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Temporal reasoning is the ability to extract and assimilate temporal informa-

tion to reconstruct a series of events such that they can be reasoned over to answer

questions involving time. Temporal reasoning in the clinical domain is challenging

due to specialized medical terms and nomenclature, shorthand notation, fragmented

text, a variety of writing styles used by different medical units, redundancy of infor-

mation that has to be reconciled, and an increased number of temporal references as

compared to general domain texts. Work in the area of clinical temporal reasoning

has progressed, but the current state-of-the-art still has a ways to go before prac-

tical application in the clinical setting will be possible. Much of the current work

in this field is focused on direct and explicit temporal expressions and identifying

temporal relations. However, there is little work focused on relative temporal ex-

pressions, which can be difficult to normalize, but are vital to ordering events on a

timeline. This work introduces a new temporal expression recognition and normal-

xx



ization tool, Chrono, that normalizes temporal expressions into both SCATE and

TimeML schemes. Chrono advances clinical timeline extraction as it is capable of

identifying more vague and relative temporal expressions than the current state-of-

the-art and utilizes contextualized word embeddings from fine-tuned BERT models to

disambiguate temporal types, which achieves state-of-the-art performance on relative

temporal expressions. In addition, this work shows that fine-tuning BERT models on

temporal tasks modifies the contextualized embeddings so that they achieve improved

performance in classical SVM and CNN classifiers. Finally, this works provides a new

tool for linking temporal expressions to events or other entities by introducing a novel

method to identify which tokens an entire temporal expression is paying the most at-

tention to by summarizing the attention weight matrices output by BERT models.

xxi



CHAPTER 1

INTRODUCTION

Temporal reasoning is the ability to extract and assimilate temporal information to

reconstruct a series of events such that they can be reasoned over to answer questions

involving time (Figure 1). Medicine is one such area where temporal reasoning is

vitally important to the care of patients. Temporal information in medicine plays

a significant role in treatment decisions as the frequency of symptoms could mean

the difference between being diagnosed with a given disease or not, or the need to

undergo a procedure. For example, if a child tests positive for strep throat 7 times in

a single year, the physician may consider performing a tonsillectomy [1]. Everything

in medicine revolves around when things happen, such as when the first symptom

appeared, when a lab test was performed, when medication or treatment was started,

etc. Every aspect of a patient’s medical data in their Electronic Health Record (EHR)

contains some type of temporal component.

Fig. 1. Graphical representation of Temporal Reasoning on clinical notes.

1



One task performed by physicians prior to seeing a new patient is the review

of that patient’s medical history. This includes reconstructing the timeline of events

leading up to a patient’s present condition, but also reading and interpreting patient

histories written by others to understand the patient’s condition and how to best care

for them. This requires knowing the progression of symptoms, when tests or medical

procedures were or are to be performed, and when medications were taken and for

how long. The most frequently read information when reconstructing a patient’s

history are the clinical notes [2]. This task can be time consuming and incomplete;

however, it has been shown that visualizing longitudinal clinical data reduces the time

it takes for medical professionals to assimilate a patient’s information and assess their

health status [3]. Having the ability to automatically extract and visualize a patient’s

medical timeline based on clinical notes would allow medical professionals the ability

to grasp the patient’s condition more quickly and completely without having to read

through and digest potentially large numbers of clinical notes prior to providing care.

To-date, there are a very small number of systems that can do this with unstructured

clinical notes. The ability to automatically reconstruct a patient’s medical history

using both unstructured and structured EHR data would provide doctors a tool to

help them assimilate vasts amounts of information about a patient’s medical history

quickly and efficiently, saving them time to focus on the patient instead of getting

caught up on the patient’s condition by browsing and reading numerous notes and

reports. The advancement of Clinical Temporal Reasoning and Timeline Extraction

in the field of Natural Language Processing is an area that aims to achieve this goal.

There has been a massive amount of work done on temporal information extrac-

tion over the past several decades [4, 5, 6, 7, 8, 9] with the ultimate goal of performing

tasks that require temporal reasoning, which requires an events timeline. However,

performance of current state-of-the-art timeline extraction pipelines are still not good
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enough to integrate into clinical practice leaving many areas of progress open to new

and innovative ideas. Clinical texts from Electronic Health Records (EHRs) are a nat-

urally temporally dense corpora, which means that clinical and medical texts derived

from EHRs are rich in temporal information. However, clinical texts are difficult

to parse due to a variety of idiosynchronicities such as medical jargon, shortened,

non-grammatical sentences, department and even physician specific formatting, and

medical abbreviations that can mean something different in different medical contexts.

This work advances progress in timeline extraction by focusing on improving the

recognition and normalization of relative temporal expressions in clinical text, which

appear frequently and are vital to ordering events on a timeline. Specifically, this work

introduces a new temporal expression recognition and normalization tool, Chrono,

that is capable if identifying more vague and relative temporal expressions than the

current state-of-the-art, and by being the first to utilize temporally fine-tuned con-

textualized word embeddings to disambiguate relative temporal expression temporal

types. This dissertation is organized as follows: Chapter 2 provides the reader with

needed background, including a brief history of clinical temporal reasoning, discussion

of the types of temporal information found in clinical texts, and a review of tempo-

ral annotation schemes, annotated corpora, shared tasks, and the timeline extraction

pipeline. Additionally, background on representational learning, pre-trained models,

and contextualized word embeddings are included in Chapter 2 followed by related

work. Chapter 3 introduces a new temporal expression recognition and normaliza-

tion tool, Chrono, that normalizes temporal expressions into the SCATE schema, with

Chapter 4 discussing changes made to Chrono to modify it for the clinical domain,

and Chapter 5 discussing modifications made to parse temporal expressions into the

popular TimeML schema. Chapter 6 provides details on implementing and evaluating

a temporal disambiguation module for relative temporal expressions, including com-
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parison to current state-of-the-art methods and an End-2-End evaluation. Finally,

Chapter 7 discusses future work and Chapter 8 summarizes the contributions of this

work to the field of Clinical Natural Language Processing and Temporal Reasoning.
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CHAPTER 2

BACKGROUND

2.1 A Brief History of Temporal Reasoning

The history of temporal reasoning with NLP started in the 1950’s and was fo-

cused on general domain texts. Much of the work through the early 2000’s focused

on the linguistics behind the temporal nature of discourse, how to represent temporal

information (such as with intervals or discrete points in time), temporal named entity

recognition, the development of annotation standards for temporal information, and

the temporal ordering of events [9]. While there is much to discuss with respect to

general domain temporal reasoning, this work is focused on clinical temporal reason-

ing, so we refer the reader to other reviews for a history of temporal reasoning in the

general domain [4, 5, 6, 7].

Clinical temporal reasoning has been around since the 1980’s, but had trouble

gaining traction with main-stream temporal reasoning NLP researchers due to the

lack of access to a gold standard clinical corpus. In 2012, the Informatics for Inte-

grating Biology and the Bedside (i2b2) Challenge was released [10], followed by the

release of the THYME (Temporal Histories of Your Medical Events) corpus in the

Clinical TempEval challenge of 2015 [11, 12]. For the first time, the NLP community

at large had access to temporally annotated clinical corpora as gold standards for de-

termining algorithm performance. This fueled the progress in temporal reasoning on

unstructured clinical texts in the areas of temporal expression recognition and nor-

malization, clinical event identification, and temporal relation classification. From

the shared tasks that utilized these corpora, rule-based systems, such as HeidleTime
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[13] and SUTime [14], emerged as performing the best for temporal expression recog-

nition and normalization while statistical machine learning methods outperformed

rule-based for event recognition and temporal relation classification tasks [10]. How-

ever, despite the boost in progress, temporal reasoning over clinical texts still posed

several challenges, including the normalization of vague, relative, or implied temporal

phrases; clinical event co-reference resolution; deciphering acronym and anaphoric

expressions; identifying candidate temporal relationships; relative time anchoring;

the end-to-end construction of a medical timeline from multiple documents; and the

incorporation of structured EHR data with clinical narrative information [9, 10, 8].

The rest of this chapter is organized as follows: in Section 2.2 the types of tem-

poral information found in clinical texts is described along with the distinction of

explicit and relative expression types. Next, Section 2.3 reviews how this informa-

tion is annotated for computational use, and Section 2.4 reviews clinical temporal

reasoning annotated corpora and shared tasks. In Section 2.5 we describe each step

involved in the generation of a clinical timeline from unstructured text along with

a review of current progress for each, and Section 2.6 reviews the few end-to-end

clinical timeline extraction pipelines for unstructured clinical texts. Finally, Section

2.7 reviews contextualized word embeddings along with recent work that attempts to

incorporate them into temporal tasks. A version of this chapter was published in the

Journal of Biomedical Informatics [8].

2.2 Temporal Information

Temporal information in text conveys information about the passage of time or

specific points in time. The basic units of temporal information are dates and/or

times (e.g. April 4, 2020, 11:45pm), and all expressions of temporal information in

text are ultimately distilled down to some combination of dates and times. However,
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temporal information is not always expressed in such an explicit fashion. There are

several different ways temporal information can be conveyed in text: explicit, implicit,

relative, vague, and non-consuming [7].

Explicit temporal expressions are exactly that, they relay the value of tempo-

ral information explicitly in the basic temporal units of dates and/or times, such

as “February, 18, 2020” or “9am”. Explicit temporal expressions, also known as

absolute expressions, can be complete (“February, 18, 2020 at 9am”) or incomplete

(“9am”) [15]. These types of expressions are generally straightforward to identify and

normalize as they already contain the information needed to map to the timeline.

Implicit temporal expressions can be either globally implicit (aka relying on some

global knowledge base of historical events) or locally implicit (relying on information

given elsewhere in the current document). With clinical data, globally implicit refer-

ences could also be those referring to other medical events in a patient’s record that

are not included in the document being processed with the temporal information. For

example, a patient could have had knee surgery in the past, but the current clinical

note being processed only indicates “the patient fell 2 months after knee surgery”. In

order to figure out when the patient fell, we would need to know when the surgery

took place, which is part of the global knowledge about this patient’s medical history.

On the other hand, locally implicit references are those that refer to explicit temporal

information elsewhere in the same document. For example, the phrase “the patient

fell on March 3rd” may precede the statement “the patient reported severe back pain

2 days after she fell”. The phrase “2 days after” is in reference to when the patient

fell, which was explicitly stated in the text previously.

Relative temporal expressions are those that are either anchored to some event

or the document time. Phrases such as “3 days ago” may be relative to the document

creation time, whereas phrases such as “2 hours after taking her medication” are
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relative to when the event “taking her medication” occurred whether or not the

absolute time the patient took medication is known.

Vague temporal expressions convey estimates of when something happened, but

is unable to be converted into specific dates and times. The phrase “in the early

1980’s” represents an unknown period of time presumably in the first few months of

the year 1980; however, the start date, end date, and duration are vague and unknown.

Similarly, clinical notes can contain phrases such as “the pain started about 2 months

ago”. The phrase “about 2 months ago” is both relative to the document time as

well as vague due to the word “about”.

Finally, Lim, et al. [7] described a non-consuming temporal information, which

is temporal information that is not explicitly stated in the text, but is assumed to be

provided or is general knowledge. This generally represents the document creation

time, of which many of the relative references may be anchored to.

Being able to define the types of temporal information is great, but if the com-

puter can’t process or utilize that data it is useless for NLP. Thus, it is necessary to

define temporal annotation schemes, which format temporal information from text in

a way that is more easily processed by computers for temporal reasoning tasks.

2.3 Temporal Annotation

Annotation schemes are used to normalize unstructured information in texts to a

computer-readable format for downstream processing. Temporal annotation schemes

are specifically designed to normalize temporal information and related events into

a standard format that can be utilized for temporal reasoning tasks. This includes

providing standardized formats for temporal expressions, events, and the many dif-

ferent types of relationships between them. How an annotation scheme is defined has

a major influence on how temporal and event information in text is processed and
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interpreted. Temporal annotation schemes have evolved over the past 30 years from

having a simple temporal value attribute for annotated events (Message Understand-

ing Conferences of the 1990’s), to specifically annotating temporal expressions with

an expanding set of attributes and adding tags for events and temporal links (TIDES

and TimeML), to specialization for the clinical domain (THYME-TimeML), and the

development of an interval and semantic-based temporal schema (SCATE). Figure 2

provides a high-level summary of the evolution of temporal annotation schema with

details being discussed in the following sub sections.

Fig. 2. Timeline of temporal annotation schema.

2.3.1 Translingual Information Detection, Extraction, and Summariza-

tion (TIDES)

TIDES was first developed in 2000 after the Defense Advanced Research Projects

Agency (DARPA) sponsored Message Understanding Conference (MUC) challenges

to provide more semantic details to the temporal expression (TIMEX) tags used

in previous challenges. To differentiate, TIDES refers to temporal expression tags as

TIMEX2 tags. This annotation focused on temporal expressions only, and are explicit

in what can and can’t be annotated with TIMEX2 tags. Any temporal expression

that has enough information to be pinned to a timeline is considered markable in the
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TIDES schema. Tag attributes capture semantic information about the expression

as well as its ISO-8601 normalized value. Table 1 shows a few TIMEX2 tags for

different temporal expressions (examples taken from [16]). Tag attributes include

the normalized value of the expression (VAL), if a temporal modifier exists (MOD),

the anchoring date and time (ANCHOR VAL), the relative direction of the anchor

value (e.g. before or after) with respect to VAL, and whether or not this TIMEX2

is annotating a set of temporal values, such as a frequency (SET). In general, vague

expressions that do not have enough information to identify a spot on a timeline

are not markable by TIDES [16]. This includes sequencing and ordering expressions

like “subsequent”, manner adverbs such as “immediately”, non-quantifiable durations

like “permanently”, negatives and non-existent times (e.g. “no time”), the token

“time” when it refers to a situation or occasion such as “at this time”, and frequency

expression without a quantifier (e.g. “frequently” or “too often”).

2.3.2 TimeML

In 2003, a new scheme named TimeML [17] was released that defined a new

TIMEX tag named TIMEX3. The TIMEX3 tag is based off of the the original TIMEX

tag [18] and the TIMEX2 standard from TIDES [16]; however, TimeML also includes

the additional tags EVENT, TLINK, SIGNAL, ALINK and SLINK. This new scheme

addresses the issue of not annotating events and the relationships between temporal

expressions and events, which are key components to understanding the temporal

nature of a text. While the TIMEX3 tag is based off of previous TIMEX tags, it’s

composition makes it difficult to convert TIMEX2 annotations to TIMEX3 due to

the added and altered attributes [19].

The TIMEX3 tag is used for explicit time expressions including dates, times,

and durations. In the TimeML scheme, the TIMEX3 tag has more attributes than
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I returned to work at twelve o’clock January 3, 1984.

I returned to work at <TIMEX2 VAL=“1984-01-03T12:00”>twelve o’clock January

3, 1984</TIMEX2>.

There has been a lot of rain the past three weeks.

There has been a lot of rain <TIMEX2 VAL=“P3W” >the past three

weeks</TIMEX2>.

She has been at work for more than a month.

She has been at work for <TIMEX2 VAL=“P1M” MOD=“MORE THAN” >more

than a month</TIMEX2>.

Two years ago, the dance club drew about 100 students each week.

<TIMEX2 VAL=“1997”>Two years ago</TIMEX2>, the dance club drew about

100 students <TIMEX2 SET=“YES” VAL=“1997-WXX”>each week</TIMEX2>

Table 1. Example temporal expressions with TIMEX2 annotation.
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TIMEX2 that provide more semantic information about each expression. These

include the type (DATE, TIME, DURATION, or SET), beginPoint, endPoint, a

quantifier such as “every”, a frequency such as “2X”, the document function (e.g.

CREATION TIME, PUBLICATION TIME, EXPIRATION TIME, etc), if this is a

temporal function (true or false), a value, modifiers, and an anchor time. Example

TIMEX3 annotations can be found in Table 2.

Other tags now included in the TimeML annotation scheme include an EVENTS

tag, which annotates the events that are needing to be placed on a timeline. Previ-

ously, TIDES did not annotate events or relationships between temporal expressions

and events. The SIGNAL tag is used to annotate function words that indicate how

two temporal objects (TIMEX or EVENT) are related to each other (e.g. “when”,

“in”, and “after”) where previously these tokens were not mark-able by TIMEX2.

The TLINK tag indicates a temporal link/relationship for EVENT-TIMEX, EVENT-

EVENT, or TIMEX-TIMEX pairs. Finally, the SLINK and ALINK tags are also

relationships tags, but are used when an event is part of another event.

2.3.3 ISO-TimeML

In 2010, the TimeML scheme was modified to provide an interoperatable tem-

poral annotation scheme that conforms to the ISO standards ISO 24610-1:2006 FSR,

ISO DIS 24611 MAF, and ISO DIS 24612 LAF [20]. The primary change was the

move from in-line annotations to stand-off annotations where the text being processes

is not altered (Table 3). The ISO-TimeML standard also introduces a new MLINK,

which is interpreted as a MEASURE and is associated with durations. Previously,

durations were treated as consecutive intervals; however, this is not always the case.

For example, in the phrase “Sam taught for 4 hours”, it is ambiguous if Sam taught

a consecutive 4 hours or for a total of 4 hours with breaks in between. The new
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I returned to work at twelve o’clock January 3, 1984.

I <EVENT eid=“e1” class=“OCCURENCE”>returned</EVENT>to work at

<TIMEX3 tid=“t1” type=“TIME” value=“1984-01-03T12:00”>twelve o’clock Jan-

uary 3, 1984</TIMEX3>.

There has been a lot of rain the past three weeks.

There has been a lot of <EVENT eid=“e1”

class=“OCCURENCE”>rain</EVENT><TIMEX3 tid=“t2”

type=“DURATION” value=“P3W”>the past three weeks</TIMEX3>.

She has been at work for more than a month.

She has been at <EVENT eid=“e1” class=“OCCURENCE”>work</EVENT>for

<TIMEX3 tid=“t3” type=“DURATION” value=“P1M” mod=“MORE THAN”

>more than a month</TIMEX3>.

Two years ago, the dance club drew about 100 students each week.

<TIMEX3 tid=“t4” type=“DURATION” value=“P3Y”>Two

years ago</TIMEX3>, the dance club <EVENT eid=“e1”

class=“OCCURENCE”>drew</EVENT>about 100 students <TIMEX3 tid=“t5”

type=“SET” value=“P1W” quant=“EACH” freq=“1w”>each week</TIMEX2>

Table 2. Example temporal expressions with TimeML annotations.
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I returned to work at twelve o’clock January 3, 1984.

<EVENT eid=“e1” start=3 end=11 class=“OCCURENCE”>

<TIMEX3 tid=“t1” start=23 end=53 type=“TIME” value=“1984-01-03T12:00”>

There has been a lot of rain the past three weeks.

<EVENT eid=“e1” start=25 end=29 class=“OCCURENCE”>

<TIMEX3 tid=“t2” start=30 end=50 type=“DURATION” value=“P3W”>

She has been at work for more than a month.

<EVENT eid=“e1” start=17 end=21 class=“OCCURENCE”>work</EVENT>

<TIMEX3 tid=“t3” start=25 end=42 type=“DURATION” value=“P1M”

mod=“MORE THAN” >

Two years ago, the dance club drew about 100 students each week.

<TIMEX3 tid=“t4” start=1 end=15 type=“DURATION” value=“P3Y”>

<EVENT eid=“e1” start=32 end=36 class=“OCCURENCE”>

<TIMEX3 tid=“t5” start=56 end=65 type=“SET” value=“P1W” quant=“EACH”

freq=“1w”>

Table 3. Example temporal expressions with TimeML-ISO stand-off annotations.

MLINK relation allows one to identify this ambiguity in the annotation. Addition-

ally, the ISO-TimeML standard provides a mechanism for proper counts of recurring

events, where the previous annotation for the phrase “Sam taught every Tuesday in

December” was unclear if the event “taught” occurred once or multiple times, the

new ISO-TimeML provides a distributive mechanism to properly count the number

of teaching events as four.
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2.3.4 THYME-TimeML

Due to the unique challenges of temporal information extraction in the clinical

domain, Styler, et al. [12] developed the THYME-TimeML guidelines in 2014 for

annotating temporal information from clinical texts. In THYME-TimeML, the defi-

nition as what qualifies as an event is expanded to include anything that would occur

in a patients clinical timeline and is clinically relevant, such as diagnoses, tumor,

illness, or procedure [12]. While the concept of EVENT was expanded, the attributes

required were both simplified and expanded to be more relevant to clinical documents.

For example, a new attribute for “contextual modality” was added that includes the

values ACTUAL, HYPOTHETICAL, HEDGED, and GENERIC. Additionally, a new

type of temporal expression is added to the TIMEX3 tag of PREPOSTEXP, which

refers to the clinically relevant and temporally complex terms such as preoperative,

postoperative, and intraoperative.

Due to the higher frequency of temporal information in a clinical note or docu-

ment, the number of temporal relations that needed to be annotated was large. Styler,

et al. were concerned about consistency in annotation and aimed to reduce the num-

ber of necessary TLINK annotations. They created the concept of a narrative con-

tainer that was relative to the document creation time. Instead of creating TLINKS

for all possible events, all events were placed into one of four narrative containers:

“before the DOCTIME, before and overlapping the DOCTIME, just overlapping the

DOCTIME or after the DOCTIME” [12]. Both EVENTs and TIMEXs can be used

as anchors for a narrative container. The advantage of this approach is that events are

placed within an explicit temporal bound and it is not necessary to create all possible

TLINKs to identify whether an event comes before, after, or during another event.

Thus, with this change the CONTAINS relation is now the most frequent out of the
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previous relation types of BEFORE, OVERLAP, BEGINS-ON, and ENDS-ON. Due

to the clinical relevance of the THYME-TimeML scheme, a simplified version was

used as the basis of the 2012 i2b2 temporal challenge [21] annotation framework.

2.3.5 SCATE

The SCATE Schema (Semantically Compositional Annotations for Temporal Ex-

pressions) was developed by Bethard, et al. [22] to address some of the shortcomings

of the ISO-TimeML standard [20]. Specifically, ISO-TimeML has trouble represent-

ing time intervals that do not map to a specific calendar date, such as “2 summers

ago”, temporal expressions can only be relative to other times, and not events as

in “four days postoperative”, and the flattened structure of ISO-TimeML annota-

tions removes the compositional structure of temporal expressions. Thus, SCATE

was developed to annotate the fine-grained components of temporal expressions, to

represent a wider variety of temporal expressions, allowing for events to act as an-

chors, and using mathematical operations over a timeline to define the semantics of

each annotation. Figure 3 demonstrates the differences between SCATE annotation

and that of the ISO-TimeML annotations.

2.4 Clinical Temporal Reasoning Shared Tasks and Corpora

Shared Tasks provide a centralized and structured platform for advancing spe-

cific areas of research in NLP. An overview of the shared tasks in the general and

clinical domains that include some type of temporal component is shown in Figure

4. Temporal Reasoning and Information Extraction first appeared in NLP shared

tasks in the 1990’s with the Message Understanding Conferences (MUC 6, 7 and 8)

[23, 24, 25]. These early tasks, however, were not focused on temporal information

extraction, but rather identifying the temporal value of an entity, if present, as part of
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Fig. 3. Example SCATE annotations.

a named entity identification task. Temporal information extraction did not become

the focus of a shared task until 2004 in the ACE TERN challenge [26], followed by

a series of TempEval challenges [27, 28, 29]. The TempEval challenges focused on
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identifying and normalizing temporal expressions and identifying a variety of tempo-

ral relations, and were foundational in developing temporal reasoning systems in the

general domain. Lim, et al. [7] provides a good overview of these challenges and their

contributions to the field. In this section, we focus on the temporal challenges and

corpora in the clinical domain.

2.4.1 2012 i2b2 Temporal Challenge and Corpus

Clinical temporal information extraction and reasoning shared tasks did not ap-

pear until 2012 with the Informatics for Integrating Biology and the Bedside (i2b2)

Clinical Temporal Relations Challenge [21]. This task provided the NLP commu-

nity with 310 de-identified discharge summaries from Partners Healthcare and the

Beth Israel Deaconess Medical Center with gold standard temporal annotations, and

included 3 tracks: 1) temporal expression (TIMEX) and clinically relevant event iden-

tification (EVENT), 2) temporal relation identification (TLINK), and 3) end-to-end

system. Unlike previous general domain temporal shared tasks, the i2b2 challenge

narrowed events to those that were clinically relevant, namely clinical concepts (i.e.

problems, treatments, and tests), clinical departments, evidentials, and occurrences.

Temporal expressions were annotated with the ISO-TimeML scheme and included

dates, times, durations, and frequencies with absolute values normalized to the ISO-

8601 standard. Temporal relations consisted of all possible relations between two

TIMEXs, two EVENTs, or a TIMEX and EVENT. Relation types consisted of BE-

FORE, AFTER, SIMULTANEOUS, OVERLAP, BEGUN BY, ENDED BY, DUR-

ING, and BEFORE OVERLAP. Ultimately, 18 teams officially participated in the

challenge; however, in the years after several other systems were published utilizing

the corpus and further advancing the field [30, 31, 32, 33, 34, 35, 36, 37, 38].
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2.4.2 TempEval Challenges and THYME Corpus

From 2015 to 2017, Bethard, et al. [11, 39, 40] hosted a series of Clinical TempE-

val challenges as part of SemEval following the task structure of previous TempEval

shared tasks, only moving to the clinical domain. These challenges used the Temporal

Histories of Your Medical Events (THYME) corpus [12], which is composed of 1,254

de-identified clinical notes and pathology reports from brain and colon cancer patients

seen at the Mayo Clinic. The 2015, 2016, and 2017 challenges consistent of the same

9 tasks grouped into 3 categories: 1) TIMEX identification, 2) EVENT identification,

and 3) TLINK identification. TIMEX types included DATE, TIME, DURATION,

QUANTIFIER, PREPOSTEXP, and SET. Identified EVENTs were classified as AS-

PECTUAL, EVIDENTIAL, or N/A, and required properties to be annotated such

as polarity and contextual modality. TLINKs were broken down into 2 main cate-

gories: DOCTIMEREL or CONTAINS. DOCTIMEREL relations were those where

an EVENT has a BEFORE, OVERLAP, BEFORE-OVERLAP, or AFTER relation

with the document creation time. CONTAINS relations were narrative container re-

lations between EVENTs and TIMEXs. Participating systems were evaluated either

as end-to-end systems, or were given TIMEX and EVENT annotations and judged

on TLINK identification. Due to issues in getting participants access to the data

in 2015, the same challenge was run again in 2016 with 4 times as many participat-

ing teams. In both instances, teams using supervised machine learning approaches

excelled in the TIMEX and EVENT identification tasks using a variety of features,

indicating that these tasks are close to solved. However, the TLINK tasks proved to

be challenging to all systems, especially the narrative container relations. In 2017,

the same tasks were run again, however the aim was to address how well systems

dealt with domain adaptation. Participating systems were given the colon cancer
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Fig. 4. Timeline of Shared Tasks that include Temporal Components

clinical notes and pathology reports for training, but were tested on the brain cancer

cohort. All systems were reported to have a significant performance drop when tested

on a new domain, which indicates that there is much work to be done in creating a

generalizable timeline extraction system for clinical data.

The most recent temporal reasoning shared task was the SemEval 2018 Task 6:

Parsing Time Normalizations [41] using the THYME corpus and the general domain

AQUAINT News wire corpus. The goal of this task was to normalize fine-grained

temporal information and relationships into the Semantically Compositional Anno-

tations for Temporal Expressions (SCATE) scheme developed by Bethard, et al. [22].

This scheme aims to improve upon the current TIMEX3/TimeML [17] standard by

representing a wider variety of temporal expressions, allowing for events to act as

anchors, and using mathematical operations over a timeline to define the semantics

of each annotation. Two tracks were assessed: 1) Parsing text to time entities (event

parsing and temporal relations were not assessed), and 2) production of time intervals.

While over 40 teams registered for the challenge, only one team submitted results for

comparison with the organizer’s baseline–our system Chrono [42], described below in

Chapter 3.
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2.5 Timeline Extraction

Timeline extraction is a high level temporal reasoning task that relies on the

accurate performance of lower level Temporal Information Extraction (TIE) tasks.

In order to reconstruct a useful and non-redundant medical timeline that can be used

in clinical settings, the following steps must be implemented:

1. Temporal Expression Identification and Normalization

2. Clinical Event Identification

3. Temporal Relation Identification

4. Clinical Event Co-Reference Resolution

5. Temporal Event Ordering

6. Timeline Visualization

In the following subsections we define and review the current state of each of

these step in the Clinical NLP realm along with a review of existing end-to-end

clinical timeline extraction systems and the state of evaluating these systems.

2.5.1 Temporal Expression Recognition and Normalization (TERN)

A temporal expression (TimeML tag TIMEX3), referred to as a TIMEX, is a

phrase that conveys information about time. Temporal expression recognition is the

task of identifying which span of text contains a TIMEX. Temporal expressions can

be annotated as one of four types in the TimeML schema: DATE, TIME, DURA-

TION, and FREQUENCY. Temporal expressions can either be explicit (“February,

18, 2020”), relative (“after the surgery”), implicit (“on Labor Day”), vague (“about 6

months ago”), or a combination (“about 2 weeks after Labor Day”). Non-consuming

temporal information is generally not annotated as a temporal expression and is in-

stead used to anchor relative expressions to implicit information such as the document
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creation time. Each TIMEX is composed of one or more temporal entities, such as

day-of-week, hour-of-day, month-of-year, etc. For example, the TIMEX “February

18, 2020” contains 3 temporal entities: month-of-year, day-of-month, and year. A

TIMEX can also contain modifiers that indicate whether the temporal phrase is re-

ferring to the past, present or future (e.g. “last month” vs “this month” vs “next

month”).

Temporal expression normalization is the task of interpreting the value of an

identified TIMEX and storing it in a computer-readable format. This format is gen-

erally the ISO-8601 standard, which is supported by the current temporal annotation

schemes discussed in Section 2.3. In general, explicit dates and times, such as “May

4, 2020”, are straight-forward to normalize into the ISO standard. However, relative,

implicit and vague TIMEXs, henceforth referred to as a RelIV-TIMEX, are difficult

to process due to the need for additional implicit information, which may be easily

identifiable to a human reader, but not apparent to a computer. In addition, RelIV-

TIMEXs can refer to a single point in time (e.g. “she had surgery two weeks prior

to admission”), or a span of time (e.g. “she has been having knee pain since two

weeks prior to admission”). Using the TimeML schema, RelIV-TIMEXs referring to

a single point in time are classified as a DATE type, and those referencing a span

of time are classified as a DURATION. Knowing the difference between these two

types of expressions is important because it determines how that expression is going

to be normalized. Thus, for RelIV-TIMEXs there are 3 phases to the TERN task:

recognition, type classification, and normalization.

Initial progress in TERN came from the general domain with the TempEval-2

and 3 challenges in 2010 and 2013 [28], where TIMEXs were to be recognized and

normalized, including the identification of the type and value attribute of the TIMEX3

tag in the TimeML annotation scheme. In both of these challenges, the rule-based
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HeidelTime [13] tool achieved the best performance in identifying TIMEXs and their

type. Other high performing systems included the data-driven ClearTK [43] system,

which used SVMs, and the rule-based SUTime [14]. However, while all of these tools

performed well on identifying a TIMEX span and type, it is clear from all the teams in

both challenges that assigning the correct value of the TIMEX was a difficult problem

indicated by the drop in performance.

TERN moved to the clinical domain with the 2012 i2b2 Temporal challenge [21].

Similar to the TempEval challenges, i2b2 utilized the TIMEX3, EVENT, and TLINK

tags from the ISO-TimeML scheme; however, in addition to the type and value of

TIMEX3 attributes, the i2b2 challenge also required the modifier attribute to be set.

The top performing system for the TIMEX task was a rule-based system from Mayo

Clinic [44]. All of the other systems were either rule-based or hybrid methods, with

several integrating the top TempEval performer, HeidelTime, into their workflow.

Interestingly, the HeidelTime team also participated in the i2b2 challenge; however,

the tool trained for general-domain temporal information extraction performed poorly

on the clinical data. This is likely due to the added challenges of parsing text that is

temporally dense and contains many more frequency-based expressions than general

domain text [45]. However, teams that integrated HeidelTime in with additional

rules to compensate for the added clinical challenges performed better [21]. While

the top performing systems did well on identifying the span, type, and modifier for

the TIMEX3 tag, they all still saw a drop in performance when it came to identifying

the normalized value. Since the i2b2 challenge, rule-based systems are by far the

preferred method for the task of recognizing and normalizing TIMEXs from clinical

text [46, 33, 38, 47, 48] followed by hybrid [49, 50] and purely data-driven [51, 52]

approaches.
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2.5.2 Clinical Event Identification

Event identification (TimeML tag EVENT) is the task of identifying things that

happen and are of importance in a text. In temporal information extraction, events

also have some type of temporal component, such as when or for how long a thing

happened. In the general domain, an event is defined as a situation, action, or state

of being [5], and are generally represented by syntactically inflected verbs or event

nominals such as “killed” and “crash” in the statement “she was killed by the crash”

(example taken from [28]). However, in the clinical domain we are interested in

clinically relevant events, which expands the definition of “event”. The 2010 and

2012 i2b2 challenges defined a clinical event as a clinical concept (i.e. problem,

treatment, or test), clinical departments, evidentials (i.e. identifying the source of

information), and occurrences (i.e. events like “admission” or “transfer” that happen

to a patient) [53, 21]. Clinical event identification is similar to the classic Named

Entity Recognition (NER) NLP task, except we are only looking for certain medically-

related types of entities. In both the 2010 and 2012 i2b2 challenge tasks on clinical

event identification systems implementing conditional random fields (CRF) for event

span detection, and support vector machines (SVMs) for event attribute classification

performed the best for this task.

While the i2b2 challenges define events as tests, treatments, and medical prob-

lems, this may not cover all relevant events depending on the task at hand. For

this reason, Dehghan [49] expanded the definition of event to also include health and

quality of life indicators, which are relevant when constructing a timeline of impor-

tant events for a patient with a disease that causes long-term mental and emotional

health issues such as childhood CNS cancer. Thus, it is important to realize that the

definition of event is task-specific, so building a catch-all classifier may be challenging.
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2.5.3 Temporal Relation Identification

Temporal relations (TimeML tag TLINK), are relationships between two entities

that have a temporal component. Entities are either EVENTs or TIMEXs. TLINKs

can exist between a TIMEX and an EVENT, between two EVENTs, between two

TIMEXs, and between each EVENT and the document creation time (DCT). For

example, in the phrase “a full hip replacement was performed on 6/22/92” the event

is “hip replacement” and the TIMEX is “6/22/92”, where the TIMEX refers to when

the event happened. EVENT-EVENT relations can also occur, for example, in the

phrase “she became sick after visiting the store” there are 2 events, but no explicit

temporal references. However, the event “became sick” is temporally linked to the

event “visiting the store” with a relative TLINK.

Until the 2012 i2b2 challenge, not much attention had been paid to temporal

relation extraction in the clinical domain [10]. The majority of the work was done in

the general domain [6, 7, 4], and temporal relation extraction in the clinical domain

posed new challenges. This included having to deal with the large increase of temporal

expressions due to the increased temporal density of clinical notes versus general

domain text [45], which creates more candidate relations needing to be filtered to the

medically relevant ones. It also includes dealing with implicit relations and relative

relations where no explicit temporal expression can be found. Finally, clinical text is

highly redundant [2, 54] and requires sophisticated co-reference resolution techniques

in order to build out non-redundant timelines of events.

The TLINK track of the 2012 i2b2 challenge spurred a variety of machine learn-

ing and hybrid approaches to identifying TLINKs [21]. Hybrid approaches utilizing

rule-based pair selection, CRFs, and SVMs performed the best; however, significant

challenges still remained. While systems identified relations between entities and
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the document creation time (DCT) accurately, all systems had difficulty narrowing

the candidate entity pairs, anchoring relative temporal expressions, and identifying

inter-sentence TLINKs. These still remain areas in need of improvement. Since the

i2b2 challenge there has been some progress in TLINK identification for clinical texts.

In the following subsections we review some early attempts to handle inter-sentence

TLINKs, strategies to target specific types of TLINKs, neural network approaches,

and the contributions of BERT to temporal relation extraction.

2.5.4 Early Inter-Sentence Temporal Relation Identification Strategies

Inter-sentence TLINKs are difficult as they also require some level of corefer-

ence resolution. Cheng, et al. [30] found their supervised machine learning classifier

using MaxEnt performed poorly on these, so implemented a rule-base approach for

inter-sentence TLINKs. D’Souza [32] found that many of the inter-sentence TLINKs

were not actually annotated in the i2b2 corpus, so proceeded to augment the i2b2

annotations to compensate. Lin, et al. [37] contributions were the first open source

state-of-the-art end-to-end system that performed comparably to the top i2b2 system.

It used the same features as previously published systems and implemented a multi-

layered approach by identifying course-grained relations followed by intermediate and

fine-grained.

2.5.4.1 Targeting Specific Temporal Relation Types

Many of the systems derived from the i2b2 challenge tried to identify both the

explicit and implicit temporal relations simultaneously. This resulted in a lot of

relations that need to be identified. Lee, et al. [34] argued that systems need to be

good at identifying explicit temporal relations before identifying the implicit relations

as they are based on the explicit temporal relations. Thus, Lee and colleagues [34,
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35, 36] focused their work on defining, annotating, and identifying “direct” temporal

relations, which are defined as explicit relations between an event and timex from

within the same sentence, using the i2b2 corpus. While their initial system based off of

the top performing Vanderbilt system from the i2b2 challenge performed poorly [34],

subsequent attempts that included the augmentation of machine learning features

to include document format features, dependency features, and semantic roles along

with previously used lexical, syntactic, and contextual features improved performance

[35]. More recently, Guan, et al. [36] has produced the latest state-of-the-art in direct

TLINK identification using RoBERTa [55], which is a multi-layer transformer encoder

modified from the original BERT [56]. By training on more data, longer sequences,

removing the next sentence prediction objective, and altering the masking pattern,

Guan, et al. [36] utilized BERT to predict the temporal relation presence and type

using the direct temporal relation annotated corpus from Lee, et al. [34]. However,

similar to previous work, only intra-sentence relations are targeted that meet specific

lexical-syntactic requirements for a direct temporal relation (defined in [34]).

Viani, et al. [57] also reduced the types of TLINKs identified in their work, but

narrowed them to a specific medical condition instead of using syntactic properties

like Lee, et al. [34]. Viani, et al. implemented a rule-based system to identify

TLINKs that were relevant to the symptom onset timeline of patients diagnosed with

schizophrenia. Because their system rule-set was built for a specific clinically oriented

task for a specific medical condition, the developed rules and methodology are not

generalizable, and many of the rules depend on their hospital system’s specific format

of clinical notes. Even with these highly specific constraints on the types of TLINKS

targeted, and the manual annotation of events and TIMEXs for the corpus used,

Viani, et al.’s performance had an accuracy of 0.67, which is not much better than

the more generalizable system produced by Lee and Guan [34, 35, 36].

27



2.5.4.2 Neural Network Approaches

Prior to 2017, temporal expression relation extraction was primarily implemented

via a rule-base or hybrid approach with Support Vector Machines (SVMs) commonly

chosen as the machine learning component using hand-crafted linguistic features [37,

44, 58, 59, 60, 61, 62, 31, 33]. However, in 2017 neural network architectures took the

stage for the temporal relation extraction task. Dligach, et al. [63] and Tourille, et al.

[64] were among the first to utilize neural networks for temporal relation extraction.

Dligach, et al. pitted the Long Short Term memory (LSTM) units and Convolutional

Neural Network (CNN) architectures against each other using the THYME corpus

from the 2015 Clinical Temp Eval Challenge [11] for identifying EVENT-TIMEX

and EVENT-EVENT intra-sentence temporal relationships. Input was minimally

processed raw tokens and/or POS tags with XML markup of the temporal expres-

sions and events. CNNs were shown to outperform the LSTM architecture for the

Clinical Temp Eval 2015 challenge. However, shortly thereafter, Tourille, et al. [64]

implemented a Bidirectional-LSTM (Bi-LSTM) that included character-level features

for both intra- and inter-sentence temporal relations on the THYME data set with

comparable performance on intra-sentence relations and superior performance with

both inter- and intra-sentence temporal relations. Lin 2018 [65] took the BiLSTM

from Tourille, et al. further by including a self-training RNN framework that uti-

lized out-of-domain word embeddings to create a silver standard for training. This

self-learning was also applied to the top performing, SVM-based THYME system.

Lin, et al. discovered that SVM-based systems are unable to learn from self training

using a silver standard and identified that the SVM was just calling more instances

as positive. The self training did improve the RNN-biLSTM and RNN-GRU models,

and including the out-of-domain features improved cross-domain performance as well.
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However, Lin, et al. is still only using intra-sentence relations, and results were not

very different from Tourille, et al.

2.5.4.3 The Era of BERT

In 2018, researchers from Google AI introduced Bidirectional Encoding Represen-

tations from Transformers (BERT) [56] as a new pre-trained language representation

model (see Section 2.7 for an introduction). Representational Learning in NLP aims

to learn informative numerical representations of words. These learned representa-

tions can take the place of, or augment, manually defined features that are fed into

machine and deep learning models for prediction tasks [66]. Since the debut of BERT,

it has been used in many NLP applications, including in the area of temporal rea-

soning. In 2019, Lin, et al. [67] converted their Recurrent Neural Network (RNN)

self-training system [65] to utilize BERT and account for cross sentence relations by

implementing a window approach instead of sentence by sentence. The BERT base

was fine-tuned on MIMIC [68] and PubMed, and self-training using silver standard

annotations was implemented similar to their work in 2018 [65] except with the win-

dow method instead of sentence-based. Improvements in performance, however, were

mild, increasing the F1 score on the colon cancer test set to 0.684 from the previous

best of 0.629. Lin, et al. also assessed the performance on the development set of

the inter-sentence relations to get an F1 at 0.33, but was not able to surpass the

performance of Tourille, et al. [64] with an F1 of 0.482, indicating much work is still

needed in this area. Interestingly, they found that the window-based method does

not work well with the previous BiLSTM method due to the unique characteristics

of BiLSTMs. One of the disadvantages of the BERT model is its computational

complexity due to having to encode the same sequence n x (n-1)/2 times. In 2020,

Lin, et al. [69] converted this method to use a one-pass encoding mechanism inspired

29



by Wang, et al. [70], which achieves the same performance but with a significant

reduction in computational complexity, reducing the training time by several hours

to days depending on the data set size. Finally, in 2020 Dupuis, et al. [71] utilized a

clinically fine-tuned BERT model [72] to classify the anchor time relation type on a

subset of relative and incomplete TIMEXs [15], but did not surpass the results from

Sun et al. [15], which utilized classic SVM classifiers with bag-of-word features as

input. Thus, utilizing BERT for clinical temporal tasks has proven to be a challenge.

Overall, while there has been progress in identifying temporal relations from

refining focus to explicit relations, to implementing neural networks, and using in-

formation contained in deep neural networks such as BERT, there is still work to be

done. Strategies to improve performance in the area of inter-sentence relations and

relations involving implicit temporal expressions are needed.

2.5.5 Clinical Event Co-Reference Resolution

Coming from a non-linguistics background, deciphering the precise meaning of

the term co-reference is surprisingly challenging as its definition is intertwined with

the concept of anaphora in the NLP and computational linguistics literature. Recent

reviews on the topic state that anaphora and co-reference resolution are two distinct

yet overlapping tasks in NLP [51, 73]. In the following subsections the concepts of

co-reference and anaphora from an NLP and linguistics point of view will be briefly

reviewed followed by an explanation of how co-reference resolution is important in

clinical timeline generation, and the progress of co-reference resolution in the clin-

ical NLP domain. For a more in-depth discussion of Co-Reference Resolution and

Anaphora, please read Sukthanker, et al.[73] and/or Tourille, et al. [51] as this level

of detail is out of scope for this work.
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2.5.5.1 Anaphora vs Co-Reference

In linguistics, an anaphore is a word or phrase where prior contextual knowledge

is needed for correct interpretation. Resolving anaphoric expressions relies on pre-

viously introduced entities or concepts within the same narrative text, and requires

little global or outside knowledge [73]. Examples 1 and 21 show two types of anaphoric

expressions, where the anaphore is italicized and the antecedent or anchor is in bold

Sally left the theater, then she got dinner. (1)

Every speaker had to present his paper. (2)

Example 1 demonstrates a specific type of anaphore called a referring anaphoric

expression. A referring anaphoric expression is a phrase or sentence where the

anaphore is referring to a previously introduced entity (the antecedent/anchor), and

the relationship is that of identity [51] (i.e. they are both referring to the same

physical entity). This is referred to as “co-reference” in linguistics. Referring noun

phrases that include pronouns, nominals, and proper names are common examples of

referring anaphoric expressions. In Example 1, one must have read the first part of

the sentence to understand to whom “she” is referring. Thus, in linguistics the task

of co-reference resolution refers to the resolution of referring anaphoric expression.

Note that resolving Example 2 is not co-reference resolution, but rather anaphoric

resolution because the anaphore “his” in not equivalent to “Every speaker”, but it’s

interpretation does depend on this antecedent. If these were equivalent, then the

statement would read “Every speaker is responsible for presenting every speaker’s

paper.”, which is not the correct interpretation (example taken from [73]).

1
Example from [73]
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The task of co-reference resolution in the NLP field overlaps that in linguistics,

but it is not equivalent. NLP defines co-reference resolution as the task of finding

equivalency classes among identified events or entities within a document, or across

several related documents [74, 51, 73]. This is essentially event or entity normaliza-

tion, and differs from the linguistics definition of co-reference and anaphora in a few

ways. First, two identified entities can co-refer to the same physical entity but one

does not have to be the antecedent of the other, and the expression does not have to

be an anaphore. For example, noun phrases that use proper names can co-refer to the

same person, but they are not anaphoric because you do not need the surrounding

context for interpretation. Second, NLP co-reference resolution may require domain

knowledge outside the local context for correct interpretation, unlike anaphoric reso-

lution, which depends on the local narrative context. For example, when processing

clinical records, reference to a patient’s surgery may require global domain knowledge

of the patient’s medical history to know what type of surgery a phrase like “patient’s

surgery” is referring. The mentions of a surgery in one document co-refer to mentions

of the same surgery in another document, which is not anaphoric. In this work we

adopt the definitions of Sukthanker, et al. [73] and Tourille, et al. [51] for Anaphora

and Co-Reference Resolution, where Anaphora Resolution is the task of identifying

anaphores and their antecedents, and Co-Reference Resolution is the task of identi-

fying equivalency classes among identified entities or events within a single, or across

multiple, documents.

2.5.5.2 Progress in Clinical Event Co-Reference Resolution

Progress in the field of Clinical Event Co-Reference Resolution has stemmed

from the general domain, but has been slow. In the general domain, several strate-

gies have emerged to perform co-reference resolution, primarily focusing on noun
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and pronoun phrases within a single document: mention-pair models, entity-based

models, mention-ranking models, and tree-based models. The mention-pair strat-

egy is similar to the pairwise temporal relation extraction strategy where each entity

(i.e. mention) in the text is paired with all other entity/event mentions creating an

anaphore-antecedent candidate, and the relationship of whether or not they co-refer

is determined. However, this strategy has many of the same pitfalls of the pairwise

temporal relation task, including an unbalanced data set and the possibility for con-

tradictions to arise due to each mention-pair being evaluated independently of all

the others [75, 51]. Instead of looking at each anaphore-antecedent candidate indi-

vidually, entity-based models attempt to group entity mentions with clusters of noun

phrases that are likely to co-refer to the same entity creating a co-reference chain,

which attempts to address the unbalanced training instance problem. However, both

of these approaches still suffer from potential contradiction because they evaluate

candidate pairs independently. The mention-ranking model attempts to resolve the

issue of evaluating a pair of mentions independently by creating a ranked list with

all possible antecedent candidates for a given anaphore and their probability. In this

way one can consider all candidates at once to choose the best pair [75]. Finally, the

tree-based method aims to build a dependency tree of entities where the root is the

antecedent. This enforces that each mention/anaphore is only associated with one

antecedent within a document [51]. All of these strategies have been applied to the

general domain on a single document basis and assume there is narrative structure

for extracting classification features. Ng, et al. [76] and Tourille, et al. [51] provide

comprehensive reviews of the progress in general domain co-reference resolution.

In the clinical domain, Co-Reference Resolution includes the resolution of per-

sonal pronouns and other clinically relevant entities and events like problems, treat-

ments, and tests. These types of entities can be difficult to resolve because very
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different lexical expressions can be used for the same entity or event, and identical

lexical expressions can be used to reference different entities/events as they occurred

at different times. Also, the wide variety of the ways problems, treatments, and tests

can be expressed is much larger than the ways person references and pronouns are

used. There was little progress in clinical co-reference Resolution until the 2011 i2b2

Co-Reference Challenge [77], which expanded the focus beyond noun phrases con-

taining anaphores and antecedents to clinically relevant persons, entities, and events.

Using discharge summaries, entities were defined as one of PERSON, PROBLEM,

TREATMENT, or TEST. Entities could only be co-referential if they were the same

entity type, which helped to resolve the negative bias problem for training data. For

example, the entities “temporal artery biopsy” and “that testing” in Quotation 32

are co-referent of the same medical procedure, and thus belong to the same equiva-

lency class, whereas the entity “she” clearly belongs to a different class and does not

have to be evaluated with the medical procedure entities. This entity type restric-

tion was used by many of the participating systems to build separate modules for

the resolution of each entity type. Overall, 20 systems participated in the challenge,

and consisted of rule-based, hybrid, and supervised learning approaches. Uzuner,

et al. [77] notes that all systems, regardless of strategy, that incorporated external

domain knowledge, such as the Unified Medical Language System (UMLS) [78] and

Wikipedia, showed improved performance. Xu, et al. [79] built the top performing

system which uses a binary SVM to identify all of the PERSON mentions from the

PROBLEM, TREATMENT, and TEST mentions, then trains SVM classifiers using a

large list of contextual and world knowledge features to create PERSON co-reference

chains (primarily relating to the patient), and a separate classifier to identify the other

2
Example from [77]
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types of co-reference chains. In the i2b2 challenge, Xu, et al. obtained an F1 score

of 0.915, which is very good for this task. While the 2011 i2b2 Co-Reference Chal-

lenge encouraged progress in the area of clinical co-reference resolution, it focused

on discharge summaries where clinical text is written in a more narrative fashion,

and only required co-reference to be determined within a single document. Further

work is needed to address co-reference resolution across multiple documents and in

documents that have less of a narrative structure.

She was scheduled to receive a temporal artery biopsy,

but she never followed up on that testing.
(3)

2.5.5.3 The Timeline Relation

With regards to timeline generation, co-reference resolution is vital to building

non-redundant timelines, especially when multiple related documents are processed.

Clinical documents offer unique challenges to the task of co-reference resolution as

compared to general domain texts. For example, clinical documents are highly repet-

itive and redundant due to the copying and pasting of content from previous docu-

ments or entries by clinicians to ensure the most relevant information is easily found

[80, 54]. This creates a greater number of entities that must be placed in an equiv-

alence class. Also, the narrative structure of clinical documents is limited and fre-

quently not present due to domain knowledge of how notes are written and should

be interpreted, and clinician shorthand. Both of which can change across different

clinicians, departments, and medical facilities. This means the same event or entity

could be referenced in multiple ways that can differ dramatically across documents

such as a patient’s history to a radiology report that both refer to a similar medi-

cal event. On the flip side, event mentions that have identical lexical and syntactic
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properties could be referring to completely different real-word events; thus, context

and lexical-syntactic properties alone are insufficient to determine if the events are

equivalent. Finally, co-references can not only span sentences, but also document

sections and across different documents in the patient’s medical record. This results

in different contexts surrounding each mention of an entity or event that need to be

normalized and resolved before the entity or event can be placed in an equivalence

class and then properly placed on a timeline.

Until recently, co-reference resolution had been performed without consideration

of the temporal information. A few systems in the 2011 i2b2 challenge utilized times

and dates as features to help distinguish events with similar contextual, lexical, and/or

syntactical properties [79, 81, 82]. However, recent progress in Clinical Event Co-

Reference Resolution has determined that temporal information is vital to resolving

event co-references both within a document and across multiple documents since

event mentions can only co-refer if they happened in the same time frame [83, 51, 84,

49]. Tourille [51] even argues that in the task of extracting a clinical timeline, event

co-reference and temporal information extraction should be performed jointly as they

are complementary and connected.

Since the 2011 i2b2 Co-Reference Challenge, only a few papers have tackled

incorporating co-reference resolution into timeline extraction. In 2014 Raghavan, et

al. [83] addressed the task of identifying co-referring entities/events across multiple

documents by modeling it as a multiple sequence alignment. Clinical events from each

document were ordered into a sequence, then contextual and temporal features were

used to align events across documents. To this day, Raghavan, et al. is this only one

to address cross-document co-reference resolution. Around the same time, Dehghan,

et al. [85] performs event co-reference resolution by using the lexical similarity of

the context surrounding the event using a SoftTFIDF score. Any event pair score
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that is greater than 0.8 is assigned a new TLINK with the category Overlap, then a

transitive closure of all TLINKS is performed. Both of these methods integrate the

event co-reference resolution task with the identification of temporal relations, and

they do not consider co-reference relationships in the PERSON category as defined

by the 2011 i2b2 challenge. As the main purpose is to build a timeline of events,

PERSON co-references are irrelevant in this context as we are only concerned with

medical events that happened to the patient. Finally, the most recent work that

integrates temporal information into clinical co-reference resolution is Tourille, et al.

[51] where an event’s temporal relation to the document creation time is included as

a feature for a neural entity-based mention-ranking method.

It is clear from the limited set of published works since 2011 that clinical event

co-reference resolution is far from a solved problem. With the goal of clinical event

timeline extraction, co-reference resolution must be able to identify equivalence classes

of events across multiple documents written in different styles and at different times

over a patient’s medical history. As of yet, only one group has attempted cross-

document co-reference resolution [83], leaving much to be explored in this area. It

is also clear that accurate clinical co-reference resolution requires the integration of

temporal information. The type of temporal information that is the most useful

(i.e. specific dates/time, relative relations, or relationships to a document creation

time) is up for debate, but current evidence indicates that good clinical co-reference

resolution needs temporal information and complete timeline extraction needs clinical

co-reference resolution.

2.5.6 Temporal Event Ordering

The task of temporal ordering sounds, well, easy. Given explicit dates it is a sim-

ple matter of placing events chronologically on a timeline to induce order. However,
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when dealing with non-explicit, fuzzy, and relative temporal expressions, inducing

order is a bit more difficult. The addition of timelines from multiple documents or

data sources makes ordering events even more challenging, and hinges on the ability

to perform event co-reference resolution within and across documents. In this work,

we define the task of temporal event ordering as the problem of identifying the order

of events without encountering any sequencing conflicts. When a set of temporal

relations are viewed as a directed graph, a sequencing conflict occurs when a cycle

is created; thus, any valid set of temporal relations should form a directed acyclic

graph. This problem is closely related to identifying temporal relations, and in fact

is a direct result of modeling the temporal relation task as a pair-wise classification

task.

Many temporal relation algorithms are based on supervised machine learning

approaches that model the relation task as a pair-wise classification problem, where

the algorithm must classify relations between all pairs of events and temporal expres-

sions, regardless of whether or not they are actually related [37, 44, 59, 60, 61, 62, 31].

Some try to reduce the number of relations by filtering to candidate relations [58],

but this still leaves a lot of relations for classification. These algorithms do not con-

sider ordering of events when assigning relationship types like BEFORE or AFTER.

Thus, when you try to put these events in order on a timeline you could run into

an ordering cycle that need resolution. For example, suppose our temporal relation

algorithm identified the following relations between events A, B, and C: A before B,

B before C, and C before A. Through inference of the first 2 relations, we can infer

A happened before C; however, the direct relation “C before A” states the opposite.

Now the question is, which is right? When did event A happen with respect to event

C? Resolving these cycles is part of the Event Ordering problem.

To solve the ordering cycle paradox, Bramsen, et al. [86] modeled pair-wise
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relations as an acyclic directed graph (DAG). To ensure no ordering cycles were

created, they implemented a greedy strategy by retaining only the relations with the

highest confidence from their relation classifier. After each new relationship is added,

the DAG is expanded using transitive closure. If a cycle is detected, only the highest

confidence relations are kept to maintain the DAG. While this strategy may not find

a global maximum, the authors claim it is close enough. However, no attempt is made

to see if this resolution strategy generates clinically correct timelines.

Raghavan, et al. [87] takes a step back and looks at classifying events into

course-grained time-bins based on their relation to the admission time (way before

admission, before admission, on admission, after admission, after discharge) to create

a course-grain ordering of events. A Conditional Random Field (CRF) is trained

on temporal expression and narrative structure features such as sections, contextual

bigrams, dictionary features, and explicit dates within the same sentences to place

events into these time bins, which can then be used to identify a more fine-grained

ordering of events if needed. Sarkar, et al. [46] take a similar approach to order events

in Medical Case Reports where explicit temporal expressions are sparse, so one has

to rely on relative temporal expressions. They first identify temporal breaks (i.e.

current, past, future) in the narrative using a CRF. Ordering of events is then rule-

based and is performed for each of the temporal contexts by ordering the sentences

instead of individual events. Sarkar, et al. is the first to explicitly focus on relative

temporal expressions for event ordering in the clinical domain.

Modeling the temporal relation identification task as a pair-wise classification

problem results in inconsistencies, like ordering cycles, that need to be handled prior

to creating a useful timeline. It also requires processing n-squared relationships where

most have unknown relations or are not related at all, creating an unbalanced clas-

sification problem. Jeblee, et al. [88] approaches the problem of temporal relation
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identification through a different lens by forming it a list-wise ranking problem in-

stead of a pair-wise classification problem. They argue this method alleviates the

temporal inconsistencies from pair-wise methods and is easier for humans to evalu-

ate. A linear neural network is used with contextual and event attributes as input

features to rank events in a list-wise fashion. Viewing the temporal relation problem

as a ranked list has the potential to more easily capture relative event relations as

well, but this aspect was not addressed in this work and is noted as future work by

the authors.

Temporal event ordering in the clinical domain is tightly associated with temporal

relation extraction, but has not been paid much attention in the Clinical NLP field.

Temporal inconsistencies are introduced, computational complexity increased, and

human evaluation is difficult when modeling the temporal relationship identification

task as a pair-wise classification problem. Modeling the temporal relation task as a

list-wise event ranking problem resolves the issue with temporal inconsistencies and

is easier for humans to comprehend and evaluate; however, current progress only

uses simple relations and cannot model more complex or fine-grained event relations.

Thus, event ordering is still an area of needed research and is tightly tied to the

strategies used for temporal relation identification and classification. Methods are

needed that can reduce the computational complexity of relationships identification

and provide ordered sequences of events that are detailed and easily assimilated by

medical professionals.

2.5.7 Timeline Visualization

Visualizing longitudinal clinical data has been shown to reduce the time it takes

for a medical professional to assimilate a patient’s health status and identify new

insights that can better inform care decisions [3]. Timelines are most commonly vi-
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sualized on a straight line with single points indicating when certain events occurred.

However, medical timelines are more complicated due to the multiple layers of in-

formation that need to be represented, such as patient symptoms, procedures, and

medications. In addition, durations of symptoms and medications are important to

accurately visualize and cannot be represented as a single point on a line. While we

may develop a highly sophisticated and accurate medical timeline extraction tool, it

will be useless to clinicians in the field unless the information it has extracted can

be graphically visualized in such a way that medical professionals can easily navigate

events and quickly process and interpret the information to gain new insights about

a patient’s condition.

Medical timeline visualization is an active research field. In 2004, Martins, et al.

introduced KNAVE-II [89], a tool built on a distributed framework for visualization

of and interaction with time-oriented clinical data. Pulling data from multiple clinical

data sources and a medical knowledge base, KNAVE-II aids clinicians in answering

time-oriented clinical questions about a patient. Timeline was developed by Bui, et

al. [90] and uses EHR structured data from multiple sources to provide a longitudinal,

problem-centric view (such as cancer) of a patient’s clinical data using multiple tracks

for different data types. HARVEST [91] primarily utilizes the admission and discharge

dates of patient visits to build a timeline that is displayed as a single linear track;

however, it also analyzes clinical notes using NLP methods by normalizing disorders

to UMLS (Unified Medical Language System) concepts [78] followed by a topic analy-

sis with a TF-IDF (Term Frequency-Inverse Document Frequency) matrix to identify

the most informative disorders in a patient’s record compared to all other patients.

Glicksberg, et al. [92] argued that the interoperability between developed timeline

tools and EHR or data warehouse systems is a big problem for deploying a tool to

multiple health care systems. They propose using a Common Data Model, such as
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OMOP3, as the backdrop to a timeline tool, and developed a simplistic timeline visu-

alization based off of structured EHR data. While many of the timeline visualizations

only focus on a single patient, Kilmov, et al. [93] expanded the KNAVE-II system

to visualize and perform temporal reasoning over multiple patients for analysis and

comparison. Likewise, Gotz, et al. [94] developed a tool to aid clinical researchers

in identifying temporal patterns present in multiple patients, where users define the

concepts and outcomes they are looking for and then the patient’s matching those

with the timeline of relevant events is visualized for exploration and analysis.

All of the aforementioned tools are built to utilize EHR or data warehouse struc-

tured data and do not incorporate information in clinical notes that could be extracted

by NLP. This means there may be a lot more clinically relevant information present in

an EHR that is not easily accessible by medical professionals, even with current time-

line visualization tools. Park, et al. [95] argue that context and causality of events

are also important to represent on a timeline. They propose V-model, a temporal in-

formation visualization tool that can effectively visualize event causality, non-explicit

temporal information, and multiple levels of temporal granularity for events. V-model

exclusively uses clinical narrative texts to summarize patient histories on a timeline;

however, it has only been evaluated on a small cohort of single documents.

While there are a variety of clinical timeline visualization tools available, there is

still a need for an inter-operable tool that can integrate multiple data types, including

unstructured text, originating from multiple clinical systems into a comprehensible

and intuitive visualization. This tool would need to be flexible, allowing for a global

or problem-centric view of a patient record. The field is making progress on this front

using structured EHR data; however, the incorporation of information for unstruc-

3
https://ohdsi.github.io/CommonDataModel/
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tured texts is lacking.

2.6 End-to-End Timeline Extraction Systems

In this section we review end-to-end clinical timeline extraction systems currently

published in the literature. We classify a system as an end-to-end timeline extrac-

tion system if it includes event identification, temporal expression extraction and

normalization, temporal relationship extraction, and either event ordering or event

co-reference resolution for either a single document or over multiple documents. Any

system that did not include methods or a tool to perform each step was not consid-

ered as end-to-end. This includes systems that used manually annotated temporal

expressions or events [57, 83], or those that used a pre-annotated gold standard to

obtain these entities [96, 97]. It also includes systems that only utilize the structured

temporal data in the EHR instead of extracting it from clinical notes [98, 99, 100,

101], and all timeline extraction systems that only deal with general domain text

[102, 103, 104, 105]. Additional timeline extraction steps considered as a bonus are

timeline visualization and performance evaluation (see Section 2.6.2 below).

2.6.1 End-to-End System Review

Four published systems were found that met the end-to-end criteria for clinical

timeline extraction (Table 4) [106, 107, 49, 48]. Three of these systems use rule-based

components [106, 107, 48], with the other using a hybrid approach by incorporating

machine learning into the event and temporal expression recognition, and co-reference

resolution steps [49]. Each system takes a slightly different approach to timeline

extraction that is influenced by the type of timeline needing to be identified, such

as differing definitions of what a medical event is, the type of temporal expressions

targeted, the number of documents needing to be reasoned over, and the underlying
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framework.

Zhou, et al. [106] and Jung, et al. [107] were the first to develop end-to-end time-

line extraction systems that were both extensions of previously built NLP systems. In

2005, Zhou, et al. published the earliest complete timeline extraction system to inte-

grate temporal information from clinical narrative reports into the existing MedLEE

system. MedLEE is a rule-based NLP system that incorporates linguistic and clinical

domain knowledge (e.g. UMLS, SNOMED, etc.) to annotate and structure clinical

information into a frame-based representation. MedLEE’s temporal tagger extracts

temporal information into a Temporal Constraint Structure that defines the begin-

ning and end of events. This data is then fed into the main NLP system to link events

to temporal information. In post-processing the structured information and rules of

discourse are used to model the timeline of events in a clinical narrative as a Simple

Temporal Problem (STP). STPs are represented as a constraint graph, which effec-

tively orders the clinical events based on their temporal constraints, and allows for

non-explicit temporal relations to be inferred. At the time of publication, only a few

basic rules had been implemented to perform co-reference resolution across multiple

documents. MedLEE was designed to capture all medical events and thus, does not

revolve around a specific use-case.

The next complete timeline extraction NLP system did not surface until 2011.

Jung, et al. [107] extended a general purpose NLP system [108] using deep natural

language understanding (NLU), to extract medical concepts and related temporal

information from cancer patient consultation notes. The core NLU system relied

on previously developed, sophisticated parsers that employed several statistical and

symbolic sub-components, like POS tagging, and output information in Logical Form

(LF), which is a frame-like semantic representation of the parsed text. Clinical domain

and ontological knowledge was integrated into the LF representation from SNOMED
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and the UMLS. Clinical concepts, events, and temporal expressions were extracted

using manually defined LF pattern-based rules. Relationship identification between

events and concepts (where an event can contain many concepts) and between events

and temporal expressions is rule-based and derived from the LF graph. Referential

temporal expressions are resolved using LF information or the document time, and

negations are considered to determine if a concept is present or not in the patient’s

medical history prior to visualization with the Simile Timeline Widget.

The systems built by both Zhou, et al. and Jung, et al. were intended to be

general purpose timeline extraction systems for clinical data, and both only focused on

single document narrative texts. Thus, the methodology of each was geared towards

parsing discourse structure, which may not be applicable to the often fragmented,

highly specialized, and diverse types of clinical notes commonly found in the EHR.

While Zhou, et al. implemented some basic co-reference resolution across multiple

documents, Jung, et al. does not consider this step. Additionally, both systems only

focus on using explicit temporal expressions, and neither system implements a metric

for a formal performance evaluation.

In 2014, Deghan [49] developed a clinical timeline extraction system, referred

to as “mining patient journeys”, that addressed some of the short-comings of the

systems from Zheng et al. and Jung et al. Namely, Deghan utilized multiple nar-

rative documents (clinical and patient narratives), performed co-reference resolution

across a patient record (i.e. across multiple documents), and evaluated the system’s

performance, both on each individual component as well as for the resulting time-

line. However, the system developed by Deghan was built for the specific use case of

identifying treatment timelines for survivors of childhood brain cancer.

Briefly, Dehghan used a hybrid approach with the EVENT, TIMEX, and TLINK

components trained on the 2012 i2b2 standard. EVENTs included the i2b2 problems,
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treatments, and tests, in addition to health-related quality of life (HrQoL) concepts

that were relevant to survivors of childhood brain cancer. A hybrid approach was

taken to identify EVENTs and TIMEXs using Conditional Random Field models

with lexical, syntactic, and orthographic features as input, along with rule-based

approaches, such as regular expressions for formatted dates/times and dictionary

lookup for HrQoL concepts. All EVENTs identified were mapped to UMLS concepts

in order to utilize the knowledge base to easily identify high-level concept categories,

which are used in co-reference resolution and timeline evaluation. An initial set of

TLINKs were identified with a rule-base approach, then SputLink [109] was used to

perform a transitive closure to identify all implied relationships, and to resolve any

inconsistencies in temporal ordering. Only TLINKs that could be resolved to a point

on a timeline were used in the final timeline construction phase (i.e. all relative or non-

anchored TLINKs were removed). Co-Reference resolution was performed within each

document and across multiple documents in a patient’s record. The intra-document

co-reference resolution was based only on lexical similarity by using a SoftTFIDF

score [110] on all candidate event pairs within a single document. Inter-document

co-reference resolution was performed in a similar manner, but was limited to events

assigned to high-level categories related to the specific use-case, such as surgery or

radiotherapy. Finally, event ordering and visualization were done using applications

referred to as “PathCluster” and “PathVisualization”, which grouped events into

high-level processes and assigned them to a time bin with a 6-month interval.

Dehghan’s approach to extract patient journeys is based on abstraction of low-

level details to high-level processes and concepts. Ultimately, EVENTs are abstracted

to higher-level concepts using the UMLS, and are then binned into 6-month intervals.

The 6-month interval was chosen based on the use case as 6-months was the approx-

imate follow-up time for the patient’s under study. Thus, within a 6-month time
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bucket, the exact order of events doesn’t matter. Using a manually generated gold

standard, evaluation of the full timeline at the abstracted, high-level (i.e. “Oncol-

ogy Treatment”, “Oncology Diagnosis”, etc.) resulted in 100% Precision and Recall;

however, this high level information is not helpful to a treating physician. When

details, such as type of chemotherapy, were required to match the gold standard

timeline, performance decreased. While Dehghan’s system performs well for a spe-

cific use case, it still relies on narrative texts, and much of the co-reference resolution

and performance evaluation are dependant on the high-level concepts defined by the

specific use case. Additionally, the 6-month time-frame for binning events may not

work well with diseases that are faster moving and have densely populated clinical

notes. This system would most likely require detailed manual intervention in order

for it to extract a timeline for a different type of disease or medical use-case.

The most recent clinical timeline extraction system is by Najafabadi, et al. in

2020 [48], and contains mostly rule-based components built over the UIMA framework

[111]. This system was designed to extract the evolution of a lung cancer patient’s

health status over time starting at the date of diagnosis, and is the first timeline

extraction system for Spanish clinical notes. Najafabadipour, et al. define EVENTs

as diagnosis concepts and tumor stages, and extracts them using the C-liKES system

[112] and TNM Annotator [113], respectively. TIMEXs are identified and normalized

using the rule-based Temporal Tagger tool [114]. These annotations are then input

into the Temporal Reasoning System, which identifies TLINKs using the UDPipe tool

[115] to first build a dependency parse tree using a simple single layer neural network

followed by a set of rules using syntax dependencies to determine if an EVENT is

linked to a TIMEX based on the parse tree. The annotated EVENTs, TIMEXs,

and TLINKs are stored in a structured database, which is used as input to the

Timeline Constructor step. EVENT ordering and co-reference resolution are carried
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out during timeline construction. Capturing the evolution of changing health status

requires a slightly different approach as you need to capture the change in status of

a medical concept (e.g. tumor stage) that is associated with clinical events. This

led Najafabadipour, et al. to develop a unique inter-document co-reference resolution

method that required 2-3 criteria be met for two events to be termed co-referential.

First, events needed to be semantically similar. Unlike Deghan [49] who only used

lexical cues, Najafabadipour, et al. looks at the similarity between the assigned

semantic classification of events. Second, the associated time for an event should

be the same or contiguous after sorting. Finally, if an event is associated with a

value (like tumor stage), a third criteria must be met where co-referential events

must have the same value. This definition identifies continuing states of a patient,

designed to identify the evolution of the patient’s health status over time. Once

events are ordered and identified as co-referential, the earliest event time is kept for

that event and propagated to all co-referring instances. System generated timelines

were compared to over 800 manually, expert-curated timelines. Errors were generated

under one of two condition: 1) the system identified a different number of events, or 2)

events had different date expressions from those identified by the experts. Overall, the

system performed well under these metrics, but could be improved through annotation

of negations and probabilistic terms. Najafabadipour, et al.’s approach to timeline

generation is specifically built for tracking the evolution of lung cancer patient status

over time. This view on clinical timelines is novel and may make sense for many

clinical conditions as a patient’s status does change over time, and that information

can be highly informative.

From the four end-to-end timeline extraction systems we can see that the method-

ology is influenced by the assumed type of text being processed and the use-case that

is utilized. Because a patient’s medical history is buried in multiple notes with multi-
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ple note types and grammar that is not always going to follow traditional rules, future

timeline extraction systems should be flexible in processing this diverse data, as well

as able to deal with the high level of redundancy in the EHR by integrating this data

into a single contiguous timeline through robust co-reference resolution. In addition,

timeline extraction systems need to focus on the ability to extract timelines relevant

to any number of conditions or diseases that have any number of temporal pathways

(e.g. a slowly progressing chronic non-terminal disease vs a quickly moving terminal

disease vs a short-term illness such as a viral infection). The current tendency to focus

on a single type of disease or cohort of patients, all with similar temporal progressions

may lead to systems that do not generalize well for conditions with varying temporal

properties. In addition, the extraction of temporal entities from clinical texts will

generally be static across an EHR; however, the definition of a medical event needs

to be standardized and applicable to all types of use cases, and robust methods to

resolve cross-document event co-reference is needed. Finally, the timeline extraction

systems discussed only utilize information available in the unstructured texts being

processed, but the EHR has a wealth of structured information as well. Some time-

line systems (not included in this review due to the absence of NLP methods) utilize

this structured information to identify events and times for timeline construction (i.e.

they ignore the textual data). Thus, future work is needed in integrating the struc-

tured timelines and timelines obtained from clinical texts to augment each other for

a more complete and accurate representation of a patient’s medical journey.

2.6.2 End-to-End Performance Evaluation

It is critically important that timeline extraction methods work well with high

accuracy before it is implemented in the clinic and could influence patient care. Be-

cause end-to-end systems are built upon many other sub tasks, all sub tasks must
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Table 4. End-to-End Clinical Timeline Extraction Systems

Tool: MedLEE [106] Deep NLU [107] Dehghan [49] Najafabadipour [48]

Year 2005 2011 2014 2020

TIMEX Rule-based: Temporal
Constraint Structure
(TCS), explicit focus

Rule-based: Logic Form
Parsing, explicit focus

Hybrid: CRF + Rules Rule-based: Temporal
Tagger

EVENT Rule-based Rule-based: LF Parsing Hybrid: CRF + Rules Rule-based: C-liKES
and TNM Annotator

TLINK Rule-based Rule-based: LF Parsing Rule-based Hybrid: UDPipe +
Rules

Event Nor-
malization

Rule-based: absolute
reference chosen over
implicit

X Rule-based Rule-based: Semantic
Similarity + Temporal
Rules

Event Or-
dering

Temporal discourse,
Simple Temporal Prob-
lems (STP) Graph

Assigns intervals to
events

PathCluster ule-based: Selects earli-
est occurrence of unique
events, sorts temporally

Visualization X Simile Timeline Widget PathVisualization X

Evaluation X X Precision and Recall P,R,F1 for components,
manual for timeline sys-
tem

Scope Single Document Single Document Multiple Documents Multiple Documents

perform equally well before the end-to-end system will perform well. For example,

Najafabadipour, et al. [48] noted that many of the errors incurred in timeline con-

struction were the result of incorrect TLINKs generated in the prior step. Thus,

evaluation of the individual parts of a timeline extraction system is vital; however, an

overall evaluation of the completed timeline is also needed. Unfortunately, there are

a limited number of strategies for evaluating end-to-end timeline extraction systems,

and within those that do there is a lack of consensus on evaluation methods.

Of the four end-to-end timeline extraction systems discussed in Section 2.6.1

only two have any type of formal evaluation for the resulting timeline [49, 48]. In

order to evaluate the final timeline, both of these researchers had to obtain manually,

clinician-annotated timelines, which is highly time-consuming. Dehghan obtained

three clinician-annotated patient timelines that started at the patient’s diagnosis and

continued for the first 42 months. These were used as the gold standard for com-

parison with the automatically generated timelines on two levels, first at a high level

abstracted to the clinical process such as “Oncology Treatment”, and then at a more
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detailed level that included information like the type of chemotherapy. Additionally,

Dehghan binned events (both at the high and low levels of annotation) into 6-month

periods where relative order within a window was ignored. Precision and Recall were

calculated based on this information and errors were thrown when there were any

information mismatches for a given time bin. Najafabadipour et al. was able to

obtain over 800 clinician-annotated timelines for use as a gold standard, which also

started at the date of patient diagnosis. Events are at a low level as compared to De-

hghan, and errors were generated if 1) the system identified a different total number

of events for a patient, or 2) the same event instance had different date expressions

from those identified by the experts. Note that in both of these evaluation strategies,

temporal order is either abstracted to bins or ignored all together. While not a com-

plete end-to-end clinical timeline extraction system as defined in this work, Raghavan

[116] took a different direction and implemented an edit distance metric based on the

popular “word error rate” metric used in automated speech recognition to evaluate

how far away an automatically generated timeline is from the gold standard. This

method focuses on the sequence of events, and includes the adding, substituting, and

deleting of ordered medical events; however, it does not utilize event properties or

values such as tumor stage, and only looks at relative order while ignoring durations.

An evaluation of a patient timeline should consider both content (to a level of detail

useful to clinicians), event order, and event duration. Note that event order does

not necessarily mean exact dates, but rather relative ordering. We exclude getting

the dates exactly correct as this is a challenging task even for humans; however, the

system should be able to infer relative order of unique events and assign a reasonable

date of occurrence if one is not explicitly defined in the EHR.

51



2.7 Representational Learning

Representational Learning in NLP aims to learn informative numerical repre-

sentations of words that are referred to as word embeddings. These learned repre-

sentations can take the place of, or augment, manually defined features that are fed

into machine learning models for prediction tasks [66]. The following subsections

describe the difference between distributed versus contextualized embeddings, pro-

vide an overview of pre-trained language models, and dive into the details of how

contextualized embeddings are generated using self-attention.

2.7.1 Distributed vs Contextualized Word Embedding Models

Classic distributed word embedding models, such as Word2Vec [117] and GLoVE

[118], use the co-occurrence of words in an input corpus to form their representations.

The resulting word embeddings depend on the usage of a given word in the corpus

used for training. If a single word is used in multiple ways (i.e. an animal bat vs a

baseball bat) in the training corpus, then those contexts will be incorporated into a

single embedding for that word. Once the embedding is learned it is static and cannot

be changed without re-training the entire model on a new corpus. Thus, distributed

word embedding models generate a single embedding for each word that is static and

could include information from multiple semantic spaces.

In contrast, a contextualized word embedding is one in which the context of

a token is incorporated into the embedding vector; thus, a word can have slightly

different embeddings depending on how it is used in a sentence. For example, the

word “bank” can have multiple meanings depending on how it is used, such as in “The

river bank was perfect for fishing.” or “I visited the bank to withdraw some money.”

In these examples, the word “bank” would have slightly different embeddings that
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are reflective of the context.

2.7.2 Pre-Trained Language Models

Learning good and informative representations is a computationally expensive

task and requires massive amounts of data, thus, there has been much attention paid

to pre-trained models in recent years. Pre-training allows users to take advantage of

the information in large corpora in the form of a pre-trained deep neural network with

which they only have to fine-tune the top layer to obtain word embeddings specific

for their task. It is like using a pre-made cake and just adding the icing versus having

to bake the cake from scratch.

In 2018, researchers from Google AI introduced Bidirectional Encoding Represen-

tations from Transformers (BERT) [56] as a new pre-trained language representation

model that generates contextualized word embeddings. BERT has taken the NLP

community by storm, producing new state-of-the-art performances on many NLP

tasks [56]. Other pre-trained language models, such as ELMo [119] and OpenAI

GPT [120], also generate contextualized embeddings using a unidirectional model;

however, BERT implements bidirectional representations where it is able to use the

context both before and after a token and, thus, incorporates more information into its

embedding. A major advantage of BERT is that it implements a “Masked Language

Model” [56], which allows it to learn from unlabeled data. This means BERT models

can learn from massive data sets without the need to create a manually generated

gold standard.

There are four main advantages of utilizing fine-tuning on pre-trained models

like BERT [121]. First, we can take advantage of quicker model development because

the model weights already encode a lot of information, thus fine-tuning only needs

to be run for 2-4 epochs for a specific task. Second, we can utilize much less training
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data compared to if we were building a model from scratch as the bulk of the heavy

lifting has already been done. Third it has been shown that simply fine-tuning BERT

to a specific task results in better or comparable performance compared to specialty

models [56]. Finally, BERT is an example of transfer learning. Transfer learning

is utilizing the knowledge learned from one domain and transferring it to perform

similar tasks in another using a different data set4 [122]. Thus, it is flexible in that

the primary underlying neural network can be used as a starting place for many

different tasks versus other models built specifically for one task.

BERT models are utilized in two different ways in the literature. The first is

fine-tuning BERT’s neural network to perform a specific classification task directly,

such as language translation or question-answering [56]. The second is to extract the

contextualized embeddings from the BERT model to be used as features in down-

stream applications, such as classical machine learning classifiers. This work utilizes

both of these methods.

2.7.3 Tokenization: Whitespace vs. Word-Piece

Prior to generating any type of word embedding, a system first has to determine

how to break up a sentence into individual semantic units, such as words. This

process is called “tokenization” and each semantic unit is called a “token”. The

simplest, and most natural, way to tokenize a sentence is “whitespace tokenization”

where spaces, tabs, and other whitespace characters are used as token delimiters

(Figure 5A). Tokens that are part of a temporal phrase are generally defined using

whitespace tokenization. However, this can introduce punctuation into tokens, such

as periods at the end of a sentence, that are not part of the semantics of a particular

4
https://www.analyticsvidhya.com/blog/2020/07/transfer-learning-for-nlp-fine-tuning-bert-for-text-classification/
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token, or the phrase as a whole. Additionally, language models can’t process a token

if it is not in that model’s vocabulary. These are termed out-of-vocabulary (OOV)

tokens, and are generally ignored by the language model during analysis. To avoid

this issue, BERT utilizes a “word-piece tokenization” model.

In word-piece tokenization, if a token is not found in the model vocabulary the

token will be broken into the largest pieces possible that are in the vocabulary with

the worst case scenario of having a token broken into individual characters. These

are termed “subwords” where all but the first subword includes a double hash “##”

as a prefix. Note that the vocabulary distinguishes between tokens such as “##bed”

and “bed”, thus each gets it’s own embedding. In addition, along with whitespace,

BERT also uses punctuation as token delimiters. Thus, all punctuation forms its own

token in the BERT model (Figure 5B) and has its own contextualized embedding

representation. For example, the date “2010-06-30” in Figure 5 is kept as one token

with whitespace tokenization, but is broken up into five tokens using word-piece

tokenization.

Fig. 5. Whitespace tokenization (A) vs. Word-piece tokenization (B).

2.7.4 Attending to Context

BERT creates contextualized embeddings through the implementation of a self-

attention mechanism [123]. At a high level, self-attention integrates the embeddings

of context words into a single embedding to represent a target word, thus incorpo-

rating context into the target word embedding to make it more representative of the
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semantics in the current sentence5. In BERT this works by utilizing a query Q and

a set of key-value pairs (represented as K and V respectively) with length N , where

N is the length of the input sentence. For example, say we want to create a con-

textualized embedding for the word “dog” in the sentence “The dog sat by the river

bank.”? The query Q is the word “dog”, which is represented by an initial and static

word embedding in the BERT model. The set of K − V pairs are the initial static

embeddings for all the words in the sentence, including the word “dog” itself. In this

example, K equals V , but it doesn’t necessarily have to. The scalar dot product of

the current query Q is taken with all keys K to obtain another vector of length N

(Figure 6A). By using the scalar dot product, words that are more similar to each

other receive a higher value. This is repeated for all query words (i.e. all words in the

sentence), which results in a matrix of scalar dot products (Figure 6B). This matrix

is then scaled and run through a softmax function to obtain the final attention weight

matrix where each row adds up to 1. This matrix is then used to weight each of the

Value, V , vectors and linearly combine them to create the final contextualized word

embedding for the query “dog” (Figure 6C).

The example in Figure 6 utilizes the full length of the original word embeddings

to create the query and key-value pairs; however, in BERT, projections are used to

convert the query and keys into vectors with length dk (dk = 64 in the “bert-base-

uncased” model). These projected Q and K vectors are what is used for generating

the attention weight matrix, which is then applied to the Values. Thus, unlike in

Figure 6, the scalar dot product of the query vector for “dog” and the key vector

for “dog” will not be equal to one because the word is being represented in different

Linear Algebraic spaces. Equation 2.1 represents this process mathematically, where

5
This video explains the process: https://peltarion.com/blog/data-science/self-attention-video
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Fig. 6. Overview of Attention Basics

1√
dk

is a scaling factor used to improve performance when dk is large [123].

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.1)

Finally, BERT uses multi-head attention where each head, h, uses a different

projection method allowing the Query and Key vectors to focus on different aspects

of the sentence. Specifically, the “bert-base-uncased” model used in this work uses

h = 12 attention heads; thus, Equation 2.1 is repeated 12 times, each using different

Q and K projections (Figure 7A). The resulting contextualized embeddings from each
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attention head are simply concatenated to form the complete contextualized embed-

ding (Figure 7B). In addition to multi-headed attention, BERT has 12 layers where

each layer is composed of 12 attention heads. These layers incorporate additional lin-

ear projections, normalization, feed-forward layers, and positional information [56].

Thus, each word in the example sentence has 12 contextualized embeddings that

are usually summarized, concatenated, or sub-sampled for use in downstream NLP

pipelines (Figure 7C).

Fig. 7. Overview of Multi-Headed Attention with Layers
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2.8 Evaluation Metrics

To assess performance of model predictions, this work reports the Precision,

Recall, F1 Score, Accuracy, and Specificity (Equations 2.2-2.6) using the TIMEX

type annotations. The Precision, Recall, and F1 are calculated in two ways in this

work: 1) span-based and 2) class-based. Span-based is used when determining if

the TERN system identified the correct span of text. This work uses the lenient

definition where any overlap in span is considered correct. Results from Chapters

3-5 and the End-to-End results for the Phase 3 evaluation in Chapter 6 utilize the

lenient span-based version of Precision, Recall, and F1 Score. Except for the Phase

3 evaluation, all of the metrics in Chapter 6 utilize the class-based calculations that

are based off of identifying the correct temporal type for a given phrase. In most

instances, the individual scores for each temporal type are summarized as a weighted

average. Equation 2.7 shows the weighted average calculated across the DATE and

DURATION temporal types, utilized in Chapter 6, where s is the metric score being

averaged and w is the weight (i.e. number of instances for that temporal type).

Precision =
TP

TP + FP
(2.2)

Recall =
TP

TP + FN
(2.3)

F1 =
2 ∗ Precision ∗Recall

Precision + Recall
(2.4)

Accuracy =
TP + TN

TP + FN + FP + TN
(2.5)
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Specificity =
TN

TN + FP
(2.6)

WeightedAverage =
(sDATE ∗ wDATE) + (sDURATION ∗ wDURATION)

wDATE + wDURATION

(2.7)

2.9 Focus and Related Work

One of the first and most important steps in timeline extraction is the recognition

of temporal expressions and their normalization to a computationally accessible form

with the ultimate goal of identifying when events of interest happen and to place

them sequentially on a timeline in order to perform temporal reasoning tasks. This

work focuses on developing a TERN system tailored to the clinical domain that

recognizes and normalizes TIMEXs to a form that is amiable to timeline generation.

In the following chapters the construction, adaptation, and evaluation of Chrono, a

hybrid rule-based and machine learning system developed to recognize and normalize

temporal expressions into the Semantically Compositional Annotations for Temporal

Expressions (SCATE) schema ([22]) is detailed. The SCATE scheme aims to improve

upon the current TIMEX3/TimeML [17] standard by representing a wide variety of

temporal expressions, allowing for events to act as anchors, and using mathematical

operations over a timeline to define the semantics of each annotation. At this point,

only one other system is known to parse temporal expressions into the SCATE schema,

which is a character-based recurrent neural network implemented by Laparra et al.

[124].

This work also narrows in on the overlooked task of determining the temporal

type of RelIV-TIMEXs in order to ensure proper normalization. It is important to be

able to accurately identify and normalize relative temporal expressions because they
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are ubiquitously used in clinical texts and important to the task of event ordering.

There have been two recent works focused on the normalization of relative and incom-

plete temporal expressions [15, 71]. In 2015, Sun et al. [15] built SVM classifiers using

contextual features to classify the type of anchor time (admission, discharge, previous

TIMEX, previous absolute TIMEX) and anchor relation (before, after, equal/during).

They utilized an adapted version of the rule-based general domain tagger Heidle time

for TIMEX recognition and absolute TIMEX normalization, and achieved a statis-

tically significant improvement over previous state-of-the-art methods. Additionally,

in 2020 Dupuis et al. [71] utilized a clinically fine-tuned BERT model to classify the

anchor time relation type on a subset of the Sun et al. relative TIMEX corpus, but

did not surpass their results, and did not proceed to the normalization step. Both

of these works are, to my knowledge, the only works focused on relative temporal

expressions, and they both focused on the identification of anchor times and types.

Additionally, all the given examples are of relative DATE phrases, not DURATIONs.

Identifying the difference between DATE and DURATION temporal types is an im-

portant first step before the normalization. Thus, this work focuses on classifying

RelIV-TIMEXs into either DATE or DURATION types, which is referred to as Tem-

poral Disambiguation and detailed in the first part of Chapter 6. Finally, the rest

of Chapter 6 describes the strategy and methods to create and utilize temporally

fine-tuned contextualized word embeddings to perform the Temporal Disambiguation

task and reports the performance results after integrating this module into Chrono.
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CHAPTER 3

CHRONO: A TEMPORAL RECOGNITION AND NORMALIZATION

TOOL

One of the first and most important steps in timeline extraction is the identification of

temporal expressions and their normalization to a computationally accessible form.

This chapter describes Chrono, a hybrid rule-based and machine learning system

developed from scratch that identifies temporal expressions in text and normalizes

them into the Semantically Compositional Annotations for Temporal Expressions

(SCATE) schema developed by [22]. This scheme aims to improve upon the current

TIMEX3/TimeML [17] standard by representing a wide variety of temporal expres-

sions, allowing for events to act as anchors, and using mathematical operations over

a timeline to define the semantics of each annotation, which makes it more applicable

to generating timelines than other annotation schema.

Chrono was originally developed to participate in the SemEval 2018 Task 6:

Parsing Time Normalizations challenge [41] on general domain texts (this chapter),

however, it has been updated to also process clinical temporal data (Chapter 4), and

to parse expressions into the main-stream TimeML schema (Chapter 5). Chrono has

emerged as the top performing system for SemEval 2018 Task 6 for both general

and clinical domain texts, and is shown to perform on par with the systems that

participated in the 2012 i2b2 Temporal Challenge with minimal updates.
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Fig. 8. Overview of Chrono Workflow

3.1 Chrono System Description

Our approach to building this hybrid system includes four processing phases (Fig-

ure 8): 1) text pre-processing, 2) flagging numeric and temporal tokens, 3) temporal

expression identification, and 4) SCATE normalization.

1) Text Pre-processing: Python’s Natural Language Toolkit (NLTK) Whites-

paceTokenizer and part-of-speech (POS) tagger [125] process raw text files to identify

individual tokens, token spans, and POS tags. Punctuation is not handled at this

phase as it is important for identifying correct spans.

2) Flagging Numeric and Temporal Tokens: All numeric tokens are flagged

regardless of context. Subsequent phases utilize contextual information to determine
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if a numeric token is part of a temporal expression. Depending on the task, a rule may

remove all or some punctuation, and/or convert tokens to lowercase prior to parsing.

In the following, RP and LC denote Removing all Punctuation and converting to

LowerCase, respectively.

Numeric Flagging: Tokens are flagged as numeric if either 1) the token has a

POS tag of “CD” (Cardinal Number), or 2) the text can be converted to a numeric

expression. Textual representations of numeric expressions are converted to numer-

ics with the Word2Number1 Python module. A custom method recognizes ordinals

from “first” to “thirty-first” and converts them into the associated numerics 1 to 31,

respectively. LC normalization is done prior to parsing textual numerics.

Temporal Flagging: Temporal tokens are flagged through rule-based parsing us-

ing lists of key words and regular expressions. This phase is more liberal in its

identification of a temporal token than the SCATE normalization phase, so it iden-

tifies a broader range of potential temporal tokens that are refined in future steps.

Tokens may be numeric and temporal simultaneously. Numeric tokens with the char-

acters ‘$’, ‘#’, or ‘%’ are NOT marked as temporal. The following types of tokens

are flagged as temporal:

• Formatted date patterns using ‘/’ or ‘-’: mm/dd/yyyy, mm/dd/yy, yyyy/mm/dd,

or yy/mm/dd

• Formatted time patterns matching hh:mm:ss

• Sequence of 4 to 8 consecutive digits matching range criteria for 24-hour times

or for a year, month, and/or day (e.g. 1998 or 08241998).

• Spelled out month or abbreviation, e.g. “Mar.” or “March”, are flagged after

1
https://github.com/akshaynagpal/w2n
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RP except periods as they are required to retrieve correct spans.

• Days of the week, e.g. “Sat.” or “Saturday”, are parsed similar to months.

• Temporal words indicating periods of time, e.g. “yesterday” or “decade”, are

flagged after RP and LC.

• Mentions of AM and PM in any format are flagged after RP except periods.

• The parts of a week, e.g. “weekend” and “weekends”, are flagged after RP and

LC.

• Seasons of the year are flagged after RP and LC.

• Various parts of a day, e.g. “noon” or “morning”, are flagged after RP and LC.

• Time zones are flagged after RP.

• Other temporal words, e.g. “this”, “now”, “nearly”, and others, are flagged

after RP and LC.

3) Temporal Expression Identification: A temporal expression is repre-

sented by a temporal phrase, which we define as two or more consecutive tempo-

ral/numeric tokens on the same line, or an isolated temporal token, with some ex-

ceptions. Figure 9 displays this process as a flow chart. Briefly, if a numeric token

contains a ‘$’, ‘#’, or ‘%’, or the text ‘million’, ‘billion’, or ‘trillion’ it is not included

in a temporal phrase as these generally refer to non-temporal values. Additionally,

isolated numeric tokens are not considered a temporal phrase.

4) SCATE Normalization: Chrono parses each temporal phrase into zero

or more SCATE entities, links sub-intervals, and disambiguates the SCATE entities

“Period” and “Calendar-Interval” via a machine learning module. Chrono implements
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Fig. 9. Flow chart of Chrono’s temporal phrase recognition algorithm.

32 types of entities with five parent types that have been described by [22]. In Chrono,

entity types are parsed hierarchically, with certain types taking priority over another.

For example a numeric date takes priority over a 24-hour time such that the phrase

“1930” will be interpreted as a 4-digit year instead of the 24-hour time of 19:30

(i.e. 7:30pm). Figure 10 contains the priority of entity types implemented in Chrono.

Parsing strategies also differ depending on the composition of a temporal phrase being
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parsed. Each temporal phrase is interrogated sequentially by the following parsing

strategies to identify the various elements in the phrase. Chrono assumes there is

only one element of each type in a single phrase, and each token is assigned only one

entity type plus a possible modifier type such as “Next” or “Last”.

Fig. 10. Flow chart of the priority each entity type receives in Chrono.

Formatted Dates and Times: Formatted dates/times are parsed using regular

expressions. To identify which format the date/time is in, Chrono looks for a 2-digit
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or 4-digit year first, then uses that position for orientation to identify the remaining

elements. If a formatted date/time is identified, then the appropriate sub-intervals

are linked during element parsing. 4-digit years take precedence over 2-digit years.

Numeric Dates and Times: Header and meta-data for Newswire articles fre-

quently have numeric dates listed with no punctuation (e.g. “19980218” codes for

“Feb, 18 1998”), and isolated 4-digit year mentions are frequent. After formatted

dates and times are parsed, any phrase containing a numeric token is interrogated for

a potential date or year mention. If a numeric token is 4-digits it is tested for a year

between 1500 and 2050, 6-digit tokens are parsed for 2-digit year/month/day, and

8-digit strings are parsed for a 4-digit year and 2-digit month/day. All elements must

be in the proper range, otherwise the token is skipped. Appropriate sub-intervals are

linked during element parsing.

24-hour Time: 24-hour times are identified by either the format hhmmzzz, where

zzz is the time zone, or a 4-digit number that has not been classified as a year. Hour

digits must be less than 24 and minutes less than 60. Sub-intervals are linked at this

time if existing. Time zones are handled separately and are linked back to the hour

entity during the final sub-interval linking step.

Temporal Token Search: The majority of textual temporal entities are identified

by looking for specific tokens. Token categories include days of the week, months

of the year, parts of a day/week, time zones, and other temporal operators such as

“early”, “this”, “before”, etc. Prior to looking for these tokens, text is normalized by

RP and LC. Exceptions to RP include searching for day/month abbreviations, such

as “Sat.” or “Aug.”. In these cases periods are not removed because they are part of

the SCATE span. Another exception to RP and LC is identifying mentions of AM or

PM where periods are kept and text is not converted to lowercase in order to capture

variations like “PM” or “p.m.”. Non-temporal mentions of the months or seasons of
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the year “may”, “march”, “spring”, and “fall” are disambiguated using POS tags,

where tokens that refer to a temporal entity generally have a POS tag of “NN” or

“NP”. Sub-intervals are not linked during token searches.

Text Year: Another special case of parsing temporal tokens are textual represen-

tations of years such as “nineteen ninety-seven”. The Word2Number Python module

was modified to recognize these phrases. Previously, it would add 19 and 97 together

instead of returning 1997.

Periods and Calendar-Intervals: The same temporal token can refer to either a

SCATE “Period” or “Calendar-Interval”. For example, in the phrases “in a week” vs

“next week” the token “week” is classified differently. Due to language intricacies it is

difficult to define a rule-base system to disambiguate these entities as the classification

is contingent on the topic being discussed where phrasing around the entity can

be different for each instance. Thus, Period/Calendar-Interval tokens are initially

identified by a token search using a defined list of terms, then the identified term and

its span are passed to a ML algorithm for classification.

Machine Learning Classification: Four ML algorithms are available in Chrono

to differentiate between “Period” and “Calendar-Interval” entities using contextual

information. Chrono implements Naive Bayes (NB), Neural Network (NN), Decision

Tree (DT), and Support Vector Machine (SVM). Binary feature vectors (Figure 11)

for all implementations have the following features:

• temporal self: If the target is flagged as temporal, this feature is set to “1”.

• temporal context: If there is at least one temporal word within a 5-word window

up- or down-stream of the target this feature is set to “1”.

• numeric: If there is a numeric expression either directly before or after (a 1-word

window) the target, this feature is set to “1”.
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• context: All words within a 5-word window are identified as features and set

to “1” if that word is present. Prior to identifying these features all words are

normalized with RP and LC. The 5-word window includes crossing sentence

boundaries before and after the target word.

We use NLTK with default parameters to implement NB and DT, NN is a simple

feed-forward network with three hidden layers implemented using Python’s Keras

package 2 with epochs set to 5 and batch set to 10, and SVM is implemented using

SciKitLearn [126] with C set to 0.05 and max iterations set to 3.

Fig. 11. Example of the feature construction for Chrono’s temporal disambiguation

module for Period and Calendar-Interval types.

Ordinals: Ordinals such as “first” or “3rd” are classified as an “NthFromStart”

2
https://github.com/keras-team/keras
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entity in the SCATE schema. These mentions are identified by normalizing with RP

and LC before searching for the ordinal tokens representing the numbers 1-31.

Next/Last Parsing: Determining whether an entity is referring to a date in the

future, “Next”, or past, “Last”, depends on context and the document time (doc-

time). Next/Last parsing is done after all other parsing (first part of Figure 12), and

checks two cases: 1) if a temporal phrase contains a year, no additional annotation

is made, and 2) if specific modifier words are present (e.g. “next” or “last”) immedi-

ately preceding a temporal expression, the modifier is annotated with a sub-interval

referencing the following temporal entity. If neither of these cases hold, the year is

set as the doc-time year, and the month and day are compared to the full doc-time

to determine if it occurs before or after. Note the year assumption is not always

valid and more complex, content-based parsing may be required to achieve higher

Precision. Finally, if a day of the week (e.g. “Saturday”) is mentioned, Chrono finds

the first preceding verb in the sentence, and if it is past tense the temporal entity is

annotated as “Last”, otherwise it is annotated as “Next”.

Sub-Interval Linking: After all SCATE entities are identified, all temporal phrases

are re-parsed to identify sub-intervals within each phrase. For example, entities in the

phrase “August 1998” are parsed by two different methods leaving the sub-interval

link vacant. During sub-interval linking, the year “1998” has the “August” entity

added as a sub-interval. Sub-interval linking reviews entities from the smallest to the

largest, adding missing sub-intervals as needed. This method assumes each temporal

phrase contains zero or one of each type of SCATE entity and is visualized as a flow

chart in Figure 12.
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Fig. 12. Chrono’s sub-interval linking algorithm, including Next/Last parsing.

3.2 Evaluation

Evaluation of Chrono’s performance on the Training Corpora utilized python

scripts provided by AnaforaTools ‡ that compare Anafora XML [127] annotation

files. All metrics reported exclude the “Event” entity because event identification is

currently not implemented by Chrono, and was not included in the SemEval Task.

Chrono’s annotation of the Evaluation corpora was uploaded to the Post-Evaluation

submission system for SemEval 2018 Task 6, and overall Precision, Recall, and F1

measures are reported in Tables 6 and 8.

‡
https://github.com/bethard/anaforatools
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3.3 Newswire Results

The AQUAINT corpus of Newswire texts [128] consisted of 81 documents, pro-

vided by the task organizers. Average Precision, Recall, and F1-measure of 5-fold

cross validation for Track 1 (parsing) are reported in Table 5 (annotations for “Event”

and “Modifier” are ignored). Scores for “100% Correct Entity” consider the entity

location and all properties (like sub-intervals), and scores for “Correct Span” only

consider the entity location.

On average, all ML algorithms perform similarly for the “100% Correct Entity”.

All versions also obtain a higher F1 score when only considering correct spans versus

getting all entity properties correct. This indicates that Chrono correctly identifies

the majority of temporal entities, but has trouble parsing some of the properties.

ChronoNN processed the final evaluation data set, which consisted of 20 previ-

ously unseen Newswire articles, and received a F1 of .44. The evaluation data set

contained five articles from BBC that were not represented in the training data set.

Chrono’s low performance indicates that it may be over-fit to the the training data

set. This is one downfall of rule-based systems, where new rules need to be developed

for each new type of temporal representation. Upon further review we found the sub-

mitted version of Chrono had three minor parsing flaws that resulted in unintentional

false positives.

1) Formatted dates such as “2013-02-22” were being parsed twice. The first parse

specifically looked for a 4-digit year and identified all correct entities, then the second

parse looked for a formatted date with a 2-digit year, but didn’t check to see if a

year had already been found, so returned a 2-digit year with the value “22”. This

was easily fixed by having the 2-digit year parser check for a 4-digit year flag before

proceeding (month and day flags were already implemented).
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2) 24-hour time priority was incorrectly placed above 4-digit year. This resulted

in any isolated 4-digit year being parsed as a 24-hour time expression rather than a

year as originally intended. A simple flip of parsing order resolved this issue.

3) Numeric temporal expressions, such as an isolated 4-digit year, were being

parsed as a whole phrase rather than breaking out each token within the phrase.

For example, the year in the phrase “Last 1953” was not being identified because it

was not in a phrase all by itself. To fix this the parsing function was edited to loop

through each token in a phrase (a method that was already implemented in most

other parsers and was just overlooked here).

ChronoNN received a Post-Evaluation F1 of .55 for Track 1 after implementing

these fixes, which sets ChronoNN as the top performing system for SemEval 2018

Task 6, Track 1.

3.4 Conclusions and Contributions

In conclusion, there are many TERN tools that normalize temporal expressions

into the popular ISO-TimeML standard, but this annotation scheme has some limita-

tions in the types of expressions it can represent. The SCATE scheme was developed

to represent a wider variety of temporal expressions, allow for events to act as an-

chors, and use mathematical operations over a timeline to define the semantics of

each annotation; however, no tools existed that could normalize temporal expressions

into its extremely fine-grained structure.

This chapter described the first hybrid framework for normalizing fine-grained

temporal information into the SCATE scheme, which is implemented in the tool

Chrono and available on GitHub § A version of this chapter was published as a full

§
https://github.com/AmyOlex/Chrono.
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100% Correct Entity

P R F1

Chrono NB .686 .630 .657

Chrono NN .684 .629 .656

Chrono DT .687 .632 .658

Chrono SVM .689 .630 .660

Correct Span

Chrono NB .823 .752 .786

Chrono NN .820 .749 .783

Chrono DT .822 .751 .785

Chrono SVM .827 .755 .789

Evaluation Results

Chrono NN .46 .42 .44

Post-Evaluation Results

Chrono NN .61 .50 .55

Table 5. Chrono results on Newswire corpus for Track 1. All standard errors are <=

0.03, and no method performed statistically significantly better than another.

paper in the Proceedings of The 12th International Workshop on Semantic Evaluation

[42].
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CHAPTER 4

CONVERSION OF CHRONO TO THE CLINICAL DOMAIN

Chrono was originally built for parsing temporal expressions in the general domain

due to a lag in getting access to the clinical corpus. After participation in the Tem-

pEval challenge, access to the clinical THYME corpus was granted. The following

subsections describe the SCATE annotated portion of the THYME corpus made avail-

able to TempEval challenge participants, Chrono’s out-of-the-box performance in the

clinical domain, modifications made to Chrono after a detailed error analysis, and

the improved results.

4.1 THYME Corpus with SCATE Annotations

The THYME corpus consists of de-identified clinical notes and pathology reports

for colon and brain cancer patients [129]. For this work, we utilized the subset of

the THYME colon cancer documents that have associated SCATE annotations in

the Anafora XML format from SemEval 2018 Task 6 [130]. The Training Corpus

includes 22 clinical notes and 13 pathology reports along with their gold standard

Anafora XML annotations. The Evaluation Corpus includes 92 clinical notes and 49

pathology reports with the annotations withheld.

4.2 Out-of-the-Box Performance

Chrono’s performance decreased significantly on the THYME Evaluation Corpus

out-of-the-box with an F1 of 0.35, Precision of 0.49, and Recall of 0.27 (Table 6). This

is due to Chrono having only been trained on Newswire text, thus, it saw a limited
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data set System Precision Recall F1

THYME Eval Chrono 0.49 0.27 0.35

THYME Eval Laparra et al. 0.52 0.63 0.57

Newswire Eval Chrono 0.61 0.50 0.55

Newswire Eval Laparra et al. 0.58 0.46 0.51

THYME Train Chrono 100% 0.439 0.244 0.314

THYME Train Chrono Span Only 0.696 0.352 0.468

Table 6. Baseline performance, excluding “Event”, on THYME Training and Evalua-

tion corpora using SVM.

number of temporal expression examples.

Chrono’s performance on the THYME Training Corpus resulted in an F1 of

0.314 when considering all entity properties (100% Correct Entity), and an F1 of

0.468 when only considering correct token span (Span Only). The higher Span Only

result indicates that Chrono is identifying more correct entities than the 100% Correct

Entity score indicates, but it is not assigning all the properties correctly. With the

AnaforaTools evaluation script we are able to look at the performance on each SCATE

entity individually to identify specific entities that significantly impact performance.

4.3 System Modifications

Addressing cross-domain parsing issues felt synonymous to playing the arcade

game of Whack-A-Mole, where as one issue was fixed another popped up. Several

code improvements resulted in a cascading series of other code bugs and/or logical

issues that needed resolution prior to realizing a performance improvement. This

section describes these adventures in code improvement, which identify six primary

challenges encountered in cross-domain application of temporal expression extraction.

The following examples relay how complex and interconnected temporal expression
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extraction can be, and demonstrate the need to go beyond basic pattern identification

and dictionary look-up strategies to including contextual and semantic information

in order to capture all types of temporal expressions.

4.3.1 Lexical Diversity

Different domains are expected to differ in their lexicon. For example, the clin-

ical domain contains many specialized medical terms and clinical jargon that is not

encountered in general domain texts [131]. This is also true for a temporal lexicon.

Originally trained on the Newswire corpus, Chrono’s lexicon was limited to exam-

ples found in this domain; however, by expanding Chrono’s temporal lexicon the

performance on several SCATE entities increased.

Performance on the SCATE entity “Modifier” improved after refining the lexicon

to include missed terms such as “nearly”, “almost”, “mid”, “over”, “early”, and

“beginning”, and removing terms that should be annotated with other entities such

as “this”, “next”, and “last”. These descriptive temporal tokens are commonly used

in clinical texts to describe various events in the patient narrative such as when

symptoms occur or patient histories. The PartOfDay entity was also augmented

with the terms “bedtime”, “eve”, and “midnight” as these, and similar terms, are

frequently utilized in clinical notes for medication instructions, such as “take one

pill at bedtime”. Significant improvement in performance was observed after these

additions, with an F1 increase of 0.117 for PartOfDay, and an F1 increase of 0.241

for Modifier.

Patient records revolve around temporal information, such as conveying medica-

tion instructions, describing symptom time lines, and outlining patients’ histories. We

found that temporal phrases associated with these events, like “at that time”, “take

one-time daily”, “in four weeks time”, “since that time”, etc., were ubiquitous. All of
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these expressions include the token “time”, which is annotated as a Period entity in

the SCATE Schema. This token, along with others found frequently in clinical text

such as “/min” and “/week” that are most commonly used as short-hand for con-

veying medication frequency, were not included in Chrono’s temporal lexicon. This

resulted in poor performance for the Calendar-Interval and Period SCATE entities.

The addition of 15 terms that were not present in the Newswire corpus significantly

improved performance for these phrases. This result indicates that commonly used

tokens have domain-specific frequencies. For example, the token “time” was used on

average 0.32 times per document in the Newswire corpus and just over 4 times per

document in the THYME corpus (Table 7).

4.3.2 Frequent Frequency

The frequency for some lexical terms, like “time”, in clinical texts is understand-

able as certain concepts that convey a patient’s narrative may be utilized over and

over again. However, it is interesting that this observation also applies at the tempo-

ral entity level. For example, the initial build of Chrono excluded the SCATE entity

Frequency because it is highly complex to parse and did not appear regularly in the

Newswire corpus (0.12 times per document on average, Table 7). However, in the

THYME corpus, the Frequency entity appeared on average 8.9 times per document–

a 72-fold increase–which had a major impact on Chrono’s performance. In clinical

texts, phrases specifying frequency such as “2 time per day” or “once a day” are

abundant as they are routinely used for specifying medication or symptom frequency.

This increase in clinical usage extends to all but two temporal entities, with Frequency

having the second highest fold change next to Event (Table 7).
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Chrono Newswire Clinical

Entity Implements Avg Freq Avg Freq

AMPM-Of-Day Y 0.06 1.26

After Y 0.25 2.29

Before Y 0.44 0.91

Between N 0.28 1.11

Calendar-Interval Y 1.83 6.80

Day-Of-Month Y 2.84 8.66

Day-Of-Week Y 1.33 1.29

Event N 0.91 151.97

Every-Nth N 0 0.09

Frequency N 0.12 8.91

Hour-Of-Day Y 1.15 1.46

Intersection Y 0.11 1.60

Last Y 2.80 3.86

Minute-Of-Hour Y 1.12 1.31

Modifier Y 0.42 1.31

Month-Of-Year Y 3.31 9.77

Next Y 0.72 0.80

NotNormalizable N 0.06 0.06

NthFromStart Y 0.30 0

Number Y 1.17 13.66

Part-Of-Day Y 0.19 0.91

Part-Of-Week Y 0.04 0

Period Y 1.64 4.97

Season-Of-Year Y 0.07 0.03

Second-Of-Minute Y 0.67 0.17

Sum N 0.01 0.03

This Y 1.43 2.60

Time-Zone Y 0.44 0

Two-Digit-Year Y 0.98 0.23

Union N 0.02 0.03

Year Y 1.67 9.91

Table 7. The average frequency per document of each SCATE Entity for the Newswire

(81 documents) and THYME (35 documents) training corpora. The “Chrono

Implements” column indicates whether or not Chrono identifies a given entity

(Y=yes, N=no).

4.3.3 Disambiguating Dosage

Clinical text commonly contains non-temporal numerical information represent-

ing lab test results or medication dosage along with their frequency. The majority of
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these instances in the THYME corpus were not identified as temporal because their

values and formats were distinct. However, Chrono confused a few occurrences of

medication dosage with a 24-hour time instance. For example, in the phrase “Vita-

min D-3 1000 unit tablet” the “1000” was incorrectly assigned the 24-hour time value

of 10am. In the current implementation of Chrono, if a 4-digit dose falls within the

correct year range (1500 to 2050) or 24-hour time it will be annotated as such. A fix

for this issue has yet to be implemented in Chrono, as it has a low rate of occurrence,

but may include rules to identify dosage amounts such as “mg” and machine learning

methods to disambiguate 4-digit numbers.

Another example of the need to disambiguate numerical values is found in the

clinical phrase “Carotid pulses are 4/4”. Without context, the “4/4” could be inter-

preted as the date “April 4th”. This instance did not cause an issue with Chrono

because a 2- or 4-digit year is required for a phrase to be identified as a format-

ted date. While this strategy worked for this example, it could become a problem

when parsing files that contain year-less formatted dates. Thus, future improvements

will include a numerical disambiguation module to aid in determining if a numerical

phrase is temporal.

4.3.4 Cross-Domain Supervised Learning Training Data

Supervised machine learning (ML) methods require the use of annotated training

data in order to generate a predictive model. Naturally, training data is chosen from

the domain of the task as it is the most relevant. Chrono utilizes ML to disambiguate

the SCATE entities Period and Calendar-Interval. First, rule-based logic identifies if

an entity is a possible Period or Calendar-Interval, but it is hard to tell which one

without considering context. Then the ML module decides which class the entity

should be labeled. The training data for this task was initially from the Newswire
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corpus, but this performed poorly on clinical texts with an overall F1 of 0.544. To

incorporate domain-specific contextual elements, Chrono was re-trained using just the

THYME corpus, which improved performance to an F1 of 0.577. We then generated

a model that utilized both the Newswire and THYME data, which performed slightly

better, giving an F1 of 0.578. As temporal expressions can be domain-agnostic, it

makes sense that training on cross-domain data would generate a more robust and

generalizable model; therefore, we chose to use the cross-domain model.

4.3.5 Lexical Variation

An advantage of processing clinical texts is that you are introduced to a variety

of writing styles and preferences from different departments and medical personnel,

where each may represent the same temporal concept differently. This results in lex-

ical variations of concepts, for example, the concept of “Monday” can be represented

as “M”, “Mon.”, or, “monday”, and a temporal reasoning system must be able to

identify that these all refer to the same day. The following sub-sections discuss issues

associated with variation in formatted dates, times, and long temporal phrases.

Variation in Formatted Dates/Times: There are a number of standard for-

mats to convey dates and times, of which only a few were identified in the Newswire

corpus and implemented in Chrono. Clinical texts introduced additional variability

in date and time formats that Chrono was unable to handle correctly. For example,

the date format “21-SEP-2009” contains a mixture of letters and numbers needing

to be interpreted. Chrono uses regular expressions to identify formatted dates and

times; however, the expression restricted all components to be digits, so dates with

alphanumeric characters were not captured. Editing the regular expression to allow

for alphanumeric characters fixed the capturing issue, but resulted in an error down-

stream where other methods expected a numeric month to be returned. Ultimately,
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a custom function was written to convert months represented as text to integers as

existing conversion packages were not versatile enough to accommodate all lexical

variations of these entities.

Similarly, hour and minute formats such as “5:45 PM” were not being recog-

nized correctly because Chrono’s regular expression looked specifically for the format

found in the Newswire corpus that contained seconds (hh:mm:ss). Debugging format-

ted time expressions proved to be a challenge because Chrono utilizes three different

modules to parse out this data. First, a module to identify the hours, minutes, and

seconds, followed by a module to identify AMPM entities, and finally, a module to

link sub-intervals where both MinuteOfHour and AMPM entities are sub-intervals of

HourOfDay. Interestingly, the performance of HourOfDay for the Span Only evalu-

ation had an F1 score of 0.941 both before and after improvements, indicating that

Chrono was actually identifying most of the hours correctly, but was missing specific

SCATE properties.

Punctuation - To Include or Not to Include? Part of the HourOfDay parsing

issue stemmed from temporal phrases at the end of a sentence, such as “2:04 AM.”,

where the period ended up being part of the “AM” string. Initially, Chrono looked

for AMPM entities without considering punctuation unlike the MonthOfYear parsing,

which specifically accounts for punctuation such as “Dec.”. Thus, the “AM.” in the

example was never identified, so the HourOfDay entity “2” would be lacking the

subinterval link to the AMPM entity. To resolve this, Chrono was modified to utilize

regular expressions in parsing out AMPM entities with and without surrounding

punctuation.

One dilemma arose when considering the variants of an AMPM entity. For exam-

ple, valid AMPM entity strings include “AM”, “am”, “A.M.”, and “a.m.”; however,

“AM.” may not be considered a valid representation of an AMPM entity. Thus,
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Chrono specifically includes the period in the span only if there is a period after each

letter in strings (e.g. “A.M.”), otherwise, the period is not included in the span. Im-

plementing this fix resulted in a significant performance improvement for the AMPM

entity and, oddly, a decrease in HourOfDay performance.

Where have the Minutes Gone? While the HourOfDay entity was performing

well in the Span Only evaluation, the MinuteOfHour entity performed poorly in

both Span Only and 100% Correct Entity evaluations. This was a result of Chrono

looking for an HourOfDay in two different methods–one that identified formatted

times and another that first looked for an AMPM entity and, if found, searched

for an upstream HourOfDay. The majority of time expressions in THYME were

formatted as “hh:mm” followed by an “AM” or “PM” which resulted in HourOfDay

being identified by AMPM parsing and not the formatted time method. The AMPM

method was designed to identify the pattern found frequently in Newswire texts

(e.g. “5 PM”), which doesn’t include second or minute parsing. To fix this issue

the formatted time method was adjusted to allow for the “hh:mm” format, so now

the HourOfDay and MinuteOfHour entities are being identified and appropriate sub-

intervals are annotated. However, this code improvement resulted in another decrease

in performance of the HourOfDay entity.

Too Many Hours of the Day! The expected result of fixing the AMPM entity

and formatted time parsing was increased performance on AMPM, MinuteOfHour,

and HourOfDay entity parsing because the AMPM and MinuteOfHour sub-interval

links were now identified correctly. However, HourOfDay performance actually be-

came worse due to predicting too many HourOfDay entities. Further investigation

revealed that every temporal phrase that included an AMPM entity had duplicate

HourOfDay entities annotated (the same hour was annotated twice), one with the cor-

rect AMPM and MinuteOfHour sub-interval links and the other with no sub-interval
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links. This issue stemmed from a combination of the hierarchical parsing of format-

ted dates/times and inadvertently excluding a check to see if an HourOfDay entity

already existed when parsing AMPM entities.

In Chrono, all temporal phrases are interrogated by all modules. To ensure only

one entity of each type is identified in each temporal phrase Chrono implements a

flag system. For example, in the phrase “Monday at 3:05 PM.” there is one Day-

OfWeek, one HourOfDay, one MinuteOfHour, and one AMPM entity. This phrase is

first parsed by the formatted date/time module to identify the HourOfDay “3” and

the MinuteOfHour “05” entity. Following is the identification of the “PM” AMPM

entity; however, if this module finds an AMPM entity it then proceeds to look for

an HourOfDay entity preceeding the AMPM substring. However, an HourOfDay had

already been identified, and the AMPM module neglected checking this. Fixing this

double parsing issue was straightforward as the AMPM module just needed to check

if the HourOfDay flag had been set for the given temporal phrase. This error resulted

in some initially puzzling results where the HourOfDay performance kept decreas-

ing with every “improvement”, and ended up identifying twice as many HourOfDay

entities as it should have. Different modules may be required for parsing different

date/time formats, so it is important to ensure that all modules are consistently

coded. It is also important to keep in mind that some formats are more frequent in

one domain than another. This issue had not appeared when using the Newswire

corpus because the majority of the AMPM entities were accompanied by the shorter

format of “5 PM”, or contained the full “hh:mm:ss” format, whereas in the clinical

domain the specification of hour and minutes, such as “3:05 PM”, was ubiquitous

throughout the corpus.

Stop words splitting temporal phrases: Chrono was initially unable to

handle stop words that connected temporal entities into a single phrase, which limited
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its performance on the THYME corpus due to the use of long temporal expressions in

clinical texts. Chrono identified temporal phrases by looking for consecutive temporal

and/or numeric tokens. If a stop word was identified (e.g. “is”, “of”, “at”, etc), the

temporal phrase would be terminated–in some cases prematurely. For example, the

phrase “beginning of this month on September 1” was originally separated into 3

temporal phrases: “beginning”, “this month”, and “September 1”. Other examples

of temporal phrases that were incorrectly split include “2005 in April” and “October

14, 2010 at 02:07 PM”, which were both separated into two phrases. While individual

temporal entities were identified correctly, the correct sub-intervals for each entity

were unable to be assigned because Chrono only links sub-intervals within a single

phrase. To fix this, code was added to tag “linking” words in the temporal phrase

extraction module. Now, if a linking token is identified while constructing a temporal

phrase it is ignored and the phrase is extended. This allows Chrono to correctly

identify longer temporal phrases and results in correct assignment of sub-intervals,

which brought the 100% Entity performance closer to Span Only.

Unexpected Effects of Longer Temporal Phrases: The inclusion of stop

words in temporal phrases was a major upgrade to Chrono resulting in sub-intervals

of longer phrases being correctly assigned. However, this had an unintended result

that initially lowered the overall F1 scores for Calendar-Interval and Period entities.

Investigating changes in performance revealed Calendar-Interval and Period entities

that were correct were now incorrectly annotated with a link to a Number entity.

This happened for phrases like “four times a day” or “one time a day”, which are

highly frequent expressions in clinical notes as they are part of instructions for taking

medications. This behavior resulted from Chrono’s parsing strategy for identifying

associated numbers with SCATE entities where Chrono naively looked for a number

token in the sub-string of characters preceding an annotated entity. This parsing
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strategy worked well for Newswire text as the majority of associated numbers ap-

peared in formats similar to “2 weeks ago”, or “5 days”. Previously, Chrono assigned

expressions like “four times a day” to two temporal phrases: “four times” and “day”.

Thus, the Calendar-Interval “day” was correctly identified with no Number link. Af-

ter including the stop words in the temporal phrases the first number in the phrase

(e.g. “four”) was incorrectly associated with the Period or Calendar-Interval entity.

Chrono’s number parsing strategy also became an issue with other frequent clinical

phrases such as “one-time daily” where the number “one” was incorrectly associated

with the Calendar-Interval “daily”. To fix this issue, Chrono’s definition of where a

number had to be located in order to be linked to a SCATE entity was restricted to

the immediately preceding token instead of the full preceding sub-string. This restric-

tion works well for the THYME and Newswire corpora; however, may not work well

with expressions such as “2 full weeks from now” where the Period “weeks” should

be annotated with the Number “2”.

4.3.6 Document Design

Sentence Boundaries: An interesting temporal parsing issue appears in clin-

ical texts regarding sentence tokenization due to item lists in the clinical record.

Initially, Chrono did not tokenize on sentences as temporal phrases spanning sen-

tence boundaries were not an issue in the Newswire corpus. However, clinical records

in the THYME corpus contained entries like the following:

“...my notes from December.

2. Ulcerative colitis...”

Where the top sentence ends with the temporal entity “December” followed by a

numbered list item. Since Chrono did not consider sentence boundaries, this line break
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was removed in the preprocessing phase and the “2” that numbers the list item was

parsed as a DayOfMonth associated with “December”. To resolve this issue, Chrono

was updated to identify sentence boundaries. In Temporal Phrase Extraction, Chrono

no longer allows a single temporal phrase to span sentence boundaries; however, the

Temporal Disambiguation module still ignores these boundaries.

Metadata: Domain agnostic rules and procedures can be developed to iden-

tify many temporal expressions in written text, but metadata presents additional

challenges in that it is inherently domain-specific, and can even be document type

specific within the same domain. For example, pathology reports and clinical encoun-

ters with a physician can have their metadata formatted in different ways. In dealing

with metadata the first question is if one wants to parse the metadata at all. A good

reason to do so would be to gather contextual information that is not explicitly writ-

ten in the text, like identifying the document creation date to disambiguate references

to days of the week, etc. The gold standard SCATE annotations do contain dates

from the metadata sections, so it is necessary for Chrono to identify these entities.

Two issues arose when working on this problem: 1) How to identify a temporal token

using whitespace tokenization when the metadata line contains little whitespace, and

2) whether or not to include the word “date” as a temporal token.

In the THYME corpus, metadata is formatted as:

[start date=12/02/2010, rev date=12/02/2010]

Using whitespace tokenization this line is split into two tokens–both marked as tem-

poral as they contain formatted date strings. However, in the Temporal Phrase Ex-

traction module this line is considered a single phrase because it is composed of two

consecutive temporal tokens. This causes an issue as Chrono assumes there is only

one of each SCATE entity type in a phrase; thus, initially Chrono only annotated one
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data set System Precision Recall F1

THYME Eval Chrono 0.76 0.51 0.61

THYME Eval Laparra et al. 0.52 0.63 0.57

Newswire Eval Chrono 0.57 0.54 0.55

Newswire Eval Laparra et al. 0.58 0.46 0.51

THYME Train Chrono 100% 0.729 0.478 0.578

THYME Train Chrono Span Only 0.881 0.575 0.696

Table 8. Improved performance on THYME Corpora using SVM, excluding “Event”.

of the two dates in the metadata line. To resolve this, Chrono now converts all equal

signs to spaces prior to whitespace tokenization, thereby separating the metadata text

to four tokens. While this fix resolved the issue of parsing metadata dates, an equal

sign could be useful information, so a more sophisticated approach will be required

in the future.

The second issue with parsing metadata information arose when updating the

lexicon of known temporal tokens. The word “date” is temporal, but had not been in-

cluded in the initial lexicon of Chrono. Including “date” as a temporal token resulted

in identifying the metadata line as a single temporal phrase again as it was now a con-

secutive sequence of four temporal tokens: “start date”, “12/02/2010”, “rev date”,

and “12/02/2010”. As “start date” and “rev date” are just labels they should not be

considered temporal entities. Some mentions of “date” were valid temporal expres-

sions, but there were few of them. Thus, we decided to continue to exclude this token.

To be applicable to different domains, more sophisticated methods to parse metadata

will need to be implemented to resolve issues with temporal labels and other special

characters seen in metadata text.
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4.4 Improved Performance

Improvements made to Chrono using the THYME Training Corpus lead to a

0.27 and 0.24 increase in Precision and Recall, respectively, with a 0.26 increase in F1

measure for the Evaluation Corpus (Table 8). This resulted in Chrono being the top

performing system for SCATE Normalization. Chrono’s performance on the Training

Corpus improved similarly with a Precision of 0.881 in the Span Only evaluation

and 0.729 for the 100% Correct Entity. This indicates that Chrono is identifying the

correct location of many entities, but it is having trouble setting all the properties

correctly.

When designing a rule-base system it is possible to develop rules that overfit or

are tailored to the training corpus (i.e. Newswire texts). Overfitting rules results

in good performance on the training domain and poor performance on the testing

domain, similar to Chrono’s performance on the THYME corpus. However, when

rules are adjusted to incorporate another domain it is expected that the performance

in the training domain go down, indicating that it was overfitting the training domain.

To see if this happened with Chrono, we re-evaluated our final model on the Newswire

corpus. The results showed an insignificant 0.01 drop in F1 due to a 0.05 drop in

Precision and a 0.04 increase in Recall, which indicates that Chrono is now more

compatible with cross-domain application. Since we do not see a major drop in

performance on the Newswire corpus we can conclude the original rules did not overfit

the Newswire domain, but rather they were incomplete and required expansion to

improve performance in the clinical domain.
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4.5 Conclusions and Contributions

In conclusion, while the concept of time is the same regardless of the domain, its

representation can vary. This chapter demonstrated that clinical domain texts pose

additional challenges to TERN systems, and identified 6 aspects of temporal parsing

one should consider when migrating a system from the general to clinical domain.

These include:

1. Vocabulary differences (i.e. clinical terms and abbreviations).

2. The frequency of temporal entity usage (i.e. more mentions of frequency types).

3. Disambiguate numerical phrases as temporal or dosage/lab result.

4. Utilize appropriate machine learning data.

5. Lexical variation

6. Differences in document structure.

As Chrono was initially trained on Newswire texts, it’s out-of-the-box perfor-

mance on the THYME corpus was poor; however, through a detailed error analy-

sis and algorithm improvements Chrono emerged as the top performing system for

SCATE Normalization of clinical texts without compromising its ability to parse

Newswire texts.
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CHAPTER 5

THE I2B2 BENCHMARK

The 2012 i2b2 Temporal Challenge [132] provided the clinical NLP community with

the first temporally annotated and de-identified clinical corpus for temporal reason-

ing. This corpus has become a benchmark in the field of clinical temporal reasoning

for defining state-of-the-art performance for tasks such as TERN. The top systems

participating in the 2012 i2b2 Temporal Challenge achieved span-based F-measure

scores around 0.90, indicating good performance in identifying temporal expression

spans, but saw reduced performance in normalizing the expressions to their correct

temporal value.

There are only two known systems that parse temporal expressions into the

SCATE schema, and they have access to a very limited set of gold standard data that

is annotated with SCATE. Thus, it is not possible to assess Chrono’s performance

to the rest of the state-of-the-art TERN systems, which parse into the TimeML

schema, because these annotation schema are not directly comparable. Additionally,

through an investigation of the THYME Gold Standard annotations it was discovered

that around 46% of errors were from incorrect Gold Standard annotations [67]. It is

difficult to evaluate the performance of a method when close to half the errors are due

to gold standard issues. Therefore, in order to compare the performance of Chrono to

other state-of-the-art clinical temporal information extraction algorithms, it needed

to also import and export annotations in the commonly used TimeML format. In

addition to utilizing a common schema, it is important to evaluate Chrono on a gold

standard with fewer errors. Thus, we upgraded Chrono to export in the TimeML
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format to get a more accurate performance evaluation using the 2012 i2b2 Temporal

Challenge benchmark data set and to compare its performance to state-of-the-art

methods from this challenge.

In the following sections the compatibility of the SCATE and TimeML annota-

tions are discussed, modifications made to Chrono are described, results from running

Chrono on the i2b2 data set are provided, and a detailed error analysis of Chrono

and the top rule-base and hybrid systems from the 2012 i2b2 Temporal Challenge is

provided.

5.1 Compatibility of SCATE and TimeML Annotation Schemes

To evaluate Chrono on the i2b2 data using the i2b2 scripts, the SCATE an-

notations needed to be converted to TimeML. While SCATE contains enough in-

formation to be converted to TimeML, the TimeML annotations do not contain

enough information to be effectively converted to SCATE entities. This is due to

the saved annotations in TimeML being normalized into the ISO standard. For ex-

ample, the phrase “Thursday, June 3, 2000 at 12pm” would be saved in ISO as

“06-03-2000T12:00:00”. This representation does not annotate the day-of-week men-

tion “Thursday”, but SCATE does (even though it is redundant), and it is not clear

from the ISO format if the text contains an AMPM entity, and second-of-minute, or

a minute-of-hour entity, all of which must be annotated by SCATE if present to be

counted as correct. Additionally, SCATE differentiates ”Periods” and ”Calendar In-

tervals” whereas TimeML treats them both as a DURATION or DATE, and it would

not be straightforward to differentiate between them when converting to SCATE. For

example, TimeML would annotate the token “week” as a DURATION in the follow-

ing two phrases: “I have had pain for the past week.”, “I had pain all last week”.

However, SCATE would annotated the first as a Period and the second as a Calendar
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Interval. The main different between these scheme’s is that SCATE is focused on the

intervals of time while TimeML is focused on if the event associated with the interval

happened continuously throughout said interval or only occurred at a specific point

in time at the beginning or end of the interval mentioned in the text. This makes

it difficult to convert based solely on either the TimeML or SCATE annotations, so

additional measures need to be taken to include phrase context when converting these

entities from SCATE to TimeML.

Converting SCATE to TimeML is possible as the SCATE data can be distilled

down into the ISO format for DATE types and many DURATIONS as well. However,

there are still challenges in retrieving a good conversion, and any conversion script

would still need access to the full text document. Thus, it was decided to integrate

the needed TimeML information into the existing SCATE objects within Chrono and

provide an additional input/output mode for TimeML annotations instead of building

a stand-alone conversion script.

5.2 System Modifications and Performance

Two phases of system modifications were implemented: 1) modifications to con-

vert the existing SCATE annotations to TimeML, and 2) algorithm improvements to

capture temporal elements not seen in the Newswire or THYME data sets.

5.2.1 Conversion Changes

ISO Formatting: The first change to Chrono was to convert explicit date/time

strings to ISO format and store the normalized value for each temporal expression.

This was done using an existing 3rd-party ISO conversion module in python named

“dateutil”. Initially, the raw temporal phrase identified by Chrono was input into

this tool; however, some raw phrases were not able to be parsed by “dateutil”, such
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as phrases that are part of the document metadata or header lines. Thus, for ISO

conversion, a string was re-generated from the SCATE entities associated with a

temporal phrase to be passed into the ISO conversion module. An example of a raw

phrase that “dateutil” can not parse, but Chrono can is show in Quotation 4.

911203 Tuesday December 4A 1991 WEST (4)

Other phrases the “dateutil” method cannot handle are fuzzy and referential

phrases such as “yesterday” or “3 days ago”. In addition, phrases such as “last

Saturday at 3pm” were also parsed incorrectly as the “last” was ignored and the

normalized ISO string would reference the next Saturday. For this later issue, proper

setting of the reference time is required prior to conversion (see Future Work). For

the former issue, a more complex solution is needed for proper normalization.

Finally, for proper ISO conversion of 2-digit years, such as ’97’, that are not part

of date strings, a proper reference time had to be set in the “dateutil” method. This

is simply set as the document creation time.

Periods and Intervals: Periods and Calendar Intervals are converted to DU-

RATION ISO notation as this is the most frequent classification of these entities.

This format must include the designation for a period (P), the number associated

with the durations, and the units of the duration (e.g. D=days, M=months, Y=years,

W=weeks). If the units are in seconds, minutes, or hours, the period designation must

be accompanied by a “T”. For example, “3 months” would be coded as “P3M”, and

the phrase “3 minutes” would be “PT3M”. Durations representing the same length

of time, such as P1D and PT24H, are considered equivalent.

SCATE entities are clearly labeled as being a period or interval, which both

are primarily coded as a DURATION in TimeML. If a number is associated with
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a SCATE entity, this is easily retrievable. Thus, implementing this conversion was

straightforward for the majority of SCATE Period and Interval entities; however,

some SCATE Periods and Calendar Intervals are actually annotated as a DATE in

TimeML. Developing rules for this differentiation is difficult, so we decided to set all

to DURATION at this point in time. The impact of this decision on performance is

discussed in the following error analysis section.

Approximate Phrases: Another conversion from SCATE to TimeML was

the conversion of entities with approximate modifiers. These entities required the

TimeML APPROX attribute to be set along with a DURATION that had a number

associated with it. While SCATE annotates these modifiers, it does not associate a

number with them. Approximate phrases included “several days”, “several minutes”,

“many days”, etc. These have an annotation in ISO such as “P3D”. However,

choosing a number for the terms “several”, “many”, “few”, etc. is challenging as

the exact duration may be interpreted differently depending on the reader, context,

and the magnitude of the units involved. For example, “a few minutes” could mean

around 5 to 10 minutes, while “a few months” is more likely to be around 2 to 3.

An analysis of these types of phrases was performed to determine what the consensus

was in the i2b2 Gold Standard data set to inform the development of rules to convert

these expressions from SCATE to TimeML.

An analysis of temporal expressions having the “APPROX” attribute set in the

i2b2 Gold Standard revealed inconsistencies as to the exact numerical value with

which these phrases were annotated. This was especially true for the modifier words

“several” and “few”. Numbers associated with “several” include 2, 3, 4, and 5.

Numbers associated with “few” include 2, 3, and 4. Numbers associated with “many”

include 5, 10 and 30. Even the same temporal expression was annotated with different

values. For example, “several days” is coded as “P3D” in one document, and “P4D”
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in another. Similarly, “many days” is coded as P10D in one document, and P30D

in another. This inconsistency makes it very difficult to correctly annotated these

phrases and may impact performance.

In Chrono, these approximate modifiers were set to be a consistent value based

on the average gold standard annotations and the descriptions for these terms on the

LSAT exam∗. In Chrono, the terms “few” and “several” are set to “3”, and “many”

is set to “10”. Plural time expression, like “weeks”, without a number or approximate

modifier are set to “2” with a modifiers of “NA”, and any singular period or interval

is defaulted to a value of “1” with a modifier of “NA”.

5.2.2 Conversion Performance

After updating Chrono to output SCATE annotations into TimeML format we

assessed it’s “out-of-the-box” performance. The i2b2 evaluation script was run to

generate the aggregate performance of Chrono annotations for only TIMEXs and

using overlapping span. Overlapping spans was chosen as Chrono spans are not

directly coded to i2b2 preferences (such as including punctuation); thus, it is enough

to know our spans overlap, which means we annotated approximately the correct

phrase. Table 9 shows the overall Precision to be 0.56, Recall 0.81, and F1 0.66, which

(except for Precision) are better than even the improved performance of Chrono on

the THYME corpus.

Performing an error analysis of Chrono’s performance on the training data set

revealed that the low Precision is due to Chrono annotating a lot of relative temporal

and age-related expressions that i2b2 does not. For example, the term “recent” in

the phrase “...go but not on home 02 with recent FEV1 27% of predicted value”,

∗
https://www.powerscore.com/lsat/help/lsat-quantity-terminology.cfm
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and the term “now” in the phrase “...kidney transplantation and now has good graft

function” provide ordering information in the clinical note for events, but are not

annotated by i2b2 because they cannot be directly linked to a frequency, duration,

date, or time. Age-related phrases include “28-year-old” and “72 years”, which are

both specifically annotated in SCATE but not in i2b2. Additionally, Chrono was

missing many temporal clinical abbreviations, such as “bid”, and was unable to parse

2-place dates formatted as “MM/YY” or “DD/MM”. Additionally, Chrono missed

phrases like “postoperative day 2”. As Chrono is primarily rule-based, these stylistic

writing differences between the THYME data set and the i2b2 clinical notes were

not coded. Thus, further improvements to Chrono were made to account for these

additional elements.

Additional sources of error include differentiating DURATION and DATE types.

Chrono is coded to convert all SCATE Periods and Calendar Intervals to DURATION

types in TimeML. However, some of these mentions are actually annotated as DATE

types in the gold standard. For example, in the phrase “One week prior to presen-

tation , he had chest pain..” the temporal expression “One week prior” is coded by

Chrono as a DURATION, but in the gold annotations it is a DATE that is set to

the day one week prior to the admission date. Similarly, phrases such as “On post-

operative day 4” are annotated as a DURATION of 1 day by Chrono, but are given

a specific date in the gold annotations. Both of these phrases require an anchor time

and interval delta from the anchor time in order to calculate the date accurately. At

the time, these errors were few compared to the lexical issues mentioned previously.

Thus, these errors were not addressed in the next round of Chrono modifications,

which was focused on improving Recall performance.
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5.3 Improvements

The next round of improvements made to Chrono were focused on improving

the Recall. The Precision numbers will naturally be lower because Chrono was built

to identify a wider range of temporal expressions than what was annotated in i2b2.

Thus, we focused on improving Recall first, followed by the Value Accuracy.

5.3.1 Clinical Abbreviations

The i2b2 data set contained a number of clinical abbreviations that actually

represented a frequency. For example, “bid” represents “twice a day”. To account for

this, a new dictionary was created that contained a large list of temporal abbreviations

used in clinical settings†. All of these abbreviations represented frequencies, thus,

a new Frequency method was created to parse these phrases. Currently, only the

abbreviations are parsed as frequencies, and none of the properties are being set.

Future work will require setting the properties correctly and identifying frequencies

that don’t include abbreviations.

5.3.2 2-Place Dates

Two-place dates are tricky. They can either be of the format MM/YY, M/YY,

MM/YYYY, MM/DD, or M/DD. If a 4-digit year is found, then it is unambiguous

as to which place is a day, month, and year. However, if a 2-digit year is present, or

the format is NN/NN or N/NN, it is unclear as to which place refers to day, month,

and year.

Initially, Chrono was not recognizing 2-place dates at all as it looked for the

standard 3-place format. Upon editing the code to identify 2-place dates as well,

†
https://en.wikipedia.org/wiki/List of medical abbreviations: B
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the issue became differentiating dates from test results and the formats MM/YY,

M/YY, MM/DD, and M/DD. Chrono deals with this issue by constraining 2-place

dates to have specific ranges of values. In a string with the format XX/NN or X/NN,

the X or XX must be a numerical value between 01 and 12. If it is not the string

is considered to not be a date. If the first place is determined to fit in the range

for a month, the then second place must be between 1 and 31 to be classified as

a day. If the second place is greater than 31 then it is classified as a 2-digit year.

Now, this will of course run into situations where these rules will prohibit the date

value from being interpreted correctly. For example, the string “01/10” could mean

January 2010 or January 10th. Chrono would assign the later value to this string.

While this may seem like a large issue, usually, when dates between 1/1/2000 and

beyond are now relayed, the full 4-digit year is written for clarity, so we expect to not

have too many issues with these rules. However, future work could include a machine

learning algorithm to use the context of the passage to determine if the last 2 digits

are representing a year or a day.

5.3.3 Improved Performance

Upon implementation of identifying clinical abbreviations and 2-place dates,

Chrono’s performance on the i2b2 training data set increased to a Precision of 0.64,

Recall of 0.91, and F1 value of 0.75 9. Property attributes for Type, Value, and Mod-

ifier also increased, but are still below those of the state-of-the-art systems submitted

to the i2b2 Temporal Challenge in 2012. Running Chrono for the first time on the

unseen Evaluation data set from the i2b2 challenge resulted in similar performance

to the improved training run with just a 0.01 drop in Precision, Recall, and F1.

Even in the Evaluation corpus we see that Precision is low and pull the F1 value

down due to Chrono annotating additional types of temporal tokens not annotated
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Run Type Precision Recall F1 Type Accuracy Value Accuracy Modifier Accuracy

i2b2 Training

Out-of-Box 0.56 0.81 0.66 0.49 0.45 0.66

Improved 0.66 0.92 0.77 0.60 0.54 0.79

Improved w/o relative 0.78 0.92 0.84 0.60 0.55 0.79

i2b2 Evaluation

Improved 0.65 0.90 0.75 0.60 0.54 0.80

Improved w/o relative 0.78 0.90 0.84 0.60 0.54 0.80

Table 9. Chrono’s performance on the i2b2 Training and Evaluation data sets.

by i2b2. In order to assess how much these tokens are affecting the Precision, we

implemented a toggle in Chrono to turn off the annotation of relative and vague

temporal tokens such as “briefly” and “recently”. Table 9 shows the changed results

with this toggle turned on. As can be seen, removing these relative terms increased

the Precision and F1 measure without affecting the Recall or other properties, which

affirms these extra terms were the issue.

5.4 Error Analysis on Evaluation Corpus and Comparison to Top Systems

An advantage of using the i2b2 data set is that they provide the output of the

top 10 systems from the 2012 i2b2 Temporal Challenge, which can be analyzed and

compared with new systems. Prior to performing an error analysis of Chrono’s per-

formance on the evaluation data set, a detailed error analysis of a few top performers

from the i2b2 challenge was done to gain insight into the types of problems these

systems had with this data and then compare that to the types of problems Chrono

is having with this data.

5.4.1 Chosen Top i2b2 Systems

Using the performance results from the TIMEX section of Table 2 in Sun, et al.

[21], we chose to analyze the TIMEX output of the following 3 systems:
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System System Type Precision Recall F1 Type Accuracy Value Accuracy Modifier Accuracy

Mayo Rule-based 0.88 0.92 0.90 0.86 0.73 0.86

MSRA Hybrid 0.88 0.95 0.91 0.89 0.72 0.89

Vanderbilt Rule-based 0.83 0.91 0.87 0.85 0.70 0.85

Chrono Hybrid 0.78 0.90 0.84 0.60 0.54 0.80

Table 10. Performance of top systems from the 2012 i2b2 Temporal Challenge on the

full evaluation data set along with Chrono’s performance.

1. Mayo Clinic: The top performing rule-based system primarily using regular

expressions.

2. Vanderbilt: A mid-range performing, rule-based system that was built on top

of HeidleTime, a top performing general domain temporal tagger.

3. Microsoft Research Asia (MSRA): The top performing hybrid system utilizing

rules, conditional random fields, and support vector machines.

Overall performance on the evaluation data set was re-calculated for these sys-

tems utilizing the provided system outputs and the evaluation scripts from the i2b2

data. These results are provided in Table 10 and match the results reported in Table

2 of Sun, et al. [21].

5.4.2 Error Analysis Strategy

Providing a detailed error analysis of all files in the evaluation data set would be

time consuming, thus, a subset of files were chosen for analysis. To obtain the most

informative files the i2b2 file-level evaluation results from the Mayo system were used

to identify files with any one of Precision, Recall, or Value Accuracy that was close to

or less than 0.75. These specific metrics were chosen as they are directly responsible

for the ranking of systems in the i2b2 challenge, and they assess distinctly different

aspects of each system’s performance. The Mayo system what chosen to obtain

these files initially because it was the top performing rule-based system and this
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System System Type Precision Recall F1 Type Accuracy Value Accuracy Modifier Accuracy

Mayo Rule-based 0.79 0.87 0.83 0.73 0.48 0.79

MSRA Hybrid 0.81 0.95 0.87 0.88 0.59 0.86

Vanderbilt Rule-based 0.74 0.89 0.81 0.80 0.52 0.82

Chrono Hybrid 0.71 0.87 0.78 0.50 0.44 0.76

Table 11. Performance of top systems from the 2012 i2b2 Temporal Challenge and

Chrono on the poor performing files from the evaluation data set.

analysis was meant to identify what types of phrases rule-based systems have trouble

annotating and normalizing. Running this same analysis for the top hybrid system,

MSRA, revealed no additional file that added to the list of difficult types of temporal

phrases. Thus, the resulting list contained 18 files from the i2b2 evaluation data set

that seem to be the most difficult files for rule-based and hybrid systems to parse.

Table 11 shows the performance of the selected metrics of each top i2b2 system and

Chrono for each of the 17 difficult files.

5.4.3 Top System Error Analysis Results

Analysis of the top i2b2 rule-based (Mayo and Vanderbilt) and hybrid (MSRA)

results on the selected 18 low-performing files revealed several types of errors that

each of the systems consistently made on the same types of temporal expressions:

• Gold Standard: Two of the poorest performing files were due to errors in the

gold standard annotation.

• Lexical: Certain types of tokens were not recognized as temporal, or longer

phrases were broken up so much the correct value could not be determined.

• Frequency: Some frequencies were either missed completely or phrases were

incorrectly annotated as a frequency.

• DURATION vs DATE: Systems had a hard time determining if certain
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vague or relative temporal phrases should be annotated as a DATE type or

DURATION type.

• Anchor Time: Systems had trouble choosing the correct anchor time to cal-

culate dates that were referred to by relative temporal expressions.

• Delta Values: Errors in identifying how much time to add or subtract from

an anchor time to resolve a relative temporal expression.

In the following paragraphs, each of these error types is discussed with specific

examples provided from each of the three top performing i2b2 systems. Following

this detailed assessment of the top systems is a comparison to how Chrono performed

on these same files.

Gold Standard errors include issues either with missing annotations in the gold

standard file, or other problems related to the text or gold standard annotations that

could be corrected to improve performance. Two gold standard annotation files were

found to contain two different types of errors that lead to poor performance by all

systems. One file had very poor Precision (around 0.3) with high Recall and value,

which was an odd pattern compared to the rest of the chosen 17 files. This was cause

by each of the systems annotating several 2-place dates that were not included in

the gold standard. Looking into this it was found that these actually were dates and

should have been annotated by the gold standard, however, it looked like the gold

file was only half completed. In a second file, both Precision and Recall were high

in all three systems, but the value accuracy was very poor across the board (around

0.25). Further investigation revealed the admission and discharge dates being from

the year 2014, but in the actual text dates are given the year 2015. Additionally,

many “POD#X” and “HD#X” phrases are included referring to postoperative days

and hospital days. The annotators marked some of these as in the year 2014 and
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some in the year 2015. Thus “HD#3” was annotated to be 2/23/2014, but “HD#5”

has the value 2/25/2015. Thus, the poor performance on these two files is due to

incomplete or inconsistent annotations. If these issue had been corrected in the gold

standard files, then the systems would have performed well on both.

Lexical errors include missing tokens that are annotated as temporal in the gold

standard, annotating tokens as temporal that are not in the gold standard, or splitting

up temporal phrases to a degree that causes incorrect value normalization. Overall,

all 3 systems had few lexical errors in the chosen set of files; however, the ones they did

have were usually consistent across the systems. The errors that did occur included

all three systems missing the phrases “three cycles” and the token “one” in “one

dose”, both of which were annotated as a FREQUENCY in gold. The two rule-base

systems only annotated the “day” token in the phrase “day +11” where the hybrid

system captured the full phrase. Similarly, the rule-based systems missed annotating

the phrases “3 / week”, “14d”, and “2 wk”, but the hybrid MSRA system did capture

all these phrase; however, it did not assign the correct type to any of them. With

respect to breaking up phrases, all three systems broke up the phrase “daily for four

days” into “daily” and “four days”. Mayo and Vanderbilt only annotated “weeks” in

the phrase “one and a half weeks”, and MSRA missed annotating the token “later”

in the phrase “A few days later” where the two rule-based systems captured the full

phrase. Finally, the hybrid method from MRSA was the only one of the three to

consistently annotate the token “sat” in phrases like “and o2 sat stable” as a DATE

when it was actually referring to oxygen saturation.

Frequency errors included lexical issues where frequency phrases were not an-

notated at all, or where phrases were incorrectly flagged as a frequency. The rule-

based systems from Mayo and Vanderbilt seemed to bear the brunt of these errors

as their coded rules were unable to take context into account for phrases like “5 mg
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x 10 d” where it marked “x 10” as a FREQUENCY, however, the gold annotations

marked “10 d” instead as a DURATION. The hybrid system from MSRA was able

to annotate these correctly. Additionally, it seems the rule-based systems prioritize

a FREQUENCY annotation over DURATION both in the example above and with

the phrase “times one month”. Both Mayo and Vanderbilt only annotated the to-

kens “times one” and missed the “month” leading to this phrase being incorrectly

annotated as a FREQUENCY when it should have been a DURATION. The MSRA

system correctly captured the entire phrase “times one month” and gave it the correct

DURATION temporal type. Finally, all three systems had trouble with the phrases

“with a Vision stent , 3 x 18”, “negative CK X4”, and “negative troponin X4” that

were all from the same file. All systems annotated the tokens “x 18” and “X4” as

FREQUENCY types when they were not included in the gold standard as a temporal

phrase.

DURATION vs DATE errors are those where a temporal phrase is marked as a

DURATION type but should have been a DATE, or vice versa. Many DATE types are

easy and straightforward to identify, such as the phrase “January 3, 2021”; however,

temporal phrases that are referential or relative to an event or another time are more

difficult. For example, in the phrase “a followup appointment is recommended in two

weeks” the temporal phrase “two weeks” is referring to a specific date at which the

next appointment should occur with the referential or anchor date being the time of

the current visit (generally accepted as the document creation time unless otherwise

stated in the text), so this would be annotated as a DATE type and given a specific

date as the value in the TimeML schema. Table 12 lists the 17 phrases that tripped

up at least one of the top systems with the correct type classification of DATE or

DURATION. Mayo correctly classified only 3 while Vanderbilt did a little better to

get 7 correct, and the hybrid system from MSRA performed the best with 9 out of
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17 correct. In the following discussion of these errors we are only interested in the

correct Temporal Type classification and not the actual value. Value accuracy will be

discussed for many of these same phrases in the Anchor Time/Interval Delta section

below.

Three phrases (1, 2, and 3 in Table 12) were incorrectly classified by all systems.

In the SCATE schema, each of these three phrases would be listed as a Period type,

however, in the TimeML schema two are DATE types (phrases 1 and 2) and one

is DURATION (phrase 3). The key difference is that the two DATE type phrases

are referring to a discrete event that will happen in one year (a CT scan) or one

month (an ultrasound), whereas the DURATION phrase is referring to an event that

has continuously happened over the course of three days (black stools). Phrase 3 is

probably among the most difficult for any system to parse because it requires prior

knowledge that the event of “black stools” is not discrete and can occur over multiple

days.

Several phrases were consistently classified incorrectly by the Mayo and Vander-

bilt systems. These include phrases 4, 5, and 6 in Table 12, which all reference dates

in the past as indicated by the word “prior”. Each of the rule-based systems seemed

to miss this key word and assign these phrases to the DURATION type when they

should have been a DATE. The hybrid MSRA system classified these instances cor-

rectly as a DATE; however, another instance of the word “prior” appears in phrase 7

and was classified correctly by Mayo as a DURATION, but incorrectly by Vanderbilt

and MSRA as a DATE. Interestingly, phrase 8 also contains the token “prior” and

is consistently classified incorrectly by Mayo as a DURATION, however, unlike the

other phrases that include the word “prior”, Vanderbilt identified this one correctly as

a DATE along with MSRA. This indicates that each system may have a rule dictat-

ing priority over how these types of phrases are classified that potentially include key
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context words. Vanderbilt may have included the key word “until” in its rule-base,

which may have led to the correct classification for this phrase.

The system from Mayo had particular trouble annotating the phrase “the day”

that appeared twice in 2 files (phrases 9 and 10 were from one note and phrases 11

and 12 were from another). In each instance the phrase “the day” was annotated as

a DATE by the gold standard, however, Mayo marked these as DURATION types

while Vanderbilt and MSRA correctly classified them as DATE. Note the context for

each instance of the same phrase “the day” is different for each occurrence. This

actually leads to the values being different for each, however that is related to anchor

time issues and will be discussed subsequently. A third file also contained the phrase

“the day” (phrase 13), but gold annotated “the day PTA”, which means “the day

prior to admission”. Again, Mayo defaulted to classifying this as a DURATION while

Vanderbilt and MSRA correctly identified it as a DATE type.

Out of all 17 phrases, Mayo only got 3 correct (phrase 7, 14, and 15). As discussed

above, Mayo most likely has a rule that classifies any phrase such as “two weeks” as a

DURATION as it did this consistently regardless of the context. Interestingly, phrases

14 and 15 were both classified correctly by Mayo and incorrectly by MSRA. Both of

these phrases include the key context word “later”, which was probably the signal

word for a DATE classification in Mayo’s system and was not annotated as part of

the phrase by MSRA. Vanderbilt also classified phrase 14 correctly and annotated the

word “later” as part of the phrase, but got phrase 15 wrong as it missed annotating

the key context word “later” indicating this was a DATE and not a DURATION. This

may have been the result of Vanderbilt’s system using different rule sets to annotate

these two phrases that handled the token “later” differently.

For the last 2 phrases listed in Table 12, phrases 16 and 17, neither Mayo nor

Vanderbilt recognized these as temporal phrases. They were identified by MSRA
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as temporal, but the temporal type classification was wrong on both accounts. To

normalize both of these phrases correctly, knowledge of clinical shorthand is required

(e.g. “d/c” means discharge) and an understanding of the context and type of event

(continuous or discrete) is needed. Even if MSRA used a machine learning module to

classify temporal phrases as DATE or DURATION (note, it is unknown if they did),

these two phrases would probably still present a challenge.

Finally, lets briefly revisit phrases 7 and 8, which are both from the same file,

and both contain the same temporal phrase “two weeks prior”, but one is annotated

as a DATE and the other as a DURATION. All three systems were consistent in

annotating these phrases and thus, each got one right and one wrong. This indicates

static rules may have been implemented that do not take all the context into account

in order to classify these phrases correctly. The complex and sometimes subtle con-

textual clues that humans can pick up on easily are clearly demonstrated throughout

all of the examples in Table 12 where even the same temporal phrase can have a dif-

ferent meaning depending on the context (and as we will see in the next section can

have different values as well). Thus, developing an exhaustive set of rules to identify

any DURATION or DATE in any context is infeasible due to the variety of potential

lexical and semantic forms; however, a machine learning model may be able to pull

this off with the right features. While it is unknown if the MSRA system actually

used a machine learning model for this task, it is clear that this system did perform

better than either of the two rule-based systems on these difficult phrases.

Anchor Time and Delta Value errors go hand in hand, so will be discussed

jointly. Anchor times are calendar dates used as the starting point for calculating the

actual dates of a relative temporal phrases. For example, in the phrase “two weeks

prior to admission” the anchor time would be the date of admission. To calculate

the calendar date being referred to in this phrase you would also need to identify the
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ID Phrase Gold Mayo Vanderbilt MSRA
1 “...and a repeat CT scan in 1 year.” DATE DUR DUR DUR
2 “A repeat head ultrasound is recom-

mended in one month...”
DATE FREQ DUR DUR

3 “Three days ago began to develop black
stools...”

DUR DATE DATE DATE

4 “...laprascopic cholecystectomy 7 weeks
prior to admission...”

DATE DUR DUR DATE

5 “...during his most recent admission 1 year
prior .”

DATE DUR DUR DATE

6 “...HSV outbreak occurred on 2017-09-13
approximately one week prior to delivery
.”

DATE DUR DUR DATE

7 “Over the two weeks prior to admission...” DUR DUR DATE DATE
8 “...chronic mild dyspnea on exertion until

two weeks prior to admission .”
DATE DUR DATE DATE

9 “...pain was intermittent through the
day...”

DATE DUR DATE DATE

10 “...it had essentially started earlier in the
day...”

DATE DUR DATE DATE

11 “...required a dilt gtt on the day prior to
call-out...”

DATE DUR DATE DATE

12 “...she was transitioned to PO diltiazem
on the day of call-out .”

DATE DUR DATE DATE

13 “...daughter says that on the day PTA...” DATE DUR DATE DATE
14 “A few days later she complained of dizzi-

ness .”
DATE DATE DATE DUR

15 “...watched after his initial diagnosis , but
six months later he developed...”

DATE DATE DUR DUR

16 “...treated with levaquin on the floor and
will complete a 14d course at rehab .”

DUR - - DATE

17 “...will see them again 2 wk after d/c...” DATE - - DUR

Table 12. Temporal phrases that were hard to correctly classify as a DURATION or

DATE temporal type. Gold standard temporal phrases are italicized and

type classifications are in bold green if they match gold and colored red

otherwise.

value (i.e. how many days) to add or subtract from the anchor time, which we refer

to as the Delta Value. Anchor Times and Delta Values are only valid for relative

temporal phrases classified as a DATE type, and these errors were the most pervasive

throughout all poor performing files and across all systems making Anchor Time and

Delta Value errors the top cause of poor performance. Table 13 lists several example
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ID Phrase Gold Mayo Vanderbilt MSRA

1 Yesterday morning , he developed... 5/12/2006 11/16/2006 5/13/2006 2003

2 On physical exam today... 5/16/2006 11/16/2006 5/13/2006 5/13/2006

3 Prior to discharge today... 5/16/2006 6/18/2006 6/18/2006 5/16/2006

4 Cholangiogram on postoperative day

number two showed...

8/26/2009 8/19/2009 8/26/2009 8/24/2009

5 Cholangiogram on postoperative day

number two...At the time...

8/26/2009 - 8/26/2009 8/24/2009

6 On postoperative day number 17... 9/10/2009 9/3/2009 9/10/2009 9/10/2009

7 On postoperative day number 17...At

the time...

9/10/2009 - 9/10/2009 9/10/2009

8 Mother presented on day of delivery

with preterm labor...

2016-05-05 - - 2016-05-05

9 ...day of life two... 2016-05-07 2016-05-06 2016-05-06 2016-05-05

10 ...day of life 18... 2016-05-23 2016-05-22 2016-05-22 2016-05-05

11 Antibiotics were discontinued on day of

life three...

9/24/2017 9/24/2017 9/24/2017 9/22/2017

12 ...required a dilt gtt on the day prior to

call-out...

2/17/2013 - 2/21/2013 2/18/2013

13 ...transitioned to PO diltiazem on the

day of call-out .

2/18/2013 - 2/21/2013 2/21/2013

14 ...was followed by urology during her

stay and will see them again 2 wk after

d/c...At this time , urology will coordi-

nate removal of...

3/13/2013 2/21/2013 2/21/2013 2/21/2013

15 ...underwent cardiac catheterization to-

day...

6/10/2015 5/4/2015 5/4/2015 9/2/2015

16 “...until one and a half weeks prior to

admission ... was prescribed cortisone

drops . A few days later she com-

plained of dizziness .”

12/21/2009 1/3/2010 12/30/2009 -

17 ...with chronic mild dyspnea on exer-

tion until two weeks prior to admission

.

4/6/2012 - 4/6/2012 4/19/2012

Table 13. Temporal phrases for which it was hard to correctly identify the Anchor

Time and/or Delta Value. Gold standard temporal phrases are italicized

and assigned values are in bold green if they match gold and colored red

otherwise.
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phrases that had an Anchor Time or Delta Value error by at least one system (the

full table can be found in Supplementary Table S1. In total there were 50 phrases

that the systems had trouble on from the poor performing files. Mayo got 2 dates

correct, MSRA got 8 correct, and Vanderbilt performed the best by identifying 11

dates correctly, primarily due to a single file.

Through the error analysis it became clear that these systems attempted to

employee complex logic to ascertain the anchor time for some relative phrases. Most

of the time, phrases like “at this time” were annotated correctly using either the date

of admission or discharge as the date these phrases references. However, other phrases

were more difficult, and one even required a multi-step calculation based on context.

Some of the difficult phrases caused errors from:

• Context switching with notes written on multiple days.

• Referencing multiple days of care as “postoperative day” or “day of life”.

• Knowing when the admission or discharge date is the anchor time.

• Using the last annotated date as the anchor time.

• Upstream annotation errors leading to a cascade of downstream errors.

Deciphering when the context switches from being written upon admission to

being written on discharge was difficult for all systems. Phrases 1, 2, and 3 in Table

13 relay some phrases that include the temporal words “yesterday” and “today” in

the same file, however, one has the admission time as an anchor while to other refers

to the date of discharge. According to the gold annotations, the phrase “Yesterday

morning” was referring to the day prior to admission, which was 5/12/2006, and the

phrase “today” referred to the day of discharge. The phrase “Yesterday morning”
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was included in the “HISTORY AND REASON FOR HOSPITALIZATION” section

of the note, while the phrase “today” was in the “HOSPITAL COURSE” section. All

three systems calculated a different, and incorrect, date for the “yesterday” phrase.

Vanderbilt seems to assume it was the day of admission so was off by 1 day. Mayo

assigned a date of 11/16/2006, which seems to have come from a DATE annotation in

the previous sentence with the phrase “...history of CAD status post non ST elevation

MI in 11/17 who presents with chest pain...”. Mayo annotated the token “11/17”

as a date when it was not annotated by gold. From this file, and many others, it

seems the Mayo system uses the most recently annotated DATE as the anchor for

many of these relative phrases. Similarly, the MSRA system may have similar logic

as it annotated the phrase “Yesterday morning” as the year “2003”. Looking at the

context, it seems to have gotten this from the prior phrase “In 2003 , he had..”.

While Mayo and Vanderbilt annotated “2003” as a year, they did not consider it as

an anchor date. For the “today” term, there are two phrases in this file (phrases 2 and

3 in Table 13), and gold gives the same value (the discharge date) to both of them.

For phrase 2, Mayo is still using the 11/16/2006 date from the previous section as the

anchor time, while Vanderbilt and MSRA assume “today” is refering to the admission

date. Interestingly, for the second “today” phrase the context points directly to the

day of discharge and MSRA was able to get the correct date; however, both Mayo

and Vanderbilt have the date 6/18/2006. This seemingly came from a new DATE

having been annotated in the context prior to this last phrase, “June 18 , 2006 , at

8:30 p.m.”, showing that both Mayo and Vanderbilt have rules for anchor times that

depend on the last annotated DATE regardless of the rest of the context.

Another interesting file included several “postoperative day number X” phrases

followed by “at this time” phrases. For this file, it was important to keep track of the

most recently annotated date as the narrative was describing the events after a surgery
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event. The systems seemed to be able to do this, however, choosing the correct anchor

time was difficult for Mayo and identifying the delta value was a challenge for MSRA.

The Vanderbilt system was able to calculate the correct dates for all instances in this

particular file. Phrases 4 through 7 in Table 13 show a few example phrases from

this file that will now be discussed. For this particular file, the admission date was

8/17/2009. One may assume that a surgery would have been performed on the day of

admission in most cases, and this is exactly what the Mayo system does. Mayo was

able to correctly identify the delta values to calculate the remaining “postoperative

day” phrases; however, because this system assumed the anchor time was the day of

admission the values were consistently off by a few days. In actuality, the key phrase

“the patient was taken to the Operating Room on 2009-08-24” should have set the

anchor time for all the postop phrases. Vanderbilt was able to identify this correctly,

and thus obtained all correct dates that matched the gold annotations. MSRA was

also able to ascertain this anchor date; however, this system was unable to process

the delta value correctly when they were spelled out, which resulted in most of the

postop phrases being set to the day of the surgery. This conclusion was reached

because MSRA was able to obtain the correct calculated “postoperative day number

17” (phrase 6) when a number was used instead of a word. In addition, all systems

were able to assign the “correct” values to the various “at this time” phrases, as these

phrase values match the postop day date assigned in the previous sentence (phrases

5 and 7). The performance of each system on this file indicates the importance of not

just assuming an operation or other medical event happened on the day of admission

and instead looking for contextual clues as to what the anchor time should be for

each phrase.

Similar to the “postoperative day number X” phrases in the previous paragraph,

another file described the care of a newborn throughout the first month of its life
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referring to days of birth as “day of life X”. Similar to the issues MSRA had above

with not recognizing any delta values that were spelled out, it assigned all values to be

the day of admission. Both Mayo and Vanderbilt did perform calculations, however,

they were off from the gold standard consistently by 1 day. Further investigation

revealed that these two systems were using the day of admission as the first day of

life; however, gold says the first day of life was the day after admission. This is a

bit difficult for even a person to decipher because of phrase 8 “Mother presented

on day of delivery with preterm labor...”, which would indicate that the first day

of life may be the admission date. However, further reading reveals the context of

phrase 10 includes a specified date: “...was discontinued on 05-23 ( day of life 18 ).”

Using this information to back-calculate when day of life 1 was we end up with the

anchor date of 5/6/2016 instead of the admission date 5/5/2016. Notably, identifying

this particular anchor date is a very complex task and requires high-level reasoning.

Thus, identifying a single algorithm or machine learning model to calculate this will

be challenging if possible at all. The Mayo and Vanderbilt systems were only a day

off and had all the delta values correct, so this doesn’t seem too bad; however, in the

previous file discussing postoperative event the operation event was more than a day

away from the admission date, so it is not always good to assume the admission date

is the anchor date. Assuming the day of delivery is the admission date probably does

catch many of these types of files, for example, phrase 11 in Table 13 is from another

file and references “day of life three”. Both Mayo and Vanderbilt get it correct by

assume the admission date was the day of delivery, and MSRA has the now familiar

problem of assigning this phrase the anchor time (admission date) because it can’t

parse out “three” as a delta value.

A fourth file provides even more challenges for these systems in identifying anchor

times. This file references the day of admission, the day prior to admission and a day
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2 weeks after discharge (phrases 12 through 14). Mayo actually fails to annotated

2 of these 3 phrases as a DATE to start with and has them listed as DURATION

types. For phrase 12, MSRA is the closest, but misses the key word “prior” and ends

up assigning this phrase as the day of admission when it should have been the day

prior to admission. Vanderbilt seems to be using the last annotated date from several

sentences prior in the phrase “...was weaned off her pressors on 02-21...” as the anchor

date as it doesn’t recognize the term “call-out” to indicate the day of admission. Both

Vanderbilt and MSRA also use this same date for the next 2 phrases (13 and 14) “the

day” and “at this time”, both of which require knowledge of the context to calculate

correctly. Phrase 13 should be more straightforward with the immediate context.

Instead of “the day prior to call-out” from phrase 12, we have a shift in context for

phrase 13 with “the day of call-out”. Phrase 14 requires context from further away

and over multiple sentences. The full phrase is “...was followed by urology during her

stay and will see them again 2 wk after d/c...At this time , urology will coordinate

removal of...”. Note the phrase “will see them again 2 wk after d/c” that refers to a

date 2 weeks after discharge. This requires the parsing of the token “d/c”, which none

of the systems seem able to do, and the knowledge of they will be seeing “urology”

again and “urology” will be the one to coordinate a procedure, so this time it would

be correct to use the previous date obtained from “2 wk after d/c” for the phrase

“At this time”. Since none of the systems classified “2 wk” as a DATE, they didn’t

have that information to go off of. If they did then the rules shown previously about

using the last annotated date would probably have led to obtaining the correct anchor

time in this instance; however, that doesn’t always work. For example, in phrase 15

“...underwent cardiac catheterization today...”, the term “today” was annotated by

all 3 systems, but the date was calculated incorrectly, because all 3 systems used

some other previously annotated date as the anchor instead of setting “today” as the
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date of admission, which is what was provided by the gold standard. Thus, having

a blanket rule to classify these referential dates as the last annotated will certainly

catch some, but will not be very precise.

Finally, two additional phrases demonstrate the difficulty of figuring out whether

to use the admission date, discharge date, or some other date from the context. Phrase

16 provides an example similar to phrase 14 where the anchor date is another relative

phrase in the context prior. The full phrase plus context is “...until one and a half

weeks prior to admission ... was prescribed cortisone drops . A few days later she

complained of dizziness .” Before being able to identify the date for “A few days

later” you first have to identify the date for the phrase “one and a half weeks prior

to admission”. In this instance, the “prior to admission” should be a straightforward

clue as to what the anchor date is for this phrase, but one would need to be able

to link it to the following phrase “A few days later”. The MSRA system annotated

“few days” as a DURATION, so did not provide a DATE, however, the Mayo and

Vanderbilt systems did provide a date albeit the wrong one. The key was not being

able to annotated the “one and a half weeks” phrase correctly, so Mayo chose to use

the discharge date as the anchor, and Vanderbilt chose to the use admission date.

Any phrase with the term “admission” or “discharge” seems like it would be simple

to parse. Some systems seemed to utilize these keywords while others did not. For

example, in phrase 17 “...with chronic mild dyspnea on exertion until two weeks prior

to admission .” Mayo annotated “2 weeks” as a DURATION, Vanderbilt correctly

chose the admission date as the anchor, but MSRA chose the discharge date as the

anchor, so calculated the wrong date.

There are 5 main errors associated with Anchor Times and Delta Values. The

most complex is determining temporal context switches to figure out what date or

event a relative temporal phrase is referring to, especially in documents that were
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written over multiple days and don’t necessarily specify which day each section was

written. Another challenge is figuring out if relative phrases are actually referencing

the admission or discharge date instead of a date in the written context. As in the

examples above, sometimes these relative phrases are referencing the admission or

discharge date, but sometimes they are referring to a previously mentioned date in

the text (which itself might also be relative). For example, the phrase “at this time”

could refer to the admission or discharge date, but it could also refer to an event

that happened on a postoperative day or something that has not yet happened in

the future (example from phrase 14 in Table 13). It was shown several times the

assuming the last annotated date is the context of a current relative temporal phrase

does not work, thus, being able to accurately identify temporal contexts is important

for deciphering anchor times. Finally, phrases 14 and 16 show great examples of how

prior incorrect annotations can have downstream effects on whether or not certain

referential phrases can be calculated correctly. These phrases show a chain a referring

temporal phrases, thus, if the first phrase in the chain is calculated incorrectly, or

not annotated at all, that affects the downstream interpretations as well, leading to

cascading errors.

In summary, Lexical issues contributed the least to the poor performance of the

top i2b2 systems, while more complex errors involving the properties and normalized

value of temporal expressions contributed the most. Lexical, as well as gold standard,

errors are relatively straightforward to fix; however, DURATION vs DATE, Anchor

Time, and Delta Value errors are more complex as they require context to understand

and may not be able to be resolved with rules and regular expressions. The biggest

problem all three systems had was resolving relative temporal expressions, such as

“over the past two weeks”, “two weeks prior” or “a few days later”. Determining

whether these are DURATION or DATE types is the first challenge, then once a
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DATE type is assigned the system has to figure out the Anchor Time and Delta

Value needed to calculate the correct date for a given relative temporal phrase. Both

of these tasks can be complex as they both require knowledge of the context and

some reasoning ability in order to correctly assign a date value. From the results of

the error analysis on the top three systems, the most challenging aspect of identifying

the correct Anchor Time is figuring out when the temporal context switches. If a

system can be designed to correctly assign temporal contexts to phrases, sentences,

or paragraphs, then many of the events related to relative or vague temporal phrases

will be able to be more accurately placed on a timeline.

5.4.4 Chrono Error Analysis

Chrono was run on the same set of poor performance files from the analysis of

the top i2b2 systems with a similar error analysis performed for comparison. The

last row of Table 10 shows Chrono’s performance on the full evaluation corpus as

compared to the top i2b2 systems. Chrono performs on par with the top systems as

far as Recall is concerned, however, Precision is about 0.1 lower than the others, due to

Chrono identifying additional terms annotated by SCATE but not TimeML. Notably,

the type and value accuracy is notably lower than the other systems. These scores

indicate Chrono is identifying many of the same temporal phrases as the top i2b2

systems, but work still needs to be done when assigning properties and normalized

values. the following discusses the error types as seen in the top i2b2 system analysis

except for the gold standard errors as Chrono performed similarly to the top systems

for these two files.

DURATION vs DATE errors were the second most problematic for Chrono

and were frequently tied to the lexical parsing issues just discussed as well as some

hard-coded rules. Prior to parsing temporal phrases into the TimeML schema, Chrono
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first parses text into the SCATE schema. In this schema phrases such as “day of life

X” only have the “day” token parsed. So Chrono is recognizing this phrase (hence the

high Recall as evaluation is set to count partially overlapping spans as correct), but

it is setting it to a “Period” type. Currently, any Period or Calendar-Interval types

in the SCATE schema are automatically set to a DURATION type in TimeML, thus,

regardless of the context, this phrase will be set incorrectly to a DURATION instead

of a DATE. As shown in the error analysis for the top performing i2b2 systems,

developing a solid rule set to take all possible contexts into account to determine if a

specific Period or Calendar-Interval from teh SCATE schema should be a DURATION

or DATE in the TimeML schema would be challenging; thus, in the future Chrono

will need to implement some type of machine learning approach to decipher these

types of phrases.

Anchor Time and Delta Value errors on relative phrases are not that relevant

to Chrono as it is not as mature as the top i2b2 systems in determining which phrases

are DATE and which are DURATION types. This is mostly due to the static rule that

sets all of these phrases to DURATION types. There are, however, a few instances

where Chrono uses an anchor time to assign a DATE value, which are 2-place dates

such as “9/02”, times without a date context such as “10:45 am”, and the phrase

“Yesterday morning”. In Chrono, the anchor date is currently always set to the

admission date. This is admittedly a naive way to set an anchor time as the other

top systems clearly had logic in place to pick an anchor time as the last annotated,

or closest, date in the text. This naive rule did work well in most all cases of 2-place

date and time phrases analyzed; however, for these examples it did not and needs to

be improved. The instance of “9/02” was annotated by all systems as “9/2/2015”,

which is interpreting the format as “month/day”, however, the format was actually

“month/year”, so should have been “9/2002”. Clues to this can be obtained from
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the context of the sentence and the note. First the sentence was talking in past tense

about a procedure that happened in the past. Second the admission date was set

to before Sept 2015, so it does not make sense to set a date for a procedure that

happened in the past to a date in the future. Thus, setting some type of anchor

date or time frame for the sentence may have helped interpret this correctly. For the

“10:45 am” phrase, the full phrase with context is “On 03-02 at 10 am...for intubation

at 10:45 am...”. The context necessary for assigning a correct value is the phrase “On

03-02”, which is located a few sentences prior to the time being annotated. Due to the

more complex anchor time logic of the other 3 systems, Chrono was the only system

that missed getting the value correct for this phrase. Finally, the phrase “Yesterday

morning” was assigned the admission date “5/13/2006” by Chrono when it should

have been the day prior. This issue is easily solved by adding in a rule to subtract a

day from the anchor date when “yesterday” is present in the phrase.

In summary, while Chrono performs on par with the top i2b2 systems with

respect to Recall, it is clear through the error analysis that it is not as mature.

Chrono is unable to correctly parse out parameters and determine normalized values

of complex and relative temporal phrases. This is primarily due to a few naive coded

rules and a dictionary that is missing some key clinical temporal phrases and terms.

5.5 Conclusions and Contributions

At present, it is recognized that the utility of TERN tools that parse into the

SCATE Scheme are limited as few downstream tools utilize these annotations, so it

would be beneficial to have a system that can parse into both schemes. Additionally,

it is standard to compare new TERN tools using benchmark data sets to the current

state-of-the-art systems. The current benchmark data set in the clinical temporal rea-

soning field is the 2012 i2b2 Temporal Challenge; however, this data set uses the ISO-
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TimeML annotation scheme, which is not directly comparable to SCATE. To address

these issues, this chapter discussed the differences between SCATE and ISO-TimeML

and implemented 3 strategies to convert SCATE annotations to ISO-TimeML that

include ISO formatting for explicit dates and times, conversion of Period/Calendar-

Interval types to DATE/DURATION, and setting numerical values for approximate

phrases. After additional improvements to Chrono’s algorithm, dictionary, and rule-

base to parse new types of phrases not previously encountered using the development

corpus, improved performance was achieved, specifically in Recall, which is now on

par with the top performing systems from the i2b2 challenge. Chrono is now the first

system to parse temporal phrases into both the SCATE and ISO-TimeML schemes.

In addition to providing the first dual-parsing TERN system, this chapter also

identified 6 types of errors state-of-the-art systems make when processing the 2012 i2b2

data set, which sets the stage for future work in this area. Specifically, determining if

a relative phrase should be a DURATION or DATE type, and identifying the Anchor

Time and Delta Value for a relative phrase with a DATE type were the most frequent

and complex errors experienced by the top i2b2 systems. The next chapter, dives

into the details of the relative DURATION/DATE disambiguation task that both

Chrono and state-of-the-art systems found challenging. As this is one of the most

common errors in all systems, the remainder of this work focuses on developing a

feature extraction methods using temporally fine-tuned BERT models to perform

this temporal disambiguation task.
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CHAPTER 6

TEMPORAL DISAMBIGUATION OF RELATIVE TEMPORAL

EXPRESSIONS

There are two types of Temporal Disambiguation tasks that have been historically

referenced in the literature: Temporal Sense Disambiguation (TSD) and Temporal

Type Disambiguation (TTD). Both are similar to the classic task of Word Sense

Disambiguation (WSD) [133, 134, 135, 136]. In language, the same lexical form

of a word can have multiple meanings depending on the surrounding context. For

example, the word “bat” could refer to a fuzzy animal with leathery wings, or a

wooden stick used to hit a ball. The WSD task is to figure out what concept the

word “bat” is referring to by utilizing context clues. Similarly, the TSD task it to

identify if a word, such as “spring”, is referring to the temporal sense of the Spring

season, or a non-temporal sense of the word (e.g. an action or a physical spring)

[137, 138]. On the other hand, the TTD task aims to identify the temporal type

of a temporal expression so that it can be normalized correctly. An example is the

expression “a week ago”. In all instances, the word “week” refers to the concept of

7 days, so it has the same semantic meaning regardless of temporal type. However,

TTD determines if the expression “a week ago” refer to a single point in time that

an event occurred (a DATE type), or a span of time for which an event took place (a

DURATION type). TTD is vital for RelIV-TIMEXs as they have to be assigned the

correct type in order to be correctly normalized and positioned on a timeline.

Just as in WSD, utilizing the context around a temporal phrase can aid in TTD.

For example, in the sentence “I crashed my car a week ago”, it is clear the expression
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“a week ago” is referring to a single point in time that can be normalized to a specific

date. On the other hand, in the sentence “My headaches started a week ago” the

temporal expression is referring to a span of time, or duration, over which an event

(headaches) continued to occur. In both cases the temporal expression is exactly the

same, but the context surrounding them is different, including event type and key

words like “started”.

An analysis of the context words surrounding relative temporal expressions in

the i2b2 Gold Standard data set set shows that DURATION context tends to include

words like “of”, “for”, and “over”, and DATE context is more likely to include the

words “on”, “was”, and “at” (Figure 13 A and B). However, these terms are not

exclusively used in the context of one or the other temporal type (Figure 13, C).

Reduction to those terms exclusive to the context of DATE or DURATION (Figure

13 D and E) reveals that words like “feeds” and “started” are exclusive to DATE

types, and “received”, “complete”, “past”, and “ago” are exclusive to DURATION

in the i2b2 corpus. However, looking at the frequency of these terms it is clear they

cannot be used for building universal rules as they only appear in a few expressions.

While there is no set of keywords that can always be used to disambiguate one

type from the other, we could incorporate other features in a rule set to do this task.

In addition to the contextual lexicon, additional features might include the type of

entities/events nearby, punctuation, capitalization, verb tense, part of speech, and

others. However, parsing this information from clinical records is a difficult task due

to a lack of standardization, inconsistent punctuation use and capitalization, incom-

plete sentences, typographic errors, and other data quality issues [139, 140]. Addi-

tionally, some of these require additional parsing, such as performing named entity

recognition to identify events, or concept extraction. To avoid building complex rule

sets to accomplish the task of temporal disambiguation, this work sets out to embed
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Fig. 13. Word clouds of context tokens surrounding relative DATE and DURATION

temporal phrases.

temporal information into contextualized word embeddings and utilize those embed-

dings as the features in supervised learning models to disambiguate relative DATE

and DURATION temporal phrases. Thus, the focus of this work is to improve the

temporal type classification accuracy of Chrono for relative DATE and DURATION

phrases.

This chapter is organized as follows: Section 6.1 provides details on how the 2012

i2b2 Gold Standard data set was filtered for RelIV-TIMEXs to create a RelIV-TIMEX

Training and Evaluation data set. Next, two methods of infusing temporal informa-

tion into BERT’s contextualized embeddings are described in Section 6.2, including

how the RelIV-TIMEX data set was reformatted for the sequence-to-sequence task,
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and the results of fine-tuning BERT to perform the temporal type multi-label classi-

fication task directly. Section 6.3 details the construction of features for two classic

learning models, an SVM and CNN, using BERT’s contextualized embeddings, and

Section 6.4 reports on their architecture, training, and evaluation using the RelIV-

TIMEX data set. Finally, Section 6.5 reports the performance of the new temporal

disambiguation module and Chrono in 3 phases: 1) evaluating the temporal disam-

biguation modules on the RelIV-TIMEX data set using the gold standard phrases;

2) integration of the best modules into Chrono for evaluation on the RelIV-TIMEX

data set using Chrono’s phrase spans, in addition to comparison of 3 state-of-the-art

systems from the 2012 i2b2 Challenge; and 3) results of Chrono when using a tem-

poral disambiguation module for the full i2b2 data set using all temporal types in an

end-to-end evaluation.

6.1 Creating the RelIV-TIMEX Gold Standard Data Set

For this work we utilize several variations of the 2012 i2b2 data sets, previously

reviewed in Chapter 2, for training and evaluation. Briefly, the i2b2 data sets contain

temporal phrases annotated and normalized to the ISO-TimeML standard. Temporal

types include DATE, DURATION, TIME, and FREQUENCY. The training data

set contains 190 documents with a total of 2,366 annotated temporal expressions,

and the evaluation data set contains 120 documents with a total of 1,820 temporal

expressions (Table 14). For End-2-End evaluations of Chrono and the other state-of-

the-art systems, as well as the training of the multi-label classification sequence-to-

sequence models in Section 6.2 below, the i2b2 data set is used as-is. When training

the SVM and CNN classification models, the i2b2 data set is filtered to only DATE

and DURATION types, which is referred to as the DD-TIMEX data set, and this is

further filtered to only RelIV-TIMEXs for evaluation of the models. The DD-TIMEX
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Temporal Type i2b2 Train i2b2 Evaluation RelIV-TIMEX Evaluation

DATE 1641 1222 429

DURATION 407 341 307

TIME 69 60 -

FREQUENCY 249 197 -

Table 14. Number of annotated temporal expressions for the four temporal types in

the full i2b2 data set and the filtered RelIV-TIMEX data set.

and RelIV-TIMEX data sets are described in more detail below.

6.1.1 Training Data Set: DATE/DURATION TIMEXs Only (DD-TIMEX)

As this work is focused on building a classifier for the DATE/DURATION

TIMEX types, the i2b2 Training and Evaluation data sets were filtered to include

temporal expressions that were annotated as a DATE or DURATION only (2,047

expressions, Table 14). All TIME and FREQUENCY annotated expressions were

removed from the existing gold standards. These modified data sets are used in

all model training, and are referred to as the “DD-TIMEX” Training and Evalua-

tion Gold Standards. Note that these contain relative, incomplete, vague, and abso-

lute/explicit temporal expressions.

6.1.2 Evaluation Data Set: RelIV-TIMEXs Only

To assess the performance of the temporal disambiguation module on the RelIV-

TIMEXs, all absolute/explicit or incomplete temporal expressions were removed from

the DD-TIMEX Evaluation data set. Any TIMEX meeting one of the following

criteria was manually removed from the DD-TIMEX Evaluation data set:

• An explicit date or time, full or partial (e.g. 2/4/2013, 9am, 5/6, etc).

• A proper month or day of the week (e.g. February, Monday, etc).
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• The name of a holiday (e.g. Halloween).

This primarily removed DATE types for a total of 429 RelIV DATEs and 307

RelIV DURATIONs (Table 14). This data set is referred to as the RelIV-TIMEX

Evaluation data set and is only used for evaluation purposes.

Note that the DD-TIMEX data set is used to train all models described below,

and the RelIV-TIMEX data set is used only for evaluation. This was done due to

the limited number of relative examples so that the models would have more data to

train from as the context surrounding explicit and incomplete temporal expressions

can be similar to those of relative expressions. Additionally, the final model needs to

be able to also classify some incomplete phrases for integration into the End-to-End

pipeline.

6.2 Infusion of Temporal Information Into BERT Models Through Fine-

Tuning

Recently, there has been an increase in attention to the infusion of temporal in-

formation into contextualized embeddings with the goal of improving prediction tasks.

However, the focus has primarily been on temporal relation prediction ([141, 142])

with some recent work on temporal tagging in the general domain ([143]) and predic-

tion of clinical outcomes ([144]). As of yet, there are no publications utilizing contex-

tualized embeddings for the task of temporal disambiguation of RelIV-TIMEXs.

This work evaluates whether fine-tuning on simplistic and/or complex temporal

classification tasks embeds temporal information into the extracted contextualized em-

beddings. Figure 14 summarizes the various combinations of fine-tuning, embedding

extraction, and classification strategies explored in this dissertation. All strategies

start with either the uncased BERT Base language model [56], referred to as “Bert-

Base”, or the clinical BioBert model fine-tuned on biomedical literature and clinical
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notes by Alsentzer et al. [72], referred to as “ClinBioBert”. The strategies using

the unmodified BertBase and ClinBioBert contextualized embeddings are considered

the baseline for this work (Figure 14A), and are referred to as the “baseline BERT

models” when discussed together.

In the following sections, we first describe a high-level binary classification task

used to fine-tune BertBase and ClinBioBert. This binary fine-tuned model is either

used to obtain contextualized embeddings for input into classification models (Figure

14B), or as the initiating model for fine-tuning a sequence-to-sequence (Seq2Seq) clas-

sification model (Figure 14C and 14D). Next, two versions of a Seq2Seq fine-tuning

method that utilizes the binary fine-tuned BERT models for initialization (Figure 14C

and 14D) or the baseline BERT models (Figure 14E and 14F) are discussed, includ-

ing an evaluation of their ability to directly classify temporal types (Figure 14D and

14F). Finally, the Seq2Seq fine-tuned BERT models are used to extract contextual-

ized embeddings for down-stream Support Vector Machine (SVM) and Convolutional

Neural Network (CNN) classifiers (Figure 14C and 14E).

Unless otherwise specified, all work, including fine-tuning BERT models and

training of classifiers, was performed on the Compile.vcu.edu server with 128 AMD

32-Core Processors and an Nvidia Tesla T4 GPU using CUDA Version 11.6.

6.2.1 Binary Temporal Sentence Classification

Binary temporal fine-tuning is achieved by fine-tuning the existing BertBase and

ClinBioBert models on a binary temporal task (Figure 14 B, C, and D). For this

work we chose to classify sentences as either containing or not containing tempo-

ral information. The “BertForSequenceClassification” model from the HuggingFace

Transformers Python library [145] was used, which is the default BertBase model

configuration with a single linear layer added for classification. For the binary clas-
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Fig. 14. Overview of the fine-tuning, embedding extraction, and classification strate-

gies explored in this dissertation.

sification, a classification layer with 2 labels was specified for fine-tuning, and the

embedding for the “[CLS]” token, which represents the full sentence, was used as the

input (Figure 15).

6.2.1.1 Gold Standard Training and Evaluation Data Sets for the Binary

Sentence Classification Task

The i2b2 annotated training data set was processed to mark all sentences across

all documents as either containing a temporal annotation of any type or not. Specif-

ically, the i2b2 annotated XML files were parsed with a modified python script ob-

tained from Emily Alsentzer’s GitHub page∗. This script was originally written to

convert the i2b2 TimeML annotated XML files into a form that could be used for

training a Seq2Seq classifier on the annotated EVENTs. The output was a text file

with 2 columns: a word or token in the sentence and its associated beginning-inside-

outside (BIO) label (e.g. B-event, I-event, O). This script was edited to extract the

∗
https://github.com/EmilyAlsentzer/clinicalBERT/tree/master/downstream tasks/i2b2 preprocessing
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Fig. 15. Binary classification BERT model structure.

TIMEX tag data instead of the EVENT tag, and to output an additional file with

binary labeling of sentences (i.e. 1 if there is at least one TIMEX tag associated with

a sentence or 0 if not). This binary labeled file was used as input for the binary

fine-tuning of BertBase and ClinBioBert models.

The i2b2 training data set contains a total of 7020 sentences with approximately

28% having at least one type of temporal annotation, and the evaluation data set

contains a total of 5281 sentences with 27% having a temporal annotation (Table 15).

While preserving the ratio of temporal to non-temporal sentences, the training data

set was split into development (90%) and validation (10%) data sets to be used for

identifying optimal hyper-parameters. The full training data set was then used to

build the final model with the evaluation data set used for reporting performance.
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Data Set Temporal Sentence Count Non-Temporal Sentence Count Total

Training 1935 5085 7020

Evaluation 1432 3849 5281

Table 15. Summary of temporal and non-temporal sentences in the i2b2 Training and

Evaluation data sets.

6.2.1.2 Binary Fine-Tuning

The BertBase and ClinBioBert models were put into fine-tuning mode and trained

on the binary classification task of determining if a given sentence did or did not con-

tain temporal information. Fine-tuning was done over 2, 4, 6, and 8 epochs, with

learning rate = 2e-5 and epsilon = 1e-6. Hyper-parameters in BERT whose names

include ’bias’, ’gamma’, or ’beta’ have a weight decay rate of 0.0, and all others have

a weight decay rate of 0.01†. A batch size of 16 and a max sentence length of 256

were utilized as additional GPU and BERT parameters, respectively. The binary

fine-tuning was performed on the Pine.cs.vcu.edu server.

6.2.1.3 Binary Fine-Tuning Results

The BertBase and ClinBioBert binary classification models, henceforth referred

to as Binary BertBase and Binary ClinBioBert, performed well after 4 epochs on the

Training and Evaluation data sets (Table 16).

6.2.2 Fine-Tuning Sequence-to-Sequence BERT Models for Temporal Type

Classification

While this work is focused on RelIV-TIMEX type classification, it would be

beneficial to know if it is possible to achieve state-of-the-art results by directly fine-

tuning a BERT model to identify all temporal types at the token level. This would

†
https://mccormickml.com/2019/07/22/BERT-fine-tuning/
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Binary BertBase Binary ClinBioBert

Measure Temporal Non-Temporal Weighted Avg Temporal Non-Temporal Weighted Avg

Training

P 0.98 1 0.99 0.99 1 0.99
R 0.99 0.99 0.99 0.99 0.99 0.99

F1 0.99 0.99 0.99 0.99 1 0.99
Accuracy - - 0.99 - - 0.99

Evaluation

P 0.93 0.98 0.96 0.93 0.97 0.96
R 0.94 0.97 0.96 0.92 0.98 0.96

F1 0.93 0.97 0.96 0.93 0.97 0.96
Accuracy - - 0.96 - - 0.96

Table 16. Results of fine-tuning BERT models on the binary temporal sentence clas-

sification task for 4 epochs.

result in limiting the amount of work needed to identify each temporal type using

multiple learning models or rules. To achieve this, the baseline BERT models, as

well as the binary fine-tuned versions, were used as the initial models for fine-tuning

a sequence-to-sequence (Seq2Seq) classifier at the token level. Figure 16 visualizes

this altered BERT architecture at a high level where the individual contextualized

embeddings are passed to a dense linear layer for classification.

Fig. 16. Sequence-to-Sequence classification BERT model structure.
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6.2.2.1 Gold Standard and Evaluation Data Sets

As described in Subsection 6.2.1.1, a python script obtained from Emily Alsentzer’s

GitHub page‡ was modified to annotate tokens in the i2b2 Training and Evaluation

data sets with TIMEX labels instead of EVENT labels. Labeling was done in two

ways: 1) Tokens were labeled using the beginning-inside-outside model where the

“beginning” is the first token of a TIMEX, the “inside” is all subsequent tokens in a

TIMEX, and any token not part of a TIMEX is labeled as “outside”. These models

are referred to as Seq2Seq-BIO models. Thus, each of the four TimeML TIMEX types

had two associated labels for a total of 9 labels (left side of Table 17). 2) Tokens were

labeled with the temporal type only (Seq2Seq-Ttype models) without differentiating

between the beginning and inside of a TIMEX (right side of Table 17) for a total of

5 labels. Due to the large number of “outside” label for both the BIO and Ttype

labeling schemes, these values were excluded when calculating the evaluation metrics

in order to focus on the temporal types specifically.

6.2.2.2 Sequence-to-Sequence Fine-Tuning

Seq2Seq temporal fine-tuning was achieved by fine-tuning the baseline BertBase

and ClinBioBert models and the binary fine-tuned versions on the Seq2Seq multi-label

classification task (Figure 14 D and F). The “BertForTokenClassification” model from

the HuggingFace Transformers Python library [145] is used. This model adds a dense

linear layer on top of the hidden-states output for individual token classification.

When initializing from the binary classification pre-trained models, the linear classi-

fication layer with 2 labels is replaced by a multi-label classification layer using either

9 or 5 labels for the BIO or Ttype strategy, respectively.

‡
https://github.com/EmilyAlsentzer/clinicalBERT/tree/master/downstream tasks/i2b2 preprocessing
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BIO Label BIO Count Ttype Label Ttype Count

B-TIME 56
TIME 173

I-TIME 117

B-DATE 1152
DATE 2247

I-DATE 1095

B-DURATION 313
DURATION 739

I-DURATION 426

B-FREQUENCY 185
FREQUENCY 339

I-FREQUENCY 154

O (outside) 91682 O (outside) 91682

Total 3498 Total 3498

Table 17. Token counts for the BIO and Ttype multi-label Seq2Seq classification tasks.
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The respective BERT models were put into fine-tuning mode and trained on the

Seq2Seq-BIO or Seq2Seq-Ttype classification tasks. Fine-tuning was done over 2 and

4 epochs, with learning rate = 2e-5 and epsilon = 1e-6. Hyper-parameters in BERT

whose names include ‘bias’, ‘gamma’, or ‘beta’ have a weight decay rate of 0.0, and

all others have a weight decay rate of 0.01§. A batch size of 32 and a max sentence

length of 256 were utilized as additional GPU and BERT parameters, respectively.

6.2.2.3 Seq2Seq Fine-Tuning Results

Seq2Seq fine-tuning was evaluated for both 2 and 4 epochs using the BIO and

Ttype classification strategies. Models run for 4 epochs returned better results over-

all and were chosen to move forward in the pipeline. Table 18 displays the weighted

average of the BIO and Ttype Seq2Seq models fine-tuned for 4 epochs. Full results,

including confusion matrices can be found in the Appendix in Supplementary Tables

S2-S3. The Seq2Seq-BIO BertBase fine-tuned model outperformed the Seq2Seq-BIO

ClinBioBert models, and both binary adaptations. However, the best performing

model is the Seq2Seq-Ttype ClinBioBert model. In all instances, first fine-tuning on

the binary classification task resulted in poorer performance on the Seq2Seq classi-

fication, and none of the models outperformed the current state-of-the-art from the

i2b2 tasks [10]. Thus, simply fine-tuning an “out-of-the-box” BERT model for tem-

poral type classification is not a viable strategy. Recent work by Almasian et al. [143]

also notes that Seq2Seq temporal type classification performance does not yet sur-

pass rule-based approaches, and is working to develop a transformer architecture to

improve performance. However, Xu et al. [146] found that contextualized character

embeddings do improve performance of classifiers when normalizing TIMEXs from

§
https://mccormickml.com/2019/07/22/BERT-fine-tuning/
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general and clinical domain texts into the SCATE schema. While the neural archi-

tecture may not be optimal for direct classification of temporal types, the infusion of

temporal information into the contextualized embeddings may improve performance

of classical learning models for the temporal type disambiguation task, which is the

topic of the next section.

BertBase ClinBioBert

Labeling Strategy Seq2Seq Binary-to-Seq2Seq Seq2Seq Binary-to-Seq2Seq

BIO Model

P 0.752 0.561 0.746 0.529

R 0.79 0.523 0.76 0.513

F1 0.769 0.53 0.749 0.507

Ttype Model

P 0.805 0.632 0.811 0.637

R 0.845 0.61 0.843 0.59

F1 0.823 0.615 0.824 0.611

Table 18. Seq2Seq fine-tuning results using BIO and Ttype labeling strategies.

6.3 Feature Construction with Temporally-Infused Contextualized Em-

beddings

Fine-tuning BERT models on the temporal type classification task was not able to

surpass state-of-the-art results; however, the modified contextualized embeddings may

aid classical learning models. This section aims to determine if these modified contex-

tualized embeddings can be used as features to perform TTD for RelIV-TIMEXs using

classic Support Vector Machine (SVM) and Convolutional Neural Network (CNN)

models to obtain state-of-the-art or better results.

Feature extraction aims to identify a single, or set of, contextualized embed-

dings from the BERT models to be used as input for learning models. This includes

using contextualized embeddings for just the temporal phrase, as well as adding em-
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beddings from the surrounding context, and embeddings from words to which the

temporal phrase is paying the most attention. Figure 17 shows the 3 strategies to

feature extraction from contextualized embeddings for the SVM and CNN architec-

tures, which are explained in detail in the following sections. However, to obtain a

single representative embedding for each token from a BERT model, summarization

of the 12 contextualized embeddings returned by BERT must be performed first in

order to use them as features for downstream classification. The following subsec-

tions first detail the methods used to summarize contextualized BERT embeddings

at the token level, followed by the explanation of the algorithm developed to identify

to which tokens a temporal phrase is paying the most attention by summarizing the

attention weight matrices.

6.3.1 Contextualized Embedding Token-Level Summarization

6.3.1.1 Resolving Sub-word Embeddings for Out-of-Vocabulary Terms

Word-piece tokenization can result in a single token identified by whitespace

tokenization having multiple tokens (termed subwords), each with its own embedding

(Figure 5). In BERT models, subword tokens are identified with a prefix of two hashes

“##”. For this work the last subword embedding is chosen to represent the entire

whitespace tokenized token¶.

6.3.1.2 Summarizing Token Embeddings

BERT utilizes a multi-head self attention model with multiple hidden layers (see

Section 2.7.4), which results in each token having multiple embeddings. Specifically,

the BertBase and ClinBioBert models used in this work have 12 hidden layers each

¶
https://mccormickml.com/2019/05/14/BERT-word-embeddings-tutorial/)
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Fig. 17. Overview of contextualized embedding feature extraction strategies. The ex-

ample sentence highlights the temporal phrase (red), context tokens with a

window of 3 (blue), and the top 3 tokens most attended to by the tempo-

ral phrase (yellow). SVM feature components (phrase, context, or attention)

are summarized into a single embedding then concatenated as shown. CNN

features are sorted based on sentence order, then fed into the model for clas-

sification.

with 12 attention heads. As indicated earlier, the contextualized embeddings gen-

erated by the 12 attention heads are concatenated so that each layer outputs one

embedding per token; however, the layers are not combined further. Thus, in these

BERT models each token has 12 contextualized embeddings.

BERT hidden layers are updated in a sequential fashion where the output of

one layer is the input to the next; thus, it is reasonable to assume that the last few

layers will contain more contextual information about a single token than the first

few layers. This is supported by the finding that concatenating the embeddings from

the last 4 hidden layers to represent a token achieved the highest results out of other
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combinations for the CoNLL-2003 Named Entity Recognition task in the original

BERT paper [56]. Thus, for this work, each BERT token is represented by a 3072

length vector from the concatenation of the last 4 hidden layers, each of length 768.

From this point forward, tokens are referred to as “summarized tokens” to indi-

cate they have been preprocessed to resolve embeddings reported by multiple hidden

layers and word-pieces. It is these summarized token embeddings that are fed into

the feature extraction algorithm.

6.3.2 Identifying Temporal Phrase Attention

As discussed in Chapter 2, attention is the key to obtaining contextualized word

embeddings because it dictates how much of every other token’s embedding should

be included in the current token’s contextualized embedding. This work seeks to

explicitly include the embeddings of the other tokens that are being paid the most

attention to by a complete temporal phrase. In this section the attention architecture

is reviewed followed by an explanation of the algorithm that summarizes the attention

matrices of all tokens in a temporal phrase to identify a set of tokens attended to

by the temporal phrase. To my knowledge, this is the first work to attempt the

summarization of BERT attention matrices.

6.3.2.1 Review of Attention Architecture

At the core of the BERT attention structure returned by the model is an nxn

matrix of attention weights, where n equals the length of the sentence (or padded

sentence if using padding), including the [CLS] and [SEP] tokens (Figure 18A). Each

row in the attention matrix sums to 1 and represents the weight or amount the

current token is attending to all other tokens in the sentence. A higher attention value

indicates higher importance or a stronger relationship compared to lower attention
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values. Since BERT has 12 attention heads we have one of these matrices per head.

In addition, BERT has 12 hidden layers, each with a set of 12 matrices, for a total of

144 nxn attention weight matrices (Figure 18B).

Fig. 18. Overview of attention architecture in BERT. A) Matrix of attention weights

with sentences padded to n = 256 tokens. All columns for a given row sum to

1. B) Representation of the 12 attention heads, h, that each have 12 layers,

l, of attention matrices.

6.3.2.2 Attention Summarization Algorithm

The attention matrices contain weights for how much a given token is attending

to every other token in the sentence, including itself. Higher weights mean more at-
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tention is being paid to a specific token. Attention summarization returns an ordered

list of which tokens an entire temporal phrase is attending to, sorted from highest to

lowest. This requires summarization of each attention matrix for each head in each

layer (i.e. 144 attention matrices). Figure 19 provides an overview of this method.

Briefly, the attention matrix for head h in layer l is subset to only those rows

corresponding to the indices of the temporal phrase (Figure 19A, top). This matrix

subset is then merged into a single vector by taking the maximum value at each

position along the column axis (Figure 19A, bottom). This process is done for all 12

attention matrices in a given layer, which results in a matrix of summarized phrase

attentions of dimensions 12 x n, where n is the number of tokens plus padding and

special tokens in the sentence (set to 256 for this work, Figure 19B top). This matrix

is then summed column-wise to obtain a single vector of length 1 x n (Figure 19B,

bottom). Next, this summed vector has the phrase, [CLS], [SEP], period, and comma

tokens set to a weight of zero (Figure 19C). This is done because a token generally has

the strongest attention to itself, the [CLS] or [SEP] tokens, or separating punctuation

like commas and periods. This is exacerbated after using the max and summation

functions for summarization. As the goal is to identify what other tokens the phrase is

paying attention to, we mask the phrase itself as well as other uninformative tokens

from consideration by setting their weights to zero. Note, the [PAD] tokens are

not masked. This is because some temporal phrases are the entire sentence; thus,

allowing [PAD] tokens (which have the lowest weights anyway) ensures the algorithm

does not return an empty list of attention tokens. After masking, the resulting 1 x n

vector is normalized so that all values sum to 1 (Figure 19C, bottom). This process

is then repeated for each layer to obtain another 12 x n matrix (Figure 19D, top).

This matrix is also run through the summation and normalization process to obtain

the final temporal phrase attention vector of size 1xn (Figure 19D, bottom). Token
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indices are sorted based on the summarized attention weights to obtain the top 3

tokens most attended to by the temporal phrase. The contextualized embeddings for

these tokens are then utilized as features for the SVM and CNN classifiers.

Fig. 19. Overview of attention summarization. A) Merge attention weight vectors for

temporal phrase. B) Summarize head attentions. C) Filter and normalize

summarized head attentions. D) Summarize layer attentions to get a single

summarised attention vector for the temporal phrase.

6.4 Classifier Model Architecture and Training

In the following subsections the architecture and training for the learning clas-

sification models are described. These models are binary classification models that
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identify whether a temporal phrase is a DATE or DURATION temporal type using

contextualized embeddings as features. SVM and CNN architectures are utilized, and

each requires different formatting and summarization strategies for the contextualized

embeddings obtained from the fine-tuned BERT models. First, the SVM architec-

ture and training is described along with some additional contextualized embedding

summarization methods needed in order to obtain a single input feature vector with

consistent dimensions. Second, the CNN architecture and training is described.

6.4.1 SVM Model Architecture and Training

The primary problem addressed by this section is the classification of a RelIV-

TIMEX as either a DATE or DURATION temporal type. We assume that other rules

and algorithms have already identified the temporal phrase under question and have

determined it to be a RelIV-TIMEX. However, before normalization can take place

we need to determine its temporal type. As this is a binary choice, we chose to first

evaluate how a classic Support Vector Machine (SVM) model performs on this task.

The SVM architecture requires a single feature vector per observation (the tem-

poral phrase) as input, and outputs a 1 or -1 as the classification. For this work, DATE

is set to the positive class, and DURATION is the negative class. As we are classifying

a full temporal phrase and not just an individual token, we frequently have more than

one contextualized embedding. Thus, the embeddings for a phrase need to be further

summarized. Figure 17A shows the phrase summarization strategies that include the

phrase only, the phrase plus the context before and after, and the phrase plus the

summarized embeddings of the top 3 attention tokens. In addition to the feature

extraction strategies, the contextualized embeddings are sourced from the baseline

BertBase and ClinBioBERT models as well as models that were fine-tuned either

on the binary classification task (Binary-BertBase/ClinBioBert), one of the Seq2Seq
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multi-class classifications tasks (Seq2Seq-BIO/Ttype-BertBase/ClinBioBert), or both

(Binary-Seq2Seq-BIO/Ttype-BertBase/ClinBioBert) as summarized in Figure 14.

The following subsections describe how the contextualized embeddings are sum-

marized for SVM training and prediction, including context and attention tokens,

and the model training parameters.

6.4.1.1 TIMEX Representation for SVM Architecture

Previously, we described the summarization of each token’s contextualized em-

beddings both by merging the embeddings in different hidden layers and by sum-

marizing out-of-vocabulary tokens by using the last subword embedding. For SVM

input, a single vector must be calculated. This vector must be a consistent length,

which rules out concatenating embeddings because each TIMEX could be a different

length. Thus, this work averages the summarized embeddings for tokens that map to

a temporal phrase.

The representative phrase embedding is calculated by averaging all summarized

token embeddings that are part of the phrase. This results in each temporal phrase

being represented by a single numerical vector of length 3072 for use as a feature in

the downstream classification models (Figure 17A, Phrase Only).

6.4.1.2 Incorporating Context

Contextualized embeddings, by definition, already contain some contextual in-

formation; however, this work sets out to determine if adding an explicit summarized

embedding for the context before and after a temporal phrase to the summarized phrase

embedding will improve performance in downstream classification models. A context

window of up to 3 tokens before and 3 tokens after the temporal phrase was used.

For each window (before/after) the summarized token embeddings were averaged us-
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ing the same algorithm that was used for averaging the temporal phrase embedding

(Algorithm ??). These context embeddings are concatenated to the temporal phrase

embedding sequentially (context before + phrase + context after) to create a single

feature embedding of length 9216 (Figure 17A, Phrase +Context). If in the instance

the temporal phrase is the entire sentence, or it is located at the beginning or end

of a sentence, then the temporal phrase embedding is duplicated and used as the

context. Additionally, if there are less than 3, but greater than 0, tokens in either

of the before/after windows, then only those tokens are utilized in the summarized

context embedding, thus the window is a minimum of 1 and maximum of 3 tokens.

6.4.1.3 Incorporating Attention

As with context, contextualized embeddings by definition already have atten-

tion weights represented; however, this work sought out to summarize the attention

weight matrices to identify specific tokens that the phrase as a whole is attending to,

and add those embeddings to the SVM feature explicitly. The identification of tokens

being attended to has already been described previously in Section 6.3.2.2. For this

work we take the top 3 attention tokens and average their embeddings. This summa-

rized attention embedding is then concatenated to the end of the summarized phrase

embedding, which results in a vector with length 6144 for use as a feature in the

downstream classification models (Figure 17A, Phrase +Attention).

6.4.1.4 SVM Model Training

A total of 30 SVM models were trained using the extracted embeddings from

each of the BertBase and ClinBioBert models shown in Figure 14A-C and Figure

14E in combination with the two Seq2Seq models (BIO and Ttype) and the 3 feature

extraction strategies (Figure 17A; Phrase, +Context, +Attention). The DD-TIMEX
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Training data set was used for model training and validation (Table 14). Hyper-

parameter optimization was done using a grid search over the values listed in Table

19 with 5-fold validation and no limit on epochs.

Parameter Values Searched

Kernel Linear, RBF, Poly

C 0.1, 1, 10, 100

Degree 2,3,4

Gamma 0.0001, 0.001, 0.01, 0.1, 1, 10

Table 19. SVM Hyper-parameter Optimization

6.4.2 CNN Model Architecture and Training

Convolutional Neural Networks (CNNs) are feed-forward deep neural networks

historically used for learning on images (computer vision) [147]; however, CNNs have

also been successful in performing NLP tasks [148, 149]. Instead of operating on a

2-dimensional matrix, CNNs for NLP operate on 1-dimensional vectors, i.e. word

embeddings. An advantage of using a CNN for NLP tasks include its ability to

incorporate local structure into the classification via convolution and sub-sampling

layers, such as taking into account adjacent words. For this work, the summarized

embeddings described in Section 6.3.1 are sequentially input into the CNN (Figure

17B) for the temporal phrase, the phrase +Context, or the phrase +Attention to

determine if accounting for the position of words can improve the binary classification

task of temporal disambiguation between DURATION and DATE types. For the

CNN implementation, the summarized embeddings are not averaged, but rather used

as-is and just ordered as they appear in the sentence.
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6.4.2.1 CNN Model Training

The CNN model architecture was implemented using the “KerasClassifier” wrap-

per for SciKitLearn in Python’s Tensorflow package. Briefly, it is composed of a

1-dimensional convolutional layer followed by max pooling layer, then another 1-

dimensional convolutional layer. Next is a dropout layer, a flattening layer, and then

2 dense layers, the first outputting to 10 nodes with the ReLU activation, and the last

outputting one node with the sigmoid activation. Hyper-parameters searched over

for each layer are listed in Table 20.

Parameter Values Searched

Filters 32,64,128

First Kernel Size 3,5

Second Kernel Size 2,3

Pooling Size 2,3

Stride 1,2

Dropout 0.05, 0.10

Table 20. CNN Hyper-parameter Optimization

6.5 SVM and CNN Classifier Results

Performance of the SVM and CNN models was evaluated in several phases. First,

the temporal phrases defined by the annotations in the RelIV-TIMEX Gold Standard

Evaluation data set (Section 6.1.2) are used to build the features, i.e. no tempo-

ral phrase recognition is performed. Second, the models from the top performing

strategy plus the baseline models are then integrated into Chrono and evaluated us-

ing Chrono’s temporal phrase recognition algorithm against the RelIV-TIMEX Gold

Standard. Finally, End-2-End evaluation is performed using the best strategy and
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compared to state-of-the-art results on the complete i2b2 Evaluation data set. Due to

the stochastic nature of CNN models, reported results are the average scores across

5 duplicate models using the same hyper-parameters (see legends of Supplementary

Tables S4-S15). For all evaluations the metrics Precision, Recall, F1, Accuracy, and

Specificity are calculated using the TIMEX type classification (i.e. DATE or DURA-

TION) to evaluate performance on a specific data set (see Equations 2.2-2.6). The

weighted average (Equation 2.7) uses the system-specific number of DATE or DU-

RATION instances as the weights for each metric across the DATE and DURATION

results, and is used for ranking.

In the following subsections, the results of each evaluation phase are provided

with discussion. All performance scores and confusion matrices for each model can

be found in the Appendix in Supplementary Tables S16-S17 for SVM and S4-S15 for

CNN.

6.5.1 Evaluation Phase 1: Using RelIV-TIMEX Gold Standard Temporal

Phrases

The SVM and CNN model variations were first evaluated using the temporal

phrases from the RelIV-TIMEX Gold Standard evaluation data set as input, which

contains 429 DATE types and 307 DURATION types (Section 6.1.2). The SVM

results for ClinBioBert and BertBase model variants are shown in Tables 21 and 22,

respectively. Likewise, CNN results are shown in Tables 23 and 24. Main findings

and conclusions are discussed below.
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Table 21. ClinBioBert SVM performance using the Gold Standard RelIV-TIMEX

Evaluation data set. Scores are weighted averages across DATE and DU-

RATION. Bold = best performance within Feature Strategy; Red = best

performance across all SVM models; Orange = high, white = median, and

blue = low scores relative to all scores in the table.

Table 22. BertBase SVM performance using the Gold Standard RelIV-TIMEX Eval-

uation data set. Refer to Table 21 for metric and color coding descriptions.
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6.5.1.1 Temporal Fine-Tuning on a Single Temporal Task Improves Per-

formance

Fine-tuning the ClinBioBert model on either the binary temporal sentence clas-

sification task or the multi-label Seq2Seq temporal type classification improves the

SVM and CNN model classification performance from the respective baseline mod-

els (Tables 21 and 23, respectively). Specifically, the ClinBioBert-Seq2Seq-BIO fine

tuning strategy (Figure 14F) achieves the highest F1 results for both the SVM and

CNN models (SVM F1 = 0.954, CNN F1 = 0.951), with the SVM model coming out

on top (Table 21).

In contrast, continually fine-tuning the baseline ClinBioBert model, or chaining

fine-tuning tasks, first on the binary task followed by the Seq2Seq task (Figure 14C)

actually results in a substantial degradation of performance with the majority of F1

scores across both SVM and CNN models being less than 0.900. The pattern of

improved performance after fine-tuning on a single temporal task and degraded per-

formance after chaining fine-tuning tasks holds true for all feature selection strategies

(Phrase Only, Phrase+Context, Phrase+Attention).

For both ClinBioBert and BertBase baseline models, fine tuning on a more com-

plex temporal task (Seq2Seq temporal type classification) versus a more simplistic

task (binary temporal sentence classification) generally results in better performance

for the Phrase Only and Phrase+Attention feature selection strategies in both the

SVM and CNN models, except for the BertBase Phrase Only strategy where the

inverse is true (Table 24). This also holds true when comparing the more complex

BIO Seq2Seq task versus the more simplistic Ttype task where the BIO task returns

embeddings that result in better performance. For the Phrase+Context models, the

simpler binary fine tuning task results in features that outperform both Seq2Seq
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strategies in the SVM, and one of the 2 strategies in the CNN models. Overall,

these results indicate that fine-tuning on a single, yet complex (Seq2Seq BIO), tem-

poral task creates contextualized embeddings that are more relevant to the temporal

disambiguation task.

Table 23. ClinBioBert CNN performance using the Gold Standard RelIV-TIMEX

Evaluation data set. Refer to Table 21 for metric and color coding de-

scriptions.

6.5.1.2 Adding Context can Help BertBase Embeddings Compensate for

Domain Shifts

As discussed, additional fine-tuning on a single temporal task improves perfor-

mance for the ClinBioBert models and the BertBase Phrase Only and Phrase+Attention

feature selection strategies. However, the inverse is true for the Phrase+Context Bert-

Base models where any type of fine tuning degrades performance from the baseline

model for both SVM and CNN classifiers (Table 22 and 24, respectively). Overall, the
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Table 24. BertBase CNN performance using the Gold Standard RelIV-TIMEX Eval-

uation data set. Refer to Table 21 for metric and color coding descriptions.

BertBase Phrase+Context SVM classifier is the highest F1 out of all combinations

(Table 22) with an F1 score of 0.949, which is not far behind the best ClinBioBert

SVM classifier with an F1 of 0.954. This could be the result of the ClinBioBert

models already containing the needed context in the embeddings as this model was

essentially created from chaining fine-tuning tasks on biomedical and clinical texts.

Thus, incorporating context explicitly may be adding too much noise. However, the

BertBase model has no clinical or biomedical information already embedded; thus,

explicitly including context into the extracted features from the unmodified BertBase

embeddings seems to help it compensate for a domain shift.

6.5.1.3 Context and Attention Degrade Performance

Adding in the context or attention progressively degrades the baseline Clin-

BioBert performance for SVM and CNN classifiers (Phrase Only F1= 0.941, Phrase
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+Context F1=0.936, Phrase +Attention F1=0.900), and this pattern generally holds

true for all fine-tuned variations of the ClinBioBert model for both the SVM and

CNN classifiers (Table 21, 23).

This also holds for the SVM classifiers using the fine-tuned BertBase model

variations in general, with some mixed results for the Seq2Seq models (e.g. BertBase

Seq2Seq Ttype, Table 22). However, for the baseline BertBase SVM classifier, adding

context or the attention tokens as part of the feature vector improve performance

with the +Context model achieving the best BertBase results overall (Phrase Only

F1=0.922, Phrase +Context F1 = 0.949, Phrase +Attention F1 = 0.924). Finally,

for the CNN classifiers using the BertBase models, the baseline plus all fine tuning

variations have decreased performance when adding in context and attention, except

for the BertBase Seq2Seq BIO model, which sees improved performance (Table 24).

Interestingly, the CNN classifier using the ClinBioBert Phrase Only model out-

performs the BertBase equivalent, but by a smaller margin compared to the SVM

classifiers (BertBase F1 = 0.930, ClinBioBert F1 = 0.942, Table 23,24). Adding in

context and attention degrades the performance of both, but with a greater effect on

the ClinBioBert model. Specifically, the F1 delta between the Phrase Only model

and Phrase+Attention model for ClinBioBert is 0.053 and the F1 delta for BertBase

is 0.011.

A possible reason for the degradation of results when context or attention is

added is that the model may be dealing with too much information so that it washes

out the differences between DATE and DURATION phrases. Another possibility

is that this is causing the algorithm to pay too much attention to the context or

attention tokens as the contextualized embeddings already contain some of this infor-

mation. This may also be the reason why we see mixed results for the SVM classifiers

using the BertBase models as these models need the additional contextual informa-
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tion to perform well. Figure 20 shows the difference (+Attention - Phrase Only) in

the top 5 most frequent attention tokens for the classifications returned by the best

performing SVM model, ClinBioBert Seq2Seq BIO (Table 21, Figure 20A), and its

CNN (Figure 20B) and BertBase equivalents (SVM, Figure 20C; CNN, Figure 20D).

A negative value means the token appeared less frequently in the attention list for

phrases classified as a DATE/DURATION, and a positive value indicates the oppo-

site. For example, in Figure 20A, the most frequently attended to token by phrases

classified as a DURATION is the token “for”. This token has a delta value of -3 for

DURATION indicating that when you add attention to the SVM feature 3 phrases

that attend to the term “for” that were classified as a DURATION when using the

Phrase Only strategy are now being classified as a DATE. Likewise, for phrases clas-

sified as a DATE the most frequently attended to token is “on” and its delta value is

a +2, which means including attention into the feature vector results in 2 additional

phrases that used to be classified as a DURATION now being classified as a DATE.

Interestingly, the “[subword]” token seems to be a major focus when using Clin-

BioBert as a starting model. For this analysis, all subwords that started with the

double hash (“##”) were replaced by the single token “[subword]”. In the Clin-

BioBert vocabulary, subwords are usually associated with clinical entities such as

procedures or symptoms. Thus, if a subword is being attended to by a temporal

phrase, it will appear in the top 3 attention tokens, and may indicate that the proce-

dure, symptom, or other clinical entity is associated with the temporal phrase. Figure

20A and B show that, when counted together, subwords are among the top 5 most

frequent tokens in the phrases annotated as a DATE or DURATION. Interestingly,

when adding in the attention vector as a feature for SVM and CNN classification

phrases attending to these subwords that were classified as a DURATION are given a

DATE classification. This may mean that adding in attention is causing the models to
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pay too much attention to these subwords with a preference to classify these phrases

as a DATE. In general, for the ClinBioBert Seq2Seq BIO SVM and CNN models,

adding in attention seems to bias the classification towards a DATE as the top most

frequent DURATION tokens consistently loose phrases while the top DATE tokens

gain phrases. Comparing this to using BertBase as the starting model, the subword

token barely even makes the top most 5 frequent attention tokens (ranks fifth for

the DATE class only), which may indicate BertBase is not putting much emphasis

on these clinical entities as the ClinBioBert models do. Additionally, the opposite

trend is seen for the BertBase Seq2Seq BIO CNN model (Figure 20D), where the

DURATION delta is positive and DATE is mostly negative indicating adding in the

attention vector as a feature is causing more phrases that attend to tokens like “at”

to be classified as a DURATION where they were classified as a DATE when using

the Phrase Only feature vector.

6.5.1.4 Bias Towards DATE Classifications

To identify which temporal type the models are performing better on we looked

at the confusion matrices for the top performing SVM and CNN ClinBioBert Seq2Seq

BIO models (full confusion matrices for all models are in Supplementary Tables S4-

S17). The top performing SVM and CNN models tend to have a bias towards clas-

sifying a temporal phrase as a DATE type (Table 25) with the SVM misclassifying

25 DURATION types as a DATE versus misclassifying only 11 DATE types. Sim-

ilarly, the CNN misclassified 23.6 DURATION types on average (across 5 replicate

models) compared to 15.2 DATE types. Taking the average number of instances a

DATE or DURATION is misclassified across all SVM and CNN models results in a

similar trend (Table 25) where DURATION types are close to 2 times more likely

to be misclassified as a DATE versus a DATE to be misclassified as a DURATION.
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Fig. 20. Difference in frequencies of the top 5 most frequent attention tokens for

temporal phrases classified as a DURATION (blue) or DATE (red). Top

5 most frequent attention tokens were identified using the gold standard

DATE/DURATION classifications. The delta value (y-axis) represents the

difference in the frequency of these tokens when using the +Attention versus

Phrase Only feature strategies (+Attention - Phrase Only) to classify tem-

poral phrases as a DATE or DURATION. The x-axis lists the rank and the

top term for DURATION and DATE in that order, unless the same term was

ranked the same across both DURATION and DATE classifications, in which

case only one term is listed. A) ClinBioBert Seq2Seq BIO SVM classification,

B) ClinBioBert Seq2Seq BIO CNN classification, C) BertBase Seq2Seq BIO

SVM classification, D) BertBase Seq2Seq BIO CNN classification.

This indicates that even the top performing models have a bias towards classifying

a temporal phrase as a DATE type. This is likely the result of the imbalance in

the DD-TIMEX training data set as there are 4 times as many DATE types than
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DURATIONs (Table 14).

Misclassification

Model DURATION as a DATE DATE as a DURATION

ClinBioBert Seq2Seq BIO SVM 25 11
ClinBioBert Seq2Seq BIO CNN 23.6 15.2
All SVM Model Average 43.1 19.2
All CNN Model Average 46.6 24.8

Table 25. Frequency of DATE and DURATION temporal type misclassification using

the RelIV-TIMEX Gold Standard temporal phrases. Comparison of the

ClinBioBert Seq2Seq BIO SVM and CNN model misclassifications to the

average frequency across all SVM and CNN models.

6.5.1.5 Best Strategy and Model

Overall, the best performing classifier is the SVM using the ClinBioBert Seq2Seq

BIO model with an F1 score of 0.954. The ClinBioBert and BertBase Seq2Seq Ttype

and binary fine-tuned models also performed well when used in SVM or CNN clas-

sifiers; thus, these 6 models plus the respective baselines were moved forward to the

next phase of evaluation that includes integration with the Chrono temporal phrase

recognition algorithm and comparison to state-of-the-art systems that participated

in the i2b2 challenge.

6.5.2 Evaluation Phase 2: Integration of the Temporal Disambiguation

Module into Chrono.

The ClinBioBert-Seq2Seq-BIO SVM model was found to perform the best when

using the gold standard temporal phrases; however, temporal phrase recognition algo-

rithms do not always identify the exact phrase annotated in a gold standard. Thus, the

next evaluation phase integrated the temporal disambiguation model into Chrono to

utilize Chrono’s temporal phrase recognition algorithm. Figure 21 is a re-production

of Figure 8 with the temporal disambiguation module shown in the workflow. Specifi-
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cally, Chrono identifies and classifies temporal phrases using the fine-grained SCATE

Schema. It then converts these SCATE annotations into TimeML formatted annota-

tions. If an entity is identified as a Period or Calendar-Interval during the conversion

process, it is sent to the Temporal Disambiguation module where it is classified as a

DATE or DURATION type. Depending on the temporal type identified, the phrase

is then sent to the TimeML Normalization module before being output to an XML

file.

In this phase the performance of Chrono is still being compared to the RelIV-

TIMEX Gold Standard. Since Chrono identifies all temporal expression types, the

results have to be filtered to only those that overlap the RelIV-TIMEX Gold Stan-

dard. The following sub sections discuss how results from Chrono and the 3 state-of-

the-art i2b2 systems were filtered to obtain a fair comparison to the RelIV-TIMEX

Gold Standard. Then the performance of Chrono using the temporal disambiguation

module is reported along with a comparison to the state-of-the-art RelIV-TIMEX

performance.

6.5.2.1 Creating a Fair Comparison to the RelIV-TIMEX Data Set

Previously, the temporal disambiguation module was evaluated only on RelIV-

TIMEXs in the RelIV-TIMEX data set. In order to have a fair comparison, a Python

script was written to filter Chrono and state-of-the-art system results to only those

that overlapped with a temporal phrase in the RelIV-TIMEX evaluation data set.

This resulted in a varying number of DATE and DURATION types for each system

due to the systems breaking up the gold standard phrases into multiple phrases. For

example, the gold standard phrases “the morning on the day” and “hospital day 2

through hospital day 3” were generally broken up into multiple phrases by one or

more of the systems. The total resulting DATE and DURATION phrase numbers are
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Fig. 21. Chrono architecture with the DATE/DURATION Temporal Disambiguation

Module.

listed in Table 26.

6.5.2.2 Improved Performance with Temporal Disambiguation Module

Integrating any of the temporal disambiguation models from the previous sec-

tion into Chrono results in significant performance improvement (Table 27, top row

vs “Chrono+TTD”). Previously, Chrono had a naive rule that assigned all SCATE

Period and Calendar-Interval types to a TimeML DURATION type. This resulted in

poor performance with a weighted F1 value of 0.361. As expected, all +TTD (Tem-
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System DATE DURATION

Gold 429 307

Chrono 463 337

Mayo 455 335

Vanderbilt 458 337

MSRA 454 337

Table 26. Number of relative temporal phrases in state-of-the-art systems, Chrono,

and the RelIV-TIMEX Gold Standard.

poral Type Disambiguation) variations improved on this baseline performance. The

ClinBioBert models, overall, performed better than the BertBase models with the

ClinBioBert Seq2Seq Ttype model achieving the best F1 score of 0.894 on the RelIV-

TIMEX Evaluation data set. Interestingly, when using BertBase as the initiation

model, fine-tuning on progressively more complex tasks (i.e. binary to Seq2Seq-Ttype

to Seq2Seq-BIO) also continually improved performance over the baseline model. This

same observation does not hold when using the ClinBioBert model as the initial model

as the binary and Seq2Seq-BIO fine-tuning performed similarly to baseline while the

Seq2Seq-Ttype fine-tuning resulted in the top performing model with a weighted F1

score of 0.892 (Table 27).

All of the models just discussed utilized the Phrase Only feature strategy because

it was observed that adding in context or attention terms degraded performance.

When adding context and attention, the same degradation of performance is observed

as discussed in Section 6.5.1.3. This was the case for all except the BertBase model

where adding context improved performance significantly. Thus, the baseline models

plus context were run with Chrono to see if the improved BertBase performance held.

Indeed, the BertBase +Context model, without any fine tuning, actually achieves

the second highest performance with an F1 score of 0.887. Curiously, the same

161



strategy of adding context to the ClinBioBert baseline model actually degrades the

performance compared to the Phrase Only feature strategy with an F1 of 0.879 versus

0.883, respectively. The Seq2Seq BIO module increased the weighted F1 score to

0.883. Surprisingly, while the Seq2Seq-BIO model outperformed Seq2Seq Ttype on

the RelIV-TIMEX Gold Standard phrases, the Seq2Seq-Ttype model performs the

best when integrated into Chrono.

6.5.2.3 Chrono Outperforms State-of-the-Art Systems on Relative Tem-

poral Expression Disambiguation

While it is good to know performance has improved with the new temporal dis-

ambiguation module, its performance needs to be compared with the other state-of-

the-art systems on the same data set. For a fair comparison, the same filtering script

was used on the state-of-the-art system results to obtain only those that overlap with

the RelIV-TIMEX evaluation data set (Table 26). The bottom 3 rows of Table 27

contain the results of the RelIV-TIMEX evaluation on the state-of-the-art systems.

Except for Recall, Chrono plus the ClinBioBert-Seq2Seq-Ttype module achieves the

highest performance for all other metrics, including the best F1 score of 0.892 com-

pared to the top state-of-the-art system, MSRA, with an F1 of 0.887. The MSRA

system achieves the highest Recall of 0.866, however, this is offset by a lower Precision

of 0.911 compared to Chrono’s Precision of 0.935. Additionally, all of the ClinBioBert

models exceed the Mayo and Vanderbilt performances for the majority of the metrics,

with the BertBase modules seeing higher Precision and Specificity after fine tuning.

Comparing the confusion matrices of Chrono’s best performing model and MSRA,

which is also a hybrid system, reveals that Chrono is better at classifying DURATION

type phrases than MSRA, which is contrary to it’s performance when using the RelIV-

TIMEX Gold Standard phrases (Section 6.5.1.4 and Supplementary Tables S4-S17).
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Table 27. System performance on the RelIV-TIMEX evaluation data set of Chrono be-

fore and after the TTD model integration, and the three i2b2 state-of-the-art

system. Values are the weighted average across individual DATE and DU-

RATION performance. Cell colors are as described in Table 21 except the

maximum and minimum are relative to each column instead of the entire

table.

Chrono has a low misclassification of only 19 phrases (Table 28) compared to MSRAs

48 (Table 29). Additionally, the confusion matrices and the overall Recall score show

that MSRA is identifying more relative temporal phrases overall with 38 “na” values

versus Chrono’s 68. This, however, is a function of Chrono’s temporal phrase recog-

nition algorithm, which isn’t affected by the TTD module. Thus, improvement in

Chrono’s recognition algorithm should increase performance even further.

Chrono+ClinBioBert-Seq2Seq-Ttype

DATE DURATION na

Gold
DATE 383 29 48

DURATION 19 298 20

Table 28. Confusion matrix for Chrono+ClinBioBert-Seq2Seq-Ttype using the RelIV-

-TIMEX Evaluation data set.
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MSRA System

DATE DURATION na

Gold
DATE 413 20 21

DURATION 48 272 17

Table 29. Confusion matrix for MSRA using the RelIV-TIMEX Evaluation data set.

6.5.3 Evaluation Phase 3: End-2-End Performance Evaluation

The final phase of evaluation is to incorporate the best performing temporal

disambiguation module into Chrono and evaluate the performance on the full set of

returned annotations, i.e. End-2-End evaluation. For the End-2-End evaluation, the

i2b2 evaluation scripts were used unmodified. As the work described in this chapter

focused on temporal type classification, Chrono’s performance from Chapter 5 for the

span-based Precision, Recall, and F1 scores does not change. Instead, the goal is to see

an improvement in the “Type Accuracy”. With this in mind, the Value and Modifier

metrics will change, however, optimizing these is future work as no changes were

made to the normalization module in Chrono. Table 30 shows the final End-2-End

results using the best performing temporal disambiguation module from the previous

section, ClinBioBert-Seq2Seq-Ttype. Including the temporal disambiguation module

into Chrono increased the Type Accuracy from 0.65 to 0.82. This large increase puts

Chrono on par with the other state-of-the-art systems, however, it does not exceed

them with MSRA still holding the highest Type Accuracy of 0.89.

One limitation of Chrono is that the FREQUENCY type parsing has not been

fully implemented, and is limited to identifying known abbreviations for frequency

expressions. This could be a factor in the poor performance of Chrono, thus, all

systems were re-evaluated after removing the FREQUENCY temporal phrases from
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System P R F1 Type Value Modifier

Mayo 0.88 0.92 0.9 0.86 0.73 0.86
Vanderbilt 0.83 0.91 0.87 0.85 0.7 0.85
MSRA 0.88 0.95 0.91 0.89 0.72 0.89

Chrono w/o ordering (Chapter 5) 0.78 0.9 0.84 0.65 0.56 0.8
Chrono w/o ordering (ClinBioBert-Seq2Seq-Ttype) 0.78 0.9 0.84 0.82 0.57 0.77

Table 30. End-2-End results for state-of-the-art systems, Chrono, and

Chrono+ClinBioBert-Seq2Seq-Ttype.

the results and gold standard using the same filtering script as mentioned previously.

Table 31 shows that Chrono’s Type Accuracy does indeed increase from 0.82 to 0.89

such that it is greater than the Mayo and Vanderbilt systems, but it is still second to

MSRA at 0.91. This indicates that FREQUENCY phrases are a contributing factor;

however, they are not the only factor as Chrono’s Precision is reduced while the Recall

is improved resulting in an unchanged F1 score of 0.84 while the F1 scores of all other

systems were improved. Thus, while Chrono is now on par with state-of-the-art

systems, it still has room for improvement.

System P R F1 Type Value Modifier

Mayo 0.91 0.91 0.91 0.86 0.72 0.84
Vanderbilt 0.84 0.92 0.88 0.87 0.71 0.85
MSRA 0.89 0.96 0.93 0.91 0.71 0.90

Chrono w/o ordering (Chapter 5) 0.76 0.94 0.84 0.69 0.60 0.83
Chrono w/o ordering (ClinBioBert-Seq2Seq-Ttype) 0.75 0.94 0.84 0.89 0.62 0.80

Table 31. End-2-End results for state-of-the-art systems, Chrono, and

Chrono+ClinBioBert-Seq2Seq-Ttype with FREQUENCY temporal phrases

removed.

6.5.4 Error Analysis

This section provides a more detailed error analysis of Chrono+ClinBioBert-

Seq2Seq-Ttype results when evaluated on the RelIV-TIMEX data set and the full

End-2-End cohort to determine the next areas in need of improvement.
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6.5.4.1 RelIV-TIMEX

For the RelIV-TIMEX data set, Chrono misclassified 48 phrases and failed to

recognize a total of 68 phrases. In comparison, MSRA misclassified 68 phrases and

failed to recognize 38. Of these, 49 phrases were either misclassified or missed by

both Chrono and MSRA (24 DATEs and 25 DURATIONs). Table 32 lists the 24

DATEs that were misclassified or missed by either system. Both Chrono and MSRA

identified, but misclassified, 14 phrases as DURATIONS when the gold standard lists

them as DATEs. These include phrases like “five months ago”, “48 hours”, and “two

weeks later”. The context around the phrases in all cases does clearly indicate these

are discussing a distinct event, such as an MRI or when symptoms started. Chrono

missed one phrase that MSRA identified (but also misclassified), which is the phrase

“2 wk”. This was missed by Chrono as there are no rules to identify abbreviations

such as “wk”. Finally, both systems failed to identify 9 DATE phrases. These include

acronyms that are currently not parsed like, “DOL3” as well as vague terms that

aid in ordering events such as “now”, “currently”, and “the past”, which were not

consistently annotated as TIMEXs. Chrono does identify these terms, however, this

function was turned off for this analysis as it introduced too many new phrases that

are annotated by the SCATE schema, but are not annotated in the i2b2 data set

(referred to as “Chrono w/o ordering” in Tables 30 and 31).

Similarly, there were 25 DURATION phrases either missed or misclassified by

Chrono and MSRA (Table 33). Both systems identified, but misclassified, 10 DU-

RATION phrases. These included phrases like “two days”, “the days”, and “all the

night”. Chrono identified 3 phrases that MSRA missed (“6 - minute”, “this year”,

“which time”), and MSRA identified 6 phrases that Chrono missed, most of which

used abbreviations not recognized by Chrono, including “33 yrs ago”, “14d”, and
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Table 32. DATE phrases missed or misclassified as DURATION by Chrono and

MSRA.
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“48h”. Finally, there were 6 DURATION phrases both systems failed to identify,

including “seven days”, “one month”, and “one”. Looking at the context of the DU-

RATION phrases, they are highly complex. For example, in the sentence “His post

transplant course was initially complicated by hyperglycemia and seizure on postop-

erative day number one .” the gold standard annotated the phrase “postoperative

day number one” as a DURATION, however, this could also be seen as a DATE as

the complications happened on a single day. In fact most of the phrases that include

the term “postoperative” are DATEs. Additionally, in the sentence “He did not sleep

at all the night before and was extremely fatigued .” the gold standard annotated the

phrase as “all the night”, which sounds like a duration, however, the other systems

did not include the word “all” in the temporal phrase. In most instances the temporal

term “night” is annotated as a DATE, whereas the phrase “overnight” is generally

annotated as a DURATION. Finally, it is difficult to annotate the phrase “the week”

in the sentence “They recommended follow-up examination due on the week of 12/20

.” because the full phrase actually does include a DATE. Also the semantics of the

sentence really indicate a range of possible options for a follow-up examination, and

are not indicating that the examination is going to occur over the whole time. This

sentence provides an example of temporal semantics that are not really able to be

annotated accurately by the TimeML schema, thus, one might view this annotation

as subjective.

In addition to those phrases both systems misclassified or missed, Chrono mis-

classified 6 DURATIONs as DATEs and 15 DATEs as DURATIONs that MSRA got

correct. Of the 15 DATE phrases that Chrono misclassified as DURATIONS, all

of them had additional context words in the phrase that Chrono missed (Table 34)

with the predominant term being “ago”. However, there were a few phrases where it

could be argued that these are in fact DURATIONs. For example, in the sentence
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Table 33. DURATION phrases missed or misclassified as DATE by Chrono and

MSRA.
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“...she was in her normal state of health until three days ago .” it could be argued

that her un-normal state of health endured over three days, which is in fact a DU-

RATION. Additionally, in the sentence “Her son reports that she then developed a

headache and fevers started three days ago which were treated with tylenol .” the

phrase “three days ago” refers to when the fevers started, which could be interpreted

as they haven’t ended and thus this phrase is in fact a DURATION. With respect to

DATEs, the majority include the term “week” or “weeks” and Chrono again did not

include some context words that were annotated in the gold standard. These are the

precise types of relative terms that are difficult to pin to a timeline. Finally, there

were 46 phrases that Chrono did not identify as a DATE or DURATION but MSRA

got correct. The vast majority of these include acronyms that Chrono does not rec-

ognize, for example as “POD#6”, “HD#3”, and “14 d”. It also included 4 phrases

of “the second day”. Chrono actually did recognize these phrases, but because they

included the term “second” they were classified as a TIME type, which was counted

as missing for the RelIV-TIMEX data set.

Overall, with the temporal disambiguation module, Chrono performs better for

DURATION type than the state-of-the-art systems, which over-classify DATE types.

For those phrases that both Chrono and MSRA classified incorrectly the reader has to

utilize prior knowledge and the full context of the sentence to make a determination

on if the phrase is a DATE or DURATION. This includes knowledge of symptoms

and other medical events that are provided in the sentence context that rule-base

and supervised learning systems may not be able to utilize effectively at this point.

This is also true for many of the phrases that MSRA classified correctly but Chrono

missed; however, it could be debated that the annotation could go either way for

some phrases, which shows that is it also difficult for human annotators to identify

temporal types in some instances. For phrases that Chrono missed completely, the

170



Table 34. Phrases missed by Chrono, but classified correctly by MSRA.
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main issue is recognizing medical acronyms and short-hand, and there were a few

instances where Chrono did identify the phrase, but classified it as a TIME type,

which excluded it from this analysis.

6.5.4.2 End-2-End

In the End-2-End analysis, Chrono misclassified 727 temporal phrases with 421

of these being phrases Chrono identified that were not in the gold standard (Table

35). The vast majority of these included phrases stating a person’s age, such as

“71-year-old” or “23 year” that were not annotated in the i2b2 Gold Standard. In

addition the word “time” is consistently annotated by Chrono as a DATE whereas

the gold standard sometimes has it annotated and sometimes does not, a few vital

measurements were incorrectly identified as a DATE by Chrono, and Chrono anno-

tated several terms such as “fall”, “early”, and “prevent” incorrectly as a TIME type.

Many of the other terms Chrono identified that were not in the gold standard may

be gold standard annotation errors. For example, there are 5 instances of the word

“daily” that are not annotated in the gold standard, and phrases such as “night of

2018-05-30” and “morning of 5/17” are not included in the gold standard, but when

looked at in context are clearly DATE types. Additionally, some dates in the footer

information of notes were not annotated in the gold standard, but were identified by

Chrono.

Of the 306 remaining phrases annotated in the gold standard, Chrono completely

misses 161 of these. As mentioned previously, the majority of DATE and DURATION

types missed are those that use acronyms not identified by Chrono, such as “POD”,

“HD”, and “14 d”. A total of 85 of these are FREQUENCY types missed by Chrono.

This is understandable because Chrono’s frequency module is currently dictionary-

based with a limited lexicon; thus, adding in a module to detect FREQUENCY
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Chrono

DATE DURATION FREQUENCY TIME na

Gold

DATE 1139 31 4 9 52

DURATION 21 302 3 2 15

FREQUENCY 16 37 67 0 85

TIME 14 8 0 34 9

na 316 38 8 59 -

Table 35. Chrono’s confusion matrix for the End-2-End evaluation.

phrases like “x 2”, “four cycles”, and “q.4.h” is needed. TIME types that Chrono

missed include difficult phrases like “one” as well as “8 o’clock”, which is a pattern

not currently recognized by Chrono.

Finally, 145 phrases were annotated in the gold standard and by Chrono, but

Chrono got the temporal type incorrect (Table 35). There were 21 DURATION types

misclassified as a DATE by Chrono, which included the issues discussed previously

where Chrono is not picking up the entire phrase or one must utilize more of the con-

text of the sentence to correctly classify the phrase. In addition, 16 FREQUENCY

types were misclassified as a DATE. All but 2 of these included the phrase “per day”

in the gold standard, but Chrono only annotated the word “day” and it was sent to

the temporal disambiguation module. There were also 14 TIME phrases misclassified

as a DATE by Chrono because Chrono failed to identify the full phrase with the time

portion included. For example, for the phrase “June 18 , 2006 , at 8:30 p.m.” Chrono

only identified the first portion of “June 18 , 2006”, which is a DATE. Chrono does

include some logic to connect these two phrases, but this logic must be failing for

these instances. There were 31 DATE types misclassified as DURATION for reason’s

indicated previously, and 37 FREQUENCY types misclassified as a DURATION due

to the FREQUENCY module not being fully implemented and Chrono not identify-
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ing the full phrase. A total of 8 TIME types were misclassified as a DURATION,

including phrases like “16 hours of life”. These phrases could be debatable as an

actual DURATION. There were 4 DATE and 3 DURATION types classified as FRE-

QUENCY by Chrono as Chrono included frequency-related terms. For example, the

gold standard phrase “08-16” is labeled a DATE, but Chrono identified the phrase

“bid on 08-16” and labeled it as a FREQUENCY. Likewise, with the gold standard

phrase “seven days” Chrono identified the full phrase of “q. day times seven days”

which does actually seem to be a FREQUENCY type. Finally, there were 9 DATE

and 2 DURATION phrases misclassified by Chrono as a TIME due to Chrono either

not identifying the full phrase and missing some information, or the phrase had key

words in it like “second” which is deterministically classified as a TIME by Chrono.

In conclusion, there are certainly several areas of improvement for Chrono, in-

cluding fully implementing the FREQUENCY module and enabling better identifi-

cation of medical acronyms like “POD”. One of the larger and more complex issues

Chrono has, despite the implementation of contextualized embeddings, is getting the

classification of relative DATE and DURATION types correct for phrases that require

additional contextual knowledge, such as type of event that is being referenced. In

these instances adding in features that represent the referenced event, or analyzing

the sentence structure may aid in the temporal type disambiguation task.

6.6 Conclusions and Contributions

Relative temporal expressions are difficult to normalize because their value al-

ways depends on another temporal expression or some event that is either implicit

knowledge or information located in another part of the document. However, be-

fore they can be normalized to a value and be placed on a timeline, their temporal

type must be determined. Chapter 5 identified that the disambiguation of relative
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DATE and DURATION temporal types is still a challenge for state-of-the-art sys-

tems. This chapter addressed this challenge through implementing a second temporal

disambiguation module in Chrono that utilizes contextualized embeddings from tem-

porally fine-tuned BERT models. Through this work the following contributions were

made with respect to the temporal disambiguation of relative DATE and DURATION

types:

Negative Findings

1. Using BERT to perform temporal type classification/disambiguation directly

performs poorly.

2. Chaining fine-tuning on a simple (binary) then complex (Seq2Seq) task de-

grades performance for both the Seq2Seq models and the embeddings used in

the classical learning models.

3. Incorporating context and attention tokens directly into a feature vector de-

grades performance of the learning models.

Positive Findings

4. Incorporating the contextualized word embeddings into classical learning mod-

els reaches state-of-the-art performance for the DATE/DURATION temporal

disambiguation task.

5. Temporally fine-tuning BERT models on complex tasks create contextualized

word embeddings that increase the performance of classical learning models on

the DATE/DURATION temporal disambiguation task.

6. While adding context generally degrades performance, this feature extraction

strategy can help unmodified BertBase embeddings compensate for domain

shifts.

Research Products

7. Two focused Training and Evaluation data sets developed from the 2012 i2b2
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Temporal Challenge formatted for 3 tasks‖: ISO-TimeML XML format, tem-

poral sentence classification, and Seq2Seq.

8. A Python script that can take the ISO-TimeML results from any other sys-

tem that parsed the 2012 i2b2 data set and filter it to those elements in the

RelIV-TIMEX evaluation data set, or any other filtered subset of the gold stan-

dard. Available in the “gold-standard-utils” repository on the OlexLab GitHub

page∗∗.

9. Six temporally fine-tuned BertBase and ClinBioBert models available in the

“temporal-bert” repository on the OlexLab GitHub page along with associated

fine-tuning code.

10. A Python object-oriented framework for extracting and summarizing contextu-

alized embeddings for temporal phrases, including context and attention tokens.

To be made available in the “summarize-bert-embeddings” repository on the

OlexLab GitHub page upon publication.

11. A novel algorithm for summarizing BERT attention weight matrices to identify

to which tokens an entire temporal phrase is paying the most attention. To be

made available in the “summarize-bert-embeddings” repository on the OlexLab

GitHub page upon publication.

12. Chrono, the first TERN system to normalize temporal expressions to both

the SCATE and ISO-TimeML annotation schemes and implement a tempo-

ral disambiguation module that utilizes temporally fine-tuned contextualized

embeddings. Chrono is now the state-of-the-art for disambiguating relative

DATE/DURATION temporal phrases. Available on GitHub††.

‖
Available upon request and after being approved for access to the i2b2 corpus.

∗∗
https://github.com/OlexLab/

††
https://github.com/AmyOlex/Chrono
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In conclusion, this work has made progress in the area of temporal recognition

and normalization by 1) showing that temporal information can be infused in con-

textualized embeddings extracted from BERT models, 2) improving the ability of

systems to disambiguate DATE and DURATION relative temporal phrases, and 3)

providing the first dual-parsing TERN system, Chrono, that normalizes temporal ex-

pressions into both the SCATE and ISO-TimeML schemes. Future work will include

improving the classification of relative temporal expressions that require a deeper

understanding of semantics, such as the type of event.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The long-term goal of this research is to build a system that can reconstruct and

visualize a patient’s clinical timeline (symptoms, diagnoses, treatments, tests, etc)

from unstructured and structured EHR data. Currently, there are only a few systems

that can process unstructured clinical notes to extract a patient’s medical timeline;

however, their performance is poor according to current evaluation metrics or their

results are not evaluated quantitatively. It is challenging to get good performance on

a high-level task like timeline extraction because it depends on the output of many

lower-level tasks. If the lower level tasks contain errors in output, then a cascade of

errors will result and be present in the extracted timelines.

This work has performed a survey of the progress already made for each of the

components of timeline extraction, identifying areas of future work in each. This

dissertation focused on temporal expression recognition and normalization (TERN),

specifically the temporal type disambiguation task, which is a fundamental component

of timeline extraction. This is a tangential direction to the current focus of the

temporal reasoning literature in the clinical and general domain, which are focused

on temporal relation extraction and direct temporal expressions, leaving much needed

work in the area of relative temporal expression normalization (see Chapter 2).

Recent work on TERN in clinical NLP has shown rule-base or hybrid methods

perform the best for this task (Chapter 2). However, a detailed error analysis of

the top i2b2 systems participating in the 2012 i2b2 Temporal Challenge (Chapter

5) revealed that, while the algorithms for the recognition of temporal expressions
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perform well, the normalization of these expressions was lacking. Specifically, the

normalization of relative, vague, and implicit temporal expressions to an explicit

date, time, frequency, or duration. This normalization is important for correctly

placing events on a timeline. While many temporal expressions are explicit dates or

times, clinical notes often contain relative expressions, such as “two weeks ago”, that

also need to be normalized to a specific date. The performance of top systems for the

i2b2 corpus indicate that getting the correct normalized value for relative temporal

expressions is challenging.

This dissertation work detailed the development of Chrono, the first TERN sys-

tem capable of normalizing temporal expressions into the SCATE and ISO-TimeML

schemes (Chapters 3, 4, and 5), and the first temporal type disambiguation mod-

ule to utilize contextualized embeddings extracted from temporally fine-tuned BERT

models (Chapter 6). This work concludes that fine-tuning BERT models utilizing a

single complex task (Figure 14E) generated contextualized embeddings that are more

applicable to temporal type disambiguation than using a simpler temporal task (Fig-

ure 14B), or chaining fine-tuning tasks (Figure 14C and D). In addition, this work

found that extracting contextualized embeddings from a fine-tuned BERT model for

temporal type classification using classical learning models such as SVMs and CNNs

outperform fine-tuning a BERT model and performing temporal type classification

directly. This work also found that adding in context and attention tokens degrades

the performance of SVM and CNN classifiers for the temporal type disambiguation

task. After implementing the best performing temporal type disambiguation module,

Chrono is now the state-of-the-art in disambiguating DATE and DURATION tempo-

ral types from relative temporal expressions, however there is still much work to be

done. The following sections lay out a few areas of what should be focused on next.
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7.1 Improving Chrono’s Dictionary and the Gold Standard

From the End-2-End analysis it is clear Chrono needs a stronger FREQUENCY

normalization module, and better recognition of clinical acronyms and abbreviations.

These elements need to be parsed into both the SCATE and ISO-TimeML schemes;

however, Chapter 2 identified that many SCATE errors are due to gold standard

issues. In order for Chrono to improve it’s performance the gold standard for the

SCATE schema will need to be 1) error checked and 2) expanded to include more

documents. Chrono could be used as a silver standard to jump start this effort.

Additionally, Chrono may benefit from the integration of external knowledge bases

for recognizing clinical acronyms and abbreviations, which has previously been show

to be useful in detecting clinical abbreviations in admission notes [150].

7.2 Support for Different Clinical Document Types

This work utilized temporally annotated clinical notes from the i2b2 and THYME

temporal challenge corpora, which are limited in both note type and domain. The

i2b2 corpus only consists of discharge summaries, which generally contain multiple

sections that are temporally dense such as patient history and clinical course [21].

The THYME corpus is limited to brain and colon cancer patient notes and pathology

reports [12]. However, there are many other note types written for various purposes

and audiences [151] (i.e. other care providers, billing, etc.) that contain important

temporal information about a patients medical timeline. The HL7 FHIR [152] US

Core DocumentReference Type documentation∗ specifically lists 1,001 different types

of clinical notes that each are assigned their own LOINC (Logical Observation Iden-

tifiers Names and Codes) code [153]. The top 5 types are know as “Common Clinical

∗
http://hl7.org/fhir/us/core/2019Jan/ValueSet-us-core-documentreference-type.html
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Notes” and include Consultation Note, Discharge Summary, History & Physical Note,

Procedure Note, and Progress Note. Other HL7 FHIR supported note types include

Diagnostic Reports (Cardiology, Pathology, Radiology), Referral Note, Surgical Oper-

ation Note and Nurse Note†. While temporal concepts are relatively domain agnostic,

the ways in which these concepts are expressed can differ across note types and do-

mains, which this work demonstrated when Chrono was adapted to the i2b2 corpus

(discharge summaries) from the THYME corpus (clinical notes and pathology reports

for cancer patients) in Chapter 5. Thus, it will be important to train and test Chrono

on multiple clinical document types so that it can accurately extract temporal infor-

mation from a patients entire clinical record instead of just specific document types,

which may not capture all pertinent medical events.

7.3 Incorporate Temporally Fine-Tuned Contextualized Embeddings into

the SCATE Temporal Disambiguation Module.

This work has demonstrated that temporally fine-tuned contextualized embed-

dings can be used to perform temporal type disambiguation and reach state-of-the-

art performance. The DATE/DURATION Temporal Type Disambiguation module is

the second TTD module used by Chrono. The first utilizes hand-crafted feature vec-

tors that include context clues to disambiguate Period and Calendar-Interval SCATE

entities (Chapter 3). Work done by Xu et al. [146] (the only other known work

to utilize contextualized embeddings for the temporal type classification task) uti-

lizes character-level pre-trained contextualized embeddings from Flair [154] to classify

SCATE temporal types, and found that contextualized embeddings are more robust

to term variability and remove the need to utilize features such as part of speech and

†
http://hl7.org/fhir/us/core/2019Jan/clinical-notes-guidance.html
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capitalization. Thus, future work on Chrono could include the training and utiliza-

tion of a classifier that uses temporally fine-tuned contextualized embeddings for the

Period and Calendar-Interval disambiguation task.

7.4 Incorporating EVENTs in Temporal Disambiguation

Temporally fine-tuned contextualized embeddings have made it easier to dis-

tinguish between DATE and DURATION types, however, they still have difficulty

classifying some relative temporal expressions that require a deeper understanding of

semantics, such as the type of event. For example, in the sentence “...patient was

in his usual state of health until two days prior to admission when he noted new

onset of chest pain and arm pain...” the temporal phrase “two days” is annotated in

gold as a DURATION type, but Chrono annotated it as a DATE. To disambiguate

this properly, one must understand the context of “usual state of health” and “new

onset of chest pain and arm pain”. This context appears both before and after the

temporal phrase and implies that the patient was not in his “usual state of health”

starting “two days prior to admission” and not ending as the patient was ultimately

admitted to the hospital. Incorporating information about EVENTs surrounding

the temporal expression may help in the disambiguation task; however, this requires

EVENT parsing and EVENT-TIMEX relations to be identified. Much attention has

been paid to this area in recent years, thus, a next step for Chrono is to incorporate

state-of-the-art modules to perform these tasks and then utilize this information to

perform temporal disambiguation of relative expressions.

7.5 Identifying Anchor Times for Relative Temporal Expressions

Relative temporal expressions that are classified as a DATE type require addi-

tional processing to normalize them to the correct calendar day, month, and/or year.
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This is a complex problem because the anchor time could be one of many different

dates from a clinical note. Frequently, the anchor time is the admission date, and

verb tense can be a strong indicator of whether the time is before, during, or after

the admission date. However, some notes are written over many days, so the verb

tense cannot always be relied upon. For example, within a single note one passage

may refer to the admission date with the token “today”, while another passage later

on may be referring to the discharge date using the same token. Another indicator

of if the anchor time for an expression is the admission date, or some other date, is

the section type. For example, a section on past medical history is probably referring

to all events prior to admission, whereas text in the discharge summary are referring

to events either at discharge, during the encounter, or after discharge. However, this

is still not a stead fast rule for all cases because some text can be discussing events

that happened relative to past events. While there is much complexity here, a human

reading these clinical notes can easily deduce the anchor time of a relative expres-

sion. This is due to humans being able to identify different sentences or sections of

text being members of different temporal contexts where each temporal context has a

defined anchor time.

If a segment of text is divided into temporal contexts and an anchor time is

assigned to each context, then it should be possible to assign the correct value of rel-

ative temporal expressions within each segment. Segmenting text based on temporal

context is not necessarily new, but has historically been focused on ordering events

and not normalizing temporal expressions. Bramsen et al. [155] used a machine

learning approach to divide discharge summaries into temporal segments, and then

identify high-level temporal relationships between each pair (before, after, etc) to

induce event order. However, Bramsen et al. utilized discharge summaries that had

been re-written into a narrative style instead of using the raw physician-generated
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text, and was focused on event ordering rather than identifying specific anchor times

for the temporal segments. More recently, Raghavan [116] takes a similar high-level

binning strategy, however, only uses the annotated events rather than breaking the

text into temporal segments.

As future work, we can take this binning strategy one step further to not only

place relative temporal expressions into high-level bins, but to also assign anchor

times to temporal context segments, which can then be used to normalize the relative

temporal expressions. Identifying temporal segments will require a layered approach.

First, direct and relative temporal expressions will first need to be identified and

classified. Next, these annotated temporal expressions will be used as boundaries for

the temporal segments. Third, verb tense, section type, admission/discharge time,

and existing direct temporal expressions will be used to identify the anchor time

for each segment. Finally, the segments with relative temporal expressions will be

further processed to calculate the explicit date referred to by each relative temporal

expression. This could be implemented through using a rule-based approach as well as

a hybrid approach that incorporates machine learning into the anchor time selection

for each segment. The 2012 i2b2 Temporal Challenge development cohort can be

used to build out these modules.

7.6 Consider Ensemble Classifiers

The performance for many of the strategies explored in this work were very close,

which made it difficult to choose the best model to move forward. In addition, moving

from the first to the second phase of evaluations resulted in the ClinBioBert-Seq2Seq-

Ttype strategy outperforming the BIO strategy, which was the best performer in the

first evaluation phase. This makes it difficult to choose a single best classifier, as they

all perform well and may bring different strengths to the table. Thus, future work
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should include the exploration of utilizing these strategies in an ensemble classifier to

avoid having to pick a single best model.

7.7 Do we need Attention?

This work introduced a novel approach to identifying which tokens an entire

temporal phrase is attending to by summarizing the attention weight matrices output

by BERT. While adding in attention tokens did not benefit this work, the algorithm

presented does summarize the attention weight matrices to identify the top N words

that are attended to by the entire temporal phrase. Browsing through these reveals

that some are focused on key context works like “prior” and others are focused on

medical events. In addition, comparing the top 3 attention tokens extracted for the

same phrase before and after fine-tuning revealed that temporal fine-tuning results is

tokens that are more temporally focused. For example, in Table 36 the first example

with the phrase “several months” attends to the tokens ‘times’, ‘now’, and ‘increasing’

for both the baseline BertBase and ClinBioBert models, but the ‘increasing’ token

is replaced by ‘intermittent’ in the temporally fine-tuned models. This method also

has the potential to retrieve long-distance relationships as shown in the sixth exam-

ple where the attention token ‘admission’ is replaced by the temporal token ‘noon’.

While this is an incorrect relation, it does demonstrate the potential for retrieving

these types of long distance relationships. Future work will involve exploring whether

this algorithm can contribute towards tasks like EVENT-TIMEX relation linking or

anchor time identification.

7.8 Modifying/Adding Attention Heads to Focus on Temporal Features

The attention mechanism is key to obtaining contextualized word embeddings.

Within the BERT models utilized in this work there are 12 layers, each with 12 atten-
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Table 36. Examples of how temporal fine-tuning alters a temporal phrase’s attention.

tion heads. Each layer and head utilizes projection methods that focus on different

aspects of the input sentence to create the final contextualized embedding. Alter-

ing or implementing new attention heads that are designed to specifically focus on

temporal information and/or related events could provide contextualized embeddings

that further improve the performance of temporal reasoning tasks.

7.9 Final Notes on Future Work for Timeline Extraction

During the course of this work, we reviewed the current state of temporal reason-

ing with respect to timeline extraction in the clinical domain. While much progress

has been made, the current state-of-the-art still has a ways to go before practical ap-

plication in the clinical setting will be possible. This work has identified several areas

of research that are necessary to make this possible. First, the correct and complete

identification of temporal expressions is fundamental to determining when events hap-

pened and for placement on a timeline. Temporal expression taggers must be able

to identify all types of temporal expressions, including relative, vague, and implicit

expressions. In addition, systems need to be able to normalize these expressions to a

point on the timeline. This is difficult with relative, vague and implicit TIMEXs, and
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will require some sort of integrated approach that includes event identification, co-

reference resolution, and temporal relation classification in order to determine where

an event occurred in a patient’s history. A second area of needed work is in developing

temporal relation identification systems that perform well on inter-sentence relations

and can control for event ordering conflicts. This may require a paradigm shift from

looking at pair-wise relations to another framework, such as ranked lists, to control

for this issue and reduce computational complexity. Third, constructing a patient’s

timeline over their entire medical history will require the processing of multiple types

of documents, which will have duplicated information. Clinical temporal reasoning

systems will need to be able to process this redundant data, which will include cross-

document co-reference resolution, in order to limit displaying duplicated events to

a clinician. Current work in this area is limited and has room for much progress.

Fourth, visualization tools will need to be interoperatable and be able to integrate

multiple data types for ease of use by clinicians. Another area of improvement is

the development of consistent evaluation methods for timeline extraction systems as

a whole so that they can be more easily compared and evaluated. Finally, timeline

extraction systems should be able to integrate both structured and unstructured data

into the timeline creation process. There are many tools that just use structured data,

however, there is much information hidden in the unstructured texts. Being able to

integrate this data will be of great benefit to future timeline extraction systems for

clinical data.

In conclusion, temporal reasoning over clinical texts has come a long way since

the first clinical temporal challenges, however, there is still room for improvement

before these systems will be useful to clinicians. Because a patient’s medical his-

tory is buried in multiple notes with multiple note types and grammar that is not

always going to follow traditional rules, future timeline extraction systems should be
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flexible in processing this diverse data, as well as able to deal with the high level

of redundancy in the EHR by integrating this data into a single contiguous timeline

through robust co-reference resolution. As the field moves towards annotating the

more difficult temporal information, such as relative and implicit temporal expres-

sions, new methods that integrate the normalization of temporal expressions with

temporal relation identification and co-reference resolution will be needed.
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CHAPTER 8

SUMMARY OF CONTRIBUTIONS

In this chapter the contributions this dissertation work has made to the field of Clinical

Natural Language Processing and Temporal Reasoning are summarized by chapter.

8.1 Chapter 2

Portions of Chapter 2 provide a comprehensive review of the current state of

temporal reasoning in the clinical domain, and highlights several areas in need of

attention as future work for the field. This was published in the Journal of Biomedical

Informatics [8].

• Olex AL, McInnes BT. Review of Temporal Reasoning in the Clinical Domain

for Timeline Extraction: Where we are and where we need to be. Journal of

Biomedical Informatics 2021;118:103784.

8.2 Chapter 3

Chapter 3 described the first hybrid framework for normalizing fine-grained tem-

poral information into the SCATE scheme, which is implemented in the tool Chrono

and available on GitHub∗. This chapter was presented as an oral presentation and

poster at the 2018 SemEval Workshop, and published as a full-length, peer-reviewed

paper [42].

• Olex A, Maffey L, Morgan N et al. Chrono at SemEval-2018 Task 6: A System

for Normalizing Temporal Expressions. Proceedings of The 12th International

∗
https://github.com/AmyOlex/Chrono
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Workshop on Semantic Evaluation. New Orleans, Louisiana: Association for

Computational Linguistics, 2018, 97–101.

• Olex A, Maffey L, Morton N et al. Chrono: A System for Normalizing Temporal

Expressions. The 12th International Workshop on Semantic Evaluation 2018.

Poster and Oral presentation by Amy Olex.

8.3 Chapter 4

Chapter 4 demonstrated that clinical domain texts pose additional challenges to

TERN systems, and identified 6 aspects of temporal parsing one should consider when

migrating a system from the general to clinical domain. This chapter was presented

as an oral presentation at the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies (NAACL-

HTL), and published as a full-length, peer-reviewed paper in the proceedings [45].

• Olex A, Maffey L, McInnes B. NLP Whack-A-Mole: Challenges in Cross-

Domain Temporal Expression Extraction. Proceedings of the 2019 Conference

of the North American Chapter of the Association for Computational Linguis-

tics: Human Language Technologies, Volume 1 (Long and Short Papers). Min-

neapolis, Minnesota: Association for Computational Linguistics, 2019, 3682–92.

Full-length manuscript and Oral Presentation by Amy Olex.

8.4 Chapter 5

Contributions of Chapter 5 include 1) implementation of 3 strategies to convert

SCATE annotations to ISO-TimeML, 2) development of the first system to parse

temporal phrases into both the SCATE and ISO-TimeML schemes, and 3) identifica-

tion of 6 types of errors state-of-the-art systems make when processing the 2012 i2b2
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data set, which sets the stage for future work in this area. This chapter is currently

in preparation for submission as a journal article.

8.5 Chapter 6

Chapter 6 includes many contributions that span positive and negative findings

regarding the use of temporally fine-tuned contextualized embeddings for temporal

type disambiguation, and several research products that can be utilized by others.

Of particular note is that this work is the first to temporally fine-tune BERT models

and then use the subsequent temporally fine-tuned contextualized embeddings for the

TTD task. Only two other works have utilized contextualized embeddings in temporal

reasoning tasks [146, 71], but neither of them fine-tuned the language models to a

temporal task, and this is the first work to utilize these embeddings specifically for

the TTD task in the ISO-TimeML scheme.

Negative Findings

1. Using BERT to perform temporal type classification/disambiguation directly

performs poorly.

2. Chaining fine-tuning on a simple (binary) then complex (Seq2Seq) task de-

grades performance for both the Seq2Seq models and the embeddings used in

the classical learning models.

3. Incorporating context and attention tokens directly into a feature vector de-

grades performance of the learning models.

Positive Findings

4. Incorporating the contextualized word embeddings into classical learning mod-

els reaches state-of-the-art performance for the DATE/DURATION temporal

disambiguation task.

5. Temporally fine-tuning BERT models on complex tasks create contextualized
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word embeddings that increase the performance of classical learning models on

the DATE/DURATION temporal disambiguation task.

6. While adding context generally degrades performance, this feature extraction

strategy can help unmodified BertBase embeddings compensate for domain

shifts.

Research Products

7. Two focused Training and Evaluation data sets developed from the 2012 i2b2

Temporal Challenge formatted for 3 tasks†: ISO-TimeML XML format, tem-

poral sentence classification, and Seq2Seq.

8. A Python script that can take the ISO-TimeML results from any other system

that parsed the 2012 i2b2 data set and filter it to those elements in the RelIV-

TIMEX evaluation data set, or any other filtered subset of the gold standard.

Available in the “gold-standard-utils” repository on the OlexLab GitHub page‡.

9. Six temporally fine-tuned BertBase and ClinBioBert models available in the

“temporal-bert” repository on the OlexLab GitHub page along with associated

fine-tuning code.

10. A Python object-oriented framework for extracting and summarizing contextu-

alized embeddings for temporal phrases, including context and attention tokens.

To be made available in the “summarize-bert-embeddings” repository on the

OlexLab GitHub page upon publication.

11. A novel algorithm for summarizing BERT attention weight matrices to identify

to which tokens an entire temporal phrase is paying the most attention. To be

made available in the “summarize-bert-embeddings” repository on the OlexLab

GitHub page upon publication.

†
Available upon request and after being approved for access to the i2b2 corpus.

‡
https://github.com/OlexLab/
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12. Chrono, the first TERN system to normalize temporal expressions to both

the SCATE and ISO-TimeML annotation schemes and implement a tempo-

ral disambiguation module that utilizes temporally fine-tuned contextualized

embeddings. Chrono is now the state-of-the-art for disambiguating relative

DATE/DURATION temporal phrases. Available on GitHub§.

§
https://github.com/AmyOlex/Chrono
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ID File Phrase Gold Value Mayo Value Vanderbilt Value MSRA Value

1 32 Yesterday morning , he developed... 5/12/2006 11/16/2006 5/13/2006 2003
2 32 On physical exam today 5/16/2006 11/16/2006 5/13/2006 5/13/2006
3 32 Prior to discharge today 5/16/2006 6/18/2006 6/18/2006 5/16/2006
4 73 Cholangiogram on postoperative day number two

showed...
8/26/2009 8/19/2009 8/26/2009 8/24/2009

5 73 Cholangiogram on postoperative day number two...At
the time...

8/26/2009 - 8/26/2009 8/24/2009

73 Cholangiogram on postoperative day number two...At
the time...At the same time

8/26/2009 8/19/2009 - 8/24/2009

73 On postoperative day number eight... 9/1/2009 8/25/2009 9/1/2009 8/24/2009
73 On postoperative day number eight...Chest x-ray and

sputum culture obtained at the time...
9/1/2009 - 9/1/2009 -

73 On postoperative day number ten... 9/3/2009 8/27/2009 9/3/2009 8/24/2009
6 73 On postoperative day number 17... 9/10/2009 9/3/2009 9/10/2009 9/10/2009
7 73 On postoperative day number 17...At the time... 9/10/2009 - 9/10/2009 9/10/2009

137 ...during his most recent admission 1 year prior . 10/10/2014 - - 10/10/2015
137 ...status-post gastric bypass ...7 weeks prior to admis-

sion who presented...
8/17/2015 - - 2/7/2015

208 ...which had been discontinued about 1 week ago . 5/19/2018 5/1/2018 5/19/2018 4/17/2018
233 ...started earlier in the day... 6/4/2015 - 6/8/2015 6/4/2015
233 ...pain was intermittent through the day... 6/4/2015 - 6/8/2015 6/4/2015
253 ...HSV outbreak occurred on 2017-09-13 approxi-

mately one week prior to delivery .
9/15/2017 - - 9/8/2017

253 ...serum bilirubin obtained on day of life three... 9/24/2017 9/24/2017 9/24/2017 9/22/2017
11 253 Antibiotics were discontinued on day of life three... 9/24/2017 9/24/2017 9/24/2017 9/22/2017
12 402 ...required a dilt gtt on the day prior to call-out... 2/17/2013 - 2/21/2013 2/18/2013

402 ...was transitioned to PO diltiazem and has been in
NSR since this time .

2/18/2013 - 2/21/2013 2/18/2013

13 402 ...transitioned to PO diltiazem on the day of call-out . 2/18/2013 - 2/21/2013 2/21/2013
14 402 ...was followed by urology during her stay and will see

them again 2 wk after d/c...At this time , urology will
coordinate removal of...

3/13/2013 2/21/2013 2/21/2013 2/21/2013

527 ...and was discharged to rehab on day 34/42 of the
vancomycin .

2/19/2017 3/9/2017 - -

527 ...the plan was for steroid taper : 60 mg x 10 days (
already completed ) , 40 mg x 14 d ( already completed
) , 20 mg x 14 d ( now day 11-24 ) , 10 mg x 10 d , 5
mg x 10 d .

3/4/2017 2/14/2017 11/24/2017 2/14/2017

537 ...daughter says that on the day PTA... 1/19/2014 - 2/3/2014 1/20/2014
15 737 ...underwent cardiac catheterization today... 6/10/2015 5/4/2015 5/4/2015 9/2/2015

737 He is now preop for... 6/10/2015 - 9/2/2015 -
16 767 ...until one and a half weeks prior to admission ... was

prescribed cortisone drops . A few days later she com-
plained of dizziness .

12/21/2009 1/3/2010 12/30/2009 -

17 817 ...with chronic mild dyspnea on exertion until two
weeks prior to admission .

4/6/2012 - 4/6/2012 4/19/2012

8 142 Mother presented on day of delivery with preterm la-
bor...

2016-05-05 - - 2016-05-05

9 142 day of life two 2016-05-07 2016-05-06 2016-05-06 2016-05-05
142 day of life four 2016-05-09 2016-05-08 2016-05-08 2016-05-05
142 day of life six 2016-05-11 2016-05-10 2016-05-10 2016-05-05
142 day of life six 2016-05-11 2016-05-10 2016-05-10 2016-05-05

10 142 day of life 18 2016-05-23 2016-05-22 2016-05-22 2016-05-05
142 day of life four 2016-05-09 2016-05-08 2016-05-08 2016-05-05
142 day of life seven 2016-05-12 2016-05-11 2016-05-11 2016-05-05
142 day of life 11 2016-05-16 2016-05-15 2016-05-15 2016-05-05
142 day of life five 2016-05-10 2016-05-09 2016-05-09 2016-05-05
142 day of life 25 2016-05-30 2016-05-29 2016-05-29 2016-05-05
142 day of life two 2016-05-07 2016-05-06 2016-05-06 2016-05-05
142 day of life six 2016-05-11 2016-05-10 2016-05-10 2016-05-05
142 day of life seven 2016-05-12 2016-05-11 2016-05-11 2016-05-05
142 day of life two 2016-05-07 2016-05-06 2016-05-06 2016-05-05
142 day of life two 2016-05-07 2016-05-06 2016-05-06 2016-05-05
142 day of life three 2016-05-08 2016-05-07 2016-05-07 2016-05-05
142 day of life seven 2016-05-12 2016-05-11 2016-05-11 2016-05-05
142 day of life 33 2016-06-07 2016-06-06 2016-06-06 2016-06-07

Table S1. Expanded list of temporal phrases for which it was hard to correctly identify

the Anchor Time and/or Delta Value. The ‘ID’ column lists the phrase ID

from Table 13.
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Table S2. Results of fine-tuning BertBase and ClinBioBert baseline and binary models

on the Seq2Seq multi-label classification of temporal types using the Ttype

classes. Metric abbreviations: P:Precision, R:Recall
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Table S3. Results of fine-tuning BertBase and ClinBioBert baseline and binary mod-

els on the Seq2Seq multi-label classification of temporal types using the

Beginning-Inside-Outside (BIO) classes. Metric abbreviations: P:Precision,

R:Recall
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Table S4. BertBase CNN replicate model performance using RelIV-TIMEX evalua-

tion data set. Phrase Only Hyperparameters: dropout: 0.05, kernel size1:

5, kernel size2: 2, num filters: 128, pool size: 2, stride: 2; +Context Hyper-

parameters: dropout: 0.1, kernel size1: 5, kernel size2: 2, num filters: 32,

pool size: 3, stride: 2; +Attention Hyperparameters: dropout: 0.05, kernel

size1: 5, kernel size2: 3, num filters: 128, pool size: 3, stride: 2; Metric

abbreviations: P:Precision, R:Recall, Acc:Accuracy, Spe:Specificity.
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Table S5. BertBase Binary CNN replicate model performance using RelIV-TIMEX

evaluation data set. Phrase Only Hyperparameters: dropout: 0.1, kernel

size1: 3, kernel size2: 3, num filters: 64, pool size: 2, stride: 1; +Context

Hyperparameters: dropout: 0.1, kernel size1: 3, kernel size2: 2, num filters:

32, pool size: 2, stride: 2; +Attention Hyperparameters: dropout: 0.05,

kernel size1: 5, kernel size2: 3, num filters: 32, pool size: 3, stride: 1;

Metric abbreviations: P:Precision, R:Recall, Acc:Accuracy, Spe:Specificity.
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Table S6. BertBase Seq2Seq Ttype CNN replicate model performance using RelIV–

TIMEX evaluation data set. Phrase Only Hyperparameters: dropout: 0.1,

kernel size1: 5, kernel size2: 2, num filters: 32, pool size: 3, stride: 1; +Con-

text Hyperparameters: dropout: 0.1, kernel size1: 3, kernel size2: 3, num

filters: 32, pool size: 3, stride: 1; +Attention Hyperparameters: dropout:

0.05, kernel size1: 5, kernel size2: 3, num filters: 128, pool size: 2, stride: 2;

Metric abbreviations: P:Precision, R:Recall, Acc:Accuracy, Spe:Specificity.
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Table S7. BertBase Seq2Seq BIO CNN replicate model performance using RelIV–

TIMEX evaluation data set. Phrase Only Hyperparameters: dropout: 0.05,

kernel size1: 3, kernel size2: 3, num filters: 32, pool size: 3, stride: 2; +Con-

text Hyperparameters: dropout: 0.05, kernel size1: 3, kernel size2: 3, num

filters: 32, pool size: 2, stride: 2; +Attention Hyperparameters: dropout:

0.05, kernel size1: 3, kernel size2: 2, num filters: 64, pool size: 2, stride: 2;

Metric abbreviations: P:Precision, R:Recall, Acc:Accuracy, Spe:Specificity.
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Table S8. BertBase Binary Seq2Seq Ttype CNN replicate model performance us-

ing RelIV-TIMEX evaluation data set. Phrase Only Hyperparameters:

dropout: 0.1, kernel size1: 3, kernel size2: 3, num filters: 32, pool size:

3, stride: 2; +Context Hyperparameters: dropout: 0.1, kernel size1: 3,

kernel size2: 2, num filters: 64, pool size: 3, stride: 1; +Attention Hy-

perparameters: dropout: 0.1, kernel size1: 3, kernel size2: 3, num filters:

128, pool size: 3, stride: 2; Metric abbreviations: P:Precision, R:Recall,

Acc:Accuracy, Spe:Specificity.
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Table S9. BertBase Binary Seq2Seq BIO CNN replicate model performance using Re-

lIV-TIMEX evaluation data set. Phrase Only Hyperparameters: dropout:

0.05, kernel size1: 3, kernel size2: 3, num filters: 64, pool size: 3, stride:

1; +Context Hyperparameters: dropout: 0.05, kernel size1: 5, kernel size2:

2, num filters: 64, pool size: 2, stride: 2; +Attention Hyperparameters:

dropout: 0.1, kernel size1: 5, kernel size2: 3, num filters: 64, pool size:

3, stride: 1; Metric abbreviations: P:Precision, R:Recall, Acc:Accuracy,

Spe:Specificity.
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Table S10. ClinBioBert CNN replicate model performance using RelIV-TIMEX evalu-

ation data set. Phrase Only Hyperparameters: dropout: 0.05, kernel size1:

5, kernel size2: 3, num filters: 128, pool size: 3, stride: 1; +Context Hyper-

parameters: dropout: 0.05, kernel size1: 3, kernel size2: 3, num filters: 32,

pool size: 2, stride: 2; +Attention Hyperparameters: dropout: 0.1, kernel

size1: 3, kernel size2: 2, num filters: 64, pool size: 2, stride: 1; Metric

abbreviations: P:Precision, R:Recall, Acc:Accuracy, Spe:Specificity.
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Table S11. ClinBioBert Binary CNN replicate model performance using RelIV–

TIMEX evaluation data set. Phrase Only Hyperparameters: dropout:

0.05, kernel size1: 5, kernel size2: 3, num filters: 32, pool size: 3, stride: 1;

+Context Hyperparameters: dropout: 0.05, kernel size1: 5, kernel size2:

3, num filters: 32, pool size: 3, stride: 1; +Attention Hyperparameters:

dropout: 0.1, kernel size1: 3, kernel size2: 2, num filters: 64, pool size:

3, stride: 1; Metric abbreviations: P:Precision, R:Recall, Acc:Accuracy,

Spe:Specificity.
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Table S12. ClinBioBert Seq2Seq Ttype CNN replicate model performance using Re-

lIV-TIMEX evaluation data set. Phrase Only Hyperparameters: dropout:

0.1, kernel size1: 5, kernel size2: 3, num filters: 32, pool size: 3, stride:

1; +Context Hyperparameters: dropout: 0.1, kernel size1: 5, kernel size2:

2, num filters: 64, pool size: 3, stride: 1; +Attention Hyperparameters:

dropout: 0.05, kernel size1: 5, kernel size2: 3, num filters: 32, pool size:

3, stride: 2; Metric abbreviations: P:Precision, R:Recall, Acc:Accuracy,

Spe:Specificity.
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Table S13. ClinBioBert Seq2Seq BIO CNN replicate model performance using RelIV-

-TIMEX evaluation data set. Phrase Only Hyperparameters: dropout:

0.05, kernel size1: 5, kernel size2: 3, num filters: 32, pool size: 3, stride: 2;

+Context Hyperparameters: dropout: 0.05, kernel size1: 5, kernel size2:

3, num filters: 32, pool size: 2, stride: 2; +Attention Hyperparameters:

dropout: 0.1, kernel size1: 3, kernel size2: 2, num filters: 64, pool size:

3, stride: 2; Metric abbreviations: P:Precision, R:Recall, Acc:Accuracy,

Spe:Specificity.
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Table S14. ClinBioBert Binary Seq2Seq Ttype CNN replicate model performance us-

ing RelIV-TIMEX evaluation data set. Phrase Only Hyperparameters:

dropout: 0.05, kernel size1: 5, kernel size2: 3, num filters: 32, pool size:

2, stride: 2; +Context Hyperparameters: dropout: 0.1, kernel size1: 5,

kernel size2: 3, num filters: 64, pool size: 3, stride: 2; +Attention Hy-

perparameters: dropout: 0.05, kernel size1: 3, kernel size2: 3, num filters:

64, pool size: 2, stride: 1; Metric abbreviations: P:Precision, R:Recall,

Acc:Accuracy, Spe:Specificity.
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Table S15. ClinBioBert Binary Seq2Seq BIO CNN replicate model performance us-

ing RelIV-TIMEX evaluation data set. Phrase Only Hyperparameters:

dropout: 0.05, kernel size1: 5, kernel size2: 3, num filters: 64, pool size:

3, stride: 1; +Context Hyperparameters: dropout: 0.05, kernel size1: 3,

kernel size2: 2, num filters: 32, pool size: 2, stride: 1; +Attention Hy-

perparameters: dropout: 0.1, kernel size1: 5, kernel size2: 2, num filters:

64, pool size: 2, stride: 1; Metric abbreviations: P:Precision, R:Recall,

Acc:Accuracy, Spe:Specificity.
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Table S16. ClinBioBert SVM model performance using RelIV-TIMEX evaluation

data set. Metric abbreviations: P:Precision, R:Recall, Acc:Accuracy,

Spe:Specificity.
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Table S17. BertBase SVM model performance using RelIV-TIMEX evaluation

data set. Metric abbreviations: P:Precision, R:Recall, Acc:Accuracy,

Spe:Specificity.
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