Assoc/CIG_adjusted_hidecovar_Wh
ite_ECIG_phenocovars_p 
cs 
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  --pheno /vcu_gpfs2/home/GfG/cleanphenotypic/G4G_ecuse.txt 
 
 
 
## Manhattan 
 
 
require(data.table) 
require(qqman) 
 
setwd("/vcu_gpfs2/home/GfG/cleangenetic/Filtered/Adjust_Assoc/") 
 
 
ccdatadj<- 
fread("ECIG_adjusted_hidecovar_White_CC_phenocovars_pcs.assoc.logistic", header 
= T) 
head(ccdatadj) 
 
tiff("cc_adj_forECIG_withwhitepcs.tiff") 
manhattan(ccdatadj, chr = "CHR", bp = "BP", snp = "SNP", p = "P", main = "Manhat 
tan Plot for CIG-Adjusted Analyses, White Only PCs",ylim=c(0,11), 
          col = c("red", "blue4"), suggestiveline=-log10(1e-05), genomewideline  
          = -log10(1e-08), annotatePval = -log10(1e-07), 
          chrlabs = c(1:22)) 
dev.off() 
 
# Manhattan plot without annotation 
 
tiff("cc_noannotation_adj_forECIG_withwhitepcs_3302022.tiff") 
manhattan(ccdatadj, chr = "CHR", bp = "BP", snp = "SNP", p = "P", main = 
"",ylim=c(0,11), 
          col = c("red", "blue4"), suggestiveline=-log10(1e-05), genomewideline  
          = -log10(1e-08), annotateTop=F, 
          chrlabs = c(1:22)) 
dev.off() 
 
 
## Find Suggestive/Significant Variants 
ccSNPS<-subset(ccdatadj, P <= 1e-6) 
ccSNPS 
#   CHR          SNP        BP A1 TEST NMISS    OR  STAT         P 
#   10 10:122876485 122876485  A  ADD 15796 1.771 5.005 5.574e-07  Gene: 
FAM24B-CUZD1 
#   18  18:61024122  61024122  T  ADD 15796 1.234 5.158 2.500e-07  Intergenic: 
HMGN1P31, CDH20  
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# ECIG Adjusted results 
 
#   2  2:84368347 84368347  T  ADD 15795 0.8810 -4.910 9.114e-07 #SUCLG1 
#  11 11:42405437 42405437  A  ADD 15795 0.6264 -4.955 7.243e-07 # LINC02740 
#  18 18:61024122 61024122  T  ADD 15795 1.2370  5.142 2.715e-07 Intergenic: 
HMGN1P31, CDH20  
 
 
ecdatadj<- 
fread("CIG_adjusted_hidecovar_White_ECIG_phenocovars_pcs.assoc.logistic", header 
= T) 
head(ecdatadj) 
 
tiff("ec_adj_forCIG_withwhitepcs.tiff") 
 
manhattan(ecdatadj, chr = "CHR", bp = "BP", snp = "SNP", p = "P", main = "Manhat 
tan Plot for ECIG-Adjusted Analyses", ylim = c(0,11), 
          col = c("red", "blue4"), suggestiveline=-log10(1e-05), genomewideline  
          = -log10(1e-08), annotatePval = -log10(1e-08), 
          chrlabs = c(1:22)) 
dev.off() 
 
## No annotation manhattan 
tiff("ec_noannotation_adj_forCIG_withwhitepcs3302022.tiff") 
 
manhattan(ecdatadj, chr = "CHR", bp = "BP", snp = "SNP", p = "P", main = "", ylim = 
c(0,11), 
          col = c("red", "blue4"), suggestiveline=-log10(1e-05), genomewideline  
          = -log10(1e-08), annotateTop= F, 
          chrlabs = c(1:22)) 
dev.off() 
 
 
 
## Find Suggestive/Significant Variants 
ecSNPs<-subset(ecdatadj, P <= 1e-6) 
ecSNPs 
 
dim(ecSNPs) 
 
# CHR         SNP        BP A1 TEST NMISS     OR   STAT         P 
# 2 2:216131813 216131813  A  ADD 15795 0.6215 -4.929 8.276e-07  Gene: XRCC5 
# 2 2:216131851 216131851  G  ADD 15795 0.6172 -5.038 4.706e-07  Gene: XRCC5 
# 2 2:216132049 216132049  A  ADD 15795 0.6195 -4.942 7.736e-07 Gene: XRCC5 
# 2 2:216133672 216133672  C  ADD 15795 0.6237 -4.899 9.657e-07  Gene: XRCC5 
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# 6  6:33902823  33902823  T  ADD 15795 0.7852 -5.224 1.752e-07  Gene: 
LOC105375026 
# 8  8:25281329  25281329  G  ADD 15795 0.6349 -4.995 5.895e-07  Gene: DOCK5 
# 13 13:32403784  32403784  T  ADD 15795 0.6188 -5.379 7.494e-07  Gene:N4BP2L1 
# 13 13:47437096  47437096  C  ADD 15795 0.5112 -4.918 8.761e-07  Intergenic: 
GNGSP5, RN7SL700P 
 
 
# CIG ADJUSTED 
# CHR         SNP        BP A1 TEST NMISS     OR   STAT         P 
# 2 2:115364757 115364757  C  ADD 15795 1.2840  5.019 5.192e-07 Gene: DPP10 
# 6  6:33902823  33902823  T  ADD 15795 0.7881 -5.079 3.801e-07 Gene: 
LOC105375026 
# 13 13:32403784  32403784  T  ADD 15795 0.6207 -5.252 1.508e-07 Gene:N4BP2L1 
# 15 15:49010393  49010393  T  ADD 15795 0.4387 -4.935 8.009e-07 Gene: 
SECISBP2L 
 
 
## PCA PLOTS 
#scp cliffordjs@fenn.vcu.edu:/vcu_gpfs2/home/cliffordjs/bin/*white.eigenval . 
#scp cliffordjs@fenn.vcu.edu:/vcu_gpfs2/home/cliffordjs/bin/*white.eigenvec . 
 
setwd("/Users/jamesclifford/Desktop/G4G/PCA") 
require(tidyverse) 
pca <- read_table2("plink_pca_test_white.eigenvec", col_names = FALSE) 
eigenval <- scan("plink_pca_test_white.eigenval") 
 
# remove extra column 
pca <-pca[,-1] 
 
# set names 
names(pca)[1] <- "ind" 
names(pca)[2:ncol(pca)] <- paste0("PC", 1:(ncol(pca)-1)) 
 
pca <- as_tibble(data.frame(pca)) 
 
# first convert to percentage variance explained 
pve <- data.frame(PC = 1:20, pve = eigenval/sum(eigenval)*100) 
 
 
# make plot of variance explained 
png("PLINK_var_exp_white_3Aug2021.tiff") 
a <- ggplot(pve, aes(PC, pve)) + geom_bar(stat = "identity") 
a + ylab("Percentage variance explained") + theme_light() 
dev.off() 
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pca2<-data.frame(pca) 
dim(pca2) 
firstten<-pca2[,1:11] 
dim(firstten) 
head(firstten) 
 
# Examine PC1 vs PC2 
png("PLINK_pca_white_3Aug21.tiff") 
plot(firstten$PC1,firstten$PC2, main = "First 2 PCs with PLINK method, White Only", 
xlab="First PC", 
     ylab = "Second PC") 
dev.off() 
 
 
require(scatterplot3d) 
# Examine PC1, PC2, and PC3 
 
png("PLINK_pca_3d_white_3Aug21.tiff") 
scatterplot3d(firstten$PC1 
              , firstten$PC2, firstten$PC3, main = "3D Plot of First 3 PCs via PLINK, White 
Only") 
dev.off() 
 
 
 
### PRS  
### CREATE PRS 
 
 
Rscript /vcu_gpfs2/home/cliffordjs/bin/PRSice.R \ 
 --prsice /vcu_gpfs2/home/cliffordjs/bin/PRSice_linux \ 
 --base /vcu_gpfs2/home/GfG/sumstats/noheaderfinalSIsumstats.txt \ 
 --target /vcu_gpfs2/home/GfG/cleangentic/Filtered/SIA_White \ 
 --binary-target T \ 
 --pheno /vcu_gpfs2/home/GfG/cleanphenotypic/G4G_ecuse.txt \ 
 --cov /vcu_gpfs2/home/GfG/cleanphenotypic/White_covars.txt \ 
 --chr-id c:l \ 
 --base-maf MAF:0.01 \ 
 --stat BETA \ 
 --beta \ 
 
setwd("~/Desktop/PRS-Reg") 
 
require(data.table) 
require(tidyverse) 
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require(fmsb) 
 
p.threshold <- c(0.001,0.05,0.1,0.2,0.3,0.4,0.5) 
# Read in the phenotype file  
phenotype <- fread("G4G_ecuse.txt", header=F) 
ccuse<-fread("G4G_ccuse2.txt", header = F) 
 
# Read in the covariates 
covariate <- fread("White_G4G_covars_pcs.txt", header=F) 
head(covariate) 
 
# make column names for p and c 
 
colnames(phenotype)<- c("IID", "FID", "EC") 
covariate<-covariate[,c(1:6, 8:14)] # Remove the extra 3 PCs 
head(covariate) 
colnames(covariate)<- c("IID", "FID", "insure", "gender", "education", "age_range", 
"PC1","PC2","PC3","PC4","PC5","PC6","PC7") 
head(covariate) 
colnames(ccuse)<- c("IID", "FID", "CC") 
head(ccuse) 
 
 
# Now merge the files 
pheno <- merge(phenotype, covariate,  by=c("IID", "FID")) 
table(pheno$EC, useNA = 'always') 
phenocc<-merge (pheno, ccuse, by =c("IID", "FID")) 
 
phenonomiss<-na.omit(phenocc) 
 
# Recode ECs to 1 and 0, no missing data 
phenonomiss$EC <-ifelse(phenonomiss$EC == 1, 1, 0) 
 
# Recode CCs to 1 and 0, no missing data 
phenonomiss$CC <-ifelse(phenonomiss$CC == 1, 1, 0) 
 
# We can then calculate the null model (model without PRS) using a logistic regression  
 
prs <- fread("SI_CIG_PRScs.profile", header=T) 
 
pheno.prs<-merge(phenonomiss, prs[,c("IID","FID", "SCORE")], by=c("IID", "FID")) 
head(pheno.prs) 
 
## Histogram of PRS Scores 
#tiff("Unnormalized_GPS.tiff") 
#hist(pheno.prs$SCORE, xlab= "GPS", main ="") 
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#dev.off() 
 
# Table of covars 
table(pheno.prs$insure) 
table(pheno.prs$gender) 
table(pheno.prs$education) 
table(pheno.prs$age_range) 
table(pheno.prs$EC) 
pheno.prs$EC<-factor(pheno.prs$EC, levels = c(0:1)) 
 
pheno.prs$CC<-factor(pheno.prs$CC, levels = c(0:1) ) 
table(pheno.prs$CC) 
 
pheno.prs$gender<-factor(pheno.prs$gender, levels = c(1:2)) 
table(pheno.prs$gender) 
pheno.prs$insure<-factor(pheno.prs$insure, levels =c(1:3)) 
table(pheno.prs$insure) 
 
pheno.prs$education<-factor(pheno.prs$education, levels = c(1:4)) 
table(pheno.prs$education) 
 
pheno.prs$age_range<-factor(pheno.prs$age_range, levels=c(1:7)) 
table(pheno.prs$age_range) 
 
null.model <- 
glm(EC~CC+insure+gender+education+age_range+PC1+PC2+PC3+PC4+PC5+PC6+
PC7, family=binomial, data=pheno.prs) 
 
# And the R2 of the null model is  
null.r2 <- NagelkerkeR2(null.model) 
 
model <- 
glm(EC~SCORE+CC+insure+gender+education+age_range+PC1+PC2+PC3+PC4+PC
5+PC6+PC7, family=binomial, data=pheno.prs) 
 
# model R2 is obtained as  
model.r2 <- NagelkerkeR2(model) 
 
# R2 of PRS is simply calculated as the model R2 minus the null R2 
prs.r2 <- model.r2$R2-null.r2$R2 
 
# We can also obtain the coeffcient and p-value of association of PRS as follow 
 
prs.coef <- summary(model)$coeff 
prs.beta <- as.numeric(prs.coef[1]) 
prs.se <- as.numeric(prs.coef[2]) 
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prs.p <- as.numeric(prs.coef[4]) 
 
# We can then store the results 
 
prs.result <- rbind(data.frame(R2=prs.r2, P=prs.p, BETA=prs.beta,SE=prs.se)) 
 
#write.file(prs.result, "/vcu_gpfs2/home/cliffordjs/PRS_out.txt", quote=F, row.names=F) 
 
### AUC  
 
predprob <- predict(model, type = "response") 
 
library(pROC) 
rocCurve <- roc(EC ~ predprob, data = pheno.prs) 
tiff("roccurve3302022.tiff") 
plot(rocCurve) 
dev.off() 
 
auc(rocCurve)  
 
#write.file(rocCurve,"/vcu_gpfs2/home/cliffordjs/AUC_out.txt", quote=F, row.names=F) 
 
 
## normalized GPS 
 
pheno.prs$scaled<-scale(pheno.prs$SCORE) 
 
## Histogram of PRS Scores 
tiff("Normalized_GPS.tiff") 
hist(pheno.prs$scaled, xlab= "GPS", main ="") 
dev.off() 
 
model2 <- 
glm(EC~scaled+insure+gender+education+age_range+PC1+PC2+PC3+PC4+PC5+PC
6+PC7, family=binomial, data=pheno.prs) 
summary(model2) 
 
 
prs.coef <- summary(model2)$coeff 
prs.beta <- as.numeric(prs.coef[1]) 
prs.se <- as.numeric(prs.coef[2]) 
prs.p <- as.numeric(prs.coef[4]) 
# model R2 is obtained as  
model.r2 <- NagelkerkeR2(model) 
 
# R2 of PRS is simply calculated as the model R2 minus the null R2 
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prs.r2 <- model.r2$R2-null.r2$R2 
 
exp(cbind(coef(model), confint(model)))   
 
prs.result <- rbind(data.frame(R2=prs.r2, P=prs.p, BETA=prs.beta,SE=prs.se)) 
 
 
predprob <- predict(model, type = "response") 
 
## Create ROC and AUC figure 
 
library(pROC) 
rocCurve <- roc(EC ~ predprob, data = pheno.prs) 
tiff("roccurve.tiff") 
plot(rocCurve) 
dev.off() 
 
auc(rocCurve)  
 
 
 
 
###--------------------------------------------### 
###             CIG USE AND PRS                ### 
###--------------------------------------------### 
 
ccuse<-fread("G4G_ccuse2.txt", header = F) 
 
# Read in the covariates (here, it is sex) 
covariate <- fread("White_G4G_covars_pcs.txt", header=F) 
head(covariate) 
 
# make column names for p and c 
 
colnames(ccuse)<- c("IID", "FID", "CC") 
head(ccuse) 
covariate<-covariate[,c(1:6, 8:14)] # Remove the extra 3 PCs 
head(covariate) 
colnames(covariate)<- c("IID", "FID", "insure", "gender", "education", "age_range", 
"PC1","PC2","PC3","PC4","PC5","PC6","PC7") 
head(covariate) 
 
# Now merge the files 
ccpheno <- merge(ccuse, covariate, by=c("IID", "FID")) 
table(ccpheno$CC, useNA = 'always') 
ccphenonomiss<-na.omit(ccpheno) 
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# Recode CIGs to 1 and 0, no missing data 
ccphenonomiss$CC <-ifelse(ccphenonomiss$CC == 1, 1, 0) 
 
# We can then calculate the null model (model without PRS) using a logistic regression  
 
prs <- fread("SI_CIG_PRScs.profile", header=T) 
 
ccpheno.prs<-merge(ccphenonomiss, prs[,c("IID","FID", "SCORE")], by=c("IID", "FID")) 
head(ccpheno.prs) 
table(ccpheno.prs$insure) 
table(ccpheno.prs$gender) 
table(ccpheno.prs$education) 
table(ccpheno.prs$age_range) 
table(ccpheno.prs$CC) 
ccpheno.prs$CC<-factor(ccpheno.prs$CC, levels = c(0:1)) 
 
ccpheno.prs$gender<-factor(ccpheno.prs$gender, levels = c(1:2)) 
table(ccpheno.prs$gender) 
ccpheno.prs$insure<-factor(ccpheno.prs$insure, levels =c(1:3)) 
table(pheno.prs$insure) 
 
ccpheno.prs$education<-factor(ccpheno.prs$education, levels = c(1:4)) 
table(ccpheno.prs$education) 
 
ccpheno.prs$age_range<-factor(ccpheno.prs$age_range, levels=c(1:7)) 
table(ccpheno.prs$age_range) 
 
null.model <- 
glm(CC~insure+gender+education+age_range+PC1+PC2+PC3+PC4+PC5+PC6+PC7, 
family=binomial, data=ccpheno.prs) 
 
# And the R2 of the null model is  
null.r2 <- NagelkerkeR2(null.model) 
 
model <- 
glm(CC~SCORE+insure+gender+education+age_range+PC1+PC2+PC3+PC4+PC5+P
C6+PC7, family=binomial, data=ccpheno.prs) 
 
# model R2 is obtained as  
model.r2 <- NagelkerkeR2(model) 
 
# R2 of PRS is simply calculated as the model R2 minus the null R2 
prs.r2 <- model.r2$R2-null.r2$R2 
 
# We can also obtain the coeffcient and p-value of association of PRS as follow 
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prs.coef <- summary(model)$coeff["scaled",] 
prs.beta <- as.numeric(prs.coef[1]) 
prs.se <- as.numeric(prs.coef[2]) 
prs.p <- as.numeric(prs.coef[4]) 
 
# We can then store the results 
 
prs.result <- rbind(data.frame(R2=prs.r2, P=prs.p, BETA=prs.beta,SE=prs.se)) 
 
ccpheno.prs$scaled<-scale(ccpheno.prs$SCORE) 
 
model2 <- 
glm(CC~scaled+insure+gender+education+age_range+PC1+PC2+PC3+PC4+PC5+PC
6+PC7, family=binomial, data=ccpheno.prs) 
summary(model2) 
 
 
prs.coef <- summary(model2)$coeff["scaled",] 
prs.beta <- as.numeric(prs.coef[1]) 
prs.se <- as.numeric(prs.coef[2]) 
prs.p <- as.numeric(prs.coef[4]) 
# model R2 is obtained as  
model.r2 <- NagelkerkeR2(model) 
 
# R2 of PRS is simply calculated as the model R2 minus the null R2 
prs.r2 <- model.r2$R2-null.r2$R2 
 
exp(cbind(coef(model2), confint(model2)))   
 
 
## Power calcualtion 
 
require(genpwr) 
pw<-genpwr.calc(calc="ss", model = "logistic", Case.Rate = 0.066, OR = 1.02, 
True.Model = "Additive",  
                Test.Model = "Additive", Alpha= 0.05, Power = 0.8, MAF =0.1) 
 
pw 
 
pw2<-genpwr.calc(calc="Power", model = "logistic", Case.Rate = 0.066, OR = 1.02, 
True.Model = "Additive",  
                 Test.Model = "Additive", Alpha= 0.05, N=15881, MAF =0.1) 
 
pw2 
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## CHAPTER 5 - SAS 
 
 
* Do an import wizard of SPSS data file; 
* Do an import wizard of SPSS weights; 
 
proc contents data = weights; 
run; 
 
data path3; 
merge path3 weights; 
by PERSONID; 
run; 
 
data path3; 
set path3; 
use=.; 
ec = 0; 
cc = 0; 
if R03_AV1002_12M = 1 or R03_AV1004 = 1 then ec = 1; * recodes any past 12-month 
use into yes/no; 
if R03_AC1002_12M = 1 or R03_AC1004 =1 then cc = 1; * recodes any past 12-month 
use into yes/no; 
if ec = 1 and cc =1 then use = 3; 
if ec = 0 and cc = 1 then use = 2; 
if ec = 1 and cc = 0 then use = 1; 
if ec = 0 and cc = 0 then use = 0; 
run; 
 
 * NOte for use, 1 = EC user, 2 = CC user, 3 = Dual user, 0 = non-user; 
 
 proc format; 
 value use 
 1 = 'EC user' 
 2 = 'CC user' 
 3 = 'Dual user' 
 0 = 'Non-user'; 
 run; 
 
  
 proc format; 
 value single 
 1 = 'User' 
 0 = 'Non-user'; 
 run; 
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proc freq data = path3; 
table R03_AC1002_12M R03_AC1004; 
run; 
 
proc freq data = path3; 
table R03R_A_AM0030 * use; 
format use use.; 
run; 
 
proc freq data = path3; 
table R03R_A_AM0030*R03_AX0708_02; 
run; 
 
proc freq data = path3; 
table R03R_A_AM0030*R03_AX0708_01; 
run; 
 
proc freq data =path3; 
table use  ; 
format use use. ; 
run; 
 
proc freq data= path3; 
table R03R_A_AM0030; 
run; 
 
proc freq data = path3; 
table ec*cc ec2*cc2; 
run; 
proc freq data = path3; 
table use2; 
format use2 use.; 
run; 
 
 
proc freq data = path3; 
table R03_AV1002_12M * R03_AC1002_12M; 
run; 
 
proc freq data = path3; 
table R03R_A_SEX R03R_A_AGECAT7 R03R_A_RACECAT3 R03R_A_AM0018; 
run; 
 
* create new data set with truncated education, less than hs, hs, some college, college 
degree; 
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data path4; 
set path3; 
education = .; 
if R03R_A_AM0018 = 1 then education = 1; 
if R03R_A_AM0018 = 2 or R03R_A_AM0018 = 3 then education =2; 
if R03R_A_AM0018 = 4 then education = 3; 
if R03R_A_AM0018 = 5 or R03R_A_AM0018 = 6 then education = 4; 
run; 
 
proc format; 
value edu 
1 = 'less than HS' 
2 = 'hs' 
3 = 'some college' 
4 = 'bs or higher' 
; 
run; 
 
proc surveyfreq data=path4 varmethod=BRR (fay=0.3); 
table use; 
weight R03_A_SWGT; 
repweights R03_A_SWGT1 - R03_A_SWGT100; 
format use use.; 
run; 
quit; 
 
 
 
 
proc surveyfreq data=path4 varmethod=BRR (fay=0.3); 
table cc ec; 
weight R03_A_SWGT; 
repweights R03_A_SWGT1 - R03_A_SWGT100; 
format ec single. cc single.; 
run; 
quit; 
 
 
proc surveyfreq data=path4 varmethod=BRR (fay=0.3); 
table R03R_A_AM0030 R03_AX0708_01 R03_AX0708_02; 
weight R03_A_SWGT; 
repweights R03_A_SWGT1 - R03_A_SWGT100; 
run; 
quit; 
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* Multinomial regression of income and tobacco use; 
 
proc surveylogistic data=path4 varmethod=BRR (fay=0.3); 
class use (ref='Non-user') R03R_A_AM0030(ref='5 = $100,000 or more')R03R_A_SEX 
(ref = '1 = Male')  
R03R_A_AGECAT7 (ref = '1 = 18 to 24 years old') R03R_A_RACECAT3 (ref = '1 = 
White alone') 
education (ref = '4')/ param=ref; 
model use = R03R_A_AM0030 R03R_A_SEX R03R_A_AGECAT7 
R03R_A_RACECAT3 education/link=glogit; 
weight R03_A_SWGT; 
repweights R03_A_SWGT1 - R03_A_SWGT100; 
format use use.; 
run; 
quit; 
 
 
* Multinomial regression code, note that link = glogit; 
* EC coupons; 
 
proc surveylogistic data=path3 varmethod=BRR (fay=0.3); 
class use(ref='Non-user') R03R_A_AM0030(ref='5 = $100,000 or more') 
R03_AX0708_02 (ref='2 = Not Marked')/ param=ref; 
model use = R03R_A_AM0030 R03_AX0708_02/link=glogit; 
weight R03_A_SWGT; 
repweights R03_A_SWGT1 - R03_A_SWGT100; 
format use use.; 
run; 
quit; 
 
 
 
* adjusted for age, sex, race, education;  
 
proc surveylogistic data=path3 varmethod=BRR (fay=0.3); 
class use(ref='Non-user') R03R_A_AM0030(ref='5 = $100,000 or more') 
R03_AX0708_02 (ref='2 = Not Marked') 
R03R_A_SEX (ref = '1 = Male') R03R_A_AGECAT7 (ref = '1 = 18 to 24 years old') 
R03R_A_RACECAT3 (ref = '1 = White alone') 
education (ref = '4')/ param=ref; 
model use = R03R_A_AM0030 R03_AX0708_02 R03R_A_SEX R03R_A_AGECAT7 
R03R_A_RACECAT3 education/link=glogit; 
weight R03_A_SWGT; 
repweights R03_A_SWGT1 - R03_A_SWGT100; 
format use use.; 
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run; 
quit; 
 
** Moderation model for EC coupons; 
 
proc surveylogistic data=path4 varmethod=BRR (fay=0.3); 
class use(ref='Non-user') R03R_A_AM0030(ref='5 = $100,000 or more') 
R03_AX0708_02 (ref='2 = Not Marked') 
R03R_A_SEX (ref = '1 = Male') R03R_A_AGECAT7 (ref = '1 = 18 to 24 years old') 
R03R_A_RACECAT3 (ref = '1 = White alone') 
education (ref = '4')/ param=ref; 
model use = R03R_A_AM0030 R03_AX0708_02 R03R_A_SEX R03R_A_AGECAT7 
R03R_A_RACECAT3 education R03R_A_AM0030*R03_AX0708_02/link=glogit; 
weight R03_A_SWGT; 
repweights R03_A_SWGT1 - R03_A_SWGT100; 
format use use.; 
run; 
quit; 
 
** Stratified model for EC coupons; 
 
proc sort data=path4 out=path5; 
by R03_AX0708_02; 
run; 
 
proc freq data=path5; 
table R03_AX0708_02; 
run; 
 
 
proc surveylogistic data=path5 varmethod=BRR (fay=0.3); 
class use(ref='Non-user') R03R_A_AM0030(ref='5 = $100,000 or more')  
R03R_A_SEX (ref = '1 = Male') R03R_A_AGECAT7 (ref = '1 = 18 to 24 years old') 
R03R_A_RACECAT3 (ref = '1 = White alone') 
education (ref = '4')/ param=ref; 
model use = R03R_A_AM0030 R03R_A_SEX R03R_A_AGECAT7 
R03R_A_RACECAT3 education /link=glogit; 
weight R03_A_SWGT; 
repweights R03_A_SWGT1 - R03_A_SWGT100; 
format use use.; 
domain R03_AX0708_02; * this allows for multiple results from regression, not where or 
by; 
run; 
quit;  
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* CC Coupons; 
 
proc surveylogistic data=path3 varmethod=BRR (fay=0.3); 
class use(ref='Non-user') R03R_A_AM0030(ref='5 = $100,000 or more') 
R03_AX0708_01 (ref='2 = Not Marked')/ param=ref; 
model use= R03R_A_AM0030 R03_AX0708_01/link=glogit; 
weight R03_A_SWGT; 
repweights R03_A_SWGT1 - R03_A_SWGT100; 
format use use.; 
run; 
quit; 
 
proc surveylogistic data=path4 varmethod=BRR (fay=0.3); 
class use(ref='Non-user') R03R_A_AM0030(ref='5 = $100,000 or more') 
R03_AX0708_01 (ref='2 = Not Marked') 
R03R_A_SEX (ref = '1 = Male') R03R_A_AGECAT7 (ref = '1 = 18 to 24 years old') 
R03R_A_RACECAT3 (ref = '1 = White alone') 
education (ref = '4')/ param=ref; 
model use = R03R_A_AM0030 R03_AX0708_01 R03R_A_SEX R03R_A_AGECAT7 
R03R_A_RACECAT3 education/link=glogit; 
weight R03_A_SWGT; 
repweights R03_A_SWGT1 - R03_A_SWGT100; 
format use use.; 
run; 
quit; 
 
** Moderation CIG coupons; 
 
proc surveylogistic data=path4 varmethod=BRR (fay=0.3); 
class use(ref='Non-user') R03R_A_AM0030(ref='5 = $100,000 or more') 
R03_AX0708_01 (ref='2 = Not Marked') 
R03R_A_SEX (ref = '1 = Male') R03R_A_AGECAT7 (ref = '1 = 18 to 24 years old') 
R03R_A_RACECAT3 (ref = '1 = White alone') 
education (ref = '4')/ param=ref; 
model use = R03R_A_AM0030 R03_AX0708_01 R03R_A_SEX R03R_A_AGECAT7 
R03R_A_RACECAT3 education R03R_A_AM0030*R03_AX0708_01/link=glogit; 
weight R03_A_SWGT; 
repweights R03_A_SWGT1 - R03_A_SWGT100; 
format use use.; 
run; 
quit; 
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** Logistic regressions; 
** EC Coupons; 
 
proc surveylogistic data = path3 varmethod=BRR (fay=0.3); 
class  R03R_A_AM0030(ref='5 = $100,000 or more')/ param=ref; 
model ec (event='User') = R03R_A_AM0030/link=logit; 
format ec single.; 
weight R03_A_SWGT; 
repweights R03_A_SWGT1 - R03_A_SWGT100; 
run; 
quit; 
 
* adjusted analyses; 
proc surveylogistic data = path4 varmethod=BRR (fay=0.3); 
class  R03R_A_AM0030(ref='5 = $100,000 or more')R03R_A_SEX (ref = '1 = Male')  
R03R_A_AGECAT7 (ref = '1 = 18 to 24 years old') R03R_A_RACECAT3 (ref = '1 = 
White alone') 
education (ref = '4')/ param=ref; 
model ec (event='User') = R03R_A_AM0030 R03R_A_SEX R03R_A_AGECAT7 
R03R_A_RACECAT3 education/link=logit; 
format ec single.; 
weight R03_A_SWGT; 
repweights R03_A_SWGT1 - R03_A_SWGT100; 
run; 
quit; 
 
 
proc surveylogistic data = path4 varmethod=BRR (fay=0.3); 
class R03R_A_AM0030(ref='5 = $100,000 or more') R03_AX0708_02 (ref='2 = Not 
Marked')R03R_A_SEX (ref = '1 = Male')  
R03R_A_AGECAT7 (ref = '1 = 18 to 24 years old') R03R_A_RACECAT3 (ref = '1 = 
White alone') 
education (ref = '4')/ param=ref; 
model ec (event='User')= R03R_A_AM0030 R03_AX0708_02 R03R_A_SEX 
R03R_A_AGECAT7 R03R_A_RACECAT3 education/link=logit; 
format ec single.; 
weight R03_A_SWGT; 
repweights R03_A_SWGT1 - R03_A_SWGT100; 
run; 
quit; 
 
 
 
** CC Coupons; 
 
proc surveylogistic data = path3 varmethod=BRR (fay=0.3); 
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class  R03R_A_AM0030(ref='5 = $100,000 or more')/ param=ref; 
model cc (event='User') = R03R_A_AM0030/link=logit; 
format cc single.; 
weight R03_A_SWGT; 
repweights R03_A_SWGT1 - R03_A_SWGT100; 
run; 
quit; 
 
proc surveylogistic data = path3 varmethod=BRR (fay=0.3); 
class R03R_A_AM0030(ref='5 = $100,000 or more') R03_AX0708_01 (ref='2 = Not 
Marked')/ param=ref; 
model cc (event='User')= R03R_A_AM0030 R03_AX0708_01/link=logit; 
format cc single.; 
weight R03_A_SWGT; 
repweights R03_A_SWGT1 - R03_A_SWGT100; 
run; 
quit; 
 
 
* adjusted analyses; 
proc surveylogistic data = path4 varmethod=BRR (fay=0.3); 
class  R03R_A_AM0030(ref='5 = $100,000 or more')R03R_A_AM0030(ref='5 = 
$100,000 or more')R03R_A_SEX (ref = '1 = Male')  
R03R_A_AGECAT7 (ref = '1 = 18 to 24 years old') R03R_A_RACECAT3 (ref = '1 = 
White alone') 
education (ref = '4')/ param=ref; 
model cc (event='User') = R03R_A_AM0030 R03R_A_SEX R03R_A_AGECAT7 
R03R_A_RACECAT3 education/link=logit; 
format cc single.; 
weight R03_A_SWGT; 
repweights R03_A_SWGT1 - R03_A_SWGT100; 
run; 
quit; 
 
proc surveylogistic data = path4 varmethod=BRR (fay=0.3); 
class R03R_A_AM0030(ref='5 = $100,000 or more') R03_AX0708_02 (ref='2 = Not 
Marked')R03R_A_SEX (ref = '1 = Male')  
R03R_A_AGECAT7 (ref = '1 = 18 to 24 years old') R03R_A_RACECAT3 (ref = '1 = 
White alone') 
education (ref = '4')/ param=ref; 
model cc (event='User')= R03R_A_AM0030 R03_AX0708_02 R03R_A_SEX 
R03R_A_AGECAT7 R03R_A_RACECAT3 education/link=logit; 
format cc single.; 
weight R03_A_SWGT; 
repweights R03_A_SWGT1 - R03_A_SWGT100; 
run; 
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quit; 
 
proc surveyfreq data=path4 varmethod=BRR (fay=0.3); 
table R03R_A_SEX R03R_A_AGECAT7 R03R_A_RACECAT3 education; 
weight R03_A_SWGT; 
repweights R03_A_SWGT1 - R03_A_SWGT100; 
run; 
quit; 
 
* Interaction model; 
 
proc surveylogistic data = path4 varmethod=BRR (fay=0.3); 
class R03R_A_AM0030(ref='5 = $100,000 or more') R03_AX0708_02 (ref='2 = Not 
Marked')R03R_A_SEX (ref = '1 = Male')  
R03R_A_AGECAT7 (ref = '1 = 18 to 24 years old') R03R_A_RACECAT3 (ref = '1 = 
White alone') 
education (ref = '4')/ param=ref; 
model cc (event='User')= R03R_A_AM0030 R03_AX0708_02 R03R_A_SEX 
R03R_A_AGECAT7 R03R_A_RACECAT3 education 
R03R_A_AM0030*R03_AX0708_02/link=logit; 
format cc single.; 
weight R03_A_SWGT; 
repweights R03_A_SWGT1 - R03_A_SWGT100; 
run; 
quit; 
 
 
**** Covariate MODEL; 
** CC outcome first, adding EC use as a covariate; 
* adjusted analyses; 
 
proc surveylogistic data = path4 varmethod=BRR (fay=0.3); 
class  R03R_A_AM0030(ref='5 = $100,000 or more')R03R_A_AM0030(ref='5 = 
$100,000 or more')R03R_A_SEX (ref = '1 = Male')  
R03R_A_AGECAT7 (ref = '1 = 18 to 24 years old') R03R_A_RACECAT3 (ref = '1 = 
White alone') 
education (ref = '4') ec (ref='1')/ param=ref; 
model cc (event='User') = R03R_A_AM0030 R03R_A_SEX R03R_A_AGECAT7 
R03R_A_RACECAT3 education ec/link=logit; 
format cc single. ec single.; 
weight R03_A_SWGT; 
repweights R03_A_SWGT1 - R03_A_SWGT100; 
run; 
quit; 
 
** EC outcome second, adding CC use as a covariate; 
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* adjusted analyses; 
 
proc surveylogistic data = path4 varmethod=BRR (fay=0.3); 
class  R03R_A_AM0030(ref='5 = $100,000 or more')R03R_A_AM0030(ref='5 = 
$100,000 or more')R03R_A_SEX (ref = '1 = Male')  
R03R_A_AGECAT7 (ref = '1 = 18 to 24 years old') R03R_A_RACECAT3 (ref = '1 = 
White alone') 
education (ref = '4') cc (ref='User')/ param=ref; 
model ec (event='User') = R03R_A_AM0030 R03R_A_SEX R03R_A_AGECAT7 
R03R_A_RACECAT3 education cc/link=logit; 
format cc single. ec single.; 
weight R03_A_SWGT; 
repweights R03_A_SWGT1 - R03_A_SWGT100; 
run; 
quit; 
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